
Rahul’s 4
Topper’s Voice

- by -

WELL EXPERIENCED LECTURER

M.Sc.
(COMPUTER SCIENCE)

II Year IV Sem
(Osmania University)

ARTIFICIAL
INTELLIGENCE

 Study Manual

 Important Questions

 Solved Model Papers

LATEST EDITION
2024

NEW

SYLLABUS

Price

 `. 199-00

 `. 159-00

TM

Hyderabad. Cell : 9391018098, 9505799122.
Rahul Publications

All disputes are subjects to Hyderabad Jurisdiction only

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

M.Sc.
II Year IV Sem

ARTIFICIAL
INTELLIGENCE

Price

 `. 199-00

 `. 159-00

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

C
O
N
T
E
N
T
S

Important Questions V - VIII

Model Paper - I IX - IX

Model Paper - II X - X

Model Paper - III XI - XI

Unit - I 1 - 24

Unit - II 25 - 54

Unit - III 55 - 90

Unit - IV 91 - 146

ARTIFICIAL
INTELLIGENCE

SYLLABUS

UNIT – I

Introduction to Artificial Intelligence: introduction, AI techniques, problem solving with AI, AI
models, data acquisition and learning aspects in AI. Problem Solving: problem-solving process,
formulating problem, problem types and characteristics, problem analysis and representation,
problem space and search, toy problems, real-world problems, problem reduction methods.
Uniformed Search: general search algorithm, uniformed search methods – BFS, uniform cost
search, DFS, DLS, IS, bi-directional search, comparison of the uniformed techniques.

UNIT – II

Informed Search: generate and test, best first search, greedy search, A* search, memory bounded
heuristic search, heuristic function, AO* search, local search algorithms and optimization
problems, adversarial search methods (game theory), online search algorithms. What is an
intelligent agent? Types of agent, what is constraint satisfaction problem (CSP), CSP as search
problem, local search for CSP, formulating problem structure. Knowledge and Reasoning:
knowledge representation, knowledge-based agents, the wumpus world, logic, propositional
logic, predicate logic, unification and lifting: inference in FOL, representing knowledge using
rules, semantic networks, frame systems, inference, types of reasoning.

UNIT – III

Uncertain Knowledge and Reasoning: uncertainty and methods, Bayesian probability and belief
network, probabilistic reasoning, probabilisticreasoning over time, forward and backward
reasoning, perception, making simple decisions, making complex decisions, other techniques in
uncertainty and reasoning process. Planning problem, simple planning agent, planning languages,
blocks world, goal stack planning, means-ends analysis, planning as a state-space search. Learning:
what is machine learning? Learning paradigms, learning concepts, methods and models, statistical
learning methods, artificial neural networks–based learning, support vector machines,
reinforcement learning.

UNIT – IV

Expert Systems: architecture of expert system, confidence factors, existing expert systems,
knowledge acquisition, shell and explanations, self-explaining system, rule-based expert systems,
forward and backward chaining, frame-based expert systems, uncertainty management in expert
systems, expert system and DSS, pros and cons of expert systems, case study. Pattern Recognition:
machine perception and pattern recognition, feature extraction, classification, object recognition,
speech recognition, pattern mining.Game Playing: important concepts of game theory, game
playing and knowledge structure, game as search problem, alpha-beta pruning, game theory
problems, robotics. Concepts and terminology of ANN, feed-forward NN, feedback networks,
pattern associative networks, competitive learning, fuzzy sets, fuzzy inference process, neuro-
fuzzy systems, range of AI applications, AI applications and examples, case study: agricultural
domain – farmer’s intelligent assistant.

I

Contents
Topic Page No.

UNIT - I
1.1 Introduction To Artificial Intelligence .. 1

1.1.1 Introduction ... 1

1.1.2 AI Techniques ... 3

1.1.3 Problem Solving with AI ... 3

1.1.4 AI Models ... 4

1.1.5 Data Acquisition and Learning Aspects in AI... 5

1.2 Problem Solving .. 6

1.2.1 Problem-solving Process ... 6

1.2.2 Formulating Problem ... 6

1.2.3 Problem Types and Characteristics ... 7

1.2.4 Problem Analysis and Representation ..10

1.2.5 Problem Space and Search ..11

1.2.6 Toy Problems ...12

1.2.7 Real-World Problems ...16

1.2.8 Problem Reduction Methods ..16

1.3 Uniformed Search ... 17

1.3.1 General Search Algorithm ..17

1.3.2 Uniformed Search Methods - BFS ...18

1.3.3 Uniform Cost Search ..19

1.3.4 DFS .. 20

1.3.5 DLS .. 21

1.3.6 IS ... 22

1.3.7 Bi-Directional Search ..23

1.3.8 Comparison of the Uniformed Techniques ...24

UNIT - II

2.1 Informed Search ... 25

2.1.1 General and Test ..25

2.1.2 Best First Search ...25

2.1.3 Greedy Search ...26

2.1.4 A* Search... 26

II

Topic Page No.
2.1.5 Memory Bounded Heuristic Search. ..27

2.1.6 Heuristic Function ..27

2.1.7 AO* Search ... 28

2.1.8 Local Search Algorithms and Optimization Problems 29

2.1.9 Adversarial Search Methods (Game Theory) ... 31

2.1.10 Online Search Algorithms ...33

2.2 What is an Intelligent Agent ...33

2.2.1 Types of Agent ..33

2.2.2 What is Constraint Satisfaction Problem (CSP)... 35

2.2.3 CSP as Search Problem ...37

2.2.4 Local Search for CSP ...38

2.2.5 Formulating Problem Structure ..40

2.3 Knowledge And Reasoning ...41

2.3.1 Knowledge Representation...41

2.3.2 Knowledge-Based Agents ...42

2.3.3 The Wumpus World ...43

2.3.4 Logic .. 45

2.3.5 Propositional Logic ...46

2.3.6 Predicate Logic ...48

2.4 Unification and Lifting ...49

2.4.1 Inference in FOL ..49

2.4.2 Representing Knowledge Using Rules ...52

2.4.3 Semantic Networks ..52

2.4.4 Frame Systems ...53

2.4.5 Inference .. 53

2.4.6 Types of Reasoning ..54

UNIT - III

3.1 Uncertain Knowledge and Reasoning ... 55

3.1.1 Uncertainty and Methods .. 55

3.1.2 Bayesian Probability and Belief Network ... 56

3.1.3 Probabilistic Reasoning .. 58

3.1.4 Probabilistic Reasoning Over Time .. 59

III

Topic Page No.
3.1.5 Forward and Backward Reasoning .. 61

3.1.6 Perception Making Simple Decisions.. 63

3.1.7 Making Complex Decisions ... 64

3.1.8 Other Techniques in Uncertainty and Reasoning Process................................... 66

3.2 Planning Problem... 67

3.2.1 Simple Planning Agent .. 69

3.2.2 Planning Languages .. 69

3.2.3 Blocks World ... 70

3.2.4 Goal Stack Planning Means-ends Analysis ... 73

3.2.5 Planning as a State-space Search .. 76

3.3 Learning ... 76

3.3.1 What Is Machine Learning? ... 76

3.3.2 Learning Paradigms ... 77

3.3.3 Learning Concepts .. 78

3.3.4 Methods and Models ... 80

3.3.5 Statistical Learning Methods .. 82

3.3.6 Artificial Neural Networks–Based Learning .. 84

3.3.7 Support Vector Machines .. 88

3.3.8 Reinforcement Learning .. 89

UNIT - IV

4.1 Expert Systems .. 91

4.1.1 Architecture of Expert System ... 91

4.1.2 Confidence Factors .. 92

4.1.3 Existing Expert Systems Expert Systems - Dendral, Mycin 93

4.1.4 Knowledge Acquisition .. 94

4.1.5 Shell and Explanations .. 96

4.1.6 Self-Explaining System .. 97

4.1.7 Rule-based Expert Systems ... 97

4.1.8 Forward and Backward Chaining .. 98

j 4.1.9 Frame-based Expert Systems .. 101

4.1.10 Uncertainty Management in Expert Systems ... 105

4.1.11 Expert System and DSS .. 107

4.1.12 Pros and Cons of Expert Systems ... 108

4.1.13 Case Study .. 109

IV

Topic Page No.
4.2 Pattern Recognition .. 113

4.2.1 Machine Perception And Pattern Recognition .. 113

4.2.2 Feature Extraction ... 115

4.2.3 Classification .. 115

4.2.4 Object Recognition .. 115

4.2.5 Speech Recognition... 116

4.2.6 Pattern Mining ... 117

4.3 Game Playing... 118

4.3.1 Important Concepts of Game Theory ... 118

4.3.2 Game Playing and Knowledge Structure ... 119

4.3.3 Game As Search Problem ... 119

4.3.4 Alpha-beta Pruning ... 121

4.3.5 Game Theory Problems .. 122

4.3.6 Robotics .. 124

4.4 Concepts And Terminology Of Ann ... 125

4.4.1 Feed-Forward NN ... 125

4.4.2 Feedback Networks ... 126

4.4.3 Pattern Associative Networks ... 127

4.4.4 Competitive Learning .. 132

4.4.5 Fuzzy Sets .. 133

4.4.6 Fuzzy Inference Process ... 136

4.4.7 Neuro-Fuzzy Systems .. 138

4.4.8 Range of AI Applications ... 141

4.4.9 AI Applications And Examples ... 141

4.5 Case Study ... 145

4.5.1 Agricultural Domain – Farmer’s Intelligent Assistant ... 145

V
Rahul Publications

IMPORTANT QUESTIONS ARTIFICIAL INTELLIGENCE

UNIT - I

SHORT QUESTIONS

1. What is Artificial Intelligence?

2. Write any two applications of AI.

3. What is AI Technique?

4. What is Data acquisition?

5. What is learning? What are various learning aspects in AI ?

6. What is state space search ? write about it.

7. Write a note on the real world problems that AI can solve

8. Write about depth limit search

9. Write about bi- directional search

10. Compare between the search strategies

LONG QUESTIONS

1. What is Artificial Intelligence? Write about various approaches used to define AI.

2. Write about problem solving techniques in AI.

3. Explain the steps needed to build a system to solve a particular problem.

4. Explain about problem formulation.

5. What are various types of problems.

6. Write about problem characteristics.

7. Write the solution for missionaries and cannibals problem.

8. Explain various problem reduction methods.

9. Explain BFS method.

10. Explain Iterative deepening depth-first search (IDS).

Important Questions

VI
Rahul Publications

M.Sc. II YEAR IV SEMESTER

UNIT - II

SHORT QUESTIONS

1. Write about generate and test strategy.

2. What is greedy search.

3. What is memory bounded heuristic search

4. What is Simulated Annealing?

5. What is online algorithm?

6. What is an intelligent Agent ?

7. What is constraint satisfaction problem?

8. Write a note on Knowledge representation.

9. Write a note on Semantic Nets.

10. Write a note Frame systems.

LONG QUESTIONS

1. Explain A* Algorithm

2. What is heuristic function? Explain with an example.

3. Explain AO* ALGORITHM.

4. Explain Hill Climbing Search algorithm for optimization problems

5. Explain Mini-Max Algorithm with Alpha beta pruning.

6. What is alpha-beta pruning? Explain.

7. What are the various types of agents? Write about them.

8. What is Problem Formulation? Explain How to formulate the problems in AI.

9. Explain the rules of Inference for FOL.

10. Write about Knowledge representation rules.

VII
Rahul Publications

IMPORTANT QUESTIONS ARTIFICIAL INTELLIGENCE

UNIT - III

SHORT QUESTIONS

1. What is probabilistic reasoning?

2. Explain about Markov chains.

3. Write about backward reasoning.

4. Write about forward reasoning.

5. How perception is used in making simple decisions.

6. Write a note on simple planning agent.

7. Write about Artificial intelligence planning language STRIPS

8. What is machine learning?

9. What are Support Vector Machines ?

10. What does Reinforcement Learning mean?

LONG QUESTIONS

1. What is Uncertainty? How uncertainty can be handled in AI.

2. Explain in detail about belief networks.

3. What is probabilistic reasoning? Explain.

4. Explain hidden Markov models.

5. What is planning system Explain about it with the help of block world puzzle example.

6. Write about planning as state-space search.

7. Explain about learning paradigms.

8. Explain about various models in machine learning.

9. Explain about statistical learning methods.

10. Write about Artificial Neural network based learning.

VIII
Rahul Publications

M.Sc. II YEAR IV SEMESTER

UNIT - IV

SHORT QUESTIONS

1. What is Expert System?

2. What are confidence factors in expert systems

3. What is rule based expert systems

4 . Distinguish between expert systems and DSS

5. What is Pattern Recognition

6. What Is Object Recognition?

7. What is speech recognition?

8. What is pattern mining ? write about it

9. What is game theory?

10. What is Artificial Neural Network?

LONG QUESTIONS

1. Explain Expert system shells.

2. Explain about rule based expert systems.

3. Explain frame-based expert systems.

4. Explain uncertainty management in expert systems.

5. Write about the advantages and disadvantages of expert systems.

6. What is Machine Perception?

7. What is Pattern Recognition and Explain about the approaches of pattern recognition.

8. What is Object Recognition? Explain object recognition techniques.

9. Explain about Feed Forward and feed back Neural Networks.

10. What are Fuzzy Sets ? Write about how to implement fuzzy sets.

IX
Rahul Publications

SOLVED MODEL PAPERS ARTIFICIAL INTELLIGENCE

FACULTIES OF COMPUTER SCIENCE
M.Sc. IV Semester Examination

Model Paper - I

ARTIFICIAL INTELLIGENCE
Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)
Answer all Questions

Each question carries equal marks
ANSWERS

1. What is Artificial Intelligence? (Unit-I, Q.No. 1)

2. Write about depth limit search. (Unit-I, Q.No. 22)

3. What is an intelligent Agent ? (Unit-II, Q.No. 13)

4. Write a note on Semantic Nets. (Unit-II, Q.No. 27)

5. Write about backward reasoning. (Unit-III, Q.No. 8)

6. What are Support Vector Machines? (Unit-III, Q.No. 24)

7. What is Expert System? (Unit-IV, Q.No. 1)

8. What is Artificial Neural Network? (Unit-IV, Q.No. 31)

PART- B (4 × 12 = 48 M)
Answer any four from the following

9 a) Explain about problem formulation. (Unit-I, Q.No. 9)

 b) Explain Iterative deepening depth-first search (IDS). (Unit-I, Q.No. 23)

10a). Explain AO* ALGORITHM. (Unit-II, Q.No. 7)

 b) Explain the rules of Inference for FOL. (Unit-II, Q.No. 25)

11a) Explain in detail about belief networks. (Unit-III, Q.No. 3)

 b). What is planning system Explain about it with the help of block (Unit-III, Q.No. 12)
world puzzle example.

12a). What is Pattern Recognition and Explain about the approaches (Unit-IV, Q.No. 17)
of pattern recognition.

 b) What are Fuzzy Sets ? Write about how to implement fuzzy sets. (Unit-IV, Q.No. 37)

X
Rahul Publications

M.Sc. II YEAR IV SEMESTER

FACULTIES OF COMPUTER SCIENCE
M.Sc. IV Semester Examination

Model Paper - II

ARTIFICIAL INTELLIGENCE
Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)
Answer all Questions

Each question carries equal marks
ANSWERS

1. What is AI Technique? (Unit-I, Q.No. 3)

2. What is learning? What are various learning aspects in AI ? (Unit-I, Q.No. 7)

3. What is Simulated Annealing? (Unit-II, Q.No. 9)

4. Write a note on Knowledge representation. (Unit-II, Q.No. 19)

5. Write about forward reasoning. (Unit-III, Q.No. 8)

6. What is machine learning? (Unit-III, Q.No. 18)

7. What is Pattern Recognition ? (Unit-IV, Q.No. 17)

8. What is speech recognition? (Unit-IV, Q.No. 21)

PART- B (4 × 12 = 48 M)
Answer any four from the following

9. a) Write about problem solving techniques in AI. (Unit-I, Q.No. 4)

 b) Explain how to analyse and represent the problem. (Unit-I, Q.No. 12)

10a). Explain Hill Climbing Search algorithm for optimization problems. (Unit-II, Q.No. 8)

 b) Write about Knowledge representation rules. (Unit-II, Q.No. 26)

11a) What is Uncertainty? How uncertainty can be handled in AI. (Unit-III, Q.No. 1)

 b) Explain about statistical learning methods. (Unit-III, Q.No. 22)

12a) Compare Forward and Backward chaining with an example. (Unit-IV, Q.No. 10)

 b) Write about feed back networks. (Unit-IV, Q.No. 33)

XI
Rahul Publications

SOLVED MODEL PAPERS ARTIFICIAL INTELLIGENCE

FACULTIES OF COMPUTER SCIENCE
M.Sc. IV Semester Examination

Model Paper - III

ARTIFICIAL INTELLIGENCE
Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)
Answer all Questions

Each question carries equal marks
ANSWERS

1. What is Data acquisition? (Unit-I, Q.No. 6)

2. What is state space search ? write about it. (Unit-I, Q.No. 13)

3. What is online algorithm? (Unit-II, Q.No. 12)

4. What is an intelligent Agent ? (Unit-II, Q.No. 13)

5. Write a note on simple planning agent. (Unit-III, Q.No. 13)

6. What does Reinforcement Learning mean? (Unit-III, Q.No. 25)

7. What are known as classifiers in expert system? (Unit-IV, Q.No. 19)

8. What is Object Recognition? (Unit-IV, Q.No. 20)

PART- B (4 × 12 = 48 M)
Answer any four from the following

9a) Write about AI learning Models. (Unit-I, Q.No. 5)

 b) Explain various problem reduction methods. (Unit-I, Q.No. 17)

10a) What is alpha-beta pruning? Explain. (Unit-II, Q.No. 11)

 b) What are known as Knowledge based agents? Explain them. (Unit-II, Q.No. 20)

11a) Write Planning-Goal Stack Algorithm. (Unit-III, Q.No. 16)

 b) Write about Artificial Neural network based learning. (Unit-III, Q.No. 23)

12a) Explain uncertainty management in expert systems. (Unit-IV, Q.No. 12)

 b) Explain about Feed Forward andfeed backNeural Networks. (Unit-IV, Q.No. 32 & 33)

ARTIFICIAL INTELLIGENCE

1
Rahul Publications

1.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

1.1.1 Introduction

Q1. What is Artificial Intelligence? Write about various approaches used to define AI.

Ans :
Artificial Intelligence is the branch of computer science concerned with making computers behave

like humans.

The definitions of AI according to some text books are categorized into four approaches and are
summarized in the table below :

Systems that think like humans

“The exciting new effort to make computers think

… machines with minds in the full and literal

sense.”

Systems that think rationally

“The study of mental faculties through the use of

computer models.”

Systems that act like humans

The art of creating machines that perform functions

that require intelligence when performed by

people.”

Systems that act rationally

“Computational intelligence is the study of the

design of intelligent agents.”

The four approaches in more detail are as follows :

a) Acting humanly : The Turing Test approach

 Test proposed by Alan Turing in 1950

 The computer is asked questions by a human interrogator.

The computer passes the test if a human interrogator,after posing some written questions,cannot tell
whether the written responses come from a person or not. Programming a computer to pass ,the computer
need to possess the following capabilities :

 Natural language processing to enable it to communicate successfully in English.

 Knowledge representation to store what it knows or hears

 Automated reasoning to use the stored information to answer questions and to draw new
conclusions.

UNIT
I

Introduction to Artificial Intelligence: introduction, AI techniques, problem
solving with AI, AI models, data acquisition and learning aspects in AI. Problem
Solving: problem-solving process, formulating problem, problem types and
characteristics, problem analysis and representation, problem space and search,
toy problems, real-world problems, problem reduction methods.

Uniformed Search: general search algorithm, uniformed search methods –
BFS, uniform cost search, DFS, DLS, IS, bi-directional search, comparison of
the uniformed techniques.

M.Sc. IV Sem UNIT - I

2
Rahul Publications

 Machine learning to adapt to new
circumstances and to detect and
extrapolate patterns

To pass the complete Turing Test, the computer
will need :

 Computer vision to perceive the
objects,and

 Robotics to manipulate objects and
move about.

b) Thinking humanly : The cognitive
modelling approach

We need to get inside actual working of the
human mind :

a) through introspection – trying to capture
our own thoughts as they go by;

b) through psychological experiments

Allen Newell and Herbert Simon,who
developed GPS,the “General Problem Solver”
tried to trace the reasoning steps to traces of human
subjects solving the same problems.

The interdisciplinary field of cognitive science
brings together computer models from AI and
experimental techniques from psychology to try to
construct precise and testable theories of the
workings of the human mind

c) Thinking rationally : The “laws of thought
approach”

The Greek philosopher Aristotle was one of the
first to attempt to codify “right thinking”,that is
irrefuatable reasoning processes. His syllogism
provided patterns for argument structures that
always yielded correct conclusions when given
correct premises—for example,”Socrates is a man;all
men are mortal;therefore Socrates is mortal.”.

These laws of thought were supposed to govern
the operation of the mind;their study initiated a field
called logic.

d) Acting rationally : The rational agent
approach

An agent is something that acts. Computer
agents are not mere programs ,but they are
expected to have the following attributes also : (a)

operating under autonomous control, (b)
perceiving their environment, (c) persisting over a
prolonged time period, (e) adapting to change.

A rational agent is one that acts so as to
achieve the best outcome.

Q2. Explain the applications of AI.

Ans :
Applications of AI

AI has been dominant in various fields such as:

 Gaming : AI plays crucial role in strategic
games such as chess, poker, tic-tac-toe, etc.,
where machine can think of large number of
possible positions based on heuristic knowledge.

 Natural Language Processing : It is possible
to interact with the computer that understands
natural language spoken by humans.

 Expert Systems : There are some applications
which integrate machine, software, and special
information to impart reasoning and advising.
They provide explanation and advice to the
users.

 Vision Systems : These systems understand,
interpret, and comprehend visual input on the
computer. For example,

– A spying aeroplane takes photographs,
which are used to figure out spatial
information or map of the areas.

– Doctors use clinical expert system to
diagnose the patient.

– Police use computer software that can
recognize the face of criminal with the
stored portrait made by forensic artist.

 Speech Recognition : Some intelligent
systems are capable of hearing and
comprehending the language in terms of
sentences and their meanings while a human
talks to it. It can handle different accents, slang
words, noise in the background, change in
human’s noise due to cold, etc.

 Handwriting Recognition : The handwriting
recognition software reads the text written on
paper by a pen or on screen by a stylus. It can

ARTIFICIAL INTELLIGENCE

3
Rahul Publications

recognize the shapes of the letters and convert
it into editable text.

 Intelligent Robots : Robots are able to
perform the tasks given by a human. They have
sensors to detect physical data from the real
world such as light, heat, temperature,
movement, sound, bump, and pressure. They
have efficient processors, multiple sensors and
huge memory, to exhibit intelligence. In
addition, they are capable of learning from their
mistakes and they can adapt to the new
environment.

1.1.2 AI Techniques

Q3. What is AI Technique ?

Ans :
AI problems are of many varieties and they

appear to have very little in common. But there
are techniques appropriate for the selection of
variety of those problems, AI researches have show
that “Intelligence requires knowledge”, and
knowledge itself posses some less desirable
properties.

 It voluminous

 It is hard characterize accurately

 It is constantly changing

 It differs from data

 It is organized data

AI techniques EXPLOIT knowledge and for this
knowledge must be represented as follows.

AI techniques must be designed keeping in mind
the above constraints imposed by AI problems. AI
techniques EXPLOIT knowledge and for this
knowledge must be represented as follows.

1. Knowledge captures generalizations: Instead of
representing individual situations separately,
situation that share important properties
grouped together, this avoids wastage of,
memory and unnecessary updation.

2. In many AI domains, most of the knowledge a
program has, must be provided by people in
terms of they understand.

3. It can be easily modified to correct errors.

4. It can be used in several situations even if it is
not totally accurate or complete.

5. It can be used to help overcome its own sheer
bulk, by helping to narrow the range of
possibilities that must be considered.

AI techniques must be designed keeping in mind
the above constraints imposed by AI problems.

1.1.3 Problem Solving with AI

Q4. Write about problem solving techniques
in AI.

Ans :
The steps that are required to build a system to

solve a particular problem are :

1. Problem Definition that must include precise
specifications of what the initial situation will be
as well as what final situations constitute
acceptable solutions to the problem.

2. Problem Analysis, this can have immense
impact on the appropriateness of varies possible
techniques for solving the problem.

3. Selection of the best technique(s) for solving
the particular problem.

Define the problem as a state Space Search

Consider the problem of “Playing Chess” .to
build a program that could play chess, we have to
specify the starting position of the chess board, the
rules that define legal moves. And the board position
that represent a win. The goal of the winning the
game, if possible, must be made explicit.

The starting position can be described by an 8
X 8 array square in which each element square (x,y),
(x varying from 1to 8 & y varying from1 to 8)
describes the board position of an appropriate chess
coin, the goal is any board position in which the
opponent does not have a legal move and his or
her “king” is under attack. The legal moves provide
the way of getting from initial state of final state.

M.Sc. IV Sem UNIT - I

4
Rahul Publications

 The legal moves can be described as a set of rules consisting of two parts: A left side that gives the
current position and the right side that describes the change to be made to the board position. An
example is shown in the following figure.

 Current Position Changing Board Position

While pawn at square (5, 2)

AND Move pawn from

Square (5, 3) is empty Square (5, 2) to

AND Square (5, 4)

Square (5, 4) is empty

The current position of a coin on the board is its STATE and the set of all possible STATES is STATE
SPACE. One or more states where the problem terminates is FINAL STATE or GOAL STATE . The state
space representation forms the basis of most of the AI methods. It allows for a formal definition of the
problem as the need to convert some given situation into some desired situation using a set of permissible
operations. It permits the problem to be solved with the help of known techniques and control strategies
to move through the problem space until goal state is found.

1.1.4 AI Models

Q5. Write about AI learning Models.

Ans :
AI Learning Models

AI learning models are classified into two types :

 Knowledge-Based Classification

 Feedback-Based Classification

1. Knowledge-Based Classification

Factoring its representation of knowledge, AI learning models can be classified in two main types:
inductive and deductive.

 Inductive Learning: This type of AI learning model is based on inferring a general rule from
datasets of input-output pairs.. Algorithms such as knowledge based inductive learning(KBIL)
are a great example of this type of AI learning technique. KBIL focused on finding inductive
hypotheses on a dataset with the help of background information.

 Deductive Learning: This type of AI learning technique starts with te series of rules and infers
new rules that are more efficient in the context of a specific AI algorithm. Explanation-Based
Learning(EBL) and Relevance-0Based Learning(RBL) are examples examples of deductive
techniques. EBL extracts general rules from examples by “generalizing” the explanation. RBL
focuses on identifying attributes and deductive generalizations from simple example.

2. Feedback-Based Classification

Based on the feedback characteristics, AI learning models can be classified as supervised, unsupervised,
semi-supervised or reinforced.

 Unsupervised Learning: Unsupervised models focus on learning a pattern in the input data
without any external feedback. Clustering is a classic example of unsupervised learning models.

ARTIFICIAL INTELLIGENCE

5
Rahul Publications

 Supervised Learning: Supervised
learning models use external feedback to
learning functions that map inputs to
output observations. In those models the
external environment acts as a “teacher”
of the AI algorithms.

 Semi-supervised Learning : Semi-
Supervised learning uses a set of curated,
labeled data and tries to infer new labels/
attributes on new data data sets. Semi-
Supervised learning models are a solid
middle ground between supervised and
unsupervised models.

 Reinforcement Learning : Rein-
forcement learning models use opposite
dynamics such as rewards and punishment
to “reinforce” different types of knowledge.
This type of learning technique is becoming
really popular in modern AI solutions.

1.1.5 Data Acquisition and Learning
Aspects in AI

Q6. What is Data acquisition ?

Ans :
Data acquisition is the process of sampling

signals that measure real world physical conditions
and converting the resulting samples into digital
numeric values that can be manipulated by a
computer. Data acquisition systems, abbreviated by
the acronyms DAS or DAQ, typically convert analog
waveforms into digital values for processing. The
components of data acquisition systems include :

 Sensors, to convert physical parameters to
electrical signals.

 Signal conditioning circuitry, to convert
sensor signals into a form that can be
converted to digital values.

 Analog-to-digital converters, to convert
conditioned sensor signals to digital values.

Q7. What is learning? What are various
learning aspects in AI ?

Ans :
 Most often heard criticisms of AI is that

machines cannot be called intelligent until they
are able to learn to do new things and adapt to
new situations, rather than simply doing as they
are told to do.

 Some critics of AI have been saying that
computers cannot learn!

 Definitions of Learning: changes in the system
that are adaptive in the sense that they enable
the system to do the same task or tasks drawn
from the same population more efficiently and
more effectively the next time.

 Learning covers a wide range of phenomenon:

– Skill refinement: Practice makes skills
improve. More you play tennis, better you
get.

– Knowledge acquisition: Knowledge is
generally acquired through experience.

Various learning Mechanisms

 Simple storing of computed information or rote
learning, is the most basic learning activity.

 Many computer programs i e., database systems
can be said to learn in this sense although most
people would not call such simple storage
learning.

 Another way we learn if through taking advice
from others. Advice taking is similar to rote
learning, but high-level advice may not be in a
form simple enough for a program to use
directly in problem solving.

 People also learn through their own problem-
solving experience.

 Learning from examples: we often learn to
classify things in the world without being given
explicit rules.

 Learning from examples usually involves a
teacher who helps us classify things by
correcting us when we are wrong.

M.Sc. IV Sem UNIT - I

6
Rahul Publications

1.2 PROBLEM SOLVING

1.2.1 Problem-solving Process

Q8. Explain the steps needed to build a system to solve a particular problem.

Ans :
The steps that are required to build a system to solve a particular problem are :

1. Problem Definition that must include precise specifications of what the initial situation will be as well as
what final situations constitute acceptable solutions to the problem.

2. Problem Analysis , this can have immense impact on the appropriateness of varies possible techniques
for solving the problem.

3. Selection of the best technique(s) for solving the particular problem.

Define the Problem as State Space Search

Consider the problem of “Playing Chess” .to build a program that could play chess, we have to
specify the starting position of the chess board, the rules that define legal moves. And the board position
that represent a win. The goal of the winning the game, if possible, must be made explicit.

The starting position can be described by an 8 X 8 array square in which each element square (x,y),(x
varying from 1to 8 & y varying from 1 to 8) describes the board position of an appropriate chess coin, the
goal is any board position in which the opponent does not have a legal move and his or her “king” is
under attack. The legal moves provide the way of getting from initial state of final state.

The legal moves can be described as a set of rules consisting of two parts: A left side that gives the
current position and the right side that describes the change to be made to the board position. An example
is shown in the following figure.

Current Position

While pawn at square (5, 2), AND Square (5, 3) is empty, AND Square (5, 4) is empty.

Changing Board Position

 Move pawn from Square (5 , 2) to Square (5, 4).

The current position of a coin on the board is its STATE and the set of all possible STATES is STATE
SPACE. One or more states where the problem terminates is FINAL STATE or GOAL STATE . The state
space representation forms the basis of most of the AI methods. It allows for a formal definition of the
problem as the need to convert some given situation into some desired situation using a set of permissible
operations. It permits the problem to be solved with the help of known techniques and control strategies
to move through the problem space until goal state is found.

Some of the problems that fall within the scope of AI and the kinds of techniques will be useful to
solve these problems.

1.2.2 Formulating Problem

9. Explain about problem formulation.

Ans :
Problem Formulation

 A problem formulation is about deciding what actions and states to consider, we will come to this
point it shortly.

ARTIFICIAL INTELLIGENCE

7
Rahul Publications

 We will describe our states as “in(CITYNAME)”
where CITYNAME is the name of the city in
which we are currently in.

Now suppose that our agent will consider actions
of the from “Travel from city A to City B”. and is
standing in city ‘A’ and wants to travel to city ‘E’,
which means that our current state is in(A) and we
want to reach the state in(E).

There are 3 roads out of A, one toward B, one
toward C and one toward D, none of these achieves
the goal and will bring our agent to state in(E), given
that our agent is not familiar with the geography of
our alien map then it doesn‘t know which road is
the best to take, so our agent will pick any road in
random.

Now suppose that our agent is updated with
the above map in its memory, the point of a map
that our agent now knows what action bring it to
what city, so our agent will start to study the map
and consider a hypothetical journey through the
map until it reaches E from A.

Once our agent has found the sequence of cities
it should pass by to reach its goal it should start
following this sequence.

The process of finding such sequence is
called search, a search algorithm is like a black
box which takes problem as input returns a
solution, and once the solution is found the
sequence of actions it recommends is carried out
and this is what is called the execution phase.

We now have a simple (formulate, search,
execute) design for our problem solving agent, so
lets find out precisely how to formulate a problem.

Formulating Problems

A problem can be defined formally by 4
components :

1. Initial State :

– it is the state from which our agents start
solving the problem {e.i: in(A)}.

2. State Description :

– a description of the possible actions
available to the agent, it is common to
describe it by means of a successor

function, given state x then SUCCESSOR-
FN(x) returns a set of ordered pairs
<action, successor> where action is a
legal action from state x and successor is
the state in which we can be by applying
action.

– The initial state and the successor function
together defined what is called state
space which is the set of all possible states
reachable from the initial state {e.i: in(A),
in(B), in(C), in(D), in(E)}.

3. Goal Test :

– we should be able to decide whether the
current state is a goal state {e.i: is the
current state is in(E)?}.

4. Path cost :

– a function that assigns a numeric value to
each path, each step we take in solving the
problem should be somehow weighted, so
If I travel from A to E our agent will pass
by many cities, the cost to travel between
two consecutive cities should have some
cost measure, {e.i: Traveling from ‘A’ to
‘B’ costs 20 km or it can be typed as c(A,
20, B)}.

A solution to a problem is path from the initial
state to a goal state, and solution quality is
measured by the path cost, and the optimal
solution has the lowest path cost among all
possible solutions.

1.2.3 Problem Types and Characteristics

Q10. What are various types of problems ?

Ans :
Problem Types

Not all problems are created equal. There are
different types of problem.

 single-state problem

 multiple-state problem

 contingency problem

 exploration problem

M.Sc. IV Sem UNIT - I

8
Rahul Publications

Single-state problem

exact prediction is possible state - is known
exactly after any sequence of actions accessibility
of the world all essential information can be
obtained through sensors consequences of
actions are known to the agent goal - for each
known initial state, there is a uniquegoal state that
is guaranteed to be reachable viaan action
sequence. It is simplest case, but severely restricted.

Example :

Vacuum world,

Limitations :

 Can’t deal with incomplete accessibility

 incomplete knowledge about consequences
changes in the world.

 indeterminism in the world, in action

Multiple-state problem

semi-exact prediction is possible state is not
known exactly, but limited to a set of possible states
after each action accessibility of the world not all
essential information can be obtained through
sensors reasoning can be used to determine the set
of possible states consequences of actions are not
always or completely known to the agent; actions
or the environment might exhibit randomness goal
due to ignorance, there may be no fixed action
sequence that leads to the goal less restricted, but
more complex.

Example :

Vacuum world, but the agent has no sensors.

The action sequence right, suck, left, suck is
guaranteed to reach the goal state from any initial
state.

Limitations :

 Can’t deal with changes in the world during
execution (“contingencies”)

Contingency Problem

exact prediction is impossibles state unknown
in advance, may depend on the outcome of actions
and changes in the environment accessibility of the
world some essential information may be obtained
through sensors only at execution time conseq-

uences of action may not be known at planning
time goal instead of single action sequences, there
are trees of actions contingency branching point
in the tree of actions agent design different from
the previous two cases:the agent must act on
incomplete plans. search and execution phases are
interleaved.

Example : Vacuum world, The effect of a suck
action is random.

There is no action sequence that can be
calculated at planning time and is guaranteed to
reach the goal state.

Limitations : Can’t deal with situations in which
the environment or effects of action are unknown

Exploration Problem

effects of actions are unknown state the set of
possible states may be unknown accessibility of the
world some essential information may be obtained
through sensors only at execution time conseq-
uences of actions may not be known at planning
time goal can’t be completely formulated in advance
because states and consequences may not beknown
at planning time discovery what states exist
experimentation what are the outcomes of actions
learning remember and evaluate experiments agent
design different from the previous cases : the agent
must experiment search requires search in the real
world, not in an abstract modelrealistic problems,
very hard.

Problem Characteristics

Q11. Write about problem characteristics.

Ans :
Heuristic search is a very general method

applicable to a large class of problem . It includes a
variety of techniques. In order to choose an
appropriate method, it is necessary to analyze the
problem with respect to the following considerations.

Is the problem decomposable ?

A very large and composite problem can be
easily solved if it can be broken into smaller problems
and recursion could be used. Suppose we want to
solve.

ARTIFICIAL INTELLIGENCE

9
Rahul Publications

Ex : - +  x2 + 3x+sin2x cos 2x dx

This can be done by breaking it into three
smaller problems and solving each by applying
specific rules. Adding the results the complete
solution is obtained.

2. Can solution steps be ignored or undone?

Problem fall under three classes ignorable ,
recoverable and irrecoverable. This classification is
with reference to the steps of the solution to a
problem. Consider thermo proving. We may later
find that it is of no help. We can still proceed further,
since nothing is lost by this redundant step. This is
an example of ignorable solutions steps.

Now consider the 8 puzzle problem tray and
arranged in specified order. While moving from the
start state towards goal state, we may make some
stupid move and consider theorem proving. We
may proceed by first proving lemma. But we may
backtrack and undo the unwanted move. This only
involves additional steps and the solution steps are
recoverable.

Lastly consider the game of chess. If a wrong
move is made, it can neither be ignored nor be
recovered. The thing to do is to make the best use
of current situation and proceed. This is an example
of an irrecoverable solution steps.

1. Ignorable problems Ex : theorem proving

In which solution steps can be ignored.

2. Recoverable problems Ex : 8 puzzle

In which solution steps can be undone

3. Irrecoverable problems Ex : Chess.

In which solution steps can’t be undone

A knowledge of these will help in determining
the control structure.

3. Is the Universal Predictable?

Problems can be classified into those with
certain outcome (eight puzzle and water jug
problems) and those with uncertain outcome (
playing cards). in certain – outcome problems,
planning could be done to generate a sequence of
operators that guarantees to a lead to a solution.
Planning helps to avoid unwanted solution steps.

For uncertain out come problems, planning can at
best generate a sequence of operators that has a
good probability of leading to a solution.

The uncertain outcome problems do not
guarantee a solution and it is often very expensive
since the number of solution and it is often very
expensive since the number of solution paths to be
explored increases exponentially with the number
of points at which the outcome can not be predicted.
Thus one of the hardest types of problems to solve
is the irrecoverable, uncertain – outcome problems
(Ex : Playing cards).

4. Is good solution absolute or relative ?

(Is the solution a state or a path ?)

There are two categories of problems. In one,
like the water jug and 8 puzzle problems, we are
satisfied with the solution, unmindful of the solution
path taken, whereas in the other category not just
any solution is acceptable. We want the best, like
that of traveling sales man problem, where it is the
shortest path. In any – path problems, by heuristic
methods we obtain a solution and we do not
explore alternatives. For the best-path problems all
possible paths are explored using an exhaustive
search until the best path is obtained.

5. The knowledge base consistent ?

In some problems the knowledge base is
consistent and in some it is not. For example
consider the case when a Boolean expression is
evaluated. The knowledge base now contains
theorems and laws of Boolean Algebra which are
always true. On the contrary consider a knowledge
base that contains facts about production and cost.
These keep varying with time. Hence many
reasoning schemes that work well in consistent
domains are not appropriate in inconsistent
domains.

Ex. Boolean expression evaluation.

6. What is the role of Knowledge?

Though one could have unlimited computing
power, the size of the knowledge base available for
solving the problem does matter in arriving at a good
solution. Take for example the game of playing
chess, just the rues for determining legal moves and

M.Sc. IV Sem UNIT - I

10
Rahul Publications

some simple control mechanism is sufficient to arrive
at a solution. But additional knowledge about good
strategy and tactics could help to constrain the search
and speed up the execution of the program. The
solution would then be realistic.

