
- by -

WELL EXPERIENCED LECTURER

 Study Manual

 List of Important Definitions

 Important Questions

 Solved Model Papers

Rahul’s 
Topper’s Voice

Price

 `. 249-00

M.C.A.
II Year III Sem

(Osmania University)

SOFTWARE QUALITY
AND TESTING

Latest Edition

TM

Rahul Publications
Hyderabad. Cell : 9391018098, 9505799122.Since 1986

All disputes are subjects to Hyderabad Jurisdiction only

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Subjects List

Professional Elective–II

 Network Security

 Cyber Security

 Information Retrieval System

 Natural Language Processing

Professional Elective–I

 Software Quality & Testing

 Distributed Systems

 Internet of Things

 Image Processing

Common

 Software Engineering

 Computer Networks

 Artificial Intelligence

 Web Technologies

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

C
O
N
T
E
N
T
S

STUDY MANUAL

List of Important Definitions III - IV

Important Questions V - VIII

Unit - I 1 - 14

Unit - II 15 - 42

Unit - III 43 - 60

Unit - IV 61 - 86

Unit - V 87 - 124

SOLVED MODEL PAPERS

Model Paper - I 125 - 126

Model Paper - II 127 - 128

Model Paper - III 129 - 130

SOFTWARE QUALITY
AND TESTING

UNIT - I

The Software Quality Challenge, Introduction Software Quality Factors, The Components of the Software
Quality Assurance System – Overview, Development and Quality Plans.

UNIT - II

Integrating Quality Activities in the Project Life Cycle, Assuring the Quality of Software Maintenance
Components, CASE Tools and their effect on Software Quality, Procedure and Work Instructions,
Supporting Quality Devices, Configuration Management, Documentation Control, Project Progress
Control.

UNIT - III

Software Quality Metrics, Costs of Software Quality, Quality Management Standards - ISO 9000 and
Companion ISO Standards, CMM, CMMI, PCMM, Malcom Balridge, 3 Sigma, 6 Sigma, SQA Project
Process Standards – IEEE Software Engineering Standards.

UNIT - IV

Building a Software Testing Strategy, Establishing a Software Testing Methodology, Determining Your
Software Testing Techniques, Eleven – Step Software Testing Process Overview, Assess Project
Management Development Estimate and Status, Develop Test Plan, Requirements Phase Testing, Design
Phase Testing, Program Phase Testing, Execute Test and Record Results, Acceptance Test, Report Test
Results, Test Software Changes, Evaluate Test Effectiveness.

UNIT - V

Testing Client / Server Systems, Testing the Adequacy of System Documentation, Testing Web-based
Systems, Testing Off – the – Shelf Software, Testing in a Multiplatform Environment, Testing Security,
Testing a Data Warehouse, Creating Test Documentation, Software Testing Tools, Taxonomy of Testing
Tools, Methodology to Evaluate Automated Testing Tools, Load Runner, Win Runner and Rational
Testing Tools, Java Testing Tools, JMetra, JUNIT and Cactus.

SYLLABUS

I

Contents
UNIT - I

Topic Page No.

1.1 The Software Quality Challenge ... 1

1.2 Introduction Software Quality Factors .. 5

1.3 The Components of the Software Quality Assurance ... 8

1.4 System Overview 10

1.5 Development and Quality Plans .. 11

UNIT - II

2.1 Integrating Quality Activities in the Project Life Cycle .. 15

2.2 Assuring the Quality of Software Maintenance Components .. 21

2.3 CASE Tools and Their Effect on Software Quality .. 24

2.4 Procedure and Work Instructions ... 25

2.5 Supporting Quality Devices... 28

2.6 Corrective and Preventive Actions ... 34

2.7 Configuration Management .. 36

2.8 Documentation Control .. . 40

2.9 Project Progress Control .. . 40

UNIT - III

3.1 Software Quality Metrics .. 43

3.1.1 Costs of Software Quality ... 43

3.2 Quality Management Standards - ISO 9000 and Companion ISO Standards 45

3.3 CMM 46

3.4 CMMI 49

3.5 PCMM 51

3.6 Malcom Balridge 52

3.7 3 Sigma 53

3.8 6 Sigma 54

3.9 SQA Project Process Standards .. 59

3.10 IEEE Software Engineering Standards ... 59

II

Topic Page No.

UNIT - IV

4.1 Building a Software Testing Strategy .. 61

4.2 Establishing a Software Testing Methodology ... 66

4.3 Determining Your Software Testing Techniques ... 70

4.4 Eleven Step Software Testing Process Overview ... 73

4.5 Assess Project Management Development Estimate and Status ... 74

4.6 Develop Test Plan 76

4.7 Requirements Phase Testing .. 76

4.8 Design Phase Testing 77

4.9 Program Phase Testing 79

4.10 Execute Test and Record Results ... 80

4.11 Acceptance Test 83

4.12 Report Test Results 85

4.13 Test Software Changes 85

4.14 Evaluate Test Effectiveness ... 86

UNIT - V

5.1 Testing Client / Server Systems .. 87

5.2 Testing the Adequacy of System Documentation .. 92

5.3 Testing Web-based Systems .. 93

5.3.1 Testing Off the Shelf Software ... 95

5.4 Testing in a Multiplatform Environment .. 96

5.5 Testing Security 97

5.6 Creating Test Documentation.. 102

5.7 Software Testing Tools .. . 106

5.8 Taxonomy of Testing Tools ... 108

5.9 Methodology to Evaluate Automated Testing Tools .. 109

5.10 Load Runner 112

5.11 Win Runner 115

5.12 Rational Testing Tools 116

5.13 Java Testing Tools 117

5.14 JMetra 119

5.15 JUNIT and Cactus 121

LIST OF IMPORTANT DEFINITIONS

III
Rahul Publications

LIST OF IMPORTANT DEFINITIONS

UNIT - I

1. Software is Computer programs, procedures, and
possibly associated documentation and data
pertaining to the operation of a computer system.

2. Software quality factors, also known as software
quality characteristics or software quality
attributes, are the key aspects of software that
are used to evaluate its overall Quality.

3. Quality Assurance is also known as QA Testing.
QA is defined as an activity to ensure that an
organization is providing the best product or
service to the customers.

4. Software Quality Assurance (SQA) is a system
that ensures the quality of software products by
identifying and fixing issues throughout the
software development process. SQA is a critical
part of the software development process and
helps companies build high-quality products that
meet customer expectations.

5. A development plan is a document that outlines
the activities involved in the software development
process. This plan provides of roadmap for the
entire development team including project
managers, developers, and testers, to follow
throughout the project life cycle.

UNIT - II

1. The prototyping model is based on replacement
of one or more SDLC model phases by an
evolutionary process, where software prototypes
are used for communication between the
developer and the users and customers. Prototypes
are submitted to user representatives for
evaluation.

2. The spiral model, as revised by Boehm (1988,
1998), offers an improved methodology for
overseeing large and more complex development
projects displaying higher prospects for failure, it
combines an iterative model that introduces and
emphasizes risk analysis and customer
participation into the major elements of SDLC
and prototyping methodologies.

3. Testability requirements deal with the testing of
an information system as well as with its

operation. Testability requirements related to
software operation include automatic diagnostics
performed by the software system prior to starting
the system, to find out whether all components
of the software system are in working order and
to obtain a report about the detected faults.

4. Maintenance plans should be prepared for all
customers, external and inter-nal. The plan should
provide the framework within which maintenance
provision is organized.

5. Computer-Aidesd Software Engineering tools are
software applications that support various
activities in the software development process,
such as requirements management, design,
coding, testing, and maintenance.

UNIT - III

1. Software quality metrics are quantitative measures
used to evaluate and assess the quality of software
products or processes.

2. ISO 9000 is defined as a set of international
standards on quality management and quality
assurance developed to help companies
effectively document the quality system elements
needed to maintain an efficient quality system.

3. Key Process Areas defines the basic requirements
that should be met by a software process to satisfy
the KPA and achieve that level of maturity.

4. Capability Maturity Model Integration (CMMI) is
a successor of CMM and is a more evolved model
that incorporates best components of individual
disciplines of CMM like Software CMM, Systems
Engineering CMM, People CMM, etc.

5. The PCMM is a working framework used for the
organization in defining the maturity structure for
improving and developing the skill set of people
who work within the organization.

6. Six Sigma is a methodology used by most
organizations for process improvement, and It is
a statistical concept that aims to define the
variation found in any process. Six Sigma is a
process of producing high and improved quality
output.

LIST OF IMPORTANT DEFINITIONS

IV
Rahul Publications

UNIT - IV

1. A software testing strategy document is a comprehensive plan that outlines the testing approach, goals,
scope, resources, and timelines for a software project.

2. Testing methodologies are the strategies and approaches used to evaluate a particular product to ensure it
performs as expected and is easy to use.

3. In White Box Testing, testers verify systems they are deeply acquainted with, sometimes even ones they have
created themselves. No wonder white box testing has alternate names like open box testing, clear box
testing, and transparent box testing.

4. Functional tests are designed and run to verify every function of a website or app. It checks that each
function works in line with expectations set out in corresponding requirements documentation.

5. Each individual component is tested before the developer pushes it for merging. Unit tests are created and
run by the devs themselves.

6. Test Execution is the process of executing the tests written by the tester to check whether the developed code
or functions or modules are providing the expected result as per the client requirement or business requirement.
Test Execution comes under one of the phases of the Software Testing Life Cycle

UNIT - V

1. Client-server testing is a testing approach designed to verify the accurate and secure exchange of data
between the client and server, guaranteeing that requests and responses are synchronized correctly.

2. Web testing is a software testing technique to test web applications or websites for finding errors and bugs. A
web application must be tested properly before it goes to the end-users.

3. Security testing is a type of software testing that focuses on evaluating the security of a system or application.

4. A test strategy outlines the approach, goals, and standards for testing activities within a project. It provides
a structured framework for defining testing scope, objectives, methodologies, and tools, ensuring consistency
and alignment with project requirements.

5. Load Runner is one of the oldest performance testing tools on the market. It is used to test the behavior and
performance of applications under load.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

V
Rahul Publications

UNIT - I
1. What is software ? Explain about the types of software.

Ans :
Refer Unit-I, Page No. 1, Q.No. 1

2. Discuss the causes of software error.

Ans :
Refer Unit-I, Page No. 3, Q.No. 3

3. Write about the strategies to over come quality assurance testing challenges.

Ans :
Refer Unit-I, Page No. 5, Q.No. 5

4. What is McCall’s Software Quality Model?

Ans :
Refer Unit-I, Page No. 6, Q.No. 7

5. What are the components of Software Quality assurance?

Ans :
Refer Unit-I, Page No. 8, Q.No. 11

6. Write the overview of a Software Quality Assurance.

Ans :
Refer Unit-I, Page No. 10, Q.No. 14

7. Explain the objectives of a development plan and a quality plan?

Ans :
Refer Unit-I, Page No. 12, Q.No. 17

UNIT - II

1. What are the Factors affecting intensity of quality assurance activities in the development
process?

Ans :
Refer Unit-II, Page No. 19, Q.No. 2

2. What are the various requirements of software quality.

Ans :
Refer Unit-II, Page No. 21, Q.No. 5

Important Questions

MCA II YEAR III SEMESTER

VI
Rahul Publications

3. What are the various performance controls for software maintenance.

Ans :
Refer Unit-II, Page No. 24, Q.No. 8

4. Explain the difference between procedures and work instructions?

Ans :
Refer Unit-II, Page No. 27, Q.No. 13

5. What are the uses of checklists in software quality Checklists.

Ans :
Refer Unit-II, Page No. 30, Q.No. 15

6. Explain the importance of staff training and certification to improve the software quality.

Ans :
Refer Unit-II, Page No. 31, Q.No. 16

7. Explain about various corrective and preventive actions to improve the software quality.

Ans :
Refer Unit-II, Page No. 34, Q.No. 17

8. Explain about software configuration management plans.

Ans :
Refer Unit-II, Page No. 38, Q.No. 19

9. Explain the components of project progress control?

Ans :
Refer Unit-II, Page No. 40, Q.No. 22

UNIT - III

1. Explain briefly about software quality Metrics.

Ans :
Refer Unit-III, Page No. 43, Q.No. 1

2. Write about the costs of software quality.

Ans :
Refer Unit-III, Page No. 43, Q.No. 2

3. Write ISO 9000 standards for quality management.

Ans :
Refer Unit-III, Page No. 45, Q.No. 3

4. What is the Capability Maturity Model (CMM)? Explain.

Ans :
Refer Unit-III, Page No. 46, Q.No. 4

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

VII
Rahul Publications

5. What is Capability Maturity Model Integration (CMMI)?

Ans :
Refer Unit-III, Page No. 49, Q.No. 6

6. What is PCMM? Explain various methods of PCMM.

Ans :
Refer Unit-III, Page No. 51, Q.No. 9

7. Explain the 6 Key Principals of Six Sigma.

Ans :
Refer Unit-III, Page No. 55, Q.No. 13

8. Explain about IEEE Software engineering standards.

Ans :
Refer Unit-III, Page No. 59, Q.No. 16

UNIT - IV
1. What is to Include in a Test Strategy Docu-ment? Explain.

Ans :
Refer Unit-IV, Page No. 61, Q.No. 2

2. Differentiate between test strategy and test plan.

Ans :
Refer Unit-IV, Page No. 63, Q.No. 5

3. Explain how a test strategy document enhances project outcomes ?

Ans :
Refer Unit-IV, Page No. 64, Q.No. 6

4. What are Software Testing Techniques? Explain.

Ans :
Refer Unit-IV, Page No. 70, Q.No. 11

5. Discuss the Assess Project Management Development Estimate and Status.

Ans :
Refer Unit-IV, Page No. 74, Q.No. 14

6. Define design phase testing. State the objectives and key activities of design phase
testing?

Ans :
Refer Unit-IV, Page No. 77 Q.No. 18

7. Define program phase testing. State its activities and objectives?

Ans :
Refer Unit-IV, Page No. 79, Q.No. 20

MCA II YEAR III SEMESTER

VIII
Rahul Publications

8. Discuss the various Ways to Perform Test Execution?

Ans :
Refer Unit-IV, Page No. 81, Q.No. 25

9. What is Acceptance Testing? Explain various types of acceptance testing?

Ans :
Refer Unit-IV, Page No. 83, Q.No. 29

UNIT - V

1. What are the Objectives of client server testing.

Ans :
Refer Unit-V, Page No. 87, Q.No. 2

2. Define webtesting. State various types of web testing?

Ans :
Refer Unit-V, Page No. 93, Q.No. 8

3. What is off the shelf software? State its disadvantages?

Ans :
Refer Unit-V, Page No. 95, Q.No. 12

4. Cross-Platform Testing Best Practices.

Ans :
Refer Unit-V, Page No. 96, Q.No. 14

5. Define security testing.Explain the goals of security testing?

Ans :
Refer Unit-V, Page No. 97, Q.No. 17

6. State the advantages and disadvantages of security testing?

Ans :
Refer Unit-V, Page No. 99, Q.No. 19

7. Discuss the benetifts and challenges to data warehouse testing?

Ans :
Refer Unit-V, Page No. 100, Q.No. 21

8. Discuss briefly about various Software Testing Tools.

Ans :
Refer Unit-V, Page No. 106, Q.No. 28

9. Describe the concept of Java testing tools?

Ans :
Refer Unit-V, Page No. 117, Q.No. 34

UNIT - I SOFTWARE QUALITY AND TESTING

1
Rahul Publications

UNIT
I

The Software Quality Challenge, Introduction Software Quality Factors, The

Components of the Software Quality Assurance System — Overview. Development

and Quality Plans.

 1.1 THE SOFTWARE QUALITY CHALLENGE

Q1. What is software ? Explain about the types of software.

Ans : (Imp.)

According to the IEEE

1. Software is Computer programs, procedures, and possibly associated documentation and data pertaining to
the operation of a computer system.

2. A ‘similar definition comes from ISO ISO definition (from ISO 9000-3) lists four components necessary to
assure the quality of the software development process and years of maintenance:

Computer programs (code)

Procedures

Documentation

Data necessary for operating the software system.

Software can be broadly are categorized as :

 System Software

 Application Software

 Utility Software

Software

System

Operating Language General Customized Software
Purpose Translators System

Compiler Assembler Interpreter

Utility Application
Software Software Software

MCA II YEAR III SEMESTER

2
Rahul Publications

Types of Software

1. System Software : System Software is the
software that is directly related to coordinating
computer operations and performs tasks
associated with controlling and utilizing computer
hardware. These programs assist in running
application programs and are designed to control
the operation of a computer system.

System software directs the computer what
to do, when to do and how to do.

System software can be further categorized
into :

 Operating System

 Language Translators

 Operating System : A user cannot
communicate directly with the computer
hardware, so the operating system acts as
an interface between the user and the
computer hardware.

 Language Translators : The special
translator system software that is used to
translate the program written in high-level
language (or Assembly language) into
machine code is called language processor
or translator program.

2. Application Software : An application software
is bought by the user to perform specific
applications or tasks, say for example making a
document or making a presentation or handling
inventory or managing the employee database.

3. Utilities Software : A utility software is one
which provides certain tasks that help in proper
maintenance of the computer. The job of utility
programs is to keep the computer system running
smoothly.

Q2. Write about the classification of software
errors.

Ans : (Imp.)

By their nature, there are such software glitches.

1. Functional Errors

If the behavior of the software does not meet the
functional requirements, then this type of error is
detected. They can be found through functional
testing. For example, in a past test project that
ran on an e-commerce website search engine,

we found a functional bug. When the user entered
the product ID, it did not show any results, even
though the search can be done by both the
product name and the ID.

2. Performance Issues

Performance problems are primarily related to the
response time and resource consumption of the
software and its speed and stability. They are
discovered during performance testing. When the
system response time is X times longer than
specified in the requirements, this is an issue for
investigation and correction.

3. Usability Errors

The application becomes inconvenient to use
because of the lack of usability, making it difficult
for the user to work. Examples of usability bugs
include a content layout that is difficult to scan
or move or a very difficult and time-consuming
registration process.

4. Compatibility Bugs

We do compatibility testing to identify
compatibility malfunction. After all, an
application with compatibility errors does not
integrate properly with the third-party software,
or does not work in certain network
configurations, and does not show stable
performance on certain hardware, operating
systems, browsers, and particular devices.

5. Security Vulnerabilities

Security vulnerabilities are weak points that allow
for a potential security attack. The most common
security flaws in projects for which we conduct
security testing are encryption bugs, XSS
vulnerability, SQL injection vulnerabilities, weak
authentication, buffer overflows, and logical errors
in role-based access.

6. Software Errors by Severity

Software error classification by severity is based
on the technical impact the bugs/errors have on
the system. While testing the client’s software,
we can distinguish the following levels of severity:

7. Critical Errors

They always block the entire system’s operation,
and in this case, testing cannot be carried out.
For example, when a critical bug occurs, a
message sent by the application is constantly

UNIT - I SOFTWARE QUALITY AND TESTING

3
Rahul Publications

returned, that an error prevents us from logging
in.

8. Issues of High Severity

They affect the main functions of the application,
without which its operation is impossible, and
the application behaves completely differently
from what is specified in its requirements.

9. Issues of Moderate Severity

They are detected when one of the functions does
not behave as specified in the requirements. An
example of such a bug is a broken link in the
privacy policy section.

10. Errors or Bugs of Low Importance

An example can be the bug with the user
interface. These bugs have no significant influence
on the functionality, for example, a different color
or size of the button, or ugly looking dashboard,
squeezed on the tablet, while nice looking on the
mobile screen.

Q3. Discuss the causes of software error.

Ans : (Imp.)

1. Faulty definition of requirements

The faulty definition of requirements usually
caused by the client which not clear in giving the
requirement list which can cause the software
errors.

The most common errors are:

 Erroneous definition of requirements

 Absence of vital requirements

 Incomplete definition of requirement (Ex:
The use cases often don’t provide enough
detail for developers to know what to build.

 Because the user do not derive specific
software functional requirements

2. Client-developer communication failures

Communication is very important, especially when
you work in team which include many different
people.

There will be a lot of differentiation when delivering
the material.

Misunderstanding in a project can caused a major
failure moreover in a development process.

These 3 most failure in a client-developer
communication failures based on Daniel Gallin;

i) Misunderstanding of the client’s instructions
stated in the requirements document.

ii) Misunderstanding of the client’s require-
ments changes presented to the developer
in written form during the development pe-
riod.

iii) Misunderstanding of the client’s require-
ments changes presented orally to the de-
veloper during the development period.

iv) Misunderstanding of the client’s responses
to the design problems presented by the
developers.

3. Deliberate deviations from software
requirements

In some cases, deviation are deliberately made
by the developer from the documented
requirements, this thing can caused software
errors. The errors in this case usually by the
changing of the products.

The most common deviation are:

i) The developer reuses software modules

ii) Due to the time or budget pressures

iii) Due to the unapproved improvements (Ex;
disregard requirements that seem in or to
the developer)

4. Logical design errors

Logical design is the cause of the fatal error of
manufacturing or software development.

This error occurs because some of the omissions
committed by the programmer or developer in
the early initiation of the program.

Such errors can be errors in determining the
program algorithm which includes error theory is
used.

For example, errors in the calculation formula,
execution process, erroneous algorithms that
represent software requirements, omission of
required software system states and erroneous
definition of boundary conditions.

5. Coding errors

No matter what language is used when coding,
there are common errors that can lead to big
problems, if they’re not dealt with early.

MCA II YEAR III SEMESTER

4
Rahul Publications

These coding errors can result in severe
breaches in security and unstable platforms,
costing time, effort and money to repair.

Recently, even big companies like Sony have
suffered from programming errors requiring
extensive fixes to protect their customer’s private
information online. One small error in the coding
required the removal of part of the Sony
PlayStation Network.

6. Size of Program

 Other programs must be able to run in
environment.

 Coding: Data Elements and Codes: AFM
300-4;

 Development Procedures: Required
documentation manuals and operating
instructions; AFDSDCM 300-8, etc.

 SQA Team: testing not only execution
software but coding standards; manuals,
messages displayed; resources needed;
resources named (file names, program
names,…) Shortcomings of the testing
process

Q4. What are software quality challenges?
Explain.

Ans :
Challenge

1. Incomplete or Inaccurate Requirements

Some clients fail to communicate their
requirements clearly to the stakeholders during
the requirement-freezing stage. This can lead to
misunderstanding of the functionality by the BA
and they draft the RSD document based on their
understanding. This can lead to functionality
mismatch and affect the quality of the application
thus lowering the credibility of the organization.

2. Communication Breakdowns

Poor interaction between the project members can
also lead to so much of ambiguities affecting the
output quality.

3. Limited Resources

An inadequate Quality Assurane team can also
fail to meet the desired quality due to a lack of
manpower. The pressure goes on the limited
resources which can be exhausting and lead to
improper testing of the functionalities. The final

result is quality cannot be assured to the end
users.

4. Changing Requirements

Some clients are so choosy that they keep on
changing requirements after seeing the module
deliveries. New changes added would need more
time for implementation and testing thereby
affecting the delivery timeline. Also, sometimes
changes could be confusing as developers could
develop something completely different from what
is expected. It is best to approach changes as
enhancements and do it after delivering the project
to avoid any confusion.

5. Technical Challenges

Covering all possible scenarios in the test
document could be tedious when there is a short
time frame. So, skilled resources with automation
knowledge are required to overcome this problem
and cover wide scenarios to deliver a minimal-
error product.

6. Testing in Production Environments

Every QA person needs to ensure the application
is working fine in the production URL given to
the client. This is achieved either by accessing
the client machine remotely or checking the URL
given to the client. The application could be down
on the client machine or some major
functionalities breakdown would be there. The
client needs to provide maximum cooperation to
overcome problems in a production environment.
It is because some functionalities can work fine
on production URLs but not on the client
machine, Testers need to be smart in talking to
the clients and finding out the problem and
resolving it for them.

7. Test Automation Challenges

There are advanced automation tools that can
do testing in a fast-paced way efficiently. Finding
a talented automation tester for the project who
will perform the testing smartly is another big
challenge to reaching maximum customer
satisfaction. Finding the right tester who shares
knowledge about automation tools and
programming language is equally important for
the betterment of the product.

8. Balancing Speed and Quality

Speed and quality go hand in hand in hasty
projects as the product quality cannot be

UNIT - I SOFTWARE QUALITY AND TESTING

5
Rahul Publications

compromised. Assigning a big team with enough
resources to dedicatedly run the test cases and
check all possible scenarios can lead to a fast
process and promise quality outputs. Do it hastily
but without missing any important scenarios to
avoid quality lags in the deliverable.

Q5. Write about the strategies to over come
quality assurance testing challenges.

Ans : (Imp.)

Strategies for Overcoming Quality Assurance
Testing Challenges

There are certain strategies to be followed by the
Quality Assurance testing team to reach the project goals
in spite of discrepancies. Following them can really help
and allow the QA team to deliver high-quality products
to the end users.

1. Establishing Clear Requirements and Pri-
orities

QA team needs to be sharp in analyzing the
requirements and clear their doubts with the
clients to avoid any confusion. They can confirm
with the client once on the expectation of the
functionality to deliver it with perfection. Raise a
concern immediately to the clients when there is
an unclear document and get it resolved on time.
Also, set your priorities straight about which
module needs to be delivered first and work closely
towards delivering them.

2. Improving Communication and Collabora-
tion

QA members need to communicate effectively
with all project members and circulate the
information among the team for better project
focus. Also, Quality Assurance testing is the end
process in stamping the product quality. So, they
should collaborate with all stakeholders in
understanding their expectations on the project
and work in alignment to live up to their
expectations.

3. Allocating Resources Efficiently

Resource management is very crucial in testing
as every tester needs to be independently
responsible for assigned modules. They have to
take sole ownership and ensure the module is
error free and one tester needs to do integration
testing to ensure all functionalities are working
fine together. Assigning testers for regression,

retesting, smoke, usability, and compatibility can
collectively contribute to the quality of the product
altogether.

4. Implementing Continous Testing

Back-to-back rigorous testing after every error fix
can contribute towards a quality deliverable as
thorough testing will be done. Testers need to be
proactive and gather the no of bugs fixed and
separate them among themselves and work on
them. Every tester should ensure a single bug fix
is not affecting other modules and that all
functionalities are working fine.

 1.2 INTRODUCTION SOFTWARE QUALITY

FACTORS

Q6. What is software quality? Explain the
factors affecting software quality factors.

