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UNIT - I

1. If  u = x2 tan–1
y
x

– y2 – tan–1
x
y ; xy  0. prove that 

2u
x y

   = 

2 2

2 2
x - y

x +y
.

Ans :
Refer Unit-I, Page No. 3, Q.No. 6.

2. If u = 
2 2 2

1

x +y +z
: x2 + y2 + z  0  show that 

2

2
u

x




 + 



2

2
u

y
 + 



2

2
u

z
= 0.

Ans :
Refer Unit-I, Page No. 4, Q.No. 7.

3. If x x y y zz = C Show that x = y = z 
2z

x y

  = – (x loge x)–1.

Ans ;
Refer Unit-I, Page No. 6, Q.No. 9.

4. State and prove Euler’s theorem on homogeneous functions.

Ans :
Refer Unit-I, Page No. 9, Q.No. 13.

5. If u = tan-1 
 
 
 

3 3x +Y
x- y  , x   y, then show that,

(i)
u

x
x



 + 
u

y
y



 = sin 2u

(ii)
2 2 2

2 2
2 2

u u u
x +2xy +y

x yx y
  

  
= (1 – 4 sin2 u) sin2u.

Ans :
Refer Unit-I, Page No. 11, Q.No. 14.

6. Verify Euler’s theorem for
(i) z = ax2 + 2hxy + by2

(ii) z = sin-1
 
 
 

x
y  + tan-1 

 
 
 

y
x .

Ans :
Refer Unit-I, Page No. 14, Q.No. 16.

Important Questions
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UNIT - II

1. State and prove Theorem on Total Differentials.State and prove Theorem on Total
Differentials.

Ans :
Refer Unit-II, Page No. 23, Q.No. 1.

2. If u = tan–1 2 2

xy

1 x y

 
 
   

, Then Show that 
2u

x y

   = 

 
3

2 2 2

1

1 x y 
.

Ans :
Refer Unit-II, Page No. 31, Q.No. 10.

3. Write Working Rule to find  the maximum  or minimum value of f(x,y).

Ans :
Refer Unit-II,  Page No. 34, Q.No. 14.

4. Discuss the maximum or minimum value  of u, when u = x3 + y3 – 3axy.

Ans :
Refer Unit-II,  Page No. 35, Q.No. 16.

5. Explain Lagrange’s method of undermined multipliers.

Ans :
Refer Unit-II,  Page No. 42,  Q.No. 22.

6. Discuss the maxima and minima of the function u = sin x sin y sin z, where x, y, z are the
angles of a triangle

Ans :
Refer Unit-II, Page No. 46, Q.No. 25.

UNIT - III

1. Explain the concept of Linear Equations in Linear Algebra.

Ans :
Refer Unit-III, Page No. 57, Q.No. 1.

2. What is system of linear equation and explain briefly ?

Ans :
Refer Unit-III,  Page No. 58, Q.No. 3.
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3. What is homogeneous system of linear equations and explain it cases ?

Ans :
Refer Unit-III,  Page No. 59, Q.No. 4.

4. Find the system of Linear equation,

2x + 4y – 3z = 4

3y + 4x + 5z = 2

4z + 4x + 3y = 1

Ans :
Refer Unit-III,  Page No. 65, Q.No. 12.

5. Find the system of line or equation

2x + y + z = 2

4x + y + = 6

9x + 2y + z = 2

Ans :
Refer Unit-III,  Page No. 68, Q.No. 13.

6. What is linear independent and explain with example?

Ans :
Refer Unit-III,  Page No. 78, Q.No. 25.

7. What is linear dependent and explain with example

Ans :
Refer Unit-III,  Page No. 80, Q.No. 26.

8. What are the Characteristics of Linearly Dependent ?

Ans :
Refer Unit-III,  Page No. 81, Q.No. 27.

9. Determining Linear Dependence Using the Determinant Method

2x + y – z = 5 ... (1)

4x – 3y + 2z = 1 ... (2)

x + 2y – z = 3 ... (3)

Ans :

Refer Unit-III,  Page No. 81, Q.No. 28.
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UNIT - IV

1. The union of two subspaces is again subspaces  H1
 H2  (or) H2

 H1.

Ans :
Refer Unit-IV, Page No. 92, Q.No. 7.

2. Let H be the set of all vectors of the from (a – 3b, b – a, a, b) where a and b are arbitrary
scalars let H = {(a – 3b, b – a, a, b)}; a, b in R. Show that H is a subspace of R4.

Ans :
Refer Unit-IV, Page No. 93, Q.No. 8.

3. Show that w is in the subspace of R4 spanned by v1, v2, v3 where,

9
7

w
4
8

 
 
 
 
 
 

, 1

7
4

v
2

9

 
  
 
 
 

,

2

4
5

v
1
7

 
 
 
 
 
 

, 3

9
4

v
4
7

 
 
 
 
 
 

Ans :
Refer Unit-IV,  Page No. 95, Q.No. 11.

4. Find the  characteristic polynomial and the real eigen values of the matrix

A=  
 
 

-4 -1
6 1

Ans :
Refer Unit-IV,  Page No. 101, Q.No. 21.

5. Find the characteristic polynomial and the eigen values of the matrices

(i)
 
 
 

2 7
7 2 (ii)

 
 
 

3 2–
1 1–

(iii)
 
 
 

5 3
–4 4 (iv) 

 
 
 

7 –2
2 3

Ans :
Refer Unit-IV, Page No. 105, Q.No. 23.
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6. Find the characteristic equation of the matrix A =

 
 
 
 
 
 

5 -2 6 -1
0 3 -8 0
0 0 5 4
0 0 0 1

Ans :
Refer Unit-IV,  Page No. 109, Q.No. 30.

7. Is l = 3 an eigenvalue of 

 
 
 
  

1 2 2
3 -2 1
0 1 1

if so find the one corresponding eigen vector..

Ans :
Refer Unit-IV,  Page No. 110, Q.No. 31.

UNIT - V

1.  State and prove the diagonalization theorem.

Ans :
Refer Unit-V, Page No. 119, Q.No. 2.

2. Diagonalize the matrix A = 
 
 
 
  

1 3 3
–3 –5 –3
3 3 1

 if possible.

Ans :
Refer Unit-V, Page No. 123, Q.No. 9.

3. Find formulas for the voltages v1 and v2 (as functions of time t) for the circuit shown

below, assuming that R1 =
1
5

 Ohm, R2 = 
1
3

 ohm, C1 = 4 farads, C2 = 3 farads and the

Initial charge on each capacitor is 4 volts.

R1

C1

+

R2

C2

Ans :
Refer Unit-V, Page No. 125, Q.No. 10.
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4. Construct the general solution of X' = AX involving complex eigen functions and then
obtain the general real solution. Describe the shape of typical trajectories.

(i) A = 
 
 
 

–3 –9
2 3

(ii) A = 
 
 
 

4 –3
6 –2

Ans :
Refer Unit-V, Page No. 130, Q.No. 12.

5. Make a change of variable that decouples the equation X' = AX write the equation X(t) =
Py(t) and show the calculate that leads tot he uncoupled system Y' = DY, specifying P

and D where A = 
 
 
 

1 –2
3 –4 .

Ans :
Refer Unit-V, Page No. 133, Q.No. 13.

6. A particle moving in a planar force field has a position vector X that satisfies X1 = AX.

The 2 × 2 matrix A has eigen value 4 and 2 with corresponding eigen vectors v1 = 
 
 
 

–3
1

and v2 = 
 
 
 

–1
1 . Find the position of the particle at time t, assuming that X(0) = 

 
 
 

–6
1 .

Ans :
Refer Unit-V, Page No. 136, Q.No. 14.
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UNIT
I

Partial Differentiation: Introduction - Functions of two variables - Neighborhood
of a point (a, b) - Continuity of a Function of two variables, Continuity at a
point - Limit of a Function of two variables - Partial Derivatives - Homogeneous
Functions.

1.1  PARTIAL DIFFERENTIATION

1.1.1 Introduction

Q1. Define Partial Differentiation.

Ans :
The process of determining the partial

derivatives of a function of more than one
independent variables is knows as partial

differentaiaion. It is denoted by symbols like 
x



,

y

 , 

z



, 
t



 etc.

1.1.2 Functions of Two Variables

Q2. Explain Functions of Two Variables.

Ans :
A function which contains more than one

variable is called function of several variables.

Function of Two Variables

A function which contains two variables is
called function of two variables.

It is of the form,

z = f(x, y)

Example

z = x2 + y2

Function of Three Variables

A function which has three variables is called
function of three variables.

It is of the form,

v = f(x, y, z)

Example

v =  x2 + y2 + z2

1.1.3 Neighborhood of a Point (a, b)

Q3. Write a short notes on Neighborhood of
a Point (a, b)

Ans :
Let  repredents a positive number i.e.,

> 0.

The point (x, y) for which

a –   x   a +,

b –   y   b + 

Determine a square which is bounded by the
lines,

x = a – 

x = a +

x = b – 

x = b +

Its centre is located at the point (a, b) as shown
in figure.
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Neighbourhood of a Point (a, b)

From the figure, the square is termed as neighbourhood of the point (a, b)

Hence, the set

{(x, y) : a –    x   a + , b –     y   b + }

is called as the neighbourhood of the point (a, b)

1.1.4 Continuity of a Function of Two Variables, Continuity at a Point

Q4. Explain Continuity of a Function of Two Variables.

Ans :
A function f(x, y) is said to be continuous at (a, b) i.e., x = a, y = b, if a positive number   exists

such that,

f(x,y) f(a,b) (x,y)  

Where,

 – Any preassigned positive number (small)

f(x, y) lies between f(a, b) – and f(a, b) + 

If points lie on y = b then

f(x) = f(x, b)

 f(x,b) f(a,b)  

 f(x) f(a,b)  

Hence continuous function of two variables is also a continuous function of each variable separately.

1.1.5 Limit of a Function of Two Variables

Q5. Explain Limit of a Function of two variables

Ans :
The limit of a function f(x, y) can be defind as ‘l’ as x tends to a and y tends to b, such that for a

small preassigned positived number  there exists a corresponding positive number .

Where,

f(x,y) l (x,y)    such that

a –    x   a + ; b -    y   b + 

i.e., {(x, y): x  [a – , a + ], y  [b – , b + ]}   (a, b)

f is continuous at (a, b), if

lim f(x, y) = f(a, b) as (x, y)  (a, b)

Then for continuity at (a, b),

lim f(a,+h, b+k)=f(a, b) as (h, k) (0, 0)
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6. If  u = x2 tan–1
y
x

– y2 – tan–1
x
y ; xy  0. prove that 

2u
x y

   = 

2 2

2 2
x - y

x +y
.

Sol : (Imp.)

Given that u = x2 tan–1 y
x

– y2 tan–1 
x
y

Partially Diff w.r.to y. Then we have

u
y



= 
2 1 2

2 2 2
1 x 1 x

x 2y tan y
x y yy x1 1

x y


  

          

= 
2 4

1
2 2 2 2 2
x.x x y x

2y tan
yx y y x y

 
 

=
3 2

1
2 2 2 2
x x xy

2y tan
yx y y x

 
 

= 
 2 2

2 2

x x y

x y




–2y tan–1 

x
y

        
u
y



= x – 2y tan–1 
x
y

  Partially differentiate with respect to x.

u
x y
  
   


2u

x y

 

= 1 x
x 2y tan

x y
  

   

= 1– 2y 2
1 1

yx
1

y
 

  
 

= 1 – 
2

2 2
2y

y x

= 
2 2 2

2 2
x y 2y

x y

 



            
2u

x y

 

= 
2 2

2 2
x y

x y




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7. If u = 
2 2 2

1

x + y + z
: x2 + y2 + z  0  show that 

2

2
u

x




 + 



2

2
u

y
 + 



2

2
u

z
= 0.

Sol : (Imp.)

  u =  
1

2 2 2 2x y z


 

u
x



 = – 
1
2  

3
2 2 2 2x y z


   2x

      = – x  
3

2 2 2 2x y z


 

u
x x
  
   

 =  
2

2
u

x





=  
3

2 2 2 2x x y z
x

 
   

  

      = –  
1

2 2 2 3x y z


   +    
5

2 2 2 23
x x y z 2x

2


 

      = –  
1

2 2 2 3x y z


  + 3x2  
5

2 2 2 2x y z


  . ....(1)

       
u
y

 = 

1
2
  

1
2 2 2 2x y z


   2y

      = –  
3

2 2 2 2x y z


 

                              

2

2
u

y




= 

u
y y
  
   

=  
3

2 2 2 2y x y z
y

 
     

= –  
3

2 2 2 2x y z


   + 3y
2  

3 12 2 2 2x y z
 

   2y

= –  
3

2 2 2 2x y z


   + 3y2  
5

2 2 2 2x y z


  .......(2)

       
u
z




=  –
1
2  

3
2 2 2 2x y z


   –  2z

= – z  
3

2 2 2 2x y z


 
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u
z z
  
   

=
2

2
u

z




=  

3
2 2 2 2z x y z

z

 
     

     =  
3

2 2 2 2x y z


   + 
3
2

 z  
5

2 2 2 2x z y


    2z

     = –  
3

2 2 2 2x y z


   + 3z2  
5

2 2 2 2x y z


  .....(3)

Adding (1) & (2) & (3)

2

2
y

x




+

2

2
y

y




+

2

2
y

z




 = –  

3
2 2 2 2x y z



    + 3x2  
5

2 2 2 2x y z


    –  
3

2 2 2 2x y z


  + 3y2  
5

2 2 2 2x y z


 

–  
3

2 2 2 2x y z


  + 3z2  
5

2 2 2 2x y z


 

= – 3  
3

2 2 2 2x y z


   + 3(x2 + y2 + z2)  
5

2 2 2 2x y z


 

= – 3  
3

2 2 2 2x y z


   + 3  
3

2 2 2 2x y z


 

     
2

2
y

x




+

2

2
y

y




+

2

2
y

z




 = 0

8. If  u = log (x3 + y3 +z3 – 3xyz) show that  
2

x y z
   

     
u = – 

 2
9

x y z 

Sol :
We have u = log (x3 + y3 + z3 – 3xyz)

        
u
x
∂
∂ = 3 3 3

1

x y z 3xyz    (3x2 – 3yz)

u
y

 = 3 3 3

1

x y z 3xyz    3y2 – 3xz

u
z




 = 3 3 3
1

x y z 3xyz    3z2 – 3zy


u
x



 + 
u
y



 + 
u
z




 = 
2 2 2

3 3 3
3x 3yz 3y 3xz 3z 3xy

x y z 3xyz

    

  

= 
 2 2 2

3 3 3

3 x y z xy yz zx

x y z 3xyz

    

  

= 3(x2 + y2 + z2 – xy – yz – zx)

= 
3

x y z 
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2

x y z
   
     

u = 
u u u

x y z x y z
       
            

 = 
3

x y z x y z
    
         

= 
3

x x y z
  
    

 + 
3

y x y z
  
    

+ 
3

z x y z
  
    

= – 
 2

3

x y z 
 – 

 2
3

x y z 
– 
 2

3

x y z 

           
2

x y z
   
     

 = – 
 2

9

x y z 

9. If x x y y zz = C Show that x = y = z 
2z

x y

  = – (x loge x)–1.

Sol : (Imp.)

Given that xx  yy  zz = C
Taking Log on both sides
We have, log (xx yy zz) – log C

log xx + log yy + log zz = log C
x log x + y log y + z log z = log C

Differentiate partially with respect to x weget

1
x.

x + 1. log x +(
1

z.
z

 + 1. log z)
z
x



= 0

1 + logx + (1+ log z)
z
x



= 0

(1 + log z) 
z
x



= – [1 + log x]

 
z
x



= – 
 
 
1 log x

1 log z




Differentiate partially with respect to ‘y’ we get

1
y

y
  + 1. log y + z. 1

z
+ 1. log z 

z
y



 = 0

1 + log y + (1 + log z)
z
y

 = 0
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z
y



= 
 1 log y

1 log z

 



            
2z

x y

 

= 
z

x y
  
   

=  2
1 log x 1 z

z y1 log z

 




= –  
 
 

 
 2

1 log x 1 log y1
z 1 log z1 log z

 
 



= –
 
 

2

3

1 log x 1
x1 log x





Since x = y = z

= –  
1

x 1 log x

          
2z

x y

 

= –
1

x log ex  = –   1
x log ex



10. If u = 3(lx + my + nz)2 – (x2 + y2 + z2 ) & l2 + m2 + n2 = 1

Show that  
2

2
u

x




+ 

2

2
u

y




 +

2

2
u

z




= 0

Sol :
          u = 3(lx + my + nz)2 – (x2 + y2 + z2)

        
u
x



= 6 (lx + my + nz) l – 2x

      
2

2
u

x




= 6 l . l – 2

= 6 l2 – 2

        
u
y

 = 6(lx + my + nz) m – 2y

= 6m (lx + my + nz) – 2y

      
2

2
u

y




= 6m.m – 2

= 6m2 – 2
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u
z




= 6(lx +my + nz) n – 2z

= 6n (lx + my + nz) –2z

      
2

2
u

z




= 6n2 – 2

  
2

2
u

x




 + 

2

2
u

y




+ 

2

2
u

z




=  6l2 – 2 + 6m2 – 2 + 6n2 – 2

= 6l2 + 6m2 + 6n2 – 6

= 6 [l2 + m2 + n2] – 6

= 6(1) – 6

       
2

2

u

x




 + 

2

2
u

y




+ 

2

2

u

z




= 0

1.2  HOMOGENEOUS FUNCTIONS

Q11. Define Homogenous function with example.

Ans :

If the sum of indices of different variables contained in each term of an algebraic expression be n, it
is called a homogenous function of degree n.

Let u = f(x, y) be a function of x and y. If this sum of the power of x and y in each term of f(x, y)
be equal, then f(x, y) is called homogenous function.

Eg. x2 + y3 + 3x2 y is homogenous functio of order 3.

  x4 + y4 + 4x2 y2 is homogenous function of 4th orders.

Consider the function

f(x,y) = a0 x
n + a1 x

n–1 y + a2 x
n-2 y2 + ..... +an–1

 xyn–1 + an y
n .......(1)

We see that the expression  f(x,y) is polynomial in (x,y) such that the  degree of each of the terms
is the same  f is called a homogenous function of degree n.

 An expression in (x,y) is homogenous of degree n, if it is expressible as

xn f (y/x)

 The polynomial function (1) which can be rewritten  as

2 n
n

0 1 2 n
y y y

x a a a ...... a
x x x

           
     

is a homogenous expression  of order n
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12. Find the degree of given Homogenous function for f(x,y) = xn sin (y/x).

Sol :
Given that

f(x,y) = xn sin (y/x)

  f(x,y) =    y x y x 

The degree of the expression  xn sin (y/x) is n

The degree of the expression
y x
y x





 – 

y
x 1

x
yx 1
x

 
 

  
   

=
1 12

y
1

x
x

y1 x



 
 

  



=
1

2

y1
xx

y1 z

 



So, that it is of degree 
1

2


13. State and prove Euler’s theorem for a homogeneous functions.
(OR)

State and prove Euler’s theorem on homogeneous functions.
(OR)

If Z = f(x, y) be a homogeneous function of x, y of degree n then show that,

x 
u
x



 + y 
u
y

  = nz   x, y   the domain of the function.

Sol : (Imp.)

Statement
If z = f(x, y) is a homogeneous function in x and y of degree n then,

x 
z
x



 + y 
z
y

  = nz   x, y   domain of the function.

Proof
Let, z = f(x, y) be a homogeneous function in x and y of degree n. Then it can be expressed as,

z = 
n y

x f
x
 
  

.....(1)
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Partially differentiating equation (1) with respect to x,

z
x



= xn 
x



ny y
f f x

x x x
                 


z
x



= xn 
n 1y y y

f ' f nx
x x x x

               


z
x



= xn 
n 1

2

y y y
f ' f nx

x x xx
                


z
x



= nxn-1 
n 2y y

f yx f '
x x

      
   

....(2)

Multiplying equation (2) by x on both sides,

x
z
x



= n.x.xn-1 
n 2y y

f yx.x f '
x x

      
   

 x
z
x



= nxn 
n 1y y

f yx f '
x x

      
   

....(3)

Partially differentiating equation (1) with respect to y,

z
y

 = xn y




y
f

x
  
  
  


z
y

 = xn 

y
f '

x
 
 
 

y
y x
  
   


z
x



= xn
y

f '
x

 
 
 

1
.

x
 
 
 


z
y

 = xn-1 

y
f '

x
 
 
 

....(4)

Multiplying by y on both sides of equation (4),

y
z
y

 = yxn-1 

y
f '

x
 
 
 

Adding equations (3) and (5),

n 1 n 1 n 1z z y y y
x y nx f ' yx f ' yx f '

x y x x x
                        


nz z y

x y nx f '
x y x
         
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
z z

x y nz
x y
 

 
  [ From equation (1)]


z z

x y nz
x y
 

 
 

14. If u = tan-1 

3 3x Y
x y

 
    , x   y, then show that,

(i)
u

x
x



 + 
u

y
y

  = sin 2u

(ii)
2 2 2

2 2
2 2

u u u
x 2xy y

x yx y
  

 
    = (1 – 4 sin2 u) sin2u.

Sol : (Imp.)

Given that,

u =  tan–1  
3 3x y
x y

 
  

 or tan–1 

3 3x y
x y

 
  

 x   y

 tan u = 
3 3x y
x y

 
  

Let, tan u = f where, f = 
3 3x y
x y

 
  

The degree of this homogeneous function is obtained as,

f(kx, ky) = 
3 3 3 3 3 3 3 3 3 3 3

3 1 2k x k y k (x y ) x y x y
k k

kx ky k(x y) x y x y
       

           
 = k2(f)

Degree is 2.

(i) According to Euler’s theorem,

x . 
f
x



 + y . 
f
y

  = 2f

Since,

f = tanu


f
u



 = sec2 u

Condier

f
x



,
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f f u
.

y u y
  


  

f u
sec 2u.

y y
 


 

Substituting equations (2) and (3) in equation (1),

u u
x sec 2u. y sec 2u.

x y
          

 = 2(tan u)

sec2u. 
u u

x. y
x y
  

   
 = 2 tna  u

u u
x. y.

x y
 


   = 2 tan u . 2

1
sec u

   = 
2sinu
cos u . cos2 u = 2 sinu. cos u = sin 2u.


u u

x. y.
x y
 


   = sin2u

(ii) Since, g(u) = 2

f(u) 2 tanu
n

f '(u) sec u


g(u) = sin 2u

And g'(u) – 1 = 2 cos2u – 1

From Euler’s theorem,

2 2 2
2

2 2

u u u
x2 2xy y

x yx y
  

 
  

= g(u)(g'(u) –1)

= sin2u(2 cos2u -1) = 2 sin2u.cos2u - sin2u

= sin2(2u) - sin2u = sin4u - sin2u


2 2 2

2 2
2 2

u u u
x 2x y. y sin4u sin2u

x yx y
  

   
   = sin4u - sin2u

= sin 2u (2(cos2 - sin2 )- 1)

= sin 2u (2cos2 - sin2 - 1)

= sin 2u (2 - 2sin2  - 2sin2  - 1)

= sin 2u(1- 4sin2  )


2 2 2 2

2
2 2

x
2x y y sin 2

x yx y
     

   
   (1 – 4 sin2  ).
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15. If u = log
4 4x y
x y

 
 

 
, show by Euler’s theorem that 

u u
X y

x y
 


   = 3.

Sol :
Given,

u = log
4 4x y
x y

 
  

 eu = 
4 4x y
x y



Let, z = 
4 4x y
x y



Degree of z = 
4 4 4 4 4 4 4

3(kx) (ky) k x y x y
k

kx ky k x y x y
     

         
 = k3 eu

z is a homogeneous function of degree 3

 From Euler’s theorem,

z z
x. y. 3z

x y
 

 
  ....(1)

Here,
z = en


z
u



 = eu

 
z
x



 = 
z
u



.
u
x



 = eu. 
u
x




z
x



 = eu. 
z
x



....(2)

z
y

  = 

z
u



.
z
y

  = eu. 

z
y




z
y

  = eu. 

u
y

 ....(3)

Substituting equations (2) and (3) in equation(1),

x
u u

e .
x
 

  
 + y

u u
e

y
 

  
 = 3 (eu)

 eu
u u

x. y.
x y
  

   
 = 3eu
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 x.
u
x



 + y..
u
y

  = 3

 x.
u
x



 + y..
u
y

  = 3

16. Verify Euler’s theorem for
(i) z = ax2 + 2hxy + by2

(ii) z = sin-1
x
y

 
 
 

 + tan-1 
y
x

 
 
 

.

Sol : (Imp.)

(i) z = ax2 + 2hxy + by2

Given function is,

z = ax2 + 2hxy +by2

Let,
z = f(x, y)

= ax2 + 2hxy + by2

Degree of homogeneous function is obtained as,
f(kx, ky) = a(kx)2 + 2h(kx)(ky) + b(ky)

          = ak2x2 + 2hk2xy +bk2y2

          = k2(ax2 + 2hxy + by2)
          = k2(f)

 Degree is 2.

According to Euler’s theorem,

x.
u
x



 + y..
u
y

  = 2z

Consider,

x.
u
x



 + y..
u
y



= x. 
u
x



(ax2 + 2hxy + by2) + y.. y

 (ax2 + 2hxy  + by2)

= x(2ax + 2hy + 0) + y(0 + 2hx + 2by)

=  x(2ax + 2hy) + y( 2hx + 2by)

= 2(ax2 + hxy ) + 2(hxy + by2)

= 2[ax2 + hxy  + hxy + by2]

= 2[ax2 + 2hxy  + by2]

= 2z
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 x.
z
x



 + y..
z
y

  = 2z

 From equations (1) and (2), Euler’s theorem is verified.

(ii) z = sin-1 
x
y

 
 
 

+ tan-1 

y
x

 
 
 

Given function is,

z = sin-1
x
y

 
 
 

 + tan-1

y
x

 
 
 

Degree of homogeneous function is obtained as,

f(kx, ky) = sin-1
kx
ky

 
 
 

+ tan-1

ky
kx

 
 
 

= sin-1
x
y

 
 
 

 + tan–1

y
x

 
 
 

= k0(f)
  Degree is 0.

According to Euler’s theorem,

x .
u
x



 + y..
u
y

  = 0.z .....(1)

Consider,

x . 
u
x



 + y..
u
y

  = x. 

x



1 1 1 1x y x y
sin tan y. sin tan

y x y y x
                                

= x 2 2 22

1 y 0 1 0 y
y xyx 11 xy

 
 
                       

 +y 2 2 22

1 0 x 1 x 0
y xyx 11 xy

 
 
                       

 = 2 22 2

x y x y

y yx xx 1 x 1y 1 y 1x xy y

   
                                

= 0

 x.
z
x



 + y..
z
y

  = 0 ....(2)

 From equations (1) and (2), Euler’s theorem is verified.
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Short Question and Answers

1. Define Partial Differentiation.

Ans :
The process of determining the partial derivatives of a function of more than one independent

variables is knows as partial differentaiaion. It is denoted by symbols like 
x



, y

 , 

z



, 
t



 etc.

2. Functions of Two Variables.

Ans :
A function which contains more than one variable is called function of several variables.

Function of Two Variables

A function which contains two variables is called function of two variables.

It is of the form,

z = f(x, y)

Example

z = x2 + y2

3. Limit of a Function of two variables

Ans :
The limit of a function f(x, y) can be defind as ‘l’ as x tends to a and y tends to b, such that for a

small preassigned positived number  there exists a corresponding positive number .

Where,

f(x,y) l (x,y)    such that

a –    x   a + ; b -    y   b + 

i.e., {(x, y): x  [a – , a + ], y  [b – , b + ]}   (a, b)

f is continuous at (a, b), if

lim f(x, y) = f(a, b) as (x, y)  (a, b)

Then for continuity at (a, b),

lim f(a,+h, b+k)=f(a, b) as (h, k) (0, 0).

4. Geometrical Interpretation of Partial Derivatives

Ans :
Assume that z = f(x, y) is a function of two variables which represents a surface in three-dimensional

space. Compute the partial derivative zx and zy. Evaluate these partial derivatives at the point (a, b) then

zx is the slope (measured along the x-axis) of line L1, which is tangent to the surface at the point (a,
b, f(a, b)), and zy is the slope (measured along the y-axis) of the L2, which is a tangent to the tangent to the
surface at the point (a, b, f(a, b)) line L1 lies in the plane y = b, line L2 lies in the plane x = a.
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5. Homogenous function with example.

Sol :
If the sum of indices of different variables contained in each term of an algebraic expression be n, it

is called a homogenous function of degree n.

Let u = f(x, y) be a function of x and y. If this sum of the power of x and y in each term of f(x, y)
be equal, then f(x, y) is called homogenous function.

Eg. x2 + y3 + 3x2 y is homogenous functio of order 3.

  x4 + y4 + 4x2 y2 is homogenous function of 4th orders.

6. Euler’s theorem

Sol :
If z = f(x, y) is a homogeneous function in x and y of degree n then,

x 
z
x



 + y 
z
y

  = nz   x, y   domain of the function.

7. Define Partial derivatives.

Sol :
Consider z = f(x,y)  then

lim 
 f a h b f(a,b)

h

  
; h 0

If it exists, is said to be the partial derivatives of f w.r. to x at (a,b) and is denoted by

 a,b

z
x
 

  
 or fx(a,b)

 lim 
 f a,b k f(a,b)

k

 
 as k  0

If it exists is called the partial derivative of f(x,y) w.r. to y at (a,b) & is denoted or fy (a,b) by

 
 a,b

z
y




Partial derivative of Higher order

 From the above first order partial derivatives, we form the partial derivative of higher order.

      
2

2
z

x




= xx

z
f

x x
      

    
2z

y x

  = yx

z
f

y x
      
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      2
z

y




= yy

z
f

y y
  

   

    
2z

x y

  = xy

z
f

x y
  

   

8. If  z = tan–1  
 
 

y
x

 verify that 
2

2
z

x




+

2

2
z

y




=0.

Sol :
       z = tan–1 (y/n)

    
z
x



= 

 2
1 d y

dx xy1 x

 
 
 

= – 
2x

2 2 2

y

x y x

= – 2 2
y

x y

  
2

2
z

x




= 

z
x x
  
   

= 2 2
y

x x y

  
    

= 
   

 

2 2

22 2

x y 0 y 2x

x y

 


 = 

 22 2

2xy

x y

    
z
y



= 

 2
1 1

 
xy1 x

= 
2x

2 2x y
 

1
x

   2 2
x

x y

z
y y
  
   


2 2

x
y x y

 
    

  
 

 

2 2

22 2

x y 0 x(2y)

x y

 



=  2 2

2xy

x y






2

2
z

x




+ 

2

2
z

y




 = 0

9. Find the degree of given Homogenous
function for f(x,y) = xn sin (y/x).

Sol :
Given that

  f(x,y) = xn sin (y/x)

  f(x,y) =    y x y x 

The degree of the expression  xn sin (y/x) is n

The degree of the expression

y x
y x





 – 

y
x 1

x
yx 1
x

 
 

  
   

= 
1 12

y
1

x
x

y1 x



 
 

  



= 
1

2

y1
xx

y1 z

 



So, that it is of degree 
1

2


10. Write a short notes on Neighborhood of
a Point (a, b)

Ans :

Let  repredents a positive number i.e.,
> 0.

The point (x, y) for which

a –   x   a +,

b –   y   b + 
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Determine a square which is bounded by the lines,

x = a – 

x = a +

x = b – 

x = b +

Its centre is located at the point (a, b) as shown in figure.

Neighbourhood of a Point (a, b)

From the figure, the square is termed as neighbourhood of the point (a, b)

Hence, the set

{(x, y) : a –    x   a + , b –    y   b + }

is called as the neighbourhood of the point (a, b).
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Choose the Correct Answer

1. If z = xyf (x/y) then x
z
x



+ y 
u
y

  = [ c ]

(a) 0 (b)
1
z

(c) 2z (d) z

2. If sin–1 
x y

x y

 
   

 then the degree of homogenous function is [ d ]

(a) 0 (b)
1

2


(c) 2 (d)
1
2

3. If z = f(y/x) then x 
z
x
 

  
 + y 

z
y
 

  
 is [ d ]

(a) 1 (b) 2

(c) -2 (d) 0

4. If f = sin–1 
2 2x y
x y

 
  

 then x 
f
x



 + y
f
y

  is [ d ]

(a) f (b) 2f

(c) sinf (d) tanx

5. If x = r cos , y = r sin then 
2f

x
 

  
+ 

2
r
y
 

  
 is [ a ]

(a) 1 (b) r

(c) –r (d) –1

6. If f(x,y) is homogenous function of x and y of degree n. then [ a ]

(a) x 
f
x



+ y 
f
y



 = nf (b) y 
f
x



 + x 
f
y

  = nf

(c) x 
f
x



 + y 
f
y

  = n (d) None
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7. If z = log(x2 + y2) then x 
z
x



+
z
y

  is [a]

(a) 2 (b) 1

(c) 3 (d) 4

8. If u = yx then 
u
x



 is [ b ]

(a) xyx (b) yx log y

(c) yx log x – 1 (d) yxy – 1

9. If u is a homogenous function of x and y of degree n then x 
u
x



 + y 
u
y

  is [ c ]

(a) n (b) n – 1

(c) nu (d) n (n – 1) u

10. If u be a homogenous function of degree n then x
2

2

u
x



 + y 
2u

x y

   = [ b ]

(a) n 
u
x



(b) (n – 1) 
u
x



(c) (n + 1) 
u
x



(d) None



BCA II YEAR  III SEMESTER

22
Rahul Publications

Rahul Publications

Fill in the Blanks

1.
dy
dx

 = 

2. u = ex – y  then 
2

2

u
x



 =

3. First order partial derivative of tan–1 (x + y) = 

4. If z = tan–1 (y/x) then 
2

2

z
x



+ 
2

2

z
y

  =  

5. x2 2

z
x



 + 2xy 
2z

x y

   + y2 

2

2

z
y

  = 

6. If u = sin–1x then 
u
x



 =  

7. The domain of the function f(x,y) = log (x+y) is 
8. Second under derivation of ex+y = 

9. If z = 
3 3x y
x y

  then the degree of the function is  

10. z = cosxy then 
z
x



 = 

ANSWERS

1.
x

y

f
f


2. ex – y

3.  2

1

1 x y 

4. 0
5. n(n – 1) z

6. 2

1

1 x





7. {(x,y) : 0 < x x + y }
8. ex + y

9. 2
10. – y sin x
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2.1  THEOREM ON TOTAL DIFFERENTIALS

Q1. State and prove Theorem on Total Differentials.

Ans : (Imp.)

Statement

Let z = f(x, y) be the function, then total differential dz is given as, dz = 
z
x



. dx + 
z
y

 .dy

Proof

Given function is,

z = f(x, y) is function (1)

Let (x, y) and (x + x, y + y) be any two points

And x, y be the changes in the independent variables x and y.

Also z be the consequent change in z.