Consider the case of predicting the political
trend. This would require an enormous amount of
knowledge even to be able to recognize a solution ,
leave alone the best.

Example :

1. Playing chess

2. News paper understanding.

7. Does the task requires interaction with the
person.

The problems can again be categorized under
two heads.

1. Solitary in which the computer will be given a
problem description and will produce an
answer, with no intermediate communication
and with he demand for an explanation of the
reasoning process. Simple theorem proving falls
under this category .given the basic rules and
laws, the theorem could be proved, if one exists.

Ex : theorem proving (give basic rules & laws
to computer)

2. Conversational, in which there will be inter-
mediate communication between a person and
the computer, wither to provide additional
assistance to the computer or to provide
additional informed information to the user, or
both problems such as medical diagnosis fall
under this category, where people will be
unwilling to accept the verdict of the program,
if they can not follow its reasoning.

Ex : Problems such as medical diagnosis.

8. Problem Classification

Actual problems are examined from the point
of view , the task here is examine an input and
decide which of a set of known classes.

Ex : Problems such as medical diagnosis,
engineering design.

1.2.4 Problem Analysis and Representation

Q12. Explain how to analyse and represent
the problem.

Ans :
This problem can be abstracted to the

mathematical problem of finding a path from a start
node to a goal node in a directed graph. Many other
problems can also be mapped to this abstraction,
so it is worthwhile to consider this level of
abstraction. Most of this chapter explores various
algorithms for finding such paths.

This notion of search is computation inside the
agent. It is different from searching in the world,
when it may have to act in the world, for example,
an agent searching for its keys, lifting up cushions,
and so on. It is also different from searching the
web, which involves searching for information.
Searching in this chapter means searching in an
internal representation for a path to a goal.

The idea of search is straightforward: the agent
constructs a set of potential partial solutions to a
problem that can be checked to see if they truly are
solutions or if they could lead to solutions. Search
proceeds by repeatedly selecting a partial solution,
stopping if it is a path to a goal, and otherwise
extending it by one more arc in all possible ways.

Search underlies much of artificial intelligence.
When an agent is given a problem, it is usually given
only a description that lets it recognize a solution,
not an algorithm to solve it. It has to search for a
solution. The existence of NP-complete problems,
with efficient means to recognize answers but no
efficient methods for finding them, indicates that
searching is, in many cases, a necessary part of
solving problems.

It is often believed that humans are able to use
intuition to jump to solutions to difficult problems.
However, humans do not tend to solve general
problems; instead they solve specific instances about
which they may know much more than the
underlying search space. Problems in which little
structure exists or in which the structure cannot be
related to the physical world are very difficult for
humans to solve. The existence of public key
encryption codes, where the search space is clear

ARTIFICIAL INTELLIGENCE

11
Rahul Publications

and the test for a solution is given - for which humans nevertheless have no hope of solving and computers
cannot solve in a realistic time frame - demonstrates the difficulty of search.

The difficulty of search and the fact that humans are able to solve some search problems efficiently
suggests that computer agents should exploit knowledge about special cases to guide them to a solution.
This extra knowledge beyond the search space is heuristic knowledge. This chapter considers one
kind of heuristic knowledge in the form of an estimate of the cost from a node to a goal.

1.2.5 Problem Space and Search

Q13. What is state space search ? write about it.

Ans :
State Spaces

One general formulation of intelligent action is in terms of statespace. A state contains all of the
information necessary to predict the effects of an action and to determine if it is a goal state. State-space
searching assumes that

 the agent has perfect knowledge of the state space and can observe what state it is in (i.e., there
is full observability);

 the agent has a set of actions that have known deterministic effects;

 some states are goal states, the agent wants to reach one of these goal states, and the agent can
recognize a goal state; and

 a solution is a sequence of actions that will get the agent from its current state to a goal state.

Fig. : The delivery robot domain with interesting locations labeled

M.Sc. IV Sem UNIT - I

12
Rahul Publications

Example : Consider the robot delivery domain and the task of finding a path from one location to
another in Figure 3.1. This can be modeled as a state-space search problem, where the states are
locations. Assume that the agent can use a lower-level controller to carry out the high-level action of
getting from one location to a neighboring location. Thus, at this level of abstraction, the actions can
involve deterministic traveling between neighboring locations.

An example problem is where the robot is outside room r103, at position o103, and the goal is to
get to room r123. A solution is a sequence of actions that will get the robot to room r123.

1.2.6 Toy Problems

Q14. Explain tic – tac – toe problem with all solution states.

Ans :
Introductory Problem-Tic Tac Toe

The game Tic Tac Toe is also known as Noughts and Crosses or Xs and Os ,the player needs to
take turns marking the spaces in a 3x3 grid with their own marks,if 3 consecutive marks
(Horizontal, Vertical,Diagonal) are formed then the player who owns these moves get won.

Assume,

Player 1 - X

Player 2 - O

So,a player who gets 3 consecutive marks first,they will win the game .

Let’s have a discussion about how a board’s data structure looks and how the Tic Tac Toe algorithm
works.

Board’s Data Structure:

The cells could be represent as Centersquare, Corner, Edge as like below.

ARTIFICIAL INTELLIGENCE

13
Rahul Publications

Number each square starts from 1 to 9 like following image

Consider a Board having nine elements vector. Each element will contain

 0 for blank

 1 indicating X player move

 2 indicating O player move

Computer may play as X or O player. First player is always X.

Move Table

It is a vector of 3^9 elements, each element of which is a nine element vector representing board
position.

Total of 3^9(19683) elements in move table

Move Table

Index Current Board position New Board position

0 000000000 000010000
1 1000000001 020000001
2 000000002 000100002
3 000000010 002000010
.
.

Algorithm

To make a move, do the following :

1. View the vector (board) as a ternary number and convert it to its corresponding decimal number.

2. Use the computed number as an index into the move table and access the vector stored there.

3. The vector selected in step 2 represents the way the board will look after the move that should be
made. So set board equal to that vector.

Let’s start with empty board.

M.Sc. IV Sem UNIT - I

14
Rahul Publications

Step 1:Now our board looks like 000 000 000 (tenary number) convert it into decimal no. The
decimal no is 0

Step 2:Use the computed number ie 0 as an index into the move table and access the vector
stored in New Board Position.

The new board position is 000 010 000

Step 3:The vector selected in step 2(000 010 000) represents the way the board will look after
the move that should be made. So set board equal to that vector.

After complete the 3rd step your board looks like :

This process continues until the player get win or tie.

Q15. Write the solution for missionaries and cannibals problem.

Ans :
The Missionaries and Cannibals Problem Statement

Three missionaries and three cannibals find themselves on one side of a river. They have would like
to get to the other side. But the missionaries are not sure what else the cannibals agreed to. So the
missionaries managed the trip across the river in such a way that the number of missionaries on either side
of the river is never less than the number of cannibals who are on the same side. The only boar available
holds only two at a time. How can everyone get across the river without the missionaries risking being
eaten?

Solution :

The state for this problem can be defined as

{(i, j)/ i=0, 1, 2, 3, : j=0, 1, 2, 3} where i represents the number missionaries in one side of a river . j
represents the number of cannibals in the same side of river. The initial state is (3,3), that is three
missionaries and three cannibals one side of a river, (Bank 1) and (0,0) on another side of the river
(bank 2) . the goal state is to get (3,3) at bank 2 and (0,0) at bank 1.

ARTIFICIAL INTELLIGENCE

15
Rahul Publications

To solve this problem we will make the following assumptions :

1. Number of cannibals should lesser than the missionaries on either side.

2. Only one boat is available to travel.

3. Only one or maximum of two people can go in the boat at a time.

4. All the six have to cross the river from bank.

5. There is no restriction on the number of trips that can be made to reach of the goal.

6. Both the missionaries and cannibals can row the boat.

The objective of the solution is to find the sequence of their transfer from one bank of river to other
using the boat sailing through the river satisfying these constraints.

We can form various production rules as presented in water-jug problem. Let Missionary is denoted
by ‘M’ and Cannibal, by ‘C’. These rules are described below:

Rule 1 : (0, M) : One missionary sailing the boat from bank-1 to bank-2

Rule 2 : (M, 0) : One missionary sailing the boat from bank-2 to bank-1

Rule 3 : (M, M) : Two missionaries sailing the boat from bank-1 to bank-2

Rule 4 : (M, M) : Two missionaries sailing the boat from bank-2 to bank-1

Rule 5 : (M, C) : One missionary and one Cannibal sailing the boat from bank-1 to bank-2

Rule 6 : (C, M) : One missionary and one Cannibal sailing the boat from bank-2 to bank-1

Rule 7 : (C, C) : Two Cannibals sailing the boat from bank-1 to bank-2

Rule 8 : (C, C) : Two Cannibals sailing the boat from bank-2 to bank-1

Rule 9 : (0, C) : One Cannibal sailing the boat from bank-1 to bank-2

Rule 10 : (C, 0) : One Cannibal sailing the boat from bank-2 to bank-1

All or some of these production rules will have to be used in a particular sequence to find the solution
of the problem. The rules applied and their sequence is presented in the following Table

Table: Rules applied and their sequence in Missionaries and Cannibals problem
or

M.Sc. IV Sem UNIT - I

16
Rahul Publications

1.2.7 Real-World Problems

Q16. Write a note on the real world problems that AI can solve.

Ans :
With real-time problem solving skills the only thing you have to worry about are your goals as you

can leave the assistance to a computer that can think on it’s own but for your benefit. Many intelligent
brains working in Artificial Intelligence to make our life comfortable.

As a smart technology entrepreneur with a machine intelligence research background and passionate
about advancing the state-of-the-art in machine or artificial intelligence (AI) to help solve real-world
problems, Machine intelligence is not only changing the way we use our computers and smartphones
but the way we interact with the real world. It is also one of the key exponential technologies

Here is the list of some real world examples can be solved by machine intelligence :

 Virtual Personal Assistants

 Video Games

 Smart Cars

 Purchase Prediction

 Fraud Detection

 Chat Bots

 Social Networking

 Real Estate

 Flying Drones

 Analytics.

1.2.8 Problem Reduction Methods

Q17. Explain various problem reduction methods.

Ans :
AND-OR Graphs

 AND-OR graph (or tree) is useful for representing the solution of problems that can be solved by
decomposing them into a set of smaller problems, all of which must then be solved.

 This decomposition or reduction generates arcs that we call AND arcs.

 One AND arc may point to any numbers of successor nodes. All of which must then solved in order
for the arc to point solution

 In order to find the solution in an AND-OR graph, we need an algorithm similar to best –first search
but with the ability to handle the AND arcs appropriately.

 We define FUTILITY, if the estimated cost of a solution becomes greater than the value of FUTILITY
then we abandon the search, FUTILITY should be chosen to correspond to a threshold.

ARTIFICIAL INTELLIGENCE

17
Rahul Publications

Following figure shows AND arcs are indicated with a line connecting all the components.

The AO* Algorithm

 Rather than the two lists, OPEN and CLOSED, that used in the A* algorithm, the AO* algorithm will
use a single structure GRAPH, representing the part of the search graph that has explicitly generated
so far.

 Each node in the graph will point both down to its immediate successors and up to its immediate
predecessors.

 Each node in the graph will also have associated with it an h’ value, an estimate of the cost of a path
from itself to a set of solution nodes.

 We will not store g (the cost of getting from the start node to the current node) as we did in the A*
algorithm.

 And such a value is not necessary because of the top-down traversing of the edge which guarantees
that only nodes that are on the best path will ever consider for expansion.

1.3 UNIFORMED SEARCH

1.3.1 General Search Algorithm

Q18. What is search problem ? Write generic search algorithm.

Ans :
Defining a Search Problem

 State space S: all possible configurations of the domain of interest

 An initial (start) state s 0 S

 Goal states G S : the set of end states

– Often defined by a goal test rather than enumerating a set of states

 Operators A : the actions available

– Often defined in terms of a mapping from a state to its successor

 Path : a sequence of states and operators

 Path cost : a number associated with any path

– Measures the quality of the path

– Usually the smaller, the better

 Solution of a search problem is a path from s0 to some sg G

 Optimal solution: any path with minimum cost.

M.Sc. IV Sem UNIT - I

18
Rahul Publications

Generic Search Algorithm

1. Initialize the search tree using the initial state of the problem

2. Repeat

a) If no candidate nodes can be expanded, return failure

b) Choose a leaf node for expansion, according to some search strategy

c) If the node contains a goal state, return the corresponding path

d) Otherwise expand the node by:

 Applying each operator

 Generating the successor state

 Adding the resulting nodes to the tree.

1.3.2 Uniformed Search Methods - BFS

Q19. Explain BFS method.

Ans :
Description

 A simple strategy in which the root is expanded first then all the root successors are expanded next,
then their successors.

 We visit the search tree level by level that all nodes are expanded at a given depth before any nodes
at the next level are expanded.

 Order in which nodes are expanded.

Performance Measure

Completeness

 it is easy to see that breadth-first search is complete that it visit all levels given that d factor is finite, so
in some d it will find a solution.

Optimality:

 breadth-first search is not optimal until all actions have the same cost.

Space complexity and Time complexity:

 Consider a state space where each node as a branching factor b, the root of the tree generates b
nodes, each of which generates b nodes yielding b2 each of these generates b3 and so on.

ARTIFICIAL INTELLIGENCE

19
Rahul Publications

 In the worst case, suppose that our solution is at depth d, and we expand all nodes but the last node
at level d, then the total number of generated nodes is: b + b2 + b3 + b4 + bd+1 – b = O(bd+1),
which is the time complexity of BFS.

 As all the nodes must retain in memory while we expand our search, then the space complexity is like
the time complexity plus the root node = O(bd+1).

Conclusion:

 We see that space complexity is the biggest problem for BFS than its exponential execution time.

 Time complexity is still a major problem, to convince your-self look at the table below.

Depth Nodes Time Memory

2 1100 .11 seconds 1 megabyte

4 111.100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabytes

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Figure: Time and memory requirements for breadth - first search. The numbers shown assume
branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.

1.3.3 Uniform Cost Search

Q20. Explain Uniform Cost search.

Ans :
Description

 Uniform-cost is guided by path cost rather than path length like in BFS, the algorithms starts by
expanding the root, then expanding the node with the lowest cost from the root, the search continues
in this manner for all nodes.

 Hints about UCS implementation can be found here.

 You should not be surprised that Dijkstra’s algorithm, which is perhaps better-known, can be regarded
as a variant of uniform-cost search, where there is no goal state and processing continues until the
shortest path to all nodes has been determined.

Performance Measure

Completeness

It is obvious that UCS is complete if the cost of each step exceeds some small positive integer, this
to prevent infinite loops.

Optimality

UCS is always optimal in the sense that the node that it always expands is the node with the least
path cost.

M.Sc. IV Sem UNIT - I

20
Rahul Publications

Time Complexity

UCS is guided by path cost rather than path length so it is hard to determine its complexity in
terms of b and d, so if we consider C to be the cost of the optimal solution, and every action costs at least
e, then the algorithm worst case is O(bC/e).

Space Complexity

The space complexity is O(bC/e) as the time complexity of UCS.

Conclusion

UCS can be used instead of BFS in case that path cost is not equal and is guaranteed to be
greater than a small positive valuee.

1.3.4 DFS

Q21. Explain DFS Search Method.

Ans :
Description

DFS progresses by expanding the first child node of the search tree that appears and thus going
deeper and deeper until a goal node is found, or until it hits a node that has no children. Then the
search backtracks, returning to the most recent node it hasn’t finished exploring.

Order in which nodes are expanded.

Performance Measure :

Completeness

DFS is not complete, to convince yourself consider that our search start expanding the left sub
tree of the root for so long path (may be infinite) when different choice near the root could lead to a
solution, now suppose that the left sub tree of the root has no solution, and it is unbounded, then the
search will continue going deep infinitely, in this case we say that DFS is not complete.

Optimality

Consider the scenario that there is more than one goal node, and our search decided to first
expand the left sub tree of the root where there is a solution at a very deep level of this left sub tree, in
the same time the right sub tree of the root has a solution near the root, here comes the non-optimality
of DFS that it is not guaranteed that the first goal to find is the optimal one, so we conclude that DFS is
not optimal.

ARTIFICIAL INTELLIGENCE

21
Rahul Publications

Time Complexity

Consider a state space that is identical to that of BFS, with branching factor b, and we start the
search from the root.

In the worst case that goal will be in the shallowest level in the search tree resulting in generating
all tree nodes which are O(bm).

Space Complexity

Unlike BFS, our DFS has a very modest memory requirements, it needs to story only the path
from the root to the leaf node, beside the siblings of each node on the path, remember that BFS needs
to store all the explored nodes in memory.

DFS removes a node from memory once all of its descendants have been expanded.

With branching factor b and maximum depth m, DFS requires storage of only bm + 1 nodes
which are O(bm) compared to the O(bd+1) of the BFS.

Conclusion

DFS may suffer from non-termination when the length of a path in the search tree is infinite, so
we perform DFS to a limited depth which is called Depth-limited Search.

1.3.5 DLS

Q22. Write about depth limit search.

Ans :

Description

The unbounded tree problem appeared in DFS can be fixed by imposing a limit on the depth that
DFS can reach, this limit we will call depth limit l, this solves the infinite path problem.

Performance Measure

Completeness : The limited path introduces another problem which is the case when we choose l < d,
in which is our DLS will never reach a goal, in this case we can say that DLS is not complete.

Optimality : One can view DFS as a special case of the depth DLS, that DFS is DLS with l = infinity.

DLS is not optimal even if l > d.

Time Complexity : O(bl)

Space Complexity : O(bl)

Conclusion : DLS can be used when the there is a prior knowledge to the problem, which is always not
the case, Typically, we will not know the depth of the shallowest goal of a problem unless we solved this
problem before.

M.Sc. IV Sem UNIT - I

22
Rahul Publications

1.3.6 IS

Q23. Explain Iterative deepening depth-first search (IDS).

Ans :

Iterative deepening depth-first search (IDS).

Description : It is a search strategy resulting when you combine BFS and DFS, thus combining the
advantages of each strategy, taking the completeness and optimality of BFS and the modest memory
requirements of DFS.

IDS works by looking for the best search depth d, thus starting with depth limit 0 and make a BFS and
if the search failed it increase the depth limit by 1 and try a BFS again with depth 1 and so on – first d =
0, then 1 then 2 and so on – until a depth d is reached where a goal is found.

Performance Measure :

Completeness : IDS is like BFS, is complete when the branching factor b is finite.

Optimality : IDS is also like BFS optimal when the steps are of the same cost.

Time Complexity : One may find that it is wasteful to generate nodes multiple times, but actually it is

not that costly compared to BFS, that is because most of the generated nodes are always in the deepest
level reached, consider that we are searching a binary tree and our depth limit reached 4, the nodes

generated in last level = 24 = 16, the nodes generated in all nodes before last level = 20 + 21 + 22 +

23= 15

Imagine this scenario, we are performing IDS and the depth limit reached depth d, now if you

remember the way IDS expands nodes, you can see that nodes at depth d are generated once, nodes at
depth d-1 are generated 2 times, nodes at depth d-2 are generated 3 times and so on, until you reach

depth 1 which is generated d times, we can view the total number of generated nodes in the worst case

as :

N(IDS) = (b)d + (d – 1)b2
 + (d – 2)b3 + …. + (2)bd-1 + (1)bd = O(bd)

If this search were to be done with BFS, the total number of generated nodes in the worst case will be

like :

N(BFS) = b + b2 + b3 + b4 + …. bd + (bd+1 – b) = O(bd + 1)

If we consider a realistic numbers, and use b = 10 and d = 5, then number of generated nodes in

BFS and IDS will be like

 N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

 N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100

BFS generates like 9 time nodes to those generated with IDS.

ARTIFICIAL INTELLIGENCE

23
Rahul Publications

Space Complexity : IDS is like DFS in its space complexity, taking O(bd) of memory.

Conclusion : We can conclude that IDS is a hybrid search strategy between BFS and DFS inheriting
their advantages.

IDS is faster than BFS and DFS

It is said that “IDS is the preferred uniformed search method when there is a large search space and
the depth of the solution is not known”.

1.3.7 Bi-Directional Search

Q24. Explain about bi- directional search.

Ans :
Bidirectional Search

Description :

As the name suggests, bidirectional search suggests to run 2 simultaneous searches, one from the
initial state and the other from the goal state, those 2 searches stop when they meet each other at some
point in the middle of the graph.

The following pictures illustrates a bidirectional search :

Fig.: Aschematic view of a bidirectional search that is about to succed, when a
branch from the start node meets a branch from the goal node.

Performance Measure

Completeness : Bidirectional search is complete when we use BFS in both searches, the search that
starts from the initial state and the other from the goal state.

Optimality : Like the completeness, bidirectional search is optimal when BFS is used and paths are of
a uniform cost – all steps of the same cost.

Other search strategies can be used like DFS, but this will sacrifice the optimality and completeness,
any other combination than BFS may lead to a sacrifice in optimality or completeness or may be both of
them.

Time and Space Complexity : May be the most attractive thing in bidirectional search is its performance,
because both searches will run the same amount of time meeting in the middle of the graph, thus each
search expands O(bd/2) node, in total both searches expand O(bd/2 + bd/2) node which is too far better
than the O(bd + 1) of BFS.

If a problem with b = 10, has a solution at depth d = 6, and each direction runs with BFS, then at the
worst case they meet at depth d = 3, yielding 22200 nodes compared with 11111100 for a standard
BFS.

M.Sc. IV Sem UNIT - I

24
Rahul Publications

We can say that the time and space complexity of bidirectional search is O(bd/2).

Conclusion : Bidirectional search seems attractive for its O(bd/2) performance, but things are not that
easy, especially the implementation part.

It is not that easy to formulate a problem such that each state can be reversed, that is going from the
head to the tail is like going from the tail to the head.

It should be efficient to compute the predecessor of any state so that we can run the search from the
goal.

1.3.8 Comparison of the Uniformed Techniques

Q25. Compare between the search strategies.

Ans :
Search Strategies’ Comparison:

Here is a table that compares the performance measures of each search strategy.

ARTIFICIAL INTELLIGENCE

25
Rahul Publications

2.1 INFORMED SEARCH

2.1.1 General and Test

Q1. Write about generate and test strategy.

Ans :
This is the simplest search strategy. It consists of

the following steps;

1. Generating a possible solution for some
problems; this means generating a particular
point in the problem space. For others it may
be generating a path from a start state.

2. Test to see if this is actually a solution by
comparing the chosen point at the end point
of the chosen path to the set of acceptable goal
states.

3. If a solution has been found, quit otherwise
return to step 1.

The generate - and - Test algorithm is a depth
first search procedure because complete possible
solutions are generated before test. This can be
implemented states are likely to appear often in a
tree; it can be implemented on a search graph
rather than a tree.

UNIT
II

Informed Search: generate and test, best first search, greedy search, A* search, memory
bounded heuristic search, heuristic function, AO* search, local search algorithms and optimization
problems, adversarial search methods (game theory), online search algorithms.

What is an intelligent agent? Types of agent, what is constraint satisfaction problem (CSP), CSP
as search problem, local search for CSP, formulating problem structure. Knowledge and
Reasoning: knowledge representation, knowledge-based agents, the wumpus world, logic,
propositional logic, predicate logic, unification and lifting: inference in FOL, representing
knowledge using rules, semantic networks, frame systems, inference, types of reasoning.

2.1.2 Best First Search

Q2. Write a short note on Best first research?

Ans :
Best-first search, rather than plunging as deep

as possible into the tree (as indepth-first search),
or traversing each level of the tree in succession (as
inbreadth-first search), uses a heuristic to decide at
each stage which is the best place to continue the
search.

Best-first search in its most basic form consists
of the following algorithm:

The first step is to define the OPEN list with a
single node, the starting node. The second step is
to check whether or not OPEN is empty. If it is
empty, then the algorithm returns failure and exits.
The third step is to remove the node with the best
score, n, from OPEN and place it in CLOSED.

The fourth step “expands” the node n, where
expansion is the identification of successor nodes
of n. The fifth step then checks each of the successor
nodes to see whether of not one of them is the
goal node. If any successor is the goal node, the
algorithm returns success and the solution, which
consists of a path traced backwards from the goal
to the start node. Otherwise, the algorithm proceeds
to the sixth step.

For every successor node, the algorithm applies
the evaluation function, f, to it, then checks to see
if the node has been in either OPEN or CLOSED.
If the node has not been in either, it gets added to
OPEN. Finally, the seventh step establishes a looping
structure by sending the algorithm back to the
second step. This loop will only be broken if the

M.Sc. IV Sem UNIT - II

26
Rahul Publications

algorithm returns success in step five or failure in
step two.

The algorithm is represented here in pseudo-
code :

1. Define a list, OPEN, consisting solely of a single
node, the start node, s.

2. IF the list is empty, return failure.

3. Remove from the list the node n with the best
score (the node where f is the minimum), and
move it to a list, CLOSED.

4. Expand node n.

5. IF any successor to n is the goal node, return
success and the solution (by tracing the path
from the goal node to s).

6. FOR each successor node:

a) apply the evaluation function, f, to the
node.

b) IF the node has not been in either list, add
it to OPEN.

7. GOTO 2.

Applications

Best-first search and its more advanced variants
have been used in such applications as games and
web crawlers. In a web crawler, each web page is
treated as a node, and all the hyperlinks on the
page are treated as unvisited successor nodes. A
crawler that uses best-first search generally uses an
evaluation function that assigns priority to links
based on how closely the contents of their parent
page resemble the search query. In games, best-
first search may be used as a path-finding algorithm
for game characters.

For example, it could be used by an enemy
agent to find the location of the player in the game
world. Some games divide up the terrain into “tiles”
which can either be blocked or unblocked. In such
cases, the search algorithm treats each tile as a node,
with the neighbouring unblocked tiles being
successor nodes, and the goal node being the
destination tile.

2.1.3 Greedy Search

Q3. What is greedy search ?

Ans :
A greedy algorithm, as the name suggests,

always makes the choice that seems to be the
best at that moment. This means that it makes a
locally-optimal choice in the hope that this choice
will lead to a globally-optimal solution.

How do you decide which choice is optimal?

Assume that you have an objective
function that needs to be optimized (either
maximized or minimized) at a given point. A Greedy
algorithm makes greedy choices at each step to
ensure that the objective function is optimized. The
Greedy algorithm has only one shot to compute
the optimal solution so that it never goes back
and reverses the decision.

Greedy algorithms have some advantages
and disadvantages :

1 It is quite easy to come up with a greedy
algorithm (or even multiple greedy algorithms)
for a problem.

2. Analyzing the run time for greedy
algorithms will generally be much easier
than for other techniques (like Divide and
conquer). For the Divide and conquer
technique, it is not clear whether the technique
is fast or slow. This is because at each level of
recursion the size of gets smaller and the number
of sub-problems increases.

3. The difficult part is that for greedy algorithms
you have to work much harder to
understand correctness issues. Even with
the correct algorithm, it is hard to prove why it
is correct. Proving that a greedy algorithm is
correct is more of an art than a science. It
involves a lot of creativity.

2.1.4 A* Search

Q4. Explain A* Algorithm.

Ans :
THE A* ALGORITHM:-
1. Start with OPEN containing the initial node. Its

g=0 and f ‘= h’

ARTIFICIAL INTELLIGENCE

27
Rahul Publications

Set CLOSED to empty list.

2. Repeat

If OPEN is empty, stop and return failure

Else pick the BESTNODE on OPEN with lowest
f’ value and place it on CLOSED

If BESTNODE is goal state return success and
stop

Else

Generate the successors of BESTNODE.

For each SUCCESSOR do the following:

1. Set SUCCESSOR to point back to BESTNODE.
(back links will help to recover the path)

2. compute g(SUCCESSOR) = g(BESTNODE)
cost of getting from BESTNODE to
SUCCESSOR.

3. If SUCCESSOR is the same as any node on
OPEN, call that node OLS and add OLD to
BESTNODE ‘s successors. Check g(OLD) and
g(SUCCESSOR). It g(SUCCESSOR) is cheaper
then reset OLD ‘s parent link to point to
BESTNODE. Update g(OLD) and f ‘(OLD).

4. If SUCCESSOR was not on OPEN , see if it is
on CLOSED . if so call the node CLOSED OLD,
and better as earlier and set the parent link and
g and f ‘ values appropriately.

5. If SUCCESSOR was not already on earlier
OPEN or CLOSED, then put it on OPEN and
add it to the list of BESTNODE ‘s successors.

Compute f ‘(SUCCESSOR) = g
(SUCCESSOR) + h ‘(SUCCESSOR)

Best first searches will always find good paths
to a goal after exploring the entire state space. All
that is required is that a good measure of goal
distance be used.

2.1.5 Memory Bounded Heuristic Search

Q5. What is memory bounded heuristic
search ?

Ans :
The Simplified Memory-Bounded Algorithm

(SMA*) is a variant of A* search which is memory-
bounded.

Complete & optimal if enough memory is
available to store shallowest solution path.

To enqueue new expand, dequeue the
unpromising node with highest f-cost.

Retains ancestor node information about the
quality of the best path in the forgotten sub tree.

• To reduce memory- Iterative deepening to the
heuristic search.

• 2 memory bounded algorithm:

 1) RBFS (recursive best-first search).

 2) MA* (Memory-bounded A*) and

 SMA*(simplified memory MA*)

RBFS :

• It attempts to mimic the operation of BFS.

• It replaces the f-value of each node along the
path with the best f-value of its children.

• Suffers from using too little memory.

• Even if more memory were available, RBFS
has no way to make use of it.

SMA*

• Proceeds life A*,expands best leaf until memory
is full.

• Cannot add new node without dropping an
old one. (always drops worst one)

• Expands the best leaf and deletes the
worst leaf.

• If all have same f-value-selects same node for
expansion and deletion.

• SMA* is complete if any reachable solution.

2.1.6 Heuristic Function

Q6. What is heuristic function? Explain with
an example.

Ans :
The heuristic function is a way to inform the

search about the direction to a goal. It provides an
informed way to guess which neighbor of a node
will lead to a goal.

There is nothing magical about a heuristic
function. It must use only information that can be

M.Sc. IV Sem UNIT - II

28
Rahul Publications

readily obtained about a node. Typically a trade-off exists between the amount of work it takes to derive
a heuristic value for a node and how accurately the heuristic value of a node measures the actual path cost
from the node to a goal.

A standard way to derive a heuristic function is to solve a simpler problem and to use the actual cost
in the simplified problem as the heuristic function of the original problem.
Example : For the graph of given figure the straight-line distance in the world between the node and
the goal position can be used as the heuristic function. The examples that follow assume the following
heuristic function :

h(mail) = 26 h(ts) = 23 h(o103) = 21

h(o109) = 24 h(o111) = 27 h(o119) = 11

h(o123) = 4 h(o125) = 6 h(r123) = 0

h(b1) = 13 h(b2) = 15 h(b3) = 17

h(b4) = 18 h(c1) = 6 h(c2) = 10

h(c3) = 12 h(storage) = 12

This h function is an underestimate because the h value is less than or equal to the exact cost of a
lowest-cost path from the node to a goal. It is the exact cost for node o123. It is very much an underestimate
for node b1, which seems to be close, but there is only a long route to the goal. It is very misleading
for c1, which also seems close to the goal, but no path exists from that node to the goal.

2.1.7 AO* Search

Q7. Explain AO* Algorithm.

Ans :
AO* ALGORITHM

1. Let G consists only to the node representing the initial state call this node INTT. Compute h’ (INIT).

ARTIFICIAL INTELLIGENCE

29
Rahul Publications

2. Until INIT is labeled SOLVED or hi (INIT)
becomes greater than FUTILITY, repeat the
following procedure.

I) Trace the marked arcs from INIT and select an
unbounded node NODE.

II) Generate the successors of NODE. if there are
no successors then assign FUTILITY as h’
(NODE). This means that NODE is not solvable.
If there are successors then for each one called
SUCCESSOR, that is not also an ancester of
NODE do the following :

a) add SUCCESSOR to graph G

b) if successor is not a terminal node, mark it
solved and assign zero to its h ‘ value.

c) If successor is not a terminal node,
compute it h’ value.

III) propagate the newly discovered information up
the graph by doing the following. Let S be a
set of nodes that have been marked SOLVED.
Initialize S to NODE. Until S is empty repeat
the following procedure;

a) select a node from S call if CURRENT and
remove it from S.

b) compute h’ of each of the arcs emerging
from CURRENT, Assign minimum h’ to
CURRENT.

c) Mark the minimum cost path a s the best
out of CURRENT.

d) Mark CURRENT SOLVED if all of the
nodes connected to it through the new
marked are have been labelled SOLVED.

e) If CURRENT has been marked SOLVED
or its h ‘ has just changed, its new status
must be propagate backwards up the
graph. Hence all the ancestors of
CURRENT are added to S.

AO* Search Procedure

1. Place the start node on open.

2. Using the search tree, compute the most
promising solution tree TP.

3. Select node n that is both on open and a part
of tp, remove n from open and place it no
closed.

4. If n is a goal node, label n as solved. If the start
node is solved, exit with success where tp is the
solution tree, remove all nodes from open with
a solved ancestor.

5. If n is not solvable node, label n as unsolvable.
If the start node is labeled as unsolvable, exit
with failure. Remove all nodes from open ,with
unsolvable ancestors.

6. Otherwise, expand node n generating all of its
successor compute the cost of for each newly
generated node and place all such nodes on
open.

7. Go back to step(2)

Note: AO* will always find minimum cost solution.

2.1.8 Local Search Algorithms and
Optimization Problems

Q8. Explain Hill Climbing Search algorithm
for optimization problems.

Ans :
Hill Climbing Search

This is a variety of depth-first (generate - and -
test) search. A feedback is used here to decide on
the direction of motion in the search space. In the
depth-first search, the test function will merely accept
or reject a solution. But in hill climbing the test
function is provided with a heuristic function which
provides an estimate of how close a given state is to
goal state. The hill climbing test procedure is as
follows :

1. General he first proposed solution as done in
depth-first procedure. See if it is a solution. If
so quit, else continue.

2. From this solution generate new set of solutions
use, some application rules

3. For each element of this set

i) Apply test function. It is a solution quit.

ii) Else see whether it is closer to the goal state
than the solution already generated.

If yes, remember it else discard it.

4. Take the best element so far generated and use
it as the next proposed solution.

M.Sc. IV Sem UNIT - II

30
Rahul Publications

This step corresponds to move through the problem space in the direction towards the goal state.

5. Go back to step 2.

Sometimes this procedure may lead to a position, which is not a solution, but from which there is no
move that improves things. This will happen if we have reached one of the following three states.

a) A “local maximum “ which is a state better than all its neighbors , but is not better than some
other states farther away. Local maxim sometimes occurwith in sight of a solution. In such cases
they are called “ Foothills”.

b) A “plateau’’ which is a flat area of the search space, in which neighboring states have the same
value. On a plateau, it is not possible to determine the best direction in which to move by making
local comparisons.

c) A “ridge” which is an area in the search that is higher than the surrounding areas, but can not be
searched in a simple move.

To overcome theses problems we can

a) Back track to some earlier nodes and try a different direction. This is a good way of dealing with
local maxim.

b) Make a big jump an some direction to a new area in the search. This can be done by applying
two more rules of the same rule several times, before testing. This is a good strategy is dealing
with plate and ridges.

Hill climbing becomes inefficient in large problem spaces, and when combinatorial explosion occurs.
But it is a useful when combined with other methods.

Q9. What is Simulated Annealing ?

Ans :
• Idea : escape local maxima by allowing some “bad” moves but gradually decrease their frequency.

function SIMULATED-ANNEALING (problem, schedule) returns a solution state

 inputs : problem, a problem

 schedule, a mapping from time to “temperature”

local variables : current, a node

 next, a node

 T, a “temperature” controlling prob. of downward steps

currentsMAKE-NODE(LNITIAL-STATE[problem])

for t 1 to do

T schedxde[t]

if T= 0 then return current

next a randomly selected successor of current

EVALUE[next] – VALUE[current]

if E > 0 then current  next

else current next only with probability E/Te

ARTIFICIAL INTELLIGENCE

31
Rahul Publications

Properties of simulated annealing Search

The parameter
E

Te


 is the key idea.

The graph for x =
E

T


is given by the exponential function (see graph)

x 0 f(x) 1 f(x) 0    

One can prove : If T decreases slowly enough, then simulated annealing search will find a global optimum
with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.,

2.1.9 Adversarial Search Methods (Game Theory)

Q10. Explain Mini-Max Algorithm with Alpha beta pruning.

Ans :
Minimax Algorithm in Game Theory

Minimax is a kind of backtracking algorithm that is used in decision making and game theory to find
the optimal move for a player, assuming that your opponent also plays optimally. It is widely used in two
player turn based games such as Tic-Tac-Toe, Backgamon, Mancala, Chess, etc.

In Minimax the two players are called maximizer and minimizer. The maximizer tries to get the
highest score possible while the minimizer tries to get the lowest score possible while minimizer tries to
do opposite.

Example :

Consider a game which has 4 final states and paths to reach final state are from root to 4 leaves of a
perfect binary tree as shown below. Assume you are the maximizing player and you get the first chance to
move, i.e., you are at root, and your opponent at next level.

M.Sc. IV Sem UNIT - II

32
Rahul Publications

Since this is a backtracking based algorithm, it
tries all possible moves, then backtracks and makes
a decision.

 Maximizer goes LEFT : It is now the
minimizers turn. The minimizer now has a
choice between 3 and 5. Being the minimizer it
will definitely choose the least among both, that
is 3.

 Maximizer goes RIGHT : It is now the
minimizers turn. The minimizer now has a
choice between 2 and 9. He will choose 2 as it
is the least among the two values.

Being the maximizer you would choose the
larger value that is 3. Hence the optimal move for
the maximizer is to go LEFT and the optimal value
is 3.

Now the game tree looks like below.

The above tree shows two possible scores when
maximizer makes left and right moves.

Q11. What is alpha-beta pruning? Explain.

Ans :
ALPHA-BETA pruning

ALPHA-BETA pruning is a method that reduces
the number of nodes explored in Minimax strategy.

It reduces the time required for the search and it
must be restricted sothat no time is to be wasted
searching moves that are obviously bad for the
current player.

The exact implementation of alpha-beta keeps
track of the best move for each side as itmoves
throughout the tree.

We proceed in the same (preorder) way as for
the minimax algorithm. For the MINnodes, the score
computed starts withinfinityand decreases with time.
For MAX nodes, scores computed starts with –
infinity and increase with time.

The efficiency of theAlpha-Betaprocedure
depends on the order in which successors of anode
are examined. If we were lucky, at a MIN node we
would always consider the nodes in order from
low to high score and at a MAX node the nodes in
order from high to lowscore. In general it can be
shown that in the most favorable circumstances the
alpha-beta search opens as many leaves as minimax
on a game tree with double its depth.

Here is an example of Alpha-Beta search

Alpha-Beta algorithm :The algorithm maintains
two values, alpha and beta, which represent the
minimumscore that the maximizing player is assured
of and the maximum score that theminimizing player
is assured of respectively. Initially alpha is negative
infinity andbeta is positive infinity. As the recursion
progresses the “window” becomes smaller.

When beta becomes less than alpha, it means
that the current position cannot be the result of best
play by both players and hence need not be
explored further.

Pseudo code for the alpha-beta algorithm is
given below.

evaluate (node, alpha, beta)
if node is a leaf
return the heuristic value of node
if node is a minimizing node
for each child of node
beta = min (beta, evaluate (child, alpha, beta))
if beta <= alpha
return beta
return beta

ARTIFICIAL INTELLIGENCE

33
Rahul Publications

if node is a maximizing node
for each child of node
alpha = max (alpha, evaluate (child, alpha, beta))
if beta <= alpha
return alpha
return alpha.

2.1.10 Online Search Algorithms

Q12. What is online algorithm? Write in detail
about it.

Ans :
 Suppose, a robot does not have the complete

knowledge of the geometry of R apriori.