Ans :
Meaning of Software Quality Factors

Software quality factors, also known as software
quality characteristics or software quality attributes, are
the key aspects of software that are used to evaluate its
overall Quality. There are many different factors that
can contribute to software quality, but some of the most
commonly used factors include:

1. Functionality

This refers to the degree to which the software
meets its specified requirements and performs the
functions that it is intended to perform.

2. Reliability

This refers to the ability of the software to perform
its functions consistently and reliably over time,
without errors or crashes.

3. Usability

This refers to the degree to which the software is
easy to use and understand, and how well it meets
the needs of its users.

4. Efficiency

This refers to how efficiently the software uses
system resources, such as CPU time, memory,
and disk space.

5. Maintainability

This refers to the ease with which the software

MCA II YEAR III SEMESTER

6
Rahul Publications

can be modified, maintained, and updated over time.

6. Portability

This refers to how easily the software can be moved from one system or platform to another.

7. Compatibility

This refers to how well the software works with other systems, software, and hardware.

8. Security

This refers to the ability of the software to protect data and systems from unauthorized access or attacks.

Overall, these software quality factors are critical to ensuring that software is of high quality and meets the
needs of its users. Evaluating these factors can help software developers and testers to identify areas for improvement
and ensure that the software is of high quality.

Q7. What is McCall’s Software Quality Model?

Ans : (Imp.)

McCall’s Software Quality Model was introduced in 1977. This model is incorporated with many attributes,
termed software factors, which influence software. The model distinguishes between two levels of quality attributes:

 Quality Factors

 Quality Criteria

1. Quality Factors: The higher-level quality attributes that can be accessed directly are called quality factors.
These attributes are external. The attributes at this level are given more importance by the users and managers.

2. Quality Criteria: The lower or second-level quality attributes that can be accessed either subjectively or
objectively are called Quality Criteria. These attributes are internal. Each quality factor has many second-
level quality attributes or quality criteria.

McCall’s Software Quality Model Triangle

Product
transition

Product
revision

Product operations

Portability
Reusability
Interoperability

Maintainability
Flexibility
Testability

Correctness
Reliability
Efficiency
Integrity
Usability

UNIT - I SOFTWARE QUALITY AND TESTING

7
Rahul Publications

Q8. What are the factors for product quality?

Ans : (Imp.)

Factors of Product Quality

Below are the factors of Product Quality, that are discussed in detail.

 Product Operation

 Product Revision

 Product Transition

Factors of Product Quality

Product Operation Product Revision Product Transition

Fig.: Factors of product quality

Factors of Product Quality

1. Product Operation

Product Operation includes five software quality factors, which are related to the requirements that directly
affect the operation of the software such as operational performance, convenience, ease of usage, and
correctness. These factors help in providing a better user experience.

 Correctness: The extent to which software meets its requirements specification.

 Efficiency: The number of hardware resources and code the software, needs to perform a function.

 Integrity: The extent to which the software can control an unauthorized person from accessing the
data or software.

 Reliability: The extent to which software performs its intended functions without failure.

 Usability: The extent of effort required to learn, operate, and understand the functions of the software.

2. Product Revision

Product Revision includes three software quality factors, which are required for testing and maintenance of
the software. They provide ease of maintenance, flexibility, and testing efforts to support the software to be
functional according to the needs and requirements of the user in the future.

 Maintainability: The effort required to detect and correct an error during maintenance.

 Flexibility: The effort needed to improve an operational software program.

 Testability: The effort required to verify software to ensure that it meets the specified requirements.

3. Product Transition

Product Transition includes three software quality factors, that allow the software to adapt to the change of
environments in the new platform or technology from the previous.

 Portability: The effort required to transfer a program from one platform to another.

 Re-usability: The extent to which the program’s code can be reused in other applications.

 Interoperability: The effort required to integrate two systems.

MCA II YEAR III SEMESTER

8
Rahul Publications

 1.3 THE COMPONENTS OF THE SOFTWARE

QUALITY ASSURANCE

Q9. What is Quality Assurance (QA)?

Ans :
1. Quality Assurance is also known as QA Testing.

QA is defined as an activity to ensure that an
organization is providing the best product or
service to the customers.

2. Software Quality Assurance seems it is all about
evaluation of software based on functionality,
performance, and adaptability; however software
quality assurance goes beyond the quality of the
software, it also includes the quality of the process
used to develop, test and release the software.

3. Software Quality assurance is all about the
Software Development lifecycle that includes
requirements management, software design,
coding, testing, and release management.

4. Quality Assurance is the set of activities that
defines the procedures and standards to develop
the product.

5. Quality Assurance is a systematic way of creating
an environment to ensure that the software
product being developed meets the quality
requirements. This process is controlled and
determined at the managerial level.

6. It is a preventive process whose aim is to establish
the correct methodology and standard to provide
a quality environment to the product being
developed.

7. Quality Assurance focuses on process standard,
projects audit, and procedures for development.

8. QA is also known as a set of activities designed
to evaluate the process by which products are
manufactured.

9. QA focused on improving the processes to deliver
Quality Products.

Q10. What is the Quality Attribute of a software?

Ans :
The following six characteristics can define the

quality of the software:

1. Functionality

Quality of software is defined as how effectively

the software interacts with other components of
the system. The software must provide
appropriate functions as per requirement, and
these functions must be implemented correctly.

2. Reliability

It is defined as the capability of the software to
perform under specific conditions for a specified
duration.

3. Usability

Usability of software is defined as its ease of use.
Quality of the software is also identified as how
easily a user can understand the functions of the
software and how much efforts are required to
follow the features.

4. Efficiency

The efficiency of the software is dependent on
the architecture and coding practice followed
during development.

5. Maintainability

Maintainability is also one of the significant factors
to define the quality of the software. It refers to
identify the fault and fix in the software. It should
be stable when the changes are made.

6. Portability

Portability of the software, defined as how easily
a system adapts to changes in the specifications.
Quality of the software is also determined by the
portability of the system how easy it is to install
the software and how easy it is to replace a
component of the order in a given environment.

To ensure about a software score well on these
quality attribute, we need the following software Quality
Assurance.

Q11. What are the components of Software Qual-
ity assurance?

Ans : (Imp.)

Components

1. Pre-Project Components

Before starting any project, it is important to
establish (Mobility standards, select development
methodologies, define the scope and
requirements, and identify risks and challenges.
For example, a company that is planning to
develop a new software application may conduct

UNIT - I SOFTWARE QUALITY AND TESTING

9
Rahul Publications

a feasibility study, define the scope of the project,
identify stakeholders, and establish quality
standards and requirements for the application.

2. Components of Project Life Cycle Activities
Assessment

During, the project life cycle, it is important to
assess each activity to ensure that it adheres to
established Quality standards. For example, during
the coding phase of a software development
project, a team lead may review the code written
by a developer to ensure that it meets the
established coding standards and is free of errors.

3. Components of Infrastructure Error Preven-
tion and Improvement

To prevent errors and improve efficiency, it is
important to identify and improve the
infrastructure, tools, and technologies used in
software development. For example, a company
may invest in new software testing tools that
automate testing processes and improve the
accuracy of test results.

4. Components of Software Quality Manage-
ment

Software quality management involves the
planning, monitoring, and control of software
quality throughout the project life cycle. For
example, a software development company may
establish a quality assurance team that is
responsible for testing software products, reporting
defects, and verifying that defects have been
fixed.

5. Components of Standardization, Certifica-
tion, and SQA System Assessment

Standardization, certification, end SQA system
assessment involve the development and
implementation of standards and best practices
for software development for example, an
organization may choose to follow a specific
software development methodology, such as Agile
or Waterfall, to ensure consistency and quality in
their software development processes.

6. Organizing for SQA-The Human Compo-
nents

The human component of SQA focuses on the
people involved in the software development

process. For example, a company may invest in
training and development programs to improve
the skills and competencies of their development
team, or establish communication protocols to
ensure that stakeholders are informed and
involved throughout the development process.

Q12. Write about some software quality assur-
ance standards.

Ans : (Imp.)

Software Quality Assurance Standards

Several organizations, national and international
institutes are involved in the development of SQA
standards. The below mentioned are the main
organizations and institutes involved in it :

1. IEEE

2. DOT

3. ISO

4. ANSI

5. EIA

6. IEC

SQA Standards are basically divided into Two
Categories:

1. Software Quality Assurance Standard, which is
known as Quality Management Standards.

Example: ISO 9000-3, CMM (Capability
Maturity Model).

They focus on the organization’s infrastructure,
SQA system, requirements leaving the choice of
tools and methods of testing to an organization.
Their standard objective is “what” to achieve. It
assures that organizations achieve an acceptable
quality of software.

2. Software Project Development Process standards
which are known as Project Process Standards.

Example: ISO/IEC 12207 IEEEStd 1012-1998.

They focus on methodologies that must be
implemented in software development and
maintenance. It focuses on “how” to perform. It
includes design documentation requirements, steps
to be taken, software testing to be performed,
and design review and review issues.

MCA II YEAR III SEMESTER

10
Rahul Publications

Q13. What are various techniques of SQA?

Ans :
SQA Techniques

There are several SQA techniques. Some of them
are mentioned below:

1. Reviewing

In reviewing, a meeting is held by both internal
and external stakeholders to review the whole
project who analyses the whole software and if
finds an issue, distinguishes whether it is testing,
development, requirement or a design The main
objective is to measure the quality of software
and ensure that whether it meets the customer
expectations or not.

2. Auditing

In Auditing, the whole work product and all the
data are inspected by stakeholders to check
whether it follows the standard processes or not.

3. Functional Testing

In functional testing, the functionality of the whole
software is tested whether it is functioning as
expected or not. It checks “what the system works”
without knowing “how the system works”. It is
like the black box testing of an application in
which the user knows the expected output without
knowing how it is produced.

4. Standardization

It assures that everything in the software should
be standardized, i.e. it follows all the standards
either the standards in documentation,
development, quality control. It reduces
ambiguity and hence improves the quality of
software.

5. Code Inspection

Code Inspection is one of the most formal kinds
of review with the main objective of finding defects
in the code and highlighting any issues in the Code
Inspection is led by a trained Moderator rather
than the Author of the code. Meeting has proper
entry and exit criteria. Users must need complete
preparation before the meeting in order to have
complete knowledge of documents and all before
raising their points.

6. Walkthroughs

Software walkthrough is a kind of informal process
and usually, it is initiated by the Author to read
the document or code and the peer members write
down their suggestions or errors in it and submits
them. It is not formally documented like
Inspection and moderator is not necessary for
the meeting. Its main objective is to know the
status of code completed to date and collecting
suggestions from peers for a better quality of
software.

7. Stress Testing

Stress testing is done to check how the system
works under heavy load. This testing plays an
important role in software quality as in e-
commerce applications, stress and load testing
are done properly in order to test the capacity of
the software (how many maximum numbers of
users can access an application at a time).

8. Design Inspection

Design Inspection is done to check the various
areas of software using the checklist like functional
and interface design, conventions, general
requirements and design, requirement traceability,
logic, coupling, and cohesion.

 1.4 SYSTEM OVERVIEW

Q14. Write the overview of a Software Quality
Assurance.

Ans : (Imp.)

Software Quality Assurance (SQA) is a system
that ensures the quality of software products by
identifying and fixing issues throughout the software
development process. SQA is a critical part of the
software development process and helps companies build
high-quality products that meet customer expectations.

Here are some key aspects of SQA:

 Phases: SQA includes all phases of the software
development process, from initial design to
deployment.

 Testing: SQA involves testing every part of the
software, including unit testing, integration testing,
system testing, and acceptance testing.

 Quality objectives: SQA establishes quality
objectives and documentation to ensure
consistency.

UNIT - I SOFTWARE QUALITY AND TESTING

11
Rahul Publications

 Process monitoring: SQA monitors the
development processes and how to improve them.

 Design control: SQA ensures that the design
of the software meets quality standards.

 Code reviews: SQA finds bugs and ensures
adherence to standards.

 Configuration management: SQA controls
changes to preserve software integrity.

 Release management: SQA ensures the quality
of the release.

 User feedback: SQA welcomes user feedback
to improve performance.

 Security management: SQA ensures that
appropriate process and technology are used to
achieve software security.

 Risk management: SQA ensures that risk
management activities are properly conducted
and that risk-related contingency plans have been
established.

 1.5 DEVELOPMENT AND QUALITY PLANS

Q15. Explain about development and quality
plans in SQA.

Ans :
Development and quality plans are two important

components of SQA that are used to ensure that software
products are developed in accordance with established
quality standards and requirements.

A development plan outlines the activities and
milestones involved in the software development process,
while a quality plan outlines the procedures and
techniques that will be used to ensure that the software
product meets the established quality standards. Both
plans are critical for achieving a successful software
product.

Development Plan

A development plan is a document that outlines
the activities involved in the software development
process. This plan provides of roadmap for the entire
development team including project managers,
developers, and testers, to follow throughout the project
life cycle. A development plan typically includes:

1. Project objectives and scope

2. Milestones and timelines

3. Tasks and activities

4. Resource allocation

5. Communication plan

Quality Plan

A quality plan is a document that outlines the
procedures and techniques that will be used to ensure
that the software product meets the established quality
standards. The plan is developed based on the quality
standards, specifications, and requirements identified
during the planning phase of the project. A quality plan
typically includes:

1. Quality objectives and scope

2. Quality standards and requirement:

3. Quality control and assurance procedures

4. Testing and inspection procedures

5. Defect reporting and management procedures

By developing a comprehensive development plan
and quality plan, organizations can ensure that their
software products are developed in a structured and
controlled manner, and that they meet the established
quality standards and requirements.

Q16. Describe briefly the elements of the quality
plan?

Ans :
A quality plan is a document that outlines the

approach, activities, and resources necessary to ensure
that a software product or project meets its quality
objectives. The elements of a quality plan may vary
depending on the specific needs of the project, but some
of the common elements of a quality plan include:

1. Introduction

This section provides an overview of the quality
plan, including the scope, purpose, and objectives
of the plan.

2. Quality Objectives

This section defines the quality objectives of the
software product or project, including the criteria
that will be used to measure quality.

MCA II YEAR III SEMESTER

12
Rahul Publications

3. Quality Standards

This section outlines the quality standards that
the software product or project will adhere to,
including any industry-specific standards or
regulations.

4. Quality Processes

This section describes the quality processes that
will be used to ensure that the software product
or project meets its quality objectives. This may
include processes for requirements management,
design reviews, code reviews, testing, and defect
management.

5. Quality Metrics

This section defines the quality metrics that will
be used to measure the quality of the software
product or project, including the criteria for
success and the tools that will be used to collect
and analyze data.

6. Quality Resources

This section outlines the resources necessary to
carry out the quality processes and activities,
including personnel, equipment, and software
tools.

7. Quality Assurance and Quality Control
Activities

This section describes the activities that will be
carried out to ensure that the quality objectives
are met, including audits, inspections, testing, and
reviews.

8. Risk Management

This section outlines the risks associated with the
software product or project and describes the
measure s that will be taken to mitigate these
risks.

9. Documentation and Reporting

This section describes the documentation and
reporting requirements for the quality plan,
including the format and frequency of reports,
and the tools that will be used to generate them
documentation, and training materials. It also
defines the milestones that must be reached in
order to complete the project successfully.

Overall, the elements of a development plan
are designed to ensure that the software project
is completed on time, within budget, and to the

required quality standards. The development plan
serves as a roadmap for the development team,
providing a framework for continuous
improvement throughout the software
development lifecycle.

Q17. Explain the objectives of a development
plan and a quality plan?

Ans :
The development plan and quality plan are two

important documents used in software development
projects. While both plans are critical for project success,
they have different objectives.

The objectives of a development plan are:

1. To define the scope of the project

The development plan outlines the boundaries
of the project and defines what will and will not
be included in the project.

2. To identify the resources required

The development plan identifies the resources
needed to carry out the project, including
personnel, equipment, and software tools.

3. To establish the project schedule

The development plan defines the project
schedule, including start and end dates, as well
as intermediate milestones.

4. To allocate tasks and responsibilities

The development plan assigns tasks and
responsibilities to team members, ensuring that
everyone knows what is expected of them.

5. To manage risk

The development plan outlines the risks associated
with the project and describes the measures that
will be taken to mitigate these risks.

The objectives of a quality plan are:

1. To define the quality objectives of the
project

The quality plan defines the quality objectives of
the software product or project, including the
criteria that will be used to measure quality.

2. To identify the quality processes and
activities:

The quality plan describes the quality- processes

UNIT - I SOFTWARE QUALITY AND TESTING

13
Rahul Publications

and activities that will be used to ensure that the software product or project meets its quality objectives

3. To establish quality metrics

The quality plan defines the quality metrics that will be used to measure the quality of the o it ware product
or project, including the criteria for success and the tools that will be used to collect and analyze data.

4. To allocate quality responsibilities

The quality plan assigns responsibilities for quality activities to team members, ensure that everyone knows
what is expected of them.

5. To manage quality risks

The quality pian outlines the risks associated with quality and describes the measures that will be taken to
mitigate these risks.

In summary, the development plan focuses on the project’s scope, resources, schedule, tasks, and
risks, while the quality plan focuses on ensuring that the software product or project meets its quality
objectives through the use of quality processes, activities, metrics, and risk management.

Q18. Discuss the importance of development and quality plans for small projects.

Ans : (Imp.)

Development and quality plans are essential for small software projects just as they are for larger ones. Here
are some reasons why:

1. Clear roadmap

A development plan provides a clear roadmap for the project, outlining the goals, objectives, and timelines.
This helps the development team to stay on track and ensures that all stakeholders are on the same page.

2. Efficient resource allocation

A development plan helps to identify the resources required to complete the project. This allows for efficient
allocation of resources, ensuring that the project is completed on time and within budget.

3. Risk management

A development plan helps to identify and manage risks associated with the project. By planning ahead, the
development team can take steps to mitigate risks and avoid potential roadblocks.

4. Quality assurance

A quality plan helps to ensure that the software product or project meets the desired quality standards. This
includes defining quality metrics, processes, and responsibilities to ensure that the final product meets the
user’s needs.

5. Better communication

Both development and quality plans help to facilitate communication among team members and stakeholders.
By clearly outlining the project scope, goals, and objectives, the team can work together more effectively.

6. Improved customer satisfaction

By having a well-defined development and quality plan, small projects can better meet the needs and
expectations of their customers. This can help to improve customer satisfaction and lead to more business
in the future.

In conclusion, even small software projects benefit greatly from the use of development and quality plans.
They help to ensure that the project is completed on time, within budget, and to the desired quality standards. They
also facilitate communication and collaboration among team members and stakeholders, leading to improved
customer satisfaction and potential business opportunities in the future.

MCA II YEAR III SEMESTER

14
Rahul Publications

Q19. Discuss the importance of development and quality plans for internal projects?

Ans :
Internal projects are those that are undertaken within an organization and are not meant for external

customers. Development and quality plans are just as important for internal projects as they are for customer-
facing ones, for the following reasons:

1. Clarity of purpose

Development and quality plans help to define the purpose of the project and ensure that all stakeholders are
on the same page. This clarity is especially important for internal projects, where there may be multiple
departments or teams involved.

2. Resource management

A development plan helps to identify the resources required to complete the project, including personnel,
equipment; and software tools. This allows for efficient allocation of resources, ensuring that the project is
completed on time and within budget.

3. Risk management

A development plan helps to identify and manage risks associated with the project. By planning ahead, the
development team can take steps to mitigate risks and avoid potential roadblocks.

4. Quality assurance

A quality plan helps to ensure that the software product or project meets the desired quality standards. This
includes defining quality metrics, processes, and responsibilities to ensure that the final product meets the
organization’s needs.

5. Efficient communication

Both development and quality plans help to facilitate communication among team members and stakeholders.
By clearly outlining the project scope, goals, and objectives, the team can work together more effectively.

6. Improved productivity

By having a well-defined development and quality plan, internal projects can be completed more efficiently
and effectively. This can lead to improved productivity and cost savings for the organization.

7. Knowledge transfer

A development plan helps to document the project details, which can be useful for knowledge transfer when
team members change or when the project is revisited in the future.

UNIT - II SOFTWARE QUALITY AND TESTING

15
Rahul Publications

UNIT
II

Integrating Quality Activities in the Project Life Cycle, Assuring the Quality of Software
Maintenance Components, CASE Tools and their effect on Software Quality, Procedure
and Work Instructions, Supporting Quality Devices, Configuration Management,
Documentation Control, Project Progress Control.

2.1 INTEGRATING QUALITY ACTIVITIES IN THE PROJECT LIFE CYCLE

Q1. Explain different types of SDLC models

Ans : (Imp)

Classic and other software development methodologies

At the end of each phase, outputs are reviewed and evaluated by the developer as well as, in many cases,
by the customer. The outcomes range from approval of the phase results and continuation to the next phase, to
demands to correct, redo or alter parts of the respective phase.

1. The software development life cycle (SDLC) model

The Software Development Life Cycle model (the SDLC model) is the classic model (still applicable today);
it provides the most comprehensive description of the process available. The model displays the major building
blocks for the entire development process, described as a linear sequence that begins with requirements definition
and ends with regular system operation and maintenance.

Requirement
& Analysis

System Design

Implementation

Testing

Development

Maintenance

Fig.: The Waterfall Model

 System Design: This stage involves the detailed definition of the outputs, inputs and processing procedures,
including data structures and databases, software structure, etc.

 Implementation (Coding): In this phase, the design is translated into a code. Coding involves quality
assurance activities such as inspection, unit tests and integration tests.

MCA II YEAR III SEMESTER

16
Rahul Publications

 Testing (System tests): System tests are performed once the coding phase is completed. The main goal of
testing is to uncover as many software errors as possible so as to achieve an acceptable level of software
quality once corrections have been completed. System tests are carried out by the software developer before
the software is supplied to the customer.

 Development (Installation and conversion): After the software system is approved, the system is
installed to serve as firmware, that is, as part of the information system that represents a major component
of the expanded system.

 Maintenance (Regular operation): Regular software operation begins once installation and conversion
have been completed. Throughout the regular operation period, which usually lasts for several years or until
a new software generation appears on the scene, maintenance is needed.

2. The prototyping model

The prototyping model is based on replacement of one or more SDLC model phases by an evolutionary
process, where software prototypes are used for communication between the developer and the users and customers.
Prototypes are submitted to user representatives for evaluation.

REQUIREMENTS
DETERMINATION
BY CUSTOMER

PROTOTYPE
DESIGN

PROTOTYPE
IMPLEMENTATION

PROTOTYPE
EVALUATION

BY CUSTOMER

REQUIREMENTS
FULFILLED?

SYSTEM TESTS
AND ACCEPTANCE

TESTS

SYSTEM
CONVERSION

SYSTEM OPERATION
AND MAINTENANCE

DEMANDS FOR
CORRECTIONS, CHANGES

AND ADDITIONS

NO

YES

Fig.: Prototyping model

UNIT - II SOFTWARE QUALITY AND TESTING

17
Rahul Publications

Prototyping as a software development methodology has been found to be efficient and effective mainly for
small-to medium-sized software development projects.

Advantages of prototyping

 Shorter development process.

 Substantial savings of development resources (man-days).

 Better fit to customer requirements and reduced risk of project failure.

 Easier and faster user comprehension of the new system.

Disadvantages of prototyping

 Diminished flexibility and adaptability to changes and additions.

 Reduced preparation for unexpected instances of failure.

3. The spiral model

The spiral model, as revised by Boehm (1988, 1998), offers an improved methodology for overseeing large
and more complex development projects displaying higher prospects for failure, it combines an iterative
model that introduces and emphasizes risk analysis and customer participation into the major elements of
SDLC and prototyping methodologies.

Evaluation by Customer Engineering

Detailed design,
coding, testing

and release

Advanced
prototype

Initial
prototype

Risk evaluation
of customer’s

comments
and changes

Risk evaluation
of customer’s
requirements

Risk analysis and resolutionPlanning
Analysis of customer’s

requirements and
project planning

Planning
based on

customer’s
comments

Customer’s evaluation
Comments and change

requirements

Fig. : The spiral model (Boehm, 1988)

MCA II YEAR III SEMESTER

18
Rahul Publications

An advanced spiral model, the Win-Win Spiral model (Boehm, 1998), enhances the Spiral model (Boehm,
1988) still further. The advanced spiral model (the Win-Win model) places extra emphasis on communication
and negotiation between customer and developer. The customer wins by improving chances to receive a
system that satisfies most of his needs while the developer wins by improving chances of completing the
project within budgetary and timetable constraints.

Fig. : The advanced spiral model (Boehm, 1998)

4. The object-oriented model

According to this model, the development process begins with a sequence of object-oriented analysis and
design activities. The design phase is followed by acquisition of a reusable software library together with
“regular” development of the unavailable software components.

UNIT - II SOFTWARE QUALITY AND TESTING

19
Rahul Publications

Fig. : The object-oriented model

Q2. What are the Factors affecting intensity of quality assurance activities in the development process?

Ans :
Project life cycle quality assurance activities are process oriented, in other words, linked to completion of a

project phase, accomplishment of a project milestone, and so forth. The quality assurance activities will be integrated
into the development plan that implements one or more software development models - the waterfall, prototyping,
spiral, object-oriented or other models.

MCA II YEAR III SEMESTER

20
Rahul Publications

The list of quality assurance activities needed for
a project.

For each quality assurance activity:

 Timing

 Type of quality assurance activity to be
applied

 Who performs the activity and the resources
required? It should be noted that various
bodies may participate in the performance
of quality assurance activities: development
team and department staff members
together with independent bodies such as
external quality assurance team members
or consultants

 Resources required for removal of defects
and introduction of chan

Factors affecting intensity of quality assurance
activities in the development process:

Project Factors

 Magnitude of the project

 Technical complexity and difficulty

 Extent of reusable software components

 Severity of failure outcomes, if the project fails

Team Factors

 Professional qualification of the team members

 Team acquaintance with the project and its
experience in the area

 Availability of staff members who can professio-
nally support the team

 Familiarity with the team members, in other words
the percentage of new staff members in the team

Example 2

The real-time software development unit of a
hospital’s information systems department has been
assigned to develop an advanced patient monitoring
system. The new monitoring unit is to combine of
patient’s room unit with a control unit. The patient’s
room unit is meant to interface with several types of
medical equipment, supplied by different manufacturers,
which measure various indicators of the patient’s
condition. A sophisticated control unit will be placed at
the nurses’ station, with data to be communicated to
cellular units carried by doctors.