Then,

z + z = f(x + x, y + y)

 z = f(x + x, y + y) – z

 z = f(x + x, y + y) – f(x, y) [  From equation (1)]

Adding and subtracting  f(x + x, y)

z = [f(x + x, y + y) – f(x + x, y)] + [f(x + x, y) – f(x, y)] ... (2)

Let f(y) = f(x + x, y)

From Lagrange’s mean value theorem,

f(a + h) – f(a) = hf' (a + h)

f(x + x, y + y) – f(x + x, y) = yfy(x + x, y + 1 y)

Let, fy (x + x, y + 1 y) – fy (x, y) = 2 ... (3)

Whre

2 depends on x and y

As x, y   0, fy (x, y)   0

UNIT
II

Theorem on Total Differentials - Composite Functions - Differentiation of
Composite Functions - Implicit Functions - Maxima and Minima of functions of
two variables – Lagrange’s Method of undetermined multipliers.



BCA II YEAR  III SEMESTER

24
Rahul Publications

Rahul Publications

And, let f(x) = f(x, y) where y is constant

From Lagrange’s mean value theorem,

f(x + x, y) – f(x, y) = xfx (x + 2 x, y)

Let, fx(x + 2 x, y) – fx (x, y) = 1 ... (4)

Where

1 depends on x

As  x   0,  fx(x, y)   

Substituting equation (3) and (4) in equation (2),

z = y f(x + x, y + 1 y) + xfx (x + 2 x, y) = y [2 + fy (x, y)] + x [1 + fy (x, y)]

    = y 2 + yfy (x, y) + x1 + xfx(x, y) = xfx (x, y) + yfy (x, y) + 1x + 2y

Since  z = f(x, y)


z
x



 = fx(x, y), 
z
y

  = fy(x, y)

 z = x , 
z
x



 + y 
z
y

 1x + 2y

Here

z = x . 
z
x



 + y . 
z
y

  is called the differential of z, denoted by dz

i.e., dz = 
z
x



 . x + 
z
x



 . y ... (5)

Consider,

z = x

Differentiating with respect to ‘x’

dz = dx

 1 . x = dx [  The differential dx and dy are actual changes x and y]

 dx = x

Similarly,

z = y

Differentiating with respect to ‘y’.

dz = dy

 1 . y = dy

 dy = y

From equation (5),

dz = 
z
x



 . dx + 
z
x



 . dy
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2.1.1 Composite Functions

Q2. Explain  about Composite Functions

Ans :
Statement

Let  z = f(x, y) possess continuous partial derivatives and let x = (t), y = (t) possess continuous
derivatives.

Then

dz
dt

 = 
z
x



 . 
dx
dt

 + 
z
y

  . 

dy
dt

Proof :

Given,

z = f(x, y) has partial derivatives

And x = (t), y = (t) have continuous derivatives.

Let, t and t + t be any two values

and x, y, z be the changes in x, y, z respectively, consequent to the change t in t.

i.e., x + x =  (t + t)

y = y = (t + t)

Then

z = z = f(x + x, y + y)

 z = f(x + x, y + y) – z

 z = f(x + x, y + y) – f(x, y) [  z = f(x, y)]

 z = [f(x + x, y + y) – f(x, y + y)] + [f(x, y + y) – f(x, y)]

Applying lagrange’s mean value theorem,

z = x fx(x + 1 x, y + y) + yfy (x, y + 2 y), 0 < 1, 2 < 1


z
t




 = 
x
t




 fx(x + 1 x, y + y) + 
y
t




 fy (x, y + 2 y) ... (1)

Let t   0

 x   0,  y   0

Since partial derivatives are continuous

( x, y) (0, 0)
Lim

    fy(x + 1 x, y + y) = fz(x, y)

      = 
z
x



... (2)

And y 0
Lim
   fy(x, y + 2 y) = fy(x, y)

      = 
z
y

 ... (2)
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Substituting equations (2) and (3) in equation (1),

dz
dt

 = 
z
x



 . 
dx
dt

 + 
z
y

  . 

dy
dt

2.1.2 Differentiation of Composite Functions

Q3. State and prove theorem of differentiation Composite Function.

Ans :
Statement

Let = f(x, y) possess continuous partial derivatives and let x = (t), y=(t) Possess continuous
derivatives.

Then

dz
dt

 = 
2

x



, 
dx
dt

 + 
2

y

  . 

dy
dt

z
t



 = 
z
x



.
x
t




 + 
z
y

 .

y
t




Proof :

Given,

z = f(x, y) has partial derivatives

And x = x = (t), y=(t) have continuous derivatives.

Let, t and t + t be any two values

and x,y,z be the changes in x, y, z respectively, consequent to the change t in t.

i.e., x+x = (t+t)

y +y =(t+t)

Then,

z+z = f(x + x, y + y)

 z = f(x + x, y + y) – z

 z = f(x + x, y + y) – f(x,y) [ z = f(x, y)]

 z = [f(x + x, y + y) – f(x,y + y)] + [f(x, y + y) – f(x, y)]

Applying lagrange’s mean value theorem,

z = x fx(x + x, y + y ) + y fy(x, y +  y ), 0 < < 1


z
t




 = 
x
t




fx(x + x, y + y ) + 
y
t




 fy(x, y +  y ) ....(1)

Let t  0

  x  0, y  0
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Since partial derivatives are continuous

lim(x, y) (0, 0) fx(x + x, y + y ) = fx(x, y)

    = 
z
x



.... (2)

And lim y fy(x,y + y) = fy (x, y)

     =
z
y

 .... (3)

Substituting equations (2) and (3) in equation (1),

z
t



 = 
z
x



.
x
t




 + 
z
y

 .

y
t




2.1.3 Implicit Functions

Q4. Define Implicit Function

Ans :
Let f be a function of two variables since f(x, y) = 0 ... (1)

We can obtain y as function of x, the equation (1) defines y as an implicit function of x.

Assuming that the conditions under which the equation (1) defines y as a derivable function of x are
satisfied.

We shall Now obtain the value of 
dy
dx

 and 
2

2
d y

dx
 in terns of the partial derivatives 

f
x



, 
f
y

 , 

2

2
f

x




,

2f
x y

 

, 
2

2
f

y




 of ‘f’f’

with respect to x & y

Then

dy
dx

=
f / x

f / y
 
   = 

fx
fy


 if fy   0

2

2
y

dx


 = 

   

 
2 2

2 2
y yx x y xx y

3
y

f f 2f f f f f

f

 

Q5. Prove that if y3 – 3ax2 + x3 = 0 then 
2

2
d y

dx
 + 

2 2

5
2a x

y
 = 0

Sol :
  y3 – 3ax2 + x3 = 0

y3 = 3ax2 – x3
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Differentiate with respect to ‘x’

            3y2
dy
dx

= y3 = 3ax2 – x3

Different with respect to ‘x’

     3y2
dy
dx

= 6ax – 3x2

   
dy
dx

= 
2

2
6ax 3x

3y



   
dy
dx

= 
2

2
2ax x

y



Again, different w.r. to x

       
2

2
d y

dx
= 

   
 

2 2

22

dy
y 2a 2x 2y 2ax x

dx

y

  

= 

  22a 2x y 2 y   
2

2
2

2ax x
2ax x

y




4y

 
 
 
 

= 
   23 2

4

2 a x y 2 2ax x

y y

  



= 
   23 2

5

2 a x y 2 2ax x

y

  

= 
     22 3 2

5

2 a x 3ax x 2 2ax x

y

   

  
2

2

d y
dx

= 
2 2

5
2a x

y



2

2

d y
dx

 + 
2 2

5

2a x
y = 0

Q6. If  u = x2 – y2,  x = 2r – 3s + 4,  y = – r + 8s – 5  find 
u
r




Sol :
Given

  u = x2 – y2, x = 2r – 3s + 4,   y = – r + 8s – 5
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Different with respect to ‘r’

             
u
r




=
u
x



 
x
r




 + 
u
y

  

y
r




Consider   x = 2r – 3s – 4 ;  y = – r + 8s – 5

      
x
r




= 2 ;  
y
r




 = – 1

Consider   u = x2 – y2

      
u
x



= 2x,  
u
y

  = – 2y

     
u
r




= 2x(2) + (–2y) (–1)

      
u
r




= 4x + 2y

Q7. If z = (cosy)/x and x = u2 – v, y = ev.

Find 
z
v



.

Sol :
Given

    z = 
cos y

x
,  x = u2 – v,  y =  ev

z
v



=
z
x



 
x
v



 + 
z
y

  

y
v



Consider
    x = u2 – v,   y = ev

 
x
v



= – 1,  
y
v



 = ev

    z =
cos y

x

z
x



= cosy 2
1

x

 
 
 

z
y



= 
sin y
x




z
v



= cosy 2
1

x

 
 
 

(–1) + 
siny
x

 
 
 

 (ev)

=
2

cos y

x
 – 

ve siny
x

Since   y = ev

z
v



= 2
cos y xy siny

x



Q8. Find 
dy
dx

 for x sin(x – y) – (x + y) = 0

Sol :
Given,

x sin (x – y) – (x + y) = 0

with respect to 
dy
dx

=
fx

fy


f(x, y) = x sin (x – y) (x + y) = 0
x sin (x – y) = x + y

sin (x – y) = 
x y

x


Partially different with respect to ‘x’ & ‘y’

    fy = 
f
x



= x cos (x – y) (1) + 1.sin (x – y) – 1
= x cos (x – y) + sin (x – y) – 1

    fx = 
f
y



= x cos (x – y) (–1) + 0.sin (x – y) – (1)
= – x cos (x – y) – 1
= – [x cos (x – y) + 1]

       
dy
dx

= x

y

f
f


= 
   

 
x cos x y sin s y 1

x cos x y 1

      
    

= 
 

 

x y
x cos x y 1

x
x cos x y 1


  

 

= 
 

 

2

2

x cos x y x y x

x cos x y x

   

 

= 
 
 

2

2

x cos x y y

x cos x y x

 

 
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Q9. If u = 
 x y

1 xy



 ; x = tan (2r – s2),  y = cot (r2 s), find 
u
s




Sol :
Given,

    u = 
x y
1 xy



    x = tan (2r – s2), y = cot (r2 s)

u
s




=
u x
x s
 


 

 + 
u y
y s
 


 

Consider

   x = tan (2r – s2)

Partial different with respect to ‘s’

x
s




= sec2 (2r – s2) (– 2s)

= – 2s sec2 (2r – s2)

Consider

    y = cot (r2 s)

Partial differentiate with respect to ‘s’

y
s




= – cosec2 (r2 s) (r2)

= – r2 cosec2 (r2 s)

Consider

   u = 
x y
1 xy

    (x + y). (1 – xy)–1

= (x + y)  2
1

1 xy

  
  

(–y) + (1 – xy) (1)

u
y

 = (x + y)  

 2
1

x
1 xy

  
  

+ (1 – xy)–1 (1)

Consider

u
s




=
u x
x s
 


 

 + 
u y
y s
 


 
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=  
 2

1 1
x y y

1 xy1 xy

      
    

( –2s sec2 (2r – s2) + x + y  
 2

1 1
x

1 xy1 xy

   
  

   2 2 2r cosec r s  

= 
 

 2
y x y1

1 xy 1 xy

 
 

  
[(–2 sec2 (2r – s2)] + 

 
 2
x x y 1

1 xy1 xy

 
 

  
 [(–r2 cosec2 (r2 s)]

= 
1 xy xy

 

2

2

y

1 xy

 
 
  

 [– 2s sec2 92r – s2) +
2x xy 1 xy 

 21 xy

 
 
  

 [(– r2 cosec2 (r2 s)]

= 
 
 

2

2

1 y

1 xy




 – (2s (sec2 (2r – s2)) + 

 
 

2

2

1 x

1 xy




 (– r2  cosec2 (r2 s))

   
u
s




= 
 2

1

1 xy
[ (– 2s) sec2 (2r – s2) (1 + y2) – r2  cosec2 (r2 s) (1 + x2)].

Q10. If u =  tan–1 2 2

xy

1 x y

 
 
   

, Then Show that 
2u

x y

   = 

 
3

2 2 2

1

1 x y 
.

Sol : (Imp.)

    u = tan–1
2 2

xy

1 x y

 
 
   

Partially differentiate with respect to ‘y’

u
y

 = 2

2 2

1

xy
1

1 x y

 
 
   

1
y

2



 
3

2 2 2
2y

1 x y 
 

2 2

1
1

1 x y

 
 

 
  
  

=
 2 2

2 2 2 2

1 x y x

1 x y x y

 

    
2

3 2 22 2 2

y 1

1 x y1 x y

 
 

 
     

=    2 2 2

x

1 y x 1 y    
 

2 1 12 2 2
1

2 2 2

y
1 x y

1 x y

 
 
 

   
    
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=   2 2

x

1 x 1 y   
 

2 1
2 2 2

1
2 2 2

y
1 x y

1 x y

 
 

   
    

=   2 2

x

1 x 1 y 

2y 2 21 x y  

 
1

2 2 21 x y

 
 
 
    

= 2

x

1 x  21 y

21 x

 
1

2 2 21 x y

 
 
 
    

u
y



=
 2 2 2

x

1 x y 1 y  

Consider

    
2u

x y

  =

x

  2 2

x

1 x y 1 y

 
 
 
    

= 2
1

1 y 2 2

x
x 1 x y

    
      

= 2
1

1 y  
   3 2 22 2 2

1 1
x 2x 1

1 x y2 1 x y

 
 

  
     

= 2
1

1 y  
2

3 2 22 2 2

x 1

1 x y1 x y

 
 

 
     

= 2

1

1 y

2x 21 x  2y

 
3

2 2 21 x y

 
 
 
    

  
2u

x y

  =

 
3

2 2 2

1

1 x y 
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Q11. If z = xy f
y
x

 
 
 

 and z is constant. Then show that 
 
 

f ' y / x

f y / x  = 
 
 

x y xy '

y y xy '



 .

Sol :

    z = xy f
y
x

 
 
 

    z =
y y

x x f
x x

   
 

    z = x2 
y
x

f 
y
x

 
 
 

= x2  z
y
x

 
 
 

 where t
y
x

 
 
 

 = 
y
x

f
y
x

 
 
 

z  is a homogenous function of degrees ‘2’
By Euler’s theorem we have

x
z
r



+ y
z
y

  = 2z

Consider

    z = xy f
y
x

 
 
 

Differentiate with respect to ‘x’

        0 = xy f'
y
x

 
 
  2

y 1 dy
x dxx

    
 + f

y dy
x

x dx
   
 

 + 
y

y f 1
x

   
 

= xy f'
y
x

 
 
  2

y 1 dy
x dxx

   
 + xf

y
x

 
 
 

dy
dx

 + 
y

y f
x

   
 

 = 0

 – f'
y
x

 
 
  2

y dy
y

dxx

   
 = f

y
x

 
 
 

dy
x y

dx
   



y
f '

x
y

f
x

   
 
 
 
 

= 

dy
x y

dx
y dy

y x
x dx



    

  

y
f '

x
y

f
x

 
 
 
 
 
 

 = 

dy
x x y

dx
dy

y y x
dx

  
 
  
 



y
f '

x
y

f
x

 
 
 
 
 
 

 = 

dy
x x y

dx
dy

y y x
dx

  
 
  
 
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2.2  MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

Q12. Define Maxima and Minima of functions of two variables.

Sol :

Let f(x, y) be a function of two independent variables x, y such that it is continuous and finite for all
values of x and y in the neighbourhood of their values a & b.

The values of f(a, b) is called maximum or minimum value of f(x, y) according as f(a + h, b + k).

* Condition for the existence of maxima or minima.

We know by Taylor's expansion in two variables, that

f(x + h, y + k) = f(x, y) + h
f f

k
x y
  

   
 + 

1
2!

2 2 2
2 2

2 2
f f f

h 2hk k ...
x yx y

   
       

(or)

f(x + h,, y + k) – f(x, y) = 
f f

h k
x y
  

   
 + (terms of second and higher order)

Q13. Write Lagrange’s condition for maximum and minimum values of a function of two
variables.

Sol :

If r,s,t denote the values of 
2

2
f

x




, 


 

2f
x y

, 


2

2

f
y

When  x = a, y = b then supposing  that the  necessary  condition for the  maximum  & minimum are
satisfied.

i.e 





f
0,

x





f
0

y
 when x =a, y = b

We can write f(a + h, b + k) – f(a,b) =
1
2!

[rh2 + 2shk + tk2] + R

Where R consists of terms of higher order of h and k.

 Lagrange’s condition for minimum is rt – s2 > 0, and r > 0

 Lagrange’s condition for maximum  is rt – s2  > 0 and r < 0

But it rt – s2 < 0. then there is neither a maximum nor a minimum.

Q14. Write Working Rule to find  the maximum  or minimum value of f(x,y).

Sol : (Imp.)

Step 1 :

Let the  given function be f(x,y)
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Find 



f
x

 & 



f
y

 and equation them to zero..

Solve the equation 





f
0

x
 and 





f

0
y  for x and y..

Let the solution be (a,b), (c, d)
Step 2 :

Calculate r = 



2

2

f
x

, s = 

 

2f
x y , t = 




2

2

f
y  at (a,b) and (c,d). Calculate rt – s2 in each care.e.

i.e., at (a,b) & (c,d)
Step 3 :

If rt – s2 > 0 and r < 0 at (a,b) then  f has a maximum value at x = (a,b)
If or at (c,d) if rt – s2 > 0 and r < 0 then  f has maximum value at (c,d)

Step 4 :
If rt – s2 >0, and r > 0  at (a,b) then f has a minimum value at (a,b) or if rt – s2 > 0 and r > 0
at (c,d) & has a minimum at (c,d).

Step 5 :
If rt – s2 < 0. at (a,b) then f has neither , maximum ,  nor minimum . Then (a,b) is saddle point.
If rt – s2 < 0 at (c,d), then (c,d) is saddle point.

Step 6 :
If rt – s2 =0, we can’t decide whether f, has maximum  or minimum for the  investigation is
needed.

Q15. Define Stationary points and Extreme points.

Sol :

Points at which 



f
x

=0 and 



f
y

=0 are called stationary points for the function  f(x,y)

If it is a maximum or a minimum is known as an extreme point and the value of the function at an
extreme point is known as an extreme value.
Q16. Discuss the maximum or minimum value  of u, when u = x3 + y3 – 3axy.

Sol : (Imp.)

     u = x3 + y3 – 3axy

  


u
x

= 3x2 – 3ay ; 


u
y = 3y2 – 3ax.

for a max or min of u, we must have

  


u
x

= 0,  


u
y =0

3x2 – 3ay = 0   x2 – ay = 0 ... (1)

3y2 – 3ax =0   y2 – ax = 0 ... (2)
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Solve (1) & (2)

from x2 = ay   y = 
2x

a
Sub y in (2)

  
 
 

2x
a

– ax =0


4

2

x
a

 – ax = 0

x4 – a3x = 0

x(x3 – a3) = 0

x = 0, x = a

Similarly y = 0, y = a.

Similarly y = 0, y =a.

Thus (0,0)  & (a,a) are the stationary  points
of u.

Now,     r= 



2

2

u
x

= 6x t = 



2

2

u
y = 6y

    s = 

 

2u
x y  = – 3a

for x = 0, y = 0   r = 0, t = 0, s = – 3a.

     rt – s2 = (0) (0) – (– 3a)2

= 9a2 < 0

  u is neither maximum nor minimum at x
= 0 & y = 0

    Also x = a, y = b

    r = 6a, s = – 3a, t = 6a

Now,  rt – s2 = (6a) (6a) – (–3a2)

= 36a2 – 9a2

= 27a2 > 0

Also r = 6a which is positive if a > 0

(i) u is maximum at x = a, y = a, if r < 0

(ii) u is minimum at x =0, y = 0 if r > 0.

Q17. Show that minimum value of u = xy +
(a3 / x) + (a3 / y) is 3a2.

Sol :
u = xy + (a3/x) +(a3 /y)

We have



u
x

= y – 
3

2

a
x

; 


u
y

= x – 
3

2

a
y

     r = 



2

2

u
x

=
3

3

2a
x

;

     s = 

 

2u
x y =1;

      t =



2

2

u
y =

3

3

2a
y

Now, for maximum or minimum we must

have 


u
x

= 0, 


u
y = 0.

So from 


u
x

= 0   y – 
3

2

a
x

= 0

x2 y = a3 ... (1)

From 


u
y

 = 0  x – 
3

2

a
y

=0

  y2 x = a3 ... (2)

From (1) & (2)

We get
x2 y = y2 x

x2 y – y2 x = 0   xy (x – y) = 0

       x = 0, y = 0, & x = y

From (1) & (2)  we see that  x = 0 & y = 0.
do not hold as it gives a = 0

Hence we must have x = y  & from  (1) we
get

        x2 y = a3   x2. x = a3

 x 3 = a3   x = a
At x = y = a we have

     r  = 
3

3

a
2

x
= 2 

3

3

a
a

 = 2

    s = 1; t = 
3

3

2a
y = 

3

3

2a
a

 = 2

     rt – s2 = (2) (2) – 12 = 3 > 0
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Also, r = 2 > 0

Hence there is minimum at x = y = a.

hence the minimum value of,

   u = a.a +
3a

a
+

3a
a

=  a2 +
3a

a
+

3a
a

= a2 + a2 + a2

= 3a2

Q18. Discuss the maximum or minimum
value of u given by u = x3 y2 (1 – x – y).

Sol :
     u = x3 y2 (1– x – y)

 


u
x

= 3x2 y2 (1 – x – y) + x3 y2 (–1)

= 3x2 y2 – 3x3y2 – 3x2 y3 – x3y2

 


u
x

= 3x2 y2  – 4x3y2 – 3x2y3

  


u
y = 2x3y (1 – x – y)+ x3y2 (–1)

= 2x3 y – 2x4 y – 2x3y2 – x3y2

  


u
y = 2x3y – 2x4y – 3x3y2

      r =



2

2

u
x

 = 6xy2 – 12x2 y2 – 6xy3

      t = 
2

2

u
y

  = 2x3 – 2x4 – 6x3y

     s = 
2u

x y

   = 6x2y – 8x3y – 9x2y2

Now, for maximum or minimum we must
have

u
x



= 0, 
u
y

 = 0

From 
u
x



=0  3x2y2 – 4x3y2 – 3x2y3 =0

x2y2(3 – 4x – 3y) = 0

Hence we get x =0, y = 0

4x + 3y = 3 ... (2)

Also from 




u

0,
y  we get

2xy3 – 2x4 y – 3x3 y2 = 0

 x3y (2 – 2x – 3xy) = 0

x = 0,  y = 0  and  2x + 3y = 2 ... (3)

By solving (1) & (2)

x y 1
3
3

-3
-2

4
2

3
3

x
6 9 

 = 
y

6 8 
 = 

1
12 6

x
3

 = 
y
2

 = 
1
6

x = 
3
6

;  y = 
2
6

x = 
1
2

;  y = 
1
3

Hence the solution are

x = 0,  y = 0,  
1

x ,
2

  
1

y ,
3

when

r =                    
         

2 2 2 3
1 1 1 1 1 1

6 12 6
2 3 2 3 2 3

=        
   

1 1 1
3 3 3

9 9 27

=    
1 1 1 1
3 3 9 9

S =                        
           

2 3 2 2
1 1 1 1 1 1

6 8 9
2 3 3 2 2 3
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=    
2 2

1 1 1
2 4

4 8 4

=    
1 1 1 1
2 2 4 4

    t =                
       

3 4 31 1 1 1
2 2 6

2 3 2 3

=  
1 2 1
4 81 4

 = 
2
81

From there we have rt – s2 > 0 and r < 0

So, there is maximum at x = 
1
2

, y =
1
3

Q19. Find a point within a triangle such that the sum of the square of its distance from the
three vertices is a minimum.

Sol :
Let (xr,yr), r = 1,2,3 be the  vertices of the triangle and (x,y) be any point side the triangle.

Let u =    
3

2 2

r r
r 1

x x y y


    

For maximum or minimum of u, we have

u
x



 = 2 (x – xr) = 0

(x – x1) + (x – x2) +(x – x3) = 0

x – x1 + x – x2 + x – x3 = 0

  3x = x1 + x2 + x3

    x = 1 2 3x x x
3

 

Similarly 
u
y

 =0  2(y – yr)=0

(y – y1) + (y – y2) + (y – y3) = 0

y – y1 + y – y2 + y – y3 = 0

  3y = y1 + y2 + y3

    y = 1 2 3y y y
3

 

     r = 
2

2

u
x



 = 6
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    s = 
2u

x y

   = 0, t = 

2

2

u
y

 = 6

So that rt – s2   (6)(6) – 0 = 36 > 0

Hence u is minimum when

   x = 1 2 3x x x
,

3
 

 y = 1 2 3y y y
3

 

Thus, the required point is 
1 2 3 1 2 3x x x y y y

,
3 3

    
 
 

.

Q20. Find the maximum value of (ax + by + cz)   2 2 2 2 2 2x y ze .

Sol :

u = (ax + by + cz) 2 2 2 2 2 2x y ze  

log u = log (ax + by + cz) – 2 2 2 2 2 2( x y z )   

Differentiating partially w.r.to ‘x’

We get

 
1 u
u x



= 
a

ax by cz 
(–22 x) = 0

Similarly  
1 u
u y



= 
b

ax by cz 
 – 22 y = 0

 
1 u
u z



= 
c

ax by cz 
 – 22  =0

x(ax + by + cz) = 2

a
2

... (1)

y(ax + by + cz) = 2

b
2 ... (2)

z(ax + by + cz) = 2

c
2 ... (3)

Multiplying (1), (2), (3) by a,b,c and adding. we get

 (ax + by + cz)2 = 
2 2 2

2 2 2

1 a b c
2
 

     

   (ax + by + cz) = 
2 2 2

2 2 2

1 a b c
2
 

     
 = A
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  x = 2

a
2 A

, y = 2

b
2 A , z = 2

c
2 A

Again 
22

2 2

1 u 1 u
u xx u
      

= 
 

2
2

2

a
2

ax by cz
  

 

2

2

u
x



 = – u  

2
2

2

a
2

ax by cz

 
  
   

 Since 
u


= 0

Hence for these values of x, y, z will be maximum, maximum value of u is given by

= 

2 2 2

2 2 2 2

1 a b c2 2 2
4a

2 2 2

1 a b c
e

2

 
      

  
       

= 
2 2 2 1

2
2 2 2

1 a b c
e

2

  
       

     U = 
2 2 2

2 2 2

1 a b c
2e

 
     

Q21. Discuss the maxima or minima of u = x4 + y4 – 2x2 + 4 xy – 2y2.

Sol :
Given  u = x4 + y4 – 2x2 + 4 xy – 2y2

 
u
x



= 4x3 – 4x + 4y

 
u
y



= 4y3 + 4x – 4y

for max and min of ‘u’ we must have 
u
x



=0, 
u
y

 =0

4x3 – 4x + 4y = 0 ... (1)

4y3 + 4x – 4y = 0 ... (2)

Solve (1) & (2)

x3 + y3 = 0

(x + y) (x2 – xy + y2) = 0

x + y =0   x = – y
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Substituting y = – x in (1) we get

4x3 – 8x = 0   4x (x2 – 2x) =0

x = 0, 2

The values of y are 0, 2 , 2

Therefore the stationary points are (0,0), ( 2, 2) , ( 2, 2) 

Now,    r = 
2

2

u
x



 = 12x2 – 4

     s= 
2u

x y

   = 4

     t =
2

2

u
y

 =12y2 – 4

  At (0,0) = rt – s2

= (12 (0) – 4) (12 (0) – 4)–16

= (–4) (–4) –16

= 16 – 16  = 0

i.e, no conclusion can be drawn about max or min.

At ( 2, 2)

     rt – s2 = (12(2)–4) (12(2) – 4) – (4)2

= 400 – 16

= 384 > 0

rt – s2 > 0, r < 0.

 f has minimum value at ( 2, 2) , ( 2, 2) 

Now,    r = 
2

2

u
x



=12x2 – 4

     s= 
2u

x y

   = 4

     t = 
2

2

u
y

  = 12y2 – 4

At (0,0)

     rt – s2 = (12(0) – 4) (12 (0) – 4) – 16

= 0

i.e., no. conclusion can be shown about max or min.
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At ( 2, 2)

rt – s2 (2) – 4) (12(2) – 4) – (4)2

400 – 16

384 > 0

rt – s2 > 0, r > 0

   f  has minimum value at ( 2, 2) .

2.3  LAGRANGE’S METHOD OF UNDETERMINED MULTIPLIERS

Q22. Explain Lagrange’s method of underermind multipliers.

Ans : (Imp.)

Let u be a function of n variables given as,

u = f(x1, x2, x3, ........ xn) ... (1)

Let the variables are  connected by a relation such that there are n – r independent variables.

i.e., (x1, x2, x3, ........ xn) = 0 ... (2)

(x1, x2, x3, ........ xn) = 0 ... (3)

. . .

r(x1, x2, x3, ........ xn) = 0 ... (4)

For maximum or minimum, du must be zero

i.e., du =
1

u
x

  dx1+

2

u
x

 dx2 + ..... + 

n

u
x

 dxn = 0 ... (5)

Differentiating equations (2),(3),(4) and multiplying the resultants with 2, ....... r respectively,

d= 

1

1x

  dx1+

1

2x

 dx2 + ..... + 

1

nx

 dxn = 0 ... (6)

d= 

2

1x

  dx1+

2

2x

 dx2 + ..... + 

2

nx

 dxn = 0 ... (7)

rdr= r

r

1x

  dx1+r

r

2x

 dx2 + ..... +r 

r

nx

 dxn = 0 ... (8)

Where, ,,r are multipliers.

Adding equations (5), (6), (7), (8),

A1dx1 + A2dx2 + ..... + Andxn = 0 ... (9)

Where,

A1 = 
1

u
x

  + 

1

1x

  + 

2

2x

  + ...... + r 

r

nx

 ; i = 1, 2, .....n
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The values of 2, ....... r are chose in such a way that A1 = A2 = A3 = Ar = 0 ... (10)

Substituting equation (10) in equation (9),

Ar+1 dxr+1 + Ar+2 dxr+2 + ..... +An dxn = 0

Let the independent variables be x\, xr+2, ..... xn such that dxr+1, dxr+2 .... dxn are independent.

 Ar+1 + Ar+2 + ..... + An = 0

 A1 = A2 = A3 = Ar = Ar+1 = Ar+2 = ..... + An = 0 ... (11)

From equations (2),(3) and (4),

r = 0 ... (12)

From equations (11) and (12), The possible values of u are obtained by determining the multipliers

(2, ....... r ) from (n + r) equations.

Q23. Find the minimum value of x + y + z, subject to the condition 
a b c
x y z
   = 1.

Ans :
Given function is,

f(x, y, z) = x + y +z ... (1)

It is basically a constrained extremum problem, where a function “f” is subjected to the constraint

a b c
x y z
   = 1

Let, = 
a b c
x y z
   – = 0 ... (2)

According to Lagrange’s function,

F(x, y, z) = f(x + y + z) +

Where,

– Lagrangian multiplier

F(x, y, z) = (x + y + z) +
a b c

1
x y z

 
   

 
... (3)

Differentiating equation (3) with respect to x, y, z and equating to zero

F
x



 = 
x



  (x + y + z) + 
x



a b c
1

x y z
 

   
 

= 1 +  2

a
x
 
  


F
x



=
2

2

x a
x
 

F
y

  = y


  (x + y + z) + y




a b c
1

x y z
 

   
 

= 1 +  2

b
y

 
 
 
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
F
y

 =

2

2

y b
y
 

F
z




 = 
z



 (x + y + z) +  
z



a b c
1

x y z
 

   
 

= 1 +  2

c
z
 
  


F
z




=
2

2

z c
z
 

The condition for minimum values is,

F
x



 = 0 ; 
F
y

 = 0 ;

F
z




 = 0

2

2

x a
x
 

= 0 ; 
2

2

y b
y
 

= 0 ; 
2

2

z c
z
 

= 0

 x2 = a;   y2 = b;   z2 = c;

 x = a   y = b    c = c 

Substituting the corresponding values in equation (2),

a

a
 +

b

b
+

c

c
 = 1

  
a


 + 

b


+

c


= 1

    = ( a  + b + c )

  = ( a  + b + c )2

 x = a   =   2 2( a) ( a b c)   =   ( a)( a b c) 

 y = 3
 

 
  =   2 2( b) ( a b c)   =   ( b)( a b c) 

 z = c  =    2 2( c) ( a b c)  =   c ( b)( a b c) 

The stationary point is,

 (x, y, z) =  a( a b c), b( a b c), c( a b c)     

The minimum value is obtained by substituting stationary point in equation (1),
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Minimum value = a( a b c) b( a b c) c( a b c)       

= ( a b c)  ( a b c)  = ( a b c)  2

 Minimum value = 2( a b c) 

Q24. Find the minimum value of x2 +y2 + z2 when x + y + z = 3a.

Ans : (Imp.)

Let the given function be,

f(x, y, z) = x2 +y2 +z2 and =x + y+ z – 3a

The auxiliary function is given as, ... (1)

F(x, y, z) = f(x, y, z) +

Substituting the corresponding values in equation (1),

F(x, y, z) = (x2 +y2 +z2) + (x + y+ z – 3a) ... (2)

Partially differentiating equation (2) with respect to x,y and z respectively,

F
dx


=
dx


(x2 +y2 +z2) + 
dx


(x + y+ z – 3a) = (2x + 0 + 0)(1 + 0 + 0 – 0)

F
dx


 = 2x + ... (3)

F
dy


= dy


(x2 +y2 +z2) +  dy


(x + y+ z – 3a) = (0 + 2y + 0)(0 + 1 + 0 – 0)

F
dy


 = 2y + ... (4)

F
dz


=
dz


(x2 +y2 +z2) + 
dz


(x + y+ z – 3a) = (0 + 0 + 2z)(0 + 0 + 1 – 0)

F
dz


 = 2z + ... (5)

Equating equations (3),(4) and (5) to zero,

2x + =0 2y + =0 2z + =0

2x = –  2y = –  2z = – 

x
2


 y
2


 z
2




 x = y = z = 
2




Substituting the corresponding values of x,y and z in x + y + z = 3a, ... (6)
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 2



2



2


 a 
3
2


 = 3a  2


 = a

 –a

Substituting the value of in equation (6),

x = y = z = 
( 2a)

2
 

 x = y = z = a

The minimum value of the given function is given by,

f(x, y, z) = x2 = y2 +z2

= a2 + a2 + a2

f(x, y, z) = 3a2 (  x = y = z = 0)

 The minimum value is , 3a2.

Q25. Discuss the maxima and minima of the function u = sin x sin y sin z, where x, y, z are
the angles of a triangle

Ans :

Given that,

u = sin x sin y sin z ..... (1)

In a triangle,

x + y + z =  ..... (2)

Differentiating equation (1) on both sides,

du = sin y sin z, 
d
dx

(sin x) + sin x sin z 
d
dy (sin y) + sin x sin y..

d
dy (sin z)

 du = sin y sin z, (cosx dx) + sin x sin z (cosy dy) + sin x sin y (cosx dz)

 du = con x sin y sin z dx + sin x cos y sin z dy + sin x sin y cos z dz

For maximum or minimum of u, du = 0,

con x sin y sin z dx + sin x cos y sin z dy + sin x sin y cos z dz = 0 ..... (3)

Differentiating equation (2),

dx +dy + dz = 0

Multiplying above equation by 

dx +dy + dz = 0 ..... (4)

Adding equation (3) and (4),

con x sin y sin z dx + sin x cos y sin z dy + sin x sin y cos z dz+dx +dy + dz = 0

 (con x sin y sin z + dx + (sin x cos y sin z +dy + (sin x sin y cos z +  dz= 0
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Equating the coefficients of dx, dy and dz to zero,

con x sin y sin z +  – con x sin y sin z

sin x cos y sin z += 0  – sin x cos y sin z

sin x sin y cos z + – sin x sin y cos z

 con x sin y sin z = sin x cos y sin z = sin x sin y cos z

Dividing by sin x sin y sin z on both sides,

cos x sin y sin z
sinx sin y sin z  = 

sinx cony sin z
sinx siny sin z  = 

sinx siny cos z
sinx sin y sin z

 cot x = cot y = cot z

 x = y = z  = 
3


[  x + y + z =  ]

Consider x,y as independent variables and z as a function of x and y.