 The robot also does not know the location of
the target t, but the target can be recognized
by the robot.

 In such a situation, the robot is asked to reach
t from its starting position is using its sensory
input provided by acoustic,visual, or tactile
sensors of its on-board sensor system.

 The problem here is to design an efficient online
algorithm which a robot can use to search for
the target t.

 Observe that any such algorithm is ‘online’ in
the sense that decisions must be made based
only on what the robot has received input so
far from its sensor system.

Efficiency of Online Algorithms

One of the difficulties in working with incomplete
information is that the path cannot be pre-planned
and therefore, its global optimality can hardly be
achieved.

Instead, one can judge the online algorithm
performance based onhow it stands with respect to
other existing or theoretically feasible algorithms.

The efficiency of online algorithms for searching
and exploration algorithms is generally measured
using their competitive ratios.

Competitive ratio = Cost of the online
algorithm

 Cost of an optimal offline algorithm.

2.2 WHAT IS AN INTELLIGENT AGENT

Q13. What is an intelligent Agent ?

Ans :
An agent is anything that can perceive its

environment through sensors and acts upon that
environment through effectors.

 A human agent has sensory organs such as
eyes, ears, nose, tongue and skin parallel to
the sensors, and other organs such as hands,
legs, mouth, for effectors.

 A robotic agent replaces cameras and
infrared range finders for the sensors, and
various motors and actuators for effectors.

 A software agent has encoded bit strings as
its programs and actions.

Agents are designed to make computing easier.
Currently they are used as Web browsers, news
retrieval mechanisms, and shopping assistants. By
specifying certain parameters, agents will “search”
the Internet and return the results directly back to
your PC.

2.2.1 Types of Agent

Q14. What are the various types of agents?
Write about them ?

Ans :
Agent’s structure can be viewed as :

 Agent = Architecture + Agent Program

 Architecture = the machinery that an agent
executes on.

 Agent Program = an implementation of an
agent function.

M.Sc. IV Sem UNIT - II

34
Rahul Publications

Simple Reflex Agents

 They choose actions only based on the current percept.

 They are rational only if a correct decision is made only on the basis of current precept.

 Their environment is completely observable.

Condition-Action Rule - It is a rule that maps a state (condition) to an action.

Model Based Reflex Agents

They use a model of the world to choose their actions. They maintain an internal state.

Model - The knowledge about “how the things happen in the world”.

Internal State - It is a representation of unobserved aspects of current state depending on percept
history.

Updating the state requires the information about “

 How the world evolves.

 How the agent’s actions affect the world.

Goal Based Agents
They choose their actions in order to achieve goals. Goal-based approach is more flexible than reflex

agent since the knowledge supporting a decision is explicitly modeled, thereby allowing for modifications.

ARTIFICIAL INTELLIGENCE

35
Rahul Publications

Goal - It is the description of desirable situations.

Utility Based Agents

They choose actions based on a preference (utility) for each state. Goals are inadequate when -

 There are conflicting goals, out of which only few can be achieved.

 Goals have some uncertainty of being achieved and you need to weigh likelihood of success against
the importance of a goal.

2.2.2 What is Constraint Satisfaction Problem (CSP)

Q15. What is constraint satisfaction problem? Explain it with an example.

Or

 Explain CSP with the example of SEND + MORE = MONEY ?

Ans :
A constraint satisfaction problem (CSP) consists of

 a set of variables,

 a domain for each variable, and

 a set of constraints.

The aim is to choose a value for each variable so that the resulting possible world satisfies the constraints;
we want a model of the constraints.

M.Sc. IV Sem UNIT - II

36
Rahul Publications

A finite CSP has a finite set of variables and a
finite domain for each variable. Many of the
methods considered here are only work for finite
CSPs, although some are designed for infinite, even
continuous, domains.

The multidimensional aspect of these problems,
where each variable can be seen as a separate
dimension, makes them difficult to solve but also
provides structure that can be exploited.

Given a CSP, there are a number of tasks that
can be performed :

 Determine whether or not there is a model.

 Find a model.

 Find all of the models or enumerate the models.

 Count the number of models.

 Find the best model, given a measure of how
good models are;

 Determine whether some statement holds in
all models.

Constraint Satisfaction Problem1

Many problems in AI can be considered as
problems of constraint satisfaction, in which the goal
state satisfies a given set of constraint. constraint
satisfaction problems can be solved by using any of
the search strategies. The general form of the
constraint satisfaction procedure is as follows:

Until a complete solution is found or until all
paths have led to lead ends, do

1. Select an unexpanded node of the search
graph.

2. Apply the constraint inference rules to the
selected node to generate all possible new
constraints.

3. If the set of constraints contains a contradiction,
then report that this path is a dead end.

4. If the set of constraints describes a complete
solution then report success.

5. If neither a constraint nor a complete solution
has been found then apply the rules to generate
new partial solutions. Insert these partial
solutions into the search graph.

Example: consider the crypt arithmetic problems.

SEND

+ MORE
 —————
 MONEY
 —————

Assign decimal digit to each of the letters in such
a way that the answer to the problem is correct to
the same letter occurs more than once , it must be
assign the same digit each time . no two different
letters may be assigned the same digit. Consider
the crypt arithmetic problem.

 SEND

 + MORE
 —————-
 MONEY
 —————-

Constraints :

1. no two digit can be assigned to same letter.

2. only single digit number can be assign to a letter.

3. no two letters can be assigned same digit.

4. Assumption can be made at various levels such
that they do not contradict each other.

5. The problem can be decomposed into secured
constraints. A constraint satisfaction approach
may be used.

6. Any of search techniques may be used.

7. Backtracking may be performed as applicable
us applied search techniques.

8. Rule of arithmetic may be followed.

Initial State of Problem

D=?

E=?

Y=?

N=?

R=?

O=?

S=?

M=?

ARTIFICIAL INTELLIGENCE

37
Rahul Publications

C1=?

C2=?

C1, C2, C3 stands for the carry variables
respectively.

Goal State : The digits to the letters must be
assigned in such a manner so that the sum is satisfied.

Solution Process :

We are following the depth-first method to
solve the problem.

1. initial guess m=1 because the sum of two single
digits can generate at most a carry ‘1’.

2. When n=1 o=0 or 1 because the largest single
digit number added to m=1 can generate the
sum of either 0 or 1 depend on the carry
received from the carry sum. By this we
conclude that o=0 because m is already 1
hence we cannot assign same digit another
letter(rule no.)

3. We have m=1 and o=0 to get o=0 we have
s=8 or 9, again depending on the carry received
from the earlier sum.

The same process can be repeated further. The
problem has to be composed into various
constraints.

Solution :

 9 5 6 7
 + 1 0 8 5
 ————————
 1 0 6 5 2

Values :

S = 9

E = 5

N = 6

D = 7

M = 1

O = 0

R = 8

Y = 2

2.2.3 CSP as Search Problem

Solving CSPs Using Search

Q16. Explain How to solve Constraint
Satisfaction Problems using Search ?

Ans :
Generate-and-test algorithms assign values to

all variables before checking the constraints. Because
individual constraints only involve a subset of the
variables, some constraints can be tested before all
of the variables have been assigned values. If a partial
assignment is inconsistent with a constraint, any
complete assignment that extends the partial
assignment will also be inconsistent.

Example

In the delivery scheduling problem the
assignments A=1 and B=1 are inconsistent with
the constraint A=B regardless of the values of the
other variables. If the variables A and B are
assigned values first, this inconsistency can be
discovered before any values are assigned to C, D,
or E, thus saving a large amount of work.

An alternative to generate-and-test algorithms
is to construct a search space. The search problem
can be defined as follows :

 The nodes are assignments of values to some
subset of the variables.

 The neighbors of a node N are obtained by
selecting a variable V that is not assigned in
node N and by having a neighbor for each
assignment of a value to V that does not violate
any constraint.

Suppose that node N represents the
assignment X1=v1,...,Xk=vk. To find the neighbors
of N, select a variable Y that is not in the
set {X1,...,Xk}. For each value yi”dom(Y), such
that X1=v1,...,Xk=vk,Y=yi is consistent with the
constraints, X1=v1,...,Xk=vk,Y=yi is a neighbor
of N.

 The start node is the empty assignment that
does not assign a value to any variables.

 A goal node is a node that assigns a value to
every variable. Note that this only exists if the
assignment is consistent with the constraints.

M.Sc. IV Sem UNIT - II

38
Rahul Publications

In this case, it is not the path that is of interest, but the goal nodes.

Example : Suppose you have a CSP with the variables A, B, and C, each with domain {1,2,3,4}.
Suppose the constraints are A<B and B<C. A possible search tree is shown in figure.

Fig. : Search tree for the CSP of Example 4.13

In this figure, a node corresponds to all of the assignments from the root to that node. The potential
nodes that are pruned because they violate constraints are labeled with ‘’ . The leftmost ‘’ corresponds
to the assignment A=1, B=1. This violates the A<B constraint, and so it is pruned.

This CSP has four solutions. The leftmost one is A=1, B=2, C=3. The size of the search tree, and
thus the efficiency of the algorithm, depends on which variable is selected at each time. A static ordering,
such as always splitting on A then B then C, is less efficient than the dynamic ordering used here. The
set of answers is the same regardless of the variable ordering.

In the preceding example, there would be 43=64 assignments tested in a generate-and-test algorithm.
For the search method, there are 22 assignments generated.

Searching with a depth-first search, typically called backtracking, can be much more efficient than
generate and test. Generate and test is equivalent to not checking constraints until reaching the leaves.
Checking constraints higher in the tree can prune large subtrees that do not have to be searched.

2.2.4 Local Search for CSP

Q17. Explain Local Search Algorithm for CSP.

Ans :
Local search methods start with a complete assignment of a value to each variable and try to iteratively

improve this assignment by improving steps, by taking random steps, or by restarting with another complete
assignment. A wide variety of local search techniques has been proposed. Understanding when these
techniques work for different problems forms the focus of a number of research communities, including
those from both operations research and AI.

ARTIFICIAL INTELLIGENCE

39
Rahul Publications

Procedure - Local-Search(V,dom,C)
 Inputs

V: a set of variables
 dom: a function such that dom(X) is the domain of variable X
 C: set of constraints to be satisfied
 Output
 complete assignment that satisfies the constraints
 Local
 A[V] an array of values indexed by V
 repeat
 for each variable X do
 A[X]  a random value in dom(X);
 while (stopping criterion not met & A is not a satisfying assignment)
 Select a variable Y and a value Vdom(Y)
 Set A[Y] V

if (A is a satisfying assignment) then
 return A
 until termination

Fig. : Local search for finding a solution to a CSP

The generic local search algorithm for CSPs is given in Figure 4.6. A specifies an assignment of a
value to each variable. The first for each loop assigns a random value to each variable. The first time it is
executed is called a random initialization. Each iteration of the outer loop is called a try. A common
way to implement a new try is to do a random restart. An alternative to random initialization is to use
a construction heuristic that guesses a solution, which is then iteratively improved.

The while loop does a local search, or a walk, through the assignment space. It maintains a
current assignment S, considers a set of neighbors of the current assignment, and selects one to be
the next current assignment. Here the neighbors of a total assignment are those assignments that differ in
the assignment of a single variable. Alternate sets of neighbors can also be used and will result in different
search algorithms.

This walk through assignments continues until either a satisfying assignment is found and returned or
some stopping criterion is satisfied. The stopping criterion is used to decide when to stop the current local
search and do a random restart, starting again with a new assignment. A stopping criterion could be as
simple as stopping after a certain number of steps.

This algorithm is not guaranteed to halt. In particular, it goes on forever if there is no solution, and it
is possible to get trapped in some region of the search space. An algorithm is complete if it finds an
answer whenever there is one. This algorithm is incomplete.

One instance of this algorithm is random sampling. In this algorithm, the stopping criterion is
always true so that the while loop is never executed. Random sampling keeps picking random assignments
until it finds one that satisfies the constraints, and otherwise it does not halt. Random sampling is complete
in the sense that, given enough time, it guarantees that a solution will be found if one exists, but there is
no upper bound on the time it may take. It is very slow. The efficiency depends only on the product of the
domain sizes and how many solutions exist.

M.Sc. IV Sem UNIT - II

40
Rahul Publications

Another instance is a random walk. In this
algorithm the while loop is only exited when it has
found a satisfying assignment (i.e., the stopping
criterion is always false and there are no random
restarts). In the while loop it selects a variable and a
value at random. Random walk is also complete in
the same sense as random sampling

2.2.5 Formulating Problem Structure

Q18. What is Problem Formulation? Explain
How to formulate the problems in AI.

Ans :
Problem Formulation

 A problem formulation is about deciding what
actions and states to consider, we will come to
this point it shortly.

 We will describe our states as “in(CITYNAME)”
where CITYNAME is the name of the city in
which we are currently in.

Now suppose that our agent will consider actions
of the from “Travel from city A to City B”. and is
standing in city ‘A’ and wants to travel to city ‘E’,
which means that our current state is in(A) and we
want to reach the state in(E).

There are 3 roads out of A, one toward B, one
toward C and one toward D, none of these achieves
the goal and will bring our agent to state in(E), given
that our agent is not familiar with the geography of
our alien map then it doesn‘t know which road is
the best to take, so our agent will pick any road in
random.

Now suppose that our agent is updated with
the above map in its memory, the point of a map
that our agent now knows what action bring it to
what city, so our agent will start to study the map
and consider a hypothetical journey through the
map until it reaches E from A.

Once our agent has found the sequence of cities
it should pass by to reach its goal it should start
following this sequence.

The process of finding such sequence is called
search, a search algorithm is like a black box which
takes problem as input returns a solution, and
once the solution is found the sequence of actions

it recommends is carried out and this is what is called
the execution phase.

We now have a simple (formulate, search,
execute) design for our problem solving agent, so
lets find out precisely how to formulate a problem.

Formulating Problems

A problem can be defined formally by 4
components :

1. Initial State :

 it is the state from which our agents start
solving the problem {e.i: in(A)}.

2. State Description :

 a description of the possible actions
available to the agent, it is common to
describe it by means of a successor
function, given state x then SUCCESSOR-
FN(x) returns a set of ordered pairs
<action, successor> where action is a
legal action from state x and successor is
the state in which we can be by applying
action.

 The initial state and the successor function
together defined what is called state
space which is the set of all possible states
reachable from the initial state {e.i: in(A),
in(B), in(C), in(D), in(E)}.

3. Goal Test :

 we should be able to decide whether the
current state is a goal state {e.i: is the
current state is in(E)?}.

4. Path cost :

 a function that assigns a numeric value to
each path, each step we take in solving the
problem should be somehow weighted, so
If I travel from A to E our agent will pass
by many cities, the cost to travel between
two consecutive cities should have some
cost measure, {e.i: Traveling from ‘A’ to
‘B’ costs 20 km or it can be typed as c(A,
20, B)}.

A solution to a problem is path from the initial
state to a goal state, and solution quality is

ARTIFICIAL INTELLIGENCE

41
Rahul Publications

measured by the path cost, and the optimal solution has the lowest path cost among all possible
solutions.

Example Problems

Vacuum World

1. Initial state:

 Our vacuum can be in any state of the 8 states shown in the picture.

2. State description:

 Successor function generates legal states resulting from applying the three actions {Left, Right,
and Suck}.

 The states space is shown in the picture, there are 8 world states.

3. Goal test:

 Checks whether all squares are clean.

4. Path cost:

 Each step costs 1, so the path cost is the sum of steps in the path.

2.3 KNOWLEDGE AND REASONING

2.3.1 Knowledge Representation

Q19. Write a note on Knowledge representation.

Ans :

Knowledge Representation

For the purpose of solving complex problems c\encountered in AI, we need both a large amount of
knowledge and some mechanism for manipulating that knowledge to create solutions to new problems.
A variety of ways of representing knowledge (facts) have been exploited in AI programs. In all variety of
knowledge representations , we deal with two kinds of entities.

a. Facts : Truths in some relevant world. These are the things we want to represent.

M.Sc. IV Sem UNIT - II

42
Rahul Publications

b. Representations of facts in some chosen
formalism these are things we will actually
be able to manipulate.

One way to think of structuring these entities is
at two levels : (a) the knowledge level, at which
facts are described, and (b) the symbol level, at
which representations of objects at the knowledge
level are defined in terms of symbols that can be
manipulated by programs.

The facts and representations are linked with
two-way mappings. This link is called representation
mappings. The forward representation mapping
maps from facts to representations. The backward
representation mapping goes the other way, from
representations to facts.

One common representation is natural language
(particularly English) sentences. Regardless of the
representation for facts we use in a program, we
may also need to be concerned with an English
representation of those facts in order to facilitate
getting information into and out of the system. We
need mapping functions from English sentences to
the representation we actually use and from it back
to sentences.

2.3.2 Knowledge-Based Agents

Q20. What are known as Knowledge based
agents? Explain them.

Ans :
 A knowledge-based agent includes a

knowledge base and an inference system.

 A knowledge base is a set of representations
of facts of the world.

 Each individual representation is called a
sentence.

 The sentences are expressed in a knowledge
representation language.

 The agent operates as follows :

1. It TELLs the knowledge base what it
perceives.

2. It ASKs the knowledge base what action
it should perform.

3. It performs the chosen action.

Architecture of a KB agent

 Knowledge Level

 The most abstract level: describe agent
by saying what it knows

 Ex: A taxi agent might know that the
Golden Gate Bridge connects San
Francisco with the Marin County

 Logical Level

 The level at which the knowledge is
encoded into sentences

 Ex: links(GoldenGateBridge, San
Francisco, MarinCounty)

 Implementation Level

 The physical representation of the
sentences in the logical level

 Ex: ‘(links golden gate bridges an
francisco marin county)

A simple knowledge-based agent

function KB-AGENT(percept) returns an
action

static; KB, a knowledge base t,

a counter, initially 0, indicating time

TELL [KB, MAKE-PERCEPT-SENTENCE
(percept, t,)

actionAsk(KB, MAKE-ACTTON-QUERY(t))

TELL{KB, MAKE- ACTION-SENTENCE(action,
t))

t t+1

return action

 The agent must be able to:

 Represent states, actions, etc.

 Incorporate new percepts

 Update internal representations of the
world

 Deduce hidden properties of the world

ARTIFICIAL INTELLIGENCE

43
Rahul Publications

2.3.3 The Wumpus World

Q21. What is WUMPUS World Problem?
Explain.

Ans :
Wumpus world problem is a computer

game comes under the realm of problems known
as Grid World problems. A Grid World problem is
a very common problem in the Reinforcement
Learning branch of A.I. So envision this:

1. The environment is a grid of dimensions, say
3 x 3 squares.

2. A robot/agent is placed randomly at a location
in the grid which is its starting point.

3. The robot/agent is given a destination point.

4. The robot has a fixed set of actions i.e. moving
right, moving left etc

5. The robot/agent is surrounded by walls and
can only perceive the world after coming in
contact with it: i.e. bumping into wall etc

6. There is a rewarding system based on the
action taken : for example positive reward
reinforcement for correct action taken,
negative reward reinforcement for incorrect
action taken etc.

7. The objective is to implent an RL algorithm
with which the robot reaches its

Solution :

AIMA’s Wumpus World

 The agent always starts in the field [1,1]

 Agent’s AIMA’s Wumpus World

 Task is to find the gold, return to the field
[1,1] and climb out of the cave

Agent in a Wumpus world: Percepts

 The agent perceives

 a stench in the square containing the
Wumpus and in the adjacent squares
(not diagonally)

 a breeze in the squares adjacent to a pit

 a glitter in the square where the gold is

 a bump, if it walks into a wall

 a woeful scream everywhere in the cave,
if the Wumpus is killed

 The percepts are given as a five-symbol list. If
there is a stench and a breeze, but no glitter,
no bump, and no scream, the percept is

[Stench, Breeze, None, None, None]

The agent cannot perceive its own location

Wumpus World Actions

 go forward

 turn right 90 degrees

 turn left 90 degrees

 grab: Pick up an object that’s in the same
square as the agent

 shoot: Fire an arrow in a straight line in the
direction the agent is facing. It continues until
it hits and kills the Wumpus or hits the outer
wall. The agent has only one arrow, so only
the first shoot action has any effect

 climb is used to leave the cave and is only
effective in the start square

 die: This action automatically and
irretrievably happens if the agent enters a
square with a pit or a live Wumpus

Wumpus World Goal

The agent’s goal is to find the gold and bring
it back to the start square as quickly as possible,
without getting killed

M.Sc. IV Sem UNIT - II

44
Rahul Publications

 1,000 points reward for climbing out of the cave with the gold

 1 point deducted for every action taken

 10,000 points penalty for getting killed

AIMA’s Wumpus World

 The agent always starts in the field [1,1]

 Agent’s AIMA’s Wumpus World

 Task is to find the gold, return to the field [1,1] and climb out of the cave

The Hunter’s first step

 A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

ARTIFICIAL INTELLIGENCE

45
Rahul Publications

2.3.4 Logic

Q22. What is Logic? Explain briefly about symbolic logic in AI.

Ans :
Symbolic Logic was being used to represent knowledge even before the advent of digital computers.

Today First Order Predicate Logic (FOPL) or simple Predicate Logic plays an important role in AI for the
representation of knowledge. A familiarity with FOPL is important. It offers the only formal approach to
r4easoning that has a sound theoretical foundation, this is important in the attempts to automate the
reasoning process, because inference should be correct and logically sound. The structure of FOPL is
flexible and it permits accurate representation of natural language reasonably well.

Logic is a formal method for reasoning. Many concepts which can be verbalized can be translated
into symbolic representations which closely approximate the meaning of these concepts. These symbolic
structures can then be manipulated in programs to deduce various facts, to carry out a form of automated
reasoning .in predicate logic statements from a natural language like English aretranslated into symbolic
structures comprised of predicates, functions, variables, constants, quantifiers and logical connectives.

The symbols form the basic buildingblocks for the knowledge, and their combination into valid
structures is accomplished using the syntax of FOPL. Once structures have been created to represent basic
facts, inference rules may then be applied to compare, combine and transform these “assumed” structures
into new “deduced” structures. This is how automated reasoning or inferencing is performed.

M.Sc. IV Sem UNIT - II

46
Rahul Publications

2.3.5 Propositional Logic

Q23. Write a note on propositional logic?

Ans :
The syntax of propositional logic is constructed

from propositions and connectives.

A proposition is a statement that is either
true or false but not both

Examples of Propositions

 What is the time?

 2 + 3 = 5

 “Phone” has five letters.

Determine the propositions

 It is possible to determine whether any given
statement is a proposition by prefixing it with

 It is true that . . .

 and seeing whether the result makes
grammatical sense.

Propositions are often abbreviated using
propositional variables eg.: p, q, r.

Thus we must associatethe propositional
variable with its meaning i.e.

Let p be Najib is Prime Minister.

Connectives

Propositions may be combined with other
propositions to form compound propositions.
These in turn may be combined into further
propositions.

 The connectives that may be used are

and conjunction (& or .)

or disjunction (| or +)

not negation (~)

if . . .then implication ()

if and only if equivalence ()

Propositional Logic: Syntax

 The proposition symbols P1, P2 etc are
sentences

 If S is a sentence, S is a sentence (negation)

 If S1 and S2 are sentences, S1 S2 is a
sentence (conjunction)

 If S1 and S2 are sentences, S1 S2 is a
sentence (disjunction)

 If S1 and S2 are sentences, S1 S2 is a
sentence (implication)

 If S1 and S2 are sentences, S1 S2 is a
sentence (equivalence)

Propositional Logic: Semantic

Each model species true/falsefor each
proposition symbol

E.g. P Q R

True true false

(With these symbols, 8 possible models, can
be enumerated automatically.)

Rules for evaluating truth with respect to a
model m are determined by truth tables

And (also called conjunction)

The conjunction ‘p AND q’, written pq, of
two propositions is true when both p and q are true,
false otherwise.

We can summarise the operation of using a
truth table. Rows in the table give all possible setting
of the propositions to true (T) or false (F).

Natural Language Meaning

P – Its Monday.

Q – Its raining.

p ^ qIts Monday and its raining.

Its Monday but its raining.

Its Monday. Its raining.

ARTIFICIAL INTELLIGENCE

47
Rahul Publications

P - I took a shower

Q - I woke up

p ^ q”I took a shower and I woke up”

q ^ p”I woke up and I took a shower”.

Logically the same! WE may see a difference.

The word both is often useful eg. I both took
a shower and I woke up.

Or (V) Disjunction

The disjunction “p OR q” written p q, of two
propositions is true when p or q (or both) are true,
false otherwise.

Sometimes called inclusive or.

Natural Language Meaning

P – It s Monday.

Q – It s raining.

P Vq == It’s Monday or it is raining.

The word either is often useful eg. eitherit’s
Monday or it is raining.

It also includes the case of rain on a Monday!

Not (Negation)

The negation “NOT p” of a proposition (or
p) is true when p is false and is false otherwise. pmay
be read that it is false that p.

Negation is a unary connective. It only takes
one argument. Conjunction and disjunction were
both binary connectives.

Natural Language Meaning

P – Logic is easy.

P – It is false that logic is easy.

It is not the case that logic is easy.

Logic is not easy.

If . . . then  Also known as implication

The implication “p IMPLIES q”, written p q,
of two propositions is true when either p is false or
q is true, and false otherwise.

Natural Language Meaning

P – I study hard.

Q – I get rich.

p q If I study hard then I get rich.

Whenever I study hard, I get rich.

That I study hard implies I get rich.

I get rich, if I study hard.

Biconditional  Also known as iff or the
biconditional.

The bi-conditional, written as p q, of two
propositions is true when both p and q are true or
when both p and q are false, and false otherwise.

WFF
The set of sentences or well-formed proposi-

tional formulae (WFF) is defined as:

Any propositional symbol is in WFF.

M.Sc. IV Sem UNIT - II

48
Rahul Publications

The nullary connectives, true and false are
in WFF.

If A and B are in WFF then so is ~A, A v B,

A ^ B, A ? B and A 1B.

If A is in WFF then so is (A).

Example

p(p) p q (((p q)  q)  p)

2.3.6 Predicate Logic

Q24. Write about Predicate Logic.

Ans :
Propositional logic lacks the structure to

express relations that exist among two or more
entities. Predicate logic was developed by logicians
to extend the expressiveness of propositional logic.
It is a generalization of prepositional logic that
permits reasoning about world objects as relational
entities as well as classes or subclasses of objects.
This generalization is achieved from the introduction
of predicates in the place of propositions and the
use of variables together with variable quantifiers.
The quantifier symbols used are (universal
quantifier) and (existential quantifier)  stands for
“for all” and  stands for “there exist”. Thus  x
means “for all x” and x means “for some x there
is an x”.

For example, the sentence “All elephant are
gray” might be represented by

( x) [elephant(x) Color (x, gray)]

(Read as “For all x, if x is an elephant then
the color of x is gray”) .In the above quantified wff,
‘Elephant’ and ‘color’ are predicates . ‘x’ and ‘gray’
are terms . x is a variable term and ‘gray’ is a constant
term.

Atomic formulas like color (x, gray) are merely
elementary building blocks of predicate calculus
language. We can combine atomic formulas (simple
wffs) to form complex wffs by using connectives such
as a(and), V (or) and  (implies). Formulas built
by connecting other formulas s are called
“conjunctions” each of the component formulas is
called “conjunct” . formulas built with V are called
“disjunctions” and the components are called
“disjuncts”. Any conjuction or disjunction composed
of wffs is also a wff.

For example “John likes apples and John likes
oranges” is represented as a conjunction as

LIKES (JOHN, APPLES)  LIKES (JOHN,
ORANGES)

In predicate calculus it is often useful to have
computable a functions and computable predicates.
For example the simple a fact (2+3)>1 might be
represented as gt(2+3+1).

To evaluate the truth of gt(2+3,l), the value
of the plus functions is evaluated first and then the
arguments 2+3(=5) and 1 are sent to the
computable predicate gt. The use of computable a
functions and predicates is illustrated below.

Consider the following set of facts and their
representations :

1. John was a man

man (John)

2. John was a graduate

graduate (John)

3. John liked applies and oranges

liked (John, apples) liked (John, oranges)

4. John was born in 1832

born (John, 1832)

5. All men mortal

 x man (x)  mortal(x)

6. No man lives longer than 150 years

 x V tl  t2 man(x) born (x, tl)  gt (t2-tl,
150)  dead

(x, t2)

7. If someone dies, then he is dead at all later
times.

 x  t1 V t2 died (x, tl)  gt(t2, t1) 
dead (x,t2)

8. It is now 1995

now = 1995

9. Alive means not dead

 x  t alive (x, t) ~ dead(x, t)

Now let us attempt to answer the question uis
John alive ?” by proving

~ alive (John, now)

ARTIFICIAL INTELLIGENCE

49
Rahul Publications

The proof is given in the following

~ alive (John, now)

 (9, substitution)

dead (john , now)

 (6, substitution)

man (john) born (john, tl) gt (now-tl. 150)

 (4, substitution)

born (john, 1832) gt (now-tl , 150)

 (4)

gt (now-1832 , 150).

 (8, substitution)

gt (1995-1832,150)

 (compute gt)

nil.

Fig.: Proving that john is dead

2.4 UNIFICATION AND LIFTING

2.4.1 Inference in FOL

Q25. Explain the rules of Inference for FOL.

Ans :
Inference rules for FOL

 The propositional logic inference rules

Remember the inference rules for
propositional logic:

1. Modus Ponens or Implication Elimination

A => B, A
————
 B

2. And-Elimination

A1 and A2 and ... An
——————————

 Ai

3. And-Introduction

A1, A2, ... An
——————————
A1 and A2 and ... An

4. Or-Introduction
Ai

—————————
A1 or A2 or ... An

5. Double-Negation Elimination
NOT(NOT(A))

—————
A

6. Unit Resolution
A or B, NOT(B)
———————

A
7. Resolution

A or B, NOT(B) or C
—————————

A or C
These rules are still valid for FOL.

A, B, and C are now atomic sentences (ie,
a predicate or Term=Term, no negation).

Substitution

We need some way to deal with variables and
the quantifiers “EXISTS” and “FORALL”.

To describe inference rules involving variables
and quantifiers, we need the notion of “substitution”.

Let alpha be any sentence and let theta be
a substitution list:

theta = {x/fred, y/z, ...}

The notation SUBST(theta, alpha) will
denote the result of applying the substitution
theta to the sentence alpha Intuitively subst(x :=
g, alpha) is alpha with every appearance of x
replaced by g.

Elimination and Introduction

Many inference rules tell how how to get rid
of (eliminate) or introduce a connective or quantifier
into a formula.

The “universal elimination” rule lets us use a
universally quantified sentence to reach a specific
conclusion, i.e. to obtain a concrete fact.

FORALL x alpha
——————————

SUBST({x/g} alpha)
Here g may be any term, including any term

that is used elsewhere in the knowledge base.

M.Sc. IV Sem UNIT - II

50
Rahul Publications

The “existential elimination” rule lets us
convert an existentially quantified sentence into a
form without the quantifier.

EXISTS x alpha
——————————

SUBST({x/k} alpha)

Here k must be a new constant symbol that
does not appear anywhere else in the database. It
is serving as a new name for something we know
must exist, but whose name we do not yet know.

The “existential introduction” rule lets us use
a specific fact to obtain an existentially quantified
sentence:

alpha
———————————————

EXISTS y SUBST({g/y}, alpha)

This rule can be viewed as “leaving out detail”:
it omits the name of the actual entity that satisfies
the sentence alpha, and just says that some such
entity exists.

Skolemization

The “existential elimination” rule is also called
the Skolemization rule, after a mathematician named
ThoralfSkolem.

EXISTS x alpha
——————————

subst({x/k}, alpha)

where k is a FRESH constant

Saying that k is a “fresh” constant means that
k is not used anywhere else in the knowledge base.

This means that k can be the name of a new
entity that is not named and therefore not referred
to anywhere else in the knowledge base.

Example: consider the fact

exists z brotherof(Harry,z)
It would not be correct to directly deduce

brotherof(Harry,William)
However it is correct to deduce

brotherof(Harry,personA)
and then later we might deduce that

personA = William.

Generalized Modus Ponens

This is a complex inference rule that captures
a common pattern of reasoning.

p1 p2 ... pn (q1 AND q2 AND ... AND qn -> r)

—————————————————————

SUBST(theta, r)

where for each i SUBST (theta, pi) = SUBST
(theta, qi).

Intuitively this is modus ponens with multiple
antecedents on the left hand side of the ->
connective.

Theta is a SET of individual substitutions of
the form x/g where x is a variable and g is a
ground term.

The equation SUBST(theta,pi) = SUBST
(theta, qi) says that applying theta makes pi and
q1 identical.

Terminology: theta UNIFIES pi and qi, theta
is a unifying substitution.

The unification algorithm

There is a standard algorithm that given two
sentences, finds their unique most general unifying
substitution.

Here are some examples of unification.

Knows(John, x) = Likes(John, x)

Knows(John, Jane)

Knows(y, Leonid)

Knows(y, Mother(y))

The unification algorithm whould give the
following results:

UNIFY(Knows(John,x), Knows(John,Jane))
= {x/Jane}

UNIFY(Knows(John,x), Knows(y,Leonid)) =
{x/Leonid, y/John}

The substitution makes the two sentences
identical.

UNIFY(Knows(John,x), Knows(y,Mother(y)))
= {x/John, x/Mother(John)}

Notice that the substitutions always involve
a variable and a ground term.

ARTIFICIAL INTELLIGENCE

51
Rahul Publications

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

The variable x cannot have two values at the same time, so this last example fails.

Another example that would always fail is

UNIFY(x, F(x)) = fail

This fails because a the variable may never occur in the term it is being unified with.

Horn clauses

Generalized modus ponens requires sentences to be in a standard form, called Horn clauses after
the mathematician Alfred Horn.

A Horn clause is a sentence of the form

q1 AND q2 AND ... AND qn -> r

where each qi and r is an atomic sentence and all variables are universally quantified.

Recall that an atomic sentence is a just single predicate and does not allow negation.

Normally the universal quantifiers are implicit (not written explicitly).

To refresh your memory, here is the syntax of FOL in Backus-Naur form.

 Sentence ->AtomicSentence

 | Sentence Connective Sentence

 | Quantifier Variable,... Sentence

 | NOT Sentence

 | (Sentence)

Atomic Sentence -> Predicate(Term, ...) | Term = Term

 Term -> Constant

 | Variable

 | Function(Term,...)

 Connective -> AND | OR | => | <=>

 Quantifier -> FORALL | EXISTS

 Constant -> A | X_1 | John | ...

 Variable -> a | x | s ...

 Predicate -> Before | HasColor | Raining | ...

 Function -> Smelly | LeftLegOf | Plus | ...

In order to obtain Horn clauses, existential quantifiers must be eliminated using Skolemization.

Example

EXISTS x Loves(John,x) AND Loves(x, John) becomes

Loves(John,personx)

Loves(personx,John)

M.Sc. IV Sem UNIT - II

52
Rahul Publications

2.4.2 Representing Knowledge Using Rules

Q26. Write about Knowledge representation
rules.

Ans :
Knowledge Representation Rules

Some kind of knowledge are hard to
represent in predicate logic. For example the degree
of hotness in the statement “ It is very hot today”
can not be represented in predicate logic. A good
deal of the reasoning people do involves
manipulating beliefs. (eg: “I think it may rain today
because it is cloudy “). The “belied system “ is mostly
incomplete and inconsistent (One may believe in
something now and in something else later).
consider the following situation.

A, B and C are suspects in a murder case. A
has an alibi, in the register of a respectable hotel. B
also has an alibi since his friend says that B was with
him all the time. C pleads alibi too saying that he
was watching a cricket match in the town. These
make one believe that

1. A did not commit the crime

2. B did not commit the crime

3. A or B or C did fortunately for c, he was
caught on the TV while watching the match.
Now we have a new belief that

4. C did not commit the crime

All the above four beliefs are inconsistent, so
we must reject the weaker one or add new beliefs.

The above example illustrates some of the
problems posed by uncertain and fuzzy knowledge.
A variety of techniques for handling such problems
with in computer programs have been proposed.
They include

Non monotonic logic

This allows for addition and deletion of
statements in the database. This also allows the belief
in one statement to rest on the lack of belief in
another.

Probabilistic Reasoning

This makes it possible to represent likely but
uncertain inferences.

Fuzzy logic
This provides a way of representing fuzzy or

continuous properties of objects.

The concept of belief spaces, which allows for
the representation of nested models of sets of beliefs.

2.4.3 Semantic Networks

Q27. Write a note on Semantic Nets

Ans :
Semantic Nets

It is useful to think of semantic nets using
graphical notation. In this information is represented
as a set nodes connected to each other by a set of
labeled arcs, which represent relationships between
the nodes. A typical example (with ISA and ISPART
relationships) is shown below.

Person Chair Seat

Me My-Chair Tan

Leather Brown

Owner

Covering

color

ispartIs a

Person Chair Seat

Me My-Chair Tan

Leather Brown

Owner

Covering

color

ispartIs a

The knowledge in the above semantic network
is represented inside a program using some kind of
attribute –value structure. The following gives a LISP
representation of the above semantic net.

ATOM PROPERTY LIST
CHAIR ((IS A FURNITURE))
MY-CHAIR ((IS A CAHIR)
(COLOR TAN)
(COVERING LEATHER)
(OWNER ME))
ME ((IS A PERSON))
TAN ((IS A BROWN))
SEAT ((ISPART CHAIR))

In predicate logic the above may be
represented as

IS A (chair, furniture)
IS A (me, person)
COVERING (my-chair, leather)
COLOR (my-chair, tan)

ARTIFICIAL INTELLIGENCE

53
Rahul Publications

2.4.4 Frame Systems

Q28. Write a note Frame systems.

Ans :
Frames

Semantic Networks and conceptual depednecy can be used to represent specific events or
experiences. A frame structure is used to analyze new situations from scratch and then build new knowledge
structures to describe those situations. Typically , a frame describes a class of objects, such as CHAIR or
ROOM . it consists of a collection of “slots” that describe aspects of the objects. Associated with each slot
may be a set of conditions that must be met by any filler for it. Each slot may also be filled with a default
value, so that in the absence of specific information, things can be associated to be as they usually are.
Procedural information may also be associated with particular slots. The AI systems exploit not one but
many frames. Related frames can be grouped together to form a frame system.

Frames represent an object as a group of attributes. Each attributes in a particular frame is stored in
a separate slot. For example, when a furniture salesman says “ I have a nice chair, that I want you to see”,
the word ‘chair’ would immediately trigger in our minds a series of expectations. We would probably
expect to see an object with four legs, a seat , a back and possibly (but not necessarily) two arms. We
would expect it to have a particular size and serves a place to sit. In an AI system, a frame CHAIR might
include knowledge organized as shown below:

Frame : CHAIR

Parts : seat, back, legs, arms

Number of legs : 4

Number of arms: 0 or 2

Default : 0

2.4.5 Inference

Q29. Write about backward and forward chaining.

Ans :
An Inference Engine is a tool from artificial intelligence. The first inference engines were

components of expert systems. The typical expert system consisted of a knowledge base and an inference
engine. The knowledge base stored facts about the world. The inference engine applied logical rules to
the knowledge base and deduced new knowledge. This process would iterate as each new fact in the
knowledge base could trigger additional rules in the inference engine. Inference engines work primarily in
one of two modes either special rule or facts: forward chaining and backward chaining. Forward chaining
starts with the known facts and asserts new facts. Backward chaining starts with goals, and works backward
to determine what facts must be asserted so that the goals can be achieved.

Inference Rules

Deductive inference rule:
Forward Chaining: Conclude from “A” and “A implies B” to “B”.

A
A -> B

B

---------------------------------- ----------------------------------

M.Sc. IV Sem UNIT - II

54
Rahul Publications

Example

It is raining.
If it is raining, the street is wet.

The street is wet.

---------------------------------- ----------------------------------

Abductive inference rule

Backward Chaining: Conclude from “B”
and “A implies B” to “A”.

B

A -> B

A

---------------------------------- ----------------------------------

Example

The street is wet.

If it is raining, the street is wet.

It is raining.