The project leader estimates that 14 months will
be required to complete the system; a team of five will
be needed, with an investment of a total of 40 man-
months. She estimates that only 15% of the components
can be obtained from the reusable component library.

The SDLC methodology was chosen to integrate
application of two prototypes of the patient’s room unit
and two prototypes of the control unit for the purpose
of improving communication with the users and
enhancing feedback of comments at the analysis and
design phases.

The main considerations affecting this plan are:

High complexity and difficulty of the system

 Low percentage of reusable software
available

 Large size of the project

 High severity of failure outcomes if the
project fails.

 The quality assurance activities and their
duration, as defined by the project leader,
are listed in Table.

Q3. List various quality assurance activities.

Ans :
Quality assurance activity

i) Design review of requirements definition

ii) Design review of analysis of patient’s room unit

iii) Design review of analysis of control unit

iv) Design review of preliminary design

v) Inspection of design of patient’s room unit

vi) Inspection of design of control unit

vii) Design review of prototype of patient’s room unit

viii) Design review of prototype of control unit

ix) Inspection of detailed design for each software
interface component

x) Design review of test plans for patient’s room unit
and control unit

xi) Unit tests of software code for each interface
module of patient’s room unit

xii) Integration test of software code of patient’s room
unit

xiii) Integration test of software code of control unit

xiv) System test of completed software system

xv) Design review of user’s manual

UNIT - II SOFTWARE QUALITY AND TESTING

21
Rahul Publications

failures and to verify the success of the corrections. It
deals with the modular structure of the software, internal
program documentation, programmer manual,
architectural and detail design and corresponding
documentation.

Example

Typical maintainability requirements:

(a) The size of a software module will not exceed 30
statements.

(b) The programming will adhere to the company
coding standards and guidelines.

2. Flexibility Requirements

It deals with resources to change (adopt) software
to different types of customers.

Example

TSS (teacher support software) deals with the
documentation of pupil achievements, the calculation
of final grades, the printing of term grade documents,
and the automatic printing of warning letters to parents
of failing pupils. The software specifications included
the following flexibility requirements:

(a) The software should be suitable for teachers of
all subjects and all school levels (elementary,
junior and high schools).

3. Testability Requirements

Testability requirements deal with the testing of
an information system as well as with its operation.
Testability requirements related to software operation
include automatic diagnostics performed by the software
system prior to starting the system, to find out whether
all components of the software system are in working
order and to obtain a report about the detected faults.

Another type of these requirements deals with
automatic diagnostic checks applied by the maintenance
technicians to detect the causes of software failures.

Example

An industrial computerized control unit is
programmed to calculate various measures of production
status, report the performance level of the machinery,
and operate a warning signal in predefined situations.
One testability requirement demanded was to develop a
set of standard test data with known system expected
correct reactions in each stage. This standard test data
is to be run every morning, before production begins, to
check whether the computerized unit reacts properly.

2.2 ASSURING THE QUALITY OF SOFTWARE

MAINTENANCE COMPONENTS

Q4. What are the elements to assure the quality
of software maintenance components.

Ans :
Software maintenance is the process of modifying

a software system or application after it has been deplo-
yed. There are several components of software
maintenance, and each one plays a distinct role in
ensuring the continued functionality and usability of the
software. Here are some of the main components of
software maintenance and their distinctions:

1. Corrective Maintenance

This component involves fixing defects or errors
in the software. Corrective maintenance is
performed to ensure that the software operates
as expected and to address any issues that may
arise after deployment.

2. Adaptive Maintenance

This component involves modifying the software
to adapt to changes in the environment or to
new requirements. Adaptive maintenance may
be necessary if the software needs to support new
hardware or operating systems or if it needs to
comply with new regulations.

3. Perfective Maintenance

This component involves improving the software’s
performance or adding new functionality.
Perfective maintenance is performed to enhance
the software’s usability, efficiency, and effective-
ness.

4. Preventive Maintenance

This component involves making changes to the
software to prevent future problems or to address
potential issues. Preventive maintenance may
involve code refactoring, adding new documen-
tation, or improving testing procedures.

Q5. What are the various requirements of
software quality.

Ans :
1. Maintainability Requirements

The degree of effort needed to identify reasons
(find the problem) for software failure and to correct

MCA II YEAR III SEMESTER

22
Rahul Publications

Product Transition Software Quality Factors

1. Portability Requirements

If the software must be ported to different environ-
ments (different hardware, operating systems …)
and still maintain an existing environment, then
portability is a must.

Example

A software package designed and programmed
to operate in a Windows 2000 environment is
required to allow low-cost transfer to Linux and
Windows NT environments.

2. Reusability Requirements

A software product has good reusability, if different
modules of the product can easily be reused to
develop new products.

Example

A software development unit has been required
to develop a software system for the operation
and control of a hotel swimming pool that serves
hotel guests and members of a pool club.

Although the management did not define any
reusability requirements, the unit’s team leader,
after analyzing the information processing
requirements of the hotel’s spa, decided to add
the reusability requirement that some of the
software modules for the pool should be designed
and programmed in a way that will allow its reuse
in the spa’s future software system, which is
planned to be developed next year.

These modules will allow:

 Entrance validity checks of membership
cards and visit recording.

 Restaurant billing.

 Processing of membership renewal letters.

3. Interoperability Requirements

The application need to interface with other existing
systems. It will be known ahead of time and plans
can be made to provide for this requirement during
design time.

Q6. Explain briefly about software maintenance
policy.

Ans :
Maintenance policy

The main maintenance policy components that
affect the success of software maintenance are the version
development and change policies to be applied during
the software’s life cycle.

Version development policy

This policy relates mainly to the question of how
many versions of the software should be operative
simultaneously. The version development policy can take
a “sequential” or “tree” form. When adopting a
sequential version policy, only one version is made
available to the entire customer population. This version
includes a profusion of applications that exhibit high
redundancy, an attribute that enables the software to
serve the needs of all customers. The software must be
revised periodically but once a new version is completed,
it replaces the version currently used by the entire user
population.

When adopting a tree version policy, the software
maintenance team supports marketing efforts by
developing a specialized, targeted version for groups of
customers or a major customer once it is requested.

Example

After a few years of application, Inventory Perfect,
an inventory management package developed according
to the tree policy, has evolved into a seven-version
software package with these main branches: Pharmacies,
Electronics, Hospitals, Bookstores, Supermarkets,
Garages

Auto Repairs, and Chemical Plants. Each of the
branches includes four or five secondary branches that
vary by number of software modules, level of implemen-
tation or specific customer oriented applications. For
example, the Bookstores version has the following five
secondary branches (versions): bookstore chains, single
bookstores, advanced management bookstores, and
special versions for the LP bookstore chain and for
CUCB (City University Campus Bookstores).

The software maintenance team tends to a total
of 30 different versions of the software package
simultaneously, with each version revised periodically
according to customer requests and the team’s technical
innovations.

UNIT - II SOFTWARE QUALITY AND TESTING

23
Rahul Publications

Pre-maintenance software quality components

 Maintenance contract review

 Maintenance plan construction.

 Maintenance contract review

When considering the maintenance contract, a
broad perspective should be embraced. More than
anything else, decisions are required about the categories
of services to be contracted.

These decisions depend on the type of customers
served: customers for whom a custom-made package
has been developed, customers who purchased a COTS
software package, and internal customers. So, before
commencing to supply software maintenance services
to any of these customers, an adequate maintenance
contract should be finalized that sets down the total
range of maintenance obligations according to the
relevant conditions.

Objectives

The major objectives of software maintenance
contract reviews.

1. Customer requirements clarification

The following issues deserve special attention:

 Type of corrective maintenance services
required: list of remote services and on-site
services to be provided, hours of service,
response time, etc.

 Size of the user population and the types of
applications to be used.

 Location of users, especially of long-distance
(or overseas) sites and the types of
applications installed in each.

 Adaptive and functionality improvement
maintenance to be provided and procedures
for submission of requests for service as well
as proposing and approving performance
of these services.

2. Review of alternative approaches to main-
tenance provision

The following options deserve special conside-
ration:

Subcontracting for sites or type of service
Performance of some services by the customer
himself with support from supplier’s maintenance
team.

3. Review of estimates of required mainte-
nance resources

First, these estimates should be examined on the
basis of the required maintenance services,
clarified by the proposal team. Then, the
company’s capacity to meet its commitments
with respect to professional competence as well
as availability of maintenance teams should be
analyzed.

4. Review of maintenance services to be
provided by subcontractors and/or the
customer

This review refers to the definition of the services
provided by each participant, payments to
subcontractors, quality assurance and follow-up
procedures to be applied.

5. Review of maintenance costs estimates

These estimates should be reviewed on the basis
of required resources.

Maintenance plan

Maintenance plans should be prepared for all
customers, external and inter-nal. The plan should provide
the framework within which maintenance provision is
organized. The plan includes the following:

1. A list of the contracted maintenance
services

The internal and external customers, the number
of users, the loca-tions of each customer site.

2. A description of the maintenance team’s
organization

The maintenance team organization plan focuses
on manpower requirements, which should be
carefully considered according to these criteria.

The number of required team members. If services
are to be provided from several.

The required quali facilities, the team requirement
for each facility. Including acquaintance with the
software package(s) to be maintained. fications
for team members according to the maintenance
tasks,

Organizational structure of the maintenance
teams, including names of team leaders.

Definition of tasks (responsibility for customers,
types of applications, etc.) for each team and
Training needs.

MCA II YEAR III SEMESTER

24
Rahul Publications

A list of maintenance facilities

The maintenance support center with its installed
hardware and com-munication equipment to provide
user support and software correction services.

A documentation center containing a complete
set of documents (in printed or electronic format):

The software documentation, including the
development documentation

The service contracts

The software configurations for each customer
and versions of the software packages installed at each
site, provided by configuration management

The maintenance history records for each user
and customer.

2.3 CASE TOOLS AND THEIR EFFECT ON

SOFTWARE QUALITY

Q7. How case tools can effect on software
quality.

Ans :
CASE (Computer-Aidesd Software Engineering)

tools are software applications that support various
activities in the software development process, such as
requirements management, design, coding, testing, and
maintenance. The use of CASE tools can have a
significant impact on software quality (SO.) by improving
the efficiency and effectiveness of various quality
assurance activities. Here are some of the main ways in
which CASE tools can affect SQ:
1. Automation: CASE tools can automate various

software development activities, such as testing,
code review, and defect tracking, which can reduce
the likelihood of human errors and increase the
reliability and consistency of these activities.

2. Standardization: CASE tools can enforce the
use of standards and best practices in software
development, such as coding conventions, testing
methodologies, and documentation standards.
This can help ensure that the software is developed
to a high level of quality and is easier to maintain
and modify.

3. Collaboration: CASE tools can support
collaboration among team members, such as
developers, testers, and quality assurance
professionals, which can help ensure that everyone
is working toward the same goals and following
the same processes and procedures.

4. Traceability: CASE tools can provide traceability
of requirements, design decisions, test cases, and
defects, which can help ensure that the software
meets its intended purpose and that changes are
properly documented and tested.

5. Analysis: CASE tools can provide various forms
of analysis and metrics, such as code coverage,
complexity. Analysis, and defect trends, which
can help identify potential issues and areas for
improvement in the software.

In summary, CASE tools can have a significant
impact on SQ by automating tasks, enforcing standards
and best practices, supporting collaboration, providing
traceability, and enabling analysis. The use of CASE
tools can help ensure that the software is developed and
maintained to a high level of quality, which can improve
its reliability, performance, and usability, and reduce the
likelihood of defects and failures.

Q8. What are the various performance controls
for software maintenance.

Ans :
1. Performance controls for software

maintenance services:
 Software correction
 Increased resources utilization
 Decreased rate of remote failure repairs (low

cost repairs) versus customer’s on-site repairs
 Increased rate of on-site repairs at long-

distance locations and over-seas services
 Increased percentage of failures to meet

repair schedule requirements
 Increased rate of faulty repairs, and list of

specific “model” cases of extreme failure
situations

 Lower customer satisfaction based on
customer satisfaction surveys.

 User support
 Increased rates of requests for service for a

specific software system, for service type,
etc.

 Increased resource utilization in user support
services

 Increased rate of failures to provide
requested consulting services

 Increased rate of faulty consulting, and
specific cases of “outstanding” failures

 Customer satisfaction information based on
customer satisfaction surveys.

UNIT - II SOFTWARE QUALITY AND TESTING

25
Rahul Publications

For software corrections

All costs of software correction initiated by users
during the warranty period are external quality costs
because they are considered to result directly from
software development failures.

For user support services

During the warranty period, user support services
are considered to be an inherent part of the instruction
effort, and therefore should not be considered external
failure costs.

During the contracted maintenance period, all
types of user support services, whether dealing with an
identified software failure or consultations about
application options, are all part of regular service, and
their costs are not considered external failure costs.

During both maintenance periods, an external
failure is defined as a case where a second consultation
is required after the initial consultation proves to be
inadequate. The costs of furnishing the second and
further consultations for the same case are considered
external failure costs.

2.4 PROCEDURE AND WORK INSTRUCTIONS

Q9. What are procedures and work instructions?
Why do we use them.

Ans :
i) A procedure is, as transmitted in documents,

are the detailed activities or processes to be
performed according to a given method for the
purpose of accomplishing a task.

ii) The procedures adopted by an organization are
considered to be binding on that organization’s
employees, meaning that each employee is to
perform his or her tasks according to the steps
appearing in the relevant procedure document,
often bearing the name of the designated task.

iii) Procedures also tend to be universal within the
organization, meaning that they are applied
whenever the task is performed, irrespective of
the person performing the task or the
organizational context.

iv) Work instructions are used mainly in cases where
a uniform method of performing the task
throughout the organization is either impossible

2 Costs of software maintenance quality

The quality costs of corrective maintenance are
classified into six classes. Following are definitions for
each class and examples.

i) Costs of prevention

Costs of error prevention, i.e. costs of instruction
and training of maintenance team, costs of
preventative and corrective actions.

ii) Costs of appraisal

Costs of error detection, i.e. costs of review of
maintenance services carried out by SQA teams,
external teams and customer satisfaction surveys.

iii) Costs of managerial preparation and control

Costs of managerial activities carried out to
prevent errors, i.e. costs of preparation of
maintenance plans, maintenance team
recruitment and follow-up of maintenance
performance.

iv) Costs of internal failure

Costs of software failure corrections initiated by
the maintenance team (prior to receiving customer
complaints).

v) Costs of external failure

Costs of software failure corrections initiated by
customer complaints.

vi) Costs of managerial failure

Costs of software failures caused by managerial
actions or inaction, i.e. costs of damages resulting
from shortage of maintenance staff and/or
inadequate maintenance task organization.

3. Costs of external failure of software
corrective maintenance activities. In order
to define external failure costs, the two
maintenance periods must be considered
separately. These are:

(a) The warranty period (usually 3–12 months after
the software is installed) and

(b) The contracted maintenance services period,
which begins at the end of the warranty period.

MCA II YEAR III SEMESTER

26
Rahul Publications

or undesirable. As a result, work instructions are
specific to a team or department; they supplement
procedures by providing explicit details that are
suitable solely to the needs of one team,
department, or unit.

v) The software quality assurance procedures and
work instructions of special interest to us are those
that affect the quality of a software product,
software maintenance or project management.

vi) The need for procedures and work instructions
“Why should we use SQA procedures and work
instructions?”

SQA procedures and work instructions aim at:

Performance of tasks, processes or activities in
the most effective and efficient way without deviating
from quality requirements.

Effective and efficient communication between
the separate staffs involved in the development and
maintenance of software systems. Uniformity in
performance, achieved by conformity with procedures
and work instructions, reduces the misunderstandings
that lead to software errors.

Simplified coordination between tasks and
activities performed by the various bodies of the
organization. Better coordination means fewer errors.

Q10. Explain briefly about procedures and
procedures manuals

Ans :
i) Procedures

Procedures supply all the details needed to carry
out a task according to the prescribed method for fulfilling
that task’s function. These details can be viewed as
responding to five issues, known as the Five W’s, listed
here: The Five W’s: issues resolved by procedures

 What activities have to be performed?

 How should each activity be performed?

 When should the activity be performed?

 Where the activity should be performed?

 Who should perform the activity?

Fixed table of contents for procedures

 Introduction

 Purpose

 Terms and abbreviations

 Applicable documents

 Method

 Quality records and documentation

 Reporting and follow-up

 Responsibility for implementation

 List of appendices

ii) SQA procedures manual

The collection of all SQA procedures is usually
referred to as the SQA procedures manual.

The content of any one organization’s procedures
manual varies according to:

The types of software development and
maintenance activities carried out by the organization
The range of activities belonging to each activity type.

The range of customers (e.g., internal, customers
of custom-made software, COTS software customers)
and suppliers (e.g., self-development and maintenance,
subcontractors, suppliers of COTS software and reused
software modules)

The conceptions governing the choice of method
applied by the organization to achieve desired SQA
objectives.

Q11. Explain about work instructions and work
instructions manuals.

Ans :
Work instructions and work instruction manuals

Work instructions deal with the application of
procedures, adapted to the requirements of a specific
project team, customer, or other relevant party. While
general methodology is defined in a procedure, the precise
details that allow its application to a specific project or
unit are often laid out in a work procedure. One can
add, change or cancel work instructions without altering
the respective procedure.

UNIT - II SOFTWARE QUALITY AND TESTING

27
Rahul Publications

Examples

Departmental work instructions

 Audit process for new software development
subcontractors (supplier candidates).

 Priorities for handling corrective maintenance
tasks.

 Annual evaluation of software development
subcontractors.

 On-the-job instructions and follow-up for new
team members.

 Design documentation templates and their
application.

 C++ (or other language) programming
instructions

Project management work instructions

 Coordination and cooperation with the customer

 Weekly progress reporting by team leaders

 Special design report templates and their
application in the project

 Follow-up of beta site reporting

 Monthly progress reporting to the customer

 Coordination of installation and customer’s team
instructions.

Q12. Write, how to prepare and update of new
procedures,

Ans :
Preparation of new procedures

The initial steps taken in development of a new
SQA procedures manual should deal with the conceptual
and organizational frameworks that determine the menu
of the proposed procedures and who will be responsible
for their preparation, updating and approval.

This framework is usually also formulated as a
procedure (frequently called the procedure of procedures).
The subsequent steps will, naturally, deal with specific
procedures. A common approach to preparation of
procedures is the appointment of an adhoc committee
of professionals working in the units involved, SQA unit
members and experts in the respective topics to be dealt
with.

The committee pours over the proposed drafts
until a satisfactory version is reached, and ceases its
work only after the procedure is approved by the
authorized person(s).

An alternative approach to procedure manual
preparation is dependence on consulting, where an
outside expert is assigned the responsibility of preparing
procedure or the complete manual.

The main advantages of employing a consultant
are found in the added value of his or her expertise and
experience in other organizations, the reduced burden
on the organization’s senior professionals as well as the
shortened task completion timetable.

The main disadvantage experienced with this
approach is reduced applicability due to the organization’s
unique characteristics.

Updating procedures

The motivation to update existing procedures is
based, among other things, on the following:

 Technological changes in development tools,
hardware, communication equipment, etc.

 Changes in the organization’s areas of activity

 User proposals for improvement

 Analysis of failures as well as successes

 Proposals for improvements initiated by internal
audit reports

 Learning from the experience of other
organizations

 Experiences of the SQA team.

Q13. Explain the difference between procedures
and work instructions?

Ans :
Procedures and work instructions are two types

of documents that are commonly used in organizations
to provide guidance on how to perform various tasks.
While both documents provide instructions on how to
complete a task, there are some key differences between-
procedures and work instructions:

1. Scope

Procedures are typically is wader in scope than
work instructions. They prov md an overview of
the steps involves, in co n pie ting a process or
activity, while work instructions provide detailed,
step-by-step instructions on how to perform a
specific task within that process or activity.

MCA II YEAR III SEMESTER

28
Rahul Publications

2. Level of detail: Work instructions are more
detailed and specific than procedures. They
provide specific guidance on how to perform a
task, including any tools, equipment, or materials
that may be needed, as well as any safety
precautions or quality checks that must be
followed. Procedures, on the other hand, provide
a higher-level overview of the process and may
not include as much detail.

3. Frequency of use: Work instructions are typically
used more frequently than procedures. They are
often used by employees on a daily basis to
perform routine tasks, while procedures may be
used less frequently for tasks that are performed
less frequently.

4. Authorship: Procedures are typically developed
and maintained by management or other subject
matter experts, while work instructions may be
developed and maintained by front-line employees
who have direct experience performing the task.

In summary, procedures provide a high-level
overview of a process or activity, while work instructions
provide detailed, step-by-step instructions for performing
specific tasks within that process or activity. Work
instructions are typically more detailed and specific than
procedures are used more frequently, and may be
developed and maintained by front-line employees.

2.5 SUPPORTING QUALITY DEVICES

Q14. What are templates? How to use templates
in software quality

Ans :
Supporting quality devices, such as checklists and

templates, are tools that can help software quality
assurance (SQA) meet its goals.

Templates

Template is “a gauge, pattern or mold (as a thin
plate or board) used as a guide to the form of a piece
being made” (Webster’s New College Dictionary).

When applied to software engineering, the term
template refers to a format (especially tables of contents)
created by units or organizations, to be applied when
compiling a report or some other type of document.
Application of templates may be obligatory for some
documents and elective for others; in some cases, only
part of a template (e.g., specific chapters or general
structure) is demanded.

Three examples of templates are:

 Software test plan (STP)

 Software test description (STD)

 Software test report (STR).

Template use is quite advantageous to
development teams and to review teams. For
development teams, template use:

Facilitates the process of preparing documents by
saving the time and energy required to elaborate the
report’s structure. Most organizations allow templates
to be copied from a SQA public file or downloaded
from the organization’s intranet files, which even saves
keying the table of contents to the new document.

Ensures that documents prepared by the
developer are more complete as all the subjects to be
included in the document have already been defined
and repeatedly reviewed by numerous professionals over
the course of the template’s use. Common errors, such
as overlooking a topic, are less likely to occur.

Provides for easier integration of new team
members through familiarity. The document’s standard
structure, prepared according to templates that may be
known to the new member from previous work in another
of the organization’s units or teams, makes finding
information much easier. It also smoothes ongoing
document preparation in cases where parts of the
document have been prepared by another team member
who may or may not have Left.

Facilitates review of documents by eliminating the
need to study a document’s structure and confirm its
completeness, if the document is based on the
appropriate template. It also simplifies review of the
completed document as its structure is standard and
reviewers are familiar with its expected contents
(chapters, sections and appendices). As a result of this
consistency, the review is expected to be more thorough
yet less time-consuming.

For software maintenance teams, template
use:

Enables easier location of the information required
for performing maintenance tasks.

The organizational framework for preparing,
implementing and updating templates Organizations tend
to save their internal resources, which often mean
employing successful reports prepared for one department
or purpose as models for the entire organization. The
SQA unit is usually responsible for preparing professional
templates of the more common types of reports and
documents required of the organization’s staff.

UNIT - II SOFTWARE QUALITY AND TESTING

29
Rahul Publications

Preparation of new templates

Development of a template infrastructure naturally centers on the work of a group of professionals devoted
to the task. This group (or committee) should include senior staff that represents the various software development
lines, the department’s chief software engineer and SQA unit members. Informal developers of “template services”
should likewise be encouraged to join the group.

One of the group’s first tasks is to compile a target list of templates to be developed.

Once the list is accepted, priorities must be set. Higher priority should be given to templates of the most
commonly prepared documents.

Subcommittees are then assigned the task of preparing the first drafts. An SQA unit member can be
anticipated to undertake the task of leading the group. Irrespective of whom the group’s head may be, he or she
must see to the distribution of template drafts among members, the organization of meetings and the follow-up of
progress made by template preparation subcommittees.

Distribution of template drafts among team leaders for their comments can yield important improvements
and at the same time promote the templates’ future use.

The most common information sources used in preparing a template are as follows:

Informal templates already in use in the organization Template examples found in professional publications
Templates used by similar organizations

Application of templates

Several fundamental decisions are involved in the implementation of new or updated templates:

 What channels should be used for advertising the templates?

 How should the templates be made available to the organization’s internal “consumers”?

 Which templates will be compulsory and how can their application be enforced?

All professional internal means of communication can be used for advertising templates internally within the
organization: leaflets, e-mail, intranet as well as short presentations at meetings. One of the most efficient methods
of making templates available to the organization is the internal net (intranet).

Updating templates

The decision to update an existing template may be considered a reactive measure, stemming from any of
the following:

 User proposals and suggestions

 Changes in the organization’s areas of activity

 Proposals initiated by design review and inspection teams based on their review of documents prepared
according to the templates

 Analysis of failures as well as successes

 Other organizations’ experience

 SQA team initiatives.

MCA II YEAR III SEMESTER

30
Rahul Publications

The process of updating templates is quite similar to that of template preparation.

Example

Test Cases : Template 1.0

Verified By :Created By :Project Code

Use CasesTest ID
References

Test ID

Use CasesTest Types
Unit Test Integration System

Test Environment

Quality Covered

Pre-Conditions

Post-Conditions
Notes
Testing Steps
No. Description Test

Data
Expected
Results

Actual
Results

Severity Test
Status

Remarks

Test Date:
Total Test Time :
Test By:

Q15. What are the uses of checklists in software quality Checklists.

Ans :
The checklist used by software developers refers to the list of items specially constructed for each type of

document, or a menu of preparations to be completed prior to performing an activity (e.g., installing a software
package at the customer site).

Checklists are planned to be comprehensive if not complete. Usually, checklist use tends to be considered an
optional infrastructure tool, depending mainly on the list’s professional attributes, user acquaintance with the list
and availability.

The contribution of checklists to software quality

Like templates, checklists provide many benefits to development teams, software maintenance teams and
document quality.

The advantages to development teams are as follows:

i) Helps developers carrying out self-checks of documents or software code prior to document or software code
completion and formal design reviews or inspections. Checklists are expected to help the developer discover
incomplete sections as well as detect overlooked lapses.

ii) Checklists are also expected to contribute to the quality of documents or software code submitted for review
as the quality issues to be surveyed, by the review team are already listed in the checklist.

iii) Assists developers in their preparations for tasks such as installation of software at customer sites, performance
of quality audits at subcontractors’ sites or signing contracts with suppliers of reused software modules.
Checklists are expected to help the developers be better equipped for task performance.