Differentiating equation (2) partially with respect to ‘x’,

1 + 0 + 
dz
dx

 = 0


dz
dx

 = –1 ..... (5)

Differentiating equation (2) partially with respect to ‘y’,

0 + 1 + 
dz
dx

 = 0


dz
dy  = –1 .....(6)

Differentiating equation (1) partially with respect to ‘y’,

u
x



 = sin y sin z, 
x



 (sin x) + sin x sin z, 
x



(sin y) + sin x sin y. . 
x



 (sin z)


u
x



 = sin y sin z cos x + 0 + sin x sin y cos z 
z
x




u
x



 = sin y sin z cos x +  sin x sin y cos z 
z
x




u
x



 = sin y sin z cos x + sin x sin y cos z (–1) [  From equation (5)]


u
x



 = sin y sin z cos x – sin x sin y cos z .....(7)
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Differentiating equation (7) partially with respect to ‘x’,

r = 
2

2

u
x



 = sin y sin z. (cos x) cos x. (sin z)
x x

  
   

 – sin y sinx. (cos z) cos z. (sinx)
x x

  
   

 r = sin y 
z

sin z.( sinx) cos x cos z
x

 
   

– sin y 
z

sinx.( sin z). cos zcos x
x

 
   

 r = sin y [–sin x sin z + cos x cosz (–1)]– sin y[– sin x sin z (–1) +cos z cosx]

[ From equation (6)]

 r = sin y [–sin x sin z – cos x cosz ]– sin y [sin x sin z + cos x cosz ]

 r = –sin x sin y sin z cos x cos z sin y – sin y sin x sin z – sin y cos z cos x

 r = – 2sin x sin y sin z –2 cos x cos z sin y

r 3


 = – 2sin 
3


  sin 
3


 sin 
3


 –2 cos 
3


 cos 
3


 sin 
3


 = – 2
3

2
.

3
2

.
3

2
 –2 

1
2

. 
1
2

.
3

2

= 
3 3
4


 –  

3
4

 = 
4 3
4



r 3


 = 3

Differentiating equation (7) with respect to ‘y’

s =
2u

y x

 

 = cos x sin z. (sin y) siny. (sin z)
y y

  
   

 – sin x cos z. (sin y) sin y. (cos z)
y y

  
   

 s = sin z cos x cos y + sin y coa x cos z.
z
y



 –sin x cos z cos y – sin x sin y (– sin z).
z
y



 s = sin z cos x cos y + sin y coa x cos z.(–1) –sin x cos z cos y + sin x sin y  sin z(–1)

[ From equation (6]
 s = sin z cos x cos y – sin y coa x cos z. –sin x cos y cos z – sin x sin y  sin z

s
3


 = sin 

3


 cos 
3


 cos 
3


 – sin 
3


 coa 
3


 cos 
3


 – sin 
3


 cos 
3


 cos 
3


 – sin 
3


 sin 
3


  sin 
3


 s
3


 = 

3
2

.
1
2

.
1
2

 – 
3

2
.
1
2

.
1
2

– 
3

2
.
1
2

.
1
2

–
3

2
.

3
2

.
3

2
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 s
3


 =

3
8

 – 
3

8
– 

3
8

–
3 3

8
 = 

4 3
8



 s
3


 =

3
2



By symmetry, t
3


 = 

2

2

u
y

  = 3

rt – s2 = 3( 3)  –

2
3

2

 
  
 

 rt – s2 = 3 – 
3
4

 rt – s2 =  
9
4

 > 0

Since, rt – s2 is + ve and r is –ve, the function u is maximum

Maximum value = sin 3
 

 
 

 sin 3
 

 
 

 sin 3
 

 
 

= 
3

2
.

3
2

.
3

2
 = 

3 3
8

 Maximum value of u is 
3 3

8
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Short Question and Answers

1. Differentiation Composite Function.

Ans :
Let = f(x, y) possess continuous partial derivatives and let x = (t), y=(t) Possess continuous

derivatives.

Then

dz
dt

 = 
2

x



, 
dx
dt

 + 
2

y

  . 

dy
dt

2. Define Implicit Function.

Ans :
Let f be a function of two variables since f(x, y) = 0 ... (1)

We can obtain y as function of x, the equation (1) defines y as an implicit function of x.

Assuming that the conditions under which the equation (1) defines y as a derivable function of x are
satisfied.

We shall Now obtain the value of 
dy
dx

 and 
2

2
d y

dx
 in terns of the partial derivatives 

f
x



, 
f
y

 , 

2

2
f

x




,

2f
x y

 

, 
2

2
f

y




 of ‘f’f’

with respect to x & y

Then

dy
dx

=
f / x

f / y
 
   = 

fx
fy


 if fy   0

2

2
y

dx


 = 

   

 
2 2

2 2
y yx x y xx y

3
y

f f 2f f f f f

f

 

3. Define Maxima and Minima of functions of two variables.

Sol :
Let f(x, y) be a function of two independent variables x, y such that it is continuous and finite for all

values of x and y in the neighbourhood of their values a & b.

The values of f(a, b) is called maximum or minimum value of f(x, y) according as f(a + h, b + k).

Condition for the existence of maxima or minima.

We know by Taylor's expansion in two variables, that
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f(x + h, y + k) = f(x, y) + h
f f

k
x y
  

   
 + 

1
2!

2 2 2
2 2

2 2
f f f

h 2hk k ...
x yx y

   
       

(or)

f(x + h,, y + k) – f(x, y) = 
f f

h k
x y
  

   
 + (terms of second and higher order)

4. Write Lagrange’s condition for maximum and minimum values of a function of two
variables.

Sol :

If r,s,t denote the values of 
2

2
f

x




, 


 

2f
x y

, 


2

2

f
y

When  x = a, y = b then supposing  that the  necessary  condition for the  maximum  & minimum
are satisfied.

i.e 





f
0,

x





f
0

y
 when x =a, y = b

We can write f(a + h, b + k) – f(a,b) =
1
2!

[rh2 + 2shk + tk2] + R

Where R consists of terms of higher order of h and k.

 Lagrange’s condition for minimum is rt – s2 > 0, and r > 0

 Lagrange’s condition for maximum  is rt – s2  > 0 and r < 0

But it rt – s2 < 0. then there is neither a maximum nor a minimum.

5. Define Stationary points and Extreme points.

Sol :

Points at which 



f
x

=0 and 



f
y

=0 are called stationary points for the function  f(x,y)

If it is a maximum or a minimum is known as an extreme point and the value of the function at an
extreme point is known as an extreme value.

6. If  u = x2 – y2,  x = 2r – 3s + 4,  y = – r + 8s – 5  find 
u
r




.

Sol :
Given

  u = x2 – y2, x = 2r – 3s + 4,   y = – r + 8s – 5

Different with respect to ‘r’

             
u
r




=
u
x



 
x
r




 + 
u
y

  

y
r



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Consider   x = 2r – 3s – 4 ;  y = – r + 8s – 5

      
x
r




= 2 ;  
y
r




 = – 1

Consider   u = x2 – y2

      
u
x



= 2x,  
u
y

  = – 2y

     
u
r




= 2x(2) + (–2y) (–1)

      
u
r




= 4x + 2y

7. Define Equality of fxy(a, b), fyx(a, b).

Sol :
If has been seen that the two repeated second order partial derivatives are generally equal. They

are not, however, always equal as is shown below.

We have fxy(a, b) = 
   y y

h 0

f a h,b f a,b
lim

h

 

also, fy (a + h, b) = 
   

k 0

f a h,b k f a h,b
lim

k

   

     fy(a, b) = 
   

k 0

f a,b k f a,b
lim

k

 

     fxy(a, b) = 
 

h 0 k 0

h,k
lim  lim

hk 



     fxy(a, b) = 
       

h 0 k 0

f a k,b k f a h,b f a,b k f a,b
lim lim

hk 

      

= 
 

h 0 k 0

h,,k
limlim

hk 



It many similarly
show that

    fyx(a, b) =
 

k 0 h 0

h,k
lim  lim

hk 


.

8. State and prove Taylor’s theorem for a function of two variables.

Ans :
Statement

If f(x, y) is a function which possisses continuous partial derivatives of the third order in a
neighbourhood of a point (a, b) and if (a + h, b + k) is a point of this neighbourhood, then there exists
a positive number which is less than I, such that
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f(a + h, b + k) =

f(a, b) + [hfx(a, b)+ kfy(a,b)] + 
1
2!

 [h2 fx2 (a, b) + 2hk fxy (a, b) + k2fy2 (a, b)]

+ 
1
3!

[h2k fy2x(u, v) + 3hk2fy2x(u,v) + k3 fy2x (u, v)]

Where,

u = a + h, v = b + k

9. Write Working Rule to find  the maximum  or minimum value of f(x,y).

Sol :
Step 1 :

Let the  given function be f(x,y)

find 



f
x

 & 



f
y

 and equation them to zero..

Solve the equation 





f
0

x
 and 





f

0
y  for x and y..

Let the solution be (a,b), (c, d)

Step 2 :

Calculate r = 



2

2

f
x

, s = 

 

2f
x y , t = 




2

2

f
y  at (a,b) and (c,d). Calculate rt – s2 in each care.

i.e., at (a,b) & (c,d)

Step 3 :

If rt – s2 > 0 and r < 0 at (a,b) then  f has a maximum value at x = (a,b)

If or at (c,d) if rt – s2 > 0 and r < 0 then  f has maximum value at (c,d)

Step 4 :

If rt – s2 >0, and r > 0  at (a,b) then f has a minimum value at (a,b) or if rt – s2 > 0 and r >
0  at (c,d) & has a minimum at (c,d).

Step 5 :

If rt – s2 < 0. at (a,b) then f has neither , maximum ,  nor minimum . Then (a,b) is saddle
point.

If rt – s2 < 0 at (c,d), then (c,d) is saddle point.

Step 6 :

If rt – s2 =0, we can’t decide whether f, has maximum  or minimum for the  investigation is
needed.
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Choose the Correct Answer

1. The function haas neither maximum nor minimum value if [ b ]

(a) rt – s2 > 0 (b) rt – s2 < 0

(c) r > 0 (d) r < 0

2. If f(x,y) has continuous second order partial derivatives fxy and fyx then [ a ]

(a) fxy = fyx (b) fxy   fyx

(c) fxy < fyx (d) fxy > fyx

3. The function is maximum value if [ a ]

(a) rt – s2 >0,  r < 0 (b) rt – s2 >0, r > 0

(c) rt – s2 < 0, r < 0 (d) rt – s2 < 0, r > 0

4. The conclution for maximum or minimum values are [ b ]

(a) h
f
x



= 0, k
f
y

 = 0 (b)

f
x



 = 0, 
f
y

 = 0

(c)
2

2

f
x



=0, 
2

2

f
y

 =0 (d) None

5. Maximum value of (log x) / x [ a ]

(a) x 3
 (b) x = 

(c) x 2
 (d) x = 0

6. The maximum value of sin x + cos x is [ d ]

(a) 2 (b) 1

(c) 2 (d) 1 2

7. Sinx (1 + cos x) is maximum at [ a ]

(a) x 3
 (b) x = 

(c) x = 2
 (d) x = 0

8. If 3 2 3y 3ax x 0    then 
2

2

d y
dx

 = [ c ]

(a)
 

5

2 x a

y

 
(b)

2

2

2ax x
y


(c)
2 2

5

2a x
y


(d) None
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9. Euler’s  theorem on homogenous function if ‘F’  is homogenous x, y, z of degree n, then [ d ]

(a)
F F

x y nz
x y
 

 
  (b)

F F
x x nz

y x
 

 
 

(c)
F F F

x y z nF
x y z
  

  
   (d)

F F F
x y z nF

x y z
  

  
  

10. If f(x,y) = c then 
dy
dx

[ d ]

(a)
f / x
f / y
 
  (b)

f
x



(c)
f
y

 (d)

fx
fy

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Fill in the Blanks

1. If u = yx, then 
u
x



 = 

2. The value of f(a,b) is called  value of f(x,y)

3. If x is increment in x then y is   in y

4. Legrange’s condition for maximum are  and 

5. Legrange’s condition for maximum are  and 

6. If u = (tanx)y + y cot x then 
dy
dx

 = 

7. If u = x2 – y2 then 
u
x



 = 

8. If z = (cosy) / x and x = u2 – v, y = ev  then 
z
v



= 

9.
dz
dt

 by composite function 

10. If u vx e e   then 
u
x



 = 

ANSWERS

1. yx logx

2. Maxima or minima

3. Consequent increment

4. rt – s2 > 0 , r < 0

5. rt – s2 > 0 and r < 0

6. a

7. 2x

8. (cosy– xy siny) / x2

9.
z dx z dy

.
x dt y dt
 


 

10. eu
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UNIT
III

Linear Equations in Linear Algebra – Systems of Linear Equations –
Consistent and Inconsistent Systems; Solution sets of Linear Systems – trivial
and Non trivial Solutions; Linear Independence – Linear Independence of
Matrix Columns and Characterization of Linearly Dependent sets.

3.1  LINEAR EQUATIONS IN LINEAR ALGEBRA

Q1. Explain the concept of Linear Equations
in Linear Algebra.

Ans : (Imp.)

Introduction of Linear Equation

Linear equations are a fundamental concept
in the field of linear algebra, which is a branch of
mathematics that deals with vector spaces, linear
transformations, and systems of linear equations.
At its core, linear algebra seeks to understand and
analyze the relationships between vectors and how
they can be manipulated and transformed in a
coherent and systematic manner.

A linear equation is an equation that describes
a linear relationship between variables. In its simplest
form, a linear equation involves terms that are either
constants or the product of a constant and a single
variable raised to the power of 1. The fundamental
property of linear equations is that when graphed,
they form straight lines, hence the name “linear.”

Linear equations play a pivotal role in various
areas of science, engineering, economics, computer
graphics, and more. They are used to model and
solve problems that involve proportional
relationships, such as the growth of populations, the
flow of currents in electrical circuits, and the
optimization of resources in economic systems.

When dealing with multiple linear equations
involving multiple variables, we encounter systems
of linear equations. These systems represent
interconnected relationships between variables,

where finding a solution means determining the
values of the variables that satisfy all the given
equations simultaneously.

Linear algebra provides powerful tools and
techniques for understanding, analyzing, and solving
systems of linear equations. Matrices, which are
rectangular arrays of numbers, are used to
compactly represent systems of linear equations.
Linear transformations, which are operations that
map vectors from one space to another while
preserving the linear structure, play a significant role
in understanding the behavior of systems of
equations.

Solving systems of linear equations involves
methods such as substitution, elimination, and
Gaussian elimination, where the goal is to find the
values of the variables that make all equations in
the system true. In cases where exact solutions may
not exist, techniques like least squares approximation
can be employed to find the best possible solution.

Overall, linear equations form the cornerstone
of linear algebra, providing a framework for
understanding relationships between variables in a
wide range of applications. From fundamental
concepts to advanced techniques, the study of linear
equations in linear algebra is essential for building a
solid foundation in mathematical reasoning and
problem-solving.

Q2. What is general form of linear equation?

Ans : (Imp.)

General form of a linear equation in one
variable: let’s call it “x,” is:

ax + b = 0
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Here, “a” and “b” are constants, and “x” is
the variable. The equation is linear because each

term involves a constant or the product of a constant

and the variable “x” raised to the power of 1.

In this form, the equation represents a straight

line on a graph, with “a” determining the slope of
the line and

If we’re dealing with a linear equation in two

variables: “x” and “y,” the general form would be:

ax + by + c = 0

Here, “a,” “b,” and “c” are constants, and
“x” and “y” are the variables. Similarly, the equation

is linear because each term involves constants or

the products of constants and the variables “x” and
“y” raised to the power of 1. In this case, the

equation represents a straight line in a two-

dimensional coordinate plane.

These general forms of linear equations are

foundational in mathematics and have widespread
applications in various fields. They serve as the

building blocks for more complex systems of linear

equations and are essential for understanding linear
relationships and their graphical representations

3.2 SYSTEMS OF LINEAR EQUATION

Q3. What is system of linear equation and
explain briefly ?

Ans : (Imp.)

A system of linear equations is a collection of
two or more linear equations involving the same
set of variables. These equations describe
relationships between variables in a linear manner.
The general form of a system of linear equations
with “n” equations and “m” variables can be
represented as follows:

Standard Form

a11 x1  + a12 x2 + ... + a1m xm  = b1

a21 x1  + a22 x2  + ... + a2m xm  = b2

: : :     : :

: : :      : :

an1  x1  + an2 x2  + ... + ana xm = bm

Here, each “aij” represents the coefficients of
the variables, “xi” represents the variables, and “bi”
represents constants on the right-hand side of each
equation ..

1. Matrix Equation Form

This system can also be represented as a
matrix equation using matrix multiplication:

AX = B

Where,

 “A” is an “n × m” matrix containing the
coefficients of the variables.

 “X” is an “m × 1” column matrix
containing the variables.

 “B” is an “n × 1” column matrix
containing the constants on the right-
hand side of each equation.

2. Augmented Matrix Form

Another way to represent the system is in
augmented matrix form:

[A | B]

Here, “A” is the coefficient matrix, and “B” is
the column matrix containing the constants.
This form is often used when performing
operations like Gaussian elimination to solve
the system.

Solving a system of linear equations involves
finding values for the variables “x1” “x2” ...
“xm” that simultaneously satisfy all of the
equations in the system. Depending on the
number of equations and variables and the
nature of the coefficients, the system may
have unique solutions, infinitely many
solutions, or no solutions.
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Theorem

The system AX=B has

(i) A unique solution if and only if rank (A) =
Rank(A|B) = number of variables

(ii) Infinitely  many solutions  (A) =(A|B)<
number of variables and

(iii) No solution (inconsistent ) if (A)   (A|B)
i.e(A) <(A|B)

Various methods can be employed to solve
systems of linear equations, including:

 Substitution Method

Solve one equation for one variable and
substitute the expression into the other
equations.

 Elimination Method

Add or subtract equations to eliminate one
variable and solve for the other.

 Matrix Methods

Use techniques such as Gaussian elimination
or matrix inversion.

 Graphical Method

Graph the equations on a coordinate plane
to find the intersection point(s), if they exist.

Solving systems of linear equations is a
fundamental concept in mathematics and has a wide
range of applications in fields such as engineering,
physics, economics, and computer science.

Q4. What is homogeneous system of linear
equations and explain it cases ?

Ans : (Imp.)

Homogeneous System of Linear Equations

A homogeneous system of linear equations
is a system in which all equations are set equal to
zero. In other words, each equation follows the form

a1 x1  + a2 x2  + ... + an xn  = 0

where “a1” “a2” ..., “an” are coefficients and
“x1” “x2” ..., “xn” are the variables. Here’s how the
two cases break down .

1. Trivial Case

In the trivial case, the system has only one
solution, and that solution is the trivial
solution, where all variables are equal to zero.
This means the origin (0, 0, ..., 0) is the
solution to the system. This solution is always
present for any homogeneous system since
setting all variables to zero will satisfy all
equations of the system.

Mathematically, the trivial solution is
represented as:

x1  = 0,

x2  = 0,

:

:

xn  = 0

2. Nontrivial Case

In the nontrivial case, the system has solutions
other than the trivial solution. This means that
there exist non-zero values for the variables
that satisfy the system of equations. In this
case, the system has infinitely many possible
solutions, forming a solution space. The
solution space can be represented as a line,
plane, or hyperplane in higher dimensions.

Mathematically, the nontrivial solutions are
represented as non-zero values for at least
one of the variables:

x1   0 or x2   0 or ... or xn   0

The distinction between these two cases is
essential when studying systems of linear
equations. Homogeneous systems often arise
in various mathematical and practical
contexts, such as in physics, engineering, and
computer graphics, and understanding these
cases helps in determining the nature of
solutions and the behavior of the system.
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3.2.1 Consistent and Inconsistent Systems; Solution sets of Linear Systems

Q5. What is non-homogeneous system of linear equations and explain it cases?

Ans : (Imp.)

Non-homogeneous System of Linear Equations

A non-homogeneous system of linear equations is a system in which at least one equation is not set
equal to zero. In other words, the system involves both the coefficients of the variables and constants on
the right-hand side of the equations. The general form of a non-homogeneous system of linear equations
with “n” equations and “m” variables can be represented as follows:

1. Standard Form

a11 x1  + a12 x2  + ... + a1m xm  = b1

a21 x1  + a22 x2  + ... + a2m xm  = b2

: : :   : :

: : :   : :

an1 x1  + an2 x2  + ... + anm xm  = bn

Here, each “aij” represents the coefficients of the variables, “xb”” represents the variables, and
“bb”” represents constants on the right-hand side of each equation.

2. Matrix Equation Form

This system can be represented as a matrix equation using matrix multiplication:

AX = B

Where,

 “A” is an “n × m” matrix containing the coefficients of the variables.

 “X” is an “m × 1” column matrix containing the variables.

 “B” is an “n × 1” column matrix containing the constants on the right-hand side of each
equation.

3. Augmented Matrix Form

The non-homogeneous system can also be represented in augmented matrix form:

[A | B]

Here, “A” is the coefficient matrix, and “B” is the column matrix containing the constants. This form
is often used when performing operations like Gaussian elimination to solve the system.

Solving a non-homogeneous system of linear equations involves finding values for the variables
x1, x2 ..... xn that simultaneously satisfy all of the equations in the system. The presence of non-zero
constants on the right-hand side makes the problem more complex than solving a homogeneous
system.

when dealing with non-homogeneous systems of linear equations, there are three possible scenarios
or conditions that determine the nature of the solutions. These conditions are related to the coefficients
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of the equations and the constants on the
right-hand side. Let’s go through each of
these conditions:

1. Consistent and Unique Solution

In this case, the non-homogeneous
system has a unique solution. This
means that there is a specific set of values
for the variables that satisfies all of the
equations in the system. Geometrically,
this corresponds to the intersection of
“n” hyperplanes in an “m”-dimensional
space at a single point.

in mathematically , If |A|   0 ,system is
consistent and unique solution given by
X = A-1B .

2. Consistent and Infinite Solutions

In this scenario, the non-homogeneous
system has infinitely many solutions. The
equations in the system are not
contradictory, and there is more than
one way to choose the values of the
variables that satisfy the system.
Geometrically, this corresponds to the
intersection of “n” hyperplanes in an
“m”-dimensional space along a line,
plane, or hyperplane.

in mathematically , If |A|= 0 and
(adj A)B = 0 ,system is consistent and
infinite solutions .

3. Inconsistent

An inconsistent non-homogeneous
system has no solution. This happens
when the equations are contradictory
and cannot be satisfied simultaneously.
Geometrically, this means that the “n”
hyperplanes in an “m”-dimensional
space do not intersect at all.

in mathematically , If |A|= 0 and
(adj A)B   0 system is inconsistent.

The nature of the solution depends on
the relationships between the coefficients
and constants, and whether the
equations can be linearly combined to
produce consistent results. These
conditions can be determined using
methods such as Gaussian elimination,
which simplifies the system into row-
echelon form or reduced row-echelon
form, revealing the possibilities for
solutions.

Q6. What are the methods are there to
finding non-homogeneous systems?

Ans :

Methods for solving non-homogeneous
systems include:

 Substitution Method

Solve one equation for one variable and
substitute the expression into the other
equations.

 Elimination Method

Add or subtract equations to eliminate one
variable and solve for the other.

 Matrix Methods

Use techniques such as Gaussian elimination
with augmented matrices or matrix inversion.

The solution to a non-homogeneous system
can be a unique solution, infinitely many solutions,
or no solution, depending on the coefficients,
constants, and the relationships between equations.
Non-homogeneous systems of linear equations have
wide applications in various fields, just like
homogeneous systems, and their solution methods
are crucial for understanding real-world scenarios
involving linear relationships.
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PROBLEMS

7. Using matrix inversion method ,solve
the following system of equations :

5x + 2y = 4

7x + 3y = 5

Sol :

Given equation is

5x + 2y = 4

7x + 3y = 5

Which can be written in the matrix form as,

5 2 x 4
7 3 y 5
     

     
     

AX = B

Where

A=
5 2
7 3
 
 
 

 , X = c  B=
4
5
 
 
 

|A| =
5 2
7 3
 
 
 

 = 15 – 14 =1

So, the given system of equation is consistent
and independent i.e., it has unique solution is given
by

AX = B   or   X=A-1 .B

The co-factors of the elements of [A] are

  C11 = + 3 = 3

  C12 = – (7) = –7

  C21 = – (2) = – 2

  C22 = + 5 = 5

A–1 = 1/|A| adj.A and

adj A = (CF)t = 
3 2
7 5

 
  

A–1 = 
1
1

= 
3 2
7 5

 
  

 = 
3 2
7 5

 
  

x 3 2 4
y 7 5 5

     
          

= 
3 4 ( 2 5)

7 4 5 5
    

     
=  

12 10
28 25

 
   

= 
2
3

 
  

Hence, the required solution x=2,y=-3

8. Solve the following linear system

2x + 3y = 8

x – 2y = – 4

Sol :
First, solve one equation for one variable

using the elimination method. Let’s solve the second
equation for x :

x = 2y – 4

Now, substitute this expression for x into the
first equation:

2(2y – 4) + 3y = 8

4y – 8 + 3y = 8

7y – 8 = 8

7y = 16

y = 
16
7

Now that we have found the value of y,
substitute it back into the expression for x:

x = 2
16
7

 
    – 4

x = 
32
7

 – 4
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x = 
(32 – 28)

7

x = 
4
7

So, the unique solution is x = 
4
7

 and

y = 
16
7

.

9. Solve the following linear system:

3x – 2y = 7

4x + 3y = 22

Sol :
We can use the elimination method here.

Multiply the first equation by 3 and the second
equation by 2 to make the coefficients of y’s in both
equations equal:

9x – 6y = 21

8x + 6y = 44

Now, add the two equations together to
eliminate y:

9x – 6y + 8x + 6y = 21 + 44

17x = 65

x = 65/17

x = 13/3

Now, substitute the value of x into one of the
original equations. Let’s use the first equation:

3(13/3) – 2y = 7

13 – 2y = 7

– 2y = 7 – 13

– 2y = – 6

    y = – 6/– 2

    y = 3

So, the unique solution is x = 13/3 and
y = 3.

10. Solve the following linear system:

5x + 2y = 11

3x – y = 7

Sol :
Let’s use the substitution method for this

system. Solve the second equation for y

y = 3x – 7

Now, substitute this expression for y into the
first equation

5x + 2(3x – 7) = 11

5x + 6x – 14 = 11

11x – 14 = 11

11x = 11 + 14

11x = 25

   x = 25/11

Now that we have found the value of x,
substitute it back into the expression for y:

y = 3(25/11) – 7

y = 75/11 – 7

y = 75/11 – 77/11

y = – 2/11

Method 2

11. Solve the following system of linear
equations.

x + 2y + z = 7

x + 3z = 11

2x – 3y = 1

Sol :
Given AX = B

1 2 1 x 7
1 0 3 y 11
2 3 0 z 1

     
          
          

|A| = 1(0 + 9) – 1(0 + 3) + 2(6)
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|A| = 9 – 3 + 12

|A| = 18

| A|    0 so, the given system of equation has a unique solution given by X = A–1B

Now ,calculate the adjoint of matrix .

Let Cij be the co-factors of elements aijin A = [ aij]. Then

C11 = (– 1)1+1 
0 3
3 0

= 9

C12 = (– 1)1+2 
1 3
2 0 = – 6

C13 = (– 1)1+3 1 0
2 –3

= – 3

C21 = (– 1)2+1 
2 1
3 0 = 3

C22 = (– 1)2+2 
1 1
2 0 = – 2

C23 = (– 1)2+3 
1 2
2 3

= 7

C31 = (– 1)3+1 
2 1
0 3 = 6

C32 = (– 1)3+2 
1 1
1 3 = – 2

C33 = (– 1)3+3 
1 1
1 0

= – 2

adj A = 
9 6 3
3 2 7

6 2 2

 
   
   

= 
9 3 6
6 2 2

3 7 2

 
   
   

   A-1 = 
1

|A|adj

    A = 
1

18

9 3 6
6 2 2

3 7 2

 
   
   
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Now, X = A-1 B

   X = 

9 3 6 7
1

6 2 2 11
18

3 7 2 1

   
       
       

  = 

63 33 6
1

42 22 2
18

21 77 2

  
   
    

 = 

36
1

18
18

54

 
 
 
  

 = 

2
1
3

 
 
 
  

X= 2, y=1 and z= 3 is the required solution

12. Find the system of Linear equation,

2x + 4y – 3z = 4

3y + 4x + 5z = 2

4z + 4x + 3y = 1

Sol : (Imp.)

Given Ax = B

2x + 4y – 3z = 4

4x + 3y + 5z = 2

4x + 3y + 4z = 1

2 4 3 x 4
4 3 5 y 2
4 3 4 z 1

     
          
          

   AX = B

    X = A–1 B

   A–1 = 
AdjA
|A|

|A| = 2 
3 5
3 4  – 4 

4 5
4 4  – 3

4 3
4 3

= 2(12 – 15) – 4 (16 – 20) – 3( 12 – 12)

= 2(– 3) – 4(–4) – 3(0)

= – 6 + 16

= 10

|A| 10

    A = 

2 4 3
4 3 5
4 3 4

 
 
 
  
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Now, calculate the adjoint of matrix Let Cij be the co-factors of elements aij in A = [aij]

Then,

C11 = (– 1)1+1 3 3
5 4

 = 12 – 15 = – 3

C12 = (–1)1 + 2 
3 4
4 3  = – 9 – 16 = + 25

C13 = (–1)1 + 3 
4 3
3 5  = 20 + 9 = 29

C21 = (–1)2+1 
5 4
4 4  = 20 + 6 = 4

C22 = (–1)2 + 2 
4 3
4 2


 = 8 + 12 = 20

C23 = (–1)2 + 3 
3 5
2 4


 = 12 + 10 = 22

C31 = (–1)3 + 1 
2 4
3 3  = 12 – 12 = 0

C32 = (– 1)3 + 2 
4 2
3 4

 = 16 – 6 = 10

C33 = (–1)3+3 
2 4
4 3  = 6 – 16 = – 10

Adj A = 

3 25 29
4 20 22
0 10 10

  
  
  
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 A– 1 = 
AdjA
|A|

=

3 25 29
1

4 20 22
10

0 10 10

  
  
  

=

3 25 29
10 10 10
4 20 22

10 10 10
0 10 10

10 10 10

  
 
 

 
 
  
  

  A–1 = 

3 5 29
10 2 10
2 11

2
5 10
0 1 1

  
 
 

 
 
  
  

    X = A–1 B

 

3 5 29
10 2 10x 4
2 11

y 2 2
5 10

z 10 1 1

  
 

    
        

        
  

= 

3 5 29 12 10 29
4 2 1

10 2 10 10 2 10
2 11 8 11

4 2 2 1 4
5 5 5 5
0 4 1 2 1 1 0 2 1

             
   
             
            
      

12 50 29 33
10 10x

8 20 11 17
y

5 5
z 1 1

     
   

     
            

      
   
      

 X = 
33

10


, Y = 
17
5

, Z = 1
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13. Find the system of linear or equation

2x + y + z = 2

4x + y + = 6

9x + 2y + z = 2

Sol : (Imp.)

Given Ax = B

2 1 1 x 2
4 1 0 y 6
9 2 1 z 2

     
          
          

   AX = B

     X = A–1 B

   A–1 = 
AdjA
|A|

  |A| = 2 
1 0
2 1  – 1 

4 0
9 1  + 1

4 1
9 2

= 2(1 – 0) – 1 (4 – 0) + (8 – 9)

= 2 – 4 + 1

= – 3

|A| 3 

  A = 

2 1 1
4 1 0

9 2 1

 
 
 
  

Now, calculate the adjoint of matrix

Let Cij be the co-factors of elements aij in A = [aij]

Then,

   C11 = (– 1)1+1 
1 2
0 1  = 1 – 0 = 1
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C12 = (–1)1 + 2 
2 1
1 1  = 2 – 1 = 1

C13 = (–1)1 + 3 
1 1
1 0

 = 0 – 1 = – 1

C21 = (–1)2+1 
0 1
4 9  = 0 – 4 = – 4

C22 = (–1)2 + 2 
1 1
9 2  = 2 – 9 = – 7

C23 = (–1)2 + 3 
1 0
2 4  = 4 – 0 = 4

C31 = (–1)3 + 1 
4 9
1 2

= 8 – 9 = – 1

C32 = (– 1)3 + 2 
9 2
2 1  = 9 – 4 = 5

C33 = (–1)3+3 
2 4
1 1  = 2 – 4 = – 2

Adj A = 

1 1 1
4 7 4
1 5 2

 
   
   

          A–1 = 
AdjA
|A|

= 
1

3


 

1 1 1
3 3 31 1 1

4 7 4
4 7 4

3 3 3
1 5 2 1 5 2

3 3 3

   
   

         
     

 
  

    X = A–1 B
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1 1 1 2 6 2
3 3 3 3 3 3x 2
4 7 4 8 4 2 8

y 6
3 3 3 3 3 3

z 21 5 2 2 3 0 4
3 3 3 3 3 3

        
      

                
              

      

= 

2 6 2
3

8 42 8
3

2 30 4
3

   
 
 

  
 
   
  

 = 

6
3 2

42
14

3
824

3

 
 

  
      
    

 
  

 x = – 2,  y = 14, z = –8
14. Find the system of linear equation.

x + 2y + 3z = 4

4x + 5y + 6z = 8

7x + 8y + 9z = 12

Sol :

Given AX = B

1 2 3 x 4
4 5 6 y 8
7 8 9 z 12

     
          
          

   AX = B

    X = A–1 B

   A–1 = 
AdjA
|A|
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|A| = 1 
5 6
8 9  – 2 

1 6
7 9  + 3 

4 5
7 8

= 1 (45 – 48) – 2 (36 – 42) + 3 (32 – 35)

= 1(– 3) – 2(– 6) + 3 (– 3)

= – 3 + 12 – 9

= 0

|A| 0 , So find the (Adj A)B

(i) If (Adj A) B = 0, consistent and infinite

(ii) If (Adj A) B   0, In consistent

A = 

1 2 3
4 5 6
7 8 9

 
 
 
  

Now, calculate the adjoint of matrix

Let Cij be the co-factors of elements aij in A = [aij]

Then,

C11 = (–1)1 + 1 
5 8
6 9  = 45 – 48 = – 3

C12 = (–1)1 + 2 
8 2
9 3  = 24 – 18 = – 6

C13 = (–1)1 + 3 
2 5
3 6  = 12 – 15 = – 3

C21 = (–1)2+1 
6 9
4 7  = 42 – 36 = 6

C22 = (–1)2 + 2 
9 3
7 1  = 9 – 21 = – 12

C23 = (–1)2 + 3 
3 6
1 4  = 12 – 6 = 6
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C31 = (–1)3 + 1 
4 7
5 8 = 32 – 35 = – 3

C32 = (– 1)3 + 2 
7 1
8 2  = 14 – 8 = 6

C33 = (–1)3+3 
1 4
2 5  = 5 – 8 = – 3

Adj A = 

3 6 3
6 12 6
3 6 3

  
  
   

  A–1 = 
AdjA
|A|

= 

3 6 3
6 12 6
3 6 3

  
  
   

    X = A– 1 B

    X = 

3 6 3 4 3 4 6 8 3 12
6 12 6 8 6 4 12 8 6 12

3 6 3 12 3 4 6 8 3 12

            
               
                 

= 

12 48 36 0
24 96 72 0
12 48 36 0

     
        
        

 Given the system is consistent and infinitely solutions.