2.4.6 Types of Reasoning

30. What is Reasoning? Explain different
types of reasoning.

Ans :
Reasoning is the capacity for a person to

make sense of things to establish & verify facts,
Torationaly work through data, information, facts,
and beliefs. It is the process of forming conclus-
ions and judgments from facts or premises. To put
it plain and simple; it is the ability to coherently think
from perceived premise to a logical conclusion.

Main Types of Reasoning

Deductive Reasoning

Deductive reasoning is the form of reasoning
in which a conclusion follows logically and
coherently from the factual premises and
proposition. These deductive arguments are based
upon the concept of sound and consistent
reasoning. If the premises are true, than the
systematic reasoning with a constructed syllogism is
considered valid in a deductive argument in making
its conclusion certain with a degree of logical

certainty. Plainly speaking.deductive reasoning is
the rationality of reasoning from pure logic. It is
considered sound and pure logic.

Inductive Reasoning

Inductive reasoning is a form of reasoning
that uses analogies, examples, observations, and
experiences to form conclusive propositions.
Inductive logic also uses experiences to formulate
statements based on general observations of
recurring patterns in nature, science, and everyday
occurrences pulling from such things as samples
cases, experiments, and natural eye observations.

It is used mostly to explain properties and
relations to objects or types based on previous
observations.

Abductive Reasoning

In laymen’s terms abductive reasoning is an
argument to the best explanation. It is a form of
reasoning that concludes in an abductive argument
of what is plausible or most possibly true.
Abductive logic is also considered inference to the
best explanation. It is choosing the most likely or
best hypothesis or explanation based upon the
(most) relevant evidence.

Reductive Reasoning

Reductive reasoning is a subset of
argumentative reasoning which seeks to demonstrate
that a statement is true by showing that a false or
absurd result/circumstance follows from its denial.
It is proving a statement true by reducing to the
opposite of it and showing the absurdity of the
opposite result.

Fallacious Reasoning

Fallacious Reasoning is not real reasoning, it
is the faulty premises for critical thinking and logic.
One of the tall tell signs of fallacious reasoning is a
logical fallacy. A fallacy is usually an error in
reasoning and argumentation often due to a
misconception, false premises, or presumptuous
conclusions.

Circular Reasoning is actually considered more
of a form of fallacious reasoning. It would not be
considered valid nor useful in a live debate.

ARTIFICIAL INTELLIGENCE

55
Rahul Publications

UNIT
III

Uncertain Knowledge and Reasoning: uncertainty and methods, Bayesian probability
and belief network, probabilistic reasoning, probabilisticreasoning over time, forward and
backward reasoning, perception, making simple decisions, making complex decisions,
other techniques in uncertainty and reasoning process. Planning problem, simple planning
agent, planning languages, blocks world, goal stack planning, means-ends analysis, planning
as a state-space search.

Learning: what is machine learning? Learning paradigms, learning concepts, methods
and models, statistical learning methods, artificial neural networks–based learning, support
vector machines, reinforcement learning.

3.1 UNCERTAIN KNOWLEDGE AND REASONING

3.1.1 Uncertainty and Methods

Q1. What is Uncertainty? How uncertainty
can be handled in AI.

Ans :
Though there are various types of uncertainty

in various aspects of a reasoning system, the “reaso-
ning with uncertainty” (or “reasoning under uncer-
tainty”) research in AI has been focused on the
uncertainty of truth value, that is, to allow and
process truth values other than “true” and “false”.

Generally speaking, to develop a system that
reasons with uncertainty means to provide the
following:
 A semantic explanation about the origin and

nature of the uncertainty

 A way to represent uncertainty in a formal
language

 A set of inference rules that derive uncertain
(though well-justified) conclusions

 An efficient memory-control mechanism for
uncertainty management

Let action At = leave for airportt minutes
before flight

Will At get me there on time?

Problems
1. Partialobservability (road state, other drivers’

plans, etc.)

2. Noisy sensors (traffic reports)
3. Uncertainty in action outcomes (flat tire, etc.)

4. Immense complexity of modeling and
predicting traffic

Hence a purely logical approach either

1. Risks falsehood: “A25 will get me there on
time”, or

2. Leads to conclusions that are too weak for
decision making:

“A25 will get me there on time if there’s no
accident on the bridge and it doesn’t rain and my
tires remain intact etc etc.”

(A1440 might reasonably be said to get me
there on time but I’d have to stay overnight in the
airport …)

Methods for handling uncertainty

 Default or nonmonotonic logic:

 Assume my car does not have a flat tire

 Assume A25 works unless contradicted by
evidence

 Issues: What assumptions are reasonable?
How to handle contradiction?

 Rules with fudge factors:

 A25 | 0.3 get there on time

 Sprinkler | 0.99 WetGrass

 WetGrass | 0.7 Rain

 Issues: Problems with combination, e.g.,
Sprinkler causes Rain?

 Probability

 Model agent’s degree of belief

 Given the available evidence,

 A25 will get me there on time with
probability 0.04

M.Sc. IV Sem UNIT - III

56
Rahul Publications

Making decisions under uncertainty

Suppose I believe the following:

P(A25 gets me there on time | …) = 0.04

P(A90 gets me there on time | …) = 0.70

P(A120 gets me there on time | …)= 0.95

P(A1440 gets me there on time|…) = 0.9999

Which action to choose?

Depends on my preferences for missing flight
vs. time spent waiting, etc.

 Utility theory is used to represent and
infer preferences

 Decision theory = probability theory +
utility theory

Syntax

 Basic element: random variable

 Similar to propositional logic: possible worlds
defined by assignment of values to random
variables.

 Boolean random variables

e.g., Cavity (do I have a cavity?)

 Discrete random variables

 Weather is one of <sunny, rainy,
cloudy, snow>

 Domain values must be exhaustive and
mutually exclusive

 Elementary proposition constructed by
assignment of a value to a random variable:
e.g., Weather =sunny, Cavity = false

(abbreviated as cavity)

 Complex propositions formed from elemen-
tary propositions and standard logical connec-
tives e.g., Weather = sunny Cavity = false.

3.1.2 Bayesian Probability and Belief
Network

Q2. Write a note on bayesian probability.

Ans :
Bayes’ theorem can be used to calculate the

probability that a certain event will occur or that a
certain proposition is true.

The theorem is stated as follows:

P(A|B).P(B)
P(B / A)

P(A)


P(B) is called the prior probability of B. P(B|
A), as well as being called the conditional probability,
is also known as the posterior probability of B.

P(A B) = P(A|B)P(B)

 Note that due to the commutativity of  , we
can also write

 P(A B) = P(B|A)P(A)

 Hence, we can deduce: P(B|A)P(A) =
P(A|B)P(B)

This can then be rearranged to give Bayes’
theorem:

P(A|B). P(B)
P(B / A)

P(A)


Bayes theorem states

1 1
1 1

1 1k 1

P(E|H)P(H)
P(H |E)

P(E|H)P(H)





This reads that given some evidence E then
probability that hypothesis H1 is true is equal to the
ratio of the probability that E will be true given H1
times the a priori evidence on the probability of H1

and the sum of the probability of E over the set of
all hypotheses times the probability of these
hypothese.

The set of all hypotheses must be mutually
exclusive and exhaustive.

 Thus to find if we examine medical evidence
to diagnose an illness. We must know all the prior
probabilities of find symptom and also the probability
of having an illness based on certain symptoms
being observed.

Bayesian statistics lie at the heart of most
statistical reasoning systems. How is Bayes theorem
exploited?

 The key is to formulate problem correctly:

P(A|B) states the probability of A given only
B’s evidence. If there is other relevant evidence then
it must also be considered.

ARTIFICIAL INTELLIGENCE

57
Rahul Publications

All events must be mutually exclusive. How-
ever in real world problems events are not generally
unrelated. For example in diagnosing measles, the
symptoms of spots and a fever are related. This
means that computing the conditional probabilities
gets complex.

In general if a prior evidence, p and some
new observation, N then

P(H|N,p) = P(H|N) 1P(p|N H)
P(p|N)

computing grows exponentially for large sets of p

All events must be exhaustive. This means that
in order to compute all probabilities the set of
possible events must be closed. Thus if new
information arises the set must be created afresh
and all probabilities recalculated.

Thus Simple Bayes rule-based systems are not
suitable for uncertain reasoning.

Knowledge acquisition is very hard.

Too many probabilities needed - too large a
storage space.

Computation time is too large.

Updating new information is difficult and time
consuming.

Exceptions like “none of the above” cannot
be represented.

Humans are not very good probability
estimators.

However, Bayesian statistics still provide the
core to reasoning in many uncertain reasoning
systems with suitable enhancement to overcome the
above problems. We will look at three broad
categories:

 Certainty factors

 Dempster-Shafer models

 Bayesian networks.

Q3. Explain in detail about belief networks.

Ans :
Belief Networks

Bayesian networks are also called Belief
Networks or Probabilistic Inference Networks. Belief
networks are used to model uncertainty in a domain.

The term “belief networks” encompasses a whole
range of different but related techniques which deal
with reasoning under uncertainty.

Belief networks are used to develop
knowledge based applications in domains which are
characterised by inherent uncertainty. Increasingly,
belief network techniques are being employed to
deliver advanced knowledge based systems to solve
real world problems. Belief networks are particularly
useful for diagnostic applications and have been used
in many deployed systems.

The basic idea in belief networks is that the
problem domain is modelled as a set of nodes
interconnected with arcs to form a directed acyclic
graph. Each node represents a random variable,
or uncertain quantity, which can take two or more
possible values. The arcs signify the existence of
direct influences between the linked variables, and
the strength of each influence is quantified by a
forward conditional probability.

Bayesian Networks as Graphs

People usually represent Bayesian networks
as directed graphs in which each node is a hypo-
thesis or a random process. In other words,
something that takes at least 2 possible values you
can assign probabilities to. For example, there can
be a node that represents the state of the dog
(barking or not barking at the window), the weather
(raining or not raining), etc.

The arrows between nodes represent the
conditional probabilities between them - how
information about the state of one node changes
the probability distribution of another node it’s
connected to.

Here’s how the events “it rains/doesn’t rain”
and “dog barks/doesn’t bark” can be represented
as a simple Bayesian network:

Rain

Dog bark | Rain

Dog bark

Rain

Dog bark | Rain

Dog bark

M.Sc. IV Sem UNIT - III

58
Rahul Publications

The nodes are the empty circles. Next to each
node you see the event whose probability
distribution it represents. Next to the arrow is the
conditional probability distribution of the second
event, given the first event. It reads something like:

 The probability that the dog will start barking,
given that it’s currently raining.

In general, the nodes don’t represent a
particular event, but all possible alternatives of a
hypothesis (or, more generally, states of a variable).
In this case, the set of possible events for the first
node consists of:

 It rains

 It doesn’t rain

And for the second node:

 The dog barks

 The dog doesn’t bark

But in most cases, the nodes can take more
than two and often an infinite number of possible
values.

Bayesian networks as joint probability
distributions

The simple graph above is a Bayesian network
that consists of only 2 nodes. It represents a joint
probability distribution over their possible values.
That’s simply a list of probabilities for all possible
event combinations:

Rains Doesnot rain

Dog barks 9 / 18 18 / 18 27 / 48
Dog does not bark 3 / 48 18 / 48 21 / 48

12 / 48 36 / 48 48 / 48

The blue numbers are the joint probabilities
of the 4 possible combinations (that is, the probabi-
lities of both events occurring):

 P(Rains & Dog barks) = 9/48  0.19

 P(Rains & Dog doesn’t bark) = 3/48  0.06

 P(Doesn’t rain & Dog barks) = 18/48 =
0.375

 P(Doesn’t rain & Dog doesn’t bark) = 18/
48 = 0.375

Notice how the 4 probabilities sum up to 1,
since the four event combinations cover the entire
sample space.

The orange numbers are the so called mar-
ginal probabilities. You can think of them as the
overall probabilities of the events:

 P(Rains) = 12/48

 P(Doesn’t rain) = 36/48

 P(Dog barks) = 27/48

 P(Dog doesn’t bark) = 21/48

These are obtained by simply summing the
probabilities of each row and column.

3.1.3 Probabilistic Reasoning

Q4. What is probabilistic reasoning?
Explain.

Ans :
Probability theory is used to discuss events,

categories, and hypotheses about which there is not
100% certainty.

We might write AB, which means that if A
is true, then B is true. If we are unsure whether A is
true, then we cannot make use of this expression.

P(S) = 0.1

P(R) = 0.7

The first of these statements says that the
probability of S (“it is sunny”) is 0.1. The second
says that the probability of R is 0.7. Probabilities
are always expressed as real numbers between 0
and 1. A probability of 0 means “definitely not”
and a probability of 1 means “definitely so.” Hence,
P(S) = 1 means that it is always sunny.

Many of the operators and notations that are
used in prepositional logic can also be used in
probabilistic notation. For example, P( S) means
“the probability that it is not sunny”; P(S R) means
“the probability that it is both sunny and rainy.”
P(AB), which means “the probability that either
A is true or B is true,” is defined by the following
rule: P(AB) = P(A) + P(B) – P(A B).

ARTIFICIAL INTELLIGENCE

59
Rahul Publications

A B>

A B

The notation P(B|A) can be read as “the
probability of B, given A.” This is known as
conditional probability - it is conditional on A. In
other words, it states the probability that B is true,
given that we already know that A is true. P(B|A) is
defined by the following rule: Of course, this rule
cannot be used in cases where P(A) = 0.

For example, let us suppose that the
likelihood that it is both sunny and rainy at the same
time is 0.01. Then we can calculate the probability
that it is rainy, given that it is sunny as follows:

 P(R|S)=
P(R S)

P(S)


=
0.01
0.1

= 0.1

The basic approach statistical methods adopt
to deal with uncertainty is via the axioms of
probability:

Probabilities are (real) numbers in the range
0 to 1.

A probability of P(A) = 0 indicates total
uncertainty in A, P(A) = 1 total certainty and
values in between some degree of (un)certainty.

Probabilities can be calculated in a number
of ways.

Probability = (number of desired outcomes)
 / (total number of outcomes)

3.1.4 Probabilistic Reasoning Over Time

Q5. Explain about Markov chains.

Ans:
Markov Chains

A Markov Chain is a special sort of belief
network used to represent sequences of values, such
as the sequence of states in a dynamic system or
the sequence of words in a sentence.

Fig.: A Markov chain as a belief network

Figure shows a generic Markov chain as a
belief network. The network does not have to stop
at stage s4, but it can be extended indefinitely. The
belief network conveys the independence
assumption

P(St+1|S0,...,St)=P(St+1|St),which is called
the Markov assumption.

Often, St represents the state at time t. Intuiti-
vely, St conveys all of the information about the
history that can affect the future states. At St, you
can see that “the future is conditionally independent
of the past given the present.”

A Markov chain is stationary if the transition
probabilities are the same for each time point [i.e.,
for all t>0, t’>0, P(St+1|St) = P(St'+1|St')]. To specify
a stationary Markov chain, two conditional
probabilities must be specified:

 P(S0) specifies initial conditions.

 P(St+1|St) specifies the dynamics, which is the
same for each t 0.

Stationary Markov chains are of interest because

 They provide a simple model that is easy to
specify.

 The assumption of stationarity is often the
natural model, because the dynamics of the
world typically does not change in time.

 The network can extend indefinitely.

To determine the probability distribution of
state Si, VE can be used to sum out the preceding
variables. Note that the variables after S i are
irrelevant to the probability of Si and need not be
considered. This computation is normally specified
as matrix multiplication, but note that matrix
multiplication is a simple form of VE. Similarly, to
compute P(Si|Sk), where k>i, only the variables
before Sk need to be considered.

M.Sc. IV Sem UNIT - III

60
Rahul Publications

Q6. Explain hidden Markov models

Ans :
Hidden Markov Models

A hidden Markov model (HMM) is an aug-
mentation of the Markov chain to include observa-
tions. Just like the state transition of the Markov
chain, an HMM also includes observations of the
state. These observations can be partial in that
different states can map to the same observation
and noisy in that the same state can stochastically
map to different observations at different times.

The assumptions behind an HMM are that
the state at time t+1 only depends on the state at
time t, as in the Markov chain. The observation at
time t only depends on the state at time t. The
observations are modeled using the variable Ot for
each time t whose domain is the set of possible
observations. The belief network representation of
an HMM is depicted in Figure. Although the belief
network is shown for four stages, it can proceed
indefinitely.

Fig.: A hidden Markov model as a belief network

A stationary HMM includes the following
probability distributions:

 P(S0) specifies initial conditions.

 P(St+1|St) specifies the dynamics.

 P(Ot|St) specifies the sensor model.

There are a number of tasks that are common
for HMMs.

The problem of filtering or belief-state
monitoring is to determine the current state based
on the current and previous observations, namely
to determine

P(Si|O0,...,Oi).

The problem of smoothing is to determine
a state based on past and future observations.

Suppose an agent has observed up to time k and
wants to determine the state at time i for i<k; the
smoothing problem is to determine

P(Si|O0,...,Ok).

All of the variables Si and Vi for i>k can
be ignored.

Q7. Explain Dynamic Belief Networks

Ans :
Dynamic Belief Networks

A dynamic belief network (DBN) is a belief
network with regular repeated structure. It is like a
(hidden) Markov model, but the states and the
observations are represented in terms of features.
Assume that time isdiscrete. If F is a feature, we
write Ft as the random variable that represented
the value of variable F at time t. A dynamic belief
network makes the following assumptions:

 The set of features is the same at each time.

 For any time t>0, the parents of variable Ft
are variables at time t or time t-1, such that
the graph for any time is acyclic. The structure
does not depend on the value of t (except
t = 0 is a special case).

 The conditional probability distribution of how
each variable depends on its parents is the
same for every time t >0.

Thus, a dynamic belief network specifies a
belief network for time t=0, and for each variable
Ft specifies P(Ft|parents(Ft)), where the parents
of Ft are in the same or previous time step. This is
specified for t as a free parameter; the conditional
probabilities can be used for any time t>0. As in a
belief network, directed cycles are not allowed.

The model for a dynamic belief network can
be represented as a two-step belief network that
represents the variables at the first two times (times
0 and 1). That is, for each feature F there are two
variables, F0 and F1; parents(F0) only include
variables for time 0, and parents(F1) can be
variables at time 0 or 1, as long as the resulting
graph is acyclic. Associated with the network are
the probabilities P(F0|parents(F0)) and P(F1|pare
nts(F1)). Because of the repeated structure,
P(Fi|parents(Fi)), for i>1, has exactly the same
structure and the same conditional probability values
as P(F1|parents(F1)).

ARTIFICIAL INTELLIGENCE

61
Rahul Publications

Example

Suppose the trading agent wants to model
the dynamics of the price of a commodity such as
printer paper. To represent this domain, the
designer models what variables affect the price and
the other variables. Suppose the cost of pulp and
the transportation costs directly affect the price of
paper. The transportation costs are affected by the
weather. The pulp cost is affected by the prevalence
of tree pests, which in turn depend on the weather.
Suppose that each variable depends on the values
of the previous time step. A two-stage dynamic belief
network representing these dependencies is shown
in Figure.

Weather Weather

Transportation
costs

Transportation
costs

Tree pests Tree pests

Cost pulp Cost pulp

Cost paper Cost paper

Time = 0 Time = 1

Fig.: Two-stage dynamic belief network
for paper pricing

Note that, in this figure, the variables are
initially independent.

This two-stage dynamic belief network can
be expanded into a regular dynamic belief network
by replicating the nodes for each time step, and the
parents for future steps are a copy of the parents
for the time 1 variables.

Weather0 Weather1 Weather2 Weather3

Transportation
Costs0

Transportation
Costs1

Transportation
Costs2

Transportation
Costs2

Tree
pests0

Tree
pests1

Tree
pests2

Tree
pests3

Cost
pulp0

Cost
pulp1

Cost
pulp2

Cost
pulp3

Cost
paper0

Cost
paper1

Cost
paper2

Cost
paper3

Weather0 Weather1 Weather2 Weather3

Transportation
Costs0

Transportation
Costs1

Transportation
Costs2

Transportation
Costs2

Tree
pests0

Tree
pests1

Tree
pests2

Tree
pests3

Cost
pulp0

Cost
pulp1

Cost
pulp2

Cost
pulp3

Cost
paper0

Cost
paper1

Cost
paper2

Cost
paper3

Fig.: Expanded dynamic belief network
for paper pricing

An expanded belief network is shown
in Figure. The subscripts represent the time that
the variable is referring to.

3.1.5 Forward and Backward Reasoning

Q8. Write about forward and backward
reasoning.

Ans :
Forward chaining

Forward Chaining is one of the two main
methods of reasoning when using an inference
engine and can be described logically as repeated
application of modus ponens. Forward chaining is
a popular implementation strategy for expert
systems, business and production rule systems.
Forward chaining starts with the available data and
uses inference rules to extract more data (from an
end user, for example) until a goal is reached. An
inference engine using forward chaining searches
the inference rules until it finds one where the
antecedent (If clause) is known to be true. When
such a rule is found, the engine can conclude, or
infer, the consequent (Then clause), resulting in the
addition of new information to its data.

A horn clause C is called definite it contains
exactly one positive literal, i.e., implications of type

n n

i ii 1 i 1
V L V L false
 

        
   

are not possible.

M.Sc. IV Sem UNIT - III

62
Rahul Publications

If the knowledge base consists of Horn clauses
only, then generalized modus ponens can be used
just like modus ponens to infer statements iteratively
by forward chaining

Example

The law says that it is a crime for an American
to sell weapons to hostile nations. The country
Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West,
who is American. Prove that Col. West is a criminal.

The law says that it is a crime for an American
to sell weapons to hostile nations.

 American (x) Weapon(y) Hostile(z)
Sell (x, y, z)  Criminal(x)

The country Nono,
Country (Nono)
an enemy of America,
Enemy(Nono, America)
has some missiles,

xMissile(x)Owns(Nono. x)

and all of its missiles were sold to it by Colonel
West,

Missile(.r)Owns(Nono, x)  Sell(West.
x. Nono)

who is American.
American (West)

Additional background knowledge
Missiles are weapons.

x Missile(x)  Weapon(x)
Enemies of America are hostile.

x Enemy(x, America)Hostile(x)
Prove that Col. West is a criminal

Criminal(West)?
The knowledge base can be simplified by
 Existential instantiation and
 Omitting universal quantifiers
(as all free variables are universally quantified

any way).

American(x) Weapon(y) A Hostile(z) A
Sell (x, y, z)Criminal(x)

Country(Nono)

Enemy(Nono, America)

Missile(M1) A Owns(Nono, M1)

Missile(x)Owns(Nono, x) Sell (West, x,
Nono)

American (West)

Missile(x)  Weapon(x)

Enemy(x, America)  Hostile(x)

Step 1

Forward Chaining/Example

American
(West)

Missile
(M1)

Owns
(Nono, M1)

Enemy
(Nono, America)

Step 2

Weapon
(M1)

Sells (West,
M1, Nono)

Hostile
(Nono)

American
(West)

Missile
(M1)

Owns
(Nono, M1)

Enemy
(Nono, America)

Step 3

Weapon
(M1)

Sells (West,
M1, Nono)

Hostile
(Nono)

American
(West)

Missile
(M1)

Owns
(Nono, M1)

Enemy
(Nono, America)

Criminal
(West)

Weapon
(M1)

Sells (West,
M1, Nono)

Hostile
(Nono)

American
(West)

Missile
(M1)

Owns
(Nono, M1)

Enemy
(Nono, America)

Criminal
(West)

Finally from the given facts we proved that
Col.West is Criminal by using Forward Chaining
algorithm.

Backward Chaining

Backward chaining (or backward
reasoning) is an inference method that can be
described (in lay terms) as working backward from
the goal(s). It is used in automated theorem provers,
inference engines, proof assistants and other artificial
intelligence applications.

In game theory, its application to (simpler)
subgames in order to find a solution to the game is
called backward induction. In chess, it is called
retrograde analysis, and it is used to generate
tablebases for chess endgames for computer chess.

ARTIFICIAL INTELLIGENCE

63
Rahul Publications

Backward chaining is implemented in logic
programming by SLD resolution. Both rules are
based on the modus pollens inference rule. It is one
of the two most commonly used methods of reaso-
ning with inference rules and logical implications –
the other is forward chaining. Backward chaining
systems usually employ a depth-first search strategy

Let us consider the same example and will
prove Col.West is Criminal using Backward
Chaining.

Step 1

Criminal
(West)

Backward Chaining/Example

Step 2

American
(x)

Weapon (y) Sells (x, y, z) Hostile (z)

Criminal
(West)

{x/West)

Step 3

American
West

Weapon (y) Sells (x, y, z) Hostile (z)

Criminal
(West)

{x/West)

Missile (y)

Step 4

American
West

Weapon (y)
Sells (West,

M1, z)
Hostile (z)

Criminal (West)

{x/West, y/M1, z/Nono)

Missile (y)

{y/M1)

Missile (M1) Owns (Nono, M1)

{z/Nono)

Step 5

American
West

Weapon (y)
Sells (West,

M1, z)
Hostile (z)

Criminal (West)

{x/West, y/M1, z/Nono)

Missile (y)

{y/M1)

Missile (M1) Owns (Nono, M1)

{z/Nono)

Eneny
Naow.Americas

Finally we proved Col. West is criminal using
backward chaining algorithm.

3.1.6 Perception Making Simple Decisions

Q9. How perception is used in making
simple decisions.

Ans :
Perception is an essential component of

intelligent behavior. We perceive the world around
us through five basic senses of sight, hearing , touch,
smell, and taste., of these, sight and hearing have
been the main areas of Artificial Intelligence research
leading to speech understanding . when we perceive
some signal . it may a be sound or light. We respond
appropriately to that signal. To produce an
appropriate response we must categorize or analyze
that signal. For example to analyze a sentence we
must first identify individual sounds, then combine
these sounds into words, and then combine words
into a meaningful sentence structure . but this is
hard because dividing sounds into words needs
additional knowledge or information about the
situation. A series of sounds may be interpreted in
many ways . For instance

“Tigers care their kids”

and ”Tiger scare their kids”

might both have been the possible
interpretations of the same series of sounds.

To overcome the perceptual problems in
speech understanding , the process of analyzing a
speech is divided into five stages.

1. Digitization

The continuous input is divided into discrete
chunks in speech the division is done on a
time scale and in images, it may be based on
color or area or tint.

M.Sc. IV Sem UNIT - III

64
Rahul Publications

2. Smoothing

Since the real world is usually continuous ,
large spikes and variation in the input is
avoided.

3. Segmentation

Group the smaller chunks produced by
digitization into larger chunks corresponding
to logic components of the signal. For speech
understanding segments correspond to
individual sounds called phonemes.

4. Labeling

Each segment is given a label.

5. Analysis

The labeled segments are put together to form
a coherent object.

3.1.7 Making Complex Decisions

Q10. Explain how complex decisions are
made in AI.

Ans :
The agent’s utility now depends on a sequence

of decisions.

 In the following 4 × 3 grid environment the
agent makes a decision to move (U, R, D, L)
at each time step

 When the agent reaches one of the goal states,
it terminates

 The environment is fully observable - the
agent always knows where it is.

If the environment were deterministic, a
solution would be easy : the agent will always reach
+1 with moves [U, U, R, R, R]

 Because actions are unreliable, a sequence
of moves will notalways lead to the desired
outcome

 Let each action achieve the intended effect
with probability 0.8 but with probability 0.1
the action moves the agent to either of
theright angles to the intended direction

 If the agent bumps into a wall, it stays in the
same square.

 Now the sequence [U, U, R, R, R] leads to
the goal state withprobability 0.85 = 0.32768

 In addition, the agent has a small chance of
reaching the goal byaccident going the other
way around the obstacle with aprobability
0.14 × 0.8, for a grand total of 0.32776.

For our particular example, the reward is -
0.04 in all statesexcept in the terminal states.

 The utility of an environment history is just
(for now) the sum ofrewards received.

 If the agent reaches the state +1, e.g., after
ten steps, its totalutility will be 0.6.

 The small negative reward gives the agent an
incentive to reach [4, 3] quickly.

 A sequential decision problem for a fully
observable environment with A Markovian
transition model and Additive rewards is
called a Markov decision problem (MDP).

 Each time a given policy P is executed starting
from the initial state, the stochastic nature of
the environment will lead to a different
environment history.

 The quality of a policy  is therefore measured
by the expected utility of the possible
environment histories generated by the policy

 An optimal policy  is yields the highest
expected utility of the possible environment
histories generated by the policy.

ARTIFICIAL INTELLIGENCE

65
Rahul Publications

 A policy represents the agent function explicitly
and is thereforea description of a simple reflex
agent.

– 0.0221 < R(S) <0:

– 0.4278 < R(S) < – 0.0850:

R(s)< – 1.6284:

R(S) > 0

Utilities over time

 In case of an infinite horizon the agent’s action
time has no upperbound

 With a finite time horizon, the optimal action
in a given state couldchange over time - the
optimal policy for a finite horizon isnon-
stationary

 With no fixed time limit, on the other hand,
there is no reason tobehave differently in the
same state at different times, and theoptimal
policy is stationary

 The discounted utility of a state sequence s0,
s1, s2, … is R(s0) + yR(s1) + y2R(s2) + …,

where 0 < y < = 1 is the discount factor

When y = 1, discounted rewards are exactly
equivalent toadditive rewards

 The latter rewards are a special case of the
former ones. When yis close to 0, rewards in
the future are viewed asinsignificant.

 If an infinite horizon environment does not
contain a terminalstate or if the agent never
reaches one, then all environmenthistories
will be infinitely long.

 Then, utilities with additive rewards will
generally be infinite.

 With discounted rewards (y<1), the utility of
even an infinitesequence is finite.

Value Iteration

For calculating an optimal policy we calculate
the utility of each state andthen use the state utilities
to select an optimal action in each state.

M.Sc. IV Sem UNIT - III

66
Rahul Publications

 The utility of a state is the expected utility of
the state sequencethat might follow it.

 Obviously, the state sequences depend on the
policy P that isexecuted.

 Let stbe the state the agent is in after executing
P for t steps.

 Note that stis a random variable.

 Then, executing starting in s(= s0) we have

(S) t
t 0,....., tU E[Y R(S)]
  

The true utitlity of a state U(s) is just U*(s)

 R(s) is the short-term reward for being in s,
whereas U(s) is thelong-term total reward
from s onwards

 In our example grid the utilities are higher
for states closer tothe +1 exit, because fewer
steps are required to reach the exit

3.1.8 Other Techniques in Uncertainty and
Reasoning Process

Q11. Explain Dempster – Shafer Theory.

Ans :
An alternative to Bayesian Networks is

Dempster - Shafer Theory which is designed to deal
directly with the distinction between uncer-tainty and
ignorance. Rather than computing probabilities of
propositions, it computes probabilities that
evidence supports the proposi-tions. This theory is
an approach to combining evidence. Each fact has
a degree of support, between 0 and 1:

– 0 No support for the fact

– 1 full support for the fact

Set of possible conclusions

Bayes Theorem concerned with evidence that
supported single conclusions. (eg. evidence for each
outcome in)

D-S theory concerned with evidences which
support subsets of outcome in

Frame of Discernment

The Frame of Discernment or power set of is
the set of all possible subsets of

Then the Frame of Discernment of is: the
empty set, has a probability of 0, Since one of the
outcome has to be true.Each of the other elements
in the powerset has a probability between 0 and 1.

The probability of is 1.0.Since one has to be
true.

Mass function : m(A): (where A is a
member of the power set) = proportion of all
evidence that supports this element of the power
set.

“The mass m(A) of a given member of the
power set, A, expresses the proportion of all
relevant and available evidence that supports the
claim that the actual state belongs to A but to no
particular subset of A.”

“The value of m(A) pertains only to the set
A and makes no additional claims about any subsets
of A, each of which has, by definition, its own mass.

Belief function:bel(A)

The belief in an element A of the Power
set is the sum of the masses of elements which are
subsets of A (including A itself).

E.g., given A={q1, q2, q3}

B e l (A) = m (q 1) + m (q 2) + m (q 3)
+m({q1,q2}) +m({q2,q3}) +m({q1, q3})
+m({q1, q2, q3})

Disbelief (or Doubt) in A: dis(A)

The disbelief in A is simply bel(¬A).

It is calculated by summing all masses of
elements which do not intersect with A.

ARTIFICIAL INTELLIGENCE

67
Rahul Publications

Plausibility of A: pl(A)

The plausability of an element A, pl(A), is the
sum of all the masses of the sets that intersect with
the set A

Let us consider an example,

There are four people named as (B, J, S, K)
are locked in room when the lights go out. When
the lights come on, K is dead, stabbed with a knife.
Not suicide (stabbed in the back). No-one entered
the room. Assume only one killer.

Power Set

Detectives, after reviewing the crime-scene,
assign mass probabilities to various elements of the
power set:

Belief Function

Given the mass assignments as assigned by
the detectives:

 bel({B})= m({B}) = 0.1

bel({B,J}) = m({B})+m({J})+m({B,J})

= 0.1+0.2+0.1= 0.4

Result

Plausibility of A: pl(A)

As we know that, The plausability of an
element A, pl(A), is the sum of all the masses of the
sets that intersect with the set A:

 E.g: pl({B, J})= m(B)+m(J) +m(B, J)

 +m(B,S)+m(J,S) +m(B,J,S)

= 0.9

Disbelief (or Doubt) in A: dis(A)

Now,we need to find the disbelief fn for that
we need to calculate dis(A), by summing all masses
of elements which do not intersect with A.

Then, the plausibility of A is thus 1-dis(A):

pl(A) = 1 – dis(A)

Belief Intervals and Probability

The probability in A falls somewhere between
bel (A) and pl(A). – bel(A) represents the evidence
we have for A directly.

So prob(A) cannot be less than this value.

 pl(A) represents the maximum share of the
evidence we could possibly have, if, for all
sets that intersect with A, the part that intersects
is actually valid. So pl(A) is the maximum
possible value of prob(A).

Belief Intervals

Belief intervals allow Demspter-Shafer theory
to reason about the degree of certainty or certainty
of our beliefs.

 A small difference between belief and plausi-
bility shows that we are certain about our
belief.

 A large difference shows that we are uncertain
about our belief.

 However, even with a 0 interval, this does
not mean we know which conclusion is right.
Just how probable it is!

3.2 PLANNING PROBLEM

Q12. What is planning system Explain about
it with the help of block world puzzle
example.

Ans :
Planning refers to the process of computing

several steps of a problem solving before executing
any of them. Planning is useful as a problem solving
technique for non decomposable problem.

Components of Planning System

In any general problem solving systems,
elementary techniques to perform following
functions are required

 Choose the best rule (based on heuristics) to
be applied

 Apply the chosen rule to get new problem
state

 Detect when a solution has been found

 Detect dead ends so that new directions are
explored.

To choose the rules,

 First isolate a set of differences between the
desired goal state and current state,

 Identify those rules that are relevant to
reducing these difference,

M.Sc. IV Sem UNIT - III

68
Rahul Publications

 If more rules are found then apply heuristic
information to choose out of them.

To apply rules, In simple problem solving
system,

 Applying rules was easy as each rule specifies
the problem state that would result from its
application.

 In complex problem we deal with rules that
specify only a small part of the complete
problem state.

Example

Let us consider the famous problem name
as Block World Problem, which helps to understand
the importance of planning in artificial intelligent
system.

The block world environment has,

 Square blocks of same size

 Blocks can be stacked one upon another.

 Flat surface (table) on which blocks can be
placed.

 Robot arm that can manipulate the blocks. It
can hold only one block at a time.

In block world problem, the state is described
by a set of predicates representing the facts that were
true in that state.One must describe for every action,
each of the changes it makes to the state descrip-
tion.In addition, some statements that everything
else remains unchanged is also necessary. We are
having four types of operations done by robot in
block world environment. They are

UNSTACK (X, Y): [US (X, Y)]

 Pick up X from its current position on block
Y. The arm must be empty and X has no block
on top of it.

STACK (X, Y): [S (X, Y)]

 Place block X on block Y. Arm must holding
X and the top of Y is clear.

PICKUP (X): [PU (X)]

 Pick up X from the table and hold it. Initially
the arm must be empty and top of X is clear.

PUTDOWN (X): [PD (X)]

 Put block X down on the table. The arm must
have been holding block X.

Along with the operations, some predicates
to be used to describe an environment clearly.Those
predicates are,

 ON(X,Y) - Block X on block Y.

 ONT() - Block X on the table.

 CL(X) - Top of X clear.

 HOLD(X) - Robot-Arm holding X.

 AE - Robot-arm empty.

Logical statements true in this block world.

X Holding X means, arm is not empty

(X) HOLD (X)AE

X is on a table means that X is not on the top
of any block

(X) ONT (X) (Y) ON (X, Y)

Any block with no block on has clear top

(X) (~(Y) ON (Y,X))CL(X)

Initial State

Block 1 Block 2

Armempty

clear(block2)

ontable(block2)

ontable(block1)

clear(block1)

Goal State

Block 1

Block 2

ARTIFICIAL INTELLIGENCE

69
Rahul Publications

Armempty
ontable(block2)
on(block1, block2)
clear(block1)
We have to generate a plan to reach goal state

from initial state given.In this example the initial state
has two blocks Block1 and Block 2.Both is placed
on table.To reach the goal state first we have to

PICKUP(Block 1)

Block 1

Block 2

We need to check whether we reach goal state
or not, after completion of each and every
operation. Here the environment looks like,
Hold(block1)
Clear(Block2)
OnTable(Block2)

This is not the goal state. so, we have to
continue the process. Next the block 1 needs to be
place on block 2,to achieve this do the operation
STACK (Block1, Block2). After this operation
the environment looks like,

Block 1

Block 2

Arm Empty, on (Block1, Block2), Clear
(Block1), On Table (Block2)

We reach the goal state, the plan for reaching
goal state is PICKUP(Block1) and Stack (Block1,
Block2).

3.2.1 Simple Planning Agent

Q13. Write a note on simple planning agent.

Ans :
Earlier we saw that problem-solving agents

are able to plan ahead - to consider the conse-
quences of sequences of actions - before acting. We
also saw that a knowledgebased agents can select
actions based on explicit, logical representations of
the current state and the effects of actions. This allows
the agent to succeed in complex, inaccessible
environments that are too difficult for a problem-
solving agent.

Problem Solving Agents + Knowledge-based
Agents = Planning Agents

In this module, we put these two ideas
together to build planning agents. At the most
abstract level, the task of planning is the same as
problem solving.

Algorithm of a simple planning agent:

1. Generate a goal to achieve.

2. Construct a plan to achieve goal from current
state.

3. Execute plan until finished.

4. Begin again with new goal.

3.2.2 Planning Languages

Q14. Write about Artificial intelligence
planning language STRIPS.

Ans :
To represent planning problems we use

Artificial Intelligence planning languages that
describe environment’s conditions which then lead
to desired goals by generating chain of actions based
on these conditions.

STRIPS

STRIPS is an action language which was a
part of the first major planning system with the same
name.

M.Sc. IV Sem UNIT - III

70
Rahul Publications

STRIPS stands for “Stanford Research
Institute Problem Solver,” was the planner used in
Shakey, one of the first robots built using AI
technology, which is an action-centric representation,
for each action, specifies the effect of an action.

STRIPS as a classical planning language is
composed from states, goals and set of actions:
 State is a conjunction of positive literals

which cannot contain variables and invoke
functions.

 Goal, similarly to the state, is conjunction of
positive and ground (no variables and no
functions) literals.

 Actions (also called operators) include
preconditions and postconditions. Both
represented as a conjunction of function-free
literals. Preconditions describe the state of
world required to perform action, while
postconditions describe state of the world
after action is executed.
The STRIPS representation for an action

consists of three lists,
 Pre_Cond list contains predicates which have

to be true before operation.
 ADD list contains those predicates which will

be true after operation
 DELETE list contain those predicates which

are no longer true after operation
Predicates not included on either of these lists

are assumed to be unaffected by the operation.
Frame axioms are specified implicitly in STRIPS
which greatly reduces amount of information stored.