UNIT - II SOFTWARE QUALITY AND TESTING

31
Rahul Publications

The advantages to review teams are

i) Assures completeness of document reviews by
review team members as all the relevant review
items appear on the list.

ii) Facilitates improves efficiency of review sessions
as the subjects and order of discussion are defined
and well known in advance.

iii) The organizational framework for preparing,
implementing and updating checklists A “checklist
group”, headed by a SQA unit member, can
undertake the task of maintaining a collection of
updated lists. The participation of other staff
interested in promoting the use of checklists in
the group is also voluntary; in some cases,
however, the assistance of an SQA consultant is
recommended.

Preparation of new checklists

One of the first tasks awaiting the “checklist group”
is compilation of a list of checklists targeted for
development, followed by definition of a common format
for all the checklists released by the group.

The first checklists approved by the group are
usually informal check-lists already in use by some
development team members and reviewers. In most
cases, a few changes and adaptations of these checklists
are sufficient to satisfy the format and contents defined
by the group. Preparation of new checklists as well as
improvement of informal checklists is supported by the
following sources of information:

Informal checklists already in use in the
organization

Checklist examples found in books and other
professional publications

Checklists used by similar organizations.

The process of preparing a new checklist is similar
to that for templates.

Promotion of checklist use

As the use of checklists is rarely mandatory,
promotion of their use is based on advertising and
guaranteed availability. All internal channels of
communication can be used for publicizing the checklists:
leaflets, e-mail, SQA intranet as well as professional
meetings. The internal net remains, however, the preferred
and most efficient method for making checklists available
to the organization’s internal “consumers”.

Updating checklists

Like templates and procedures, initiatives to
update an existing checklist generally flow from the
following sources:

 User proposals and suggestions

 Changes in technology, areas of activity and
clientele

 Proposals initiated by design review and inspection
teams emanating from document

 reviews

 Analysis of failures as well as successes

 Other organizations’ experience

SQA team initiatives.

The process of updating checklists is quite similar
to their preparation.

Q16. Explain the importance of staff training and
certification to improve the software quality.

Ans :
Developmenting - Staff training and certification

The objectives of training and certification

To develop the knowledge and skills new staff need
to perform software development and maintenance tasks
at an adequate level of efficiency and effectiveness. Such
training facilitates integration of new team members.

To assure conformity to the organization’s
standards for software products (documents and code)
by transmitting style and structure procedures together
with work instructions.

To update the knowledge and skills of veteran
staff in response to developments in the organization,
and to assure efficient and effective performance of tasks
as well as conformity to the organization’s style and
structure procedures and work instructions.

To transmit knowledge of SQA procedures.

The training and certification process

The operation of a successful training and
certification system demands that the following activities
be regularly performed:

 Determine the professional knowledge require-
ments for each position

 Determine the professional training and updating
needs

MCA II YEAR III SEMESTER

32
Rahul Publications

 Plan the professional training program

 Plan the professional updating program

 Define positions requiring certification

 Plan certification processes

 Deliver training, updating and certification programs

 Perform follow-up of trained and certified staff.

All these activities converge into an integrated process in which feedback from past activities and information
about professional developments stimulates a cycle of continuous training certification and adaptation to changing
quality requirements.

Training and certification activities are meant to fill the needs of veteran staff and new employees.
Comprehensive follow-up of the outcomes of current programs as well as keeping track of developments in the
profession are required to make sure that programs are adequately up-to-date.

The training and certification process is displayed in Figure:

Determining professional knowledge requirements

The most common positions in a software development and maintenance organization are those of systems
analyst, programmer, software development team leader, programming team leader, software maintenance technician,
software tester, and software testing team leader.

Most organizations set education and experience requirements for each of these positions. Staff members
who fulfill education requirements still need additional “local” or “internal” knowledge and skills, related to specific
development and maintenance procedures. This specialized knowledge can be grouped into two categories: Knowledge
and skills of software engineering topics, such as software development tools, programming language versions, and
CASE tool versions applied by the specific organization or unit. The relevant procedures and work instructions that
were compiled for their implementation also belong to this category.

UNIT - II SOFTWARE QUALITY AND TESTING

33
Rahul Publications

Knowledge of SQA topics, such as the procedures
pertaining to the various development and maintenance
activities, assigned to be performed by the individual
occupying a specific position.

Determining training and updating needs

Training and updating needs are determined by
comparison of the staff’s current knowledge with the
updated knowledge requirements. The type of training
is adapted to the needs of three distinct groups of staff:

 Training for new employees, according to their
designated assignment.

 Retraining for employees assigned to new positions
or receiving new assignments.

 Updating for staff members as demanded by their
position.

The need to update staff should be assessed
regularly to facilitate planning of the required programs.
Finally, follow-up of staff performance in the wake of
training and updating provides major input to be used
in redefining training needs.

Planning training and updating programs

Planning training and updating programs for
software engineering topics:

The timing of many training and retraining
activities cannot be determined in advance because new
personnel are recruited and veteran staff are shifted often
after relatively short notice. However, updating activities
can be scheduled well ahead (the audience is known),
with contents finalized close to the date of their
implementation. Irrespective of whether the programs
are carried out in-house or by an outsourcing
organization, high-level staffs, such as the chief software
engineer, usually participate in their preparation.

Planning training and updating programs for SQA
topics

Training programs for SQA topics include training
for new employees as well as updating for veteran staff
members. The general characteristics of SQA training
programs allow them to be organized periodically, every
one or two months, and delivered to all new staff recruited
in the interim.

Typical SQA updating programs are carried out
once a year or once every six months, depending on the
pace of change. The SQA unit or others responsible for
SQA issues in the organization usually prepare these
training and updating programs.

Defining positions requiring certification

It is commonly accepted that assignment of
personnel to key positions in software development and
maintenance organizations requires extreme care. One
of the procedures used to guarantee the suitability of
candidates is certification.

Planning the certification processes

Certification is intended to provide a framework
for the thorough investigation of a candidate’s
qualifications and a demonstration of his or her
professional knowledge and skills.

The details of the certification process are unique
to the organization; they reflect its special characteristics,
areas of specialization, software development and
maintenance tools, customers and so on.

Because the process is geared toward the needs
and decisions of specific organizations, internal
certification cannot be automatically substituted by the
general certification that is granted by professional
societies and leading suppliers of development tools and
network communication software or their equivalents.

The certification process, in every detail and for
every position, requires approval as defined in the
certification procedure.

Typical certification requirements

For the individual undergoing certification, a
typical certification process entails meeting some or evens
all of the following requirements:

 Professional education: academic or technical
degrees and in some cases certification by a
professional organization or by a leading
commercial software producer

 Professional experience in the organization (may
be partially or completely replaced by experience
in other organizations)

 Assessment of achievements and ability as noted
in periodic performance appraisals

 Evaluation by the candidate’s direct superior
(often by completion of a special questionnaire)

 Demonstration of knowledge and skills by means
of a test or a project

 Mentor’s supervision for a specified period of time.

MCA II YEAR III SEMESTER

34
Rahul Publications

Functions of the certification committee

Similar to the pattern recommended for training
and retraining programs, the person or committee
members responsible for certification are usually senior
software development and maintenance staff. The
responsibilities of the certifying body include:

 To perform the certification process on the basis
of requests made by individual applicants or units
and grant certification to those who qualify

 To follow up certification activities (such as
mentoring) carried out by others.

 To update certification requirements in response
to developments in the organization as well as
the profession

 To revise the list of positions requiring certification.

Delivery of training and certification programs

Training and updating can cover topics such as
software engineering, software quality assurance and
management skills (within the framework of certification
or for general information), all of which are coordinated
with the organization’s or firm’s needs. How training
and updating are carried out varies accordingly.

Courses can be transmitted in formats that range
from short lectures and demonstrations, often lasting
only half a day, to lengthy courses held over several
weeks or months. These may be conducted in-house,
by the organization’s training unit, or externally, by
vocational or academic institutions that prepare programs
attuned to the organization’s requirements.

More about organizing and delivering training and
certification programs can be found in the human
resources management literature.

Follow-up subsequent to training and certification

Managers and software professionals often express
doubts about the effectiveness of training and
certification in general or of one of the associated
activities. They question whether the substantial resources
and efforts invested in training are really worthwhile. To
assuage these doubts, systematic follow-up is necessary
to provide feedback to the professional units.

Such feedback indicates whether the training
efforts were justified at the same time that it assures
continuous improvement of training and certification
activities. The information provided by follow-up relates
to:

All training activities and certification procedures
conducted – records of the performance of the
participants in the program.

Information about special cases of training
activities that proved to be either highly successful or
clearly unsuccessful in improving staff performance.

Information about proven cases of failures of
certified staff in the performance that point to clearly
inadequate certification requirements.

Analysis of the data accumulated following a
training course provides the information necessary to
revise programs by guiding the modification, addition
and deletion of identified activities and materials.
Meaningful follow-up of training requires performance
information collected prior as well as sub-sequent to
training.

The Corrective Action Board (CAB), takes action
based on follow-up subsequent to training and
certification and other sources of information.

2.6 CORRECTIVE AND PREVENTIVE

ACTIONS

Q17. Explain about various corrective and
preventive actions to improve the software
quality.

Ans :
Corrective actions

A regularly applied feedback process that includes
collection of information on quality non-conformities,
identification and analysis of sources of irregularities as
well as development and assimilation of improved
practices and procedures, together with control of their
implementation and measurement of their outcomes.

Preventive actions

A regularly applied feedback process that includes
collection of information on potential quality problems,
identification and analysis of departures from quality
standards, development and assimilation of improved
practices and procedures, together with control of their
implementation and measurement of their outcomes.

The corrective and preventive actions process.
Successful operation of a CAPA process includes the
following activities:

1. Information collection

2. Analysis of information

UNIT - II SOFTWARE QUALITY AND TESTING

35
Rahul Publications

3. Development of solutions and improved methods

4. Implementation of improved methods

5. Follow-up.

The process is regularly fed by the flow of information from a variety of sources. In order to estimate the
success of the process, a closed feedback loop is applied to control the flow of information, implemen-tation of the
resulting changes in practices and procedures together with measurement of the outcomes.

1. Information collection

The variety of information sources, internal and external, that serve the CAPA process is quite remarkable,
the four main internal sources of information are the (1) Software development process, (2) Software maintenance,
(3) SQA infrastructure and (4) Software quality management procedures. External sources of information are
mainly customers’ application statistics and customer complaints.

Internal information sources are categorized as follows:

i) Software development process

 Software risk management reports

 Design review reports

 Walkthrough reports

 Experts’ opinion reports

 Test reviews

 Special reports on deve lopment failures and successes

 Proposals suggested by staff members.

ii) Software maintenance

 Customer applications statistics

 Software change requests initiated by customer applications

 Software change requests initiated by maintenance staff

 Special reports on maintenance failures and successes

 Proposals suggested by staff members.

iii) SQA infrastructure class of sources

 Internal quality audit reports

 External quality audit reports

 Performance follow-up of trained and certified staff

 Proposals suggested by staff members.

iv) Software quality management procedures class of sources

 Project progress reports

 Software quality metrics reports

 Software quality cost reports

 Proposals of staff members.

MCA II YEAR III SEMESTER

36
Rahul Publications

v) External information sources

 Customer complaints

 Customer service statistics

 Customer-suggested proposals.

2. Analysis of collected information

Regular operation of the CAPA process is
expected to create a massive flow of documents
related to a wide range of information.

i) Analysis involves

Screening the information and identifying potential
improvements. Documents received from the
various sources of information are reviewed by
professionals in order to identify potential
opportunities for CAPA.

This stage includes comparison of documents of
the same type received from various units as well
as comparison of documents of different types
related to the same case.

Analysis of potential improvements.

Efforts are directed to determine:

Typical causes are non-compliance with work
instructions and procedures, insufficient technical
knowledge, extreme time and/or budget pressures
due to unrealistic estimates, and lack of experience
with new development tools.

Estimates of the extent of organization-wide
potential faults of each type. This information is
needed to estimate the total damage expected
and to determine the priority of each fault case.

3. Development of solutions

Solutions to identified causes of recurrent software
systems faults are required to:

Eliminate recurrence of the types of faults detected

Contribute to improved efficiency by enabling
higher productivity and shorter schedules.

4. Implementation of improved methods

Implementation of CAPA solutions relies on
proper instructions and often training but most
of all on the cooperation of the relevant units
and individuals. Therefore, successful implement-
ation requires that targeted staff members.

5. Follow-up of activities

Three main follow-up tasks are necessary for the
proper functioning of a corrective and preventive action
process in any organization:

i) Follow-up of the flow of development and
maintenance CAPA records from the various
sources of information. This enables feedback that
reveals cases of no reporting as well as low quality
reporting, where important details are missing or
inaccurate. This type of follow-up is conducted
mainly through analysis of long-term activity
information, which generates feedback to the
CAPA information sources.

ii) Follow-up of implementation. This activity is
intended to indicate whether the designated
actions – training activities, replacement of
development tools, and procedural changes (after
approval) – have been performed in practice.
Adequate feedback is delivered to the bodies
responsible for implementation of the corrective
and preventive actions.

iii) Follow-up of outcomes. Follow-up of the
improved methods’ actual out-comes, as observed
by project teams and organizational units, enables
assessment of the degree to which corrective or
preventive actions have achieved the expected
results. Feedback on the outcomes is delivered to
the improved methods’ developers. In cases of
low performance, formulation of a revised or new
corrective action is needed, a task undertaken by
the CAPA team.

2.7 CONFIGURATION MANAGEMENT

Q18. Explain briefly about configuration
management.

Ans :
Configuration management is the process of

identifying, organizing, controlling, and tracking changes
to a software product or system throughout its entire life
cycle. It is a key aspect of software engineering that
involves managing and maintaining the various artifacts
that make up a software product, including source code,
documentation, and other project artifacts.

UNIT - II SOFTWARE QUALITY AND TESTING

37
Rahul Publications

Configuration management helps to ensure that changes
to the software product are properly managed and
tracked, so that developers can maintain a clear
understanding of the product’s status at all times. The
primary goals of configuration management include:

1. Establishing a baseline: A baseline is a
snapshot of the software product at a specific
point in time. Configuration management ensures
that a baseline is established for each version of
the software product, so that developers can easily
track changes and ensure that the product is
developed consistently.

2. Managing changes: Configuration management
ensures that all changes to the software product
are properly managed and tracked. This helps to
ensure that changes are properly documented,
reviewed, and approved before they are
incorporated into the product.

3. Controlling versions: Configuration manage-
ment ensures that multiple versions of the
software product can be maintained and tracked.
This helps to ensure that developers can easily
access and manage previous versions of the
product as needed.

4. Facilitating collaboration: Configuration
management facilitates collaboration among
developers by ensuring that everyone is working
with the same version of the software product.
This helps to prevent conflicts and reduces the
risk of errors and defects.

Configuration management involves using various
tools and techniques to manage and track changes to
the software product. These may include version control
systems, issue tracking systems, and build automation
tools. By using configuration management, software
developers can improve the quality of the software
product and ensure that it is developed consistently and
efficiently over time.

Discuss the concept of Software configuration
management

An SQA component responsible for applying
(computerized and non-computerized) technical tools and
administrative procedures that enable completion of the
tasks required to maintain SCIs and software configura-
tion versions.

The tasks of software configuration management
may be classified into four groups:

1. Software Change Control

2. Quality assurance of software changes.

3. Release of software

1. Software change control

Software change management controls the
process of introducing changes mainly by doing the
following:

Examining change requests and approving
implementation of appropriate requests. Assuring the
quality of each new version of software configuration
before it becomes operational.

(i) Approval to carry out proposed changes

Baseline software configuration versions are
planned early, during a system’s development or
operating stage. As part of the process, they are reviewed,
tested and approved, as are their SCIs. Baseline versions
serve as milestones in the software system’s life cycle,
and represent the foundations for further system
development.

The factors affecting the decision whether to
implement a proposed change include:

 Expected contribution of the proposed change

 Urgency of the change

 Effect of the proposed change on project
timetables, level of service, etc.

 Efforts required in making the change operational

 Required software quality assurance efforts

 Estimated required professional resources and cost
of performing the change.

The information items required before any
decision about a change proposal can be made are
reflected in the contents of a typical software change
request (SCR) form. It consist of

ii) Change principles

 The initiator

 The date the SCR was presented

 The character of the change

 The expected contribution to the project/
system

 The urgency of performance

MCA II YEAR III SEMESTER

38
Rahul Publications

iii) Change details

 Description of the proposed change

 A list of the SCIs to be changed

 Expected effect on other SCIs

 Expected effect on interfaces with other
software systems and hardware firmware

 Expected delays in development completion
schedules and expected disturbances to
services to customers

iv) Change timetable and resources estimates

 Timetable for implementation

 Estimated required professional resources

 Other resources required

 Estimated total cost of the requested change

2. Quality assurance of software changes

 Quality assurance efforts are required at two
levels:

 Quality assurance of each of the changed
SCIs

 Quality assurance of the entire new software
system version (that includes changed SCIs).

(i) Quality assurance of the changed SCIs

This requires preparation of a reviews and testing
plan at a magnitude appropriate to the character of the
change. It is most important that reviews and testing be
carried out by professional testers and not by the SCI’s
developer. The process of reviews and testing, corrections
and retesting (regression testing) the changed SCIs is
expected to conclude with their approval.

(ii) Quality assurance of the entire new software
system version

A new version of the software is considered to
have been completed once the changed SCIs replace
the former SCIs. Although one might expect the new
version of the software system to function perfectly and
certainly better than the old original version. The system
failures generally occur as a result of damage done to
interfaces between the changed SCIs and other SCIs
left unchanged and not retested. The entire new version,
or at least all the whole software parts that might be
affected, is tested to identify unexpected interface
defects.

3. Release of software configuration versions

The need to release a new software configuration
version usually stems from one or more of the following
conditions:

Defective SCIs

Special features demanded by new customers

The team’s initiatives to introduce SCI
improvements.

Types of software configuration releases

Among software configuration releases, baseline
versions, intermediate versions and revisions are
considered to be the three main types of release.

Baseline versions

Baseline software configuration versions are
planned early, during a system’s development or
operating stage. As part of the process, they are reviewed,
tested and approved, as are their SCIs. Baseline versions
serve as milestones in the software system’s life cycle,
and represent the foundations for further system
development.

Intermediate versions

When problems arise that require immediate
attention (such as the need to correct defects identified
in an important SCI) or perform immediate adaptations
as defined in a contract with a new customer: an
intermediate version of the software is often prepared.

Usually, intermediate versions serve only a portion
of a firm’s customers, and then for a limited period,
until replaced by a new baseline version. Naturally, we
can expect that these versions will not receive the
attention and investment of efforts usually devoted to
the release of baseline versions. An intermediate software
configuration version can thus serve as a “pilot” or
springboard to the next baseline version.

Revisions

Revisions introduce minor changes and corrections
to a given software configuration version.

Q19. Explain about software configuration
management plans.

Ans :
Software configuration management plans
(SCMPs)

The main objective of a software configuration
management plan (SCMP) is to plan ahead the schedule

UNIT - II SOFTWARE QUALITY AND TESTING

39
Rahul Publications

of baseline version releases and the required resources
to carry out all the activities required for the software
configuration releases. An additional objective of the
SCMP is to enable one to follow up the progress of
activities involved in software version release. SCMPs
are required during the development stage as well as the
operation (maintenance) stage.

Accordingly, an SCMP usually includes:

 An overview of the software development project
or existing software system.

 A list of scheduled baseline version releases.

 A list of SCIs (documents, code, etc.) to be
included in each version.

 A table identifying the relationship of software
development project plans and

 maintenance plans to scheduled releases of new
SCIs or SCI versions.

 A list of assumptions about the resources required
to perform the various activities required by the
SCMP.

 Estimates of the human resources and budget
needed to perform the SCMP.

SCMP for the development stage

Based on the project plan, the SCMP sets the
release dates of baseline versions, which usually coincide
with the conclusion of one or more of the following three
events: the design stage, the coding stage and the system
test stage.

Quite commonly, these plans represent a segment
of the entire system’s development plans, prepared at a
project’s initiation. External participants in the project
are required to comply with the SCMP or to suggest an
alternative SCMP that is appropriate for their part of
the project, contingent on its acceptance by the project
manager.

All the instructions and procedures necessary for
performing SCM tasks at this stage are documented in
the SCMP. The project manager is usually the person
responsible for carrying out these tasks.

All the instructions and procedures for performing
SCM tasks during the operation (maintenance) stage
are likewise documented in the respective SCMP.

Q20. Explain briefly about Software configu-
ration evolution models Software configura-
tion management audits.

Ans :
Successive development or evolution of a software

system’s configuration versions should be undertaken
according to a route that is planned in advance by the
system’s developer.

The choice of routes depends on the system’s
characteristics, the customer population and the firm’s
intentions regarding the system’s market. Two
fundamental software configuration evolution models –
the linear model and the tree model are generally applied.

The linear evolution model

According to the linear model, only one unique
software system’s configuration version serves all
customers at any given time. Each new configuration
version then replaces the prior version. This model is the
natural choice for software systems developed to serve
a single organization. The model is also applied to
popular software packages, which tend to be uniform in
structure, where the need to meet a wide range of
maintenance demands for a single version is a great
advantage.

The tree evolution model

According to this model, several parallel versions
of the software are developed to serve the needs of
different customers simultaneously throughout the
system’s life cycle.

Tree models are typically applied in firmware
configuration versions, where each branch serves a
different product or product line.

Software configuration management audits

SCM audits are performed by the SCM authority
and the CCB in order to control compliance with SCM
procedures. SCM audits may be combined with internal
quality issues and are expected to initiate updates and
changes of SCM procedures and instructions.

SCM audits may be also performed for a sample
of planned releases, as specified in the SCMP. The
following is a list of typical bits of control information
that SCM audits are meant to discover and transmit to
management:

 Percentage of unapproved changes introduced in
the system during development or operation.

MCA II YEAR III SEMESTER

40
Rahul Publications

 Percentage of SCOs not carried out according to
instructions and not fully complying with
procedures.

 Percentage of design reviews and software tests
of changed SCIs that have not been performed
according to the relevant procedures.

 Percentage of SCOs that have been completed
on schedule.

 Percentages of cases where SCIs affected by
changes have not been checked, with some
necessary changes not implemented.

 Percentages of properly documented new SCIs
and software configuration versions.

 Percentage of properly documented installations
of new software configuration versions.

 Percentage of cases of failure to transmit all
version–related information to the customer.

2.8 DOCUMENTATION CONTROL

Q21. What is document control? Explain.

Ans :
Documentation control is a process of managing

the creation, review, approval, distribution, and storage
of documents related to a software project. This process
ensures that all documents are up-to-date, accurate, and
easily accessible to the project team. Effective
documentation control helps to ensure that the software
product is developed consistently, efficiently, and to the
required quality standards.

Documentation control involves several steps,
including:

1. Document Creation: Documents are created
by the appropriate team members, following a
defined format and style guide. The documents
may include technical specifications, design
documents, user manuals, test plans, and other
related documents.

2. Review and Approval: Documents are reviewed
and approved by the relevant stakeholders,
including technical leads, project managers, and
customers. This ensures that the documents are
accurate, complete, and meet the required quality
standards.

3. Distribution: Once approved, the documents
are distributed to the relevant team members.

This may include developers, testers, project
managers, and other stakeholders who require
access to the documents.

4. Storage and Maintenance: The documents are
stored in a central repository that is accessible to
all team members. The repository should have
appropriate access controls and versioning
features to ensure that only authorized team
members can access and modify the documents.
The documents are also regularly updated and
maintained as needed to ensure that they remain
accurate and up-to-date.

Effective documentation control is essential for
the success of a software project. It helps to ensure that
the project team has access to the most current and
accurate information, which enables them to work more
efficiently and effectively. By managing the creation,
review, approval, distribution, and storage of project
documents, documentation control helps to ensure that
the project is completed on time, within budget, and to
the required quality standards.

2.9 PROJECT PROGRESS CONTROL

Q22. Explain the components of project progress
control?

Ans :
Project progress control is the process of

monitoring and tracking a project's progress to ensure
that it is meeting its goals and objectives within the
planned timeline and budget. It involves several
components that work together to provide visibility into
the project's status and allow project managers to make
informed decisions. Here are the main components of
project progress control:

1. Project plan

The project plan is the foundation of project
progress control. It outlines the project's objectives,
scope, timeline, budget, resources, and other key
details. The project plan serves as a reference
point for measuring progress and identifying any
deviations from the original plan.

2. Project schedule

The project schedule is a timeline of activities and
milestones that need to be completed to achieve
the project objectives. The schedule provides a
roadmap for the project team and helps to track
progress against the plan.

UNIT - II SOFTWARE QUALITY AND TESTING

41
Rahul Publications

3. Performance metrics

Performance metrics are measurable indicators
of progress toward project goals. They help project
managers to assess the health of the project and
identify areas where corrective action may be
needed. Examples of performance metrics include
budget variance, schedule variance, resource
utilization, and quality metrics.

4. Status reports

Status reports are regular updates on the project’s
progress. They provide information on key
performance metrics, issues, risks, and other
relevant information. Status reports can be used
to communicate project progress to stakeholders
and to identify areas where corrective action may
be needed.

5. Change control

Change control is the process of managing
changes to the project scope, schedule, or budget.
It involves evaluating the impact of changes on
the project plan and making adjustments as
needed. Change control helps to ensure that
changes are properly managed and that they do
not negatively impact the project’s progress.

6. Risk management

Risk management is the process of identifying and
mitigating risks that may impact the project’s
progress. It involves identifying potential risks,
assessing their likelihood and impact, and
developing strategies to mitigate them. Risk
management helps to ensure that the project stays
on track and that potential risks are identified
and managed proactively.

In summary, project progress control involves
several components, including the project plan, project
schedule, performance metrics, status reports, change
control, and risk management. By effectively managing
these components, project managers can ensure that
the project stays on track and achieves its goals within
the planned timeline and budget.

Implementation issues involved in project progress
control

Project progress control is an important part of
project management, but implementing it successfully
can be challenging. Here are some implementation issues
that can arise when implementing project progress
control:

1. Data collection

One of the biggest challenges in project progress
control is collecting accurate and timely data.
This can be a challenge if project team members
are not diligent in reporting progress or if there is
no system in place for collecting and consolidating
data.

2. Resource allocation

Another challenge is allocating resources to
implement project progress control. This includes
not only the tools and technology needed but
also the people responsible for collecting and
analyzing data.

3. Stakeholder engagement

Project progress control requires engagement and
buy-in from all stakeholders involved in the
project. This can be challenging if stakeholders
have competing priorities or are not fully
committed to the project’s success.