15. Find the system of linear equation.

x + 4y + 7z = 14

3x + 8y – 2z – 13

7x + 8y + 26z – 5

Sol :
Given AX = B

1 4 7 x 14
3 8 2 y 13
7 8 26 z 5

     
           
          
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   AX = B

     X =  A–1 B

   A–1 = 
AdjA
|A|

|A| = 
8 2 3 2 3 8

4 7
8 26 7 26 7 8

 
 

 

= 1(208 – 16) + 4 (78 + 14) + 7(– 24 – 56)

= 1(192) + 4 (92) +7(– 80)

= 0

Now, calculate the adjoint of matrix

Let Cij be the co-factors of elements aij in A = [aij],

Then,

C11 = (–1)1 + 1 
8 8
2 26


  = 208 – 16 = 192

C12 = (–1)1 + 2 
8 4

26 7
 

 = – 56 – (– 104) = 48

C13 = (–1)1 + 3 
4 8

7 2


  = 8 – 56 = – 48

C21 = (–1)2+1 
2 26
3 7


 = – 14 – 78 = – 92

C22 = (–1)2 + 2 
26 7
7 1  = 26 – 49 = – 23

C23 = (–1)2 + 3 
7 2
1 3


 = 21 – (– 2) = 23

C31 = (–1)3 + 1 
3 7
8 8 = – 24 – 56 = – 80
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C32 = (– 1)3 + 2 
7 1
8 4   = – 28 – (– 8) = – 20

C33 = (–1)3+3 
1 3
4 8  = 8 + 12 = 20

|A| = 0. So find the (Adj A) B

(i) If (Adj A) B = 0, Consistent and infinite

(ii) If (Adj A) B   0, In consistent

   

x 192 48 48 14
y 92 23 23 13
z 80 20 20 5

     
            
           

= 

192 14 48 13 48 5
92 14 23 13 23 5
80 14 20 13 20 5

     
       
       

= 
2688 624 240 3072
1288 299 115 1104
11200 260 100 11360

    
        
         

  X = 3072, Y = 1104, Z = – 11360

Given System is inconsistent

16. The following system of equations

x1+ x2 + x3 = 3

x1+  x3 = 0

x1 – x2 + x3 = 1

Sol :

Given AX = B

1

2

3

1 1 1 x 3

1 0 1 x 0
1 1 1 x 1

    
        
        

Consider the augmented matrix [A|B]
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    [A|B] = 

1 1 1 3
1 0 1 0
1 1 1 1

 
 
 
  

R1   R2 - R1 , R3   R3 - R1

= 

1 1 1 3
0 1 0 3
0 2 0 2

 
   
   

R3   R3 - 2R2

= 

1 1 1 3
0 1 0 3

0 0 0 4

 
   
  

(A) =2, (A|B) = 3

here (A)   (A|B)

Solution does not exist.

17. Solve the following linear system

x+2y = 5

4x+8y =12

3x+6y+3z = 15

Sol :
Given AX = B

 = 

1 2 0 x 5
4 8 0 y 12
3 6 3 z 15

     
          
          

Consider [A|B] = 
1 2 0 5
4 8 0 12
3 6 3 15

 
 
 
  

R2   R2   4R1

R3    R3 - 3R1

1 2 0 5
0 0 0 8
0 0 3 0

 
  
  

R2   R3

1 2 0 5
0 0 3 0

0 0 0 8

 
 
 
  

(A) =2, (A|B)=3

Here (A)  (A|B)

No solution

18. Solve the following linear system using.

x + y + z = 6

2x + 3y + 2z = 14

x + 2y + 3z = 15

Sol :
Given AX=B

 = 
1 1 1
2 3 2
1 2 3

 
 
 
  

 
x
y
z

 
 
 
  

 = 

6
14

15

 
 
 
  

Consider [A|B] = 

1 1 1 6
2 3 2 14
1 2 3 15

 
 
 
  

R2    R2 - 2R1

R3    R3 – R1

1 1 1 6
1 1 0 2
0 1 2 9

 
 
 
  

R3   R3 – R2

1 1 1 6
1 1 0 2
0 0 2 7

 
 
 
  

Divide the third row by 2

1 1 1 6
1 1 0 2
0 0 1 3.5

 
 
 
  
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Perform back-substitution to find the
solutions:

z = 3.5

x + z = 4

x + 3.5 = 4

x = 0.5

y = 2

So, the unique solution is x = 0.5, y = 2,
and z = 3.5.

3.3  TRIVIAL AND NONTRIVIAL SOLUTIONS IN
SYSTEMS OF LINEAR EQUATIONS

Q19. What is trivial and nontrivial solution?

Ans :
i) Trivial Solution

A trivial solution is a solution to a system of
equations where all variables are set to zero.
In other words, it’s the solution where no
variable takes on a nonzero value. Trivial
solutions are always valid for any system of
equations.

ii) Nontrivial Solution

A nontrivial solution is a solution where at
least one variable takes on a nonzero value.
Nontrivial solutions provide meaningful
solutions to the system of equations.

PROBLEMS

20. Find the following equations trivial.

3x + 2y = 0   ... (1)

2x – 3y = 0   ... (2)

Sol :
Trivial

The trivial solution occurs when both
variables are set to zero. Let’s solve for x and y .

3x + 2y = 0 ... (1)

2x – 3y = 0 ... (2)

Dividing equation (2') by 2:

 x – (3/2)y = 0

x = (3/2)y

Substituting x in equation (1)

3((3/2)y) + 2y = 0

(9/2)y + 2y = 0

(9/2 + 4/2)y = 0

(13/2)y = 0

y = 0

Substituting y = 0 in x = (3/2)y

x= 0

Therefore, the trivial solution is x = 0 and
y = 0.

21. Find the following equations trivial

2x + y + z = 0

3x – 2y + z = 0

x + 3y – z = 0

Sol :

We want to find the values of x, y, and z that

satisfy all three equations simultaneously. Let’s

consider the trivial solution where all variables are

set to zero: x = 0, y = 0, and z = 0.

For Equation 1

2(0) + 0 + 0 = 0

0 + 0 + 0 = 0 (Satisfied)

For Equation 2

3(0) – 2(0) + 0 = 0

0 – 0 + 0 = 0 (Satisfied)
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For Equation 3

0 + 3(0) – 0 = 0

0 + 0 – 0 = 0 (Satisfied)

Since all three equations are satisfied by
x = 0, y = 0, and z = 0, this is called the trivial
solution.

22. Given equation to find non trivial
solution.

3x + 2y = 6    ... (1)

2x – 3y = -5    ... (2)

Sol :

To find a nontrivial solution, we need to
determine values for x and y that satisfy both
equations and are not both zero.

One way to approach this is by solving one
equation for one variable and then substituting that
value into the other equation.

Solve Equation (1) for x

3x + 2y = 6

3x = 6 – 2y

  x = (6 – 2y) / 3

Put in equation (2)

2x – 3y = -5

2((6 – 2y)/3) – 3y = -5

(12 – 4y)/3 – 3y = -5

12 – 4y – 9y = -15

12 – 13y = – 15

– 13y = – 27

y = 27 / 13

y = 27 / 13substituting in x = (6 – 2y) / 3 for x

x = (6 – 2(27/13)) / 3

x = (78 – 54)/39

x = 24/39

x = 8/13

So, a nontrivial solution for the system of
equations is.

x = 8/13

y = 27/13

These values satisfy both Equation 1 and
Equation 2 and are not both zero. This is a nontrivial
solution because both x and y are nonzero.

The nontrivial solution for the given system
of equations is x = 8/13 and y = 27/13

23. Given equation to find non trivial
solution.

2x – y = 3 ... (1)

4x + y = 7 ... (2)

Sol :
Solve Equation (1) for x

2x – y = 3

2x = 3 + y

x = (3 + y)/2

Substitute x into Equation ( 2 )

4x + y = 7

4((3 + y)/2) + y = 7

(12 + 4y)/2 + y = 7

12 + 4y + 2y = 14

6y = 2

y = 1/3

y = 1/3 substituting in  x = (3 + y)/2

x = (3 + (1/3))/2

x = (10/3)/2

x = 5/3
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So, a nontrivial solution for the system of
equations is:

x = 5/3

y = 1/3

The nontrivial solution for the given system
of equations is x = 5/3 and y = 1/3.

24. find the following equations non trivial

2x – y + z = 5 ... (1)

4x + 2y – z = 8 ... (2)

x – 3y + 2z = 1 ... (3)

Sol : (Imp.)

We want to find a nontrivial solution for this
system, which means values for x, y, and z that satisfy
all three equations and are not all equal to zero.

Solve Equation (1 )for x

2x – y + z = 5

2x = 5 + y – z

x = (5 + y – z)/2 ... (4)

Substitute x into Equation (2)

4x + 2y – z = 8

4((5 + y – z) / 2) + 2y – z = 8

(10 + 4y – 2z) + 2y – z = 8

10 + 4y – 2z + 2y – z = 8

6y – 3z = – 2

6y = 3z – 2

y = (3z – 2)/6

y = (z – 2/3)/2

y = (z – 1/3) ... (5)

Substitute x into Equation (3)

x – 3y + 2z = 1

((5 + y – z)/2) – 3y + 2z = 1

(5 + y – z) – 6y + 4z = 2

5 + y – z – 6y + 4z = 2

– 5y + 3z = -3

– 5y = – 3 – 3z

y = (3 + 3z)/5

y = (3/5) + (3/5)z

From equation (4) and (5)

x = (5 + y – z)/2

x = (5 + (z – 1/3) – z)/2

x = (5 + z – 1/3 – z)/2

x = (4 – 1/3)/2

x = (11/3)/2

x = 11/6

So, a nontrivial solution for the system of
equations is x = 11/6, y = z – 1/3

These values satisfy all three equations and
are not all equal to zero. This is a nontrivial solution
because at least one of the variables (x, y, or z) is
nonzero.

3.4 LINEAR INDEPENDENCE AND DEPENDENCE

OF MATRIX COLUMNS

Q25. What is linear independent and explain
with an example?

Ans : (Imp.)

Linearly Independent Columns

In linear algebra, the linear independence
and dependence of matrix columns are crucial
concepts. They determine whether the columns of
a matrix form a linearly independent set or a linearly
dependent set. Here’s a detailed explanation of
these concepts.

Matrix columns are linearly independent if
none of the columns can be expressed as a linear
combination of the others. In other words, no
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column can be obtained by multiplying another
column by a scalar and adding it to a different
column. Mathematically, if “A” is an “m x n” matrix
with columns “v1,” “v2” ..., “vn” then the columns
are linearly independent if the equation:

c1 v1  + c2 v2  + ... + cn vn = 0

only has the trivial solution:

c1  = c2  = ... = cn = 0

In this case, the columns span the full “n”-
dimensional space of vectors.

Example

Suppose we have the following matrix “A”
with three columns

    A = 

1 2 3
0 1 4
0 0 1

 
 
 
  

We want to determine whether the columns
of matrix “A” are linearly independent.

To check for linear independence, we need
to see if the equation:

c1 v1  + c2 v2  + c3 v3  = 0

where “v1,” “v2” and “v3’’ are the columns of
matrix “A,” has a nontrivial solution. In other words,
we want to find constants “c1” “c2” and “c3” not all
zero, such that the linear combination results in the
zero vector.

Let’s set up the equation and solve for the
constants:

c1 * 

1
0
0

 
 
 
  

c2 * 

2
1
0

 
 
 
  

 c3 * 

3 0
4 0
1 0

   
      
      

Solving this system of equations gives us,

c1  = 0

c2  = 0

c3  = 0

Since the only solution is the trivial solution
(all constants equal to zero), the columns of matrix
“A” are linearly independent. This means that none
of the columns can be expressed as a linear
combination of the others

In this example, the matrix “A” has linearly
independent columns because no nontrivial linear
combination of the columns results in the zero
vector.

Determinant Test for Linear Independence

For a set of vectors or a matrix, you can use
the determinant to test for linear independence.
Consider a set of vectors {v1 , v2, ..., vn}. If you
arrange these vectors as columns in a matrix “A,”
then the vectors are linearly independent if and only
if the determinant of the matrix “A” is nonzero.
Mathematically:

If det(A)   0, then the vectors {v1, v2, ..., vn }
are linearly independent.

Example of Linear Independence

    A = 

1 2 3
0 1 4
0 0 1

 
 
 
  

|A| = 1(1 – 0) – 2(0 – 0) + 3(0 – 0)  =  1

|A| = 1

|A|   0

The determinant of an upper triangular matrix
(a matrix where all entries below the diagonal are
zero) is simply the product of its diagonal entries.
Therefore, the determinant of matrix “A” is:

det(A) = 1 * 1 * 1 = 1

Since the determinant of matrix “A” is not
equal to zero (det (A)   0), this confirms that the
columns of matrix “A” are indeed linearly
independent.
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The determinant test is a powerful method
to determine linear independence, especially for
square matrices. When the determinant is nonzero,
the columns are linearly independent. If the
determinant is zero, it indicates that the columns
are linearly dependent. In your example, the fact
that the determinant of matrix “A” is not equal to
zero directly supports the conclusion that the
columns are linearly independent .

Q26. What is linear dependent and explain
with an example

Ans : (Imp.)

Linearly Dependent Columns

Matrix columns are linearly dependent if at
least one column can be obtained as a linear
combination of the others. In other words, there
exist scalars, not all of which are zero, such that the
linear combination of columns results in the zero
vector. Mathematically, if there exist constants “c1 ,”
“c2” ..., “cn” not all zero, such that:

c1 v1  + c2 v2  + ... + cn vn  = 0

Then the columns are linearly dependent

Example of linear dependent

   A = 

1 2 3
2 4 6
1 2 3

 
 
 
  

We want to determine whether the columns
of matrix “B” are linearly dependent.

To check for linear dependence, we need to
see if there exist constants “c1,” “c2” and “c3” not all
zero, such that the linear combination of columns
results in the zero vector. We’ll set up the equation

c1 * 
1
2
1

 
 
 
  

 c2 * 
2
4
2

 
 
 
  

 c3 * 

3 0
6 0
3 0

   
      
      

solving this system of equations, we find:

1. The first row gives us: c1  + 2c2  + c3  = 0

2. The second row gives us: 2c1+ 4c2 + 2c3 = 0

3. The third row gives us: 3c1 + 6c2 + 3c3  = 0

Now, let’s simplify these equations:

1. c1  + 2c2 + c3  = 0

2. 2c1 + 4c2 + 2c3 = 0

Notice that the third equation is simply twice
the first equation. In other words, it’s a linear
combination of the first and second equations.
Therefore, we have a nontrivial solution to the
system of equations:

c1  = – 2c2 – c3

2c1  + 4c2 + 2c3  = 0

Since there exists a nontrivial solution (not all
constants are zero) that makes the linear
combination equal the zero vector, the columns of
matrix “B” are linearly dependent.

In this example, the matrix “B” has linearly
dependent columns because a nontrivial linear
combination of the columns results in the zero
vector.

Determinant Test for Linear Dependent

The determinant method is a useful approach
to determine whether the columns of a matrix are
linearly dependent. Specifically, if the determinant
of the matrix is zero, it indicates that the columns
are linearly dependent.

Example

We want to determine whether the columns
of matrix “A” are linearly dependent using the
determinant method.

    A = 

1 2 3
2 4 6
1 2 3

 
 
 
  

|A| = 1(12 – 12) – 2(6 – 6) + 3(4 – 4)
|A| = 0
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Since the determinant of matrix “A” is zero
(det(A) = 0), the vectors v1, v2, and v3 are linearly
dependent.

Keep in mind that the determinant method
is a convenient way to determine linear indepen-
dence or dependence when you’re dealing with
small sets of vectors or columns. For larger sets,
computational tools may be more practical.

3.4.1 Characterization of Linearly Depen-
dent sets

Q27. What are the Characteristics of Linearly
Dependent ?

Ans : (Imp.)

1. Determinant of a Square Matrix

For a square matrix “A,” its columns are
linearly dependent if and only if the
determinant of “A” is zero. This determinant
test is useful in determining linear
dependence.

2. Rank Deficiency

Columns are linearly dependent if the rank
of the matrix is less than the number of
columns. A rank-deficient matrix cannot fully
span the space.

3. Nontrivial Linear Combination

Linear dependence means that there is a
nontrivial linear combination of columns that
results in the zero vector.

4. Inconsistent System

If the homogeneous system of equations
formed by the columns has more unknowns
than equations, the columns are linearly
dependent.

5. Repeated Columns

If a matrix has repeated columns, it is trivially
linearly dependent since one column can be
expressed as a scalar multiple of the other
repeated column.

PROBLEMS

28. To determine whether the given system
of equations is linearly dependent using
the determinant method :

3x + 2y = 6  ... (1)

2x – 3y = – 5 ... (2)

Sol : (Imp.)

We can represent the coefficient matrix as
follows:

Now, let’s calculate the determinant of this
matrix:

Determinant = (3 * – 3) – (2 * 2)

Determinant = – 9 – 4

Determinant = – 13

Since the determinant is nonzero (– 13), the
system of equations is linearly independent. This
means that the equations are not proportional to
each other and do not lie on the same line in the
coordinate plane.

In summary, using the determinant method,
we found that the given system of equations is
linearly independent, which implies that the
equations are not linearly dependent and do not
represent the same line.

29. Determining Linear Dependence Using
the Determinant Method

2x + y – z = 5 ... (1)

4x – 3y + 2z = 1 ... (2)

x + 2y – z = 3 ... (3)

Sol :

|A| =

2 1 1
4 3 2
1 2 1

 
  
  
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      = 2(3 – 4) – 1(– 4 – 2) + (8 – 3)
= 2(1) – 1(– 6)+ (5)
= 2 + 6 + 5

= 13
Since the determinant is nonzero (-13), the system of equations is linearly independent .

30. Determine if a system of linear equations is linearly dependent or independent using
the determinant method?

A = 
 
 
 
  

1 2 3
4 5 6
7 8 9

Sol :

|A| = 

1 2 3
4 5 6

7 8 9

 
 
 
  

= 1(45 – 48) – 2(36 – 42) + 3(32 – 35)

= 1(– 3) – 2(– 6) + 3(– 3)

= – 3 + 12 – 9

= 12 – 12

= 0

|A| = 0

 A islinear  dependent

31. Determine if a system of linear equations is linearly dependent or independent using
the determinant method?

A =

 
 
 
  

4 6 9
0 2 4
3 2 4

Sol :

|A| = 

4 6 9
0 2 4
3 2 4

 
 
 
  

= 4(0) – 6(–12) + 9(–6)

= 0 + 72 – 36

|A| = 36

|A|   0

 A is in linear dependent.
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Short Question and Answers

1. Linear Equation

Ans :
Linear equations are a fundamental concept in the field of linear algebra, which is a branch of

mathematics that deals with vector spaces, linear transformations, and systems of linear equations. At its
core, linear algebra seeks to understand and analyze the relationships between vectors and how they can
be manipulated and transformed in a coherent and systematic manner.

A linear equation is an equation that describes a linear relationship between variables. In its simplest
form, a linear equation involves terms that are either constants or the product of a constant and a single
variable raised to the power of 1. The fundamental property of linear equations is that when graphed,
they form straight lines, hence the name “linear.”

2. What is general form of linear equation?

Ans :
General form of a linear equation in one variable: let’s call it “x,” is:

ax + b = 0

Here, “a” and “b” are constants, and “x” is the variable. The equation is linear because each term
involves a constant or the product of a constant and the variable “x” raised to the power of 1.

In this form, the equation represents a straight line on a graph, with “a” determining the slope of the
line and

If we’re dealing with a linear equation in two variables: “x” and “y,” the general form would be:

ax + by + c = 0

Here, “a,” “b,” and “c” are constants, and “x” and “y” are the variables. Similarly, the equation is
linear because each term involves constants or the products of constants and the variables “x” and “y”
raised to the power of 1. In this case, the equation represents a straight line in a two-dimensional coordinate
plane.

3. Matrix Equation Form

Ans :
This system can also be represented as a matrix equation using matrix multiplication:

AX = B

Where,

 “A” is an “n × m” matrix containing the coefficients of the variables.

 “X” is an “m × 1” column matrix containing the variables.

 “B” is an “n × 1” column matrix containing the constants on the right-hand side of each equation.
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4. Augmented Matrix Form

Ans :

Another way to represent the system is in augmented matrix form:

[A | B]

Here, “A” is the coefficient matrix, and “B” is the column matrix containing the constants. This form

is often used when performing operations like Gaussian elimination to solve the system.

Solving a system of linear equations involves finding values for the variables “x1” “x2” ... “xm” that

simultaneously satisfy all of the equations in the system. Depending on the number of equations and

variables and the nature of the coefficients, the system may have unique solutions, infinitely many solutions,

or no solutions.

5. Homogeneous System of Linear Equations

Ans :

A homogeneous system of linear equations is a system in which all equations are set equal to zero.

In other words, each equation follows the form

a1 x1  + a2 x2  + ... + an xn  = 0

where “a1” “a2” ..., “an” are coefficients and “x1” “x2” ..., “xn” are the variables. Here’s how the two

cases break down.

6. Non-homogeneous System of Linear Equations

Ans :

A non-homogeneous system of linear equations is a system in which at least one equation is not set

equal to zero. In other words, the system involves both the coefficients of the variables and constants on

the right-hand side of the equations.

7. What are the methods are there to finding non-homogeneous systems?

Ans :

Methods for solving non-homogeneous systems include:

 Substitution Method

Solve one equation for one variable and substitute the expression into the other equations.

 Elimination Method

Add or subtract equations to eliminate one variable and solve for the other.

 Matrix Methods

Use techniques such as Gaussian elimination with augmented matrices or matrix inversion.
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8. Trivial Solution

Ans :
A trivial solution is a solution to a system of equations where all variables are set to zero. In other

words, it’s the solution where no variable takes on a nonzero value. Trivial solutions are always valid for
any system of equations.

9. Nontrivial Solution

Ans :
A nontrivial solution is a solution where at least one variable takes on a nonzero value. Nontrivial

solutions provide meaningful solutions to the system of equations.

10. Linearly Independent Columns

Ans :
In linear algebra, the linear independence and dependence of matrix columns are crucial concepts.

They determine whether the columns of a matrix form a linearly independent set or a linearly dependent
set. Here’s a detailed explanation of these concepts.

Matrix columns are linearly independent if none of the columns can be expressed as a linear
combination of the others. In other words, no column can be obtained by multiplying another column by
a scalar and adding it to a different column. Mathematically, if “A” is an “m x n” matrix with columns “v1,”
“v2” ..., “vn” then the columns are linearly independent if the equation:

c1 v1  + c2 v2  + ... + cn vn = 0

only has the trivial solution:

c1  = c2  = ... = cn = 0

In this case, the columns span the full “n”-dimensional space of vectors.
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Choose the Correct Answer
1. A system of linear equations with exactly one solution is called: [ a ]

(a) Consistent (b) Inconsistent

(c) Homogeneous (d) Dependent

2. The solution set of a homogeneous system of linear equations always includes: [ d ]

(a) No solutions (b) One solution

(c) More than one solution (d) The zero vector

3. A matrix with more columns than rows is called a: [ c ]

(a) Square matrix (b) Row matrix

(c) Column matrix (d) Rectangular matrix

4. If the determinant of a square matrix is zero, then the matrix is: [ c ]

(a) Invertible (b) Orthogonal

(c) Singular (d) Symmetric

5. The rank of a matrix is defined as: [ d ]

(a) The number of rows in the matrix

(b) The number of columns in the matrix

(c) The sum of the elements in the matrix

(d) The maximum number of linearly independent rows or columns

6. The reduced row-echelon form (RREF) of a matrix is: [ c ]

(a) A matrix with all elements set to zero

(b) A matrix with ones along the main diagonal

(c) A unique matrix that’s obtained through row operations

(d) A matrix with only positive integer values

7. The solution set of a consistent system of linear equations can be described as: [ c ]

(a) A single point in space (b) A line

(c) A plane (d) A hyperplane

8. The span of a set of vectors is: [ c ]

(a) The number of vectors in the set

(b) The sum of the vectors in the set

(c) The set of all possible linear combinations of the vectors

(d) The determinant of the vectors
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9. Linearly independent vectors in a vector space are always: [ d ]

(a) Parallel to each other (b) Orthogonal to each other

(c) Collinear with the origin (d) Linearly dependent

10. The column space of a matrix is also known as its: [ d ]

(a) Null space (b) Row space

(c) Rank space (d) Range

11. A matrix A is said to be orthogonal if: [ c ]

(a) Its determinant is zero (b) It is a square matrix

(c) A * A^T = I (identity matrix) (d) It has all elements equal to one

12. The determinant of an upper triangular matrix is equal to: [ b ]

(a) The sum of its diagonal elements (b) The product of its diagonal elements

(c) Zero (d) One

13. The solution set of an inconsistent system of equations is: [ c ]

(a) Non-empty (b) Infinite

(c) Empty (d) Unique

14. If a matrix has linearly dependent columns, its determinant is: [ a ]

(a) Always zero (b) Always nonzero

(c) Equal to the identity matrix (d) Equal to the zero matrix

15. The dot product of two vectors is zero if: [ a ]

(a) The vectors are orthogonal (b) The vectors have the same magnitude

(c) The vectors are parallel (d) The vectors are linearly dependent
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Fill in the Blanks

1. A system of linear equations that has at least one solution is called a  system.

2. The  solution of a system of linear equations is the one where all variables are set to zero..

3. The solution to an inconsistent system is .

4. A set of vectors is said to be linearly  if none of the vectors in the set can be written as a
linear combination of the others.

5. The columns of an identity matrix are .

6. If the determinant of a square matrix is zero, then its columns are .

7. In a matrix, a linearly dependent set of columns will lead to a  determinant.

8. A system of linear equations with more equations than unknowns is typically .

9. A system of linear equations with the same number of equations and unknowns can be categorized
as .

10. The solution space of a homogeneous system of linear equations always contains the 
vector.

ANSWERS

1. consistent

2. trivial

3. empty

4. independent

5. linearly independent

6. linearly dependent

7. zero

8. overdetermined

9. square

10. zero
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4.1  VECTOR SPACES

Q1. Define vector space.

Sol :
A vector space is a non empty set V of objects called vectors on which are defined two operations

called addition and multiplication by scalars subject to ten axioms.

(I) (V1 + ) is abelian vector addition.

1. u + v v

2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. There is zero vector 0 in v such that u + 0 = u.

5. For each u in v there is a vector –u in v such that u + (–u) = 0.

(II) Scalar Multiplication

6. The scalar multiple of u by c that is cuv..

7. c(u +v) = cu +cv

8. (c + d) u = cu + du

9. c(du) = (cd) u

10. 1.u = u

The space Rn; where n 1 is a vector space.

Q2. For n 0  the set pn of polynomials of degree atmost n consists of all polynomials of the
form.

P(t) = a0 + a1t + a2t
2 + ... +ant

n

Where coefficient a0, a1 .... an and variable  t are real numbers Here degree is n.

Sol :
Given pn set of polynomials

Let p(t), q(t) pn

 p(t) = a0 + a1t + a2t
2 + .... ant

n

 q(t) = b0 + b1t + b2t
2 + .... bnt

n

UNIT
IV

Vector spaces and Subspaces, Linearly independent sets; bases.

Eigenvalues and Eigenvectors - The Characteristic Equation.
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Vector addition

1. p(t) + q(t) = a0 + a1t + a2t
2 + .... ant

n + b0 + b1t + b2t
2 + .... bnt

n

= (a0 + b0) + (a1 + b1) t + (a2 + b2) t2 + .... + (an + bn) t
npn [closure]

2. p(t) + [q(t) + r(t)] = [p(t) + q(t)] + r(t) [Associative]

let r(t) = c0 + c1t + c2t
2 + .... cnt

n.

3. Let 0(t) = 0 + 0t + 0t2 + ....+ 0tn be the zero polynomial.

p(t) + 0(t) = p(t) [Additive Identity]

4. Since (–1) p(t) acts as negative of p(t)

  p(t)pn   (–1) p(t)pn 

p(t) + (–1) p(t) = 0(t) [Additive Inverse]

5. p(t) + q(t) = q(t) + p(t) [Cumulative law]

Scalar Multiplications

6. Scalar multiple cp is a polynomial defined by

        c.p(t) = c[a0 + a1t + ....+ an t
n]

= ca0 + ca1t + ....+ can t
n pn.

7. (c + d) p(t) = cp(t) + dp(t)

8. c(p(t) + q(t)) = cp(t) + cq(t)

9. c[d(p(t))] = cd[p(t)]

10. 1.p(t) = p(t) [Mul. Identity]

 Thus pn is a vector space.

4.2  SUBSPACES

Q3. Define vector subspace and give examples.

Sol :
Let H be a non empty subset of a vector space V that it is said to be a vector subspace of V if it satisfy

the following conditions.

1. The zero vector of v is in H

O H 

2. H is closed under vector addition U,V H 

U V H  

3. H is closed under scalar multiplication for each U H   scalar C  CUH.

Example

1. The set containing of only the zero vector in a vector space V is a subspace of V called the zero
subspace of written as {0}.

2. The vector space R2 is not  a subspace of R3 because R2 is not even a subset of R3. Since vectors in R3

all have three entries where vectors in R2 have only two entries.
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Q4. Given v1 and v2 in a vector space V, let H = span {v1, v2} show that H in a subspace of V.

Sol :
Given H = span {v1, v2}

The zero vector is in H since o = ov1 + ov2

To show let is closed under vector addition

       Let u = a1 u1 + a2 u2 w = b1v1 + b2v2

      u + w = (a1 v1 + a2 v2) + (b1 v1 + b2 v2)

= (a1 + b1) v1 + (a2 + b2) v2

 u+ wH.

To show H is closed under scalar multiplication let c be any scalar and u = a1 v1 + a2 v2

    cu = c(a1 v1 + a2 v2)

= (ca1) v1 + (ca2)v2

 cu H.

 H is closed under vector addition and scalar multiplication.

 Thus H is a subspace of v.

Q5. If v1, v2, .... vp are in a vector space v then span {v1, v2, .... vp} is a subspace of v.

Sol :
(i) The zero vector is in H

 O = ov1 + ov2 + .... ovp

(ii) Let u, v any two arbitrary vectors in H

     u = a1 v1 + a2 v2 + ..... ap vp , v = b1 v1 + b2 v2 + .... bp vp

Where a1 a2 .... ap, b1, b2, .... bp are scalars.

Now

      u + v = (a1 v1 + a2 v2 + ... + ap vp) + (b1 v1 + b2v2 + ..... + bpvp)

= (a1 + b1)v1+ (a2 + b2)v2 + ... + (ap + bp)vp

   u + vH

   H is closed under vector addition.

for any scalar c

    cu = c(a1 v1 + a2 v2+ ..... + ap vp)

= (ca1)v1 + (ca2)v2 + ..... + (cap)vp

 cuH

 H is closed under scalar multiplication

 H is a subspace of V.
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Q6. If H and K are subspaces of a vector space then H + K is also subspace of vector space
V(F).

Sol :
Given V(F) is a vector space

H and k are subspaces of V

Define H + K = {w; U + v = w; for some u in H and v in k}

Given H is a subspace of V(F)

0H ... (1)

k is a subspace of v(F)

0k ... (2)

from (1) and (2) 0 H + k

 H + k   { } (non empty)

Let w1, w2   H + K

    w1 = u1 + v1 where u1H, v1
K

    w2 = u2 + v2 where u2H, v2
K

   w1 + w2 = (u1 + v1) + (u2 + v2)

= (u1 + u2) + (v1 + v2)

H + K [since u1 + u2 H, v1+v2K]

 H + K is closed under vector addition.

Let cu1H   ,   cu1K

cu1+cv1H+K

c(u1+v1)H+K

cw1H+K

H+K is closed under scalar multiplication.

 H + K is a subspace of V(F).

Q7. The union of two subspaces is again a subspace if and only if one is contained in
another.

(OR)

The union of two subspaces is again subspaces  H1
 H2  (or) H2

 H1.

Sol : (Imp.)

Let H1 and H2 be two subspaces of V(F).

Case (1)

If H1H2 is a subspace of a vector space V(F).

Then we have to show that H1
 H2 or H2  H1.
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If possible assume that H1
 H2 or H2 H1.

Since H1
 H2 so  1a H  and aH2

Since H2
 H1 so  1b H  and bH2

But aH1H2  and bH1H2

 a + bH1H2

 a + bH1 and a+bH2

Since a + bH1 and aH1, as

As H1 in a subspace of V(F)

(–1) a + a + b = bH1 [Closure] ... (1)

Similarly a+bH2 , bH2

As H2 is a subspace of V(F)

  a + b + (–1) bH2 [closure]

  a + b – b  H2

  aH2 ... (2)

Which is a contradiction to our assumption that aH2  and bH1

So our assumption is using

 either H1
 H2 or H2

 H1

Case (ii)

If H1
 H2 (or) H2

 H1 then we have to show H1H2 is a subspace of V(F).

Since H1
 H2  H1H2 = H2

We know that H2 is a subspace of V(F)

So H1
 H2 is also subspace of V(F).

Case (iii)

If H2
 H1   H1H2 = H1

We know that H1 is a subspace of V(F)

So H1U H2 is also subspace of V(F)

 H1U H2 is subspace of  vector space V(F).

Q8. Let H be the set of all vectors of the from (a – 3b, b – a, a, b) where a and b are arbitrary
scalars let H = {(a – 3b, b – a, a, b)}; a, b in R. Show that H is a subspace of R4.

Sol : (Imp.)

Given H = {(a – 3b, b – a, a, b)}

Write vectors in H as column vectors, then an arbitrary vector in H has the form.
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a 3b
b a

a
b

 
  
 
 
 

 = a

1
1
1
0

 
  
 
 
 

 + b

3
1
0
1

 
 
 
 
 
 

 = av1 + av2

 H = Span {v1, v2} where v1, v2 are the
vectors. Thus H is a subspace of R4.

Q9. Let V1 =

 
 
 
  

1
0
–1

 V2 =

 
 
 
  

2
1
3

  V3 =

 
 
 
  

4
2
6

 and

W =

 
 
 
  

8
4
7

 Is w in the subspace spanned

by {v1, v2, v3}? Why ?