Example from Shakey the robot paper can
be helpful with understanding the basics of STRIPS
language. It describes task of fetching box from
adjacent room.

Initial state of the world is presented by this
image:

Image from Shakey the robot paper,
STRIPS

Note: Capital letters are constants, while small letters
are variable.

As mentioned before, action can be applied
only if current state of the world meets all of its
preconditions. When it’s applied, literals from
postcondition are: added to world state if they are
positive, removed from world state if they are
negative.

Here is the solution (sequence of actions to
achieve the goal, while starting from initial state) for
described example:

1. GOTHRU(D1, R1, R2)

2. PUSHTHRU(BOX1, D1, R2, R1).

3.2.3 Blocks World

Q15. Explain Blocks World problem with the
help of STRIPS.

Ans :
Let us discuss about the action lists for

operations of block world problem.

Stack (X, Y)

Pre: CL (Y), HOLD (X)

 Del: CL (Y), HOLD (X)

 Add: AE, ON (X, Y)

UnStack (X, Y)

Pre: ON (X, Y), CL (X), AE

 Del: ON (X, Y), AE

 Add: HOLD (X), CL (Y)

 Pickup (X)

Pre: ONT (X) , CL (X) ,AE

Del: ONT (X), AE

Add: HOLD (X)

Putdown (X)

Pre: HOLD (X)

Del: HOLD (X)

Add: ONT (X) AE

ARTIFICIAL INTELLIGENCE

71
Rahul Publications

Consider a Block world problem,

Block 1

Block 2

Block 1

Block 2

Block 2

Initial State

Initial State

on(block2, block1)

clear(block2)

ontable(block3)

on(block4, block3)

on(block5, block4)

clear(block5)

Block 1

Block 5

Block 4

Block 3

Block 2Block 1

Block 5

Block 4

Block 3

Block 2

Goal State

empty

on(block3, block4)

on(block5, block1)

ont(block2)

Identify the style operators for given problem,

Unstack(block5,block4)

Pre: ON (block5, block4), CL (block5), AE

Del: ON (block5,block4) , AE

Add: HOLD (block5), CL (block4)

Block 1

Block 2

Block 3

Block 4

Block 5

Putdown (block 5)

Pre: HOLD (block5)

Del: HOLD (block5)

Add: ONT (block5) AE

Block 1

Block 2

Block 3

Block 4

Block 5Block 1

Block 2

Block 3

Block 4

Block 5

Unstack(block4, block3)

Pre: ON (block4, block3), CL(block 4), AE

Del: ON (block4, block3), AE

Add: HOLD (block4), CL (block 3)

Block 1

Block 2

Block 4 Block 3 Block 5

Pickup(block3)

M.Sc. IV Sem UNIT - III

72
Rahul Publications

Pre: ONT (block3), CL (block3), AE

Del: ONT (block3), AE

Add: HOLD (block3)

Stack(block3, block4)

Pre: CL (block3) HOLD (block3)

Del: CL (block4) HOLD (block3)

Add: AE ON (block3, block4)

Block 1

Block 2

Block 4

Block 3

Block 5

Unstack(block2, block1)

Pre: ON (block4, block3), CL (block4), AE

Del: ON (block4, block3), AE

Add: HOLD (block4), CL (block3)

Block 1 Block 4

Block 3

Block 5

Block 2Block 2

Putdown(block2)

Pre: HOLD (block4)

Del: HOLD (block4)

Add: ONT (block4) AE

Block 1 Block 4

Block 3

Block 5Block 2

Putdown(block5)

Pre: ONT (block5), CL (block5), AE
Del: ONT (block5), AE

Add: HOLD (block5)

Block 1 Block 4

Block 3

Block 2

Block 5Block 5

Stack(block5, block1)

Pre: CL (block1) HOLD (block5)
Del: CL (block1), HOLD (block5)

Add: AE, ON (block5, block1)

Block 1 Block 4

Block 3

Block 2

Block 5

After completing all the operations what we
found for the given problem,we had reaches the
goal state.

ARTIFICIAL INTELLIGENCE

73
Rahul Publications

armempty

on(block3, block4)

on(block5, block1)

ont(block2)

3.2.4 Goal Stack Planning Means-ends
Analysis

Q16. Write Planning-Goal Stack Algorithm.

Ans :
Planning-Goal Stack Algorithm

One of the earliest techniques is planning using
goal stack. Problem solver uses single stack that
contains.

 Sub goals and operators both

 Sub goals are solved linearly and then finally
the conjoined sub goal is solved.

Plans generated by this method will contain
complete sequence of operations for solving one
goal followed by complete sequence of operations
for the next etc.

Problem solver also relies on

 A database that describes the current
situation.

 Set of operators with precondition, add and
delete lists.

Let us assume that the goal to be satisfied is:

GOAL = G1 G2 ... Gn

Sub-goals G1, G2, ... Gn are stacked with
compound goal G1G2 ...Gn at the bottom.

Top G1

G2


Gn

Bottom G1 G2  ...  Gn

At each step of problem solving process, the
top goal on the stack is pursued.

Algorithm

Find an operator that satisfies sub goal G1
(makes it true) and replace G1 by the operator.

 If more than one operator satisfies the sub
goal then apply some heuristic to choose one.

In order to execute the top most operation,
its preconditions are added onto the stack.

 Once preconditions of an operator are
satisfied, then we are guaranteed that
operator can be applied to produce a new
state.

 New state is obtained by using ADD and
DELETE lists of an operator to the existing
database.

Problem solver keeps tract of operators
applied.

 This process is continued till the goal stack is
empty and problem solver returns the plan
of the problem.

Goal Stack Example

With this example, let us explain the working
method of Goal Stack Algorithm.

A

B

C D

Initial State

A

C

D

B

Goal State

Initial State

ON(B, A) ONT(C)  ONT(A)  ONT(D)
 CL(B)CL(C)CL(D)AE

Goal State

ON(C, A) ON(B, D) ONT(A) ONT(D)
 CL(C) CL(B) AE

We notice that following sub-goals in goal
state are also true in initial state.

ONT(A)ONT(D) CL(C) CL(B) AE

Represent for the sake of simplicity -
 TSUBG

M.Sc. IV Sem UNIT - III

74
Rahul Publications

Only sub-goals ON(C, A) &ON(B, D) are to
be satisfied and finally make sure that TSUBG
remains true.

Either start solving first ON(C, A) or ON(B,
D). Let us solve first ON(C, A).

Goal Stack

ON(C, A)

ON(B, D)

ON(C, A) ON(B, D)TSUBG

S(C, A) can be applied if its preconditions are
true. So add its preconditions on the stack.

Goal Stack

HOLD(C) Preconditions of STACK

CL(A)

CL(A) HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A) ON(B, D)TSUBG

To do the S(C,A) operation all preconditions
should be true. In the given problem CL(A) is not
true.So,to make the state true ,replace CL(A)
by U(B,A) and write the preconditions of Unstack
operator.

Goal Stack

ON(B, A)

CL(B) Preconditions of UNSTACK

AE

ON(B, A)CL(B) AE

US(B, A) Operator

HOLD(C) Preconditions of STACK

CL(A))HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A)ON(B, D)TSUBG

 ON(B, A), CL(B) and AE are all true in
initial state, so pop these along with its
compound goal.

 Next pop top operator US(B, A) and produce
new state by using its ADD and DELETE lists.

 Add US(B, A) in a queue of sequence of
operators.

 SQUEUE = US (B, A)

State-1

ONT(A)  ONT(C)  ONT(D) HOLD(B)

 CL(A) CL(C) CL(D)

STATE 1

Unstack (B, A)

A

B

C D

Goal Stack

HOLD(C) Preconditions of STACK

CL(A))  HOLD(C)

S (C, A) Operator

ON(B, D)

ON(C, A)  ON(B, D)  TSUBG

To execute the S(C, A), all the preconditions
of Stack operator should be true. But in this case
HOLD(C) is not true. To make the state true use
the operator S(B, D)

S(B, D) Operator

HOLD(C)

CL(A))  HOLD(C) Preconditions of STACK

S(C, A) Operator

ON(B, D)

ON(C, A)ON(B, D)TSUBG

Write down the preconditions of S(B,D)

Goal Stack

CL (D) HOLD (B) Preconditions of STACK

S(B,D) Operator

HOLD(C)

ARTIFICIAL INTELLIGENCE

75
Rahul Publications

CL(A)) HOLD(C) Preconditions of STACK

S (C, A) Operator

ON(B, D)

ON(C, A)ON(B, D)TSUBG

Add S(B, D) in a queue of sequence of operators.

SQUEUE = US (B, A), S (B, D)

State 2

O N T (A)O N T (C)  O N T (D)  O N (B ,

D) CL(A) CL(C) CL(B) AE

State 2

A

B

C D

Goal Stack

HOLD(C)

CL(A)) HOLD(C) Preconditions of STACK

S (C, A) Operator

ON(B, D)

ON(C, A)ON(B, D)TSUBG

To execute S(C,A) all the preconditions
should be true.here HOLD(C) is not true,to make
the state true use the operator PU(C) and write
the preconditions.

Goal Stack

ONT (C)CL (C) AE Preconditions of
PICKUP

PU(C) Operator

HOLD(C)

CL(A)) HOLD(C) Preconditions of STACK

S (C, A) Operator

ON(B, D)

ON(C, A)ON(B, D)TSUBG

Here, all the preconditions of PU operator is
true,so add PU(C) in a queue of sequence of
operators.

SQUEUE = US (B, A), S(B, D), PU(C)

State_3

ONT(A) HOLD(C) ONT(D) ON(B, D)
CL(A)CL(B).

Pick (C)

STATE 3

A

BC

D

Pick (C)

Goal Stack

HOLD(C)

CL(A))  HOLD(C) Preconditions of STACK

S (C, A) Operator

ON(B, D)

ON(C, A)ON(B, D) TSUBG

Here all the preconditions of S(C, A) is true,
so add S(C, A) in queue

SQUEUE = US(B, A), S (B, D), PU(C), S(C, A)

State - 4

ONT(A)  ON(C, A)  ONT(D)  ON(B,
D)CL(C) CL(B)AE

Goal State

A

C

D

B

Finally,we reached goal state after S(C,A)
using Goal Stack algorithm,so the plan for the given
problem is,

UnStack (B, A)

Stack (B, D)

PickUp (C)

Stack (C, A)

M.Sc. IV Sem UNIT - III

76
Rahul Publications

3.2.5 Planning as a State-space Search

Q17. Write about planning as state-space
search.

Ans :
Planning as Search

There are two main approaches to solving
planning problems, depending on the kind of search
space that is explored:

1. Situation-space search

2. Planning-space search in situation space
search

In Situation-Space search

 The search space is the space of all possible
states or situations of the world

 Initial state defines one node

 A goal node is a state where all goals in the
goal state are satisfied

 A solution plan is the sequence of actions (e.g.
operator instances) in the path from the start
node to a goal node.

In Plan-Space Search

 The search space is the space of all possible
plans

 A node corresponds to a partial plan

 Initially we will specify an “initial plan” which
is one node in this space.

 A goal node is a node containing a plan which
is complete, satisfying all of the goals in the
goal state

 The node itself contains all of the information
for determining a solution plan (e.g.sequence
of actions).

Goal Interaction

Most planning algorithms assume that the
goals to be achieved are independent or nearly
independent in the sense that each can be solved
separately and then the solutions concatenated
together. If the order of solving a set of goals (either
the original goals or a set of sub-goals which are
the preconditions of an operator) fails because
solving a latter goal undoes an earlier goal, then

this version of the STRIPS algorithm fails. Hence,
situation-space planners do not allow for
interleaving of steps in any solution it finds.

Principle of Least Commitment:The principle
of least commitment is the idea of never making a
choice unless required to do so. The advantage of
using this principle is you won’t have to backtrack
later! In planning, one application of this principle
is to never order plan steps unless it’s necessary for
some reason. So, partial-order planners exhibit this
property because constraint ordering steps will only
be inserted when necessary. On the other hand,
situation-space progression planners make
commitments about the order of steps as they try
to find a solution and therefore may make mistakes
from poor guesses about the right order of steps.

3.3 LEARNING

3.3.1 What Is Machine Learning?

Q18. What is machine learning?

Ans :
Learning

“Learning denotes changes in a system that
enables system to do the same task more efficiently
next time.”

Machine Learning:

Definition

A computer program is said to learn from
experience E with respect to some class of tasks T
and performance measure P, if its performance at
tasks in T, as measured by P, improves with
experience E.

Components of Learning System

Performance Element

The performance element is the agent that
acts in the world .It percepts and decides on external
actions.

Learning Element

It responsible for making improvements, takes
knowledge about performance element and some
feedback, determines how to modify performance
element.

ARTIFICIAL INTELLIGENCE

77
Rahul Publications

Critic

It tells the learning element how agent is doing
by comparing with the fixed standard of
performance.

Problem Generator

This component suggests problems or actions
that will generate new examples or experience that
helps the system to train further.

Let us see the role of each component with
an example.

Example

Automated Taxi on city roads

Performance Element: consists of
knowledge and procedures for driving actions.

eg: turning, accelerating, breaking are the
performance elements on roads.

Learning Element: It formulates goals.

Eg: Learn rules for breaking, accelerating,
learn geography of the city.

Critic: Observes wor ld and passes
information to learning element.

Eg: quick right turn across three lanes of
traffic, observe reaction of other drivers.

Problem Generator: Try south city road

3.3.2 Learning Paradigms

Q19. Explain about learning paradigms.

Ans :
Learning Paradigm

 Rote learning

 Induction

 Clustering

 Analogy

 Discovery

 Genetic algorithms

 Reinforcement

Rote Learning

Rote learning technique avoids understanding
the inner complexities but focuses on memorizing
the material so that it can be recalled by the learner
exactly the way it read or heard.

Learning by memorization: which avoids
understanding the inner complexities the subject that
is being learned.

 Learning something from Repeating:saying the
same thing and trying to remember how to say it; it
does not help to understand, it helps to remember,
like we learn a poem, song, etc.

 = {x(n), y(n)}n=1–N (AC)

There are two types of inductive learning,

 Supervised

 Unsupervised

Supervised learning: (The machine has access
to a teacher who corrects it.)

Learning is the machine learning task of
inferring a function from labeled training data. The
training data consist of a set of training examples.
In supervised learning, each example is a pair
consisting of an input object (typically a vector) and
a desired output value (also called the supervisory
signal). Example: Face recognition.

Unsupervised Learning:(No access to
teacher. Instead, the machine must search for
“order” and “structure” in the environment.)
since there is no desired output in this case that is
provided therefore categorization is done so that
the algorithm differentiates correctly between the
face of a horse, cat or human (clustering of data)

Clustering

In clustering or unsupervised learning, the
target features are not given in the training examples.
The aim is to construct a natural classification that
can be used to cluster the data. The general idea
behind clustering is to partition the examples
into clusters or classes. Each class predicts feature
values for the examples in the class. Each clustering
has a prediction error on the predictions. The best
clustering is the one that minimizes the error.

M.Sc. IV Sem UNIT - III

78
Rahul Publications

Example: An intelligent tutoring system may want
to cluster students’ learning behavior so that
strategies that work for one member of a class may
work for other members.

Reinforcement Learning

Imagine a robot that can act in a world,
receiving rewards and punishments and determining
from these what it should do. This is the problem
of reinforcement learning. Most Reinforcement
Learning research is conducted with in the
mathematical framework of Markov Decision
Process.

3.3.3 Learning Concepts

Q20. Write about Learning Concepts.

Ans :
The problem of learning is to take in prior

knowledge and data (e.g., about the experiences
of the agent) and to create an internal represen-
tation (the knowledge base) that is used by the agent
as it acts. This internal representation could be the
raw experiences themselves, but it is typically a
compact representation that summarizes the data.
The problem of inferring an internal representation
based on examples is often called induction and
can be contrasted with deduction, which is deriving
consequences of a knowledge base, and abduction,
which is hypothesizing what may be true about a
particular case.

There are two principles that are at odds in
choosing a representation scheme:

 The richer the representation scheme, the
more useful it is for subsequent problems
solving. For an agent to learn a way to solve
a problem, the representation must be rich
enough to express a way to solve the
problem.

 The richer the representation, the more
difficult it is to learn. A very rich represen-
tation is difficult to learn because it requires a
great deal of data, and often many different
hypotheses are consistent with the data.

Learning techniques face the following issues

Task

Virtually any task for which an agent can get
data or experiences can be learned. The most com-
monly studied learning task is supervised lear-
ning: given some input features, some target feat-
ures, and a set of training examples where the
input features and the target features are specified,
predict the target features of a new example for
which the input features are given. This is called
classification when the target variables are
discrete and regression when the target features
are continuous.

Feedback

Learning tasks can be characterized by the
feedback given to the learner. In supervised
learning, what has to be learned is specified for
each example. Supervised classification occurs when
a trainer provides the classification for each example.
Supervised learning of actions occurs when the
agent is given immediate feedback about the value
of each action. Unsupervised learning occurs
when no classifications are given and the learner
must discover categories and regularities in the data.
Feedback often falls between these extremes, such
as in reinforcement learning, where the
feedback in terms of rewards and punishments
occurs after a sequence of actions. This leads to
the credit-assignment problem ofdetermining
which actions were responsible for the rewards or
punishments. For example, a user could give
rewards to the delivery robot without telling it exactly
what it is being rewarded for. The robot then must
either learn what it is being rewarded for or learn
which actions are preferred in which situations. It is
possible that it can learn what actions to perform
without actually determining which consequences
of the actions are responsible for rewards.

Representation

For an agent to use its experiences, the
experiences must affect the agent’s internal
representation. Much of machine learning is studied

ARTIFICIAL INTELLIGENCE

79
Rahul Publications

in the context of particular representations (e.g.,
decision trees, neural networks, or case bases). This
chapter presents some standard representations to
show the common features behind learning.

Online and offline

In offline learning, all of the training
examples are available to an agent before it needs
to act. In online learning, training examples arrive
as the agent is acting. An agent that learns online
requires some representation of its previously seen
examples before it has seen all of its examples. As
new examples are observed, the agent must update
its representation. Typically, an agent never sees all
of its examples. Active learning is a form of
online learning in which the agent acts to acquire
useful examples from which to learn. In active
learning, the agent reasons about which examples
would be useful to learn from and acts to collect
these examples.

Measuring success

Learning is defined in terms of improving
performance based on some measure. To know
whether an agent has learned, we must define a
measure of success. The measure is usually not how
well the agent performs on the training experiences,
but how well the agent performs for new
experiences.

In classification, being able to correctly classify
all training examples is not the problem. For
example, consider the problem of predicting a
Boolean feature based on a set of examples.
Suppose that there were two agents P and N.
Agent P claims that all of the negative examples
seen were the only negative examples and that every
other instance is positive. Agent N claims that the
positive examples in the training set were the only
positive examples and that every other instance is
negative. Both of these agents correctly classify every
example in the training set but disagree on every
other example. Success in learning should not be
judged on correctly classifying the training set but
on being able to correctly classify unseen examples.
Thus, the learner must generalize: go beyond the
specific given examples to classify unseen examples.

A standard way to measure success is to divide
the examples into a training set and a test set. A
representation is built using the training set, and then

the predictive accuracy is measured on the test set.
Of course, this is only an approximation of what is
wanted; the real measure is its performance on some
future task.

Bias

The tendency to prefer one hypothesis over
another is called a bias. Consider the agents N and
P defined earlier. Saying that a hypothesis is better
than N’s or P’s hypothesis is not something that is
obtained from the data - both N and P accurately
predict all of the data given - but is something
external to the data. Without a bias, an agent will
not be able to make any predictions on unseen
examples. The hypotheses adopted by P and N
disagree on all further examples, and, if a learning
agent cannot choose some hypotheses as better,
the agent will not be able to resolve this
disagreement. To have any inductive process make
predictions on unseen data, an agent requires a bias.
What constitutes a good bias is an empirical question
about which biases work best in practice; we do not
imagine that either P’s or N’s biases work well in
practice.

Learning as search

Given a representation and a bias, the
problem of learning can be reduced to one of
search. Learning is a search through the space of
possible representations, trying to find the
representation or representations that best fits the
data given the bias. Unfortunately, the search spaces
are typically prohibitively large for systematic search,
except for the simplest of examples. Nearly all of
the search techniques used in machine learning can
be seen as forms of local search through a space
of representations. The definition of the learning
algorithm then becomes one of defining the search
space, the evaluation function, and the search
method.

Noise

In most real-world situations, the data are not
perfect. Noise exists in the data (some of the features
have been assigned the wrong value), there are
inadequate features (the features given do not
predict the classification), and often there are
examples with missing features. One of the important
properties of a learning algorithm is its ability to
handle noisy data in all of its forms.

M.Sc. IV Sem UNIT - III

80
Rahul Publications

Interpolation and extrapolation

For cases in which there is a natural
interpretation of “between,” such as where the
prediction is about time or space, interpolation
involves making a prediction between cases for
which there are data. Extrapolation involves making
a prediction that goes beyond the seen examples.
Extrapolation is usually much more inaccurate than
interpolation. For example, in ancient astronomy,
the Ptolemaic system and heliocentric system of
Copernicus made detailed models of the movement
of solar system in terms of epicycles (cycles within
cycles). The parameters for the models could be
made to fit the data very well and they were very
good at interpolation; however, the models were
very poor at extrapolation. As another example, it
is often easy to predict a stock price on a certain
day given data about the prices on the days before
and the days after that day. It is very difficult to
predict the price that a stock will be tomorrow, and
it would be very profitable to be able to do so. An
agent must be careful if its test cases mostly involve
interpolating between data points, but the learned
model is used for extrapolation.

3.3.4 Methods and Models

Q21. Explain about various models in
machine learning.

Ans :
For classification and regression problem,

there are different choices of Machine Learning
Models each of which can be viewed as a blackbox
that solve the same problem. However, each model
come from a different algorithm approaches and
will perform differently under different data set. The
best way is to use cross-validation to determine which
model perform best on test data.

Decision Tree based methods

The fundamental learning approach is to
recursively divide the training data into buckets of
homogeneous members through the most discrimi-
native dividing criteria. During the learning, various
dividing criteria based on the input will be tried (using
in a greedy manner); when the input is a category
(Mon, Tue, Wed ...), it will first be turned into binary
(isMon, isTue, isWed ...) and then use the true/false
as a decision boundary to evaluate the homo-

geneity; when the input is a numeric or ordinal value,
the lessThan, greaterThan at each training data input
value will be used as the decision boundary. The
training process stops when there is no significant
gain in homogeneity by further split the Tree. The
members of the bucket represented at leaf node
will vote for the prediction; majority wins when the
output is a category and member average when
the output is a numeric.

The good part of Tree is that it is very flexible
in terms of the data type of input and output
variables which can be categorical, binary and
numeric value. The level of decision nodes also
indicate the degree of influences of different input
variables. The limitation is each decision boundary
at each split point is a concrete binary decision. Also
the decision criteria only consider one input
attributes at a time but not a combination of multiple
input variables. Another weakness of Tree is that
once learned it cannot be updated incrementally.
When new training data arrives, you have to throw
away the old tree and retrain every data from
scratch.

Linear regression based methods

The basic assumption is that the output
variable (a numeric value) can be expressed as a
linear combination (weighted sum) of a set of input
variable (which is also numeric value).

y = w1x1 + w2x2 + w3x3

The whole objective of the training phase is
to learn the weights w1, w2 ... by minimizing the
error function lost (y, w1x1 + w2x2 + ...). Gradient
descent is the classical technique of solving this
problem with the general idea of adjusting w1, w2
... along the direction of the maximum gradient of
the loss function.

The input variable is required to be numeric.
For binary variable, this will be represented as 0, 1.
For categorical variable, each possible value will be
represented as a separate binary variable (and
hence 0, 1). For the output, if it is a binary variable
(0, 1) then a logit function is used to transform the
range of -infinity to +infinity into 0 to 1. This is
called logistic regression and a different loss function
(based on maximum likelihood) is used.

To avoid overfitting, regularization technique
(L1 and L2) is used to penalize large value of w1,
w2 ... L1 is by adding the absolute value of w1 into

ARTIFICIAL INTELLIGENCE

81
Rahul Publications

the loss function while L2 is by adding the square
of w1 into the loss function. L1 has the property
that it will penalize redundant features or irrelevant
feature more (with very small weight) and is a good
tool to select highly influential features.

The strength of Linear model is that it has
very high performance in both scoring and learning.
The Stochastic gradient descent-based learning
algorithm is highly scalable and can handle
incremental learning.

The weakness of linear model is linear
assumption of input features, which is often false.
Therefore, an important feature engineering effort
is required to transform each input feature, which
usually involved domain expert. Another common
way is to throw different transformation functions
1/x, x 2, log(x) in the hope that one of them will
have a linear relationship with the output. Linearity
can be checked by observing whether the residual
(y - predicted_y) is normally distributed or not (using
the Qplot with the Gaussian distribution).

Neural Network

Neural Network can be considered as multiple
layer of perceptron (each is a logistic regression unit
with multiple binary input and one binary output).
By having multiple layers, this is equivalent to : z =
logit(v1.y1 + v2y2 + ...), while y1 = logit(w1x1 + w2x2
+...)

This multi-layer model enables Neural
Network to learn non-linear relationship between
input x and output z. The typical learning technique
is “backward error propagation” where the error is
propagate from the output layer back to the input
layer to adjust the weight.

Bayesian Network

It is basically a dependency graph where each
node represents a binary variable and each edge
(directional) represents the dependency relationship.
If Node A and Node B has an edge to Node C. This
means the probably of C is true depends on different
combinations of the boolean value of A and B. Node
C can point to Node D and now Node D depends
on Node A and Node B as well.

The learning is about finding at each node
the join-probability distribution of all incoming edges.
This is done by counting the observed values of A,

B and C and then update the joint probability
distribution table at Node C.

Once we have the probability distribution
table at every node, then we can compute the
probability of any hidden node (output variable)
from the observed nodes (input variables) by using
the Bayes rule.

The strength of Bayesian network is it is highly
scalable and can learn incrementally because all we
do is to count the observed variables and update
the probability distribution table. Similar to Neural
Network,

Support Vector Machine

Support Vector Machine takes numeric input
and binary output. It is based on finding a linear
plane with maximum margin to separate two class
of output. Categorical input can be turned into
numeric input as before and categorical output can
be modeled as multiple binary output.

With a different lost function, SVM can also
do regression (called SVR). I haven’t used this
myself so I can’t talk much.

The strength of SVM is it can handle large
number of dimensions. With the kernel function, it
can handle non-linear relationship as well.

Nearest Neighbour

We are not learning a model at all. The idea
is to find K similar data point from the training set
and use them to interpolate the output value, which
is either the majority value for categorical output,
or average (or weighted average) for numeric
output. K is a tunable parameter which needs to be
cross-validated to pick the best value.

Nearest Neighbour require the definition of
a distance function which is used to find the nearest
neighbour. For numeric input, the common practice
is to normalize them by minus the mean and divided
by the standard deviation. Euclidean distance is
commonly used when the input are independent,
otherwise mahalanobis distance (which account for
correlation between pairs of input features) should
be used instead. For binary attributes, Jaccard
distance can be used.

The strength of K nearest neighbor is its
simplicity as no model needs to be trained.

M.Sc. IV Sem UNIT - III

82
Rahul Publications

Incremental learning is automatic when more data
arrives (and old data can be deleted as well). Data,
however, needs to be organized in a distance-aware
tree such that finding the nearest neighbor is O(logN)
rather than O(N). On the other hand, the weakness
of KNN is it doesn’t handle high number of
dimensions well. Also, the weighting of different
factors needs to be hand tuned (by cross-validation
on different weighting combination) and can be a
very tedious process.

3.3.5 Statistical Learning Methods

Q22. Explain about statistical learning
methods.

Ans :
Full Bayesian learning

View learning as Bayesian updating of a
probability distribution over the hypothesis space

 H is the hypothesis variable, values h1, h2,
…, prior P(H).

 Jthobservation djgives the outcome of
random variable Djtraining data d=d1, …,
dN

 Given the data so far, each hypothesis has a
posterior probability:

P(hi|d) = P(d|hi)P(hi) where P(d/hi) is
called the likelihood

Predictions use a likelihood-weighted average
over the hypotheses:

P(X|d) = i P(X|d, hi)P(hi|d) =  i
P(X|hi)P(hi|d).

No need to pick one best-guess hypothesis!

Example

Suppose there are five kinds of bags of
candies:

10% are h1: 100% cherry candies

20% are h2: 75% cherry candies + 25% lime
candies

40% are h3: 50% cherry candies + 50% lime
candies

20% are h4: 25% cherry candies + 75% lime
candies

10% are h5: 100% lime candies

Then we observe candies drawn from some
bag:

What kind of bag is it? What flavor will the
next candy be?

Posterior probability of hypotheses

MAPapproximation

Maximum a posteriori (MAP) learning:
choose hMAP maximizing P(hi/d)instead of
calculating P(hi /d) for all hypothesis hi, i.e., maximize
P(d/hi)P(hi) or log P(d/hi) + log P(hi)

Overfitting in MAP and Bayesian learning

Overfitting when the hypothesis space is too
expressive such that somehypotheses fit the date
set well.

Use prior to penalize complexity

Log terms can be viewed as (negative of)bits
to encode data given hypothesis + bits to encode
hypothesis

This is the basic idea of minimum description
length (MDL) learning For deterministic hypotheses
(simplest), P(d/hi) is 1 if consistent, 0 otherwise
MAP = simplest hypothesis that is consistent with
the data.

ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose
hMLmaximizing P(d/hi) I.e., simply get the best _t
to the data; identical to MAP for uniform prior(which
is reasonable if all hypotheses are of the same
complexity)

ML is the \standard” (non-Bayesian) statistical
learning method

ARTIFICIAL INTELLIGENCE

83
Rahul Publications

1. Researchers distrust the subjective nature of hypotheses priors
2. Hypotheses are of the same complexity
3. Hypotheses priors is of less important when date set is large
4. Huge space of the hypotheses
ML parameter learning in Bayesnets

Bag from a new manufacturer; fraction qof cherry candies?
 Any q is possible: continuum of hypotheses hq
 q is a parameter for this simple (binomial) family of models
 Suppose we unwrap N candies, c cherries and l‘=N-c limes
 These are i.i.d. (independent, identically distributed) observations, so

N
C

j
j 1

P(d|h) P(d |h) .(1) 


     

Maximize this w.r.t. – which is easier for the log-likelihood;

N

j
j 1

L(d|h) log P(d|h) log P(d |h) c log log(1)  


       

dL(d|h) c c c
0

d 1 c N
       

    



Seems sensible, but causes problems with 0 counts!

Multiple parameters
Red/green wrapper depends probabilistically on flavor:
Likelihood for, e.g., cherry candy in green wrapper:

 P(F= cherry, W = green
1 2, ,|h  )

= P(F = cherry
1 2, ,|h  ) P(W=green|F=cherry,,

1 2, ,h  )

= .(1 – 1).
N candies, rc red-wrapped cherry candies, etc.:

 P(d
1 2, ,|h  )= cr rc gc g

1 1 2 2(1) . (1) . (1)        

 L = [c los  +  log(1 – )] + [rc log 1 + gc log (1 – 1)] + [r log 2 + g log (1–2)

Derivatives of L contain only the relevant parameter:

L c
0

1


  
   




c
c

 
 

c c

1 1 1

r gL
0

1


  
    

c
1

c c

r
r g

 


2 2 2

rL g
0

1


  
   

 
 2

r
r g

 



 

With complete data, parameters can be learned separately.

M.Sc. IV Sem UNIT - III

84
Rahul Publications

3.3.6 Artificial Neural Networks–Based Learning

Q23. Write about Artificial Neural network based learning.

Ans :
Neural Networks

Brains

1011 neurons of > 20 types, 1014 synapses, 1 ms – 10 ms cycle time - Signals are noisy ¯spike
trains of electrical potential.

McCulloch-Pitts “unit”

Output is a – squashed || linear function of the inputs:

i i j j,i ja g(in) g(W a)  

ARTIFICIAL INTELLIGENCE

85
Rahul Publications

A gross oversimplification of real neurons, but
its purpose is to develop understanding of what
networks of simple units can do.

Activation Functions

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e-x)

Changing the bias weight W0,I moves the
threshold location.

Implementing Logical Functions

McCulloch and Pitts: every Boolean function
can be implemented

Network structures

Feed-forward networks

 single-layer perceptrons

 multi-layer perceptrons

Feed-forward networks implement functions,
have no internal state.

Recurrent networks

 Hopfield networks have symmetric weights
(Wi,j= Wj,i)g(x)=sign(x), ai= §1; holographic
associative memory

 Boltzmann machines use stochastic activation
functions,  MCMC in Bayesnets

 Recurrent neural nets have directed cycles
with delayshave internal state (like flip-flops),
can oscillate etc.

Feed-forward Example

Feed-forward network = a parameterized
family of nonlinear functions:

 a5 = g(W3,5 . a3+W4,5 . a4)
= g(W3,5 . g(W1,3 .a1+W2,3 . a2)
 +W4,5. g(W1,4 . a1+W2,4 . a2)).

Single-layer Perceptrons

Output units all operate separately - no
shared weights

Adjusting weights moves the location,
orientation, and steepness of cli

Expressiveness of perceptrons

Consider a perceptronwith g = step function.

Can represent AND, OR, NOT, majority, etc.,
but not XOR

Represents a linear separator in input
space:jWjxj> 0 or W.x> 0.

M.Sc. IV Sem UNIT - III

86
Rahul Publications

Perceptron Learning

Learn by adjusting weights to reduce error on training set. The squared error for an example with
input x and true output y is.

2 21 1
E Err (y hW(x))

2 2
  

Perform optimization search by gradietn descent:

j

E
W



= rr

j

E
Err

W





=
j

Err
W



   n

j j jv g W x 

= – Err ×g' (in) × xj

Simple weight update rule:

WjWj+a × Err × g'(in)×xj

E.g., + veerror  increae network output

 increase weights on+ve inputs, decreae on -ve inputs

Perceptronlearning rule converges to consitent fucntio for any linearly separable data set

Perceptronlearns majority functio easily, DTL is hopeless.

DTL learns restaurant function easily, perceptroncannot represent it.

Multi-layer Perceptrons

Layers are usually fully connected;

Numbers of hidden units typically chosen by hand.

ARTIFICIAL INTELLIGENCE

87
Rahul Publications

Back-propagation learning

Output layer: same as for single-layer perceptron,

j,i j,i j iW W  

Where i = Erri × g'(ini)

Hidden layer: back-propagate the error from the output layer:

Where i = Erri × g'(ini)

k,j k,j k iW W  

(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation derivation

The squared error on a single example is defined as

2
i i

i

1
E (y a)

2
 

where the sum is over the nodes in the output layer.

i i
i i i i

j,i j,i j,i

a g(in)E
(y a) (y a)

W W W
 

     
  

i
i i i

j,i

in
(y a)g (in)

W


  


 i i i i j,i j
j,i

(y a)g (in) W a
W
   



i i i j j i(y a)g (in)a a     

At each epoch, sum gradient updates for all examples and apply
Training curve for 100 restaurant examples: finds exact fit

M.Sc. IV Sem UNIT - III

88
Rahul Publications

3.3.7 Support Vector Machines

Q24. What are Support Vector Machines ?
Write about them.

Ans :
A Support Vector Machine (SVM) is a

supervised machine learning algorithm that can be
employed for both classification and regression
purposes. SVMs are more commonly used in
classification problems and as such, this is what we
will focus on in this post.

SVMs are based on the idea of finding a
hyperplane that best divides a dataset into two
classes, as shown in the image below.

Support Vectors

Support vectors are the data points nearest
to the hyperplane, the points of a data set that, if
removed, would alter the position of the dividing
hyperplane. Because of this, they can be considered
the critical elements of a data set.

What is a hyperplane?

As a simple example, for a classification task
with only two features (like the image above), you
can think of a hyperplane as a line that linearly
separates and classifies a set of data.

Intuitively, the further from the hyperplane
our data points lie, the more confident we are that
they have been correctly classified. We therefore
want our data points to be as far away from the
hyperplane as possible, while still being on the correct
side of it.

So when new testing data is added, whatever
side of the hyperplane it lands will decide the class
that we assign to it.

How do we find the right hyperplane?

Or, in other words, how do we best segregate
the two classes within the data?

The distance between the hyperplane and the
nearest data point from either set is known as the
margin. The goal is to choose a hyperplane with
the greatest possible margin between the hyperplane
and any point within the training set, giving a greater
chance of new data being classified correctly.

But what happens when there is no clear
hyperplane?

This is where it can get tricky. Data is rarely
ever as clean as our simple example above. A
dataset will often look more like the jumbled balls
below which represent a linearly non separable
dataset.

In order to classify a dataset like the one above
it’s necessary to move away from a 2d view of the
data to a 3d view. Explaining this is easiest with
another simplified example. Imagine that our two
sets of colored balls above are sitting on a sheet
and this sheet is lifted suddenly, launching the balls
into the air. While the balls are up in the air, you
use the sheet to separate them. This ‘lifting’ of the
balls represents the mapping of data into a higher
dimension. This is known as kernelling. You can read
more on Kerneling here.

ARTIFICIAL INTELLIGENCE

89
Rahul Publications

Because we are now in three dimensions, our
hyperplane can no longer be a line. It must now be
a plane as shown in the example above. The idea is
that the data will continue to be mapped into higher
and higher dimensions until a hyperplane can be
formed to segregate it.

Pros & Cons of Support Vector Machines

Pros

 Accuracy

 Works well on smaller cleaner datasets

 It can be more efficient because it uses a
subset of training points

Cons

 Isn’t suited to larger datasets as the training
time with SVMs can be high

 Less effective on noisier datasets with
overlapping classes

SVM Uses

SVM is used for text classification tasks such
as category assignment, detecting spam and
sentiment analysis. It is also commonly used for
image recognition challenges, performing
particularly well in aspect-based recognition and
color-based classification. SVM also plays a vital role
in many areas of handwritten digit recognition, such
as postal automation services.

3.3.8 Reinforcement Learning

Q25. What does Reinforcement Learning
mean?

Ans :
Reinforcement learning, in the context of

artificial intelligence, is a type of dynamic
programming that trains algorithms using a system
of reward and punishment.

A reinforcement learning algorithm, or agent, learns
by interacting with its environment. The agent
receives rewards by performing correctly and
penalties for performing incorrectly. The agent learns
without intervention from a human by maximizing
its reward and minimizing its penalty.

Imagine a robot that can act in a world,
receiving rewards and punishments and determining
from these what it should do. This is the problem
of reinforcement learning.

We can formalize reinforcement learning in
terms of Markov decision processes, but in which
the agent, initially, only knows the set of possible
states and the set of possible actions. Thus, the
dynamics, P(s’|a,s), and the reward function,
R(s,a,s’), are initially unknown. An agent can act in
a world and, after each step, it can observe the state
of the world and observe what reward it obtained.
Assume the agent acts to achieve the optimal
discounted reward with a discount factor .

S4 S5

S2 S3

S0 S1

+10

+100

Fig.: The environment of a tiny
reinforcement learning problem

Example

Consider the tiny reinforcement learning
problem shown in Figure. There are six states the
agent could be in, labeled as s0,...,s5. The agent has
four actions: UpC, Up, Left, Right. That is all the
agent knows before it starts. It does not know how
the states are configured, what the actions do, or
how rewards are earned.

Figure shows the configuration of the six
states. Suppose the actions work as follows:

upC

(for “up carefully”) The agent goes up, except
in states s4 and s5, where the agent stays still, and
has a reward of –1.

M.Sc. IV Sem UNIT - III

90
Rahul Publications

right

The agent moves to the right in states s0,s2,s4 with a reward of 0 and stays still in the other states,
with a reward of -1.

left

The agent moves one state to the left in states s1,s3,s5. In state s0, it stays in state s0 and has a
reward of -1. In state s2, it has a reward of -100 and stays in state s2. In state s4, it gets a reward
of 10 and moves to state s0.

up

With a probability of 0.8 it acts like upC, except the reward is 0. With probability 0.1 it acts as
a left, and with probability 0.1 it acts as right.