4. Training and communication

Implementing project progress control requires
training team members on the tools and processes
involved. It also requires effective communication
to ensure that everyone understands their roles
and responsibilities and the importance of project
progress control.

5. Resistance to change

Resistance to change is a common issue when
implementing project progress control. Team
members may be resistant to new tools and
processes, or they may be hesitant to report
progress for fear of being held accountable for
delays or issues.

6. Continuous improvement

Finally, implementing project progress control is
an ongoing process that requires continuous
improvement. This includes evaluating the
effectiveness of the tools and processes used and
making adjustments as needed to ensure that
project progress control remains effective and
relevant.

In summary, implementing project progress
control requires overcoming several challenges, including
data collection, resource allocation, stakeholder
engagement, training and communication, resistance to

MCA II YEAR III SEMESTER

42
Rahul Publications

change, and continuous improvement. By addressing these issues proactively, project managers can improve the
chances of successfully implementing project progress control and ensuring the success of their projects.

Integrating quality activities in the project life cycle

Integrating quality activities into the project life cycle involves incorporating quality management practices
into each phase of The software development process. This ensures that quality is built into the software product
from the beginning and that defects are caught and corrected as early as possible. Here are some ways that quality
activities can be integrated into the project life cycle:

1. Planning Phase

In this phase, the project team should establish quality objectives and define the quality requirements for the
software product. Quality planning activities may include identifying quality standards, establishing quality
metrics, and creating a quality management plan.

2. Requirements Gathering Phase

In this phase, the project team should ensure that quality is built into the requirements gathering process.
This may involve defining acceptance criteria, conducting stakeholder interviews to gather requirements, and
ensuring that requirements are clear, complete, and testable.

3. Design Phase

In this phase, the project team should ensure that the software design meets quality standards and is
appropriate for the intended use of the product. This may involve conducting design reviews, evaluating
design alternatives, and ensuring that the design is modular, maintainable, and extensible.

4. Implementation Phase

In this phase, the project team should ensure that the code meets quality standards and that defects are
caught and corrected as early as possible. Quality activities in this phase may include code reviews, unit
testing, and integration testing.

5. Testing Phase

In this phase, the project team should ensure that the software product meets quality standards and that
defects are identified and corrected. Quality activities in this phase may include functional testing, performance
testing, and security testing.

6. Deployment Phase

In this phase, the project team should ensure that the software product is deployed correctly and that end-
users are satisfied with the quality of the product. Quality activities in this phase may include user acceptance
testing, customer feedback, and post-deployment support.

By integrating quality activities into each phase of the software development process, the project team can
ensure that quality is built into the software product from the beginning. This helps to reduce the overall cost of
quality and improve customer satisfaction by delivering a high-quality software product that meets the needs of
end-users.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

43
Rahul Publications

UNIT
III

Software Quality Metrics, Costs of Software Quality, Quality Management Standards

- ISO 9000 and Companion ISO Standards, CMM, CMMI, PCMM, Malcom Balridge,

3 Sigma, 6 Sigma, SQA Project Process Standards – IEEE Software Engineering

Standards.

3.1 SOFTWARE QUALITY METRICS

Q1. Explain briefly about software quality
Metrics.

Ans : (Imp.)

Software quality metrics are quantitative measures
used to evaluate and assess the quality of software
products or processes. These metrics provide a way to
objectively measure and track the performance of
software development, testing, and maintenance
activities.

Here are some common software quality metrics:

1. Defect density: The number of defects identified
in the software per unit of size (e.g., per line of
code).

2. Code coverage: The percentage of code that
has been executed during testing.

3. Test case coverage: The percentage of test cases
that have been executed.

4. Code complexity: The complexity of the
software code, as measured by metrics such as
cyclomatic complexity or the number of code
paths.

5. Response time: The time taken by the system
to respond to user input.

6. Mean time between failures (MTBF): The
average time between failures in the software.

7. Mean time to repair (MTTR): The average
time taken to repair the software after a failure.

8. User satisfaction: User satisfaction with the
software, as measured by surveys or other
feedback mechanisms.

9. Time to market: The time taken to release the
software to the market.

10. Resource utilization: The resources (e.g., CPU,
memory) used by the software during operation.

These metrics can be used to track the progress
of software development, identify areas for improvement,
and ensure that the software meets the required quality
standards. However, it’s important to note that metrics
should be used in conjunction with other quality
assurance techniques, such as code reviews and testing,
to ensure that software quality is maintained at all stages
of the development process.

3.1.1 Costs of Software Quality
Q2. Write about the costs of software quality

Ans : (Imp.)

The major objectives of software quality metrics
includes the management to achieve economic control
over SQA activities and outcomes.

The specific objectives are:

 Control organization-initiated costs to
prevent and detect software errors.

 Evaluation of the economic damages of
software failures as a basis for revising the
SQA budget.

 Evaluation of plans to increase or decrease
SQA activit ies or to invest in SQA
infrastructure on the basis of past economic
performance.

The model further subdivides these classes into
subclasses:

Costs of Control

Prevention costs: Investments in quality
infrastructure and quality activities that are not directed
to a specific project or system. Appraisal costs: The costs
of activities performed for a specific project or software
system for the purpose of detecting software errors.

MCA II YEAR III SEMESTER

44
Rahul Publications

Costs of Failure of Control

Internal failure costs: Costs of correcting errors
that have been detected by design reviews, software tests
and acceptance tests and completed before the software
is installed at customer sites. External failure costs: All
costs of correcting failures detected by customers or the
maintenance team after the software system has been
installed.

Prevention costs include investments in
establishing a software quality infrastructure, updating
and improving that infrastructure as well as performing
the regular activities required for its operation.

(a) Investments in development of SQA infrastructure
components

 Procedures and work instructions

 Support devices: templates, checklists etc

 Software configuration management system

 Software quality metrics

(b) Regular implementation of SQA preventive
activities

 Instruction of new employees in SQA
subjects

 Certification of employees

(c) Control of the SQA system through performance
of

 Internal quality reviews

 External quality audits

 Management quality reviews

Appraisal costs are devoted to detection of
software errors in specific projects or software systems.

Typical appraisal costs cover:

(a) Costs of reviews

 Formal design reviews (DRs)

 Peer reviews (inspections and walkthroughs)
Expert reviews

(b) Costs of software testing

 Unit, integration and software system tests

 Acceptance tests (carried out by customers)

(c) Costs of assuring quality of external participants
by means of design reviews and software testing.
These activities are applied to the activities
performed by

 Subcontractors

 Suppliers of COTS software systems and
reusable software modules

 The customer as a participant in performing
the project.

Internal Failure Costs consists of the Costs of
redesign or design corrections subsequent to design review
and test findings, Costs of re-programming or correcting
programs in response to test findings, Costs of repeated
design review and re-testing (regression tests). External
failure costs entail the costs of correcting failures detected
by customers or maintenance teams after the software
system has been installed at customer sites.

Typical external failure costs cover: Resolution of
customer complaints during the warranty period.
Correction of software bugs detected during regular
operation. Correction of software failures after the
warranty period is over even if the correction is not covered
by the warranty.

In the extended model for cost of the software
quality it analyses the software quality costs defined by
the classic model which reveals that several costs of
substantial magnitude are excluded. Typical software
quality failure costs include:

 Damages paid to customers as compen-
sation for late completion of the project due
to unrealistic scheduling.

 Damages paid to customers in compen-
sation for late completion of the project as
a result of failure to recruit sufficient staff.

The element common to these two failures is that
they result not from any particular action of the
development team or any lack of professionalism; they
are actually outcomes of Managerial failure.

Managerial preparation and control costs are
associated with activities performed to prevent
managerial failures or reduce prospects of their
occurrence. Managerial failure costs can be incurred
throughout the entire course of software development,
beginning in the pre-project stage.

In order to apply a cost of software quality system
in an organization, the following are required

 Definition of a cost of software quality model
and specification of cost items: the
organization should select the classic or
extended model.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

45
Rahul Publications

 Definition of the method of data collection
for each cost item: use of Management
Information Systems (MIS) in place.

 Application of a cost of software quality
system, including thorough follow up.

 Actions taken in response to the model’s
findings.

At a preliminary stage in a project, the
organization has to choose its type of cost model – the
classic or the extended model. Effectiveness of the
selected model is determined to a great degree by its
suitability for the organization or project of the cost items
designed to be measured for the model.

Each item should belong to one of the subclasses
comprising the cost model. Once the list of software
quality cost items is finalized, a method for collecting
the relevant data must be determined.

QUALITY MANAGEMENT

3.2 STANDARDS - ISO 9000 AND

COMPANION ISO STANDARDS

Q3. Write ISO 9000 standards for quality
management

Ans : (Imp.)

ISO 9000 is defined as a set of international
standards on quality management and quality assurance
developed to help companies effectively document the
quality system elements needed to maintain an efficient
quality system. They are not specific to any one industry
and can be applied to organizations of any size.

ISO 9000 can help a company satisfy its
customers, meet regulatory requirements, and achieve
continual improvement. It should be considered to be a
first step or the base level of a quality system.

ISO 9000 series of Standards

The ISO 9000 family contains these standards:

 ISO 9001:2015: Quality Management
Systems - Requirements

 ISO 9000:2015: Quality Management
Systems - Fundamentals and Vocabulary
(definitions)

 ISO 9004:2018: Quality Management -
Quality of an Organization - Guidance to
Achieve Sustained Success (continuous
improvement)

 ISO 19011:2018: Guidelines for Auditing
Management Systems

ASQ is the only place where organizations can
obtain the American National Standard Institute (ANSI)
versions of these standards in the ISO 9000 family.

ISO 9000 history and revisions: ISO 9000:2000,
2008, and 2015

ISO 9000 was first published in 1987 by the
International Organization for Standardization (ISO), a
specialized international agency for standardization
composed of the national standards bodies of more than
160 countries. The standards underwent revisions in 2000
and 2008. The most recent versions of the standard,
ISO 9000:2015 and ISO 9001:2015, were published in
September 2015.

ASQ administers the U.S. Technical Advisory
Groups and subcommittees that are responsible for
developing the ISO 9000 family of standards. In its
standards development work, ASQ is accredited by
ANSI.

ISO 9000:2000

ISO 9000:2000 refers to the ISO 9000 update
released in the year 2000.

The ISO 9000:2000 revision had five goals:

 Meet stakeholder needs

 Be usable by all sizes of organizations

 Be usable by all sectors

 Be simple and clearly understood

Connect quality management system to business
processes

ISO 9000:2000 was again updated in 2008 and
2015. ISO 9000:2015 is the most current version.

ISO 9000:2015 principles of Quality Management

The ISO 9000:2015 and ISO 9001:2015
standards are based on seven quality management
principles that senior management can apply to promote
organizational improvement.

Customer Focus

Understand the needs of existing and future
customers

Align organizational objectives with customer
needs and expectations

 Meet customer requirements

MCA II YEAR III SEMESTER

46
Rahul Publications

 Measure customer satisfaction

 Manage customer relationships

 Aim to exceed customer expectations

Leadership

Establish a vision and direction for the
organization

 Set challenging goals

 Model organizational values

 Establish trust

 Equip and empower employees

 Recognize employee contributions

Engagement of People

Ensure that people’s abilities are used and valued

 Make people accountable

 Enable participation in continual
improvement

 Evaluate individual performance

 Enable learning and knowledge sharing

 Enable open discussion of problems and
constraints

Process Approach

 Manage activities as processes

 Measure the capability of activities

 Identify linkages between activities

 Prioritize improvement opportunities

 Deploy resources effectively

Improvement

Improve organizational performance and
capabilities

 Align improvement activities

 Empower people to make improvements

 Measure improvement consistently

 Celebrate improvements

Evidence-based decision making

Ensure the accessibility of accurate and reliable
data

 Use appropriate methods to analyze data

 Make decisions based on analysis

 Balance data analysis with practical
experience

Relationship Management

 Identify and select suppliers to manage
costs, optimize resources, and create value

 Establish relationships considering both the
short and long term

 Share expertise, resources, information, and
plans with partners

 Collaborate on improvement and
development activities

 Recognize supplier successes

3.3 CMM

Q4. What is the Capability Maturity Model
(CMM)? Explain.

Ans : (Imp.)

Capability Maturity Model (CMM) was developed
by the Software Engineering Institute (SEI) at Carnegie
Mellon University in 1987. It is not a software process
model.

It is a framework that is used to analyze the
approach and techniques followed by any organization
to develop software products. It also provides guidelines
to enhance further the maturity of the process used to
develop those software products.

It is based on profound feedback and
development practices adopted by the most successful
organizations worldwide. This model describes a strategy
for software process improvement that should be
followed by moving through 5 different levels. Each level
of maturity shows a process capability level. All the levels
except level 1 are further described by Key Process Areas
(KPA).

Importance of Capability Maturity Model

 Optimization of Resources: CMM helps
businesses make the best use of all of their
resources, including money, labor, and time.
Organizations can improve the effectiveness of
resource allocation by recognizing and getting rid
of unproductive practices.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

47
Rahul Publications

 Comparing and Evaluating: A formal
framework for benchmarking and self-evaluation
is offered by CMM. Businesses can assess their
maturity levels, pinpoint their advantages and
disadvantages, and compare their performance
to industry best practices.

 Management of Quality: CMM emphasizes
quality management heavily. The framework
helps businesses apply best practices for quality
assurance and control, which raises the quality
of their goods and services.

 Enhancement of Process: CMM gives
businesses a methodical approach to evaluate
and enhance their operations. It provides a road
map for gradually improving processes, which
raises productivity and usefulness.

 Increased Output: CMM seeks to boost
productivity by simplifying and optimizing
processes. Organizations can increase output and
efficiency without compromising quality as they
go through the CMM levels.

Principles of Capability Maturity Model (CMM)

 People’s capability is a competitive issue.
Competition arises when different organizations
are performing the same task (such as software
development). In such a case, the people of an
organization are sources of strategy and skills,
which in turn results in better performance of the
organization.

 The people’s capability should be defined by the
business objectives of the organization.

 An organization should invest in improving the
capabilities and skills of the people as they are
important for its success.

 The management should be responsible for
enhancing the capability of the people in the
organization.

 The improvement in the capability of people
should be done as a process. This process should
incorporate appropriate practices and procedures.

 The organization should be responsible for
providing improvement opportunities so that
people can take advantage of them.

 Since new technologies and organizational
practices emerge rapidly, organizations should
continually improve their practices and develop
the abilities of people.

Shortcomings of the Capability Maturity Model
(CMM)

 It encourages the achievement of a higher
maturity level in some cases by displacing the
true mission, which is improving the process and
overall software quality.

 It only helps if it is put into place early in the
software development process.

 It has no formal theoretical basis and in fact, is
based on the experience of very knowledgeable
people.

 It does not have good empirical support and this
same empirical support could also be constructed
to support other models.

 Difficulty in measuring process improvement: The
SEI/CMM model may not provide an accurate
measure of process improvement, as it relies on
self-assessment by the organization and may not
capture all aspects of the development process.

 Focus on documentation rather than outcomes:
The SEI/CMM model may focus too much on
documentation and adherence to procedures,
rather than on actual outcomes such as software
quality and customer satisfaction.

 May not be suitable for all types of organizations:
The SEI/CMM model may not be suitable for all
kinds of organizations, particularly those with
smaller development teams or those with less
structured development processes.

 May not keep up with rapidly evolving
technologies: The SEI/CMM model may not be
able to keep up with rapidly evolving technologies
and development methodologies, which could
limit its usefulness in certain contexts.

 Lack of agility: The SEI/CMM model may not be
agile enough to respond quickly to changing
business needs or customer requirements, which
could limit its usefulness in dynamic and rapidly
changing environments.

Key Process Areas (KPA)

Each of these KPA (Key Process Areas) defines
the basic requirements that should be met by a software
process to satisfy the KPA and achieve that level of
maturity.

MCA II YEAR III SEMESTER

48
Rahul Publications

Conceptually, key process areas form the basis
for management control of the software project and
establish a context in which technical methods are
applied, work products like models, documents, data,
reports, etc. are produced, milestones are established,
quality is ensured and change is properly managed.

Q5. Explain the levels of CMM.

Ans :
Levels of Capability Maturity Model (CMM)

There are 5 levels of Capability Maturity Models.
We will discuss each one of them in detail.

- Process Change Management
- Technology Change Management
- Defect Prevention

- Software Quality Management
- Quantitative Management

- Peer Reviews
- Inter-Group Coordination
- Organization Process Definition
- Organization Process Focus
- Training Programs

- Project Planning
- Configuration Management
- Requirements Management
- Sub-contract Management
- Software Quality Assurance

- No KPA's

Level - 5

Level – 4

Level – 3

Level – 2

Level – 1

Optimizing

Managed

Defined

Repeatable

Initial

- Process Change Management
- Technology Change Management
- Defect Prevention

- Software Quality Management
- Quantitative Management

- Peer Reviews
- Inter-Group Coordination
- Organization Process Definition
- Organization Process Focus
- Training Programs

- Project Planning
- Configuration Management
- Requirements Management
- Sub-contract Management
- Software Quality Assurance

- No KPA's

Level - 5

Level – 4

Level – 3

Level – 2

Level – 1

Optimizing

Managed

Defined

Repeatable

Initial

CMM

Level-1: Initial

 No KPIs defined.

 Processes followed are Adhoc and immature and
are not well defined.

 Unstable environment for software development.

 No basis for predicting product quality, time for
completion, etc.

 Limited project management capabilities, such
as no systematic tracking of schedules, budgets,
or progress.

 We have limited communication and coordination
among team members and stakeholders.

 No formal training or orientation for new team
members.

 Little or no use of software development tools or
automation.

 Highly dependent on individual skills and
knowledge rather than standardized processes.

 High risk of project failure or delays due to a lack
of process control and stability.

Level-2: Repeatable

 Focuses on establishing basic project management
policies.

 Experience with earlier projects is used for
managing new similar-natured projects.

 Project Planning- It includes defining resources
required, goals, constraints, etc. for the project.
It presents a detailed plan to be followed
systematically for the successful completion of
good-quality software.

 Configuration Management- The focus is on
maintaining the performance of the software
product, including all its components, for the entire
lifecycle.

 Requirements Management- It includes the
management of customer reviews and feedback
which result in some changes in the requirement
set. It also consists of accommodation of those
modified requirements.

 Subcontract Management- It focuses on the
effective management of qualified software
contractors i.e. it manages the parts of the
software developed by third parties.

 Software Quality Assurance- It guarantees a good
quality software product by following certain rules
and quality standard guidelines while developing.

Level-3: Defined

 At this level, documentation of the standard
guidelines and procedures takes place.

 It is a well-defined integrated set of project-specific
software engineering and management processes.

 Peer Reviews: In this method, defects are removed
by using several review methods like walkthroughs,
inspections, buddy checks, etc.

 Intergroup Coordination: It consists of planned
interactions between different development teams
to ensure efficient and proper fulfillment of
customer needs.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

49
Rahul Publications

 Organization Process Definition: Its key focus is
on the development and maintenance of
standard development processes.

 Organization Process Focus: It includes activities
and practices that should be followed to improve
the process capabilities of an organization.

 Training Programs: It focuses on the enhancement
of knowledge and skills of the team members
including the developers and ensuring an increase
in work efficiency.

Level-4: Managed

 At this stage, quantitative quality goals are set
for the organization for software products as well
as software processes.

 The measurements made help the organization
to predict the product and process quality within
some limits defined quantitatively.

 Software Quality Management: It includes the
establishment of plans and strategies to develop
quantitative analysis and understanding of the
product’s quality.

 Quantitative Management: It focuses on
controlling the project performance quantitatively.

Level-5: Optimizing

 This is the highest level of process maturity in
CMM and focuses on continuous process
improvement in the organization using
quantitative feedback.

 The use of new tools, techniques, and evaluation
of software processes is done to prevent the
recurrence of known defects.

 Process Change Management: Its focus is on the
continuous improvement of the organization’s
software processes to improve productivity, quality,
and cycle time for the software product.

 Technology Change Management: It consists of
the identification and use of new technologies to
improve product quality and decrease product
development time.

 Defect Prevention It focuses on the identification
of causes of defects and prevents them from
recurring in future projects by improving project-
defined processes.

3.4 CMMI

Q6. What is Capability Maturity Model
Integration (CMMI)?

Ans : (Imp.)

Capability Maturity Model Integration (CMMI) is
a successor of CMM and is a more evolved model that
incorporates best components of individual disciplines
of CMM like Software CMM, Systems Engineering CMM,
People CMM, etc.

Since CMM is a reference model of matured
practices in a specific discipline, so it becomes difficult
to integrate these disciplines as per the requirements.
This is why CMMI is used as it allows the integration of
multiple disciplines as and when needed.

Objectives of CMMI

1. Fulfilling customer needs and expectations.

2. Value creation for investors/stockholders.

3. Market growth is increased.

4. Improved quality of products and services.

5. Enhanced reputation in Industry.

CMMI Representation – Staged and Continuous

A representation allows an organization to pursue
a different set of improvement objectives. There are two
representations for CMMI :

Staged Representation

 uses a pre-defined set of process areas to define
improvement path.

 provides a sequence of improvements, where each
part in the sequence serves as a foundation for
the next.

 an improved path is defined by maturity level.

 maturity level describes the maturity of processes
in organization.

 Staged CMMI representation allows comparison
between different organizations for multiple
maturity levels.

Continuous Representation

 allows selection of specific process areas.

 uses capability levels that measures improvement
of an individual process area.

MCA II YEAR III SEMESTER

50
Rahul Publications

 Continuous CMMI representation allows
comparison between different organizations on a
process-area-by-process-area basis.

 allows organizations to select processes which
require more improvement.

 In this representation, order of improvement of
various processes can be selected which allows
the organizations to meet their objectives and
eliminate risks.

Q7. Discuss the various levels of CMMI.

Ans :
CMMI Model – Maturity Levels

In CMMI with staged representation, there are
five maturity levels described as follows :

1. Maturity level 1 : Initial

 processes are poorly managed or controlled.

 unpredictable outcomes of processes
involved.

 ad hoc and chaotic approach used.

 No KPAs (Key Process Areas) defined.

 Lowest quality and highest risk.

2. Maturity level 2 : Managed

 requirements are managed.

 processes are planned and controlled.

 projects are managed and implemented
according to their documented plans.

 This risk involved is lower than Initial level,
but still exists.

 Quality is better than Initial level.

3. Maturity level 3 : Defined

 processes are well characterized and
described using standards, proper
procedures, and methods, tools, etc.

 Medium quality and medium risk involved.

 Focus is process standardization.

4. Maturity level 4 : Quantitatively managed

 quantitative objectives for process
performance and quality are set.

 quantitative objectives are based on
customer requirements, organization needs,
etc.

 process performance measures are analyzed
quantitatively.

 higher quality of processes is achieved.

 lower risk

5. Maturity level 5 : Optimizing

 continuous improvement in processes and
their performance.

 improvement has to be both incremental
and innovative.

 highest quality of processes.

 lowest risk in processes and their
performance.

Q8. Explain briefly about CMMI model.

Ans : (Imp.)

CMMI Model – Capability Levels

A capability level includes relevant specific and
generic practices for a specific process area that can
improve the organization’s processes associated with that
process area. For CMMI models with continuous
representation, there are six capability levels as described
below :

1. Capability level 0 : Incomplete

 incomplete process – partially or not
performed.

 one or more specific goals of process area
are not met.

 No generic goals are specified for this level.

 this capability level is same as maturity
level 1.

2. Capability level 1 : Performed

 process performance may not be stable.

 objectives of quality, cost and schedule may
not be met.

 a capability level 1 process is expected to
perform all specific and generic practices
for this level.

 only a start-step for process improvement.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

51
Rahul Publications

inconsistent business activities, to a complete,
mature phase that includes proper development
of skills and working practices to benefit the
organization.

 Using the PCMM framework, the organization can
benefit from their business activities and find the
critical people issues which they face in the
organization while doing their working activities.

 The framework guides the organization to develop
the people’s skill set, knowledge set and solve all
the [people issues for improving the organisation’s
business activities.

 The PCMM framework includes the five stages
for achieving the goal: the initial level, managed
level, defined level, predictable level, and
optimizing level.

 All these levels help the organization achieve its
desired goals and objectives and compete with
other organizations in the market.

Methods of PCMM

In the PCMM framework, five methods help in
continuous improvement of the knowledge set, skill set,
development of effective methods, and improve the
people mindset for the organisation’s benefit. These five
methods are 5 maturity level which has its own
importance which is used for defining the capability and
develop the capability within the organization.

The 5 PCMM maturity level are defined below:

1. Initial Level

This phase deals with inconsistent management.
In this stage, there are no defined process areas.
At this level, the organization process is ritualistic
and inconsistent. The process is disorganized
because they are not properly defined and
documented, and the organization growth is
dependent on individual efforts.

The process is not also in the repeatable
phase because of not properly defined. The people
of an organization have the skill set, but they
don’t know how to use them properly for the
organization, and they also have a less emotional
attachment towards the organization. That’s the
main reason for inconsistency in the process that
occurred in the working organization.

3. Capability level 2 : Managed

 process is planned, monitored and
controlled.

 managing the process by ensuring that
objectives are achieved.

 objectives are both model and other
including cost, quality, schedule.

 actively managing processing with the help
of metrics.

4. Capability level 3 : Defined

 a defined process is managed and meets
the organization’s set of guidelines and
standards.

 focus is process standardization.

5. Capability level 4 : Quantitatively Managed

 process is controlled using statistical and
quantitative techniques.

 process performance and quality is
understood in statistical terms and metrics.

 quantitative objectives for process quality
and performance are established.

6. Capability level 5 : Optimizing

 focuses on continually improving process
performance.

 performance is improved in both ways –
incremental and innovation.

 emphasizes on studying the performance
results across the organization to ensure that
common causes or issues are identified and
fixed.

3.5 PCMM

Q9. What is PCMM? Explain various methods
of PCMM.

Ans : (Imp.)

 The PCMM is a working framework used for the
organization in defining the maturity structure for
improving and developing the skill set of people
who work within the organization.

 The PCMM framework defines the complete path
from starting an initial phase, which includes

MCA II YEAR III SEMESTER

52
Rahul Publications

2. Managed Level

This phase deals with the actual process of people
management. In this stage, the managers play a
crucial role in developing the workforce practice
in the people.

They follow different practices like operating
performance, staffing, adjusting the compen-
sation to maintain the discipline and acquire the
managed level. All these activities are performed
repeatedly by the manager to be done, which
could be beneficial for the organization.