Sol :
Given vectors are

V1 =

1
0
–1

 
 
 
  

, V2 =

2
1
3

 
 
 
  

,  V3 =

4
2
6

 
 
 
  

, W =

8
4
7

 
 
 
  

Let a1, a2, a3
R

    W = Linear combination of vectors

= a1 v1 + a2 v2 + a3 v3

 

8
4

7

 
 
 
  

= a1

1
0
1

 
 
 
  

+ a2

2
1
3

 
 
 
  

+ a3

4
2
6

 
 
 
  

The augmented matrix 
1 2 4 8
0 1 2 4
1 3 6 7

 
 
 
  

Apply Row Operation:

R3  R3 + R1 ~ 

1 2 4 8
0 1 2 4
0 5 10 15

 
 
 
  

R3  3R
5

 ~ 

1 2 4 8
0 1 2 4
0 1 2 3

 
 
 
  

R3 R3 – R2 ~ 

1 2 4 8
0 1 2 4
0 0 0 1

 
 
 
  

R1  R1 – 2R2 ~ 

1 0 0 0
0 1 2 4
0 0 0 1

 
 
 
  

R3
3R
1

 ~ 

1 0 0 0
0 1 2 4
0 0 0 1

 
 
 
  

R2  R2 – 4R3 ~ 

1 2 3 4c c c c

1 0 0 0
0 1 2 4

0 0 0 1

 
 
 
  

Two columns c2 and c3 are indentical and has
no solution.

 W is not a subspace spanned by {v1,
v2, v3}.

Q10. Given v1 and v2 in a vector space v and
let H = span {v1, v2} then H is a
subspace of V.

Sol :
(i) The zero vector is in H.

(ii) Let u, v be any two arbitrary vectors in H.

     u = s1 v1 + s2v2  and v = t1 v1 + t2v2

Where s1, s2, t1, t2 are scalars

consider u + v

= (s1 v1 + s2 v2) +(t1 v1 + t2 v2)

= (s1 + t1)v1 + (s2 + t2)v2

 u + v H

= H is classed under vector addition.

(iii) For any scalar c,

  cu = c(s1 v1 + s2 u2)

= (cs1) v1 + (cs2)v2

  cuH
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 H is classed under scalar multiplication

 H is a subspace of v.

Q11. Show that w is in the subspace of R4

spanned by v1, v2, v3 where,

9
7

w
4
8

 
 
 
 
 
 

, 1

7
4

v
2

9

 
  
 
 
 

,

2

4
5

v
1
7

 
 
 
 
 
 

, 3

9
4

v
4
7

 
 
 
 
 
 

Ans : (Imp.)

Given,

9
7

w
4
8

 
 
 
 
 
 

, 1

7
4

v
2

9

 
  
 
 
 

,

2

4
5

v
1
7

 
 
 
 
 
 

, 3

9
4

v
4
7

 
 
 
 
 
 

Consider the augmented matrix,

[v1 v2 v3 w ] =

7 4 9 9
4 5 4 7
2 1 4 4

9 7 7 8

   
  
  
 

  

R2  7R2 + 4R1

R3  7R3 + 2R1

R4  7R4 – 9R1

= 

7 4 9 9
0 19 8 13
0 15 10 10
0 13 32 137

   
  
 
 

 

R3 
3R

5

= 

7 4 9 9
0 19 8 13
0 3 2 2
0 13 32 137

   
  
 
 

 
R3  19R3 + 3R2

R4  19R4 + 13R2

= 

7 4 9 9
0 19 8 13
0 0 14 77
0 0 504 2772

   
  
 
 
 

R4 
3R

14
, R4 

4R
504

= 

7 4 9 9
0 19 8 13

11
0 0 1

2
11

0 0 1
2

   
  
 
 
 
 
  

R1 R1 + 9R3

R2 R2 + 8R3

R4 R4 – R3

=

81
7 4 0

2
0 19 0 57

11
0 0 1

2
0 0 0 0

  
 
 
 
 
 
  

R2 
2R

19

=

81
7 4 0

2
0 1 0 3

11
0 0 1

2
0 0 0 0

  
 
 
 
 
 
  
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R1 R1 + 4R2

= 

105
7 0 0

2
0 1 0 3

11
0 0 1

2
0 0 0 0

 
 
 
 
 
 
 
  

R2 
1R

7

= 

15
1 0 0

2
0 1 0 3

11
0 0 1

2
0 0 0 0

 
 
 
 
 
 
 
  

The general solutions are,

x1 = 
15
2

x2 = 3

x3 = 
11
2

w is subspace of R4 spanned by v1, v2, v3 if x1,
v1 + x2 v2 + x3 v3 = w

if x1 v1 + x2 v2 + x3 v3 = w

i.e.,
15
2

v1 + 3v2 + 
11
2

v3 = w

 w is in a subspace of R4.

Q12. Determine if y is in the subspace of R4

spanned by the columns of A, where

A = 

5 5 9
8 8 6
5 9 3
3 2 7

  
  
  
 

  

y = 

6
7
1
4

 
 
 
 
 
 

Ans : (Imp.)

Given,

A =  

5 5 9
8 8 6
5 9 3
3 2 7

  
  
  
 

  

y = 

6
7
1
4

 
 
 
 
 
 

y is in subspace of R4 spanned by columms
of A if x1 v1 + x2 v2 + x3 v3 = y has a solution.

Consider the augmented matrix [A y]

[A y] = 

5 5 9 6
8 8 6 7
5 9 3 1
3 2 7 4

  
  
  
 

   

R2  5R2 + 8R2

R3 R3 + R1

R4  5R4 + 3R1

=

5 5 9 6
0 80 42 13
0 14 6 7
0 5 8 38

  
  
  
 

  

R3 
3R

2

=

5 5 9 6
0 80 42 13
0 0 54 189
0 0 850 2975

  
  
 
 

  

R3 
3R

54
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R4 
4R

850

=

5 5 9 6
0 80 42 13

7
0 0 1

2
7

0 0 1
2

  
  
 
 
 

   

R1 R1 + 9R3

R2 R2 – 42R3

R4 R4 + R3

=

75
5 5 0

2
0 80 0 160

7
0 0 1

2
0 0 0 0

  
 

 
 
 
 
  

R1 
1R

5
, R2 

2R
80

=

15
1 1 0

2
0 1 0 2

7
0 0 1

2
0 0 0 0

  
 

 
 
 
 
  

R1 R1 + R2

=

11
1 1 0

2
0 1 0 2

7
0 0 1

2
0 0 0 0

 
 
 

 
 
 
 
  

 The general solutions are,

x1 = 
11
2

x2 = –2

x3 = 
7
2

 y is in subspace of R4 spanned by
columns of A

4.3  LINEARLY INDEPENDENT SETS

Q13. Define linearly independent and linearly
dependent.

Sol :
An indexed set of vectors {v1, ... vp} in v is

said to be linearly independent if the vector equation.

c1 v1+c1 v1 + ... cp vp = 0

has only the trivial solution c1 = 0, c2 = 0 ....
cp = 0.

An indexed set of vectors {v1 ... vp} in v is said
to be linearly dependent if the vector equation

c1 v1+c1 v1 + ... cp vp = 0 has a non trivial
solution that is not all ci = 0.

Q14. An Indexed set {v1, v2, ... vp} of two or
more vectors with v1

 0 is linearly
dependent if and only if   some vj (with
j>1) is a linear combination of its
preceding vectors v1, v2, .... vj–1.

Sol :
Let v be any vector space {v1, v2, ... vp} be

any indexed set in v with v1
 0.

Necessary Condition

Let {v1, v2, .... vp} be a linearly dependent set
in v. Consider the linear combination of these vectors
equated to a zero vector.

c1 v1 + c2 v2 + .... + cp vp = 0 ...
(1)

where c1, c2, .... cp are scalars and vi
 0.

Here atleast one of the scalars say ej
 0 for

j>1 and suppose that cj = 0 for n>j.
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Then the above liner combination can be written as

c1v1 + c2 v2 + .... + cj vj = 0

cj vj = (–c1) v1 + (–c2) v2 + ..... + (–cj–1) vj–1

vj = 
1

j

c
c

 
  
 

v1 + 
2

j

c
c

 
  
 

v2 + .... + 
j 1

j

c

c
 

  
 

vj–1

Thus the vector vj can be written as the linear combination of its proceeding vectors.

Sufficient Condition

In the indexed set {v1, v2, .... vp} let the vector vj (j > 1) can be written as the linear combination of
its proceeding vectors.

    scalars c1, c2 .... cj–1 such that vj = c1 v1 + c2 v2 + .... + cj-1 vj–1

c1 v1 + c2 v2 + ...... + cj–1 vj–1 + (–1) vj = 0

Thus in this linear combination there exists a non-zero scalar coefficient –1 of vj so the vectors v1, v2,
... vj are linearly independent.

 The set is {v1, v2, ... vj} is L.D.

The index set {v1, v2, .... vp} being the super set of this L.D is also L.D.

Q15. State and prove the spanning set theorem.

Statement:

Let S = {v1, v2 .... vp} be a set in v and  H = span {v1, v2, ... vp}.

(i) If one of the vectors in S i.e., vk is a linear combination of the remaining vectors in
S then the set formed from S by reaming vk still spans H.

(ii) If H  {0} then some subset of S is a basis for H.

Sol :
Let, S = {v1, v2 ....vp} be set in v

H = span {v1, v2, .... vp}

If vp is the linear combination of v1 ...vp–1 then

    vp = a1v1 + a2v2 + .... ap–1 vp–1 ... (1)

where,

a1, a2 ...... ap–1 scalars.

Consider an arbitrary element X in H such that

     X = c1v1 + c2 v2 + .... cp–1 vp–1 + cpvp      ... (2)

where,

c1, c2 ...... cp scalars

from (1) and (2)

     X = c1 v1 + c2 v2 + .... cp–1 vp–1 + cp (a1 v1 + a2 v2 + .... ap–1 vp–1)

= (c1 + acp) v1 + (c2 + acp) v2 + .... (cp–1 + ap–1 cp) vp–1

Thus v1, v2, .... vp–1 still spans H.
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(ii) Consider the original spanning set S as linearly
independent then it consists of basis.

Two or more vectors in the spanning set can
repeat the process until it is linearly
independent. Thus the basis of S gets reduced
to one-zero vector this is due to existence of
span vectors in H.

i.e., H  {0}

4.4  BASES

Q16. Define Basis

Sol :
Let v be a vector space any linearly

independent subset of v that spans v is called as a
“Basis of v”.

(or)

If   an indexed set B = {b1, b2, .... bn} which
is a subset of v such that

(i) B is linearly independent

(ii) v = span {b1, b2, ... bn}.

Q17. Verify whether the vectors 
 
 
 
  

2
–1
1

, 
 
 
 
  

2
–3
2

and 
 
 
 
  

–8
5
4

 are linearly Indepenent.

Sol :
Given vectors are,

–2
1
1

 
 
 
  

 , 

2
–3
2

 
 
 
  

, 

–8
5
4

 
 
 
  

Let v1 = 
2

–1

1

 
 
 
  

 , v2 = 
2

–3

2

 
 
 
  

, v3 = 
–8
5

4

 
 
 
  

Consider the matrix,
    A = [v1 v2  v3]

= 

2 2 8
1 3 5

1 2 4

 
   
  

R2  2R2 + R1   ; R3   2R3 – R1

= 

2 2 8
0 4 2
0 2 16

 
  
  

R3  2R3 + R2

= 

2 2 8
0 4 2
0 0 34

 
  
  

R1 
1R

2
, R2 

2R
4

 ; R3 
3R

34

= 

1 1 4
1

0 1
2

0 0 1

 
 
 
 
 
 

R1  R1 – R2

= 

7
1 0

2
1

0 1
2

0 0 1

  
 
  
 
 
  

Since the matrix, A contains pivot element in
each column.

 The set is linearly independent.

Q18. Determine whether the set S =

      
      
      
            

1 1 1
0 , 1 , 1
0 0 1

 is a basis of R3 or not ? If

not determine whether S is L - I or not ?
Whether S spans R3 or not ?

Sol :
Given vector space is R3
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The given set is S = 
1 1 1
0 , 1 , 1

0 0 1

      
      
      
            

Here S R3

  A = 

1 1 1
0 1 1
0 0 1

 
 
 
  

|A| = 1(1 – 0) – 1 (0 – 0) + 1 (0 – 0)

= 1  0

 S is linearly independent.

Here A is an inversible matrix of 3 × 3 then the columns of the matrix A forms a basis of R3.

4.5  EIGENVALUES AND EIGENVECTORS

Q19. Define Eigen values and Eigen vectors.

Sol :
Definition

Let A be  any n × n matrix,  be any scalar. If  x is any n × 1 matrix such that Ax = x then the scalar
x is called as an eigen value of the matrix A and the non zero vector x is called as an eigen value  of A
corresponding  to .

Note :

1. Eigen values are also called as Latent roots, characteristic values.

2. Eigen vectors are also called Latent vectors, characteristic vectors

Q20. Show that the eigen values of a Triangular Matrix are the entries of its Main diagonal.

Sol :
Let  us consider 3 × 3 triangular  matrix

Let A = 

11 12 13

22 23

33

a a a

0 a a

0 0 a

 
 
 
 
  

 be the triangular  Matrix of order 3 × 3.

Let  be any scalar and X = 

1

2

3

x

x

x

 
 
 
 
  

 be the eigen  vector corresponding  to the eigen value 

Consider  (A – I) =

11 12 13

22 23

33

a a a

0 a a

0 0 a

 
 
 
 
  

 –  

1 0 0

0 1 0

0 0 1

 
 
 
 
  
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A – I = 

11 12 13

22 23

33

a a a

0 a a

0 0 a

  
 
  
 
   

Consider the equation (A – I) x = 0 ....... (1)

11 12 13

22 23

33

a a a

0 a a

0 0 a

  
 
  
 
   

1

2

3

x

x

x

 
 
 
 
  

= 

0

0

0

 
 
 
 
  

 
 

11 1 12 2 13 3

1 22 2 23 3

1 2 33 3

(a )x a x a x 0

0x a x a x 0
0x 0x a x 0  

    
     
     

...........(2)

 is an eigen value of the matrix A

 The system (1) has non trivial solution

 The homogenous  system in (2) has a non trivial soltuion i.e., x1  0, x2
 0, x3

 0.

  = a11, a22, a33

Thus the eigen values of the matrix A are main diagonal elements of the matrix A.

Q21. Find the  characteristic polynomial and the real eigen values of the matrix A=  
 
 

-4 -1
6 1

.

Sol :
Given matrix is,

A = 
4 1
6 1
  
 
 

The characteristic polynomial is given by,

det   4 1 0
A I

6 1 0
     

         

          = 
4 1
6 1

   
  = (– 4 –) (1 – ) + 6

                              = – 4 + 4 –  + 2 + 6
        = 2 + 3 + 2

 The characteristic polynomial is 2 + 3 + 2

The characteristic equation is ,

det (A – I)=0
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2 + 3 + 2 = 0

( + 1) ( + 2) = 0

  = –1, –2

 The real eigen values are –1 and –2

Q22. Find the eigen values and eigen vectors of A = 

 
 
 
 
  

4 -1 6

2 1 6

2 -1 8

.

Sol : (Imp.)

Given matrix A = 

4 1 6

2 1 6

2 1 8

 
 
 
 
  

Eigen values

The characteristic equation is given by  det (A – I) = 0

  

4 1 6 1 0 0

2 1 6 0 1 0

2 1 8 0 0 1

   
   
    
   
      

= 0

  

4 1 6

2 1 6

2 1 8

  

 

  

 = 0

  (4 –)[(1– ) (8 – ) + 6] + 1[2 (8 – ) – 2(6)] + 6[–2 – 2(1 – )] = 0

  (4 – )[8 –  – 8 + 2 + 6] + [16 – 2 – 12] + [–2–2 + 2] = 0

  (4 – ) [2 – 9 + 14] +[–2 + 4] +[–24 + 12] = 0

  42 – 36  + 56 – 3 + 92 – 14 – 2 + 4 – 24 + 12 = 0

  – 3 + 132 – 40 + 36 = 0

   3 – 13 2 + 40 – 36 = 0

By trial and error method   = 2 satisfies the equation f(2) = 23 – 13(2)2 + 40(2) – 36 = 0

Then

2 1 13 40 36

0 2 22 36

1 11 18 0

- -

-

-
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 2 – 11  + 18 = 0

 2 – 9 – 2 + 18 = 0

 ( – 9) – 2( – 9) = 0

 ( – 9)( – 2) = 0

  = 2, 9
 The eigen values are 2, 2 and 9.

To find Eigen vectors :
If   = 2
    [A – I] x = 0



1

2

3

4 1 6 1 0 0 x 0

2 1 6 0 1 0 x 0

2 1 8 0 0 1 x 0

        
        
          
        
                



1

2

3

4 1 6 1 0 0 x 0

2 1 6 2 0 1 0 x 0

2 1 8 0 0 1 x 0

        
        
         
        
                

  

1

2

3

2 1 6 x

2 1 6 x

2 1 6 x

   
   
   
   
      

 = 

0

0

0

 
 
 
 
  

Consider the Argumented matrix

2 1 6 0

2 1 6 0

2 1 6 0

 
 
 
 
  

Apply Row operations

2 2 1

3 3 1

2 1 6 0
R : R R

 ~ 0 0 0 0
R : R R

0 0 0 0

 
  

 
 
  

 The Euqtions are

2x1 – x2 + 6x3 = 0

   2x1 = + x2 – 6x3

     x1 = + 
1
2

x2 – 3x3  ;  x2, x3 are free variables
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x  = 
1

2

3

x
x

x

 
 
 
  

= 

2 3

2

3

1
x 3x

2
x
x

  
 
 
 
 
 

 = x2 

1
2
1

0

 
 
 
 
 
 
 

+ x3 

3
0
1

 
 
 
  

The eigen vectors corresponding to eigen value  = 2  are

 V1 = 

1
2
1

0

 
 
 
 
 
 
 

, V2 = 

3
0
1

 
 
 
  

If  = 9

Consider A – 9 I = 

4 1 6 9 0 0
2 1 6 0 9 0
2 1 8 0 0 9

   
      
      

= 
5 1 6
2 8 6
2 1 1

 
  
   

The Argmented matrix [A – 9 I 0] is

5 1 6 0
2 8 6 0
2 1 1 0

  
  
   

R3 : R3 –  R2  ~ 

5 1 6 0
2 8 6 0
0 7 7 0

  
  
  

3
3

2
2

R 5 1 6 0R
7  ~ 1 4 3 0

R
R 0 1 1 0

2

  
  
   

R1 R1 + R3 ~

5 0 5 0
1 4 3 0
0 1 1 0

 
  
  

R1 
1R
5

 ~ 

1 0 1 0
1 4 3 0
0 1 1 0

 
  
  
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R2 R2 – R1 ~ 

1 0 1 0
0 4 4 0
0 1 1 0

 
  
  

R2   2R
4

 ~

1 0 1 0
0 1 1 0
0 1 1 0

 
  
  

R3R3 – R2 ~ 

1 0 1 0
0 1 1 0
0 0 0 0

 
  
  

The Equations are  –x1 + x3 = 0
      x1 = x3

 x2 – x3 = 0
          x2 = x3

Here x3 is a free variable
 The general solution is

x =
1

2

3

x
x
x

 
 
 
  

=
3

3

3

x
x
x

 
 
 
  

= x3 

1
1
1

 
 
 
  

 The eigen vector corresponding to the

eigen value   = 9 is v3 = 

1
1
1

 
 
 
  

4.6  THE CHARACTERISTIC EQUATION

Q23. Find the characteristic polynomial and
the eigen values of the matrices

(i)
2 7
7 2
 
 
 

(ii)
3 2
1 1

 
  

(iii)
5 3
4 4

 
  

(iv) 
7 2
2 3

 
 
 

Ans : (Imp.)

(i) Given matrix,

     A = 
2 7
7 2
 
 
 

The characteristic polynomaial is given by,
det(A – l ),

= 
2 7 0
7 2 0

    
        

= 
2 7

7 2
  

   

= (2 – )2 – 49

= 4 +   2 – 4 – 49

=  2 – 4  – 45

 The characteristic polynomial is, 2 – 4
– 45.

The characteristic equation is, det (A – l)=0

 2 – 4  – 45 = 0

 2 – 9 + 5 – 45 = 0

  ( – 9)+ 5( – 9) = 0

 ( – 9)+ ( + 5) = 0

  – 9=0,  + 5 = 0

 = 9,– 5

 The eigen values are 9 and – 5.

(ii) Given matrix,

A = 
3 2
1 1

 
  

The characteristic polynomial is given by,
det(A – l),

= 
3 2 0
1 1 0

     
         

= 
3 2

1 1
  

  

= (3 – )(–1 –) +2

= 3 – + + +2

= – 2–

  The characteristic polynomial is, – 2
–
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The characteristic equation is det (A – l) =0

 – 2–

It is in quadratic form ax2 + bx + c = 0

Here,

a = 1, b = –2, c = –1


2b b 4ac

2a
  

= 
2 4 4

2
 

= 
2 8

2


= 
2 2 2

2


1 2

 The eigen values are  1 2

(iii) Given matrix,

A = 
5 3
4 4

 
  

The characteristic polynomial is given by,
det(A – l)

= 
5 3 0
4 4 0

    
         

= 
5 3

4 4
  

    

= (5 – )(4 –) + 12

= 20 – 5 – 4 + 2  +12

=  – 9 + 32

  – 9 + 32 is the characteristic
polynomial.

The characteristic equation is det(A – l) = 0

  – 9 + 32 = 0

it is in quadratic form ax2 + bx + c = 0
Here,

a =1, b = –9, c = 32

 =  
2b b 4ac

2a
  

=  
9 81 4(32)

2
 

=  
9 47

2
 

 =  
9 i 47

2


 A has no real eigen valucs.

(iv) Given matrix,

A = 
7 2
2 3

 
 
 

The characteristic polynomial is given by, det
(A – l),

= 
7 2 0
2 3 0

     
        

= 
7 2 0
2 3 0

     
        

= (7 – )(3 –) + 4

= 21 – 7 – 3 + 2  +4

=  – 10 + 25

  – 10 + 25 is the characteristic
polynomial.

The characteristic equation is det(A – l)
= 0

  – 10 + 25 = 0

  – 5 – 5 25 = 0

 ( – 5) – 5( – 5 = 0

 ( – 5)2= 0

  = 5, 5

 A has only one eigen value 5.
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Q24. Find the characteristic equation of A =

 
 
 
 
 
 

5 -2 6 -1
0 3 -8 0
0 0 5 4
0 0 0 1

. Also find algebraic

multiplicity of the eigen values.

Sol :

Given Matrix is A = 

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

  
  
 
 
 

The characteristic equation of A is given as
|A – I|=0

5 2 6 1 1 0 0 0
0 3 8 0 0 1 0 0

0 0 5 4 0 0 1 0

0 0 0 1 0 0 0 1

     
         
    
    
     

= 0

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

   
  

 
 

=0

 (5 – ) [(3 – )(5 – )(1 –)]=0

 (5 – )2 (3 – )(1– )  = 0

  (25 + 2 – 10) (3 – 3 –  + 2) = 0

 (2 – 10  + 25) (2 – 4 + 3) = 0

  4 – 43 + 32 – 103 + 402 – 30
+ 252 – 100 + 75 = 0

  4 – 143 + 682 –130 + 75 = 0

Since the given matrix is upper triangular,

The given values are  = 1,  = 3 with
multiplicity 1 and  = 5 with  multiplicity 2.

Q25. Is 
 
 
 

1
3  an eigenvector of 

 
 
 

1 -1
6 -4 ? If so,,

find the corresponding eigenvalue

Ans :
Given matrix  is,

A = 
1 1
6 4

 
  

and x =
1
3
 
 
 

Consider, Ax = 
1 1 1
6 4 3

   
      

    =
1 3
6 12

 
  

    = 
2
6
 
  

    = (–2)
1
3
 
 
 

  Ax = – 2x

  Ax is a multiple  of x

 
1
3
 
 
 

 is an eigenvector of A and the

corresponding  eigenvalue  is  = – 2

Q26. (a) Let  be an eigenvalue  of an
invertible matrix A. Show that –1

is an eigenvalue  of A–1.

(b) Show that if A2
 is the zero matrix,

then the  only eigenvalue  of A is 0.

Ans :
(a) Given,

 is an eigenvalue of invertible matrix A.

If  is eigenvalue of A, then there exists a non
- zero vector x such that Ax = x  [ A is invertible]
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 A–1 Ax = A–1 (x)

[  A–1 A = I, Ix = x]

 x = (A–1x)

 –1 x = A–1x

 –1 is an eigenvalue of A–1

(b) Let, A2  be zero motion.

If Ax = x, x  0

Then, A2x = A(Ax)

        = A(x)

        = (Ax)

=(x)

= 2x

 A2x = 2 x

Since, x  0

   0

 The matrix A has only eigen value ‘0’

Q27. Find the eigen values of A =  
 
 

2 3
3 -6

and compare this result  with eigenvalue
of AT

OR

Find the eigenvalues of the matrix

A =  
 
 

2 3
3 -6

Sol :
Given matrix is,

A = 
2 3
3 6

 
  

The characteristic equation is given by,

det (A – I) = 0


2 3 1 0
3 6 0 1

   
       

= 0


2 3 0
3 6 0

   
       

= 0


2 3

3 6
 

   = 0

 (2 – )(–6 – ) – (3)(3)=0

 –12 – 2 + 6  +2 – 9 = 0

 2  + 4 – 21 = 0

2 + 7 – 3 – 21 = 0

 (+7) – 3 ( + 7) = 0

 ( – 3)( + 7) = 0

  – 3 = 0;  + 7 = 0

  = 3;  = –7

 The eigen values of A are  3, –7

The tranpose of  A is given  by

AT = 

T
2 3
3 6

 
  

     = 
2 3
3 6

 
  

 AT = A

 The eigen value of AT are same as the
given values of A.

Q28. Find eigen values for matrix A =  
 
 

1 6
5 2

.

Sol :

Given matrix is A = 
1 6
5 2
 
 
 

The characteristic equation is given by,
det (A –  I) = 0


1 6 1 0
5 2 0 1
   

    
   

= 0

 1 6 0
5 2 0

   
      

 = 0


1 6

5 2
  

   
 = 0
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 (1 – ) (2 – ) – 30 = 0

 2 –  – 2 + 2 – 30 = 0

 2 – 3– 28 = 0

 ( – 7) + 4( – 7) = 0

 ( – 7)( + 4) = 0

  = 7, – 4

 The eigen values are 7, – 4

Q29. Find the eigenvector for A = 
 
 
 

-4 2
3 1

corresponding to eigenvalue  = –5

Sol :

Given matrix is, A = 
4 2
3 1
 
 
 

Eigenvalue  = –5

Let, x = 
1

2

x
x
 
 
 

 be the required eigenvector

Then, (A – 1) x = 0


1

2

x4 2 1 0
( 5)

x3 1 0 1

      
       

      
= 

0
0
 
 
 


1

2

x4 2 5 0
x3 1 0 5

     
     

     
 = 

0
0
 
 
 

 1

2

x1 2
x3 6
  
  

   
= 

0

0
 
 
 


1 2

1 2

x 2x
3x 6x

 
  

 = 
0

0
 
 
 

i.e., x1 + 2x2 = 0

 x1 = – 2x2

Let, x2 = k

 x1 = – 2k

 x = 
2k
k
 
 
 

= k
2

1

 
 
 

 The eigen vector corresponding to  =

–5 is 
2

1

 
 
 

Q30. Find the characteristic equation of the

matrix A =

 
 
 
 
 
 

5 -2 6 -1
0 3 -8 0
0 0 5 4
0 0 0 1

 .

Sol : (Imp.)

Given matrix is A =

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

  
  
 
 
 

The characteristic equation of A is given as,

|A – 1| = 0

 

5 2 6 1 1 0 0 0
0 3 8 0 0 1 0 0

0 0 5 4 0 0 1 0

0 0 0 1 0 0 0 1

    
       
   
   
   

= 0

           

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

  
  

 
 

= 0

 (5 – ) (3 – ) (5 – ) (1 – ) = 0

 (5 – )2 (3 – ) (1 – ) = 0

 (25 + 2 – 10 )(3 – 4 + 2) = 0

 25(3 – 4 + 2) + 2 (3 – 4 + 2)

– 10  ( 3 – 4 + 2) = 0

 4 – 14 3 + 68 2 – 130  + 75 = 0

 The characteristic equation is,

4 – 143 + 68 2 – 130  + 75 = 0
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Q31. Is  = 3 an eigenvalue of 

 
 
 
  

1 2 2
3 -2 1
0 1 1

if

so find the one corresponding eigen
vector.

Sol : (Imp.)

Given motion is,

A = 

1 2 2
3 2 1
0 1 1

 
  
  

and  = 3
Consider,

A – 3I =

1 2 2
3 2 1
0 1 1

 
  
  

– 3

1 0 0
0 1 0
0 0 1

 
 
 
  

  = 

1 2 2
3 2 1
0 1 1

 
  
  

 – 

3 0 0
0 3 0
0 0 3

 
 
 
  

A – 3I = 

2 2 2
3 5 1
0 1 2

 
  
  

The augmented matrix [(A – 3 I)0] is,

 = 

2 2 2 0
3 5 1 0
0 1 2 0

 
  
  

R2  2R2 + 3R1

=

2 2 2 0
0 4 8 0
0 1 2 0

 
  
  

R3   4R3 +R2

 = 

2 2 2 0
0 4 8 0
0 0 0 0

 
  
  

R1   
1

2

R
R ,  R2 

2R
4

 = 

1 1 1 0
0 1 2 0
0 0 0 0

  
  
  

R1 R1 + R2

= 

1 0 3 0
0 1 2 0
0 0 0 0

 
  
  

The equation (A – 3 I) x = 0 has a not trivial
soltuion.

 3 is an eigen value

The General solutions are

x1 – 3 x3 = 0

 x1 = 3x3

x2 – 2x3 = 0

 x2 = 2x3

And x3  is a free variable

Let x 3 = 1  0

x = 

1

2

3

x
x
x

 
 
 
  

= 

3

3

3

3x
2x
x

 
 
 
  

   = 

3(1)
2(1)
1

 
 
 
  

   [  x3 = 1]

x  = 

3
2
1

 
 
 
  

 is eigenvector corresponding

to the eigenvalue 3.
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Q32. Find the eigenvalue of A = 
 
 
 
  

4 0 1
-2 1 0
-2 0 1

.

Sol :

Given matrix is A = 

4 0 1
2 1 0
2 0 1

 
  
  

The characteristic equation is given by

det (A – I) = 0

  
4 0 1 1 0 0

2 1 0 0 1 0
2 0 1 0 0 1

   
        
      

= 0


4 0 1 0 0
2 1 0 0 0
2 0 1 0 0

   
        
       

= 0

  

4 0 1
2 1 0
2 0 1

 
  
  

= 0

 ( 4 – )[(1 – ) (1–) – 0] – 0 + 1

    [–2(0) – (–2) (1–) = 0

 (4 – )[1 –  –  + 2] + 1[0 + 2 – 2) = 0

 (4 – ) [1 – 2 + 2] +[2 – 2] = 0

 4 – 8  + 4  2 –  + 22 – 3 + 2 – 2 = 0

  – 3 + 62 – 11  + 6 = 0

 3 – 62 + 11 – 6 = 0

 = 1 
1 6 11 6
0 1 5 6
1 5 6 0

- -
-

-

 ( – 1)(2 – 5 + 6) = 0

 ( – 1) (2 – 2 – 3 + 6) = 0

 ( –1) ((– 2) – 3( – 2)) = 0

 ( – 1) ( – 2) ( – 3) = 0

 ( – 1) = 0, ( – 2) = 0, ( – 3) = 0

  = 1, 2, 3

 The  eigen values are 1, 2 and 3.
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Short Question and Answers

1. Define vector space.

Sol :
A vector space is a non empty set V of objects called vectors on which are defined two operations

called addition and multiplication by scalars subject to ten axioms.

(I) (V1 + ) is abelian vector addition.

1. u + v v

2. u + v = v + u

3. (u + v) + w = u + (v + w)

4. There is zero vector 0 in v such that u + 0 = u.

5. For each u in v there is a vector –u in v such that u + (–u) = 0.

(II) Scalar Multiplication

6. The scalar multiple of u by c that is cuv..

7. c(u +v) = cu +cv

8. (c + d) u = cu + du

9. c(du) = (cd) u

10. 1.u = u

The space Rn; where n 1 is a vector space.

2. Define vector subspace and give examples.

Sol :
Let H be a non empty subset of a vector space V that it is said to be a vector subspace of V if it satisfy

the following conditions.

1. The zero vector of v is in H

O H 

2. H is closed under vector addition U,V H 

U V H  

3. H is closed under scalar multiplication for each U H   scalar C  CUH.

Example

1. The set containing of only the zero vector in a vector space V is a subspace of V called the zero
subspace of written as {0}.

2. The vector space R2 is not  a subspace of R3 because R2 is not even a subset of R3. Since vectors in R3

all have three entries where vectors in R2 have only two entries.
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3. Define Null Space

Sol :
The null space of an m × n matrix A, written as Null A is the set of all solutions of the homogeneous

equation A× = 0.

 Null A = {X : X is in Rn and AX = 0}

4. Define column space of a m   n matrix A.

Ans :

 The column space of a m  n matrix A is the set of linear combinations of the columns of A.

i.e., A = {a1, a2, ..... an} then ColA = Span {a1, a2, ..... an} It is denoted by ColA.

5. Define Basis

Sol :
Let v be a vector space any linearly independent subset of v that spans v is called as a “Basis of v”.

(or)

If   an indexed set B = {b1, b2, .... bn} which is a subset of v such that

(i) B is linearly independent

(ii) v = span {b1, b2, ... bn}.

6. Define B-coordinates of x, co-ordinate mapping, change of co-ordinates matrix.

Ans :
Suppose B = {b1, b2 .... bn} is a basis for V and x is in V. The co-ordinates of x relative to the basis B

(or the B-co-ordinate of x ) are the weights c1, c2 ..... cn such that

x = c1 b1 + c2 b2 + ..... + cn bn

The Co-ordinate Mapping

If c1, c2, ...., cn are the B-co-ordinates of x, then the vector in Rn

[X]B = 

1

2

n

c
c

c

 
 
 
 
 
 

  is the co-ordinate vector x relative to B (or the B - co-ordinate vector of x). The mapping

x  [X]B is the co-ordinate mapping (determined by B).

Change-of-Co-ordinates Matrix

The vector equation

     x = c1b1 + c2b2 + .... + cn bn is equivalent to

     x = PB[x]B

Where PB = [b1, b2, ..... bn] is the change-of-co-ordinates matrix from B to the standard basis in IRn.

Note: 1
BP exists
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7. If v1, v2, .... vp are in a vector space v then span {v1, v2, .... vp} is a subspace of v.

Sol :
(i) The zero vector is in H

 O = ov1 + ov2 + .... ovp

(ii) Let u, v any two arbitrary vectors in H

     u = a1 v1 + a2 v2 + ..... ap vp , v = b1 v1 + b2 v2 + .... bp vp

Where a1 a2 .... ap, b1, b2, .... bp are scalars.

Now

      u + v = (a1 v1 + a2 v2 + ... + ap vp) + (b1 v1 + b2v2 + ..... + bpvp)

= (a1 + b1)v1+ (a2 + b2)v2 + ... + (ap + bp)vp

   u + vH

   H is closed under vector addition.

for any scalar c

    cu = c(a1 v1 + a2 v2+ ..... + ap vp)

= (ca1)v1 + (ca2)v2 + ..... + (cap)vp

 cuH

 H is closed under scalar multiplication

 H is a subspace of V.

8. Define Eigen values and Eigen vectors.

Sol :
Definition

Let A be  any n × n matrix,  be any scalar. If  x is any n × 1 matrix such that Ax = x then the scalar
x is called as an eigen value of the matrix A and the non zero vector x is called as an eigen value  of A
corresponding  to .