Suppose there is a discounted reward with a discount of 0.9. This can be translated as having a
0.1 chance of the agent leaving the game at any step, or as a way to encode that the agent prefers
immediate rewards over future rewards.

ARTIFICIAL INTELLIGENCE

91
Rahul Publications

UNIT
IV

Expert Systems: Architecture of expert system, confidence factors, existing expert
systems, knowledge acquisition, shell and explanations, self-explaining system, rule-
based expert systems, forward and backward chaining, frame-based expert systems,
uncertainty management in expert systems, expert system and dss, pros and cons of
expert systems, case study.
Pattern Recognition: Machine perception and pattern recognition, feature
extraction, classification, object recognition, speech recognition, pattern mining. Game
playing: Important concepts of game theory, game playing and knowledge structure,
game as search problem, alpha-beta pruning, game theory problems, robotics. Con-
cepts and terminology of ann, feed-forward nn, feedback networks, pattern associa-
tive net works, competitive learning, fuzzy sets, fuzzy inference process, neuro-fuzzy
systems, range of ai applications, ai applications and examples, case study:
Agricultural domain - farmer’s intelligent assistant.

4.1 EXPERT SYSTEMS

4.1.1 Architecture of Expert System
Q1. What is Expert System?
Ans :
1. An expert system, is an interactive computer-based decision tool that uses both facts and heuristics

to solve difficult decision making problems, based on knowledge acquired from an expert.
2. An expert system is a model and associated procedure that exhibits, within a specific domain, a

degree of expertise in problem solving that is comparable to that of a human expert.
3. An expert system compared with traditional computer : Inference engine + Knowledge = Expert

system (Algorithm + Data structures = Program in traditional computer)
4. First expert system, called DENDRAL, was developed in the early 70’s at Standard University

Expert systems are computer applications which embody some non-algorithmic expertise for solving
certain types of problems. For example, expert systems are used in diagnostic applications. They also play
chess, make financial planning decisions, configure computers, monitor real time systems, underwrite
insurance policies, and perform many services which previously required human expertise.
Expert System Components And Human Interfaces

Expert systems have a number of major system components and interface with individuals who
interact with the system in various roles. These are illustrated below. Draw and describe the architecture of
expert system.

Architecture of Expert System

User

User
interface

Expert &
Knowledge
engineer

Expert
interface

Explanation

Question

Explanatory
system

Results

Facts

Explanatory
system

Knowledge
acquisition

system

Debugging
Info

knowledge

Working
memory

Knowledge
Base

KB (facts, rules,
Heuristics)

M.Sc. IV Sem UNIT - IV

92
Rahul Publications

The Architecture of an Expert System (ES)
consists of the following major components:

 Knowledge Base (KB): repository of
special heuristics or rules that direct the use
of knowledge, facts (productions). It contains
the knowledge necessary for understanding,
formulating, & problem solving.

 Working Memory (Blackboard): if
forward chaining used It describes the current
problem & record intermediate results
Records Intermediate Hypothesis &
Decisions: 1. Plan, 2. Agenda, 3. Solution

 Inference Engine: the deduction system
used to infer results from user input & KB It
is the brain of the ES, the control structure
(rule interpreter)

It provides methodology for reasoning

 Explanation Subsystem (Justifier):
Traces responsibility & explains the ES
behaviour by interactively answering
question: Why?, How?, What?, Where?,
When?, Who?

 User Interface: interfaces with user through
Natural Language Processing (NLP), or
menus & graphics. Acts as Language
Processor for friendly, problem-oriented
communication

Shell = Inference Engine + User Interface

The Human Elements in ESs

 Expert: Has the special knowledge,
judgement, experience and methods to give
advice and solve problems.

Provides knowledge about task performance

 Knowledge Engineer: Usually also the System
Builder.

Helps the expert(s) structure the problem area
by interpreting and integrating human answers to
questions, drawing analogies, posing counter
examples, and bringing to light conceptual
difficulties.

The Expert & the knowledge Engineer should
Anticipate Users’ needs & Limitations when
designing Expert Systems.

User: Possible Classes of Users can be

 A non-expert client seeking direct advice (ES
acts as a Consultant or Advisor).

 A student who wants to learn (ES acts as an
Instructor)

 An ES builder improving or increasing the
knowledge base(ES acts as a Partner)

 An Expert (ES acts as a Colleague or an
Assistant)

4.1.2 Confidence Factors

Q2. What are confidence factors in expert
systems.

Ans :
Some Expert systems incorporate certain

factors(CF) ‘Tomorrow it won’t rain’ might have the
confidence factor of 99.9% for A Tacoma desert.
CF s can be difficult to define objectively, are not
catered for by all ES languages.

Rules with Confidence Factors

This approach t’o uncertainty combines
probability with logic. It enhances rule-based systems
with probability-like numbers that represent the
confidence in either a fact or an inferred conclusion.
For example, consider this rule:

If the engine will not start but it will turn over,
then the injection system is bad.

In some cases the facts are uncertain. Suppose
the user is uncertain whether the engine starts or
whether it turns over. If the user is 70 percent sure
that the engine does not start and 80 percent sure
that the engine turns over, then the conclusion of a
bad injection system will be uncertain as well. A
typical inference with this uncertainty is to multiply
the two probabilities. In this case, 70 percent times
80 percent results in 56 percent confidence that the
injection system is bad.

Furthermore, the rule itself may be uncertain.
An expert may be only 60 percent sure that an
unstartable engine that turns over implies a bad
injection system. In this case, even if the user were
100 percent sure that the engine does not start but
does turn over, the confidence in the conclusion of
a bad injection system would be only 60 percent.

ARTIFICIAL INTELLIGENCE

93
Rahul Publications

The inference process propagates the uncertainties through to the conclusions, so that the expert system
tells the user not only what its recommendation is, but also the level of confidence in the recommendation.

An example of an expert system using rules can be found in the Department of Veterans Affairs
within their One VA initiative, which seeks to improve service by implementing improved information
technology. A component of this initiative is the creation of an “expert system for the determination of
potential benefits.” This expert system utilizes a rule-based approach that analyzes customer data to determine
proper eligibility levels.

4.1.3 Existing Expert Systems Expert Systems - Dendral, Mycin

Q3. Write shortly about DENDRAL – the expert system software.

Ans :
DENDRAL

DENDRAL is a program that analyses organic compounds to determine their structure. It is one of
the early example of a successful AI program .it uses a strategy called plan-generate-test in which a
planning process that used constraint-satisfaction techniques, creates lists of recommended and
contraindicated substructures.

One type in DENDRAL is meta - dendral.

Meta-Dendral

Meta-Dendral is a machine learning system that receives the set of possible chemical structures and
corresponding mass spectra as input, and proposes a set of rules of mass spectrometry that correlate
structural features with processes that produce the mass spectrum. These rules would be fed back to
Heuristic Dendral (in the planning and testing programs described below) to test their applicability. Thus,
“Heuristic Dendral is a performance system and Meta-Dendral is a learning system”. The program is based
on two important features: the plan-generate-test paradigm and knowledge engineering.

The following is the architecture of DENDRAL system

Q4. Explain about MYCIN.

Ans :
Mycin

Mycin is a program that diagnoses infectious diseases. It reasons backward from its goal of determining
the cause of a patient illness. It attempts to solve its goal of recommending a therapy for a particular

M.Sc. IV Sem UNIT - IV

94
Rahul Publications

patient by first finding the cause of the patient’s
illness. It uses its production rules to reason
backward from goals to clinical observations. To solve
the top-level diagnostic goal, it looks for rules whose
right sides suggest diseases. It then uses the left sides
of those rules (the preconditions) to set up sub goals
whose success would enable the rules to be invoked
.these sub goals are again matched against rules,
and their preconditions are used to set up additional
sub goals.

Mycin is a well known rule based deduction
system. Its expertise lies in the domain of bacterial
Infections. Physicians usually must begin antibiotic
treatment for patient who have bacterial infections
without knowledge exactly which organism is the
culprit. There is no time to wait for definitive
laboratory culture evidence, which accumulates too
slowly. For the desperately sick, therapy must begin
at once – not 2 days from can either prescribe a
broad – spectrum drug that covers all possibilities ,
or she can prescribed a better, disease – specific drug.

Mycin helps the physician to prescribe disease
– specific drugs. Mycin in-forms it self about
particular cases by requesting information from the
physician about a patient’s symptoms, general
condition. History, and laboratory – test results that
can be obtained easily and quickly. At each point,
the question mycin asks is determined by Mycin’s
current hypothesis and the answers to all previous
questions. Thus, the questions start as though taken
from a checklist, but the questions then vary as
evidence builds. Here is an except from a sample
sessions:

For Example:

What is the patient’s Name?

john Doe.

- Male or female?

Mael

- Age ?

He is 55.

- Have you obtained positive cultures indicating
general type ?

yes

- What type of inflection is it ?

Primary bacteremia

- When did symptoms first appear?

May 5

- Let’s call the most positive culture CI. From what
site was CI taken ?

from the blood.

- When?

May 9

- Let’s call the first significant organism from this
culture UI. Do you know identify of UI?

no

- Is UI a rod or a coccus or something else ?

Rod

- What is the gram stain of UI?

Gram negative.

- Have there been positive culture from sites that
are not associated with the

inflections about which you are seeking advice?

No

As we proceed through the processing stages
of compute vision. We will no doubt be impressed
by the similarities and parallel one can draw between
vision processing and natural language processing .
The - sensor stage in vision corresponds to speech
recognization language understanding, the low and
intermediate processing levels of vision correspond
to syntactic and semantic language processing
respectively, and high level processing, in both cases
corresponds to the process of building and
interpreting high level knowledge structures.

4.1.4 Knowledge Acquisition

Q5. Write a note on knowledge acquisition.

Ans :
The success of knowledge based systems lies

in the quality and extent of the knowledge available
to the system. Acquiring and validating a large
croups of consistent, correlated knowledge is not a
trivial problem . This has give the acquisition process
an especially important role in the design and
implementation of these systems. Consequently,

ARTIFICIAL INTELLIGENCE

95
Rahul Publications

effective acquisition methods have become one of
the principal challenges for the AI researches.

The goals of this branch of AI are the
discovery and development of efficient, cost effective
methods of acquisition. Some important progress
has recently been made in this area with the
development of sophisticated editors and some
general concepts related to acquisition and learning.

Definition

Knowledge acquisition is the process of adding
new knowledge to a knowledge base and refining
or otherwise improving knowledge that was
previously acquired. Acquisition is usually associated
with some purpose such as expanding the
capabilities of a system or improving its performance
at some specified task. It is goal oriented creation
and refinement of knowledge . It may consist of
facts, rules , concepts, procedures, heuristics,
formulas, relationships, statistics or other useful
information. Sources of this knowledge may include
one or more of the following.

Experts in the domain of interest

Text Books

Technical papers

Databases

Reports

The environment

To be effective, the newly acquired knowledge
should be integrated with existing knowledge in
some meaningful way so that nontrivial inferences
can be drawn from the resultant body of knowledge
.the knowledge should, of course, be accurate, non
redundant, consistent (non contradictory), and
fairly complete in the sense that it is possible to
reliably reason about many of the important
conclusions for which the systems was intended.

Types of learning:- Classification or
taxonomy of learning types serves as a guide in
studying or comparing a differences among them.
One can develop learning taxonomies based on the
type of knowledge representation used (predicate
calculus , rules, frames), the type of knowledge
learned (concepts, game playing, problem solving),
or by the area of application (medical diagnosis ,
scheduling , prediction and so on).

The classification is intuitively more appealing
and is one which has become popular among
machine learning researchers .it is independent of
the knowledge domain and the representation
scheme is used. It is based on the type of inference
strategy employed or the methods used in the
learning process. The five different learning methods
under this taxonomy are:

 Memorization (rote learning)
 Direct instruction (by being told)
 Analogy
 Induction
 Deduction

Memorization
Learning by memorization is the simplest form

of learning. It requires the least amount of inference
and is accomplished by simply copying the
knowledge in the same form that it will be used
directly into the knowledge base. We use this type
of learning when we memorize multiplication tables
for example.
Direct instruction

A slightly more complex form of learning is
by direct instruction. This type of learning requires
more understanding and inference than role
learning since the knowledge must be transformed
into an operational form before being integrated
into the knowledge base. We use this type of learning
when a teacher presents a number of facts directly
to us in a well organized manner.
Analogy

The third type listed, analogical learning, is
the process of learning a new concept or solution
through the use of similar known concepts or
solutions. We use this type of learning when solving
problems on an examination where previously
learned examples serve as a guide or when we learn
to drive a truck using our knowledge of car driving.
We make frequencie use of analogical learning. This
form of learning requires still more inferring than
either of the previous forms, since difficult
transformations must be made between the known
and unknown situations. This is a kind of application
of knowledge in a new situation.
Induction

The fourth type of learning is also one that is
used frequency by humans. It is a powerful form of
learning which, like analogical learning, also requires
more inferring than the first two methods. This form

M.Sc. IV Sem UNIT - IV

96
Rahul Publications

of learning requires the use of inductive inference, a form of invalid but useful inference. We use inductive
learning when wed formulate a general concept after seeing a number of instance or examples of the
concept. For example, we learn the concepts of color sweet taste after experiencing the sensation associated
with several examples of colored objects or sweet foods.
Deduction

The final type of acquisition is deductive learning. It is accomplished through a sequence of deductive
inference steps using known facts. From the known facts, new facts or relationships are logically derived.
Deductive learning usually requires more inference than the other methods. The inference method used
is, of course , a deductive type, which is a valid from of inference.

In addition to the above classification, we will sometimes refer to learning methods as wither methods
or knowledge-rich methods. Weak methods are general purpose methods in which little or no initial
knowledge is available. These methods are more mechanical than the classical AI knowledge – rich methods.
They often rely on a form of heuristics search in the learning process.

4.1.5 Shell and Explanations

Q6. Explain Expert system shells

Ans :
Expert System Shells

Expert system shells provide methods of building expert systems without extensive knowledge of
programming through mechanisms that

1) Input the decisions, questions and rules that are followed.

2) Construct a knowledge database that can be manipulated by subsequent parts of the system

3) Verifies possible violations of surface validity and

4) Operates the “inference engine” that operates on the rules, poses the questions to the users, and
determines whether a particular decision is valid.

Most expert systems also allow the user to halt the processing at any time to query the system why
a question was asked, or how a decision was reached

Most expert system shells can now run easily on most current micro-computers and are able to
handle the manipulation of a relatively large number of rules and associated questions.

Expert system shells a re expert system development tools consisting essentially of the expert system
without the knowledge base, embodying the inference engine, working memory, and the user interface

ARTIFICIAL INTELLIGENCE

97
Rahul Publications

(Sener, 1991). An example of the inference engine
part of an expert system that deduces new
conclusions from known facts is illustrated below

IF liquid limit=known

AND plastic limit=known

AND plastic limit>liquid limit

THEN soil=non plastic

Expert systems give advice or solve problems
by drawing upon this knowledge stored in the IF/
THEN rules.

4.1.6 Self-Explaining System

Q7. Write a note on self-explaining system.

Ans :
Self-explaining has been repeatedly shown

to result in positive learning outcomes for students
in a wide variety of disciplines. However, there are
two potential accounts for why self-explaining works.
First, those who self-explain experience more
content than those who do not. Second, there are
differences in the activity of generating the
explanations versus merely comprehending them.

The first studies of self-explanation, which
were based on analyses of verbal protocols, showed
that the amount of self-explaining correlated strongly
with performance on post-test measures of problem-
solving performance. Subsequent studies showed
that students who were prompted to self-explain
sentences in a scientific text learned more than
students who were asked to paraphrase the
sentences instead. Other studies showed that self-
explaining could be the elicited by computers .

Because these studies compared self-
explanation to the lack of any explanation at all, it
is not clear why self-explanation produced learning.
On the one hand, self-explaining generates
additional information, namely the explanations
themselves, that are not present in the instructional
materials.

Let us label these hypotheses as follows:

1. Attention

Learning from self-generated explanations
should produce comparable learning gains
as author-provided explanations, provided

the learner pays attention to them. Both self-
generated and author-provided explanations
should exhibit better learning than no
explanation.

2. Generation

Learning from self-generated explanations
should produce greater learning gains than
author-provided explanations because they
are produced from the students’ own
background knowledge; however, author-
provided explanations should be comparable
to no explanation.

4.1.7 Rule-based Expert Systems

Q8. What is rule based expert systems?

Ans :
Rule-Based Expert Systems

An expert system is one designed to model
the behaviour of an expert in some field, such as
medicine or geology.

Rule-based expert systems are designed to
be able to use the same rules that the expert would
use to draw conclusions from a set of facts that are
presented to the system.

The People Involved in an Expert System

1. The design, development, and use of expert
systems involves a number of people.

2. The end-user of the system is the person
who has the need for the system.

In the case of a medical diagnosis system, this
may be a doctor, or it may be an individual
who has a complaint that they wish to
diagnose.

3. The knowledge engineer is the person
who designs the rules for the system, based
on either observing the expert at work or by
asking the expert questions about how he or
she works.

4. The domain expert is very important to the
design of an expert system. In the case of a
medical diagnosis system, the expert needs
to be able to explain to the knowledge
engineer how he or she goes about
diagnosing illnesses.

M.Sc. IV Sem UNIT - IV

98
Rahul Publications

4.1.8 Forward and Backward Chaining

Q9. Write about forward chaining.

Ans :
Forward Chaining

Forward chaining employs the system starts
from a set of facts, and a set of rules, and tries to
find a way of using those rules and facts to deduce
a conclusion or come up with a suitable course of
action.

This is known as data-driven reasoning
because the reasoning starts from a set of data and
ends up at the goal, which is the conclusion.

When applying forward chaining, the first step
is to take the facts in the fact database and see if
any combination of these matches all the
antecedents of one of the rules in the rule database.

When all the antecedents of a rule are
matched by facts in the database, then this rule
is triggered.

Usually, when a rule is triggered, it is
then fired, which means its conclusion is added to
the facts database. If the conclusion of the rule that
has fired is an action or a recommendation, then
the system may cause that action to take place or
the recommendation to be made.

For example, consider the following set of
rules that is used to control an elevator in a three-
story building:

Rule 1

IF on first floor and button is pressed on first
floor

THEN open door

Rule 2

IF on first floor

AND button is pressed on second floor

THEN go to second floor

Rule 3

IF on first floor

AND button is pressed on third floor

THEN go to third floor

Rule 4

IF on second floor

AND button is pressed on first floor

AND already going to third floor

THEN remember to go to first floor later

This represents just a subset of the rules that
would be needed, but we can use it to illustrate
how forward chaining works.

Let us imagine that we start with the following
facts in our database:

Fact 1

At first floor

Fact 2

 Button pressed on third floor

Fact 3

Today is Tuesday

Now the system examines the rules and finds
that Facts 1 and 2 match the antecedents of Rule 3.
Hence, Rule 3 fires, and its conclusion “Go to third
floor” is added to the database of facts. Presumably,
this results in the elevator heading toward the third
floor.

Note that Fact 3 was ignored altogether
because it did not match the antecedents of any of
the rules.

Now let us imagine that the elevator is on its
way to the third floor and has reached the second
floor, when the button is pressed on the first floor.
The fact Button pressed on first floor

Is now added to the database, which results
in Rule 4 firing.

Conflict Resolution

In a situation where more than one
conclusion can be deduced from a set of facts, there
are a number of possible ways to decide which rule
to fire.

For example, consider the following set of
rules:

IF it is cold

THEN wear a coat

ARTIFICIAL INTELLIGENCE

99
Rahul Publications

IF it is cold

THEN stay at home

IF it is cold

THEN turn on the heat

If there is a single fact in the fact database,
which is “it is cold,” then clearly there are three
conclusions that can be derived. In some cases, it
might be fine to follow all three conclusions, but in
many cases the conclusions are incompatible.

In one conflict resolution method, rules are
given priority levels, and when a conflict occurs, the
rule that has the highest priority is fired, as in the
following example:

IF patient has pain

THEN prescribe painkillers priority 10

IF patient has chest pain

THEN treat for heart disease priority 100

Here, it is clear that treating possible heart
problems is more important than just curing the pain.

An alternative method is the longest-
matching strategy. This method involves firing the
conclusion that was derived from the longest rule.

For example:

IF patient has pain

THEN prescribe painkiller

IF patient has chest pain

AND patient is over 60

AND patient has history of heart conditions

THEN take to emergency room

Here, if all the antecedents of the second rule
match, then this rule’s conclusion should be fired
rather than the conclusion of the first rule because
it is a more specific match.

Meta Rules

In designing an expert system, it is necessary
to select the conflict resolution method that will be
used, and quite possibly it will be necessary to use
different methods to resolve different types of
conflicts.

For example, in some situations it may make most
sense to use the method that involves firing the most
recently added rules.

This method makes most sense in situations
in which the timeliness of data is important. It might
be, for example, that as research in a particular field
of medicine develops, and new rules are added to
the system that contradicts some of the older rules.

It might make most sense for the system to
assume that these newer rules are more accurate
than the older rules.

It might also be the case, however, that the
new rules have been added by an expert whose
opinion is less trusted than that of the expert who
added the earlier rules.?

In this case, it clearly makes more sense to
allow the earlier rules priority.

This kind of knowledge is called meta
knowledge—knowledge about knowledge. The
rules that define how conflict resolution will be used,
and how other aspects of the system itself will run,
are called meta rules.

The knowledge engineer who builds the
expert system is responsible for building appropriate
meta knowledge into the system (such as “expert A
is to be trusted more than expert B” or “any rule
that involves drug X is not to be trusted as much as
rules that do not involve X”).

Meta rules are treated by the expert system
as if they were ordinary rules but are given greater
priority than the normal rules that make up the
expert system.

Q10. Explain backward chaining.

Ans :
Backward Chaining

Forward chaining applies a set of rules and
facts to deduce whatever conclusions can be derived,
which is useful when a set of facts are present, but
you do not know what conclusions you are trying
to prove.

Forward chaining can be inefficient because
it may end up proving a number of conclusions
that are not currently interesting.

M.Sc. IV Sem UNIT - IV

100
Rahul Publications

In such cases, where a single specific
conclusion is to be
proved, backward chaining is more
appropriate.

In backward chaining, we start from a
conclusion, which is the hypothesis we wish to
prove, and we aim to show how that conclusion
can be reached from the rules and facts in the
database.

The conclusion we are aiming to prove is
called a goal, and so reasoning in this way is known
as goal-driven reasoning.

Backward chaining is often used in
formulating plans.

A plan is a sequence of actions that a program
decides to take to solve a particular problem.

Backward chaining can make the process of
formulating a plan more efficient than forward
chaining.

Backward chaining in this way starts with the
goal state, which is the set of conditions the agent
wishes to achieve in carrying out its plan. It now
examines this state and sees what actions could lead
to it.

For example, if the goal state involves a block
being on a table, then one possible action would
be to place that block on the table.

This action might not be possible from the
start state, and so further actions need to be added
before this action in order to reach it from the start
state.

In this way, a plan can be formulated starting
from the goal and working back toward the start
state.

In this kind of situation, it can be very
inefficient to attempt to formulate a plan using
forward chaining because it involves examining
every possible action, without paying any attention
to which action might be the best one to lead to the
goal state.

Backward chaining ensures that each action
that is taken is one that will definitely lead to the
goal, and in many cases this will make the planning
process far more efficient.

Compare Forward and Backward chaining
with an example

Comparing Forward and Backward Chaining

Let us use an example to compare forward
and backward chaining. In this case, we will revert
to our use of symbols for logical statements, in order
to clarify the explanation, but we could equally well
be using rules about elevators or the weather.

Rules:

 Rule 1 A  B  C

 Rule 2 A  D

 Rule 3 C  D  E

 Rule 4 B  E  F  G

 Rule 5 A  E  H

 Rule 6 D  E  H  I

Facts:

 Fact 1 A

 Fact 2 B

 Fact 3 F

Goal

Our goal is to prove H.

 First let us use forward chaining. As our
conflict resolution strategy, we will fire rules
in the order they appear in the database,
starting from Rule 1.

 In the initial state, Rules 1 and 2 are both
triggered. We will start by firing Rule 1, which
means we add C to our fact database. Next,
Rule 2 is fired, meaning we add D to our fact
database.

 We now have the facts A, B, C, D, F, but we
have not yet reached our goal, which is G.

 Now Rule 3 is triggered and fired, meaning
that fact E is added to the database.

 As a result, Rules 4 and 5 are triggered. Rule
4 is fired first, resulting in Fact G being added
to the database, and then Rule 5 is fired, and
Fact H is added to the database.

 We have now proved our goal and do not
need to go on any further.

ARTIFICIAL INTELLIGENCE

101
Rahul Publications

 This deduction is presented in the following
table:

Now we will consider the same problem using
backward chaining. To do so, we will use a goals
database in addition to the rule and fact databases.

In this case, the goals database starts with just
the conclusion, H, which we want to prove. We will
now see which rules would need to fire to lead to
this conclusion.

Rule 5 is the only one that has H as a
conclusion, so to prove H, we must prove the
antecedents of Rule 5, which are A and E.

Fact A is already in the database, so we only
need to prove the other antecedent, E. Therefore,
E is added to the goal database. Once we have
proved E, we now know that this is sufficient to
prove H, so we can remove

H from the goals database.

So now we attempt to prove Fact E. Rule 3
has E as its conclusion, so to prove E, we must prove
the antecedents of Rule 3, which are C and D.

Neither of these facts is in the fact database,
so we need to prove both of them. They are both
therefore added to the goals database. D is the
conclusion of Rule 2 and Rule 2’s antecedent, A, is
already in the fact database, so we can conclude D
and add it to the fact database.

Similarly, C is the conclusion of Rule 1, and
Rule 1’s antecedents, A and B, are both in the fact
database. So, we have now proved all the goals in
the goal database and have therefore proved H and
can stop.

This process is represented in the table below:

In this case, backward chaining needed to use
one fewer rule. If the rule database had had a large
number of other rules that had A, B, and F as their
antecedents, then forward chaining might well have
been even more inefficient.

In general, backward chaining is appropriate
in cases where there are few possible conclusions
(or even just one) and many possible facts, not very
many of which are necessarily relevant to the
conclusion.

Forward chaining is more appropriate when
there are many possible conclusions.

The way in which forward or backward
chaining is usually chosen is to consider which way
an expert would solve the problem. This is
particularly appropriate because rule-based
reasoning is often used in expert systems.

4.1.9 Frame-based Expert Systems

Q11. Explain frame-based expert systems.

Ans :

 A frame is a data structure with typical
knowledge about a particular object or
concept.

 Each frame has its own name and a set of
attributes associated with it. Name, weight,
height and age are slots in the frame Person.
Model, processor, memory and price are slots
in the frame Computer. Each attribute or
slot has a value attached to it.

 Frames provide a natural way for the
structured and concise representation of
knowledge.

M.Sc. IV Sem UNIT - IV

102
Rahul Publications

 A frame provides a means of organising
knowledge in slots to describe various
attributes and characteristics of the object.

 Frames are an application of object-oriented
programming for expert systems.

 Object-oriented programming is a
programming method that uses objects as a
basis for analysis, design and implementation.

 In object-oriented programming, an object is
defined as a concept, abstraction or thing with
crisp boundaries and meaning for the
problem at hand. All objects have identity
and are clearly distinguishable,

 An object combines both data structure and
its behaviour in a single entity. This is in sharp
contrast to conventional programming, in
which data structure and the program
behaviour have concealed or vague
connections.

 When an object is created in an object-
oriented programming language, we first
assign a name to the object, then determine
a set of attributes to describe the object’s
characteristics, and at last write procedures
to specify the object’s behaviour.

 A knowledge engineer refers to an object as
a frame

Frames as a knowledge Representation
Technique

1. The concept of a frame is defined by a
collection of slots. Each slot describes a
particular attribute or operation of the frame.

2. Slots are used to store values. A slot may
contain a default value or a pointer to another
frame, a set of rules or procedure by which
the slot value is obtained.

Typical Information included in a Slot

1. Frame name.

2. Relationship of the frame to the other frames:
The frame IBM Aptiva S35 might be a

member of the class Computer, which in turn
might belong to the class Hardware.

3. Slot value : A slot value can be symbolic,
numeric or Boolean. For example, the slot
Name has symbolic values, and the slot Age
numeric values. Slot values can be assigned
when the frame is created or during a session
with the expert system

3. Default slot value : The default value is taken
to be true when no evidence to the contrary
has been found. For example, a car frame
might have four wheels and a chair frame
four legs as default values in the
corresponding slots.

4. Range of the slot value : The range of the
slot value determines whether a particular
object complies with the stereotype
requirements defined by the frame. For
example, the cost of a computer might be
specified between $750 and $1500.

5. Procedural information : A slot can have a
procedure attached to it, which is executed if
the slot value is changed or needed.

6. Frame-based expert systems also provide an
extension to the slot-value structure through
the application of facets.

7. A facet is a means of providing extended
knowledge about an attribute of a frame.

Facets are used to establish the attribute value,
control end-user queries, and tell the inference
engine how to process the attribute.

Class Inheritance in Frame-based Systems

Frame-based systems support class
inheritance.

The fundamental idea of inheritance is that
attributes of the class-frame represent things that
are typically true for all objects in the class. However,
slots in the instance-frames can be filled with actual
data uniquely specified for each instance.

ARTIFICIAL INTELLIGENCE

103
Rahul Publications

Relations of the Car Frames

is-a is-a is-a

Passenger car Mazda Mazda 626 Mazda DR-1216

Inheritance of Slot Values

CLASS: Mazda

Superclass: Passenger car
[C] Engine type

 In-line 4 cylinder:
 V6:

[N] Horsepower:
[C] Drivetrain type

 Rear wheel drive:
 Front wheel drive:
 Four wheel drive:

[C] Transmission type
 5-speed manual:
 4-speed automatic:

[N] Fuel consumption (mpg):
[N] Seating capacity:

[Str] Country of manufacture: Japan

CLASS: Passenger car

[C] Engine type
 In-line 4 cylinder:
 V6:

[N] Horsepower:
[C] Drivetrain type

 Rear wheel drive:
 Front wheel drive:
 Four wheel drive:

[C] Transmission type
 5-speed manual:
 4-speed automatic:

[N] Fuel consumption (mpg):

[N] Seating capacity:

Methods and Demons

Expert systems are required not only to store the knowledge but also to validate and manipulate
this knowledge. To add actions to our frames, we need methods and demons.

1. A method is a procedure associated with a frame attribute that is executed whenever requested.

2. We write a method for a specific attribute to determine the attribute’s value or execute a series of
actions when the attribute’s value changes.

3. Most frame-based expert systems use two types of methods:

WHEN CHANGED and WHEN NEEDED.

Interaction of Frames and Rules

Most frame-based expert systems allow us to use a set of rules to evaluate information contained in
frames.

1. In a rule-based expert system, the inference engine links the rules contained in the knowledge base
with data given in the database.

2. When the goal is set up, the inference engine searches the knowledge base to find a rule that has
the goal in its consequent.

3. If such a rule is found and its IF part matches data in the database, the rule is fired and the specified
object, the goal, obtains its value. If no rules are found that can derive a value for the goal, the
system queries the user to supply that value.

4. In a frame-based system, the inference engine also searches for the goal.

M.Sc. IV Sem UNIT - IV

104
Rahul Publications

But:

5. In a frame-based system, rules play an auxiliary role. Frames represent here a major source of
knowledge, and both methods and demons are used to add actions to the frames.

6. Thus, the goal in a frame-based system can be established either in a method or in a demon.

Example

Suppose we want to evaluate the credit request selected by the user. The expert system is expected
to begin the evaluation when the user clicks the Evaluate Credit push-button on the input display.

This pushbutton is attached to the attribute Evaluate Credit of the class Credit Evaluation.

The Credit Evaluation class, WHEN CHANGED and WHEN NEEDED methods

WHEN CHANGED
 BEGIN
 PURSUE Evaluation OF Credit Evaluation
 END

CLASS: Credit Evaluation

[S] Evaluate Credit: [WHEN CHANGED]

[C] Collateral:
 Excellent:
 Good:
 Moderate:

[C] Financial rating:
 Excellent:
 Good:
 Medium:
 Bad:

[C] Evaluation: [WHEN NEEDED]
 Give credit:
 Deny credit:
 Consult a superior:

WHEN NEEDED
 BEGIN
 Evaluation OF Credit Evaluation IS Consult
 superior := TRUE
 END

RULE 1
IF Currency deposits OF Request >= Requested credit OF Request
THEN Collateral OF Credit Evaluation IS Excellent

RULE 2
IF Currency deposits OF Request >= Requested credit OF Request * 0.7
AND (Currency deposits OF Request + Stocks OF Request) >= Requested credit OF Request
THEN Collateral OF Credit Evaluation IS Excellent

RULE 3
IF (Currency deposits OF Request + Stocks OF Request) > Requested credit OF Request * 0.6
AND (Currency deposits OF Request + Stocks OF Request) < Requested credit OF Request * 0.7
AND (Currency deposits OF Request + Stocks OF Request + Mortgages OF Request) >= Requested
credit OF Request
THEN Collateral OF Credit Evaluation IS Good

RULE 4
IF (Currency deposits OF Request + Stocks OF Request + Mortgages OF Request) <= Requested credit
OF Request
THEN Collateral OF Credit Evaluation IS Moderate

RULE 5
IF Net worth to assets OF Request * 5 + Last year's sales growth OF Request + Gross profits on sales OF
Request * 5 + Short term debt to sales OF Request * 2 <= -500
THEN Financial rating OF Credit Evaluation IS Bad

RULE 6

ARTIFICIAL INTELLIGENCE

105
Rahul Publications

· Based on the set of rules provided for credit evaluation, the inference engine cannot establish the
value of the attribute Evaluation in some cases.

· We can use the WHEN NEEDED method to establish the attribute value.

· The WHEN NEEDED method is attached to the attribute Evaluation. The inference engine executes
this method when it needs to determine the value of Evaluation. When the WHEN NEEDED
method is executed, the attribute Evaluation receives the value Consult a superior.

4.1.10Uncertainty Management in Expert Systems

Q12. Explain uncertainty management in expert systems.

Ans:
The information available to humans is often imperfect. An expert can cope with defects.

 Classical logic permits only exact reasoning

 IF A is true THEN A is ¬ false and

 IF B is false THEN B is¬ true

 Most real-world problems do not provide exact information. It can be inexact, incomplete or even
immeasurable.

Uncertainty is defined as the lack of the exact knowledge, that would enable us to reach a
perfectly reliable conclusion.

 Classical logic permits only exact reasoning. It assumes that perfect knowledge always exists and the
law of the excluded middle can always be applied.

¬TRUE = FALSE.

Sources of uncertain knowledge

 Weak implications:

 Domain experts and knowledge engineers must establish concrete correlations between IF and
THEN parts of the rules.

 Therefore, expert systems need to have the ability to handle vague associations, for example by
accepting the degree of correlations as numerical certainty factors.

 Imprecise Language: Our natural language is ambiguous and imprecise. As a result, it can be difficult
to express knowledge in the precise.

IF-THEN form of production rules. Expert systems need quantified measures.

Unknown Data

When the data is incomplete or missing, the only solution is to accept the value “unknown” and
proceed to an approximate reasoning with this value.

 Disagreement among experts: Weighting associated to different expert opinions.

Examine the Uncertainty

 Probabilistic reasoning

 Probability Theory Basics

 Bayesian Reasoning

M.Sc. IV Sem UNIT - IV

106
Rahul Publications

Basics of Probability Theory

When examining uncertainty, we adopt probability as a model to predict future events.

P(success) = P =
Number of successes

Number of possibleoutcomes

=
S

S f
... (1)

And likewise for failures, q. Now let A be some event and B be some other event. These are not
mutually exclusive.

The conditional probability that event A will occur, GIVEN that B has occurred is P(AlB).

Number of times both A andB canocccur
P(A|B)

Number of timesB canoccur
 (2)

Bayesian Rule

The probability of both A and B both occurring, denoted P(A B) is the joint probability..

P(A B) = p(A|B) × p(B) ... (3)

and is commutative (i.e., P(A B) = P(B A))

This allows us to derive the famous Bayesian Rule.

p(A|B) =
p(B|A) p(A)

p(B)


... (4)

 If A is conditionally dependent on n other mutually exclusive events then:

p(A) =
n

i ii 1
p(A|B) p(B)


  ... (5)

Dependent Events that are Mutually Exclusive

We shall now consider the case where A depends on two mutually exclusive events, B and  B.
From Equation 5

p(B) = (p(B|A) × p(A)) + (p(B| A) × p( A))

and substituting this into Bayesian Rule (Equation 4) gives

p(A|B) =
p(B|A) p(A)

(p(B|A) p(A)) (P(B| A) p(A))


     ... (6)

 Equation 6 is used in the management of uncertainty in expert systems.

Reasoning in Expert Systems

Armed with Equation 6, we shall try to manage uncertainty in expert systems.

 Suppose rules in a knowledge base are represented as follows:

ARTIFICIAL INTELLIGENCE

107
Rahul Publications

Uncertain Rules

IF H is true THEN E is true, with probability p

1. If event E has occurred, then probability of occurrence of H can be obtained by

2. Equation 6, replacing for A and B. In this case, H is the hypothesis and E is the evidence. Rewriting
Eq. 6 in terms of H and E:

p(H|E) =
p(E|H) p(H)

(p(E|H) p(H)) (P(E| H) p(H))


     ... (7)

Generalising to m hypotheses and n Evidences

Single evidence E and m hypotheses imply:

p(Hi|E) = i i
m
k 1 k k

p(E|H) p(H)
(p(E|H) p(H)


 

... (8)

Suppose the expert, given multiple (n) evidences, cannot distinguish between m hypotheses:

p(Hi|E1 .., En) = 1 n i i
m
k 1 1 n k k

p(E ...,E |H) p(H)
p(E ,....,E |H) p(H)


 

... (9)

An application of Eq. 9 requires us to obtain the conditional probabilities of all possible combinations
of evidences for all hypotheses! This grows exponentially. Therefore, assume conditional independence if
possible.

Probabilistic Reasoning in Expert Systems

Let the posterior probability of hypothesis Hi upon observing evidences E1 … En be,

p(Hi|E1 ... En) = 1 i n i i

k 1 1 k n k i

p(E |H) p(E |H) p(H)
mp(E |H) ... p(E |H) p(H)

 
   

... (10)

 This is a far more tractable solution and assumes conditional independence among different evidences.

 Users provide information about the evidence observed and the expert system computes p(H|E)
for hypothesis H in light of the user-supplied evidence E.

Probability p(H|E) is called the posterior probability of hypothesis H upon observing evidence
E.

4.1.11Expert System and DSS

Q13. Distinguish between expert systems and DSS.

Ans :
The differences between Expert systems and DSS are the following:

(a) Terminology

The terminology in both fields, ES and DSS, is confusing. For example, if the term “Decision Support
System· is taken literally, most computer programs would in fact be DSSs: one way or another they

M.Sc. IV Sem UNIT - IV

108
Rahul Publications

·support decision· since they provide certain
kinds or information used in a decision
process. Then there is a host or names
implying somehow that DSS and ES are
indeed very similar concepts, e.g. ESM
(Expert Systems for Management),
suggesting that management (or substantial
parts or it) can be done by ESs; IMS
(Intelligent Management System), which
suggests that management can be automated
by applying techniques from Artificial
Intelligence (e.g. ES), etc.

Thus, the terminology in these fields should
never be taken literally.

(b) Software Dominance

With the event of ES a new programming
methodology has emerged, namely the one
or declarative specifications as opposed to
procedural programs. Declarative
specification is exemplified in production
system languages (e.g. OPS5), and logic
programming languages such as PROLOG.
This has lead a number of authors to identify
ES with logic programming. Any program
employing logic programming (or other kinds
of declarative) techniques is called an ES, a
point of view the authors clearly reject. But
the fact that DSS and ES may use a similar
programming methodology does not imply
that they are equal.

4.1.12Pros and Cons of Expert Systems

Q14. Write about the advantages and
disadvantages of expert systems.