The organization set certain goals, objectives
that every person who works for the organization
needs to meet and work with full efficiency. All
these practices are done at the unit level, and the
organization handles the performance and the
skill set for developing this capability in the people.

All the process areas which are included in
the managed level of the PCMM framework are
training development, work environment,
performance management, staffing, compen-
sation, and communication coordination within
the organization.

3. Defined Level

The defined level is the third phase of the PCMM
framework, and this phase deals with the process
named competency management. The aim of
this stage is to develop the competency skills in
the organization so that it can work well so that
the organization can compete with other
organizations for better business activities.

The organization has a role in maintaining
a proper workforce so that it can achieve
competency and do proper business activities
within the organization.

The workforce competency includes the
strategic workforce competency and improved
workforce competency. In strategic workforce
competency, it includes the activity which can
benefit both present and future business activities.

The improved workforce competency is
beneficial for the organization as it can be
important for the betterment of the skill set and
practices involved in the organisation’s business
activities. And in this level, the organization of
the proper documentation defines the standards
and integrates the process for achieving its business
objectives.

4. Predictable Level

The predictable level is the fourth phase of the
PCMM framework. At this level, the organization
handles the capability, which is developed in an
earlier phase so that it can achieve its working
requirements.

At this level, the organization develops
enough skill set to handle the performance of the
business activity and manage the working capacity
within the organization.

As the capability is developed, the
organization can predict the capability and
working capacity as the competency methods
have been done in an earlier phase. The prediction
of capacity will help the organization and help to
better business activities within the organization.

5. Optimizing Level

The optimizing level is the last phase of the PCMM
framework. In this stage, the whole organization
is more focused on the continuous improvement
of business activity in the organization.

Continuous improvement, it can benefit both
the working groups and individuals and maintain
the working efficiency within the organization. In
this stage, the organization looks at the results of
all other stages so that improvement can be done
in that business activities, which can be beneficial
for the organization.

3.6 MALCOM BALRIDGE

Q10. What is Malcom Balridge? Explain.

Ans :
The Malcolm Baldrige National Quality Award

(MBNQA) is a national award in the United States that
is given annually to businesses, education institutions,
healthcare organizations, and nonprofit organizations that
have demonstrated outstanding performance in the areas
of leadership, strategic planning, customer focus,
measurement, analysis and knowledge management,
workforce focus, and operations focus.

The award was created by the US Congress in
1987 and is named after Malcolm Baldrige, who served
as the US Secretary of Commerce from 1981 to 1987.
The award is managed by the National Institute of
Standards and Technology (NIST), an agency of the US
Department of Commerce.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

53
Rahul Publications

The MBNQA criteria are based on a set of seven categories, which are further divided into a total of 18
subcategories. The categories are:

1. Leadership: This category assesses how senior leaders guide the organization and how they create a vision
for the future.

2. Strategic Planning: This category assesses how the organization sets strategic objectives and goals and
how it aligns its resources to achieve them.

3. Customer Focus: This category assesses how the organization listens to and understands its customers’
needs and expectations.

4. Measurement, Analysis, and Knowledge Management: This category assesses how the organization
collects and analyzes data to support performance improvement and how it manages its knowledge assets.

5. Workforce Focus: This category assesses how the organization engages and develops its workforce and
how it creates a positive work environment.

6. Operations Focus: This category assesses how the organization designs, manages, and improves its key
operational processes.

7. Results: This category assesses the organization’s performance results, including customer satisfaction,
financial performance, and employee satisfaction.

The MBNQA criteria provide a framework for organizations to assess and improve their performance.
Organizations can use the criteria to identify areas for improvement, set goals, and measure their progress over
time. By applying the criteria, organizations can become more customer-focused, efficient, and effective, leading to
increased competitiveness and long-term success.

3.7 3 SIGMA

Q11. Write about 3 sigma?

Ans :
3 sigma is a statistical calculation that measures the predictability of outcomes by showing data that is three

standard deviations from the mean. It’s used in software engineering and other commercial applications to indicate
that processes are running smoothly and producing high-quality products:

Quality standard

3 sigma yields a quality standard of 93.319%.

Control limits

3 sigma limits are used to set the upper and lower control limits in statistical quality control charts.

Error rate

For 3 sigma, the error rate is three parts per million, or 66,807 defective parts.

Performance

3 sigma is considered a good level of performance for most processes and products.

Deviation causes

3 sigma allows organizations to examine the causes of deviation and determine if they can be known or
unknown.

While 3 sigma is an effective quality assurance method, some operations may require a higher level of
accuracy. For example, in the medical sector, a process must attain at least Six Sigma level to be considered
acceptable.

MCA II YEAR III SEMESTER

54
Rahul Publications

3.8 6 SIGMA

Q12. What is Six Sigma? Explain the Characteristics of Six Sigma.

Ans :
Six Sigma is a methodology used by most organizations for process improvement, and It is a statistical

concept that aims to define the variation found in any process. Six Sigma is a process of producing high and
improved quality output. This can be done in two phases – identification and elimination. The cause of defects is
identified and appropriate elimination is done, which reduces variation in whole processes. Six Sigma processes
have a failure rate of only 3.4 per million opportunities i.e. 99.99966 percent of Six Sigma products are free from
defect, while Five Sigma processes have a failure rate of only 233 errors per million opportunities.

Lower
Specification
Limit Mean

Upper
Specification
Limit

99.997%
Defect Free

3.4 Defects
per million

3.4 Defects
per million

-6 -5 -4 -3 -2 -1 -0 -1 -2 -3 -4 -5 -6

Six Sigma Curve

Lower
Specification
Limit Mean

Upper
Specification
Limit

99.997%
Defect Free

3.4 Defects
per million

3.4 Defects
per million

-6 -5 -4 -3 -2 -1 -0 -1 -2 -3 -4 -5 -6

Six Sigma Curve

Characteristics of Six Sigma

The Characteristics of Six Sigma are as follows:

1. Statistical Quality Control: Six Sigma is derived from the Greek Letter ? which denote Standard Deviation
in statistics. Standard Deviation is used for measuring the quality of output.

2. Methodical Approach: The Six Sigma is a systematic approach of application in DMAIC and DMADV
which can be used to improve the quality of production. DMAIC means for Design-Measure- Analyze-
Improve-Control. While DMADV stands for Design-Measure-Analyze-Design-Verify.

3. Fact and Data-Based Approach: The statistical and methodical method shows the scientific basis of the
technique.

4. Project and Objective-Based Focus: The Six Sigma process is implemented to focus on the requirements
and conditions.

5. Customer Focus: The customer focus is fundamental to the Six Sigma approach. The quality improvement
and control standards are based on specific customer requirements.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

55
Rahul Publications

6. Teamwork Approach to Quality Management: The Six Sigma process requires organizations to get
organized for improving quality.

Statistical Quality Control

Methodical Approach

Fact and Data-based Approach

Project and Objective - Based Focus

Customer Focus

Teamwork Approach to Quality Management

Characteristics of Six Sigma

Statistical Quality Control

Methodical Approach

Fact and Data-based Approach

Project and Objective - Based Focus

Customer Focus

Teamwork Approach to Quality Management

Characteristics of Six Sigma

Q13. Explain the 6 Key Principals of Six Sigma.

Ans : (Imp.)

Organizations can enhance their sigma level by integrating Six Sigma principles into leadership, process
management, and improvement efforts. Some Common Six Sigma Principals are:

1. Customer Centric Improvement

The primary principal of six sigma methodology is to focus on customer. Voice of the Customer (VoC) and
methods for determining what the customer truly want from a product or process. Organizations can boost
customer happiness by combining that knowledge with measurements, analytics, and process improvement
approaches, resulting in higher profits, client retention, and loyalty.

2. Continuous Process Improvement

The Six Sigma approach requires constant process improvement. An organization that fully implements the
Six Sigma technique never stops improving. It continuously discovers and priorities opportunities. Once one
area has been improved, the organization will move on to another. The organization continuously find ways
to increase the signa level because the goal is to achieve the level of 99.99966 accuracy for all processes
inside an organization while also making sure other essentials like financial stability.

MCA II YEAR III SEMESTER

56
Rahul Publications

3. Reduce Variation

A method to continuously improve a process is to reduce its variation. Every process has an inherit variation.
Variation in processes can lead to errors, these errors can lead to product defect and product defect can
leads to poor customer satisfaction. By reducing variation and errors six sigma can reduce process cost and
increase customer satisfaction.

Suppose there are some developers developing web application, variation will exist as every developer
have different coding styles, expertise levels, environment factors and project requirement. By adopting
strategies like coding standards and guideline, code reviews, automated testing and documentation variation
can be reduce to some extent.

4. Eliminating Waste

Waste is a major problem in the six sigma methodology. Eliminating waste means removing items, procedures
or people that are not required for the process’s outcome or removing anything that does not add value to
customer. Eliminating waste can reduce processing time, errors in process and lowers overall costs.

5. Empowering Employees

Until organizations provide employees with the tools they need to monitor and sustain improvements,
implementing improved processes is only a temporary solution. Process improvement usually involves two
approaches in most organizations. An improvement is first defined, planned, and carried out by a process
improvement team consisting up of project managers, methodology specialists, and subject matter experts.
The employees that deal with the process on a daily basis are then equipped by that team to supervise and
handle it in its improved condition.

6. Controlling the Process

Six Sigma improvements are frequently used to handle uncontrolled processes. Out-of-control processes
meet certain statistical conditions. The purpose of improvement is to bring a process back under statistical
control. Then, after the improvements are implemented, measurements, statistics, and other Six Sigma
tools are utilized to keep the process under control. Implementing controls and training people on how to
apply them is a key component of continuous improvement.

Q14. Explain various methodologies of six sigma

Ans : (Imp.)

The Six Sigma Methodology

The Two Six Sigma methodologies used in the Six Sigma projects are DMAIC and DMADV. Six Sigma
teams usually use DMAIC or DMADV approaches to achieve process improvements and establish process control.

DMAIC Six Sigma Methodology

DMAIC is used to enhance an existing business process. A DMAIC project involves identifying important
problem that are creating the problem, verifying those problem , brainstorming solutions, implementing them, and
designing a control plan to maintain the improved state. The DMAIC methodology is designed for the team who
are responsible for improving a project. DMAIC phases allow flexibility, that helps the team to fit their activities. If
a process need to completely replaced or redesigned for user experience in such case team can use DMADV
method.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

57
Rahul Publications

DMAIC Six Sigma Methodology

The DMAIC project methodology has five phases:

1. Define

2. Measure

3. Analyze

4. Improve

5. Control

Let’s see the explanation of each phase:

1. Define

The Define phase of a DMAIC project involves identifying problems, establishing project requirements, and
setting success goals. Six Sigma leaders can use tools inside the phase to create flexibility for different project
types, depending on factors such as leadership advice and budgets.

2. Measure

During the DMAIC Measure phase, teams use data to validate assumptions about the process and problem.
Validation of assumptions also makes it into the analysis step. The measurement phase focuses on collecting
and arranging data for analysis. Measuring in a Six Sigma project might be challenging without proper data
collection. To gather data, teams may need to build tools, create queries, filter through large amounts of
information, or use manual processes.

3. Analyze

Analyze phase is a critical stage where the root causes of problems or inefficiencies within a process are
identified and understood. During the Analyze phase of a DMAIC project, teams develop predictions about
relationships between inputs and outputs, use statistical analysis and data to validate the prediction and
assumptions they’ve made thus far. In a DMAIC project, the Analyze phase leads to the Improve phase,
where hypothesis testing can confirm assumptions and potential solutions.

MCA II YEAR III SEMESTER

58
Rahul Publications

4. Improve

During the Improve phase of a project, Six Sigma
teams begin developing the concepts that came
from the Analyze phase. They employ statistics
and real-world observations to test assumptions
and solutions.

As teams select and start implementing
solutions, hypothesis testing keeps going
throughout the enhance phase. It starts in the
analyse phase.

5. Control

In DMAIC Phase Controls and standards are
established so that improvements can be
maintained, but the responsibility for those
improvements is transitioned to the process owner.

DMADV Six Sigma Methodology

DMADV is used to create new product designs or
process designs. Six Sigma teams use DMADV in the
following scenario:

 The organization wants to launch a new service
or product.

 Business leaders decide to replace a process to
meet upgrade requirements or to align business
processes, machinery, or workers with future
goals.

 A Six Sigma team learns that upgrading a process
is unlikely to result in the expected project
outcomes.

DMADV Methodology

DMADV Six Sigma Methodology

The DMADV project methodology also has five
phases:

1. Define

2. Measure

3. Analyze

4. Design

5. Verify

1. Define

In a DMADV project, the Define stage is slightly
more strict. Teams must identify problems and
define requirements within a change management
environment. When an organization has a change
management program in place, Six Sigma teams
must include all program needs in the DMADV
stages.

2. Measure

During the DMADV Measure phase, teams use
data to validate assumptions about the process
and problem. Validation of assumptions also
makes it into the analysis step. The measurement
phase focuses on collecting and arranging data
for analysis.

3. Analyze

Analyze phase is a critical stage where the root
causes of problems or inefficiencies within a
process are identified and understood. They
priorities identifying best practices and standards
for measuring and designing new processes.

4. Design

The fourth phase is when DMADV projects start
to vary significantly from DMAIC projects. The
team designs a new process that includes solution
testing, mapping, workflow principles, and
infrastructure development.

5. Verify Phase

The Verify phase in DMADV checks if the designed
solutions work as intended, measuring their
success against initial goals, ensuring improve-
ments are effective and sustainable.

The primary difference between DMAIC and
DMADV in terms of team goals and project
outcomes. Both methodology aims to deliver
better quality, better efficiency, more production,
more profits and provide excellent customer
satisfaction.

IMPORTANT QUESTIONS SOFTWARE QUALITY AND TESTING

59
Rahul Publications

Six Sigma Certification

A Six Sigma certification demonstrates practical knowledge and execution of the methodology. Some
organizations provide internal certification methods. Most Six Sigma certifications are obtained through online or
onsite training courses.

3.9 SQA PROJECT PROCESS STANDARDS

Q15. Explain about SQA project protocol standards.

Ans : (Imp.)

SQA project protocol standards are a set of guidelines and best practices that are used to ensure the quality
of software development projects. These standards provide a framework ‘for project management, development
processes, and quality assurance activities.

The SQA project protocol standards cover various aspects of the software development life cycle, from
planning and requirements analysis to design, development, testing, and maintenance. Some of the” key areas
covered by these standards include:

1. Project Planning

This includes defining project objectives, requirements, and scope, as well as identifying stakeholders, resources,
and timelines.

2. Requirements Analysis

This involves eliciting, documenting, and verifying the functional and non-functional requirements of the
software system.

3. Design and Development

This includes creating a detailed design specification, implementing the software code, and conducting peer
reviews to ensure code quality.

4. Testing

This involves developing and executing test plans to ensure that the software meets the specified requirements
and is free from defects.

5. Maintenance

This includes managing change requests, tracking defects and issues, and implementing updates and patches
to the software.

Adhering to SQA project protocol standards can help ensure that software development projects are well-
planned, well-managed, and well-executed. These standards can also help improve the quality of the software
being developed, reduce the risk of project failure, and increase customer satisfaction. Ultimately, SQA project
protocol standards can help organizations develop software that meets the needs of their users and delivers value to
their business.

3.10 IEEE SOFTWARE ENGINEERING STANDARDS

Q16. Explain about IEEE Software engineering standards.

Ans : (Imp.)

IEEE (Institute of Electrical and Electronics Engineers) Software Engineering Standards are a set of guidelines
and best practices that are used to ensure the quality of software development processes and products. These
standards cover various aspects of the software development life cycle, from requirements analysis to testing and
maintenance.

MCA II YEAR III SEMESTER

60
Rahul Publications

Some of the key IEEE Software Engineering Standards include:

1. IEEE 830-1998: This standard defines the format and content of software requirements specifications.

2. IEEE 1012-2012: This standard provides guidelines for software verification and validation processes.

3. IEEE 12207-2008: This standard provides a framework for software life cycle processes, including planning,
implementation, and maintenance.

4. IEEE 1471-2000: This standard provides a framework for describing the architecture of a software system.

5. IEEE 1-5288-2015: This standard provides a framework for system and software engineering life cycle
processes.

Adhering to IEEE Software Engineering Standards can help ensure that software development projects are
well-planned, well-managed, and well-executed.

These standards can also help improve the quality of the software being developed, reduce the risk of project
failure, and increase customer satisfaction. Ultimately, IEEE Software Engineering Standards can help organizations
develop software that meets the needs of their users and delivers value to their business.

UNIT - IV SOFTWARE QUALITY AND TESTING

61
Rahul Publications

UNIT
IV

Building a Software Testing Strategy, Establishing a Software Testing Methodology,
Determining Your Software Testing Techniques, Eleven – Step Software Testing Process
Overview, Assess Project Management Development Estimate and Status, Develop
Test Plan, Requirements Phase Testing, Design Phase Testing, Program Phase Testing,
Execute Test and Record Results, Acceptance Test, Report Test Results, Test Software
Changes, Evaluate Test Effectiveness.

4.1 BUILDING A SOFTWARE TESTING

STRATEGY

Q1. What is a Test Strategy? Explain the benefits
of test strategy.

Ans :
Meaning of Test Strategy

A test strategy outlines the approach, goals, and
standards for testing activities within a project. It provides
a structured framework for defining testing scope,
objectives, methodologies, and tools, ensuring
consistency and alignment with project requirements.

Benefits

Following are the benefits of test strategy:

i) Clarity and Consistency

A test strategy provides a clear structure and
standardized approach for testing activities, ensuring that
every team member understands the objectives, scope,
and expectations. This clarity reduces confusion, aligns
team efforts, and maintains consistency across all testing
phases, from initial planning to final execution.

ii) Risk Mitigation

A well-defined test strategy helps prevent issues
that could compromise the quality or delay the release
of the software by identifying potential risks and setting
up contingency plans early. Proactively addressing high-
risk areas enables the team to focus on critical
functionalities, thus minimizing the impact of potential
setbacks on the project.

iii) Resource Efficiency

A test strategy allocates resources such as tools,
personnel, and time more effectively. The strategy helps
teams prioritize testing activities based on project needs,
avoiding redundant efforts and optimizing team capacity.
Efficient resource management helps cost savings and
prevents unnecessary delays in the testing lifecycle.

iv) Stakeholder Alignment

A test strategy is a communication tool for aligning
the testing approach with stakeholder expectations.
Defining the goals, methods, and scope of testing keeps
project managers, developers, and stakeholders
informed, ensuring everyone is on the same page about
testing objectives and outcomes.

v) Enhanced Quality Assurance

A strategic approach to testing ensures
comprehensive coverage of functionalities, reducing the
likelihood of undetected issues in production. This
structured methodology enhances the overall quality of
the software by focusing on thorough validation and
verification that is aligned with user requirements.

Q2. What is to Include in a Test Strategy Docu-
ment? Explain.

Ans : (Imp.)

A comprehensive test strategy document guides
the testing process and ensures alignment among team
members and stakeholders. Key elements to include are:

Scope of Testing

 Define the areas of the application that will
undergo testing, outlining both included and
excluded features.

 Specify the testing boundaries, including any
limitations affecting testing, like time constraints
or restricted access to certain system parts.

Testing Objectives

 Clearly state the goals for the testing phase, such
as ensuring compatibility, performance, functio-
nality, or security.

 Include specific success criteria or benchmarks to
indicate the objectives met.

MCA II YEAR III SEMESTER

62
Rahul Publications

Testing Approach and Methodology

 Describe the approach for different types of testing
(e.g., functional, performance, regression, security)
and how each type aligns with the objectives.

 Outline whether tests will be manual, automated,
or combined, and provide reasoning for the
selected methods.

 Include details on the testing phases (unit,
integration, system, and acceptance testing) and
how they will be executed.

Test Environment Setup

 Specify the environments where testing will occur
(e.g., development, staging, production-like) and
detail any setup requirements.

 List hardware and software configurations,
operating systems, network specifications, and
any dependencies required for consistent test
results.

Resource Allocation and Roles

 Identify key roles and responsibilities, assigning
specific tasks to team members involved in
testing.

 Include any additional resources like third-party
vendors, consultants, or external testing teams.

Q3. Explain the Software Testing Strategy
Document.

Ans :
A software testing strategy document is a

comprehensive plan that outlines the testing approach,
goals, scope, resources, and timelines for a software
project. Acting as a reference for all stakeholders involved
in testing, this document ensures a unified understanding
of the overall testing strategy. It clarifies the testing scope,
types of testing to be conducted, test deliverables, and
criteria for test completion.

Types of Software Testing Strategies

An appropriate test strategy in software testing is
vital for effective quality assurance. Here are some
common types:

1. Analytical Approach: Analyze requirements,
risks, and critical functionalities to determine the
testing scope and prioritize test activities
accordingly.

2. Model-Based Approach: Utilize modeling
techniques to create test models that represent
system behavior, interactions, and expected
outcomes, facilitating strategic test planning and
execution.

3. Regression-Based Approach: Focus on
ensuring that modifications or enhancements to
the software do not introduce new defects or
impact existing functionalities. Regression test
strategy in software testing validates system
stability after changes.

4. Risk-Based Approach: Direct efforts to the test
strategy in software testing to areas of the software
deemed high-risk based on factors like impact,
probability, and criticality. This approach
optimizes resource allocation and prioritization
of testing activities.

5. Agile Testing Strategy: This approach aligns
with the Agile methodology, emphasizing iterative
and incremental testing throughout development.
It involves close collaboration between testers,
developers, and stakeholders, enabling continuous
feedback and frequent testing cycles.

6. Exploratory Testing Strategy: Exploratory test
strategy in software testing is an approach where
testers actively explore the application under test,
focusing on learning, investigation, and discovery.
This strategy involves less pre-planning and more
real-time test design, allowing flexibility and
adaptability to uncover unexpected defects.

7. User-Centric Testing Strategy: This strategy
places the end-user at the center of the testing
process. Testers simulate real-world user scenarios
and interactions to validate the application’s
usability, accessibility, and overall user experience.
Usability testing, user acceptance testing (UAT),
and beta testing are standard techniques employed
in this strategy.

8. Compliance-Based Testing Strategy:
Compliance-base test strategy in software testing
are crucial in the industries such as healthcare or
finance. These strategies ensure that the software
meets regulatory standards, legal requirements,
and industry-specific guidelines. Compliance
testing often involves validating data privacy,
security measures, and adherence to industry-
specific regulations.

UNIT - IV SOFTWARE QUALITY AND TESTING

63
Rahul Publications

9. Continuous Testing Strategy: Continuous test strategy in software testing is a DevOps and Agile-oriented
approach that emphasizes integrating testing throughout the software development lifecycle. It involves
running automated tests continuously, incorporating them into the CI/CD pipeline, and providing quick
feedback on software quality. Continuous testing enables faster releases, early bug detection, and improved
collaboration between development and testing teams.

10. Crowdtesting Strategy: Crowdtesting involves harnessing a community of external testers who test the
software across various devices, platforms, and real-world conditions. This strategy leverages testers’ diversity
and unique perspectives to uncover defects that may go unnoticed with traditional in-house testing teams.
Crowdtesting can provide valuable insights from a broader user perspective.

Q4. Explain briefly about building a software testing strategy?

Ans :
Building a software testing strategy is essential for ensuring the quality of software products. A testing

strategy outlines the testing approach, test methodologies, and test processes that ‘will be used to evaluate software
quality. Here are some steps to consider when building a software testing strategy:

1. Define testing objectives: The first step in building a testing strategy is to define the objectives of the
testing effort. The objectives should be specific and measurable and should be aligned with the overall goals
of the software project.

2. Identify testing scope: Once the objectives are defined, you need to identify the scope of the testing effort.
This can include the types of testing to be performed, the testing environments to be used, and the testing
resources needed.

3. Determine testing methodologies: The next step is to determine the testing methodologies to be used.
This can include automated testing, manual testing, exploratory testing, regression testing, and performance
testing.

4. Define test processes: Once the testing methodologies are identified, you need to define the test processes
that will be used. This can include test planning, test design, test execution, and test reporting.

5. Define testing metrics: Testing metrics are used to measure the effectiveness of the testing effort. Metrics
can include defect density, test coverage, test case effectiveness, and test cycle time.

6. Define testing tools: Testing tools can help streamline the testing process and improve the accuracy of test
results. Tools can include test management software, automated testing tools, defect tracking systems, and
performance testing tools.

7. Develop a testing schedule: A testing schedule outlines the timeline for testing activities and ensures that
testing is completed within the project timeline.

8. Obtain stakeholder buy-in: Once the testing strategy is developed, it’s important to obtain stakeholder
buy-in to ensure that everyone understands the testing approach and supports the testing effort.

9. Continuously evaluate and improve: Finally, it’s essential to continuously evaluate and improve the
testing strategy. This can include gathering feedback from stakeholders, reviewing testing metrics, and making
changes to the testing approach as needed.

Q5. Differentiate between test strategy and test plan.

Ans : (Imp)

In software testing, Test Strategy and Test Plan are often used interchangeably, but they serve different
purposes within a project.

MCA II YEAR III SEMESTER

64
Rahul Publications

 Test Strategy: This high-level document defines the approach and goals of testing for an organization or a
product. It focuses on the big picture, addressing questions such as what types of testing will be conducted,
the testing objectives, and how quality will be ensured across the development lifecycle. The test strategy is
usually a static document that does not change frequently.

 Test Plan: A test plan, on the other hand, is more detailed and project-specific. It outlines the specific
testing activities for a project or feature, including the scope, schedule, resources, environment, and tasks
required. A test plan is more dynamic and may evolve as the project progresses.

S.No. Nature Test Strategy Test Plan

1. Purpose Defines a high-level testing Details specific testing activities,
approach scope, and schedule

2. Scope Broad and organizational or Narrow, specific to a project or
product-level feature

3. Change Static and rarely updated Dynamic and may evolve as the
Frequency project changes

4. Content Types of testing, risk management Specific test cases, timelines,
approach, tools, quality goals resources, environments, and

responsibilities

5. Ownership Generally crafted by QA leads or Created by the test manager or QA
test architects team specific to a project

Q6. Explain how a test strategy document enhances project outcomes ?

Ans : (Imp.)