Note :

1. Eigen values are also called as Latent roots, characteristic values.

2. Eigen vectors are also called Latent vectors, characteristic vectors

9. Find eigen values for matrix A =  
 
 

1 6
5 2

.

Sol :

Given matrix is A = 
1 6
5 2
 
 
 

The characteristic equation is given by,

det (A –  I) = 0
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
1 6 1 0
5 2 0 1
   

    
   

= 0

 1 6 0
5 2 0

   
      

 = 0


1 6

5 2
  

   
 = 0

 (1 – ) (2 – ) – 30 = 0

 2 –  – 2 + 2 – 30 = 0

 2 – 3– 28 = 0

 ( – 7) + 4( – 7) = 0

 ( – 7)( + 4) = 0

  = 7, – 4

 The eigen values are 7, – 4

10. If A is a 7 × 5 matrix, what is the largest possible rank of A? If A is a 5 × 7 matrix, what
is the largest possible rank of A?

Sol :
The rank of A is the number of pivot positions in matrix A.

Since the number of pivot positions cannot exceed the number of rows or columns.

 The largest possible rank A is 5.

11. If A is a 4 × 3 matrix, what is the largest possible dimension of the row space of A? If
A is a 3 × 4 matrix, what is the largest possible dimension of the row space of A?

Sol :
dim Row A = Rank A

The rank A is the number of pivot positions in matrix A.

Since the number of pivot positions cannot exceed the number of rows or columns.

 The largest possible rank A = 3

 For both the matrices the largest possible dim row A = 3.
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Choose the Correct Answers

1. The union of two subspaces is subspace of vector space iff [ a ]

(a) One is contained in another (b) One is not contained in another

(c) Both (a) and (b) (d) None

2. If A = [a1, a2, .... an] then Col A = [ c ]

(a) [a1, a2, .... an] (b) {x / x is in Rn}

(c) Span {a1, a2, .... an} (d) None

3. If T is a linear transformation from a vector space V into a vector space w then [ c ]

(a) T(u + v) = T(u) + T(v) + u, v   V (b) T(u) = CT(u)   u   V

(c) Both (a) and (b) (d) None

4. Let B = {b1, b2, ... bn} is a basis for a vector space V. For each x   V, then exist a unique set of scales

c1, c2, ... cn such that x = c1b1 + c2b2 + cnbn. This is called [ d ]

(a) Spanning set theorem (b) Rank theorem

(c) Basis theorem (d) Unique representation theorem.

5. Col A = Rm if the equation [ a ]

(a) Ax = b has a solution   b   Rm (b) Ax = 0 has only the trivial solution

(c) Nul A = {0} (d) All the above

6. H is a subspace of V and B = {b1, b2, ... bn}   V is a basis for H if [ c ]

(a) B is linearly independent (b) H = span {b1, b2, ..., bn}

(c) Both (a) and (b) (d) None

7. The Set S = {(1, –2, 1), (2, 1, –1), (7, –4, 1)} forms [ c ]

(a) Linearly dependent (b) Linearly span

(c) Linearly independent (d) None

8. If a vector space V is not spanned by the finite set S then V is said . [ b ]

(a) Finite dimensional (b) Infinite dim

(c) Finite and Infinite dim (d) None
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9. The set S = {(1, 0, 0, –1), (0, 1, 0, –1), (0, 0, 1, –1), (0, 0, 0, 1)} in R4 is . [ b ]

(a) Linearly dependent (b) Linearly independent

(c) Both (a) and (b) (d) None

10. Let B = {b1, b2, ... bn} be a basis for a vector space V. Then the co-ordinate mapping x   [x]B is a

 theory transformation form v onto Rn. [ b ]

(a) Onto (b) One-one

(c) Both (a) and (b) (d) None
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Fill in the Blanks

1. The intersection of the two subspaces of V(F) is again a .

2. The set V = {0} is a vector space and it is said to be a .

3. Let V be any vector space if it is any non-empty subset of V and H is also a vector space then H is
called as a  of V..

4. If v1, v2, ....., vp are in a vector space v then

span {v1, v2, ....., vp} is a  of v..

5. The null space of an m × n matrix A is a subspace of .

6. The  of an m × n matrix A B a subspace of Rm.

7. If T is a matrix transformation that T(x) = Ax for any matrix A then Range of T is  and
kernal of T is .

8. Let V be a vector space. Any linearly independent subset of v that spams V is called as a .

9. If Pn is a vector space of all polynomials of degree   n in ‘t’ then the set S = {1, t, t2, ... tn} is a
 of Pn.

10. The no. of elements in the basis of a vector space is called as .

ANSWERS

1. Subspace

2. Zero space

3. Subspace

4. subspace

5. Rn

6. Colum space

7. Col A,   Null of A

8. Basis of V

9. Standard basis

10. Dimension of the vector space v
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5.1  DIAGONALIZATION

5.1.1 Diagonalizing Matrices with Distinct
Eigen Values and Non Distinct Eigen
Values

Q1. Define Diagonalization.

Sol :
A square matrix A is said to be diagonalizable

if  a non-singular matrix (Invertible) P such that
A = PDP–1 where D is a Diagonal matrix.

We say that P diagonalizes A.

     A= PDP–1  AP = PD.

Q2. State and prove the diagonalization
theorem.

Sol : (Imp.)

Statement :

An n × n  matrix A is dia-gonalizable if
and only if A has n linearly independent eigen
vectors.

Proof :

Let A be any n×n square matrix.

Let P be any n×n matrix with columns
v1, v2, .... vn

     p = [v1, v2, .... vn].

Let D by any diagonal matrix of order n×n
with diagonal elements, 1, 2, .... n.

Then, D = 

1

2

3

n

0 0 0
0 0 0
0 0 0
0 0 0

 
  
 
 

 






UNIT
V

Diagonalization – Diagonalizing Matrices with distinct eigen values and non
distinct eigen values; Applications to Differential Equations.

Consider

   AP= A[v1, v2, .... vn]

= [Av1, Av2, ... Avn] ...(1)

  PD = P 

1

2

n

0 0
0 0

0 0

 
  
 
 

 







= [1v12v2.... nvn] ...(2)

Part I

Suppose that the matrix A is diagonalizable.

 A can be written as A = PDP–1.

  AP = PD

 [Av1 Av2 ... Avn] = [1v12v2.... nvn]

...(3)

 Equating the corresponding columns on
both sides we get,

Av1 = 1v1Av2 =2v2Avn =nvn ...(4)

Each of the expression in (4) is of the form
AX = X which indicates that  is the eigen value of
A and X is the corresponding eigen vector of A.

Thus 1, 2, .... n are the eigen values of A
and v1, v2, .... vn are the corresponding eigen vectors
of A.

Since P is invertible the columns of P are
linearly independent and these columns are non-
zero.

 The vectors v1, v2, ... . vn are linearly
independent. Thus the matrix A has n linearly
independent eigen vectors.
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Part II

Let us suppose that the matrix A has ‘n’ linearly
independent eigen vectors.

Let v1, v2, .... vn be the n linearly independent
eigen vectors of A corresponding to the eigen value
1, 2, .... n  let P = [v1, v2, .... vn]. Since the columns
of P and linearly independent.

    |p|   0

 p–1 exists

Consider,

   AP= A[v1, v2, .... vn] = [Av1 Av2 ... Avn]

= [1v12v2.... nvn]

= [v1, v2, .... vn] 

1

2

n

0 0
0 0

0 0

 
  
 
 

 




 


  AP = PD where D is the diagonal matrix.

D = 

1

2

n

0 0
0 0

0 0

 
  
 
 

 




 


    P–1AP = P–1PD

    P–1AP = D

 A is Diagonalizable

Q3. Show that an n × n matrix with n
distinct eigen values is diagonalizable.

Sol :
Let A be any square matrix of order n×n.

Let 1, 2, .... n be the n distinct eigen values
of the matrix A.

Let v1, v2, .... vn be the corresponding eigen
vectors of the matrix A.

Then {v1, v2, .... vn} is a linearly independent
set of A .

 A is diagonalizable.

Q4. Determine whether the following matrix
is diagonalizable or not A =

 
 
 
  

5 –8 1
0 0 7
0 0 –2

Sol :

The given matrix is A = 

5 –8 1
0 0 7
0 0 –2

 
 
 
  

This is a 3×3 matrix. It is a triangular matrix

the eigen values of A are 5, 0, –2.

Thus there are ‘3’ distinct eigen values of the
matrix A and hence the matrix A is diagonalizable.

Q5. If p = 
 
 
 

5 7
2 3

, D = 
 
 
 

2 0
0 1

 then compute

A2, A4 if A = PDP–1.

Sol :
Here D is a diagonal matrix

    D =  
2 0
0 1
 
 
 

  Dk = 
k

k

2 0
0 1

 
 
 

= 
k2 0

0 1

 
 
 

 k 1 

     P = 
5 7
2 3
 
 
 

   |P| = 15 – 14  = 1   0

 P is Invertiable and P–1 = 
3 7
2 5

 
 
 

(i) Consider A = PDP–1

     A2= PD2 P–1

     A2 = 
5 7
2 3
 
 
 

 
4 0
0 1
 
 
 

3 7
2 5

 
  

 = 
46 105
18 41

 
  
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(ii) Consider A4 = PD4P–1

     A4  = 
5 7
2 3
 
 
 

16 0
0 1

 
 
 

3 7
2 5

 
  

     A4  = 
226 525
90 209

 
  

Q6. If the eigen vales of a matrix A are 2
and 1. The corresponding eigen vectors

of A are 
 
 
 

3
2  and 

 
 
 

1
1 then find A8.

Sol :
Let A be any square matrix of order 2×2.  The

eigen values of A are 2 and 1 say 1 = 2 and 2 = 1.

Let v1 = 
3
2
 
 
 

 and v2 = 
1
1
 
 
 

 are the

corresponding eigen vectors of the matrix A.

Here the vectors v1 and v2 are linearly
independent.

 The matrix A is diagonalizable.

   a non-singular matrix p and a diagonal
matrix D such that A = PDP–1 where,

P = 
3 1
2 1
 
 
 

 and  D = 
2 0
0 1
 
 
 

P–1 =  
1 1
2 3

 
  

Consider A = PDP–1

   A8 =  PD8 P–1 =
3 1
2 1
 
 
 

8

8

2 0
0 1

 
 
 

1 1
2 3

 
  

    A8= 
766 765
510 509

 
  

Q7. Verify whether A is invertible if A is
diagonalizable.

Sol :

Suppose that A is diagonalizable.

   an Invertible matrix p and diagonal
matrix D such that A = PDP–1.

   A–1 = (PDP–1)–1

   A–1 = (P–1)–1 D–1 P–1

   A–1 = P D–1 P–1

   A–1 = PEP–1 where E = D–1 is also a diagonal
    matrix.

 A is invertible.

Q8. Diagonalize the matrices if possible.

(i) A = 
 
 
 

5 1
0 5

(ii) A = 
 
 
 

2 3
4 1

Ans :
(i) Given matrix,

A = 
5 1
0 5
 
 
 

Since A is triangular,

The eigen value is 5.

If  = 5

Consider,

A = 5I = 
5 1
0 5
 
 
 

 – 
5 0
0 5
 
 
 

= 
0 1
0 0
 
 
 

The equations are

x2 = 0

And x1 is free variable

 The general solution is,

 X = 
1

2

x
x
 
 
 

 = 
1x

0
 
 
 

= x1 
1
0
 
 
 
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Since the basis for R2 is not generated by an
eigen vector.

 A is not digonalizable.

(ii) Given matrix,

A = 
2 3
4 1
 
 
 

Consider the characteristic equation

det (A – 7I) = 0


2 3 0
4 1 0

   
      

 = 0


2 3

4 1
 

   = 0

 (2 – ) (1 – ) – 12 = 0

 2 – 2 –  + 2 – 2 = 0

 2 – 3 – 10 = 0

 2 – 5 + 2 – 10 = 0

 ( – 5) + 2( – 5) = 0

 ( – 5) ( + 2) = 0

  – 5 = 0,  + 2 = 0

  = 5,   = –2

If   = 5
Consider,

A = 5I = 
2 3
4 1
 
 
 

 – 
5 0
0 5
 
 
 

= 
3 3

4 4
 
  

The augmented matrix [(A – 5I) 0] is,

3 3 0
4 4 0
 
  

R1   1R
3

R2   2R
4

= 
1 1 0
1 1 0

 
  

R2   R2 + R1

= 
1 1 0
0 0 0

 
 
 

The equations are,
x1 – x2 = 0

 x1 = x2

And x2 is free variable

The general solution is,

X = 
1

2

x
x
 
 
 

 = 
2

1

x
x
 
 
 

 = x2 
1
1
 
 
 

 The basis vector for eigen space is

v1 = 
1
1
 
 
 

If   = –2

Consider,

A + 2I = 
2 3
4 1
 
 
 

 + 
2 0
0 2
 
 
 

= 
4 3
4 3
 
 
 

The augmented matrix [(A + 2I) 0] is

4 3 0
4 4 0
 
 
 

R2   R2    R1

= 
4 3 0
0 3 0
 
 
 

The equations are,

4x1 + 3x2 = 0

 4x1 = –3x2

 x1 = 
3

4


 x2

And x2 is free variable.
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The general solution is

X = 
1

2

x
x
 
 
 

= 
2

2

3
x

4
x

 
 
 
  

= x2 

3
4
1

 
 
 
  

= x2 
3

4
 
 
 

 The basis vector for eigen space is

 v2 = 
3

4
 
 
 

 P = [v1  v2]

= 
1 3
1 4

 
 
 

And D = 
5 0
0 2
 
  

 The matrix D has the eigen values
corresponding to eigen vectors v1, v 2
respectively.

Q9. Diagonalize the matrix A =

 
 
 
  

1 3 3
–3 –5 –3
3 3 1

 if possible.

Sol : (Imp.)

Given matrix is, A = 
1 3 3
3 5 3
3 3 1

 
    
  

The characteristic equation of A is,

det (A – I) = 0



1 3 3 1 0 0
3 5 3 0 1 0
3 3 1 0 0 1

   
          
      

 = 0


1 3 3 0 0
3 5 3 0 0
3 3 1 0 0

   
          
      

 = 0



1 3 3
3 5 3 0
3 3 1

 
     

 

 (1 – ) [(– 5 – ) (1 –  ) – (–3)3] –
3[(–3) (1– ) – (3) (–3)] + 3[(–3) (3) –
3(–5 –) = 0

 (1 – ) [– 5 + 5–  + + 9) –3[–3 +
3 + 9] + 3[– 9 + 15 + 3] = 0

 (1 – ) [2 + 4 + 4] – 3(3 + 6) +
3(3 + 6) = 0

 (1 – ) (2 + 4 + 4) = 0

 ( – 1) (2 + 4 + 4) = 0

 ( – 1) (+ 2) ( + 2) = 0

 = –2, –2, 1

If  = –2
Consider,

A – (–2)I = A + 2I

= 

1 3 3
3 5 3
3 3 1

 
    
  

 + 2 

1 0 0
0 1 0

0 0 1

 
 
 
  

= 

1 3 3
3 5 3
3 3 1

 
    
  

 + 

2 0 0
0 2 0
0 0 2

 
 
 
  

= 

3 3 3
3 3 3
3 3 3

 
    
  

The augmented matrix [(A + 2I) 0] is,

3 3 3 0
3 3 3 0
3 3 3 0

 
    
  

R3  R3 + R2 = 
3 3 3 0
3 3 3 0

0 0 0 0

 
    
  
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R2 R2 + R1 = 

3 3 3 0
0 0 0 0
0 0 0 0

 
 
 
  

The equation is,
3x1 + 3x2 + 3x3 = 0
   3x1 = –3x2 – 3x3

     x1 = –x2 – x3

and x2, x3 are free variables
The general solution is,

     x = 

1

2

3

x
x
x

 
 
 
  

 = 

2 3

2

3

x x
x
x

  
 
 
  

= x2

1
1
0

 
 
 
  

 + x3

1
0
1

 
 
 
  

 The eigen vector corresponding to eigen
value  = –2 is,

     v1 = 

1
1
0

 
 
 
  

, v2 = 

1
0
1

 
 
 
  

If = 1,
Consider,

      A –I = 

1 3 3
3 5 3
3 3 1

 
    
  

 – 

1 0 0
0 1 0
0 0 1

 
 
 
  

= 

0 3 3
3 6 3
3 3 0

 
    
  

The augmented matrix [(A–I) 0] is

0 3 3 0
3 6 3 0
3 3 3 0

 
    
  

R2  R2 + R1 = 

0 3 3 0
3 3 0 0
3 3 0 0

 
   
  

R3  R3 + R2 = 
0 3 3 0
3 3 0 0

0 0 0 0

 
   
  

R2  R2 + R1 = 
0 3 3 0
3 0 3 0

0 0 0 0

 
  
  

R1 
1R

3
, R2 

2R
3

 = 

0 1 1 0
1 0 1 0
0 0 0 0

 
  
  

The equations are,
x2 + x3 = 0

 x2 = –x3

x1 – x3 = 0

 x1 = x3

and x3 is a free variable.
 The general solution is,

x = 
1

2

3

x
x
x

 
 
 
  

 = 
3

3

3

x
x

x

 
  
  

= x3

1
1

1

 
  
  

 The eigen vector corresponding to eigen
value   = 1 is,

v3 = 

1
1

1

 
  
  

Let P = [v1  v2   v3]

P = 

1 1 1
1 0 1
0 1 1

  
  
  

 and

D = 

1

2

3

0 0
0 0
0 0

 
  
  

 = 

2 0 0
0 2 0
0 0 1

 
  
  

The matrix D has the eigen values correspon-
ding to eigen vectors, v1, v2 and v3 respectively.

Consider,

   AP= 

1 3 3
3 5 3
3 3 1

 
    
  

1 1 1
1 0 1
0 1 1

  
  
  
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= 

2 2 1
2 0 1

0 2 1

 
   
  

Consider,

          PD = 

1 1 1
1 0 1
0 1 1

  
  
  

 

2 0 0
0 2 0

0 0 1

 
  
  

= 

2 2 1
2 0 1

0 2 1

 
   
  

 AP = PD

 The matrix A is diagonalizable.

5.2  APPLICATIONS TO DIFFERENTIAL

EQUATIONS

Q10. Find formulas for the voltages v1 and v2
(as functions of time t) for the circuit

shown below, assuming that R1 =
1
5

Ohm, R2 = 
1
3

 ohm, C1 = 4 farads, C2 =

3 farads and the Initial charge on each
capacitor is 4 volts.

R1

C1

+

R2

C2

Sol : (Imp.)

Given R1 = 
1
5

 ohm, R2 =
1
3

 ohm, C1 = 4

farads, C2 = 3 farads and x(0) = 
4
4
 
 
 

.

Since    A = 
1 2

1 2 1

2 2 2 2

1 1
R R 1

C (R C )

1 1
(R C ) (R C

  
   
  

 
 

 
  

= 

1 1
1 1

15 3
14 (4)
3

1 1
1 1

(3) (3)
3 3

  
  
   
     
    

  
  
 

    
        

= 
(5 3) 3

4 4
1 1

  
 

  

=

3
2

4
1 1

  
 

  
 = 

2 0.75
1 1
 
  

The characteristic equation is given by , det
(A – I) = 0.


2 0.75 0

1 1 0

    
       

 = 0


2 0.75
1 1

   
    

= 0

 (–2 –) (–1 – ) – 0.75 = 0

 2+ 2+ +2 – 0.75 = 0

 2+ 3 +1.25 = 0

It is in the quadratic from ax2 + bx + c = 0

      = 
23 3 4(1.25)
2(1)

  

= 
3 2
2

 

 = – 0.5, – 2.5

 Eigen values are 1 = –0.5; 2 = –2.5

If 1 = – 0.5
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Consider A+ (0.5) I = 
2 0.75

1 1
 
  

 + 
0.5 0
0 0.5

 
 
 

 = 
1.5 0.75
1 0.5

 
  

The equations (A + (0.5) I) × = 0 gives
x1 – 0.5 x2 = 0

 x1 = 0.5 x2

And x2 is free variable,
 The general solution is

x = 1

2

x
x
 
 
 

 = 1

2

1
x

2
x

 
 
 
  

 = x2 

1
2
1

 
 
 
  

 = 2x
1
2
 
 
 

 v = x2 
1
2
 
 
 

 The eigen vector corresponding to eigen value  = –0.5 is v1 = 
1
2
 
 
 

If 2 = –2.5

Consider, A + (2.5) I = 
2 0.75

1 1
 
  

 + 
2.5 0
0 2.5

 
 
 

 = 
0.5 0.75
1 1.5

 
 
 

The equation (A + (2.5)I)× = 0 gives
x1 + (1.5) x2 = 0

 x1 = –1.5 x2


3
2


 x2

And x2 is free variable.
 The general solution is,

      x = 
1

2

x
x
 
 
 

 = 2

2

3
x

2
x

  
 
  

= x2 

3
2

1

  
 
  

 = x2

3
2
 
 
 

     v2 = x2

3
2
 
 
 

 The eigen vector corresponding to eigen value  = –2.5 is v2 = 
3
2
 
 
 

.

The general solution is,

x(t) = c1 v1 e
t + c2 

t
2v e 2

x(t) = c1

1
2
 
 
 

 e–0.51 + c2

3
e
 
 
 

e–2.5t
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Where c1, c2 are complex numbers

The constants c1, c2 satisfy the initial condition x(0) = 
4
4
 
 
 

 is,

c1

1
2
 
 
 

 + c2

3
2
 
 
 

 = 
4
4
 
 
 

 
1 3
2 2

 
 
 

1

2

C
C
 
 
 

= 
4
4
 
 
 

Consider augmented matrix,

[v1 v2 x(0)] = 
1 3 4
2 2 4

 
 
 

R2  R2 – 2R1 = 
1 3 4
0 8 4

 
  

R2 
2R

8
   

1 3 4
1

0 1
2

 
 
 
  

R1  R1 + 3R2 =

5
1 0

2
1

0 1
2

 
 
 

 
  

 c1 = 
5
2

 ; c2 = 
1
2




1

2

v (t)
v (t)
 
 
 

= x(t) = 
5
2

 
1
2
 
  

e–0.5t – 
1
2

 
2 5t3

e
2

  
  

Q11. The circult in figure can be descrilbed by the equation

L

C

i '
v '
 
 
 

 = 

2

1

R 1
L L
1 1
C (R C)

  
 
 

 
  

L

C

i
v
 
 
 
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where iL is the current passing through
the inductor L and vC is the voltage drop
across the capacitor C. Suppose R1 is
5 ohms, R2 is 0.8 ohm, C is 0.1 farad,
and L is 0.4 henry.Find for-mulas for iL
and vC, if the initial current through the
inductor is 3 amperes and the intial
voltage across the capacitor is 3 volts.

Ans :
Given,

R1 = 5 ohm

R2 = 0.8 ohm

C = 0.1 farad

L = 0.4 Henry

x0 = 
3
3
 
 
 

A = 

2

1

R 1
L L
1 1
C (R C)

  
 
 

 
  

= 

0.8 1
0.4 0.4
1 1

0.1 (5(0.1))

  
 
 

 
  

= 
2 2.5

10 2
  
  

The characteristic equation is given by, det(A

– I) = 0


2 2.5 0

10 2 0
     

       
 = 0


2 2.5
10 2

   
    = 0

 (–2– )(–2– )+(2.5)10 = 0

 4 + 2 + 2 +  2 + 25 = 0

 
2 +4  + 29 = 0

It is in quadratic form ax2 + bx + c = 0

Here, a = 1, b = 4, c = 0

  = 
24 (4) 4(29)(1)

2(1)
  

= 
4 16 116

2
  

= 
4 100

2
  

= 
4 10i

2
 

  = –2  5i

 Eigen value is,   = – 2 + 5i

Consider augmented matrix,

A – (–2 + 5i)I

= 
2 2.5

10 2
  
  

– 
2 5i 0

0 2 5i
  
   

= 
5i 2.5

10 5i
  
  

The equation (A –(– 2 + 5i)) X = 0 gives,

10x1 –(5i)x2 = 0

 10x1 = (5i)x2

 x1 = 
1
2

i x2

And x2 is free variable.

 The general solution is,

X = 
1

2

x
x
 
 
 

 = 
2

2

i
x

2
x

 
 
 
  

= x2

i
2
1

 
 
 
  

= x2

i
2
 
 
 
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 v = 
i
2
 
 
 

 The eigen vector v = 
i
2
 
 
 

The complex functions are tve  and tve

  The general complex solution of x’ = Ax is,

x(t) = c1

tve  + c2 – tve

x(t) = c1

i
2
 
 
 

e(-2+5i)t + c2 
i

2
 
 
 

e(-2+5i)t

Where, c1, c2 are complex numbers.

Let, ve(–2+5i)t = 
i
2
 
 
 

 e–2i. e(5i)t

= 
i
2
 
 
 

 e–2i  (cos5t + i sin 5t)

= 
i cos5t sin5t

2cos5t 2i sin5t
 

  
 e–2t

=
sin5t

2cos5t
 
 
 

 e-2t + i
cos5t
2sin5t
 
 
 

e–2t

 The general real solution is,

x(t) = c1

sin5t
2cos5t
 
 
 

 e-2t + i
cos5t
2sin5t
 
 
 

e–2t

Where, c1, c2 are real numbers.

The constants c1,c2 satisfy the intial conditions

x(0) = 
3
3
 
 
 

is,

c1

0
2
 
 
 

+c2

1
0
 
 
 

= 
3
3
 
 
 


0 1
2 0
 
 
 

1

2

c
c
 
 
 

 = 
3
3
 
 
 

Consider augmented matrix,
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[v1 v2 x(0)] = 
0 1 3
2 0 3
 
 
 

R2 
2R

2

 =

0 1 3
3

1 0
2

 
 
 
  

 c1 = 3

c1 =
3
2

 = 1.5


L

C

i (t)
v (t)
 
 
 

 = x(t) = 1.5 
sin5t

2cos5t
 
 
 

 e-2t + i
cos5t
2sin5t
 
 
 

e–2t

L

C

i (t)
v (t)
 
 
 

 = 
1.5sin5t
3cos5t

 
 
 

 e-2t + 
3cos5t
6 sin5t
 
 
 

e–2t

=
1.5 sin5t 3cos5t
3cos5t 6 sin5t

  
  

e–2t


L

C

i (t)
v (t)
 
 
 

 =
1.5 sin5t 3cos5t
3cos5t 6 sin5t

  
  

e–2t

Q12. Construct the general solution of X' = AX involving complex eigen functions and then
obtain the general real solution. Describe the shape of typical trajectories.

(i) A = 
 
 
 

–3 –9
2 3

(ii) A = 
 
 
 

4 –3
6 –2

Sol : (Imp.)

Given matrix is, A = 
3 9
2 3
  
 
 

The characteristic equation is given by, det (A – I) = 0

i.e., 
3 9 0

2 3 0

     
      

= 0

= 
3 9
2 3

   
   = 0
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 (–3 –) (–3 –) + 18 = 0

  2 + 9 = 0

  = ± 3i

 Eigen value is  = 3i, –3i
Consider

A – (3i) I = 
3 9
2 3
  
 
 

 – 
3i 0
0 3i

 
 
 

 = 
3 3i 9

2 3 3i
   
  

The equation (A – (3i)I) x = 0 gives,

2x1 + (3 – 3i)x2 = 0

 x1 = 2

(3 3i)
x

2




And x2 is free variable
 The general solution is,

x = 
1

2

x
x
 
 
 

 = 
2

2

(3 3i)x
2

x

  
 
  

 = x2

3(3 3i)
2
1

  
 
 
  

 = x2

(3 3i)
2

  
 
 

 The eigen vector v = 
3 3i

2
  
 
 

The complex functions are vet and tve

 The general complex solution of x' = Ax is,

x(t) = c1vet +c2
tve

 x(t) = c1

3 3i
2

  
 
 

e3it + c2

3 – 3i
2

 
 
 

e(–3i)t

Where
c1, c2 are complex numbers

Let

ve(3i)t = 
3 3i

2
  
 
 

(cos 3t + i sin 3t)

= 
3cos3t 3i sin3t 3icos3t 3sin3t

2cos3t 2i sin3t
    
  

ve(3i)t = 
3 cos 3t 3 sin 3t

2 cos 3t
  
 
 

 + i 
3 sin 3t 3cos 3t

2 sin 3t
  
 
 

 The general real solution is,

x(t) = c1 

3 cos 3t 3 sin 3t
2 cos 3t

  
 
 

+ c2

3 sin 3t 3cos 3t
2 sin 3t

  
 
 
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Where
c1, c2 are real numbers.

Since real parts of the eigen values are zero. The trajectories are ellipses about the origin.

(ii) Given matrix is, A = 
4 3
6 2

 
  

The characteristic equation is given by, det (A – I) = 0

i.e., 
4 3 0

6 2 0

    
       

 = 0


4 3

6 2

  
   

  (4 – ) (–2 –) + 18 = 0

  –8 – 4 + 2 + 2 + 18 = 0

 2 – 2 + 10 = 0

      = 
2 ( 2) ( 2) 4(1)(10)

2(1)
    

= 
2 4 40

2
 

 = 
2 36

2
 

 = 1 ± 3i

 Eigen value is,  = 1 + 3i
Consider,

A – (1 + 3i) I = 
4 3
6 2

 
  

 – 
(1 3i) 0

0 1 3i
 

  
 = 

3 3i 3
6 3 3i
  

   

The equation (A – (1 + 3i) I) x = 0 gives,

6x1 + (–3 –3i)x2 = 0

 6x1 – (3 + 3i)x2 = 0

 x1 = 2

1 i
x

2


Ans x2 is free variable.
 The general solution is,

      x = 
1

2

x
x
 
 
 

 = 
2

2

(1 i)
x

2
x

 
 
 
  

 = x2

1 i
2
 

 
 

      v = 
1 i

2
 

 
 

 Eigen vector v = 
1 i

2
 

 
 
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The complex functions are tve  and tve

The general complex solution of x' = Ax is,

   x(t) = c1 v e
t + c2

tve

   x(t) = c1

1 i
2
 

 
 

 e(1+3i)t + 
1 i

2
 

 
 

e(1-3i)t

Where

c1, c2 are complex numbers,

Let       ve(1+3i)t = 
t 3it1 i

e
2

 
 
 

 = 
t 3it1 i

e .e
2
 

 
 

= 
1 i

2
 

 
 

et (cos 3t + i sin 3t)

= 
cos 3t i sin 3t i(sin3t sin3t)

2cos 3t i (2sin 3t)
   

  
et

= 
cos 3t sin3t i(sin 3t cos 3t)

2cos 3t i (2sin 3t)
   

  
et

= 
cos 3t sin 3t

2cos 3t
 

 
 

et + i 
tsin3t cos 3t

e
2sin3t
 

 
 

 The general real solution is,

  x(t) = c1

tcos 3t – sin3t
e

2cos 3t
 
 
 

 + c2

tsin3t cos 3t
e

2sin3t
 

 
 

Where c1, c2 are real numbers.

Since real parts of the eigen values are positive.

The trajectories spiral out away from the origin.

Q13. Make a change of variable that decouples the equation X' = AX write the equation X(t)
= Py(t) and show the calculate that leads tot he uncoupled system Y' = DY, specifying

P and D where A = 
 
 
 

1 –2
3 –4 .

Sol : (Imp.)

Given matrix is, A = 
1 –2
3 –4
 
 
 

The characteristic equation is given by, det (A – I) = 0.
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i.e., 
1 –2 0

3 –4 0

   
      

 = 0   
1 2

3 4
  

    = 0

 (1 – ) (–4 –)+ 6 = 0   2 + 3 + 2 = 0    = –1, –2

 The eigen values are –1, –2.

If  = –2

Consider, A + 2I = 
1 2
3 4

 
  

 + 
2 0
0 2
 
 
 

 = 
3 2
3 2

 
  

The augmented matrix [(A + 2I) 0] is 
3 2 0
3 2 0

 
  

     R2  R2 – R1 = 
3 2 0
0 0 0

 
 
 

  R1  1R
3

= 

2
1 0

3
0 0 0

 
 
 
  

 The equation is,

x1 – 
2
3

 x2 = 0

x1 = 
2
3

 x2

and x2 is a free variable

 The general solution is,

     x = 
1

2

x
x
 
 
 

 = 
2

2

2
x

3
x

 
 
 
  

= x2 
2
3
 
 
 

 v1 = 
2
3
 
 
 

.

If  = –1,

Consider,

A + I = 
1 2
3 4

 
  

 + 
1 0
0 1
 
 
 

 = 
2 2
3 3

 
  

The augmented matrix [(A + I) 0] is 
2 2 0
3 3 0

 
  
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     R2 
1R

2
, R2

2R
3

= 
1 1 0
1 1 0

 
  

R2 R2 + R1 = 
1 1 0
0 0 0

 
 
 

 The equation is,

x1 – x2 = 0

 x1 = x2

and x2 is a free variable

 The general solution is,

x = 
1

2

x
x
 
 
 

 = 
2

2

x
x
 
 
 

= x2 
1
1
 
 
 

 v2 = 
1
1
 
 
 

.

Initial condition x(0) = 
3
2
 
 
 

Let the constants c1, c2 satisfy x(0) such that c1v1 + c2v2 = x(0)

3
2
 
 
 

= c1

2
3
 
 
 

 + c2

1
1
 
 
 

Consider the augmented matrix,

[v1 v2 x(0)] = 
2 1 3
3 1 2
 
 
 

R2  2R2 – 3R1 = 
2 1 3
0 1 5
 
   

R1
1R

2
, R2 

2R
1

 = 
1 3

1
2 2

0 1 5

 
 
 
  

R1  2R1 – 
1
2

R2 = 
1 0 1
0 1 5

 
 
 

 c1 = –1; c2 = 5
The general solution of x1 = Ax is

x(t) = 1 2t t
1 1 2 2c v e c v e 

 x(t) = –1
2
3
 
 
 

 e–2t + 5
1
1
 
 
 

e–t.
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Since both eigen values of matrix A are negative.

 The origin is an attractor of the dynamical system described by x1 = Ax.

The direction of greatest attraction is the line through v1 and the origin.

To decouple the equation x1 = Ax

Let

     P = [v1 v2]

     P = 
2 1
3 1
 
 
 

and      D = 
2 0

0 1
 
  

Given   x1 = AX ... (1)
Since    A = PDP–1

      D  = PAP–1.

Substituting, x(t) = py(t) in equation (1)

i.e., 
d
dt

(py) = A(py)

   = PDP–1(Py) = PD(P–1P)y = PDy
 P has constant entries.

d
(py) PDy

dt


 P
d

(y)
dt

 
 
 

 = PDy

 P–1P
d

(y)
dt

 
 
 

 = P–1 PDy

 y' = Dy

i.e., 
1

2

y (t)
y (t)
 
 
 

 = 
2 0

0 1
 
  

1

2

y (t)
y (t)
 
 
 

Q14. A particle moving in a planar force field has a position vector X that satisfies X1 = AX.

The 2 × 2 matrix A has eigen value 4 and 2 with corresponding eigen vectors v1 = 
 
 
 

–3
1

and v2 = 
 
 
 

–1
1 . Find the position of the particle at time t, assuming that X(0) = 

 
 
 

–6
1 .

Sol : (Imp.)