Ans :
The Advantages of Using Expert System

1. Providing Consistent Solutions

It can provide consistent answers for repetitive
decisions, processes and tasks. As long as the
rule base in the system remains the same,
regardless of how many times similar
problems are being tested, the final
conclusions drawn will remain the same.

2. Provides Reasonable Explanations

It has the ability to clarify the reasons why
the conclusion was drawn and be why it is

considered as the most logical choice among
other alternatives. If there are any doubts in
concluding a certain problem, it will prompt
some questions for users to answer in order
to process the logical conclusion.

3. Overcome Human Limitations
It does not have human limitations and can
work around the clock continuously. Users
will be able to frequently use it in seeking
solutions. The knowledge of experts is an
invaluable asset for the company. It can store
the knowledge and use it as long as the
organization needs.

4. Easy to Adapt to New Conditions
Unlike humans who often have troubles in
adapting in new environments, an expert
system has high adaptability and can meet
new requirements in a short period of time.
It also can capture new knowledge from an
expert and use it as inference rules to solve
new problems.

The Disadvantages of Using Expert System
1. Lacks Common Sense

It lacks common sense needed in some
decision making since all the decisions made
are based on the inference rules set in the
system. It also cannot make creative and
innovative responses as human experts would
in unusual circumstances.

2. High Implementation and Maintenance
Cost
The implementation of an expert system will
be a financial burden for smaller organizations
since it has high development cost as well as
the subsequent recurring costs to upgrade the
system to adapt in new environment.

3. Difficulty in Creating Inference Rules
Domain experts will not be able to always
explain their logic and reasoning needed for
the knowledge engineering process. Hence,
the task of codifying out the knowledge is
highly complex and may require high

4. May Provide Wrong Solutions
It is not error-free. There may be errors
occurred in the processing due to some logic
mistakes made in the knowledge base, which
it will then provide the wrong solutions.

ARTIFICIAL INTELLIGENCE

109
Rahul Publications

4.1.13Case Study

Q15. Explain the case study of expert systems

Ans :
Case Study: A Course Advisor Expert System

The Problem Domain

The present University course description
Web-based system exhibits some limitations.
Occasionally, subject pages display erroneous or stale
information. Students may be unintentionally misled
in their enrolments / exams etc which could
adversely affect the image of the teaching institution.
Also, the present system does not verify that a
student may enrol in subjects in a way that may
contradict University policies.

The advisory expert system is intended to
provide preliminary assistance and advice for
prospective postgraduates, extracting and inferring
the necessary information from a current knowledge
base within a consultation session. This should
provide a realistic assessment of the alternatives,
requirements and expectations for a particular
student, and thus help prevent enrolment errors.

In the current teaching system, subjects are
considered to be an indivisible entity, non-
customisable, with a fixed number of points awarded
on completion. Even if a student has prior
knowledge covering part of the course, he / she still
has to enrol in the whole course and will be awarded
all of the points allocated to the course if successful.
In order to enable and support the proposed expert
system, the teaching system should allow course
modularity, with points allocated to course
components, separately assessed.

Developing the Expert System

As previously stated, in developing the expert
system it is desirable to start with a prototype of the
complete expert system, which would provide
information on the feasibility of the project without
full financial or resource commitment. This prototype
may then be submitted for evaluation to users /
stakeholders and so obtain their feedback and
commitment. User and host institution acceptance
is a multidimensional aspect, which ultimately
decides the usefulness of the entire system
development effort. It must be also emphasized that

the prototype needed the elicitation of knowledge
from at least one domain expert. The development
of the prototype could not be left to the knowledge
engineer alone.

Life Cycle Models

Several life cycle paradigms have been
considered such as waterfall, incremental, linear,
spiral,, etc. A modified spiral paradigm may be
successfully employed, providing that some
guidelines are followed regarding the newly added
facts and rules. Such constraints may be: maintain
integrity (must not contradict the existing facts and
rules), avoid redundancy (must not represent
knowledge already existent in the rule base), prevent
scattering the knowledge over an excessive amount
of rules/facts, etc. Thus, a balance must be struck
between the facts /rules complexity, expressively and
number.

Concepts of the Expert System

The expert system will be based on several
concepts aiming to improve the subject selection
and education processes. These concepts are
modularity of subjects, prerequisites and outcomes
for subject modules and credit for previous studies,
applied to modules rather than subjects.

Hence, the aim is to establish modules within
the subjects, with their own prerequisites, outcomes
and credit points awarded on completion. The
number of modules within a subject must maintain
a balance between flexibility and the amount of
processing and development time required.

User Requirements for the Expert System
Prototype

The user will provide a preferred type of
occupation (targeted set of skills) and previous
knowledge, usable to satisfy some of the
prerequisites for the modules composing the study
program. The system will provide a study course to
achieve the targeted occupation and may also give
correction advice if existing user skills are stated as
too limited or too high.

Design of the Expert System Prototype

System Requirements

The system requirements represent a
translation of the user requirements into the from:

M.Sc. IV Sem UNIT - IV

110
Rahul Publications

system domain. For this particular case they may
take the form:

1. The expert system must rely on the user’s tacit
knowledge rather than trying to model it;

2. Modules are seen as objects having interfaces
- which are in fact the prerequisites and
outcomes of a module. Prerequisites and
outcomes are items contained in special lists,
which are further contained within module
facts;

3. A module prerequisite may be satisfied by
one (and only one) outcome, be it of another
module or declared as ‘known’ by the user
(previously acquired skills);

4. The consultation starts with a set of initial facts,
asserted at run-time according to the user’s
answers to ‘job domain’ and ‘job type’
queries. These facts provide the initial list of
unsatisfied prerequisites.

5. The system attempts to match these
unsatisfied prerequisites: first, against
outcomes declared ‘known’ by the user, and
then (if unsuccessful) against the outcomes
lists of the other module facts in the knowledge
base;

6. When a matching outcome is found for a
prerequisite, the module owning the outcome
is marked as ‘needed’ and its prerequisites
list is then in its turn scanned for matches with
other outcomes. The prerequisite for which
the match has been found is marked ‘done’.

7. Any prerequisites found to be not either
declared ‘known’ by the user, or already
satisfied by other modules’ outcomes will
trigger additional questions for the user;

8. According to the user’s answers, the
prerequisites are either declared ‘known’ (if
the user happens to have the required skill),
or added to the list of unsatisfied

9. Prerequisites; the process is repeated until all
prerequisites are satisfied - either by other
modules’ outcomes (‘done’) or by previous
skills of the user (‘known’).

10. The list of all modules marked as ‘needed’
(that is, modules the user will need to enrol

in) is printed out. NB some special modules
are automatically added, such

11. As the project modules (which will be present
regardless of the user’s prior knowledge)

Knowledge Representation and Method of
Inference

Design decisions had to be made regarding
the formalism to be used in representing the
knowledge contained in the teaching system. A first
criterion is related to the type of knowledge to be
represented, namely the components of the various
courses composing current study programs. As such,
this knowledge matched the form of a collection of
isolated facts, rather than a structured set of
knowledge or a concise theory. Therefore, rules /
assertions were preferred to frames or algorithms
in a first decision round . Production rules have been
chosen in preference to logic and semantic nets /
frames , since they are more suitable for solving
design and planning problems. Bottom-up
reasoning / inference, whereby a starting fact set
(provided by the user) is matched against the
conditions of the production rules (in the rule base,
constructed upon the rules governing the study
programs within the University) will also be used.
The use of bottom-up inference leads to forward
chaining as a preferred model of conflict resolution.
However, prioritisation may also be involved by
assigning production rules appropriate weights.

Knowledge Acquisition

The preferred methods of knowledge
acquisition for the prototype have been chosen to
be the use of questionnaires and structured
interview. This decision owes to several factors such
as the size of the prototype, the nature of problem
domain and the availability of domain experts.
Questionnaires are well suited to future automated
processing which is likely to benefit the knowledge
acquisition process. The design of both questionnaire
and interview have acknowledged the gap between
the descriptions of domain specialists (subject
conveners) and the resulting computational models
and also the social issues underlying knowledge
creation The interview design has mainly followed
the COMPASS procedure.

ARTIFICIAL INTELLIGENCE

111
Rahul Publications

Design Constraints

Constraints are necessary in order to enable a finite solution to be produced.

Examples

 The outcomes of a module must be distinct; two modules may not produce the same outcome:
doing so would produce a redundancy in the teaching structure which needs to be resolved

 All the module prerequisites contained in the knowledge base are satisfied by outcomes of other
modules in the base.

 Nil prerequisites for modules are allowed; however, they still require basic graduate knowledge,
such as maths, physics, etc (the tacit knowledge);

 Cyclic dependencies between any two modules are disallowed (e.g. if module A has a prerequisite
satisfied by module B, module B must not have a prerequisite satisfied only by module A). Should
this situation occur, the offending modules must be reassessed with regards to their prerequisites /
outcomes;

Further constraints may be added in the developing the expert system, e.g.:

 Maximum number of year n modules: may conflict with the concept of a Conversion Course and
limit the flexibility of the expert system.

 Maximum number of modules per Semester. The present prototype does not obey this constraint.
In real life, subjects tend to be equally distributed in all Semesters.

Balanced number of modules in each Semester: see previous.

The Expert System Conceptual Model

Once the decision to build the prototype as a production rule-based expert system has been taken,
the main elements of the system may be further specified. The knowledge base should contain facts and
rules referring to the prerequisites and outcomes of modules of the subjects offered in the University18.
The facts are either ‘fixed’ (such as the modules information) or run-time asserted (e.g. the user’s answers
to the expert systems’ questions). The inference engine must be chosen to match previous requirements
and design decisions. The user interface, preferably graphical and integratable with currently and commonly
used operating systems and enabling technology infrastructure (e.g. Internet), will preferably be
implemented in the same language as the inference engine.

A Unified Modelling Language model of the expert system is presented in Figure. In this figure, the
user-expert system interaction occurs through the user interface, which sends the problem conditions
(answers to questions) to the work area that holds all the temporary data. The inference engine uses the
knowledge base for the rules and fixed facts, and the work area for the dynamic facts (asserted at run-
time). The knowledge base contains the fixed facts and the rules. Finally, the solution is delivered to the
user interface. The classes shown in the figure will be further specified in the Implementation section.

M.Sc. IV Sem UNIT - IV

112
Rahul Publications

Fig. : Object Diagram of Expert System
Implementation

Several decisions had to be made in the implementation of the expert system. The virtual machine
hierarchy described in provides a good guide in establishing the options. Several web-enabled expert
system shells have been considered for the specific problem domain. While the shell may assist in the
effort of knowledge representation, it has to be matched to the task . Most shells impose a particular
production rule formalism, chaining and structure to the rule set. Considering the size of the prototype,
the resources available and the problem domain, the choice has been an expert system shell written in
Java, which emulates the CLIPS language, together with a simple graphical user interface. The Java
implementation of CLIPS is called JESS - The Java Expert System Shell . This provides the user with the
power of the CLIPS language and the flexibility of the Java cross-platform concept. Most of the data
structures provided by Java are available in JESS, including the AWT (Abstract Window Toolkit), which
enables the user to construct graphical user interfaces to the JESS (CLIPS) engine. Consult has been used
as an off-the-shelf basic JESS graphical user interface. The inference engine is indirectly provided CLIPS.
The CLIPS language uses forward-chaining and the RETE fast pattern-matching algorithm . CLIPS uses
lists to process information, very similar to the LISP language. In view of the implementation decision,
Figure may now be further explained. Thus, the Work Area is the Java applet, the user interface is the
applet’s window, the inference engine is provided by the Java CLIPS implementation and the knowledge
base resides in CLIPS file(s).

Match : : Find_Module

Prerequisite marked
“needed’ and not
‘known’ and not
Already available

(i.e., ‘done’)

Find module with
outcome matching
the prerequisite,

scan module
prereqs, mark

them ‘to be matched’

Start :: Initial_Query X Mark_rest,
Ask_Add_Questions

Calls

Match : : Mark_Rest

In module with
outcome matching

prereqs found

Mark module as
‘enrolled in’, scan &

mark all its outcomes
as ‘done’

(available to user)

Find_Module Add_CP, Proj_Mods,
Print::Print_Mods

Calls

Calls

Match : : Ask_Add_Questions

For each prerequisite :
If prerequisite marked
‘to be matched’, then

query user already
know?

If yes, mark
prerequisite ‘known’

if not mark it ‘needed’
Retract ‘match’

Find_Module Chk, Find_Module

Print::Print_Modules

If modules marked
‘enrolled in’ exist

Scan the module
(sem., CP, subj)

and print out

Print_Proj_Mods Show_Hints

Called by rules Calling rules

If(LHS)

Then (RHS)Rule name

ARTIFICIAL INTELLIGENCE

113
Rahul Publications

4.2 PATTERN RECOGNITION

4.2.1 Machine Perception And Pattern
Recognition

Q16. What is Machine Perception?

Ans :
Machine perception is the capability of a

computer system to interpret data in a manner that
is similar to the way humans use their senses to relate
to the world around them. The basic method that
the computers take in and respond to their
environment is through the attached hardware.
Until recently input was limited to a keyboard, or a
mouse, but advances in technology, both in
hardware and software, have allowed computers
to take in sensory input in a way similar to humans.

Machine perception allows the computer to
use this sensory input, as well as conventional
computational means of gathering information, to
gather information with greater accuracy and to
present it in a way that is more comfortable for the
user. These include computer vision, machine
hearing, and machine touch.

The end goal of machine perception is to give
machines the ability to see, feel and perceive the
world as humans do and therefore for them to be
able to explain in a human way why they are making
their decisions, to warn us when it is failing and more
importantly, the reason why it is failing.

Machine Vision

Computer vision is a field that includes
methods for acquiring, processing, analyzing, and
understanding images and, in general, high-
dimensional data from the real world in order to
produce numerical or symbolic information, e.g.,
in the forms of decisions. Computer vision has many
applications already in use today such as facial
recognition, geographical modeling, and even
aesthetic judgment.

Machine Hearing

Machine hearing, also known as machine
listening or computer audition, is the ability of a
computer or machine to take in and process sound
data such as music or speech. This area has a wide
range of application including music recording and

compression, speech synthesis, and speech
recognition. Moreover, this technology allows the
machine to replicate the human brain’s ability to
selectively focus in a specific sound against many
other competing sounds and background noise.
This particular ability is called “auditory scene
analysis”. The technology enables the machine to
segment several streams occurring at the same
time. Many commonly used devices such as a smart
phones, voice translators, and cars make use of
some form of machine hearing.

Machine Touch

Machine touch is an area of machine
perception where tactile information is processed
by a machine or computer. Applications
include tactile perception of surface properties
and dexterity whereby tactile information can
enable intelligent reflexes and interaction with the
environment.

Q17. What is Pattern Recognition and Explain
about the approaches of pattern
recognition.

Ans :
Pattern recognition can be defined as the

categorization of input data into identifiable classes
via the extraction of significant features or attributes
of the data from a background of irrelevant detail.

The field of pattern recognition is concerned
mainly with the description and analysis

of measurements taken from physical or mental
processes. It consists of acquiring raw data and taking
actions based on the “class” of the patterns
recognized in the data.

The design of a pattern recognition system
essentially involves the following three aspects: data
representation, Classification and finally,
Prototyping. The problem domain dictates the
choice of sensors, pre-processing techniques,
representation scheme, and decision making model.

i) Representation : It describes the patterns to
be recognized;

ii) Classification : It recognizes the “category” to
which the patterns provided belong to;

iii) Prototyping : It is the mechanism used for
developing the prototypes or models.

M.Sc. IV Sem UNIT - IV

114
Rahul Publications

Prototypes are used for representing the
different classes to be recognized.

A general pattern recognition system is shown
in the Figure.

In the first step data is acquired and
preprocessed, this step is followed by feature
extraction, feature reduction and grouping of
features, and finally the features are classified. In
the classification step, the trained classifier assigns
the input pattern to one of the pattern classes based
on the measured features. The training set used
during construction of the classifier is different from
the test set which is used for evaluation. This ensures
different performance environment.

Training data

Pre-processing

Feature extraction

Features

Model learning
/Estimation

Physical
environment

Data acquisition
/sensing

Pre-processing

Feature extraction

Features

Classification

Post/processing

Decision

Model

Pattern Recognition Approaches

Patterns generated from the raw data depend
on the nature of the data. Patterns may be
generated based on the statistical feature of the data.

The four best-known approaches for the
pattern recognition are:

1. Template matching

2. Statistical classification

3. Syntactic matching

4. Neural networks

Template Matching

One of the simplest and earliest approaches
to pattern recognition is based on template
matching. Matching is carried out to determine the
similarity between two entities such as points, curves,
or shapes of the same type. In template matching,
a template or a prototype of the pattern to be
recognized is available. The pattern to be recognized
is matched against the stored template while taking
into account all allowable operations such as
translation, rotation and scale changes.

Statistical Pattern Recognition

The statistical pattern recognition approach
assumes statistical basis for classification of data. It
generates random parameters that represent the
properties of the pattern to be recognized. The main
goal of statistical pattern classification is to find to
which category or class a given sample belongs.
Statistical methodologies such as statistical hypothesis
testing, correlation and Bayes classification are used
for implementing this method. The effectiveness of
the representation is determined by how well pattern
from different classes are well separated.

Syntactic Pattern Recognition

In many situations there exist interrelationship
or interconnection between the features associated
with a pattern. In such circumstances it is appropriate
to assume a hierarchical relationship where a pattern
is viewed as being consist of simple sub patterns
which are themselves built with yet another sub
pattern. This is the basis of Syntactic pattern
recognition. In this method symbolic data structures
such as arrays, strings, trees, or graphs are used for
pattern representation.

Neural Network

Neural computing is based on the way by
which biological neural system store and manipulates
information. It can be viewed as parallel computing
environment consisting of interconnection of large
number of simple processors. Neural network have
been successfully applied in many tasks of pattern
recognition and machine learning systems. The
structure of neural system is drawn from analogies
with biological neural systems.

Neural network models uses a network of
weighted directed graphs in which the nodes are

ARTIFICIAL INTELLIGENCE

115
Rahul Publications

artificial neurons and directed edges are connections
between neuron outputs and neuron inputs. The
neural networks have the ability to learn complex
nonlinear input-output relationships, use sequential
training procedures, and adapt themselves to the
data.

4.2.2 Feature Extraction

Q18. Write about Feature Extraction process
in Pattern recognition.

Ans :
Feature selection is the process of choosing

input to the pattern recognition system. Many
methods can be used to extract the features. The
feature selected is such that it is relevant to the task
at hand. These features can be obtained from the
mathematical tools or by applying feature extraction
algorithm or operator to the input data. The level
at which these features are extracted determines the
amount of necessary preprocessing and may
influence the amount of error introduced into the
feature extracted. Features many be represented
as continuous, discrete, or discrete binary variables.
During the features extraction phase of the
recognition process objects are measured. A
measurement is the value of some quantifiable
property of an object. A feature is a function of one
or more measurements, computed so that it
quantifies some significant characteristic of the
object. This process produces a set of features that,
taken together, forms the feature vector.

A number of transformations can be used to
generate features. The basic idea is to transform a
given set of measurements to a new set of features.
Transformation of features can lead to a strong
reduction of information as compared with the
original input data. In most of the situations relatively
small number of features is sufficient for correct
recognition.

Obviously feature reduction is a sensitive
procedure since if the reduction is done incorrectly
the whole recognition system may fail or may not
produce the expected results

Feature extraction also depends on
application in hand and may use different
techniques such as moment-based features, chain
codes, and parametric models to obtain required
features.

4.2.3 Classification

Q19. What are known as classifiers in expert
system.

Ans :
Classifiers are designed to perform the

classification stage of the pattern recognition system.
A Classifier partitions the feature space into different
regions. The border of each decision region is a
decision boundary. The determination of region to
which the feature vector belongs to is a challenging
task. There are many approaches for the design of
the classifier in a pattern recognition system and they
can be grouped in three classes: classifiers based on
Bayes decision theory, linear and nonlinear
classifiers.

The first approach builds upon probabilistic
arguments stemming from the statistical nature of
the generated features. This is due to the statistical
variation of the patterns as well as to possible noise
obtained in the signal acquisition phase. The
objective of this type of design is to classify an
unknown pattern in the most probable class as
deduced from the estimated probability density
functions. Even though linear classifiers are more
restricted in their use.

The major advantage is their simplicity and
computational demand in solving problems which
do not require more sophisticated nonlinear model.
Examples of linear classifiers are the preceptors
algorithm and least squares methods. For problems
that are not linearly separable and for which the
design of a linear classifier, even in an optimal way,
does not lead to satisfactory performance, the use
of nonlinear classifier are mandatory.

4.2.4 Object Recognition

Q20. What Is Object Recognition? Explain
object recognition techniques.

Ans :
Object recognition is a process for identifying

a specific object in a digital image or video. Object
recognition algorithms rely on matching, learning,
or pattern recognition algorithms using appearance-
based or feature-based techniques.

M.Sc. IV Sem UNIT - IV

116
Rahul Publications

Object recognition is useful in applications such
as video stabilization, advanced driver assistance
systems (ADAS), and disease identification in bio-
imaging. Common techniques include deep learning
based approaches such as convolutional neural
networks, and feature-based approaches using
edges, gradients, histogram of oriented gradients
(HOG), Haar wavelets, and linear binary patterns.

Object Recognition Techniques

You can recognize objects using a variety of
models, including:

 Feature extraction and machine
learning models

 Deep learning models such as CNNs

 Bag-of-words models with features such as
SURF and MSER

 Gradient-based and derivative-based
matching approaches

 The Viola-Jones algorithm, which can be
used to recognize a variety of objects,
including faces and upper bodies

 Template matching

 Image segmentation and blob analysis

4.2.5 Speech Recognition

Q21. What is speech recognition?

Ans :
Speech recognition is the process of

extracting text transcriptions or some form
of meaning from speech input.

Speech analytics can be considered as the
part of the voice processing, which converts human
speech into digital forms suitable for storage or
transmission computers.

Speech synthesis function is essentially reverse
speech analysis-they convert speech data from digital
form to one that is similar to the original entry and
is suitable for playback.

Speech analysis processes can also be called
digital speech coding (or encoding) and The
high variability due to local scale as shown in
processing of time signals requires devices with
memory. This issue calls the problem of temporary
structures.

Q22. Explain about the Basic concepts of
speech recognition.

Ans :
Basic Concepts of Speech Recognition

1. Structure of speech

2. Recognition process

3. Models

4. Other used concepts

1. Structure of Speech

Speech is a continuous audio stream where
rather stable states mix with dynamically changed
states. In this sequence of states, one can define
more or less similar classes of sounds, or phones.
Words are understood to be built of phones, but
this is certainly not true. The acoustic properties of
a waveform corresponding to a phone can vary
greatly depending on many factors - phone context,
speaker, style of speech and so on. The so-called
coarticulation makes phones sound very different
from their “canonical” representation. Next, since
transitions between words are more informative
than stable regions, developers often talk
about diphones - parts of phones between two
consecutive phones.

Next, phones build subword units, like
syllables. Sometimes, syllables are defined as
“reduction-stable entities”. For instance, when
speech becomes fast, phones often change, but
syllables remain the same. Also, syllables are related
to an intonational contour. There are other ways to
build subwords - morphologically-based (in
morphology-rich languages) or phonetically-based.
Subwords are often used in open vocabulary speech
recognition.

Subwords form words. Words are important
in speech recognition because they restrict
combinations of phones significantly. If there are
40 phones and an average word has 7 phones, there
must be 40^7 words. Luckily, even people with a
rich vocabulary rarely use more then 20k words in
practice, which makes recognition way more
feasible.

ARTIFICIAL INTELLIGENCE

117
Rahul Publications

Words and other non-linguistic sounds, which
we call fillers (breath, um, uh, cough), form
utterances. They are separate chunks of audio
between pauses. They don’t necessary match
sentences, which are more semantic concepts.

Recognition Process

The common way to recognize speech is the
following: we take a waveform, split it at utterances
by silences and then try to recognize what’s being
said in each utterance. To do that, we want to take
all possible combinations of words and try to match
them with the audio. We choose the best matching
combination.

There are some important concepts in this
matching process. First of all it’s the concept
of features. Since the number of parameters is
large, we are trying to optimize it. Numbers that are
calculated from speech usually by dividing the
speech into frames. Then for each frame, typically
of 10 milliseconds length, we extract 39 numbers
that represent the speech. That’s called a feature
vector. The way to generate the number of
parameters is a subject of active investigation, but
in a simple case it’s a derivative from the spectrum.

Second, it’s the concept of the model. A
model describes some mathematical object that
gathers common attributes of the spoken word.

Models

According to the speech structure, three
models are used in speech recognition to do the
match.

An acoustic model contains acoustic
properties for each sen one. There are context-
independent models that contain properties (the
most probable feature vectors for each phone) and
context-dependent ones (built from senones with
context).

A phonetic dictionary contains a mapping
from words to phones. This mapping is not very
effective. For example, only two to three
pronunciation variants are noted in it. However, it’s
practical enough most of the time. The dictionary is
not the only method for mapping words to phones.
You could also use some complex function learned
with a machine learning algorithm.

A language model is used to restrict word
search. It defines which word could follow previously
recognized words (remember that matching is a
sequential process) and helps to significantly restrict
the matching process by stripping words that are
not probable. The most common language models
are n-gram language models–these contain statistics
of word sequences–and finite state language
models–these define speech sequences by finite state
automation, sometimes with weights

Other used Concepts

A Lattice is a directed graph that represents
variants of the recognition. Often, getting the best
match is not practical. In that case, lattices are good
intermediate formats to represent the recognition
result.

N-best lists of variants are like lattices,
though their representations are not as dense as
the lattice ones.

Word confusion networks (sausages) are
lattices where the strict order of nodes is taken from
lattice edges.

Speech database - a set of typical
recordings from the task database. If we develop
dialog system it might be dialogs recorded from
users. For dictation system it might be reading
recordings. Speech databases are used to train, tune
and test the decoding systems.

Text databases - sample texts collected for
e.g. language model training. Usually, databases of
texts are collected in sample text form. The issue
with such a collection is to put present documents
(like PDFs, web pages, scans) into a spoken text
form. That is, you need to remove tags and headings,
to expand numbers to their spoken form and to
expand abbreviations.

4.2.6 Pattern Mining

Q23. What is pattern mining? Explain about
it.

Ans :
Pattern mining consists of using/developing

data mining algorithms to discover interesting,
unexpected and useful patterns in databases.

M.Sc. IV Sem UNIT - IV

118
Rahul Publications

Pattern mining algorithms can be applied
on various types of data such as transaction
databases, sequence databases, streams, strings,
spatial data, graphs, etc.

Pattern mining algorithms can be designed
to discover various types of patterns :
subgraphs, associations, indirect associations, trends,
periodic patterns, sequential rules, lattices, sequential
patterns, high-utility patterns, etc.

Examples

1. Discovering Frequent Itemsets

The most popular algorithm for pattern mining
is without a doubt Apriori (1993). It is designed
to be applied on a transaction database to discover
patterns in transactions made by customers in stores.
But it can also be applied in several other
applications. A transaction is defined a set of distinct
items (symbols). Apriori takes as input (1)
a minsupthres hold set by the user and (2) a
transaction database containing a set of
transactions. Apriori outputs all frequent
itemsets, i.e. groups of items shared by no less
than minsuptrans actions in the input database.
For example, consider the following transaction
database containing four transactions. Given
a minsup of two transactions, frequent itemsets are
“bread, butter”, “bread milk”, “bread”, “milk” and
“butter”.

T1: bread, butter, spinach

T2: butter, salmon

T3: bread, milk, butter

T4: cereal, bread milk

Fig. : A Transaction Database

2. Discovering Sequential Rules

The second example that I will give is
to discover sequential rules in a sequence
database. A sequence database is defined as a set
of sequences. A sequence is a list of transactions (as
previously defined). For example in the left part of
the following figure a sequence database containing
four sequences is shown. The first sequence
contains item a and b followed by c, followed

by f, followed by g, followed by e. A sequential
rule has the form X  Y where X and Y are two
distinct non empty sets of items. The meaning of a
rule is that if the items of X appears in a sequence in
any order, they will be followed by the items of Y in
any order. The support of a rule is the number
of sequence containing the rule divided by the total
number of sequences. The confidence of a
rule is the number of sequence containing the rule
divided by the number of sequences containing its
antecedent. The goal of sequential rule
mining is to discover all sequential rules having
a support and confidence no less than two
thresholds given by the user named “minsup” and
“minconf” . For example, on the right part of the
following figure some sequential rules are shown
for minsup = 0.5 and mincon f = 0.5, discovered
by the Rule Growth algorithm.

4.3 GAME PLAYING

4.3.1 Important Concepts of Game Theory

Q24. What is game theory? Explain the basic
concepts in game theory.

Ans :
Game theory is the process of modeling the

strategic interaction between two or more players
in a situation containing set rules and outcomes.

Game theory attempts to reduce these
transaction to mathematical terms, to deduce which
actions, by the parties, are better or worse, based
on the desired outcome.

Game Theory Definitions

1. Game: Any set of circumstances that has a
result dependent on the actions of two of
more decision-makers (players)

2. Players : A strategic decision-maker within
the context of the game

3. Strategy : A complete plan of action a player
will take given the set of circumstances that
might arise within the game

4. Payoff : The payout a player receives from
arriving at a particular outcome. The payout
can be in any quantifiable form, from dollars
to utility.

ARTIFICIAL INTELLIGENCE

119
Rahul Publications

5. Information set : The information available
at a given point in the game. The term
information set is most usually applied when
the game has a sequential component.

6. Equilibrium : The point in a game where
both players have made their decisions and
an outcome is reached.

4.3.2 Game Playing and Knowledge
Structure

Q25. Explain the role of knowledge
representation in game playing.

Ans :
Knowledge representation is the task of

understanding how the world around us works and
how difficult that will make it for a rational agent to
act within it.

Part 1: Select a Game

We can begin by select an existing game that
you are familiar with. This can be a board game,
card game or video game. Write down key
information such as:

 A quick summary of what the game is about:
this can be expressed by themes, narratives
etc.

 How many players can participate?

 How players participate in the game?

 What are the rules of the game?

 What conditions allow for a player to win that
game?

Part 2: Understand Your Game

Now that we have selected a game and
identified what it is and how it works. Let’s begin
assessing it for the purposes of an AI agent. Take
your game and assess the following criteria:

Determinism

If we take a particular action in a game, do
we always know the outcome? This is complicated
by game elements such as dice, given that – while
they only have one of six outcomes – we cannot
predict with 100% confidence what the dice roll
would be.

Observability

Can we see everything that is happening in
the game? Is there any information that is hidden
from us? This will have an impact on our decisions
given we can only make educated guesses as to
what is currently happening. Card games are often
guilty of this, given that players will each be holding
cards that only they can see. Even something as
simple as Snap is partially-observable because
while we can guess what cards are still to be revealed,
we do not know who is actually holding them.

Single/Multi-Agent

Are there any other agents that can have an
impact on our performance? Is it solely the player
who is in control, or are there other agents in play
who can instigate change in the world?

Discrete

Is the game discretised? Or is it a continuous
event? Of course if it is a video game then on some
level it is discretised given that it will run on a fixed
number of frames per second. However, consider
the reality of the problem rather than the methods
of its execution through programming.

4.3.3 Game As Search Problem

Q26. Explain about game as search problem.

Ans :

The behaviour / actions of the opponent are
unpredictable, therefore search for a “worst-case”-
plan.

Time limit, therefore complete search is not
feasible and an approximation is needed

 Algorithm for perfect play

 Finite horizon, approximate evaluation

 Pruning search tree

M.Sc. IV Sem UNIT - IV

120
Rahul Publications

Games vs Search Problems

 “Unpredictable” opponent : specifying a move for every possible opponent reply.

 Time limits : unlikely to find goal, must approximate

Game Playing Strategy

 Maximize winning possibility assuming that opponent will try to minimize (Minimax Algorithm)

 Ignore the unwanted portion of the search tree (Alpha Beta Pruning)

 Evaluation(Utility) Function

A measure of winning possibility of the player

OX OX

Tic-Tac-Toe

e(p) = 6 – 5 = 1

 Initial State: Board position of 3x3 matrix with 0 and X.

 Operators: Putting 0’s or X’s in vacant positions alternatively

 Terminal test: Which determines game is over

 Utility function:

e(p) = (No. of complete rows, columns or diagonals are still open for player) – (No. of
complete rows, columns or diagonals are still open for opponent)

Minimax Algorithm

 Generate the game tree

 Apply the utility function to each terminal state to get its value

 Use these values to determine the utility of the nodes one level higher up in the search tree

 From bottom to top

 For a max level, select the maximum value of its successors.

 For a min level, select the minimum value of its successors.

 From root node select the move which leads to highest value.

ARTIFICIAL INTELLIGENCE

121
Rahul Publications

Game tree for Tic-Tac-Toe

4.3.4 Alpha-beta Pruning

Q27. Explain about ALPHA-BETA pruning

Ans :
ALPHA-BETA pruning is a method that reduces the number of nodes explored in Minimax strategy.

It reduces the time required for the search and it must be restricted so that no time is to be wasted
searching moves that are obviously bad for the current player.

The exact implementation of alpha-beta keeps track of the best move for each side as it moves
throughout the tree. We proceed in the same (preorder) way as for the minimax algorithm.

For the MIN nodes, the score computed starts with +infinity and decreases with time.

For MAX nodes, scores computed starts with –infinity and increase with time.

The efficiency of the Alpha-Beta procedure depends on the order in which successors of a node are
examined. If we were lucky, at a MIN node we would always consider the nodes in order from low to high
score and at a MAX node the nodes in order from high to low score. In general it can be shown that in the
most favorable circumstances the alpha-beta search opens as many leaves as minimax on a game tree
with double its depth.

Here is an example of Alpha-Beta search

Alpha-Beta algorithm. The algorithm maintains two values, alpha and beta, which represent the
minimum score that the maximizing player is assured of and the maximum score that the minimizing
player is assured of respectively. Initially alpha is negative infinity and beta is positive infinity. As the
recursion progresses the “window” becomes smaller.

When beta becomes less than alpha, it means that the current position cannot be the result of best
play by both players and hence need not be explored further.

Pseudocode for the alpha-beta algorithm is given below.
evaluate (node, alpha, beta)

M.Sc. IV Sem UNIT - IV

122
Rahul Publications

if node is a leaf
return the heuristic value of node
if node is a minimizing node
for each child of node
beta = min (beta, evaluate (child, alpha, beta))
if beta <= alpha
return beta
return beta
if node is a maximizing node
for each child of node
alpha = max (alpha, evaluate (child, alpha, beta))
if beta <= alpha
return alpha
return alpha

4.3.5 Game Theory Problems

Q28. Explain Prisoner’s Dilemma Problem.

Ans :
Prisoner’s Dilemma Problem

The prisoner’s dilemma refers to a situation, wherein an individual has to choose between self-
interest and mutual interest. The prisoner’s dilemma is a standard example of a game analyzed
in game theory that shows why two completely “rational” individuals might not cooperate, even if it
appears that it is in their best interests to do so.

Further examples will make it clear why above stated statement is TRUE in most of the cases.
Two men are arrested by the police on suspicion of committing the same crime. They are questioned

by the police in separate rooms. To convict them, the police need testimony from at least one of them.
Both are rational, and value their personal freedom more than the other’s. They have two options to
confess or remain silent. If one confesses and the other remains silent, he (who remained silent) will have
to serve the full tenure of punishment. On the other hand, if both confess and accuse the other to be a
culprit, they’ll share the sentence of imprisonment, that will be lesser than the full term. However, if both
remain silent, due to a lack of evidence, the police will have to sentence both to a much lesser period.
The offer is
1. If A and B each betray the other, each of them serves 2 years in prison.
2. If A betrays B but B remains silent, A will be set free and B will serve 3 years in prison (and vice

versa).
3. If A and B both remain silent, both of them will only serve 1 year in prison (on the lesser charge).

Each serves 2 yearsPrisoner A: goes free
Prisoner B : 3 years

Prisoner A
betrays (defects)

Prisoner A : 3 years
Prisoner B : goes free

Each serves 1 yearPrisoner A stays silent
(Cooperates)

Prisoner B betrays
(defects)

Prisoner B stays silent
(cooperates)

Each serves 2 yearsPrisoner A: goes free
Prisoner B : 3 years

Prisoner A
betrays (defects)

Prisoner A : 3 years
Prisoner B : goes free

Each serves 1 yearPrisoner A stays silent
(Cooperates)

Prisoner B betrays
(defects)

Prisoner B stays silent
(cooperates)

ARTIFICIAL INTELLIGENCE

123
Rahul Publications

Thus, the best option for suspects is to remain
silent and not testify against the other. However,
neither of them know what the other will say, and
lack of trust and confidence in other accomplice may
compel one of them to testify rather than remain
silent. They’re faced with this dilemma, since there
is a risk of the other partner testifying against if the
other one remains mum. If they have mutual trust,
it will be easy for them to have a win-win situation
by staying mum.

Q29. Explain Rock-Paper- Scissors Problem.

Ans :
Rock-Paper- Scissors Problem

This rock-paper-scissors game illustrates the
basic principles of an adaptive artificial intelligence
technology.

General Statement

A tournament is being held for champion
players of the game Rock, Paper, and Scissors. For
Player A and Player B, determine who wins each
game and who wins the overall tournament.

Input

The first line in the data set is an integer that
represents the number of datapairs that follow. The
data begins on the second line. R represents rock,
P represents paper, and S represents scissors.

Output

The output is to be formatted exactly like that
for the sample output given below.

Assumptions

The only letters in the input will be upper case
R, P, and S. The first letter in the pair is the choice
for player A and the second letter is the choice for
player B.

Example

Input: 7

RRRSSRSPPPPSRP

etc.

Output:

DRAW

A WINS

B WINS

A WINS

DRAW

B WINS

B WINS

B WINS TOURNAMENT

etc.

Discussion

The game is a draw if both players choose
the same item. Paper wins over rock because paper
covers rock. Scissors wins over paper because
scissors cuts paper. Rock wins over scissors because
rock breaks scissors.

How Does it Work?

The computer keeps track of the conditional
probabilities of you picking each of the three objects
given the object you picked last. The computer
always picks the object that beats the one that it
thinks you are most likely to choose. Although it
knows what you have actually picked (you press
one of the buttons to make your choice), it is honest
and doesn’t cheat!

You can observe the computer learning by
picking a strategy and sticking to it for a while. Here
are a few things to try:

1. Pick Rock, then Paper, then Scissors, then
Rock again and keep that pattern up. See
how quickly the computer learns to beat you
every time?

2. Having done that a few times, change strategy
and pick Paper 5 times in a row. See how the
computer spots your change of strategy and
alters its play?

3. Pick any strategy of your own and see if the
computer can spot the pattern.

4. See if you can be perfectly random in your
choices and beat the computer.

M.Sc. IV Sem UNIT - IV

124
Rahul Publications

4.3.6 Robotics

Q30. Write the brief introduction of robotics.

Ans :
 A ROBOT is a mechanical or virtual artificial

agent, usually an electro-mechanical machine that
is guided by a computer program or electronic
circuitry.

Robots can be autonomous or semi-
autonomous. A Robot may convey a sense of
intelligence or thought of its own.

A Mechatronic Device is a degenerate
robot with these components:

1. Sensors, which detect the state of the
environment

2. Actuators, which modify the state of the
environment

3. A Control System, which controls the
actuators based on the environment as
depicted by the sensors

A Robot is a mechatronic device which also
includes resourcefulness or autonomy. A
device with autonomy does its thing “on its own”
without a human directly guiding it moment-by-
moment. Some authors would contend that all
mechatronic devices are robots, and that this book’s
restriction on robot entails only specialized
software.

Various types of robots are usually classified
by their capabilities. Two examples will be used to
capture most of what we see as a “robot”.

1. Machine Pet

A machine, capable of moving in some way,
that can sense its surroundings and can act
on what it senses autonomously. Most of
these robots have no real useful purpose,
other than to entertain and challenge. These
are also commonly used for experimenting
with sensors, artificial intelligence, actuators
and more. Most of this book covers this type
of robot.