Creating a test strategy document offers several benefits for software development projects. Consider the
following advantages:

i) Clear Direction: The test strategy document provides a clear direction and roadmap for the testing effort,
ensuring all team members are aligned and working towards common objectives.

ii) Efficient Resource Utilization: By outlining the required resources, such as personnel, tools, and
environments, the test strategy document helps allocate resources effectively, optimizing the testing process.

iii) Risk Mitigation: The document identifies potential risks and mitigation strategies, enabling proactive risk
management and reducing the impact of potential issues on the project.

iv) Test Coverage and Quality: A well-defined test strategy document ensures comprehensive test coverage,
addressing the software’s functional and non-functional aspects. This leads to higher software quality and
reduces the likelihood of critical issues escaping production.

v) Enhanced Communication: The test strategy document serves as a communication tool, providing
stakeholders with a common understanding of the testing approach, timelines, and expectations. It promotes
effective collaboration and transparency among team members.

Q7. What are the key components of a software testing strategy document template.

Ans :
To create an effective software testing strategy document, consider incorporating the following components:

i) Introduction: Provide an overview of the document, including its purpose, intended audience, and project
background.

UNIT - IV SOFTWARE QUALITY AND TESTING

65
Rahul Publications

ii) Test Objectives: Clearly define the goals and
objectives of the testing effort, aligning them with
the project’s overall objectives.

iii) Testing Scope: Specify the testing boundaries,
including the features, functionalities, platforms,
and environments to be covered.

iv) Test Approach: Outline the high-level strategy
and techniques to be employed during testing,
such as manual testing, automated testing, or
both.

v) Test Deliverables: Enumerate the artifacts and
documentation to be produced during the testing
process, such as test plans, test cases, and test
reports.

vi) Test Schedule and Timeline: Provide a timeline
for testing activities, including milestones,
dependencies, and estimated effort for each
testing phase.

vii) Resource Allocation: Specify the resources
required for testing, encompassing personnel,
hardware, software, and tools.

viii) Risk Assessment: Identify potential risks and
mitigation strategies associated with testing,
ensuring proactive risk management.

ix) Test Environment: Describe the necessary test
environment setup, including hardware, software,
network configurations, and data requirements.

x) Exit Criteria: These are the predefined conditions
that must be met to conclude the testing process,
such as a specific defect density threshold or
completion of a predefined set of test cases.

Q8. What are the steps to develop a test strategy
document.

Ans :
The Steps to Develop a Software Testing Strategy

Document Now that we understand the significance of
a test strategy document, let’s explore the step-by-step
process of creating one:

Step 1: Define the Testing Goals and Objectives

 Clearly define the goals as well as the objectives
of the testing effort.

 Understand the project requirements, business
goals, and user expectations to align testing
activities accordingly.

Step 2: Identify the Testing Scope

 Define the testing boundaries, including the
modules or functionalities to be tested, the test
levels, and the types of testing required.

 Determine any exclusions or limitations in the
testing scope.

Step 3: Determine the Testing Approach

 Choose the appropriate testing approaches and
techniques based on the project requirements and
objectives.

 Consider risk, complexity, and the software
development lifecycle model being used.

Step 4: Specify the Test Environment and
Infrastructure

 Identify the hardware, software, and network
configurations needed for testing.

 Determine if any specialized tools or resources
are required and plan their procurement or setup.

Step 5: Define the Test Data Management
Strategy

 Establish guidelines for test data creation,
identification of data dependencies, and data
management practices.

 Ensure data security, privacy, and compliance with
relevant regulations.

Step 6: Outline the Test Execution and Repor-
ting Process

 Detail the test execution methodology, including
creating test cases, test execution cycles, and
defect tracking.

 Specify the reporting formats, metrics, and KPIs
to measure the testing progress and quality.

Step 7: Develop the Test Automation Strategy
Document

 Identify the areas suitable for test automation and
outline the implementation strategy.

 Choose appropriate tools, define the framework,
and allocate resources for test automation.

Step 8: Address Risks and Mitigation Strategies

 Identify potential risks and challenges in the testing
process.

 Devise mitigation strategies to minimize the impact
of risks on project timelines and deliverables.

MCA II YEAR III SEMESTER

66
Rahul Publications

Step 9: Define Test Deliverables and Exit Criteria

 Specify the expected test deliverables, including test plans, cases, reports, and other artifacts.

 Establish the criteria for deciding when testing can be considered complete.

4.2 ESTABLISHING A SOFTWARE TESTING METHODOLOGY

Q9. What are Testing Methodologies? Explain.

Ans : (Imp.)

Testing methodologies are the strategies and approaches used to evaluate a particular product to ensure it
performs as expected and is easy to use. Testing methodologies usually involve testing that the product works in
accordance with its specification, has no undesirable side effects when used in ways outside of its design parameters,
and will fail safely in the worst-case scenario.

Software Testing Methodologies

Software testing methodologies, then, are the different tactics to ensure that a software application is fully
dependable, secure, and vetted. They encompass everything from unit testing individual modules, integration
testing an entire system, or specialized forms of testing such as security and performance.

Importance of Software Testing Methodologies

As software applications get ever more complex (accelerated even more by AI innovations in recent years)
and intertwined with the large number of different platforms and devices required to test, it is more important than
ever to have a robust and efficient testing methodology. This can ensure that software products and systems being
developed have been fully assessed, meet their specified requirements, and can successfully operate in all the
anticipated environments (with the required usability and security of course).

Without the proper development and testing methodologies for modern software, projects will inevitably go
over budget, take longer than necessary, and not meet stakeholder expectations.

Functional & Non-Functional Testing

When it comes to software testing, there are two primary categories that sub-processes of every testing
methodology fall into. These buckets are functional and non-functional tests:

 Functional Testing: Typically broken down into four components (unit testing, integration testing, system
testing, and acceptance testing), this verifies that the functions and features of the software work as intended.

UNIT - IV SOFTWARE QUALITY AND TESTING

67
Rahul Publications

 Non-Functional Testing: On the other hand, non-functional testing involves testing basically everything
else like performance and customer expectations (also known as the ‘-ilities’ because they all end in ‘-ility’ —
i.e. vulnerability, scalability, usability).

Testing Methodologies & Models

Now that we have a foundation for why choosing the right testing methodology for your project is so critical
and the broad categories they can fall under, let’s discuss each major model in more detail:

Waterfall Methodology

The most rigid of the methodologies we’ll discuss today, waterfall development and testing uses sequential
steps to plan, execute, and maintain software. The next step can only be started once its predecessor has been
completed, with the five predefined stages being:

 Requirements

 Design

 Implementation

 Verification

 Maintenance

Beginning with the first step, requirements like testing objectives, draft documents, testing strategy, and all
other pieces are gathered and defined. A design is then selected and approved by someone tasked with making final
decisions. The development team will then implement the design plan that was selected. After this, QA testing and
stakeholders will verify the application’s functionality and performance, followed by continual maintenance post-
launch.

Because of its rigid documentation and planning, this methodology is best suited for small applications
rather than larger, more complex projects that might undergo extensive or frequent changes.

MCA II YEAR III SEMESTER

68
Rahul Publications

V-Model

The Verification and Validation Method is also known as the V-Model due to the shape of the diagram it’s
typically depicted by. Considered an extension or variant of the waterfall model, it follows a V-shape that’s broken
into two sections (verification and validation), or the “legs” of the V.

In the first phase, the model starts with a static verification process that covers analysis and planning on
business requirements, system design, architecture design, and module design. From there, these pieces are used in
the coding phase to develop the application. Once the coding phase is complete, the validation phase evaluates
and tests the pieces from the verification phase.

Benefits

 Errors can be caught early in development

 Rigidity is effective for smaller projects and applications

Drawbacks

 While errors can be identified early on, there isn’t a defined way to resolve them

 Not suitable for larger, more complex projects

 Can’t overlap steps (as with waterfall development)

 Once a module has entered the testing phase, you can’t go back

Iterative Methodology

UNIT - IV SOFTWARE QUALITY AND TESTING

69
Rahul Publications

Unlike the waterfall methods, iterative development centers around breaking down a project into its smaller
components, where each is then iterated and tested before merging into a final product. The cycles for each
component mimic a full development cycle, from planning and design to testing and deployment.

Iterative development is very data-driven and uses the results of each test cycle for the next iteration created.
It’s ideal for flexible applications where requirements are loosely defined and scalability is an important factor.

Agile Testing Methodology

Based on the idea of iterative development, agile methodologies (such as Scrum or Kanban) use rapid,
incremental cycles, referred to as sprints. Rather than the only completed work being delivered at the end of the
process like iterative development, agile delivers these incremental deliverables throughout the process.

Additionally, agile allows stages to overlap and includes frequent communication with stakeholders to continually
refine requirements and other important factors. Each cycle (or sprint) is tested thoroughly to create a deliverable
that can be presented to stakeholders and adapted with feedback.

Q10. Explain, how to establish software testing methodologies

Ans :
Establishing software testing methodologies involves creating a structured framework to ensure that a software

application meets its requirements, is free of defects, and functions as intended.

Here’s a step-by-step guide to setting up software testing methodologies:

1. Understand Project Requirements

 Collaborate with stakeholders to gather and analyze functional and non-functional requirements.

 Create use cases, user stories, and acceptance criteria for clarity on the expected behavior of the
software.

2. Define Testing Objectives

 Purpose: Identify what testing should achieve (e.g., defect identification, performance validation,
compliance testing).

 Scope: Determine the aspects of the application to be tested (e.g., functionality, security, usability).

3. Choose a Testing Methodology

There are several methodologies to consider based on project needs:

 Waterfall Testing: Sequential testing aligned with the development lifecycle.

 Agile Testing: Continuous testing integrated into Agile development sprints.

 DevOps/CI-CD Testing: Automated and continuous testing within CI/CD pipelines.

 V-Model Testing: Verification and validation occur in parallel with development.

MCA II YEAR III SEMESTER

70
Rahul Publications

4. Establish Testing Types

Define and incorporate various types of testing:

 Unit Testing: Verifies individual compo-
nents or modules.

 Integration Testing: Tests interactions
between integrated modules.

 System Testing: Examines the entire
application for functionality and perfor-
mance.

 Acceptance Testing: Validates the soft-
ware against user requirements.

 Regression Testing: Ensures new changes
do not break existing functionality.

 Non-Functional Testing: Includes perfor-
mance, security, usability, and scalability
testing.

5. Create a Testing Strategy

Develop a strategy that outlines:

 Tools: Selection of tools for manual and
automated testing (e.g., Selenium, JIRA,
TestNG).

 Environment: Define test environments
and configurations.

 Schedule: Align testing phases with the
development timeline.

 Metrics: Establish key performance indica-
tors (KPIs) like defect density, test coverage,
and pass rates.

6. Test Plan Development

Draft a detailed test plan that includes:

 Objectives, scope, and assumptions.

 Testing deliverables (test cases, test scripts,
test reports).

 Responsibilities of team members.

 Risks and mitigation strategies.

7. Test Case Design

 Develop detailed test cases covering all
scenarios (positive, negative, edge cases).

 Use techniques like boundary value analysis,
equivalence partitioning, and decision
tables.

8. Implement Automation

 Identify repetitive and critical test cases for
automation.

 Select an automation framework (e.g.,
Data-Driven, Keyword-Driven, or Hybrid).

 Develop and execute automated test scripts.

9. Execute Tests

 Run tests in defined environments.

 Log and track defects using bug-tracking
tools

 Retest fixed defects and conduct regression
testing.

10. Monitor and Evaluate

 Collect and analyze test metrics.

 Identify patterns and areas for improvement
in testing processes.

11. Continuous Feedback and Improvement

 Conduct retrospectives to assess testing
methodologies.

 Incorporate feedback from stakeholders and
testers.

 Update methodologies to adapt to evolving
project requirements or technologies.

12. Documentation

Maintain comprehensive documentation for:

 Test cases and scripts.

 Test execution logs and reports.

 Defect tracking and resolutions.

4.3 DETERMINING YOUR SOFTWARE

TESTING TECHNIQUES

Q11. What are Software Testing Techniques?
Explain.

Ans: (Imp.)

Software testing techniques are methods to check
if a software programworks properly, meets its goals,
and assesses the quality of software.

These techniques include different methods, like
manual testing, where testers check the software, and
automa he software’s internal design, back-end
architecture, components, and business/technical
requirements.

UNIT - IV SOFTWARE QUALITY AND TESTING

71
Rahul Publications

The internet of black-box testing is to find perfor-
mance errors/deficiencies, entire functions missing (if any),
initialization bugs, and glitches that may show up when
accessing any external database.

i) White Box Testing

In White Box Testing, testers verify systems they
are deeply acquainted with, sometimes even ones
they have created themselves. No wonder white
box testing has alternate names like open box
testing, clear box testing, and transparent box
testing.

White box testing is used to analyze systems,
especially when running unit, integration, and
system tests.

ii) Functional Testing

Functional tests are designed and run to verify
every function of a website or app. It checks that
each function works in line with expectations set
out in corresponding requirements documentation.

Example

Tests are created to check the following scenario
– when a user clicks “Buy Now”, does the UI
take them directly to the next required page?

There are multiple sub-sets of function testing,
the most prominent of which are:

iii) Unit Testing

Each individual component is tested before the
developer pushes it for merging. Unit tests are
created and run by the devs themselves.

iv) Integration Testing

Units are integrated and tested to check that they
work together seamlessly.

v) System Testing

All systems elements, hardware and software, are
tested for overall functioning to check that it works
according to the system’s specific requirements.
Regression Testing is a type of System Testing that
is performed before every release.

vi) Acceptance Testing

Often called User Acceptance Testing, this sub-
set of testing puts the software in the hands of a
control group of potential users, and note their
feedback. It’s the app’s first test in a truly real-
world scenario.

vii) Non Functional Testing

It’s in the name. Non functional tests check the
non functional attributes of any software –
performance, usability, reliability, security, quality,
responsiveness, etc. These tests establish software
quality and performance in real user conditions.

Example

Tests are created to simulate high user traffic so
as to check if a site or app can handle peak traffic hours/
days/occasions.

Q12. Explain how to determining your software
testing techniques.

Ans :
Determining the appropriate software testing

techniques in software engineering depends on several
factors, including the project requirements, system
complexity, timelines, and risk assessment. Here’s a
structured approach to selecting the right testing
techniques:

1. Analyze Requirements

 Understand Objectives: Clarify what
needs to be tested (e.g., functionality, perfor-
mance, security).

 Prioritize Features: Identify high-priority
and high-risk areas that require thorough
testing.

2. Assess System Characteristics

 Complexity: Highly complex systems may
require advanced techniques like model-
based testing.

 Integration: Systems with multiple interac-
ting components benefit from integration
testing techniques.

 Criticality: High-stakes systems (e.g.,
medical software) require exhaustive
techniques like formal verification and stress
testing.

3. Identify Test Levels

 Unit Testing: For individual components
or modules, use techniques like white-box
testing (statement and branch coverage).

 Integration Testing: Test interactions
between modules using incremental (top-
down, bottom-up) or big-bang approaches.

MCA II YEAR III SEMESTER

72
Rahul Publications

 System Testing: Ensure the entire system
works as intended, combining functional and
non-functional testing techniques.

 Acceptance Testing: Use user-centered
techniques like exploratory testing or
scenario-based testing.

4. Match Testing Types with Goals

 Functional Testing: Focus on correctness
by testing features against requirements.

 Techniques: Equivalence partitioning,
boundary value analysis, decision table
testing.

 Performance Testing: Evaluate system
performance under load.

 Techniques: Load testing, stress testing,
and soak testing.

 Security Testing: Ensure the system is
protected against threats.

 Techniques: Penetration testing, vulne-
rability scanning.

 Usability Testing: Check for user-
friendliness.

 Techniques: A/B testing, heuristic evalua-
tion.

 Regression Testing: Ensure changes don’t
break existing functionality.

 Techniques: Test suite automation,
selective retesting.

 Exploratory Testing: Find defects using
tester intuition in an unstructured manner.

5. Choose Based on Development
Methodology

Agile Development

 Techniques: Continuous testing, behavior-
driven development (BDD), test-driven
development (TDD).

Waterfall Development

 Techniques: Sequential testing methods
like requirements-based testing and
traceability matrix.

DevOps/CI-CD

 Techniques: Automated testing, API
testing, and end-to-end testing within CI/
CD pipelines.

6. Use Risk-Based Testing

 Identify areas with the highest business or
operational risk.

 Apply techniques like fault-tree analysis,
error guessing, and risk-based prioritization.

7. Leverage Automation

 Identify repetitive, high-volume, or critical
test cases.

 Use automation techniques such as:

 Data-driven testing for multiple input
scenarios.

 Keyword-driven testing for modularity.

 Framework-based automation for scalability.

8. Evaluate Constraints

 Time: Limited time may favor exploratory
testing or risk-based prioritization.

 Budget: Budget constraints may limit
automation or exhaustive testing.

 Resources: The skill level of testers may
influence technique selection.

9. Combine Techniques

For comprehensive coverage, employ a mix of
techniques:

 Functional techniques (e.g., equivalence
partitioning) for functionality.

 Structural techniques (e.g., code coverage)
for code-level testing.

 Error-based techniques (e.g., error guessing)
for fault-prone areas.

10. Monitor and Adjust

 Track test effectiveness and defect detection
rates.

 Optimize techniques based on feedback and
test outcomes.

UNIT - IV SOFTWARE QUALITY AND TESTING

73
Rahul Publications

4. Test Environment Setup

Objective: Prepare the environment where testing
will be conducted.

Activities

 Configure hardware, software, and network
settings.

 Ensure access to required tools, test data,
and servers.

 Validate the environment with a sanity
check.

5. Test Case Development

Objective: Develop detailed and executable test
cases and scripts.

Activities

 Write test cases for all identified scenarios.

 Develop automated test scripts if applicable.

 Review test cases for coverage and correct-
ness.

6. Test Data Preparation

Objective: Create or acquire the data needed
for executing test cases.

Activities

 Generate test data for positive, negative,
and edge cases.

 Anonymize or mask production data if used.

 Ensure the data aligns with test scenarios.

7. Test Execution

Objective: Execute test cases and record the
results.

Activities

 Run manual and automated test cases.

 Log defects in a tracking system for failed
tests.

 Retest fixed defects and conduct regression
testing.

8. Defect Reporting and Tracking

Objective: Log, prioritize, and monitor defects
until resolution.

Activities

 Document defects with details (e.g., steps
to reproduce, environment, severity).

4.4 ELEVEN STEP SOFTWARE TESTING

PROCESS OVERVIEW

Q13. Explain to briefly about Eleven step
software testing process.

Ans : (Imp.)

The Eleven-Step Software Testing Process provides
a structured approach to ensure systematic and thorough
testing of software applications. Each step is critical in
identifying, addressing, and preventing defects. Here’s
an overview of the process:

1. Requirement Analysis

Objective: Understand and analyze requirements
to determine testable features.

Activities

 Collaborate with stakeholders to gather
functional and non-functional requirements.

 Identify ambiguities or unclear specifications.

 Create a requirements traceability matrix
(RTM).

2. Test Planning

Objective: Develop a comprehensive plan
outlining the testing strategy, scope, and schedule.

Activities

 Define testing objectives, scope, and
deliverables.

 Allocate resources, roles, and responsibilities.

 Select tools and technologies for testing.

 Identify risks and create mitigation strategies.

3. Test Design

Objective: Design test cases and scenarios based
on the requirements.

Activities

 Use techniques like boundary value analysis,
equivalence partitioning, and decision
tables.

 Create test data and define expected results.

 Prioritize test cases based on risk and
criticality.

MCA II YEAR III SEMESTER

74
Rahul Publications

 Collaborate with developers for defect
resolution.

 Retest after fixes and verify the closure of
defects.

9. Test Result Analysis

Objective: Evaluate test outcomes to assess
software quality.

Activities

 Analyze pass/fail rates and defect trends.

 Measure metrics like test coverage, defect
density, and time-to-fix.

 Identify areas needing additional testing.

10. Test Closure

Objective: Finalize and document the testing
process.

Activities

 Prepare a test summary report with findings
and recommendations.

 Archive test cases, data, and scripts for
future use.

 Conduct a retrospective to gather lessons
learned.

11. Continuous Improvement

Objective: Enhance the testing process for future
projects.

Activities

 Analyze feedback from stakeholders and
testers.

 Identify inefficiencies and optimize proces-
ses.

 Update templates, tools, and practices
based on new insights.

Benefits of the Eleven-Step Process

 Ensures thorough test coverage and defect
detection.

 Provides clear accountability and traceability.

 Aligns testing with project goals and timelines.

 Facilitates continuous improvement for long-term
quality.

4.5 ASSESS PROJECT MANAGEMENT

DEVELOPMENT ESTIMATE AND

STATUS

Q14. Discuss the Assess Project Management
Development Estimate and Status.

Ans : (Imp.)

Assessing project management development
estimates and status involves evaluating the accuracy
of time, cost, and resource predictions and monitoring
the progress of a project against its planned objectives.
Here’s how you can approach this systematically:

1. Assess Initial Development Estimates

Objective: Verify the accuracy and feasibility of
original project estimates.

Activities

(i) Review Project Scope

 Validate the alignment of scope with
estimates.

 Identify any assumptions or const-
raints in the estimation process.

(ii) Examine Estimation Techniques

 Determine whether techniques like
analogous estimation, parametric
modeling, or expert judgment were
used.

 Check if historical data or industry
bench-marks were applied.

(iii) Breakdown of Tasks

 Ensure the work breakdown structure
(WBS) is granular enough for
accurate estimates.

(iv) Resource Allocation

 Evaluate the availability and
capability of assigned resources.

 Output: Documented analysis of
estimation accuracy and recommen-
dations for adjustments.

2. Monitor Current Status

Objective: Measure progress against baseline
plans.

UNIT - IV SOFTWARE QUALITY AND TESTING

75
Rahul Publications

Activities

(i) Track Milestones

Compare achieved milestones to the project
schedule.

Identify delays and their causes.

(ii) Evaluate Resource Usage

Check resource utilization rates against
planned allocation.

Identify overuse or underuse of resources.

3. Cost Performance

 Measure actual costs against budgeted costs
using earned value management (EVM)
metrics like:

 Cost Performance Index (CPI): CPI=EV/
AC\text{CPI} = \text{EV} / \text{AC} CPI
= EV/AC

 Schedule Performance Index (SPI): SPI =
EV/PV\text{SPI} = \text{EV} / \text {PV}
SPI = EV/PV

 Determine if the project is under or over
budget.

4. Quality Checks

 Ensure deliverables meet quality standards.

 Identify defects or rework needs.

 Output: Status reports highlighting devia-
tions, risks, and corrective actions.

3. Identify Risks and Issues

Objective: Proactively manage potential threats
to project success.

Activities

(i) Risk Assessment

Update the risk register with new risks.

Assess the impact of identified risks on the
timeline and budget.

(ii) Issue Resolution

Track issues using an issue log.

Prioritize and resolve issues in alignment
with project objectives.

Output: Updated risk and issue manage-
ment plan.

4. Reassess and Reforecast

Objective: Adjust plans to reflect current project
realities.

Activities

(i) Reforecast Schedule

Use actual progress data to revise future
activity durations.

(ii) Reestimate Costs:

Update budget forecasts based on current
spending trends.

(ii) Optimize Resources

Reassign resources as needed to critical tasks.

Output: Revised project schedule and
budget forecasts.

5. Communicate Status and Recommenda-
tions

Objective: Keep stakeholders informed and
aligned.

Activities

(i) Prepare Reports

 Use visual aids like Gantt charts, burndown
charts, and dashboards to illustrate
progress.

Highlight critical path activities and their
status.

(ii) Stakeholder Meetings

 Conduct regular updates to discuss progress,
risks, and required changes.

(iii) Seek Approvals

 Present revised estimates and get stake-
holder buy-in for necessary adjustments.

Output: Stakeholder-approved updated
project plan.

6. Evaluate Performance Post-Completion

Objective: Learn from project outcomes to
improve future estimates.

Activities

i) Analyze Variances

Compare initial estimates to actual results.
Determine reasons for variances.

ii) Document Lessons Learned:

Capture insights into estimation accuracy
and process inefficiencies.

MCA II YEAR III SEMESTER

76
Rahul Publications

iii) Update Methodologies:

Refine estimation techniques and tools for
future projects.

Output: Comprehensive lessons-learned
document and improved estimation
guidelines.

Tools to Assist in Assessment

 Project Management Tools: Jira, Microsoft
Project, Asana, or Trello.

 Estimation Tools: Function Point Analysis,
COCOMO (Constructive Cost Model).

 Performance Metrics: Earned Value
Management (EVM), Key Performance Indicators
(KPIs).

 Communication Tools: Slack, Zoom, or MS
Teams for stakeholder updates.

4.6 DEVELOP TEST PLAN

Q15. Explain how to develop a test plan.

Ans : (Imp.)

Developing a test plan is a critical aspect of the
software testing process as it outlines the objectives,
scope, approach, and schedule of testing. A test plan
typically includes the following components:

1. Test Objectives: The test objectives define the
purpose and goals cf the testing effort. The
objectives should be specific, measurable, and
achievable, and they should align with the overall
project goals.

2. Test Scope: The test scope defines the
boundaries of the testing effort. It includes the
features, functionalities, and components of the
software that will be tested. The scope should be
well-defined and clearly communicated to all
stakeholders.

3. Test Approach: The test approach defines the
strategies and methods that will be used to test
the software. It includes the types of tests that
will be conducted, such as functional, perfor-
mance, security, and usability testing. The
approach should be based on industry best
practices and should be tailored to the specific
needs of the project.

4. Test Schedule: The test schedule defines the
timeline for the testing effort. It includes the start
and end dates of testing,’ as well as the milestones

and deliverables that need to be achieved during
the testing process. The schedule should be realistic
and take into account any dependencies and
constraints.

5. Test Environment: The test environment defines
the hardware, software, and network configu-
rations that will be used for testing. It includes
the tools and technologies that will be used to
support the testing effort.

6. Test Resources: The test resources include the
people, tools, and equipment that will be required
for testing. It includes the roles and responsibilities
of the testing team members, as well as any
external resources that may be needed.

7. Risk Assessment: The risk assessment identifies
the potential risks and issues that may arise during
testing. It includes the probability and impact of
each risk, as well as the mitigation strategies that
will be used to minimize the risk.

Once the test plan has been developed, it should
be reviewed and approved by all stakeholders, including
the project manager, development team, and testing
team. The test plan should be a living document that is
updated as needed throughout the testing process to
ensure that it remains relevant and effective.

4.7 REQUIREMENTS PHASE TESTING

Q16. Define requirment phase testing. State the
objectives, activities of requirements Phase
Testing.