Given, A is a 2 × 2 matrix

Eigen values are 4 and 2
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Eigen vectors v1 = 
– 3
1

 
 
 

, v2 = 
– 1
1

 
 
 

The initial condition x(0) = 
– 6
1

 
 
 

The eigen functions for the differential equation X1 = Ax are 1t
1v e and 2t

2v e

i.e., 4 t
1v e , 2t

2v e

The general solution of x' = Ax has the form

x(t) = t
1 1c v e  + 2t

2 2c v e

x(t) = c1

3
1
 
 
 

e4t + c2

1
1
 
 
 

e2t      ... (1)

Let the constants c1, c2 satisfy the initial condition x(0) = 
6

1
 
 
 

i.e., c1

3
1
 
 
 

 + c2

1
1
 
 
 

 = 
6

1
 
 
 

  – 3c1 – c2 = – 6
c2 + c2 = 1

The augmented matrix is [v1, v2, x(0)]

= 
3 1 6
1 1 1

   
 
 

R2 3R2 + R1    
3 1 6
0 2 3
   
  

R1
1R
3

 and R2 
2R

2
 = 

1
1 2

3
3

0 1
2

 
 
 

 
  

R1  R1 –
1
3

R2 = 

5
1 0

2
3

0 1
2

 
 
 

 
  

c1 = 
5
2

 ; c2 = 
3
2


Substituting the corresponding values in equation (1)

 x(t) = 
5
2

4 t3
e

1
 
 
 

 – 
3
2

1
1
 
 
 

e2t.
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Short Question and Answers

1. Define Diagonalization.

Sol :

A square matrix A is said to be diagonalizable if  a non-singular matrix (Invertible) P such that
A = PDP–1 where D is a Diagonal matrix.

We say that P diagonalizes A.

     A = PDP–1  AP = PD.

2. Show that an n × n matrix with n distinct eigen values is diagonalizable.

Sol :
Let A be any square matrix of order n×n.

Let 1, 2, .... n be the n distinct eigen values of the matrix A.

Let v1, v2, .... vn be the corresponding eigen vectors of the matrix A.

Then {v1, v2, .... vn} is a linearly independent set of A .

 A is diagonalizable.

3. Determine whether the following matrix is diagonalizable or not A = 
 
 
 
  

5 –8 1
0 0 7
0 0 –2

Sol :

The given matrix is A = 

5 –8 1
0 0 7
0 0 –2

 
 
 
  

This is a 3 × 3 matrix. It is a triangular matrix the eigen values of A are 5, 0, –2.

Thus there are ‘3’ distinct eigen values of the matrix A and hence the matrix A is diagonalizable.

4. Verify whether A is invertible if A is diagonalizable.

Sol :

Suppose that A is diagonalizable.

   an Invertible matrix p and diagonal matrix D such that A = PDP–1.

A–1  = (PDP–1)–1

A–1  = (P–1)–1 D–1 P–1

A–1  = P D–1 P–1

A–1  = PEP–1 where E = D–1 is also a diagonal matrix.

 A is invertible.
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5. Diagonalization Theorem.

Sol :
An n × n  matrix A is dia-gonalizable if and only if A has n linearly independent eigen vectors.

6. Linear Transformation

Ans :
Let v and w be two vector spaces defined over a field F.

T:V W be any mapping such that

    T(u+v) = T(u) + T(v)

T(cu) = CT(u) u,v V   and for any scalar c then T is called as a linear transformation from v
to w.

7. Kernal of a Linear Transformation

Ans :
Let T:V W be any linear transformation. Then the set consisting of all these elements of v whose

images are equal to the zero vector of w is called as the kernal of T.

The Kernal of T is also called as Null space of T

Kernal T or KT = {U/UV

and T(U) = 0; 0W}

8. Range of a Linear Transformation

Ans :
Let T: V  W be any linear transformation. The set of all images of elements of v under the

transformation T is called as Range of T.

9. Construct a non-zero 2 × 2 matrix that is / invertible but not diagonalizable.

Sol :

Let a 2 × 2 matrix be, A =
2 3
0 4
 
 
 

The matrix A is invertible if the eigen values are not zero.

The matrix A has eigen values 2, 4.

 A is invertible

The matrix A to be non-diagonalizable, it must contain the eigen values which are not distinct.

Let, A =
2 3

0 2
 
 
 

 A is not diagonalizable

 A =
2 3

0 2
 
 
 

 is the 2 × 2 matrix which is invertible but not diagonalizable.
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Choose the Correct Answers

1. The matrix A to be diagonalizable is [ a ]

(a) A = PDP–1 (b) AP = PD

(c) A = PD2P2 (d) None

2. If A = 
4 3
2 1

 
  

 then A8 = [ c ]

(a)
8

8

2 0
1 1

 
 
 

(b)
256 0
0 1

 
 
 

(c)
766 765
510 509

 
  

(d)
8 8

8 8

2 4
3 1

 
   

3. The matrix A = 
5 1
0 5
 
 
 

 is [ b ]

(a) diagonalizable (b) not diagonalizable

(c) linear independent (d) none

4. The eigen vector for A = 
4 3
3 4

 
  

 corresponding to eigen value  = 4 + 3. [ a ]

(a)
i
1
 
 
 

(b)
i
i
 
  

(c)
i
i
 
 
 

(d) None

5. The complex eigen values of then matrix A = 
3 3
3 3

 
 
 

 is [ c ]

(a) 3 + 3i (b) 3 – 3i

(c) 3   3i (d) None

6. If A is both diagonalizable and invertible then A–1 is [ a ]

(a) diagonalizable (b) invertible

(c) both (d) none
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7. If the eigen value  = a + bi then   = [ c ]

(a) bi (b) b – ai

(c) 0 – bi (d) –a

8. The eigen values for the matrix A = 
0 1 0 1
0 1 0 1
  

    
. [ b ]

(a) a + bi (b) a   bi

(c) a – bi (d) None

9. If  T(b1) = 3c1 – 2c2 + 5c3 and T(b2) = 4c1 + 7c2 – c3 then the matrix M for T relative to B and C is
[ b ]

(a)

3 2
7 5
5 4

 
 
 
  

(b)

3 4
2 7
5 1

 
  
  

(c)

3 4
2 7
5 1

 
  
  

(d)

5 5
4 7
2 3

 
 
 
  

10. If  T (a0 + a1t + a2t
2) = a1 + 2a2t then T(1) = [ a ]

(a) 0 (b) 1

(c) 2t (d) –1
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Fill in the Blanks

1. An n × n matrix with A district eigen values is .

2. If the matrix A is diagonalizable then A is .

3. Ab n × n matrix is diagonalizable if and only if A has  eigen vectors.

4. A is diagonalizable if and only if there are enough eigen vectors to form a  if RT.

5. A square matrix a is diagonalizable if A is similar to  matrix.

6. A square matrix A of order n × n is diagonalizable if there are A district  of A.

7.  is a finite dimensional vector space of dimension ‘n’. and T : v   v is a linear transformation. B is
an ordered basis for . Then [T(x)]B =    x   v..

8. If the origin is an attractor then the solution of the system is .

9. The parametric equations of the solution of given system represents a curve known as .

10. A  arise when the matrix A has both positive and negative eigen values.

ANSWERS

1. diagonalizable 

2. invertible

3. n linearly independent

4. basis

5. diagonal

6. eigen values

7. [T]B [x]B

8. stable

9. trajectory

10. saddle point
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FACULTY OF INFORMATICS
BCA  III Semester (CBCS) Examination

Model Paper - I
APPLIED MATHEMATICS

Time : 3 Hours]          [Max. Marks : 70

Note: Answer all questions from Part-A and answer any five questions from Part-B. Choosing
one question from each unit.

PART - A  (10 × 2 = 20 Marks)
Answers

1. (a) Define Partial Differentiation. (Unit-I, SQA-1)

(b) Homogenous function with example. (Unit-I, SQA-5)

(c) Define Implicit Function. (Unit-II, SQA-2)

(d) Define Maxima and Minima of functions of two variables. (Unit-II, SQA-3)

(e) Non-homogeneous System of Linear Equations (Unit-III, SQA-6)

(f) Augmented Matrix Form (Unit-III, SQA-4)

(g) Define vector space. (Unit-IV, SQA-1)

(h) Define Eigen values and Eigen vectors. (Unit-IV, SQA-8)

(i) Define Diagonalization. (Unit-V, SQA-1)

(j) Verify whether A is invertible if A is diagonalizable. (Unit-V, SQA-4)

PART - B  (5 × 10 = 50 Marks)

UNIT - I

2. (a) Write a short notes on Neighborhood of a Point (a, b). (Unit-I, Q.No. 3)

(OR)

(b) State and prove Euler’s theorem for a homogeneous functions. (Unit-I, Q.No. 13)

UNIT - II

3. (a) State and prove Theorem on Total Differentials. (Unit-II, Q.No. 1)

(OR)

(b) Find a point within a triangle such that the sum of the square of its distance
from the three vertices is a minimum. (Unit-II, Q.No. 19)

UNIT - III

4. (a) What is homogeneous system of linear equations and explain it cases ? (Unit-III, Q.No. 4)

(OR)

(b) Find the system of Linear equation,

2x + 4y – 3z = 4

3y + 4x + 5z = 2

4z + 4x + 3y = 1 (Unit-IIII, Q.No. 12)
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UNIT - IV

5. (a) For n 0  the set pn of polynomials of degree atmost n consists of all
polynomials of the form.

P(t) = a0 + a1t + a2t
2 + ... +ant

n

Where coefficient a0, a1 .... an and variable  t are real numbers
Here degree is n. (Unit-IV, Q.No. 2)

(OR)

(b) An Indexed set {v1, v2, ... vp} of two or more vectors with v1
 0 is linearly

dependent if and only if   some vj (with j>1) is a linear combination of
its preceding vectors v1, v2, .... vj–1. (Unit-IV, Q.No. 14)

UNIT - V

6. (a) State and prove the diagonalization theorem. (Unit-V, Q.No. 2)

(OR)

(b) Make a change of variable that decouples the equation X' = AX write the
equation X(t) = Py(t) and show the calculate that leads tot he uncoupled

system Y' = DY, specifying P and D where A = 
1 –2
3 –4
 
 
 

. (Unit-V, Q.No. 13)
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FACULTY OF INFORMATICS
BCA  III Semester (CBCS) Examination

Model Paper - II
APPLIED MATHEMATICS

Time : 3 Hours]          [Max. Marks : 70

Note: Answer all questions from Part-A and answer any five questions from Part-B. Choosing
one question from each unit.

PART - A  (10 × 2 = 20 Marks)
Answers

1. (a) Limit of a Function of two variables (Unit-I, SQA-3)

(b) Define Partial derivatives. (Unit-I, SQA-7)

(c) Differentiation Composite Function. (Unit-II, SQA-1)

(d) State and prove Taylor’s theorem for a function of two variables. (Unit-II, SQA-8)

(e) Homogeneous System of Linear Equations (Unit-III, SQA-5)

(f) Linearly Independent Columns (Unit-III, SQA-10)

(g) Define Basis. (Unit-IV, SQA-5)

(h) Find eigen values for matrix A = 
1 6
5 2
 
 
 

. (Unit-IV, SQA-9)

(i) Linear Transformation (Unit-V, SQA-6)

(j) Construct a non-zero 2 × 2 matrix that is / invertible but not diagonalizable. (Unit-V, SQA-9)

PART - B  (5 × 10 = 50 Marks)
UNIT - I

2. (a) If  u = log (x3 + y3 +z3 – 3xyz) show that  
2

x y z
   

     
u

= – 
 2

9

x + y + z
(Unit-I, Q.No. 8)

(OR)

(b) If u = tan-1 

3 3x Y
x y

 
  

, x   y, then show that,

(i)
u

x
x



 + 
u

y
y

  = sin 2u

(ii)
2 2 2

2 2
2 2

u u u
x 2xy y

x yx y
  

 
    = (1 – 4 sin2 u) sin2u. (Unit-I, Q.No. 14)
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UNIT - II

3. (a) If u = tan–1 
2 2

xy

1+ x + y

 
 
 
 

, Then Show that 
2u

x y

 

= 

 
3

2 2 2

1

1+ x + y
. (Unit-II, Q.No. 10)

(OR)

(b) Discuss the maxima or minima of u = x4 + y4 – 2x2 + 4 xy – 2y2. (Unit-II, Q.No. 21)

UNIT - III

4. (a) What is non-homogeneous system of linear equations and explain it cases? (Unit-III, Q.No. 5)

(OR)

(b) Find the system of line or equation

2x + y + z = 2

4x + y + = 6

9x + 2y + z = 2 (Unit-III, Q.No. 13)

UNIT - IV

5. (a) Let H be the set of all vectors of the from (a – 3b, b – a, a, b) where a and b

are arbitrary scalars let H = {(a – 3b, b – a, a, b)}; a, b in R. Show that H

is a subspace of R4. (Unit-IV, Q.No. 8)

(OR)

(b) Show that the eigen values of a Triangular Matrix are the entries of its

Main diagonal. (Unit-IV, Q.No. 20)

UNIT - V

6. (a) Diagonalize the matrix A = 

1 3 3
–3 –5 –3
3 3 1

 
 
 
  

 if possible. (Unit-V, Q.No. 9)

(OR)

(b) Diagonalize the matrices A = 
5 1
0 5
 
 
 

(Unit-V, Q.No. 8)
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FACULTY OF INFORMATICS
BCA  III Semester (CBCS) Examination

Model Paper - III
APPLIED MATHEMATICS

Time : 3 Hours]          [Max. Marks : 70

Note: Answer all questions from Part-A and answer any five questions from Part-B. Choosing
one question from each unit.

PART - A  (10 × 2 = 20 Marks)

Answers

1. (a) Find the degree of given Homogenous function for f(x,y) = xn sin (y/x). (Unit-I, SQA-9)

(b) Functions of Two Variables. (Unit-I, SQA-2)

(c) Define Stationary points and Extreme points. (Unit-II, SQA-5)

(d) Define Equality of fxy(a, b), fyx(a, b). (Unit-II, SQA-7)

(e) What is general form of linear equation? (Unit-III, SQA-2)

(f) Linear Equation (Unit-III, SQA-1)

(g) Define Null Space. (Unit-IV, SQA-3)

(h) If A is a 4 × 3 matrix, what is the largest possible dimension of the row
space of A? If A is a 3 × 4 matrix, what is the largest possible dimension
of the row space of A? (Unit-IV, SQA-11)

(i) Kernal of a Linear Transformation (Unit-V, SQA-7)

(j) Determine whether the following matrix is diagonalizable or not

A = 

5 –8 1
0 0 7
0 0 –2

 
 
 
  

(Unit-V, SQA-3)

PART - B  (5 × 10 = 50 Marks)

UNIT - I

2. (a) If u = log
4 4x y
x y

 
 

 
, show by Euler’s theorem that 

u u
X y

x y
 


   = 3. (Unit-I, Q.No. 15)

(OR)

(b) If  u = x2 tan–1
y
x

– y2 – tan–1
x
y ; xy  0. prove that 

2u
x y

   = 

2 2

2 2
x y

x +y


. (Unit-I, Q.No. 6)
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UNIT - II

3. (a) Discuss the maximum or minimum value  of u, when u = x3 + y3 – 3axy. (Unit-II, Q.No. 16)

(OR)

(b) Explain Lagrange’s method of underermind multipliers. (Unit-II, Q.No. 22)

UNIT - III

4. (a) What are the Characteristics of Linearly Dependent ? (Unit-III, Q.No. 27)

(OR)

(b) Given equation to find non trivial solution.

2x – y = 3 ... (1)

4x + y = 7 ... (2) (Unit-IIII, Q.No. 23)

UNIT - IV

5. (a) Show that w is in the subspace of R4 spanned by v1, v2, v3 where,

9
7

w
4
8

 
 
 
 
 
 

,  1

7
4

v
2

9

 
  
 
 
 

,  2

4
5

v
1
7

 
 
 
 
 
 

,  3

9
4

v
4
7

 
 
 
 
 
 

(Unit-IV, Q.No. 11)

(OR)

(b) Find the characteristic equation of A = 

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

  
  
 
 
 

. Also find

algebraic multiplicity of the eigen values. (Unit-IV, Q.No. 24)

UNIT - V

6. (a) If the eigen vales of a matrix A are 2 and 1. The corresponding eigen

vectors of A are 
3
2
 
 
 

 and 
1
1
 
 
 

 then find A8. (Unit-V, Q.No. 6)

(OR)

(b) A particle moving in a planar force field has a position vector X that
satisfies X1 = AX. The 2 × 2 matrix A has eigen value 4 and 2 with

corresponding eigen vectors v1 = 
–3
1

 
 
 

 and v2 = 
–1
1

 
 
 

. Find the position

of the particle at time t, assuming that X(0) = 
–6
1

 
 
 

. (Unit-V, Q.No. 14)
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FACULTY OF INFORMATICS
BCA III-Semester (CBCS) (Main & Backlog ) (New) Examination,

January / February - 2024
APPLIED MATHEMATICS

Time : 3 Hours]          [Max. Marks : 70

Note : I. Note: Answer all questions from Part-A and answer any five questions from Part-B.
Choosing one question from each unit.

II. Missing data, if any, may be suitably assumed.

PART - A  (10 × 2 = 20 Marks)

1. (a) Find the domain of the function f(x, y)= log(x + y).

Sol :

f(x, y)= log(x + y)

The domain of the function f(x, y) = log (x + y) is the set of all ordered paired (x, y) such that x + y > 0.

x + y > 0

y > –x

Domain: {(x, y)R2: x + y > 0}

(b) Find the first order partial derivative of x3 + y3 + 3xy.

Sol :

Let

   f(x, y)= x3 + y3 + 3xy

Partial derivation w.r.t ‘x’

df(x,y)
dx

= 
d
dx

(x3 + y3 + 3xy)

= 3x2 + 0 + 3y

= 3x2 + 3y

Partial derivation with respect to ‘y’.

df(x,y)
dy

=
d
dy

3 3(x y 3xy) 

= 0 + 3y2 + 3x

= 3y2 + 3x.
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(c) If u = x2 – y2, x = 2r – 3s + 4, y = –r + 8s – 5, then find 
u
r




.

Sol :

To find 
du

,
dv

 we will use the chair rule.

  u = x2 – y2

   
du
dr

= 
du
dx

 × 
dx
dr

 + 
dv
dy ×

dy
dr

First, Find 
du
dx

, 
du
dy

   
du
dx

= 
d
dx

 (x2 – y2)

= 2x

   
du
dy

= 
d
dy  (x2 – y2)

= – 2y

    
dx
dr

= 
d
dr

 (2r – 3s + 4)

= 2

    
du
dr

= (–r + 8s – 5)

= –1 + 0 – 0

= –1

Now, use the chain rule.

   
du
dr

= 
du
dx

×
dx
dr

+ 
du
dy

×
dy
dr

= 2x × 2 + (–2y) × (–1)

= 4x + 2y

Substitute x and y

   
du
dr

= 4(24 – 3s + 4) + 2(–r + 8s – 5)

= 8r – 12s + 16 – 2r + 16s – 10

= 6r + 4s + 6.
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(d) Find the stationary points of u = x3 y2(1 – x – y).

Sol :
Let

    u = x3 y2 (1 – x – y) ... (1)

Partially differentia w.r. t ‘x’ and d ‘y’

du
dx

= 
d
dx

 (x3 y2 .(1 – x – y))

= x3 y2 (–1) + 3x2 y2 (1 + x – y)

= –x3 y2 + 3x2 y2 (1– x – y)  ... (2)

du
dy

= 
d

dy  (x3 y2 .(1 – x – y))

= x3 y2 (–1) + 3x2 2y (1 – x – y)

= – x3 y2 + 2x2 y (1– x – y)  ... (3)

Take 
du
dx

 = 0,

= – x3 y2 + 3x2 y2 (1 – x – y) = 0

    3x2 y2 (1 – x – y) = x3 y2 ...(4)

du
dy

= 0

= – x3 y2 + 2x2 y2 (1 – x – y) = 0

    2x3 y (1 – x – y) = x3 y2 ...(5)

from (4) and (5), we get

32 x y (1 x y  2) 3 x 2y (1 x y  )

2x = 3y

2
y x

3


From Equation (4)

3 2x 2y  (1 – x – y) =  2x 2y

3 (1 – x – y) = x

3 – 3x – 3y = x

3 – 3y = x + 3x

3 – 3y = 4x
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3 – 2x = 4x

  3 = 6x

   x= 
3
6

x 1 / 2

   x= 1
2  put in equation (6)

   y=  
2' 1
3 x
 
 
 

1y 3

Stationary Points is  1 1,2 3 .

(e) Let H be the set of vectors of the form 
 
 
 
  

3t
0

–7t
, where t is real number, show that H is

subspace of R3.

To show that H is subplace of R3, we need to verify that H satisfies the three critiria for a
subspace.

1. The zero vector is H

2. H is closed under vector addition

3. H is closed under scalar multiplication.

Sol :

Let H = 

3t
0
7t

 
 
 
  

1. Zero vector

3t 0
0 0
7t 0

   
      
      

3(0) 0
0 0
7(0) 0

   
      
      

The zero vector is in H.
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2. H is closed under vector addition

Take two vectors u = 
1

2

3t
0
7t

 
 
 
  

 and  v = 
1

2

2t
0
7t

 
 
 
  

   u + v= 
1 2

2 2

3t 3t
0 0
7t 7t

   
      
       

 = 
1 2

1 2

3(t t )
0

7(t t )

 
 
 
   

Since t1 + t2 is real number, this vector is also of the form 
3 t
0
7 t

 
 
 
  

, where t = t1 + t2.

H is closed under vector addition.
3. H is closed under scalar multiplication

Take a vector   u = 

1

1

3t
0
7t

 
 
 
  

 in H and a scalar CR

Cu = C
3t
0

7t

 
 
 
  

 = 
3tc
0
7tc

 
 
 
  

Since it is real number, this vector is also of the rom 

3t '
0
7t '

 
 
 
  

 where t' = ct.

H is closed under scalar multiplication.
Hence  H is subspace of R3.
(f) Define column space and Null space.

Sol :
Column Space

The column space of a metric A. denoted by Col (A) or C(A), is the set of all linear combinations of the
columns of A.

In other words it’s the set of are possible vectors that can be expressed as a combination of the columns of
A using scalar multiplication and addition.

Example : A = 

1 1
1 0
0 1

 
 
 
  

   Column A = Span 

1 1
1 , 0
0 1

    
    
    
        

.

Null Space
The null space of a matrix A denoted by N(A) or Kar (A), is the set of are vectors ‘x’ such that Ax = 0, where

‘0’ is the zero vector, it’s the et of all vectors that when multiplied by A1 result in zero vector.

The Null Space represent the set of also solutions to the homogeneous equation A 0  .
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(g) Is  = 2 an Eigne value of 
 
 
 

3 2
3 8 ? Why or why not?

Sol :

To determine if  = 2 is an eigne value of the matrix A = 
3 2
3 8
 
 
 

. We need to check if the let

(A – I) = 0.

(A – I) = 
3 2
3 8
 
 
 

 – 2 
1 0
0 1
 
 
 

= 
3 2 2 0
3 0 8 2
  

   

= 
1 2
3 6
 
 
 

  let (A – I) = let 
1 2
3 6
 
 
 

= 6 – 6

   let (A – I) = 0

Since the let (A – I) = 0,  = 2 is an eigne value of matrix  A = 
3 2
3 8
 
 
 

.

(h) Find the characteristic polynomial of A = 
 
 
 

2 7
7 2

.

Sol :

Let A = 
2 7
7 2
 
 
 

Z find crarecteristics polynomial of A = 
2 7
7 2
 
 
 

The characteristic polynomial is given by the let (A – I), where  is the eigen value and I is use identity
matrix.

(A – I) = 
2 7
7 2
 
 
 

 – 
1 0
0 1
 
 
 

= 
2 7

7 2
  

   
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   let (A – I) = Let 
2 7

7 2
  

   

= (2 – ) (2 – ) – 49

= (2 – )2 – 49

= 4 + 2 – 4 – 49

= 2 – 4 – 45

2Let (A I) 4 45      

(i) Define Basis of a vector space.

Sol :
Definition

Let 1 2 nv ,v , ............v  be a basis for a vector space v if

(i) { 1 2 nv ,v , ............v } is linear independent.

(ii) v = span { 1 2 nv ,v , ............v }.

(j) Find Eigen values of A = 
 
 
 

5 1
–8 1

.

Sol :

Find eigen value of A = 
5 1
8 1

 
  

characteristics equation let (A – I) = 0

      A – I = 
5 1
8 1

 
  

 –  
1 0
0 1
 
 
 

= 
5 1

8 1
  

    

let (A – I)= let 
5 1

8 1
  

    

= (5 – ) (1 – ) + 8

= 5 – 5 –  + 2 + 8

= 2 – 6 + 13

By using characteristic equation to get eigen values.

 = 
2b b 4ac

2a
  
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 = 
26 ( 6) 4(1)(13)

2(1)
  

= 
6 36 52

2
 

= 
6 4i

2


= 3 ± 2i

1 = 3 + 2i , 2 = 3 – 2i.

1 2Eigen values 3 2i, 3 2i      

PART - B  (5 × 10 = 50 Marks)

UNIT - I

2. If u =  3(lx +  my +  nz)2 – (x2 + y2 + z2) and l2 + m2 + n2 = 1, prove that 
3

2

u

x




+

2

2

u

y




+

2

2

u

z




 = 0.

Sol :
Let V = 3 (lx + my + nz)2 – (x2 + y2 + z2)

Partial Differentiate  with reference to x

 
du
dx

= 
d
dx

 (3(ln + my + nz)2 – (x2 + y2 + z2))

= 6l(lx + my +nl) – 2x

Partial Differentiate  with reference to ‘y’

 
du
dy

= 
d
dy

(3 (ln + my + nz)2 – (x2 + y2 + z2))

= 6m (lx + my + nz) – 2y

Partial Differentiate  with reference to ‘z’

 
du
dz

= 
d
dz

 (3(lx + my + nz)2 – (x2 + y2 + z2))

= 6n(lx + my + nz) – 2z

Compute Second Derivation

Partial Differentiate  with reference to ‘x’

  
2

2

u d
dxx





 (6l (lx + my + nz) – 2x)

= 6l . l – 2

=  6l2 – 2.
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Partial Differentiate  with reference to ‘y’

 
2

2

u d
dyy





 (6m (lx + my + nz) – 2y)

= 6m . m – 2

= 6m2 – 2

Partial Differentiate  with reference to ‘z’

 
2

2

u d
dyz





 (6n (lx + my + nz) – 2z)

= 6n.n – 2

= 6n2 – 2

Add all the second derivation

  
2 2 2

2 2 2

d u d u du

dx dy dz
  = (6l2 – 2) + (6m2 – 2) + (6m2 – 2)

= 6(l2 + m2 + n2) – 6

= 6(1) – 6

= 6 – 6

= 0.

Hence proved.

(OR)

3. If u =  sin–1
 
 
  

x + y

x + y
, show that x u

x



+ y
u
y




= 0.

Sol :
Let

     u = sin–1
x y

x y

 
 

  
... (1)

Assume

     V= 
x y

x y



 ... (2)

By solving (1) and (2) we get

     u = sin–1 (v)

Compute the partial derivatives of ‘v’ with respect to ‘x’ and ‘y’ we need to find 
v
x



 and 
v
y



.
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Partial derivative of ‘v’ with respect to x :

     v(x, y) = 
x y

x y





To differentiate ‘v’ with respect to x, we use the quotient rules

 v
x



= 2

( x y). ( x – y) ( x – y). ( x y)
x x

( x y)

   
 



     
v
x

 = 

2

1 1
( x y). ( x y).

2 x 2 x
( x y)

  



v
dx


= 2

y

x( x y)

Partial Derivative of “v” with respect ot y:

Similarly to differentiate ‘v’ with respect to ‘y’.

 
v
y



= 2

( x y). ( x y) ( x y). ( x y)
y y

( x y)

 
    

 


 
v
y



= 2

1 1
( x y). ( x y).

2 y 2 y

( x y)

 
     

 


 2

dv x
dy y( x y)




By using the chain rule

  
u u v

.
x v x
  


  

   Since u = sin–1(v), we have

         
u
v



=
2

1

1 V

so

 
u
x



= 22

y1
.

x( x y)1 v 
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Similarly

 
u
y



= 
2

1

1 v  2
x

y x y

 
  
  

Combining the terms to prove identity

x u u
y

x y
 


 

Substituting the expressions for u
z




 and u
z




:

x
u
x



 = x.
2

1

1 v
 .  2

y

x( x y) ... (3)

y 
u
y

  = y..

2

1

1 v
. 2

x

y( x y)

 
   

... (4)

Adding (3) and (4)

u u
x y

x y
 


 

= 
2 2

x y

x( x y) 1 v 
 – 

2 2

y x

y( x y) 1 v 

By Factoring common terms.

   u u
x y

x y
 


 

=
2 2

y y y x

x y( x y) 1 v



 
= 

2 2

0

x y ( x y) 1 v 

 x y y x 0 


u u

x y 0
x y
 

 
 

Hence proved.

UNIT - II

4. If z = x2 + xy + y2, x = s + t, y = s – t then find z
x



and
z
t




.

Sol :
z = x2 + xy + y2, x = s + t, y = s – t

put x, y in z = x2 + xy + y2

      z= (s + t)2 + (s + t) (s – t) + (s – t)2
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      z= s2 + t2 + 2t/s + s2 – st + st – t2 + s2 + t2 – 2st

      z= 3s2 + t2

Compute 
z
s



= 
t
s



 (3s2 + t2)

= 6s

z
6s

s





Compute 
z
t




= 
t



 (3s2 + t2)

= 2t

z
2t

t





(OR)

5. Find the minimum value of x2 + y2 + z2, given that ax + by + cz = 1.

Sol :
Objective function f(x, y, z) = x2 + y2 + z2

Constraint g(x, y, z) = ax + by + cz – 1 = 0

Form the Lagrangian

L(x, y, z, ) = x2 + y2 + z2 + (ax + by + cz –1)

Where  is the Lagrange multiple partial derivatives and set them to equal to zero.

dL
dx

= 2x + a = 0   x = – 
a
2


dL
dy = 2y + b = 0   y = – 

b
2


dL
dz

= 2z + c = 0   z = – 
c
2


dL
d

= ax + by = cz – z = 0

Substitute the expression for x, y, z into the constraint.

a b c
a b c 1

2 2 2
                 

     

2 2 2(a b c ) 1
2


   

 = 2 2 2

2

a b c



 
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Substitute  back to find x, y, z

 = – 
2 2 2

2

a b c 

  x = 
a

2


 = 2 2 2

a

a b c 

  y = 
b

2


 = 2 2 2

b

a b c 

  z = 
c

2


 = 2 2 2

c

a b c 

Calculate x2 + y2 + z2

           x2 + y2 + z2 = 
2

2 2 2

a

a b c
 
   

 + 
2

2 2 2

b

a b c
 
   

+
2

2 2 2

c

a b c
 
   

= 
2

2 2 2 2

a

(a b c ) 
+ 

2

2 2 2 2

b

(a b c ) 
 + 

2

2 2 2 2

c

(a b c ) 

= 
2 2 2

2 2 2 2

a b c

(a b c )

 

 

= 2 2 2

1

a b c 
The minimum value of x2 + y2 + z2 given the constraint,

ax + by + cz = 1 is 2 2 2

1

a b c 

UNIT - III

6. Let A = 

 
 
 
 
 
 

10 –8 –2 –2
0 2 2 –2
1 –1 6 6
1 1 0 –2

and W = 

 
 
 
 
 
 

2
2
0
2

. Determine if W is in Col A, Is W in Nul A?

Sol :
We know that

A = 

10 –8 –2 –2
0 2 2 –2
1 –1 6 6
1 1 0 –2

 
 
 
 
 
 
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Vector w, w = 

2
2
0
2

 
 
 
 
 
 

Determine if w is in column (A)

Ac = w

10 –8 –2 –2
0 2 2 –2
1 –1 6 6
1 1 0 –2

 
 
 
 
 
 

1

2

3

4

c
c
c
c

 
 
 
 
 
 

=

2
2
0
2

 
 
 
 
 
 

Row Reduce the augmented Matrix

10 –8 –2 –2 2
0 2 2 –2 2
1 –1 6 6 0
1 1 0 –2 2

 
 
 
 
 
 

   R1: 
1

10
 R1

1 –0.8 –0.2 0.2 0.2
0 2 2 –2 2
1 –1 6 6 0
1 1 0 –2 2

 
 
 
 
 
 

   R3: R3 – R1  

1 –0.8 –0.2 0.2 0.2
0 2 2 –2 2

0 –0.2 6.2 6.2 0.2
1 1 0 –2 2

 
 
 
 
 
 

   R4: R4 – R1  

1 –0.8 –0.2 0.2 0.2
0 2 2 –2 2
0 –0.2 6.2 6.2 0.2
0 1.8 0.2 –1.8 1.8

 
 
 
 
 
 

Next, we continuous with row prediction and Eventually, the system will tell us whether there is a contradiction.
If no contradiction appears, w is in col(A).

Determine is W is in Null (A)

To check iR W is in Nul (A), we need tos ec if AW = 0 we compute AW.
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  AW = 

10 –8 –2 –2
0 2 2 –2

1 –1 6 6
1 1 0 –2

 
 
 
 
 
 

2
2

0
2

 
 
 
 
 
 

= 

20 16 0 4
0 4 0 4

2 2 0 12
2 2 0 4

   
    
   
 

   

 = 

0
0

12
0

 
 
 
 
 
 

Since AW does not equal O, W is not in Nul (A)

(OR)

7. Determine if {v1, v2, v3} is linearly independent or linearly dependent where

v1 = 
 
 
 
  

0
1
5

, v2 =

 
 
 
  

1
2
8

v3 =

 
 
 
  

4
-1
0

.

Sol :
To determine whether the vectors  v1, v2, v3 are linear independent or dependent, we need to see if the

equation.

c1v1 + c2 v2 + c3 v3 = 0

The vectors given are

 v1 = 

0
1
5

 
 
 
 
 

 , v2 = 

1
2
8

 
 
 
 
 

, v3 = 

4
1

0

 
  
 
 

Equation can be written as

c1 = 

0
1
5

 
 
 
 
 

 , c2 = 

1
2
8

 
 
 
 
 

, c3 = 

4
1

0

 
  
 
 

 = 

0
0
0

 
 
 
 
 

1 2 3

1 2 3

1 2 3

0c 1c 4c
c 2c c

5c 8c 0c

  
   
   

= 

0
0
0

 
 
 
 
 

So system of linear equation

1c2 + 4c3 = 0 ...(1)

c1 + 2c2 + c3 = 0 ...(2)

5c1 + 8c2 = 0 ...(3)

For the First Equation

 c2 + 4c3 = 0

 c2 = – 4c3
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Put equation (2) and (3)

c1 + 2c2 + cs = 0

c1 + 2(–4c3) – c3 = 0

c1 – 8c3 – c3 = 0

c1 – 9c3 = 0

c1 = 9c3

c2 = – 4c3 put in (3)

5c1 + 8c2 = 0

5c1 + 8 (–4c3) = 0

5(4c3) + 8(–4c3) = 0

45c3 – 32c3 = 0

13c3 = 0

3c 0

For Determine the value of c1 and c2

c3 = 0, we have

c1 = 9c3 = 9(0) = 0

1c 0

c2 = –4c3 = –4(0) = 0

2c 0

c1 = c2 = c3 = 0,

So therefore, the vector, v1, v2, v3 are linear independent.

UNIT - IV

8. Find characteristic equation of A = 

 
 
 
 
 
 

5 –2 6 –1
0 3 –8 0
0 0 5 4
0 0 0 1

.