2. Autonomous Machine

A machine with sensors and actuators that
can do some sort of work “on its own”. This

includes things like robotic lawnm owers and
vacuum cleaners, and also self-operating
construction machines such as CNC cutters.
Most industrial and commercial robots fall in
this category.

Applications of Robotics

1. Outer Space Applications

Robots are playing a very important role for
outer space exploration. The robotic
unmanned spacecraft is used as the key of
exploring the stars, planets...etc.

2. Military Applications

In today’s modern army robotics is an
important factor which is researched and
developed day by day. Already remarkable
success has been achieved with unmanned
aerial vehicles like the Predator drone, which
are capable of taking surveillance
photographs, and even accurately launching
missiles at ground targets, without a pilot.
There are many advantages in robotic
technology in warfare however, as outlined
by Major Kenneth Rose of the US Army’s
Training and Doctrine Command: ‘’Machines
don’t get tired. They don’t close their eyes.
They don’t hide under trees when it rains and
they don’t talk to their buddies. A human’s
attention to detail on guard duty drops
dramatically in the first 30 minutes ...
Machines know no fear.’’

3. Intelligent Home Applications
We can monitor home security,
environmental conditions and energy usage
with intelligent robotic home systems. Door
and windows can be opened automatically
and appliances such as lighting and air
conditioning can be pre programmed to
activate. This assists occupants irrespective of
their state of mobility.

Industry
From the beginning of the industrial revolution

robotics and automation becomes the most
important part of manufacturing. Robotic arms
which are able to perform multiple tasks such as
welding, cutting, lifting, sorting and bending are used
in fabrics.

ARTIFICIAL INTELLIGENCE

125
Rahul Publications

The most commonly used configurations of
the industrial robots are

Articulated Robots: An articulated robot is one
which uses rotary joints to access its work space.
Articulated robots can range from simple two-jointed
structures to systems with 10 or more interacting
joints. The six-axis, articulated robot is the most
versatile industrial robot which allows for a high level
of freedom.

Cylindrical Coordinate Robots: These robots
have three degrees of freedom and they moves
linearly only along the Y and Z axes with a cylindirical
work envelope.

Scara Robots: It stands for Selective
Compliant Assembly Robot Arm or Selective
Compliant Articulated Robot Arm. SCARA robots
usually have four axes as any X-Y-Z coordinate
within their work envelope and a fourth axis of
motion which is the wrist rotate (Theta-Z).

Spherical Coordinate Robots: The special
arm, also known as polar coordinate robot arm,
has one sliding motion and two rotational, around
the vertical post and around a shoulder joint.

4.4 CONCEPTS AND TERMINOLOGY OF ANN

Q31. What is Artificial Neural Network?

Ans :

Artificial Neural Network (ANN) is an efficient
computing system whose central theme is borrowed
from the analogy of biological neural networks.
ANNs are also named as “artificial neural systems,”
or “parallel distributed processing systems,” or
“connection is systems.” ANN acquires a large
collection of units that are interconnected in some
pattern to allow communication between the units.
These units, also referred to as nodes or neurons,
are simple processors which operate in parallel.

Every neuron is connected with other neuron
through a connection link. Each connection link is

associated with a weight that has information about
the input signal. This is the most useful information
for neurons to solve a particular problem because
the weight usually excites or inhibits the signal that
is being communicated. Each neuron has an internal
state, which is called an activation signal. Output
signals, which are produced after combining the
input signals and activation rule, may be sent to
other units.

4.4.1 FEED-FORWARD NN

Q32. Explain about Feed Forward Neural
Networks.

Ans :
Deep feedforward networks, also often

called feedforward neural networks ,
or multilayer perceptrons(MLPs), are the
quintessential deep learning models. The goal of a
feedforward network is to approximate some
function f*. For example, for a classifier, y = f*(x)
maps an input x to a category y. A feedforward
network defines a mapping y = f(x;) and learns
the value of the parameters  that result in the
best function approximation. (Reference)

These models are called feedforward because
information flows through the function being
evaluated from x, through the intermediate
computations used to define f, and finally to the
output y. There are no feedback connections in
which outputs of the model are fed back into itself.
When feedforward neural networks are extended
to include feedback connections, they are
called recurrent neural networks (we will see in
later segment).

As we know the inspiration behind neural
networks are our brains. So lets see the biological
aspect of neural networks.

In the following figure we see an example of
a 2-layered network with, from top to bottom: an
output layer with 5 units, a hidden layer with 4
units, respectively. The network has 3 input units.

M.Sc. IV Sem UNIT - IV

126
Rahul Publications

The 3 inputs are shown as circles and these
do not belong to any layer of the network (although
the inputs sometimes are considered as a virtual layer
with layer number 0). Any layer that is not an output
layer is a hidden layer. This network therefore has
1 hidden layer and 1 output layer. The figure also
shows all the connections between the units in
different layers. A layer only connects to the
previous layer.

The operation of this network can be divided
into two phases:

1. The Learning Phase

The FFNet uses a supervised learning
algorithm: besides the input pattern, the
neural net also needs to know to what
category the pattern belongs. Learning
proceeds as follows: a pattern is presented at
the inputs. The pattern will be transformed
in its passage through the layers of the
network until it reaches the output layer. The
units in the output layer all belong to a
different category. The outputs of the network
as they are now are compared with the
outputs as they ideally would have been if
this pattern were correctly classified: in the
latter case the unit with the correct category
would have had the largest output value and

the output values of the other output units
would have been very small.

2. The Classification Phase

In the classification phase, the weights of the
network are fixed.

A pattern, presented at the inputs, will be
transformed from layer to layer until it
reaches the output layer. Now classification
can occur by selecting the category associated
with the output unit that has the largest output
value. For classification we only need to select
an FFNet and a Pattern List together and
choose To Categories.

In contrast to the learning phase classification
is very fast.

4.4.2 Feedback Networks

Q33. Write about feed back networks

Ans :
Feedback (or recurrent or interactive)

networks can have signals traveling in both directions
by introducing loops in the network. Feedback
networks are powerful and can get extremely
complicated. Computations derived from earlier
input are fed back into the network, which gives
them a kind of memory. Feedback networks are
dynamic; their ‘state’ is changing continuously until
they reach an equilibrium point. They remain at
the equilibrium point until the input changes and a
new equilibrium needs to be found.

Fig.: Example of Simple Feed back Networks

ARTIFICIAL INTELLIGENCE

127
Rahul Publications

Fig: Complicated of Feedback Networks

As an example of feedback network, is l Hopfield’s network. The main use of Hopfield’s network
is as associative memory. An associative memory is a device which accepts an input pattern and generates
an output as the stored pattern which is most closely associated with the input. The function of the
associate memory is to recall the corresponding stored pattern, and then produce a clear version of the
pattern at the output. Hopfield networks are typically used for those problems with binary pattern vectors
and the input pattern may be a noisy version of one of the stored patterns. In the Hopfield network, the
stored patterns are encoded as the weights of the network.

4.4.3 Pattern Associative Networks

Q34. Explain different types of associative networks.

Ans :

These kinds of neural networks work on the basis of pattern association, which means they can
store different patterns and at the time of giving an output they can produce one of the stored patterns by
matching them with the given input pattern. These types of memories are also called Content-Addressable
Memory (CAM). Associative memory makes a parallel search with the stored patterns as data files.

Following are the two types of associative memories we can observe.

1. Auto Associative Memory

2. Hetero Associative memory

1. Auto Associative Memory

This is a single layer neural network in which the input training vector and the output target vectors
are the same. The weights are determined so that the network stores a set of patterns.

M.Sc. IV Sem UNIT - IV

128
Rahul Publications

Architecture

As shown in the following figure, the architecture of Auto Associative memory network
has ‘n’ number of input training vectors and similar ‘n’ number of output target vectors.

Training Algorithm

For training, this network is using the Hebb or Delta learning rule.

Step 1 : Initialize all the weights to zero as wij = 0 (i = 1 to n, j = 1 to n)

Step 2 : Perform steps 3-4 for each input vector.

Step 3 : Activate each input unit as follows.

xi = si (i = 1 to n)

Step 4 : Activate each output unit as follows.

yj = sj(j = 1 to n)

Step 5 : Adjust the weights as follows.

wij(new) = wij(old) + xiyj

Testing Algorithm

Step 1 : Set the weights obtained during training for Hebb’s rule.

Step 2 : Perform steps 3-5 for each input vector.

Step 3 : Set the activation of the input units equal to that of the input vector.

Step 4 : Calculate the net input to each output unit j = 1 to n

yinj =
n

i iji 1
x w




Step 5 : Apply the following activation function to calculate the output

yj = inj
inj

inj

1 if y 0
f(y)

1if y 0
    

ARTIFICIAL INTELLIGENCE

129
Rahul Publications

Hetero Associative Memory

Similar to Auto Associative Memory network, this is also a single layer neural network. However, in
this network the input training vector and the output target vectors are not the same. The weights are
determined so that the network stores a set of patterns. Hetero associative network is static in nature,
hence, there would be no non-linear and delay operations.

Architecture

As shown in the following figure, the architecture of Hetero Associative Memory network
has ‘n’ number of input training vectors and ‘m’ number of output target vectors.

Training Algorithm

For training, this network is using the Hebb or Delta learning rule.

Step 1 : Initialize all the weights to zero as wij = 0 (i = 1 to n, j = 1 to m)

Step 2 : Perform steps 3-4 for each input vector.

Step 3 : Activate each input unit as follows.

xi = si(i = 1 to n)

Step 4 : Activate each output unit as follows.

yj = sj(j = 1 to m)

Step 5 : Adjust the weights as follows.

wij(new) = wij(old) + xi yj

Testing Algorithm

Step 1 : Set the weights obtained during training for Hebb’s rule.

Step 2 : Perform steps 3-5 for each input vector.

Step 3 : Set the activation of the input units equal to that of the input vector.

Step 4 : Calculate the net input to each output unit j = 1 to m;

yinj =
n

i iji 1
x w




M.Sc. IV Sem UNIT - IV

130
Rahul Publications

Step 5 : Apply the following activation function to calculate the output.

yj =
inj

inj inj

inj

0 if y 0
f(y) 0 if y 0

1 if y 0

 
 
 

Q35. Explain about Hopfield Network.

Ans :
Hopfield neural network was invented by Dr. John J. Hopfield in 1982. It consists of a single layer

which contains one or more fully connected recurrent neurons. The Hopfield network is commonly used
for auto-association and optimization tasks.

Discrete Hopfield Network

A Hopfield network which operates in a discrete line fashion or in other words, it can be said the
input and output patterns are discrete vector, which can be either binary (0,1) or bipolar (+1, -1) in
nature. The network has symmetrical weights with no self-connections i.e., wij = wji and wii = 0.

Architecture

Following are some important points to keep in mind about discrete Hopfield network Š

 This model consists of neurons with one inverting and one non-inverting output.

 The output of each neuron should be the input of other neurons but not the input of self.

 Weight/connection strength is represented by wij.

 Connections can be excitatory as well as inhibitory. It would be excitatory, if the output of the
neuron is same as the input, otherwise inhibitory.

 Weights should be symmetrical, i.e. wij = wji

ARTIFICIAL INTELLIGENCE

131
Rahul Publications

The output from Y1 going to Y2, Yi and Yn have the weights w12, w1i and w1n respectively.
Similarly, other arcs have the weights on them.

Training Algorithm

During training of discrete Hopfield network, weights will be updated. As we know that we can have
the binary input vectors as well as bipolar input vectors. Hence, in both the cases, weight updates can be
done with the following relation

Case 1 : Binary input patterns

For a set of binary patterns s(p), p = 1 to P

Here, s(p) = s1(p), s2(p),..., si(p),..., sn(p)

Weight Matrix is given by

P

i jp 1
[2S (p) 1][2s (p) 1]


   for i  j

Case 2 : Bipolar input patterns

For a set of binary patterns s(p), p = 1 to P

Here, s(p) = s1(p), s2(p),..., si(p),..., sn(p)

Weight Matrix is given by

wij =
P

i jp 1
[s (p)][s (p)]


 for i  j

Testing Algorithm

Step 1 : Initialize the weights, which are obtained from training algorithm by using Hebbian principle.

Step 2 : Perform steps 3-9, if the activations of the network is not consolidated.

Step 3 : For each input vector X, perform steps 4-8.

Step 4 : Make initial activation of the network equal to the external input vector X as follows

yi = xi for i = 1 to n

Step 5 : For each unit Yi, perform steps 6-9.

Step 6 : Calculate the net input of the network as follows.

yini = xi + j jij
y w

Step 7 : Apply the activation as follows over the net input to calculate the output.

yi =
inj i

i inj 1

inj i

1 if y
y if y

0 if y

  
  
  

Here i is the threshold.

Step 8 : Broadcast this output yi to all other units.

Step 9 : Test the network for conjunction.

M.Sc. IV Sem UNIT - IV

132
Rahul Publications

Energy Function Evaluation

An energy function is defined as a function that is bonded and non-increasing function of the state
of the system.

Energy function Ef a, a also called Lyapunov function determines the stability of discrete Hopfield
network, and is characterized as follows.

Ef =
n n n n

i j ij i i i ii 1 j 1 t 1 t 1

1
y y w x y y

2    
       

Condition

In a stable network, whenever the state of node changes, the above energy function will decrease.

Suppose when node i has changed state from yi
(k) to yi

(k+1) a then the Energy change Ef is
given by the following relation

Ef = Ef(yi
(k + 1)) = Ef(yi

(k))

= –
n

(k) (k 1) (k)
ij i i i i ij 1

(w y x)(y y)


    

= – (neti) yi

Here yi = yi
(k+1) – yi

(k)

The change in energy depends on the fact that only one unit can update its activation at a time.

Continuous Hopfield Network

In comparison with Discrete Hopfield network, continuous network has time as a continuous variable.
It is also used in auto association and optimization problems such as travelling salesman problem.

Model d The model or architecture can be build up by adding electrical components such as amplifiers
which can map the input voltage to the output voltage over a sigmoid activation function.

Energy Function Evaluation

Ef =
1yn n n n n

1
i j ij i i ij rii 1 j 1 i 1 i 1 j 1

0j i j i

1 1
y y w x y w g a (y)dy

2


    
 

      
 

Here  is gain parameter and gri input conductance.

4.4.4 Competitive Learning

Q36. What is competitive learning? Explain it.

Ans :

Competitive learning is a form of unsupervised learning in artificial Neural Networks. The nodes
compete for the right to respond to a subset of the input data. Competitive learning works by increasing
the specialization of each node in the network. It is well suited to finding clusters within data.

ARTIFICIAL INTELLIGENCE

133
Rahul Publications

Examples Include: Vector quantization and Kohonen maps (self-organizing maps)

Principles of Competitive Learning

There are three basic elements to a competitive learning rule:

1. A set of neurons that are all the same, except for some randomly distributed synaptic weights,
which respond differently to a given set of input patterns

2. A limit which is imposed on the “strength” of each neuron.

3. A mechanism that permits the neurons to compete for the right to respond to a given subset of
inputs, such that only one output neuron (or only one neuron per group), is active (i.e. “on”) at a
time. The neuron that wins the competition is called a “winner-take-all” neuron.

Individual neurons of the network learn to specialize on ensembles of similar patterns and become
‘feature detectors’ for different classes of input patterns.

The competitive networks recode sets of correlated inputs to one of a few output neurons essentially
removes the redundancy in representation.

Architecture & Implementation:

Competitive Learning is usually implemented with Neural Networks that contain a hidden layer
which is commonly known as “competitive layer”.

Every competitive neuron is descrybed by a vector of weights :

wi = (wi1, ..., wid)
T, i = 1, ..., M and calculates the similarity measure between the input data

xn = (xn1, ..., xnd)
T  Rd and the weight vector wi.

For every input vector, the competitive neurons “compete” with each other to see which one of
them is the most similar to that particular input vector. The winner neuron m sets its output to:

Om = 1

All the other competitive neurons set their output to:

Oi = 0, i = 1, ..., M, i  m.

Usually, in order to measure similarity the inverse of the Euclidean distance is used.

4.4.5 Fuzzy Sets

Q37. What are Fuzzy Sets? Write about how to implement fuzzy sets.

Ans :

Fuzzy sets can be considered as an extension and gross oversimplification of classical sets. It can be
best understood in the context of set membership. Basically it allows partial membership which means
that it contain elements that have varying degrees of membership in the set. From this, we can understand
the difference between classical set and fuzzy set. Classical set contains elements that satisfy precise properties
of membership while fuzzy set contains elements that satisfy imprecise properties of membership.

M.Sc. IV Sem UNIT - IV

134
Rahul Publications

Mathematical Concept

A fuzzy set A˜A~ in the universe of information UU can be defined as a set of ordered pairs and
it can be represented mathematically as

A = A{(y, (y))|y U} 

Here A~(y) = degree of membership of yy in \widetilde {A}, assumes values in the range from
0 to 1, i.e., A~(y)  [0,1].

Representation of fuzzy set

Let us now consider two cases of universe of information and understand how a fuzzy set can be
represented.

Case 1

When universe of information UU is discrete and finite

 A = 1 2 3A A A

1 2 1

(y) (y) (y)
...

y y y

   
   

 

=
in A

i 1
i

(y)

y

 
 
 

Case 2

When universe of information UU is continuous and infinite “

 A = A (y)

y

 
 
 


In the above representation, the summation symbol represents the collection of each element.

Operations on Fuzzy Sets

Having two fuzzy sets A˜A~ and B˜B~, the universe of information UU and an element y of the
universe, the following relations express the union, intersection and complement operation on fuzzy sets.

ARTIFICIAL INTELLIGENCE

135
Rahul Publications

Union/Fuzzy ‘OR’

Let us consider the following representation to understand how the Union/Fuzzy ‘OR’ relation
works.

yBA B A(y) U     

Here  represents the ‘max’ operation.

 Intersection/Fuzzy ‘AND’

Let us consider the following representation to understand how the Intersection/Fuzzy
‘AND’ relation works.

yBA B A(y) U     

Here  represents the ‘min’ operation.

Complement/Fuzzy ‘NOT’

Let us consider the following representation to understand how the Complement/Fuzzy
‘NOT’ relation works.

A A1 (y) y U    

M.Sc. IV Sem UNIT - IV

136
Rahul Publications

Properties of Fuzzy Sets

Let us discuss the different properties of fuzzy
sets.

Commutative Property

Having two fuzzy sets A˜A~ and B˜B~,
this property states.

A B B A    

A B B A    

Associative Property

Having three fuzzy sets A˜A~, B˜B~
and C˜C~, this property states.

A (B C)   = (A B) C  

A (B C)   = (A B) C  

Distributive Property

Having three fuzzy sets A˜A~, B˜B~ and
C˜C~, this property states.

A (B C)   = (A B) (A C)    

A (B C)   = (A B) (A C)    

Idempotency Property

For any fuzzy set A˜A~, this property states

A A A   

A A A   

Idempotency Property

For fuzzy set A˜A~ and universal set UU,
this property states.

A A  

A U A  

A  

A U U 

Transitive Property

Having three fuzzy sets A˜A~, B˜B~
and C˜C~, this property states

If A B C   , then A C 

Involution Property

For any fuzzy set A˜A~, this property states

A A 

De Morgan’s Law

This law plays a crucial role in proving
tautologies and contradiction. This law states.

A B A B    

A B A B    

4.4.6 Fuzzy Inference Process

Q38. Explain about Fuzzy Inference Process

Ans :
Fuzzy Inference System is the key unit of a

fuzzy logic system having decision making as its
primary work. It uses the “IF… THEN” rules along
with connectors “OR” or “AND” for drawing essential
decision rules.

Characteristics of Fuzzy Inference System

Following are some characteristics of FIS

1. The output from FIS is always a fuzzy set
irrespective of its input which can be fuzzy or
crisp.

2. It is necessary to have fuzzy output when it is
used as a controller.

3. A defuzzification unit would be there with FIS
to convert fuzzy variables into crisp variables.

Functional Blocks of FIS

The following five functional blocks will help
you understand the construction of FIS.

1. Rule Base : It contains fuzzy IF-THEN rules.

2. Database : It defines the membership
functions of fuzzy sets used in fuzzy rules.

3. Decision-making Unit : It performs
operation on rules.

ARTIFICIAL INTELLIGENCE

137
Rahul Publications

4. Fuzzification Interface Unit : It converts the crisp quantities into fuzzy quantities.

5. Defuzzification Interface Unit : It converts the fuzzy quantities into crisp quantities. Following is
a block diagram of fuzzy interference system.

Working of FIS

The working of the FIS consists of the following steps

1. A fuzzification unit supports the application of numerous fuzzification methods, and converts the
crisp input into fuzzy input.

2. A knowledge base - collection of rule base and database is formed upon the conversion of crisp
input into fuzzy input.

3. The defuzzification unit fuzzy input is finally converted into crisp output.

Methods of FIS

Let us now discuss the different methods of FIS. Following are the two important methods of FIS,
having different consequent of fuzzy rules

1. Mamdani Fuzzy Inference System

2. Takagi-Sugeno Fuzzy Model (TS Method)

Mamdani Fuzzy Inference System

This system was proposed in 1975 by Ebhasim Mamdani. Basically, it was anticipated to control a
steam engine and boiler combination by synthesizing a set of fuzzy rules obtained from people working on
the system.

Steps for Computing the Output

Following steps need to be followed to compute the output from this FIS

Step 1 : Set of fuzzy rules need to be determined in this step.

Step 2 : In this step, by using input membership function, the input would be made fuzzy.

Step 3 : Now establish the rule strength by combining the fuzzified inputs according to fuzzy rules.

Step 4 : In this step, determine the consequent of rule by combining the rule strength and the
output membership function.

Step 5 : For getting output distribution combine all the consequents.

Step 6 : Finally, a defuzzified output distribution is obtained.

M.Sc. IV Sem UNIT - IV

138
Rahul Publications

Following is a block diagram of Mamdani Fuzzy Interface System.

4.4.7 Neuro-Fuzzy Systems

Q39. What are Neuro-Fuzzy Systems? Explain the layered approach of neuro fuzzy systems.

Ans :
 Fuzzy logic and neural networks are natural complementary tools in building intelligent systems.

 While neural networks are low-level computational structures that perform well when dealing with
raw data, fuzzy logic deals with reasoning on a higher level, using linguistic information acquired
from domain experts.

 However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment.

 On the other hand, although neural networks can learn, they are opaque to the user.

Synergy of Neural and Fuzzy

 Integrated neuro-fuzzy systems can combine the parallel computation and learning abilities of neural
networks with the human-like knowledge representation and explanation abilities of fuzzy systems.

 As a result, neural networks become more transparent, while fuzzy systems become capable of
learning.

 A neuro-fuzzy system is a neural network which is functionally equivalent to a fuzzy inference model.

 Neuro-Fuzzy System can be trained to develop IF-THEN fuzzy rules and determine membership
functions for input and output variables of the system.

 Expert knowledge can be incorporated into the structure of the neuro-fuzzy system.

 At the same time, the connection is structure avoids fuzzy inference, which entails a substantial
computational burden.

 The structure of a neuro-fuzzy system is similar to a multi-layer neural network.

 In general, a neuro-fuzzy system has:

input and output layers,

and three hidden layers

that represent membership functions and fuzzy rules.

ARTIFICIAL INTELLIGENCE

139
Rahul Publications

Layered approach of Neuro Fuzzy Systems

Layer 2 Layer 3 Layer 4 Layer 5Layer 1


y

x1

A1

A2

A3

B1

B2
x2

C1

C2

x1

x1

x1

x2

x2

x2

B1

A2

B3

C2

C1

R1

R3

R5

R6

R4

R1

R5

R4

R6

R2

R3

R2

B3

A1

wR3

wR6

wR1
wR2

wR4

wR5

A3

B2

Each layer in the neuro-fuzzy system is associated with a particular step in the fuzzy inference
process.

Layer 1 is the input layer.

Each neuron in this layer transmits external crisp signals directly to the next layer. That is,

)1()1(
ii xy 

Layer 2 is the fuzzification layer.

 Neurons in this layer represent fuzzy sets used in the antecedents of fuzzy rules.

 A fuzzification neuron receives a crisp input and determines the degree to which this input belongs
to the neuron’s fuzzy set.

 The activation function of a membership neuron is set to the function that specifies the neuron’s
fuzzy set.

 We use triangular sets, and therefore, the activation functions for the neurons in Layer 2 are set to
the triangular membership functions.

 A triangular membership function can be specified by two parameters {a, b} as follows:

yi
(2) =

(2)
i

(2)
(2)i
i

(2)
i

b
0 if x a

2
2|x a| b b

1 if a x a
b 2 2

b
0 if x a

2

  


     



 


M.Sc. IV Sem UNIT - IV

140
Rahul Publications

Layer 3 is the fuzzy rule layer.

1. Each neuron in this layer corresponds to a single fuzzy rule.

2. A fuzzy rule neuron receives inputs from the fuzzification neurons that represent fuzzy sets in the
rule antecedents.

3. For instance, neuron R1, which corresponds to Rule 1, receives inputs from neurons A1 and B1.

4. In a neuro-fuzzy system, intersection can be implemented by the product operator.

5. Thus, the output of neuron i in Layer 3 is obtained as:

(3) (3) (3) (3)
i 1i 2i kiy x x ... x   

(3)
R1 A1 B1 R1y     

Layer 4 is the output membership layer.

Neurons in this layer represent fuzzy sets used in the consequent of fuzzy rules.

An output membership neuron combines all its inputs by using the fuzzy operation union.

This operation can be implemented by the probabilistic OR. That is,

(4) (4) (4) (4)
i 1i 2i 1iy x x ... x   

(4)
C1 R3 R6 C1y     

The value of mC1 represents the integrated firing strength of fuzzy rule neurons R3 and R6.

Layer 5 is the defuzzification layer.

Each neuron in this layer represents a single output of the neuro-fuzzy system. It takes the output
fuzzy sets clipped by the respective integrated firing strengths and combines them into a single fuzzy set.

Neuro-fuzzy systems can apply standard defuzzification methods, including the centroid technique.

We will use the sum-product composition method.

The sum-product composition calculates the crisp output as the weighted average of the centroids
of all output membership functions.

For example, the weighted average of the centroids of the clipped fuzzy sets C1 and C2 is calculated
as,

y =
C1 C1 C1 C2 C2 C2

C1 C1 C2 C2

a b a b
b b

      
   

ARTIFICIAL INTELLIGENCE

141
Rahul Publications

4.4.8 Range of AI Applications

Q40. Give the list of various areas where the
Artificial Intelligence is used.

Ans :

Applications of Artificial Intelligence

1. Problem Solving

2. Game Playing

3. Theorem Proving

4. Natural Language Processing & Under
standing

5. Perception General

 Speech Reorganization

 Pattern Reorganization

6. Image Processing

7. Expert System

8. Computer Vision

9. Robotics

10. Intelligent Computer Assisted Instruction

11. Automatic programming

12. Planning& Decision Support systems

13. Engineering Design & Comical Analysis

14. Neural Architecture.

15. Heuristic Classification.

4.4.9 AI Applications And Examples

Q41. Explain about various applications of AI.

Ans :
1 Problem Solving

This is the first application area of AI research.,
the objective of this particular area of research is
how to implement the procedures on AI systems to
solve the problems like Human Beings.

2. Game Playing

Much of early research in state space search
was done using common board games such as
checkers, chess and 8 puzzle. Most games are played
using a well defined set of rules. This makes it easy
to generate the search space and frees the
researcher from many of the ambiguities and
complexities inherent in less structured problems.
The board Configurations used in playing these
games are easily represented in computer, requiring
none of complex formalisms. For solving large and
complex AI problems it requires lots of techniques
like Heuristics. We commonly used the term
intelligence seems to reside in the heuristics used by
Human beings to solve the problems.

3. Theorem Proving

Theorem proving is another application area
of AI research.i.e.,. To prove Boolean Algebra
theorems as a humans we first try to prove
Lemma.,i.e it tell us whether the Theorem is having
feasible solution or not. If the theorem having
feasible solution we will try to prove it otherwise
discard it., In the same way whether the AI system
will react to prove Lemma before trying to
attempting to prove a theorem., is the focus of this
application area of research.

4. Natural Language understanding

The main goal of this problem is we can ask
the question to the computer in our mother tongue
the computer can receive that particular language
and the system gave the response with in the same
language. The effective use of a Computer has
involved the use off a Programming Language of a
set of Commands that we must use to Communicate
with the Computer. The goal of natural language
processing is to enable people and language such
as English, rather than in a computer language.

It can be divided in to Two sub fields.

i) Natural Language Understanding

Which investigates methods of allowing the
Computer to improve instructions given in
ordinary English so that Computers can
understand people more easily.

M.Sc. IV Sem UNIT - IV

142
Rahul Publications

ii) Natural Language Generation

This aims to have Computers produce
ordinary English language so that people an
understand Computers more easily.

5. Perception

The process of perception is usually involves
that the set of operations i.e. Touching , Smelling
Listening , Tasting , and Eating. These Perceptual
activities incorporation into Intelligent Computer
System is concerned with the areas of Natural
language Understanding & Processing and
Computer Vision mainly. The are two major
Challenges in the application area of Perception.

i) Speech Reorganization

ii) Pattern Reorganization

i) Speech Reorganization

The main goal of this problem is how the
Computer System can recognize our
Speeches. (Next process is to understand
those Speeches and process them i.e.
Encoding & Decoding i.e producing the result
in the same language.) Its one is very difficult;
Speech Reorganization can be described in
two ways.

a) Discrete Speech Reorganization

Means People can interact with the
Computer in their mother tongue. In
such interaction whether they can insert
time gap in between the two words or
two sentences (In this type of Speech
Reorganization the computer takes some
time for searching the database).

b) Continues Speech Reorganization

Means when we interact with the
computer in our mother tongue we can
not insert the time gap in between the
two words or sentences , i.e. we can talk
continuously with the Computer (For
this purpose we can increase speed of
the computer).

ii) Pattern Reorganization

To identify the regular shape objects, we can
see that object from any angle; we can imagine
the actual shape of the object (means to
picturise which part is light fallen) through this
we can identify the total structure of that
particular object.

-To identify the irregular shape things, we can
see that particular thing from any angle;
through this we cannot imagine the actual
structure. With help of that we can attach the
Camera to the computer and picturise certain
part of the light fallen image with the help of
that whether the AI system can recognize the
actual structure of the image or not? It is some
what difficult compare to the regular shape
things, till now the research is going on. This
is related the application area of Computer
Vision.

A Pattern is a quantitative or structured
description of an object or some other entity
of interest of an Image. Pattern is found an
arrangement of descriptors. Pattern
recognition is the research area that studies
the operation and design of systems that
recognize patterns in data. It encloses the
discriminate analysis, feature extraction, error
estimation, cluster analysis, and parsing
(sometimes called syntactical pattern
recognition).

Closely Related Areas Pattern Recognition

Artificial Intelligence

Expert systems and machine learning

Neural Networks

Computer Vision

Cognition

Perception

Image Processing

6. Image Processing

Where as in pattern reorganization we can
catch the image of real world things with the help
of Camera. The goal of Image Processing is to
identify the relations between the parts of image.

ARTIFICIAL INTELLIGENCE

143
Rahul Publications

It is a simple task to attach a Camera to a
computer so that the computer can receive visual
images. People generally use Vision as their primary
means of sensing their environment. We generally
see more than we here. i.e. how can we provide
such perceptual facilities touch, smell, taste, listen,
and eat to the AI System. The goal of Computer
Vision research is to give computers this powerful
facility for understanding their surroundings.
Currently, one of the primary uses of Computer
Vision is in the area of Robotics.

Example

We can take a Satellite image to identify the
roots and forests; we can make digitize all the image
and place on the disk. With the help of particular
scale to convert the image in to dots form, later we
can identify that particular image at any time. Its
one is time consuming process. With the help of “
image processing” how to reduce the time to process
an image till now the AI research will be continuously
going on.

In Image Processing the process of image
recognition can be broken into the following
main stages.

a) Image capture

b) Edge detection

c) Segmentation

d) Recognition and Analysis.

Image capturing can be performed by a
simple Camera, which converts light signals from a
scale of electrical signals., i.e., done by human visual
system. We obtained these light signals in a set of
0’s and 1’s. Each pixel takes on one of a number of
possible values often from 0 to 255. Color images
are broken down in the same way, but with varying
colors instead of gray scales. When a computer
receives an image from sensor in form of set of
pixels. These pixels are integrated to give the
computer an understanding of what it is perceiving.

An image has been obtained, is to determine
where the edges are in the image, the very first stage
of analysis is called edge detection. Objects in the
real world are almost all have solid edges of one
kind or another, detecting those images is first step
in the process of determining which objects are
present in a scene.

Once the edges have been detected, in an
image, this information can be used to Segment
the image, into homogeneous areas. There are other
methods available for segmenting an image, apart
from using edge detection, like threshold method.
This method involves finding the color of each pixel
in an image and considering adjacent pixels to be
in the same area as long as their color is similar
enough.

A similar method for segmenting images is
splitting and merging. Splitting involves taking an
area that is not homogeneous and splitting it into
two or more smaller areas, each of which is
homogeneous. Merging involves taking two areas
that are the same as each other, and adjacent to
each other and combining them together into a large
area. This provides a sophisticated interactive
approach to segmenting an image.

Intermediate Level of processing

Low Level Processing High Level Processing

7. Expert System

Expert means the person who had complete
knowledge in particular field, ie is called as an expert.
The main aim of this problem is with the help of
experts, to load their tricks on to the compute and
make available those tricks to the other users. The
expert can solve the problems with in the time.

The goal of this problem is how to load the
tricks and ideas of an expert on to the computer, till
now the research will be going on.

8. Computer Vision

It is a simple task to attach a camera to a
computer so that the computer can receive visual
images. People generally use vision as their primary
means of sensing their environment. We generally
see more than we here, feel, smell, or taste.

The goal of computer vision research is to
give computers this powerful facility for
understanding their surroundings. Currently, one
of the primary uses of computer vision is in the area
of Robotics.

M.Sc. IV Sem UNIT - IV

144
Rahul Publications

9. Robotics

A robot is an electro – mechanical device that can be programmed to perfume manual tasks. The
robotics industries association formally defines to move a Robot as a “ Programmable multi-functional
manipulator designed to move material, parts, tools, or specialized devices through variable programmed
motions for the performance of variety of tasks”.

Not all robotics is considered to be part of AI. A Robot that performs only the actions that it is has
been pre-programmed to perform is considered to be a “dumb” robot, includes some kind of sensory
apparatus, such as a camera , that allows it to respond to changes in its environment , rather than just to
follow instructions “mindlessly”.

10. Intelligent Computer – Assisted Instruction

Computer - Assisted Instruction (CAI) has been used in bringing the power of the computer to bear
on the educational process. Now AI methods are being applied to the development of intelligent
computerized “ Tutors” that shape their teaching techniques to fit the leaning patterns of individual students.

11. Automatic Programming

Programming is the process of telling the computer exactly what we want to do . the goal of
automatic programming is to create special programs that act as intelligent “Tools” to assist programmers
and expedite each phase of the programming process. The ultimate aim of automatic programming is a
computer system that could develop programs by itself, in response to an in according with the specifications
of the program developer.

12. Planning and Decision Support System

When we have a goal, either we rely on luck and providence to achieve that goal or we design and
implement a plan. The realization of a complex goal may require to construction of a formal and detailed
plan. Intelligent planning programs are designed to provide active assistance in the planning process and
are expected to the particularly helpful to managers with decision making responsibilities.

13. Engineering Design & Camical Analysis

Artificial Intelligence applications are playing major role in Engineering Drawings &Camical analysis
to design expert drawings and Camical synthesis.

14. Neural Architecture

People or more intelligent than Computers,. But AI researchers are trying how make Computers
Intelligent. Humans are better at interpreting noisy input, such as recognizing a face in a darkened room
from an odd angle. Even where human may not be able to solve some problem, we generally can make
a reasonable guess as to its solution. Neural architectures, because they capture knowledge in a large no.
of units. Neural architectures are robust because knowledge is distributed somewhat uniformly around
the network.

ARTIFICIAL INTELLIGENCE

145
Rahul Publications

Neural architectures also provide a natural model for parallelism, because each neuron is an
independent unit. This showdown searching the data base a massively parallel architecture like the human
brain would not suffer from this problem.

15. Heuristic Classification

The term Heuristic means to Find & Discover., find the problem and discover the solution. For
solving complex AI problems it’s requires lots of knowledge and some represented mechanisms in form of
Heuristic Search Techniques., i.e referred to known as Heuristic Classification.

4.5 CASE STUDY

4.5.1 Agricultural Domain – Farmer’s Intelligent Assistant

Q42. Write a case study on how, agricultural domain uses artificial intelligence to increase
the productivity.

Ans :

Agriculture is the industry that accompanied the evolution of humanity from pre-historic times to
modern days and fulfilled faithfully one of its most basic needs: food supply. Today this still remains its core
mission, but it’s integrated in a more complex than ever mechanism driven by multiple sociological,
economic and environmental forces.

Data generated by sensors or agricultural drones collected at farms, on the field or during
transportation offer a wealth of information about soil, seeds, livestock, crops, costs, farm equipment or
the use of water and fertilizer. Internet of Things technologies and advanced analytics help farmers analyze
real time data like weather, temperature, moisture, prices or GPS signals and provide insights on how to
optimize and increase yield, improve farm planning, make smarter decisions about the level of resources
needed, when and where to distribute them in order to prevent waste.

Efficiency and productivity will increase in the next years as ‘precision agriculture’ grows bigger and
farms become smarter and more connected. It is estimated that by 2020.

While the growing number of connected devices represents a big opportunity for food and
agribusiness players, it also adds more complexity for farmers and organizations.

The use of cognitive technologies that help understand, learn, reason, interact and thus,
increase efficiency.

1. Help IoT achieve its Maximum Potential

While digital transformation is disrupting the agricultural world and more data comes feed the
systems, solutions like the Watson IoT platform enhance value by applying machine learning abilities
to sensor or drone data, transforming management systems in real artificial intelligence systems.
Cognitive IoT technologies allow many types of correlations of large amount of structured and
unstructured data from multiple sources, such as historic weather data, social media posts, research
notes, soil information, market place information, images, etc., to extract knowledge and provide
organizations with richer insights and recommendations to take action and improve yields.

M.Sc. IV Sem UNIT - IV

146
Rahul Publications

2. Image Recognition and Insight

Agricultural drones help already farmers scan fields, monitor crops and seeding or analyze plant
health. Farm activities can become much more effective when drone data, IoT and computer vision
technologies join forces to optimize strategies. These artificial intelligence systems will save time,
increase safety and reduce potential human error while improving effectiveness. Agriculture could
benefit greatly out of it.

3. Skills and Workforce

This growing urbanization will lead to a decrease of workforce in the rural areas. Innovative
technologies using cognitive systems will help address this challenge by easing farmers’ work, removing
the need for large numbers of people to work the land. Many operations will be done remotely,
processes will be automated, risks will by identified and issues solved before occurring. Farmers will
be able to take more informed and rapid decisions. In the future, the right mix of skills will probably
increasingly be technology and agricultural skills rather than pure agricultural.

4. Determine the best Options to Maximize Return on Crops

The use of cognitive technologies in agriculture could help determine the best crop choice or the
best hybrid seed choices for a crop mix adapted to various objectives, conditions and better suited
for farm’s needs. Watson can use diverse capabilities to understand how seeds react to different soil
types, weather forecasts and local conditions. By analyzing and correlating information about weather,
type of seeds, types of soil or infestations in a certain area, probability of diseases, data about what
worked best, year to year outcomes, marketplace trends, prices or consumer needs, farmers can
make decisions to maximize return on crops.

5. Chatbots for Farmers

Chatbots are conversational virtual assistants who automate interactions with end users. Artificial
intelligence powered chatbots, using machine learning techniques, understand natural language
and interact with users in a personalized way. While it’s still early days and chatbots are used mostly
by retail, travel, media or insurance players, agriculture could also leverage this emerging technology
by assisting farmers with answers to their questions, giving advice and recommendations on specific
farm problems.