Sol :

Finding characteristics equation A = 

5 –2 6 –1
0 3 –8 0
0 0 5 4
0 0 0 1

 
 
 
 
 
 
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We know that characteristic equation

let (A – I) = 0

   let (A – I) = let 

5 2 6 1
0 3 8 0
0 0 5 4
0 0 0 1

    
    
  
 

  

= (5 – ) (3 – ) (5 – ) (1 – )

= (5 – )2 (3 – ) (1 – )

So characteristic equation

(5 – )2 (3 – ) (1 – ) = 0

This equation shows that the eigen values of the matrix A are  = 5 (with Algebraic multiplicity 2),  = 3,
 = 1.

(OR)

9. Find the characteristic polynomial of matrix A =
 
 
 
  

4 0 –1
0 4 –1
1 0 2

.

Sol :
We know that characteristic equation, Let (A – I) = 0.

  A – I = 

4 0 1 1 0 0
0 4 1 0 1 0
1 0 2 0 0 1

   
        
      

= 

4 0 1
0 4 1
0 0 2

   
    
   

  Let (A – I) = let 

4 0 1
0 4 1

0 0 2

   
    
   

  Let (A – I) = (4 –) let 
4 1

0 2
   

   
 – 0 . det 

0 1
1 2

 
   

 – 1 . det 
0 4
1 0

  
 
 

= (4 –) (4 – ) (2 – ) – 0 – 1 (0 – (4 – ))

= (4 –) (4 – ) (2 – ) – (– 4 + )
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= (4 –) (4 – ) (2 – ) – ( 4 – )

= (4 –) (8 – 6+2) + (4 – )

= 42 – 24 + 32 – 3 + 62 – 8 + 4 – 

= –3 + 102 – 33 + 36

So characteristic polynomial of matrix A –3 +102 – 33 + 36

Let given matrix A = 

4 0 1
0 4 1
1 0 2

 
  
  

By using characteristic equation

let (A – I) = 0

   (A – I) = 

4 0 1
0 4 1
1 0 2

 
  
  

 – l 

1 0 0
0 1 0
0 0 2

 
 
 
  

= 

4 0 1
0 4 1
1 0 2

   
    
   

= det 

4 0 1
0 4 1

1 0 2

   
    
   

= (4 – ) . let 
4 1

0 2
   

   
 – 0 + (–1) 

0 4
1 0

  
 
 

= (4 – ) (4 – ) (2 – ) + (– (4 – ))

= (4 – ) (4 – ) (2 – ) + (4 – )

= (4 – ) [(4 – ) (2 – ) + 1]

= (4 – ) [8 – 4 + 2 – 2 + 1]

= (4 – ) [2 – 6 + 9]

= (4 – ) ( – 3)2

The characteristic polynomial is

2let (A I) (4 ) ( 3)      
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UNIT - V

10. Find diagonalization of matrix A = 
 
 
 

1 0
6 – 1 , if possible.

Sol :

A = 
1 0
0 1
 
  

Above the matrix linear independent eigen vectors. So it is diagonalizable.

Finding the Eigen Value

Characteristic equation

let (A – I) = 0

let 
1 0
6 1
 

   

1 0
0 1
 
 
 

= let 
l 0

6 1
  

    

let (A – I) = (1–) (–1–) = 0

= (1–) (–1–) = 0

So eigen values

l = 1, 2 = – 1

A – I = 
1 0
6 1
 
  

 – 
1 0
0 1
 
 
 

= 
0 0
6 2
 
  

Solve (A – I) v = 0.

0 0
6 2
 
 
 

x
y
 
 
 

 = 
0
0
 
 
 

6x – 2y = 0

6x = 2y

y 3

Eigen vectors for 1 = 1

  v1= 
1
3
 
 
 

For 2 = –1 put in (A – I) v = 0
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      (A + I) v = 0

1 0 1 0

6 1 0 1

    
        

 
x
y
 
 
 

 = 
0
0
 
 
 

2 0
6 0
 
 
 

 
x
y
 
 
 

 = 
0
0
 
 
 

2x = 0    | 6x = 0

x = 0, Since there is no conditinon y, we can take y = 1,

So, eigen vectors for 2 = –1

v2 = 
0
1
 
 
 

Form the Diagonalization

Here

    P = 
1 0
3 1
 
 
 

, D = 
1 0
0 1
 
  

Verify Diagonalization

   P–1 A P = D

Here,

    P = 
1 0
3 1
 
 
 

  P–1 = 
1 0
3 1

 
  

    A= 
1 0
6 1
 
  

Verify,

    P–1 AP = D

    P–1 AP = 
1 0
3 1

 
  

 
1 0
6 1
 
  

 
1 0
3 1
 
 
 

 AP = 
1 0
6 1
 
  

 
1 0
3 1
 
 
 

 = 
1 0 0 0
6 3 0 1
  

   
 = 

1 0
3 1
 
 
 
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    P–1 AP = 
1 0
3 1

 
  

1 0
3 1
 
  

= 
1 0 0 0
3 3 0 1
  

    

= 
1 0
0 1
 
  

1P AP D 

So A Matrix is Diagonalization.

 (OR)

11. Find the Eigen values and basis for each Eigen space in C2 where A =
 
 
 

0 5
–2 2 .

Sol :

A = 
0 5
2 2

 
  

Finding Eigen Values

By solving the characteristic equation

    let (A – I)= 0

  A – I = 
0 5
2 2

 
  

 –  
1 0
0 1
 
 
 

= 
5

2 2
 
    

   let (A – I) = let 
5

2 2
 
    

= – (2 – ) – (–2) 5

= –2 + 2 + 10

= 2 – 2 + 10

2 2 10 0    
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By using quadratic equation

 A = (–2)2 – 4(1) (10)

= 4 – 40

= – 36

So, eigen values are complex and given by,

   = 
( 2) 36

2(1)
  

= 
2 6i

2


= 1 ± 3i

So the eigen values are :

1 = 1 + 3i,    2 = 1 – 3i

Finding eigen vectors

For each eigen values ,  (A – I) V = 0

For 1 = 1 + 3i

     (A – I) v = 0

1

1

5

2 2

 
    

x
y
 
 
 

 = 0

Substitute 1 = 1 + 3i

(1 3i) 5 x
0

2 2 (1 3i) y
   

      

1 3i 5 x
0

2 2 1 3i y
   

      

    x = 
1 3i

y
2


So, eigen vector for 1

   v1 = 
1 3i

2
1

 
 
  
 

for 2 = 1 – 3i
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(A – I) v = 0

0 5 2 0
0

2 2 0 1
   

        

 
0 5 1 0

1 3i 0
2 2 0 1

   
        

1 3i 5
0

2 1 3i
  

   

System of Linear Equation form

1 3i 5
2 1 3i

  
   

x
y
 
 
 

 = 0

(–1 + 3i) x + 5y = 0 ... (1)

–2x + (1 + 3i)y = 0 ... (2)

First equation (–1 + 3i) x + 5y = 0

1 3i 5
2 1 3i

  
   

x
y
 
 
 

 = 0

(–1 – 3i) x + 5y = 0 ... (1)

–2x + (1 – 3i) y = 0 ... (2)

First equation

(–1 – 3i) x + 5y = 0

(–1 – 3i) x = –5y

x = 
5y

1 3i


 

5
x y

1 3i



 

To simplify ‘x’, multiply the numerator and denominator by complex conjugate of denominator (or) (multiply
by (–1+3i).

x = 
5 ( 1 3i)

( 1 3i) ( 1 3i)
  

   
 y

x = 
5( 1 3i)

1 9
  


= 

5 15i
10

 
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= 
5 (1 ei)

10


=
1 3i

2


     x = 
5

y
( 1 3i)


 

Multiply the numerator and denominator by compute conjugate of denominator (or) (multiply by (–1 –3i))

     x =
5( 1 3i)

y
( 1 3i) ( 1 3i)

  
   

     x =
5 15i

y
1 9



     x =
5 (1 3i)

10


2

y

1 3i
x y

2




So, the eigen vector for 2

v2 = 2

1 3i

1

 
 
 



SOLVED PREVIOUS QUESTION PAPERS APPLIED MATHEMATICS

173
Rahul Publications

FACULTY OF INFORMATICS
B.C.A III - Semester (CBCS) (Backlog) Examination,

June / July - 2024

APPLIED MATHEMATICS
Time : 3 Hours] [Max. Marks : 70

Note : I. Answer all questions from Part-A and answer any five

questions from Part-B. Choosing one question from each unit.

 II. Missing data, if any, may be sultably assumed.

PART - A  (20 Marks)

ANSWERS

1. (a) Define continuity of a function.

Sol :

A function f(x) is said to be continuous as a point x = c it the following

three conditions are satisfied.

1. f(c) is defined

2.
x c
Lt f(x)


exists

3.
x c
Lt f(x) f(c)




A function f is continuous on the open interval (a, b).

(b) Find the first order partial derivatives of ax2 + 2hxy + by2.

Sol :

Given f(x,y) = ax2 + 2hxy + by2

p.d.w.r.t. ‘x’

df
dx

= 
d
dx

(ax2 + 2hxy + by2)

      = 2xa + 2xy

p.d. w.r.t ‘y’

df
dy = 

d
dy (ax2 + 2hxy+ by2)

      = 2hx +2by
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(c) Find 
dz
dt

when  = xy2 + x2 y, x = at2, y = 2at.

Sol :
Given z = xy2 + x2y , x = at2, y = 2at

p.d.w.r.t ‘x’

dz
dx

=
d
dx

(xy2 + x2y)

     = y2 + 2xy

p.d.w.r.t ‘y’

dz
dy = 

d
dy

(x2 y2 + x2y)

      = 2yx + x2

      = 2xy + x2

p.d.w.r.t ‘t’

dx
dt

= 
d
dt

(at2)

     =2at

p.d.w.r.t ‘t’

dy
dt

= 
d
dt

(2at)

      = 2a

Now apply the chain sale.

dz
dt

 = 
dz
dx

 
 
 

dx
dt

 
 
 

+
dz
dy

 
 
 

dy
dt

 
 
 

      = (y2 + 2xy) (2at) + (2xy + x2) (2a)

Put x = at2, y = 2at

= (2at)2 + 2(at2) (2at) (2at) = (2(at2) (2at) + (at2)2 (2a)

= (4a2t2 + 4a2t3) (2at) + (4a2 t3 + a2t2) (2a)

= 8a3t3 + 8a3t4 + 8a3t3 + 2a3t5

= 16a3t3 + 8a3t3 + 2a3t5

3 3 3 3 3 5dz
16a t 8a t 2a t

dt
  
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(d) Write Taylor’s theorem for a function of two variables.

Sol :
Taylor’s theorem for two variables

Let a function be defined in some domain D in IR2 and have continuous partial derivatives up to (n + 1)th

order  in some neighborhood of a point P(x0, y0) in D.

Then

F(x0 + h, y0 + k) = F (x0, y0) + 
d d

h k
dx dy

 
 

 
F(x0, y0) 

1
2!

2
d d

h k
dx dy

 
 

 

F(x0, y0) + ....... + 
1
n!

n

0 0
d d

h k F(x ,y )
dx dy

 
 

 
+ Rn

Where

Rn =  
1

n 1 !

n 1
d d

h k
dx dy


 

 
 

F(x0 + h, yo + k), 0 <  < 1

(e) If = 

a
b : a 3b c 0

c

  
       
    

. Is W is a subspace of R3.

Sol :

Given w = 

a
b : a 3b c 0

c

  
       
    

whether w is a subspace of R3

A subset w of a vector space v is called a subspace if. It satisfies three conditions.

1. Zero vector

2. Closed under Addition

3. Closed under scalar multiplication

1. Zero vector :

 Let w = 
0
0
0

 
 
 
  

Check, it  0 is in w

a = b = c = 0, we have

        a – 3b + c = 0

0 – 3(0) + 0 = 0

Therefore, 0 in w.
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2. Closed under addition

Let u = 

1

1

1

a

a

a

 
 
 
  

 and v = 

2

2

2

a

b

c

 
 
 
  

 be any two vectors in w

a1 – 3b1 + c1 = 0
a2 – 3b2 + c2 = 0

u + v = 

1 2

1 2

1 2

a a

b b

c c

 
  
  

 in w

(a1 + a2) – 3(b1 + b2) + (c1 + c2) = (a1 – 3b1 + c1) + (a2 – 3b2 + c2) = 0 + 0 = 0
Thus u + v is in w.

3. Closed under Scalar Multiplication

Let u = 

a
b
c

 
 
 
  

be any vector in w

ku = 

ka
kb
kc

 
 
 
  

is in w

ka – 3(kb) + kc = k (a – 3b + c) = k.0 = 0
thus ku is in w
Since w contains the zero vector is closed under addition and is closed under scalar multiplication
w is a subspace of R3.
(f) Define basis of a vector space.

Sol :
For answer refer Februar-2024, Q.No. (i).
(g) If A is a 7 × 9 matrix with a two-dimensional null space, what is the  rank of A ?

Sol :
Using Rank – nullity theorem
Rank (A) + dim N(A) = n

Where

dim (A) = 2, n = 9

Rank (A) + dim N(A) = n

Rank (A) + 2 = 9

The  Rank (A) = 9 – 2

Rank (A) 7
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(h) Is  = – 3, an eigen value of 
1 4

6 9
 
 
 

. Why or why not ?

Sol :
Given

 = –3, A = 
1 4

6 9

 
 
 

Characteristic equation

det (A – I) = 0

A – I = 
1 4

6 9
 
 
 

– (–3) 
1 0
0 1
 
 
 

  = 
1 3 4
6 9 3

  
  

  = 
2 4
6 12
 
 
 

det (A – I) = det 
2 4
6 12
 
 
 

= 2(12) – 6(4)

= 24 – 24

= 0

Since the det = 0,  = – 3 is indeed an eigen value of the matrix A.

why  = – 3

The det (A – I) = 0. Indicates that the matrix is  singular. Which corresponds to the condition for  being
an eigen value, thus  = – 3 is an eigen value of the given note.

(i) Find the eigen values of 
3 3
3 3

 
 
 

Sol :

Given A = 
3 3
3 3

 
 
 

Characteristic equation,

det (A – I) = 0
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A – I = 
3 3

3 3

 
 
 

–  1 0
0 1
 
 
 

  = 
3 3

3 3
   

   

det (A – I) = det 
3 3

3 3
   

   

= (3 –  ) (3 – ) – (– 3) (3)

         = (3 – )2 + 9

= 9 + 2 – 6 + 9

= 2 – 6 + 18

To find the eigen value by using quadratic equation

 = 
2b b 4ac

2a
  

  =
 2( 6) 6 4(1)(3)

2(1)

   

  = 
6 36 72

2
 

    = 
6 36

2
 

   = 
6 : 36

2


   = 
6 6i

2


   = 3 3i  

1 2eigen values :  = 3 + 3i,  = 3 – 3i 
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(j) Find the characteristic equation of = 
2 3
0 5
 
  

Sol :

Given A = 
2 3
0 5
 
  

Characteristics equation

det (A – I) = 0

       A – I = 
2 3

0 5
 
  

–  1 0

0 1
 
 
 

       A – I = 
2 3

0 5
  

    

det (A – I)= det 
2 3

0 5
  

    

= (2 – ) (–5 – ) – 0

= – 10 – 2 + 5 + 2

2Characteristic equation + 3   – 10  

PART - B  (5 × 10 = 50 Marks)

Unit-I

2. If U = 2 2 2

1

x y z  ; x2 + y2 + z2  0, show that 
2

2
u

x




+

2

2
u

y




+

2

2
u

z




= 0

Sol :
u = (x2 + y2 +z2)–½

u
x



=
x



[(x2 + y2 + z2)–½] = 
1

2


 (x2 + y2 + z2)–½ × 
x



(x2 + y2 + z2)

= 
1

2


(x2 + y2 + z2)–3/2 × 
2 2 2(x ) (y ) (z )

x x x
        

= 
1

2


(x2 + y2 + z2)–3/2] × (2x + 0 + 0) = 
1

x


 (x2 + y2 + z2)–3/2 × x

= – x (x2 + y2 + z2)-3/2
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2

2
u

x




 = 

x



u
x
 

  
= 

x



[-x(x2 + y2 + z2)–3/2]

= –    
3 3

2 2 2 2 2 22 2 .
x x y z x y z (x)

x x

   
        

= –      
3 312 2 2 2 2 2 2 2 22 23

x. x y z x y z x y z .1
2 x

   
          

= –    
5 3

2 2 2 2 2 2 1 2 2 22 23
x x y z (x ) (y ) (z ) x y z

2 x x x

                    

= –      
5 3

2 2 2 2 2 22 23
x x y z 2x 0 0 x y z

2

  
         

 

= – 
3

x
2

  

5
2 2 2 2x y z 2


    

3
2 2 2 2x x y z

 
   

 

=  3x2 (x2 + y2 + z2)–5/2  – (x2 + y2 + z2) –3/2

Similarly,

2

2
u

y




= 3y2 (x2 + y2 + z2)– 5/2 – (x2 + y2 + z2) – 3/2

2

2
u

z




= 3z2 (x2 + y2 + z2)–5/2 – (x2 + y2 + z2)–3/2

2

2
u

x




+ 

2

2
u

y




+

2

2
u

z




 = 3x2 (x2 + y2 + z2)–5/2 – (x2 + y2 + z2)–3/2

+ 3y2 (x2 + y2 + z2)– 5/2 – (x2 + y2 + z2)–3/2 + 3z2 (x2 + y2 + z2) –5/2 – (x2 + y2 + z2)–3/2

= 3(x2 + y2 + z2)–5/2 [x2 + y2 – z2] – 3(x2 + y2 + z2)–3/2

= 3(x2 + y2 + z2)–5/2 (x2 + y2 + z2)1 – 3(x2 + y2 + z2)–3/2

= 3(x2 + y2 + z2)–5/2+1 – 3(x2 + y2 + z2)–3/2

= 3(x2 + y2 + z2)–3/2 – 3(x2 + y2 + z2)–3/2 = 0

(OR)

3. If u = log 
2 2x y

,
x y

 
   

prove that x
u
x



+y
u
y

 = 1

Sol :
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u = log 
2 2x y
x y

 
   

L.H.S  x 
u
x



 + y 
u
y



u
x



, 
x y
2 2x y

 
   

. 
   

 

2 2

2

2x x y 1 x y

x y

  



  
2 2 2

2 2

2x 2xy x y

x y x y

  

 
×
  

2 2

2 2

x y 2xy

x y x y

 

 

u
y

 = 

x y
2 2x y

 
   

   
 

2 2

2

2y x y 1 x y

x y

  



u
y

 = 

  
2 2 2

2 2

2xy 2y x y

x y x y

  

 
= 

  
2 2

2 2

y x 2xy

x y x y

 

 

du du
x y

dx dy
  = x   

2 2

2 2

x y 2xy

x y x y

 
  

    
+ y   

2 2

2 2

y x 2xy

x y x y

 
  

    

= 
   

3 2 2 3 2 2

2 2

x xy 2x y y x y 2xy

x y x y

    

 

= 
      

 

2 2

2 2

x y x y xy xy x y 2xy x y

x y (x y )

      

 

= 
 x y 2 2x y xy xy 2xy 

 x y  2 2x y
= 1 R.H.S

y y
x y. 1

x y
 
  
 

Unit-II

4. If H = f(y – z, z – x, x – y), prove that 
H
x




+
H
y




+ 
H
z




= 0.

Sol :
u = f (y – z, z – x, x – y)
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a = y – z

b = z – x

c = x

u = f (a, b, c)

Diff. ‘u’ with respect to x.

u
x



 = 
u a
x x
 


 

+ 
u b
b x
 


 

+
u
x


+ 
u
x


 
x
x

u
x



= 
u
a



(1) + 
u
b



(0) + 
u
c



(–1)

u u u
x a c
  

 
  

Differentiate u = f (a, b, c) with respect to ‘y’

u
y



=
u a
a y
 


 

+
u b
a y
 


 

+
u c
c y
 


 

     = 
u
a



(–1) + 
u
b



= 
u

a



+ 
u
b



Diff u = f (a, b, c) with respect to ‘z’

u
z




= 
u a
a z
 


 

+
u b
b z
 


 

+
u x
c z



 

      = 
u
a



(0) +
u
b



(–1) + 
u
c



(1)

u u u
z b c
  

 
  

Now

u
x



+
u
y



+
u
z




=
u
a



– u
c



– 
u
a



+ 
u
b



– 
u
b



+ 
u
c



 0

du du du
0

dx dsy dz
  

(OR)

5. Show that the minimum valued of u = xy + 
3a

x
+

3a
y is 3a2.

Sol :

Given u = xy + 
3a

x
+

3a
y

,
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p.d.w.r.t ‘x’

du
dx

= 
d
dx

3 3a a
xy

x y

 
   

 

      = y + a3 
d
dx

1
x

 
 
 

     = y + a3 2
1

x
  
 

     = y – 
3

2
a

x

p.d. w.r.t ‘y’

du
dy

= 
d
dy

3 3a a
xy

x y

 
   

 

      = x – 
3

2
a

y

for 
du
dx

= 0,  y – 
3

2
a

x
= 0

      y = 
3

2
a

x

du
dy

= 0   x – 
3

2
a

y
= 0

           x = 
3

2
a

y

Solving the system of equation

Sub eqn (1) in equation (2)

x = 
3

23

2

a

a

x

 
  
 
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     = 
3

6

4

a

a

x

    = 
3a 4

6

x

a

x  = 
4

3
x

a

xa3 = x4

3 5a x

x = a6/5

   = a3/2

using eqn (1)

y = 
3

2
a

x

  = 
3

23
2

a

a 
 
 

 = 
3

6
4

a

a
 = 

3

3
2

a

a

y =  a3/2

Critical points = (a3/2, a3/2)

Put x = y = a3/2 into the original equation

u = xy + 
3a

x
+ 

3a
y

u = (a3/2) (a3/2) +
3

3
2

a

a
+

3

3
2

a

a

  = a3 + a3/2 + a3/2

  = a3 + 2a3/2

Given ‘u’ is minimum value

Show the minimum value is 3a2

u = xy + 
3a

x
+ 

3a
y
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Let Assum x = y = a

u = (a) (a) + 
3a

a
+

3a
a

   = a2 + 2a2

   = 3a2

Unit-III

6. (a) Find a nonzero vector in Col A and a nonzero vector in Nul A where

A = 

  2  4 2 1
2 5   7 3

  3   7 8 6

 
   
  

Sol :

Given A = 

  2  4 2 1
2 5   7 3

  3   7 8 6

 
   
  

Finding Non-zero vector in col A

The column space of A is the span of it column ? any non- zero linear combinations of columns of A will
be a non - zero vector in col A.

V = 

 2
2

 3

 
  
  

V is  Non - zero vector in col A.

Finding Non-zero vector in Nocl (A)

We need to solve the homogeneous equation

Ax = 0

  2  4 2 1
2 5   7 3

  3   7 8 6

 
   
  

1

2

3

4

x

x

x

x

 
 
 
 
 
  

=

0
0
0

 
 
 
  

  2  4 2 1 0
2 5   7 3 0

  3   7 8 6 0

 
   
  

By using echelon form
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by using,

R2 = R2 + R1 
2 4 2 1 0
0 1 5 4 0
3 7 8 6 0

 
  
  

R3 = R3 – 
3
2

R1  

2  4 2 1 0
0 1   5 4 0
0  1 5 9 0

2

 
 
 

 
 
 
 

R3 = R3 + R2 

2 4 2 1 0
0 1 5 4 0
0 0 0 17 0

2

 
 
 

 
 
 
 

2x1 + 4x2 – 2x3 + x4 = 0  .......... (1)

 – x2 + 5x3 + 4x4 = 0     ..........(2)

4
17

x 0
2

 ......... (3)

Solving we system

4
17

x 0
2



4x 0

x4 = 0, put in (2)

– x2 + 5x3 + 4 (0) = 0

– x2 + 5x3 = 0

x2 = 5x3

Put x2 = 5x3 , x4 = 0 in (1)

2x1 + 4x2 – 2x3 + x4 = 0

2x1 + 4(5x3) – 2x3 + 0 = 0

2x1 + 20x3 – 2x3 = 0

2x1+18 x3 = 0

2x1 = –18x3
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x1 = 
18
9

2
x3

1 3x 9x 

Solution is

x1 = – 9x3

x2= 5x3

x3 = x3

x4 = 0

Nul (A) is spanned by vector

V = 

9

 5

 1
 0

 
 
 
 
 
 

This is a non-zero vector in Nol (A)

2x1 + 4x2 – 2x3 + x4 = 0  2(–9) + 4(5) – 2(1) + 0 = 0

= – 18 + 20 – 2 = 0  –20 + 20 = 0

(OR)

7. Determine whether the set S = {v1, v2, v3} is a basis of R3,

where v1 = 
  2
1

  1

 
  
  

, v2 = 
 2
3

 2

 
  
  

, v3 = 
8

  5
  4

 
 
 
  

Sol :
Given

v1 = 
  2
1

  1

 
  
  

, v2 = 

 2
3

 2

 
  
  

, v3 = 

8
  5
  4

 
 
 
  

To determine whether the set S = {v1, v2, v3}

for R3, we need to check two things.

1. Linear Independent

2. Spanning
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1. Linear Independent

A = 

2 2 8
1 3 5

1 2 4

 
   
  

A = 2 3 5
2 4
 
 
 

 –2 1 5

1 4

 
 
 

– 8 1 3
1 2
  
 
 

     = 2( – 12 – 10) – 2 (–4 – 5) – 8 (–2 + 3)

    = 2 (–22) – 2 ( – 9) – 8 (1)

    = –44 + 18 – 8

|A|= – 34

|A|  0 , So Linear Independent.

Because the vector are L.I and there are three of then in IR3, they must also span R3.

The set  s= {v1, v2, v3} is basis for IR3.

Unit-IV

8. Find eigen values and eigen vectors of A = 

4 1 6
2   1 6
2 1 8

 
 
 
  

Sol :

Given  A =

4 1 6
2   1 6
2 1 8

 
 
 
  

Characteristic Equation

det (A – I) = 0

A – I =
4 1 6
2 1 6
2 1 8

   
   
    

= (4 – ) 
1 6

1 8
 
   +1 

2 6
2 8
 
   

+ 6 2 1
2 1

  
  

= (4 – ) [(1 – ) (8 – ) + 6] + 1 (2(8 – ) – 12) + 6 ( –2 –2 (1 – )

= (4 – ) [8 –  – 8 + 2 + 6] + [16 – 2 – 12] + 6 (–2 – 2 + 2)

= (4 – ) (2 – 9 + 14) + (–2 + 4) + 6(2 – 4)
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= 42 – 36 + 56 – 3 + 92 –14 – 2 + 4 + 12 – 24

= – 3 + 132 – 40  + 36

by using factorization method

– 3 + 132 – 40 + 36 = 0

( – 2) (– 2 + 1l – 18) = 0

( – 2) ( – 2) ( – 9) = 0

( – 2)2 ( – 9) = 0

1 = 2, 2 = 2, 1 = 9

Eigen vector

1 = 2  in A –  I

A – 2I = 

4 2 1 6
2 1 2 6
2 1 8 2

  
  
   

 = 

2 1 6
2 1 6
2 1 6

 
  
  

(A – 2I)x = 0

1

2

3

x2 1 6 0

2 1 6 x 0
2 1 6 0x

     
         
        

2x1 – x2 + 6x3 = 0

2x1 – x2 + 6x3 = 0

2x1 – x2 + 6x3 = 0

Take Eq (1)  2x1 – x2 + 6x3 = 0

Let x3 = t

x2 = 2x1 + 6t

x1 = s

x2 = 2s + 6t

1 = 2

x1 = 

s
2s 6t

t

 
  
  

 = s 

1
2
0

 
 
 
  

 + t 

0
6
1

 
 
 
  

This mean that any combination of these two vectors is an eigen vector corresponding to 1 = 2
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x1 = 
1
2
0

 
 
 
  

1
1x = 

0
6
1

 
 
 
  

Eigen vector for  2 = 9

Put 2 = 9 in A – 2 I

A – aI = 

4 9 1 6
2 1 9 6

2 1 1

  
  
   

1

2

3

x

x

x

 
 
 
  

= 

0
0
0

 
 
 
  

          = 

5 1 6
2 8 6
2 1 1

  
  
   

1

2

3

x

x

x

 
 
 
  

=

0
0
0

 
 
 
  

System of equation

– 5x1 – x2 + 6x3
 = 0 ...... (1)

2x1 – 8x2 + 6x3 = 0 ...... (2)

2x1 – x2 – x3 = 0 ....... (3)

2 × (2) – (2)

2(–5x1 – x2 + 6x3) – (2x1 – 8x2 +6x3) = 0

– 10x1 – 2x2 + 12x3 – 2x1 + 8x2 – 6x3 = 0

–12x1 + 6x2 + 6x3 = 0

– 2x1 + x2 + x3 = 0

Now we have

1. –5x1 – x2 + 6x3 = 0

2. –2x1 + x2 + x3 = 0

3. 2x1 – x2 – x3 = 0

Notice that the second and third Equation are essentials

some – 2x1 + x2 + x3 = 0

So we only need to solve two equation

1. – 5x1 – x2 + 6x3 = 0

2. – 2x1 + x2 + x3 = 0

(2)   x2 = 2x1 – x3  ...... (4)

Put in (1) – 5x1 – (2x1 – x3) + 6x3 = 0

– 5x1 – 2x1 + x3 + 6x3 = 0

         –  7x1 +7x3 = 0
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x1 = x3

So, x2 = 2x1 – x3 = x1, therefore the eigenvector corresponding 6 to 2 = 9 is

x2 = 

1

2

3

x

x

x

 
 
 
  

, x1 = 

1
1
1

 
 
 
  

Finding  Eigen vectors

1 = 2

x1= 

1
2

0

 
 
 
  

, 1
1x

0
6

1

 
 
 
  

2 = 9

2 = 

1
1
1

 
 
 
  

(OR)

9. Find the characteristic polynomial of A = 

5 0 0 0
2 4 0 0
2 2 4 0
6  6  0 1

 
 
 
  
 
 

Sol :

Given A = 

5 0 0 0
2 4 0 0
2 2 4 0
6  6  0 1

 
 
 
  
 
 

Characteristic Equation

det (A –I) = 0

(A –I) = 

5 0 0 0
2 4 0 0
2 2 4 0
6  6  0 1

 
 
 
  
 
 

 –  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 
 
 
 



BCA II YEAR  III SEMESTER

192
Rahul Publications

           = 

5 0 0 0
2 4 0 0
2 2 4 0
6 6 0 1

  
   
    
 

  

= (5 – ) 

4 0 0
2 4 0

6 0 1

  
     
   

= (5 – ) (4 – )
4 0
0 1

   
   

= (5 – )(4 – )((– 4 –)(1 – ) – 0)

= (5 – )(4 – ) (– 4 –) (1 – )

= (20 – 5 – 4 + 2) ( – 4 + 4 –  + 2)

= – 80 + 80 – 20 + 220 + 20 – 220 + 25 – 35  + 16  – 216 + 24 – 34 –

24 + 34 – 3 + 4

= 4 – 63 – 112 +96 – 80

Characteristic Equation of matrix A

4 3 26 11 96 80       

Unit-V

10. Diagonalize the matrix A = 

 1  3  3
3 5 3

 3  3  1

 
    
  

, if possible.

Sol :

Given A = 

1 3 3
3 5 3

3 3 1

 
    
  

Characteristic Equation

det (A – I) = 0

A – I = 

1 3 3
3 5 3

3 3 1

 
    
  

 – l 

1 0 0
0 1 0
0 0 1

 
 
 
  
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  = 

1 3 3
3 5 3

3 3 1

  
      
   

det (A – I) = det 

1 3 3
3 5 3

3 3 1

  
      
   

= (1 – ) 
5 3
3 1

   
 

– 3 
3 3

3 1

 
 

+ 3 
3 5

3 3

   

= (1 – ) (2 + 4 + 4) – 3 (3 6)  + 3  3 6 

= (1 – ) (2 + 4 + 4)

= (1 – ) ( + 2)2 = 0

Eigen values

1 = 1, 2 = – 2, –2

Finding Eigen vectors :

(A – I) x = 0

Let 1 = 1, (A – I) =
0 3 3
3 6 3

3 3 0

 
    
  

0 3 3
3 6 3

3 3 0

 
    
  

1

2

3

x

x

x

 
 
 
  

= 

0
0
0

 
 
 
  

3x2 + 3x3 = 0 ......... (1)

– 3x1 – 6x2 – 3x3 = 0 ......... (2)

3x1 + 3x2 = 0 ......... (3)

We get (1)

3x2 + 3x3 = 0

3 x2 = – 3 x3

2 3x x 

– 3x1 – 6x2 – 3x3 = 0

– 3x1 – 6(–x3) – 3 x3 = 0
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– 3x1 + 6x3 – 3x3 = 0

– 3x1 + 3x3 = 0

– 3 x1 = – 3 x3

1 3x x

Eigen vector for 2 = – 2

A + 2I = 

3 3 3
3 3 3

3 3 3

 
    
  

Solve the system

3 3 3
3 3 3

3 3 3

 
    
  

1

2

3

x

x

x

 
 
 
  

= 

0
0

0

 
 
 
  

x1+ x2
 + x3 = 0

This gives us two independent eigen vectors

v2 = 
1
0
1

 
 
 
  

, v3 = 
0
1
1

 
 
 
  

Diagonalize A

P = 
1 1 0
1 0 1

1 1 1

 
  
   

D = 

1 0 0
0 2 0
0 0 2

 
  
  

A = P D P–1

Where P is the Matrix of eigenvectors and D is diagonal matrix of eigen valued confirm that A is
diagonalizable.

(OR)

11. Construct general solution of x' = Ax where A = 
4 5
2 1

 
  
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Sol :

Given A = 
4 5

2 1

 
  

Finding eigen values

Characteristic Equation

det (A – I) = 0

(A – I) = 
4 5
2 1

 
  

–  
1 0
0 1
 
 
 

            = 
4 5

2 1
   

    

det (A – I) = (4 – ) (1 – ) – 10

          = 4 – 4 –  + 2 – 10

= 2 – 5 – 6 = 0

= ( – 6) ( + 1) = 0

Eigen values

1 = 6, 2 = 1

Finding the Eigen vector of A

1 = 6,  (A – I) v = 0

(A – 6I) v = 0

(A – 6I) = 
4 6 5

2 1 6
  

   

    = 
2 5
2 5
  
   

System of equation

 – 2x1 – 5x2 = 0

– 2x1 = 5x2

1 2
5

x x
2

 

eigen vector for 1 = 6

v1 = 
5
2

 
  
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eigen vector for 2 = – 1

A + 1 = 
4 1 5

2 1 1
  

   

  = 
5 5
2 2

 
  

System of equation

5x1 – 5x2 = 0  5 x1 = 5 x2

x1 = x2

eigen vector of 2 = – 1

v2 = 
1
1
 
 
 

Construct the General solution

The general solution to the system is a linear combination of the solutions associated with each eigen
value  and eigenvectors.

x(t) = c1e
1t x1 + c2 e

2t x2

Substituting the eigen values and eigen vectors

x(t) = 
6t

1
5

c e
2

 
  

 + t
2

1
c e

1
  
 
 

x (t) = 
6t t

1 2
6t t

1 2

5c e c e

2c e c e





 
 
   

where c1 & c2 are arbitrary constant determined by initial conditions.