Ans :
Meanin of requirement phase testing

Requirements Phase Testing is the process of
verifying and validating requirements during the early
stages of software development. The goal is to ensure
that the requirements are clear, complete, consistent,
and testable before proceeding to design and
development. This proactive testing minimizes defects
introduced later in the lifecycle.

Objectives of Requirements Phase Testing

1. Defect Prevention: Identify inconsistencies,
ambiguities, or missing details early.

2. Improved Communication: Ensure a common
understanding among stakeholders.

3. Testability: Confirm that all requirements are
measurable and testable.

UNIT - IV SOFTWARE QUALITY AND TESTING

77
Rahul Publications

4. Risk Mitigation: Reduce the likelihood of costly
changes or rework.

Key Activities in Requirements Phase Testing

1. Requirement Review

 Conduct formal or informal reviews (e.g.,
walkthroughs or inspections).

 Ensure the requirements adhere to quality
attributes like correctness, completeness,
and feasibility.

2. Ambiguity Analysis

 Identify vague terms or unclear statements.

 Use tools like natural language parsers to
spot ambiguous words (e.g.,“fast,” “secure,”
or “user-friendly”).

3. Validation

 Verify that the requirements align with
business objectives and stakeholder needs.

 Check for feasibility given time, budget, and
technical constraints.

4. Traceability Analysis

 Establish a Requirements Traceability Matrix
(RTM) to ensure every requirement can be
traced to a test case, feature, or business
objective.

5. Prototyping and Simulation

 Use prototypes or mockups to clarify require-
ments and uncover hidden expectations.

6. Conflict Resolution
 Resolve contradictions between require-

ments through stakeholder discussions or
prioritization.

7. Test Case Preparation
 Design high-level test cases or acceptance

criteria based on requirements.

 Validate that requirements are testable by
linking them to these test cases.

Q17. Discuss the techniques and challenges of
requirement phasing testing?

Ans :
Techniques for Requirements Phase Testing

1. Peer Reviews

 Team members review each requirement
document for clarity, correctness, and
completeness.

2. Checklist-Based Testing

 Use a predefined checklist to systematically
assess requirements.

 Examples of checklist items:

 Are all functional and non-functional
requirements specified?

 Are dependencies and constraints
documented?

3. Model-Based Testing

 Create models (e.g., use case diagrams, data
flow diagrams) to validate workflows and
scenarios.

4. Use Case Analysis

 Break down requirements into use cases and
validate them for completeness and
testability.

5. Formal Methods

 Apply mathematical models to validate
critical systems, especially in high-risk
domains like healthcare or aviation.

Challenges

1. Ambiguity: Vague or incomplete requirements
make validation difficult.

2. Stakeholder Misalignment: Conflicting
priorities or interpretations among stakeholders.

3. Unrealistic Requirements: Overambitious
goals may not be technically or economically
feasible.

4. Lack of Testability: Some requirements may
lack measurable criteria.

4.8 DESIGN PHASE TESTING

Q18. Define design phase testing. State the
objectives and key activities of design phase
testing?

Ans : (Imp.)

Design Phase Testing is the process of verifying
and validating the design documents and artifacts created
during the software design phase. The goal is to ensure
that the system’s architecture, modules, interfaces, and
database designs align with the requirements and are
technically sound, feasible, and testable.

MCA II YEAR III SEMESTER

78
Rahul Publications

Objectives

1. Defect Detection: Identify design errors,
omissions, or inconsistencies before coding begins.

2. Verification of Requirements Mapping:
Ensure that the design aligns with the validated
requirements.

3. Improve Quality: Enhance the robustness,
maintainability, and scalability of the design.

4. Facilitate Test Planning: Develop test cases and
strategies based on design artifacts.

Key Activities in Design Phase Testing

1. Review Design Artifacts:

 High-Level Design (HLD): Verify the
system architecture, data flow, and module
relationships.

 Low-Level Design (LLD): Validate
detailed module designs, algorithms, and
logic.

 Interface Design: Ensure all external and
internal interfaces are well-defined and
testable.

2. Validation Against Requirements

 Confirm that all functional and non-
functional requirements are covered in the
design.

 Update the Requirements Traceability Matrix
(RTM) to include design-level mappings.

3. Static Testing Techniques

 Conduct walkthroughs and inspections
of design documents to identify defects.

 Use checklist-based reviews for
systematic evaluation of design quality.

4. Scenario Validation

 Test design against real-world scenarios to
ensure completeness and feasibility.

 Validate workflows using UML diagrams like
sequence diagrams and activity diagrams.

5. Database Design Validation

 Check the database schema for normaliza-
tion, relationships, and indexing.

 Validate data integrity, constraints, and
scalability.

6. Risk Analysis

 Assess potential risks in the design, such as
performance bottlenecks or scalability issues.

 Document and address identified risks early.

7. Test Case Design

 Begin creating detailed test cases based on
the design artifacts.

 Develop test scenarios for integration testing
and system testing.

Q19. State the techniques and challenges of
design phase testing?

Ans :
Techniques for Design Phase Testing

1. Peer Reviews and Inspections

 Conduct team reviews of HLD and LLD
documents for accuracy and completeness.

2. Prototyping

 Build prototypes for complex or ambiguous
parts of the design to validate feasibility.

3. Model-Based Testing

 Use UML or ER diagrams to verify that the
system’s logic and workflows meet
requirements.

4. Checklist-Based Testing:

 Examples of checklist items:

 Are all modules and interfaces defined
clearly?

 Are security requirements incorporated into
the design?

 Are error-handling mechanisms included?

5. Static Analysis Tools:

 Use tools like SonarQube or Checkstyle to
analyze the design for maintainability and
scalability.

6. Simulation and Modeling:

 Simulate workflows, data processing, or load
handling using modeling tools.

UNIT - IV SOFTWARE QUALITY AND TESTING

79
Rahul Publications

Common Challenges in Design Phase Testing

1. Ambiguity in Design: Lack of detail or unclear
definitions in design documents.

2. Incomplete Mapping: Missing or incorrectly
mapped requirements.

3. Overlooking Non-Functional Requirements:
Ignoring performance, security, or scalability
aspects.

4. Resource Constraints: Insufficient time or
expertise for detailed design reviews.

4.9 PROGRAM PHASE TESTING

Q20. Define program phase testing. State its
activities and objectives?

Ans :
Meaning of Program Phase Testing

Program Phase Testing refers to testing activities
performed during the coding or implementation phase
of the software development lifecycle. The primary
objective is to ensure that individual components,
modules, or units of the software are developed correctly
and meet their functional and non-functional
requirements before integration.

Objectives

1. Defect Identification: Find and fix coding errors
at the earliest possible stage.

2. Code Verification: Ensure the code adheres to
design specifications and coding standards.

3. Unit Functionality Validation: Test each
module independently for expected functionality.

4. Facilitate Integration: Prepare tested and error-
free units for smooth integration.

Key Activities in Program Phase Testing

1. Unit Testing

 Focus on testing individual units (functions,
methods, or classes).

 Validate that each unit works as intended
in isolation.

 Use tools like JUnit (for Java), pytest (for
Python), or NUnit (for .NET).

2. Static Code Analysis

 Identify issues like code smells, inefficiencies,
or non-adherence to coding standards.

 Use tools like SonarQube, Checkstyle, or
ESLint.

3. Code Reviews and Inspections

 Conduct peer reviews to examine the
quality, correctness, and maintainability of
the code.

 Verify adherence to design documents and
coding standards.

4. Test Case Development

 Write test cases for all code paths, including
edge cases and negative scenarios.

 Create automated tests wherever possible
to streamline regression testing.

5. Debugging

 Use debugging tools to locate and fix issues.

 Ensure proper handling of exceptions and
errors.

6. Test Data Preparation

 Create or use realistic test data to validate
program behavior.

 Ensure test data covers all scenarios,
including edge cases.

7. Code Coverage Analysis

 Measure the percentage of code executed
during tests.

 Aim for high coverage (e.g., 80% or more)
to ensure most paths are tested.

Q21. Discuss the techniques and challenges of
program phase testing?

Ans :
Techniques

1. White-Box Testing

 Test internal structures or workings of the
program.

 Techniques include statement coverage,
branch coverage, path coverage, and
decision coverage.

MCA II YEAR III SEMESTER

80
Rahul Publications

2. Boundary Value Analysis (BVA)

 Test edge conditions to ensure the program
handles them correctly.

3. Equivalence Partitioning

 Divide input data into valid and invalid
partitions and test one value from each
partition.

4. Error Guessing

 Leverage experience to predict where bugs
might occur and test those areas.

5. Automated Testing

 Use frameworks like Selenium, TestNG, or
Robot Framework to automate repetitive
tests.

Common Challenges in Program Phase Testing

1. Incomplete Requirements

 Ambiguity in requirements can lead to
misaligned code and tests.

2. Unrealistic Deadlines

 Pressure to deliver may reduce the time
available for thorough testing.

3. Complex Logic

 Highly complex algorithms can be difficult
to test comprehensively.

4. Dependency Issues

 Units may depend on other modules that
are not yet developed or available.

4.10 EXECUTE TEST AND RECORD RESULTS

Q22. What is Test Execution? Explain the impor-
tance test execution?

Ans :
Meaning of Test Execution

Test Execution is the process of executing the tests
written by the tester to check whether the developed
code or functions or modules are providing the expected
result as per the client requirement or business
requirement. Test Execution comes under one of the
phases of the Software Testing Life Cycle (STLC).

In the test execution process, the tester will usually
write or execute a certain number of test cases, and test
scripts or do automated testing. If it creates any errors
then it will be informed to the respective development
team to correct the issues in the code. If the text execution
process shows successful results then it will be ready for
the deployment phase after the proper setup for the
deployment environment.

Importance of Test Execution

 The project runs efficiently: Test execution
ensures that the project runs smoothly and
efficiently.

 Application competency: It also helps to make
sure the application’s competency in the global
market.

 Requirements are correctly collected: Test
executions make sure that the requirements are
collected correctly and incorporated correctly in
design and architecture.

 Application built in accordance with
requirements: It also checks whether the
software application is built in accordance with
the requirements or not.

Q23. Discuss the Activities for Test Execution.

Ans :
The following are the 5 main activities that should

be carried out during the test execution.

1. Defect Finding and Reporting

Defect finding is the process of identifying the bugs
or errors raised while executing the test cases on
the developed code or modules. If any error
appears or any of the test cases failed then it will
be recorded and the same will be reported to the
respective development team. Sometimes, during
the user acceptance testing also end users may
find the error and report it to the team. All the
recorded details will be reported to the respective
team and they will work on the recorded errors or
bugs.

2. Defect Mapping

After the error has been detected and reported to
the development team, the development team
will work on those errors and fix them as per the
requirement. Once the development team has
done its job, the tester team will again map the
test cases or test scripts to that developed module
or code to run the entire tests to ensure the correct
output.

UNIT - IV SOFTWARE QUALITY AND TESTING

81
Rahul Publications

3. Re-Testing

From the name itself, we can easily understand
that Re-Testing is the process of testing the modules
or entire product again to ensure the smooth
release of the module or product. In some cases,
the new module or functionality will be developed
after the product release. In this case, all the
modules will be re-tested for a smooth release.
So that it cannot cause any other defects after
the release of the product or application.

4. Regression Testing

Regression Testing is software testing that ensures
that the newly made changes to the code or newly
developed modules or functions should not affect
the normal processing of the application or
product.

5. System Integration Testing

System Integration Testing is a type of testing
technique that will be used to check the entire
component or modules of the system in a single
run. It ensures that the whole system will be
checked in a single test environment instead of
checking each module or function separately.

Q24. Discuss the process of test execution.

Ans : (Imp.)

Test Execution Process

The test Execution technique consists of three
different phases which will be carried out to process the
test result and ensure the correctness of the required
results. In each phase, various activities or work will be
carried out by various team members. The three main
phases of test execution are the creation of test cases,
test case execution, and validation of test results.

1. Creation of Test Cases

The first phase is to create suitable test cases for
each module or function. Here, the tester with
good domain knowledge must be required to
create suitable test cases. It is always preferable
to create simple test cases and the creation of
test cases should not be delayed else it will cause
excess time to release the product. The created
test cases should not be repeated again. It should
cover all the possible scenarios raised in the
application.

2. Test Cases Execution

After test cases have been created, execution of
test cases will take place. Here, the Quality
Analyst team will either do automated or manual
testing depending upon the test case scenario. It
is always preferable to do both automated as
well as manual testing to have 100% assurance
of correctness. The selection of testing tools is
also important to execute the test cases.

3. Validating Test Results

After executing the test cases, note down the
results of each test case in a separate file or report.
Check whether the executed test cases achieved
the expected result and record the time required
to complete each test case i.e., measure the
performance of each test case. If any of the test
cases is failed or not satisfied the condition then
report it to the development team for validating
the code.

Q25. Discuss the various Ways to Perform Test
Execution?

Ans : (Imp.)

Testers can choose from the below list of preferred
methods to carry out test execution:

1. Run test cases

It is a simple and easiest approach to run test
cases on the local machine and it can be coupled
with other artifacts like test plans, test suites, test
environments, etc.

2. Run test suites

A test suite is a collection of manual and
automated test cases and the test cases can be
executed sequentially or in parallel. Sequential
execution is useful in cases where the result of
the last test case depends on the success of the
current test case.

3. Run test case execution and test suite
execution records

Recording test case execution and test suite
execution is a key activity in the test process and
helps to reduce errors, making the testing process
more efficient.

4. Generate test results without execution

Generating test results from non-executed test
cases can be helpful in achieving comprehensive
test coverage.

MCA II YEAR III SEMESTER

82
Rahul Publications

5. Modify execution variables

Execution variables can be modified in the test
scripts for particular test runs.

6. Run automated and manual tests

Test execution can be done manually or can be
automated.

7. Schedule test artifacts

Test artifacts include video, screenshots, data
reports, etc. These are very helpful as they
document the results of the past test execution
and provide information about what needs to be
done in future test execution.

8. Defect tracking

Without defect tracking test execution is not
possible, as during testing one should be able to
track the defects and identify what when wrong
and where.

Q26. Explain briefly about test execution
priorities.

Ans : (Imp.)

Test Execution Priorities

Test Execution Priorities are nothing but prioritizing
the test cases depending upon several factors. It means
that it executes the test cases with high efficient first
than the other test cases. It depends upon various factors.
Let us discuss some of the factors to be considered while
prioritizing the test cases.

i) Complexity: The complexity of the test cases
can be determined by including several factors
such as boundary values of test cases, features
or components of test cases, data entry of test
cases, and how much the test cases cover the
given business problem.

ii) Risk Covered: How much risk that a certain
test case may undergo to achieve the result. Risk
in the form of time required to complete the test
case process, space complexity whether it is
executed in the given memory space, etc.,

iii) Platforms Covered: It simply tells that in which
platform or operating system the test cases have
been executed i.e., test cases executed in the
Windows OS, Mac OS, Mobile OS, etc.,

iv) Depth: It covers how depth the given test cases
cover each functionality or module in the
application i.e., how much a given test procedure
covers all the possible conditions in a single
functionality or module.

 Breadth: It covers how the breadth of the given
test cases covers the entire functionality or
modules in the application i.e., how much a given
test procedure covers all the possible conditions
in the entire functionality or modules in the
product or application.

Q27. Explain the concept of test execution cycle.

Ans : (Imp.)

Test Execution Cycle

A test execution cycle is an iterative approach
that will be helpful in detecting errors. The test execution
cycle includes various processes. These are:

1. Requirement Analysis

In which, the QA team will gather all the necessary
requirements needed for test execution. For
example, how many testers are needed, what
automation test tools are needed, what testing
covers under the given budget, etc., the QA team
will also plan depending upon the client or business
requirement.

2. Test Planning

In this phase, the QA team will plan when to
start and complete the testing. Choosing of correct
automation test tool, and testers needed for
executing the test plan. They further plan who
should develop the test cases for which module/
function, who should execute the test cases, how
many test cases needed to be executed, etc.,

3. Test Cases Development

This is the phase in which the QA team assigned
a group of testers to write or generate the test
cases for each module. A tester with good domain
knowledge will easily write the best test cases or
test scripts. Prioritizing the developed test cases
is also the main factor.

UNIT - IV SOFTWARE QUALITY AND TESTING

83
Rahul Publications

4. Test Environment Setup

Test Environment Setup usually differs from
project to project. In some cases, it is created by
the team itself and it is also created by clients or
customers. Test Environment Setup is nothing but
testing the entire developed product with suitable
software or hardware components or with both
by executing all the tests on it. It is essential and
it is sometimes carried out along with the test
case development process.

5. Test Execution

This stage involves test execution by the team
and all the detected bugs are recorded and
reported for remediation and rectification.

6. Test Closure

This is the final stage and here it records the entire
details of the test execution process. It also
contains the end-users testing details. It again
modifies the testing process if any defects are
found during the testing. Hence, it is a repetitive
process.

Q28. State the guidelines for test execution.

Ans :
Guidelines for Test Execution

i) Write the suitable test cases for each module of
the function.

ii) Assign suitable test cases to respective modules
or functions.

iii) Execute both manual testing as well as automated
testing for successful results.

iv) Choose a suitable automated tool for testing the
application.

v) Choose the correct test environment setup.

vi) Note down the execution status of each test case
and note down the time taken by the system to
complete the test cases.

vii) Report all the success status and the failure status
to the development team or to the respective team
regularly.

viii) Track the test status again for the already failed
test cases and report it to the team.

ix) Highly Skilled Testers are required to perform the
testing with less or zero failures/defects.

x) Continuous testing is required until success test
report is achieved.

4.11 ACCEPTANCE TEST

Q29. What is Acceptance Testing? Explain
various types of acceptance testing?

Ans : (Imp)

Meaning of Acceptance Testing

It is formal testing according to user needs,
requirements, and business processes conducted to
determine whether a system satisfies the acceptance
criteria or not and to enable the users, customers, or
other authorized entities to determine whether to accept
the system or not.

Acceptance Testing is the last phase of software
testing performed after System Testing and before making
the system available for actual use.

Types of Acceptance Testing

Here are the Types of Acceptance Testing

1. User Acceptance Testing (UAT)

 User acceptance testing is used to determine
whether the product is working for the user
correctly.

 Specific requirements which are quite often
used by the customers are primarily picked
for testing purposes. This is also termed as
End-User Testing.

2. Business Acceptance Testing (BAT)

 BAT is used to determine whether the
product meets the business goals and
purposes or not.

 BAT mainly focuses on business profits
which are quite challenging due to the
changing market conditions and new
technologies, so the current implementation
may have to being changed which results
in extra budgets.

3. Contract Acceptance Testing (CAT)

 CAT is a contract that specifies that once
the product goes live, within a predetermined
period, the acceptance test must be
performed, and it should pass all the
acceptance use cases.

 Here is a contract termed a Service Level
Agreement (SLA), which includes the terms
where the payment will be made only if the
Product services are in-line with all the
requirements, which means the contract is
fulfilled.

MCA II YEAR III SEMESTER

84
Rahul Publications

 Feedback is collected from the users and
the defects are fixed. Also, this helps in
enhancing the product to give a rich user
experience.

Q30. State the uses, advantages and disad-
vantages of acceptance testing.

Ans :
Use

1. To find the defects missed during the functional
testing phase.

2. How well the product is developed.

3. A product is what actually the customers need.

4. Feedback help in improving the product
performance and user experience.

5. Minimize or eliminate the issues arising from the
production.

Advantages

1. This testing helps the project team to know the
further requirements from the users directly as it
involves the users for testing.

2. Automated test execution.

3. It brings confidence and satisfaction to the clients
as they are directly involved in the testing process.

4. It is easier for the user to describe their
requirement.

5. It covers only the Black-Box testing process and
hence the entire functionality of the product will
be tested.

Disadvantages

4. Users should have basic knowledge about the
product or application.

5. Sometimes, users don’t want to participate in the
testing process.

6. The feedback for the testing takes a long time as
it involves many users and the opinions may differ
from one user to another user.

7. Development team is not participated in this
testing process.

 Sometimes, this contract happens before
the product goes live.

 There should be a well-defined contract in
terms of the period of testing, areas of
testing, conditions on issues encountered at
later stages, payments, etc.

4. Regulations Acceptance Testing (RAT)

 RAT is used to determine whether the
product violates the rules and regulations
that are defined by the government of the
country where it is being released.

 This may be unintentional but will impact
negatively on the business. Generally, the
product or application that is to be released
in the market, has to go under RAT, as
different countries or regions have different
rules and regulations defined by its governing
bodies.

 If any rules and regulations are violated for
any country then that country or the specific
region then the product will not be released
in that country or region.

 If the product is released even though there
is a violation then only the vendors of the
product will be directly responsible.

5. Operational Acceptance Testing (OAT)

 OAT is used to determine the operational
readiness of the product and is non-
functional testing.

 It mainly includes testing of recovery,
compatibility, maintainability, reliability, etc.
OAT assures the stability of the product
before it is released to production.

6. Alpha Testing

 Alpha testing is used to determine the
product in the development testing
environment by a specialized testers team
usually called alpha testers.

7. Beta Testing

 Beta testing is used to assess the product
by exposing it to the real end-users, typically
called beta testers in their environment.

UNIT - IV SOFTWARE QUALITY AND TESTING

85
Rahul Publications

changes can also be challenging, time-consuming, and
complex. How do you test software changes effectively
and efficiently? Here are some strategies and tips to help
you.

Plan your tests

Before you start testing software changes, you
need to have a clear plan of what to test, how to test,
and when to test. A test plan should define the scope,
objectives, criteria, methods, tools, and resources of your
testing activities. It should also align with your project
requirements, specifications, and standards. A test plan
can help you organize your testing process, communicate
your expectations, and track your progress and results.

Use different types of tests

Depending on the nature and scale of your
software changes, you may need to use different types
of tests to verify their quality and functionality. Unit tests,
for example, are small tests that check the logic and
behavior of individual components or functions of your
software. These are usually automated and run
frequently to detect errors early in the development cycle.
Integration tests, on the other hand, check how different
components or modules of your software interact and
work together. System tests, meanwhile, verify the overall
functionality and performance of your software as a
whole. Lastly, regression tests check whether your
software changes have affected or broken any existing
functionality or features. These are usually automated
or semi-automated and run after each change to ensure
that the software remains stable and reliable.

You need to catch bugs or unintended behavior
as early as you can. To achieve this from testing point of
view you can use shift-left testing approach.

Shift-left testing is an approach to software testing
and system testing in which testing is performed earlier
in the development lifecycle. This way your product would
be less prone to errors/bugs.

Apply testing best practices

To test software changes effectively and efficiently,
you should follow some testing best practices, such as
testing early and often, in different environments, with
real data, and with different perspectives. Doing so can
help you identify and fix errors quickly, reduce rework,
improve quality, ensure your software works consistently
and correctly in various conditions and scenarios, simulate
actual user behavior and expectations, and evaluate your
software from multiple angles. Ultimately, this will help
you meet the needs and expectations of different
audiences.

4.12 REPORT TEST RESULTS

Q31. Explain briefly about report test results?

Ans :
Reporting test results is an essential part of the

software testing process. It involves collecting
Widclocumenting information on the test execution,
including the results, defects found, and any relevant
observations. The test results report provides valuable
information to stakeholders, such as the development
team, project manager, and customers, about the quality
of the software.

The following are the key components of a test
results report:

1. Test summary: This provides an overview of the
testing activities, including the number of tests
executed, passed, failed, and blocked.

2. Defect summary: This section provides
information on the defects found during testing,
including their severity, priority, and status. It may
also include any recommendations or suggestions
for resolving the defects.

3. Test coverage: This section describes the test
coverage achieved, including the areas of the
application that were tested, and the percentage
of requirements or functionality that were
covered.

4. Test environment: This section provides
information on the testing environment, including
the hardware and software configurations, tools
used, and any environmental issues encountered
during testing.

5. Test logs: This section includes the detailed logs
of the test execution, including any error mes-
sages, stack traces, or other relevant information.

6. Conclusion: This section provides a summary
of the overall test results and any recommenda-
tions or conclusions based on the-testing activities.

4.13 TEST SOFTWARE CHANGES

Q32. Discuss the concept of test software
changes?

Ans : (Imp.)

Testing software changes is a crucial part of
software development. It ensures that the changes work
as expected, do not introduce new bugs, and do not
break existing functionality. However, testing software

MCA II YEAR III SEMESTER

86
Rahul Publications

3. Interpret the results

After collecting and analyzing the data, you need
to interpret the results to determine the
effectiveness of the testing effort. This can involve
comparing the actual results to the expected
results, identifying any trends or patterns in the
data, and determining the root cause of any issues
or problems.

4. Identify areas for improvement

Based on the evaluation results, you can identify
areas for improvement in the testing process. This
can involve making changes to the testing
approach, tools, or methodologies, or providing
additional training or support to the testing team.

5. Implement improvements

Once you have identified areas for improvement,
you can implement the necessary changes to
improve the effectiveness of the testing process.
This can involve updating the testing plan,
modifying the test cases, or changing the testing
approach.

Review and document your tests

Testing software changes is an essential part of
software development. To ensure quality, you should
review and document your tests. Reviewing your test
results allows you to evaluate the outcomes and impacts
of your software changes, detect any errors or defects,
and prioritize any fixes or improvements. Documenting
your test cases records and organizes your test scenarios,
inputs, outputs, expected results, and actual results -
helping you reuse and update your test cases for future
changes or testing cycles. Additionally, documenting your
test reports helps summarize and communicate your test
findings, conclusions, and recommendations. It also
tracks and measures your test coverage, quality, and
performance. By following these strategies and tips, you
can test software changes more effectively and efficiently
to deliver high-quality software products.

4.14 EVALUATE TEST EFFECTIVENESS

Q33. How do you evaluate the test effectivess?

Ans :
‘Evaluating test effectiveness is an essential step

in the software testing process. It involves measuring
how well the testing activities have achieved their intended
objectives and determining the value of the testing effort.
Test effectiveness evaluation can help identify areas for
improvement and make the testing process more efficient
and effective.

The following are some of the key steps involved
in evaluating test effectiveness:

1. Define the evaluation criteria

To evaluate the test effectiveness, you need to
define the criteria that you will use to measure
the testing results. The evaluation criteria can
include factors such as the number of defects
found, the percentage of test cases passed, the
test coverage achieved, and the time and resources
expended.

2. Collect and analyze data

Once you have defined the evaluation criteria,
you need to collect and analyze the relevant data.
This can involve reviewing the test results, defect
reports, and other documentation to determine
how well the testing objectives were met.

UNIT - V SOFTWARE QUALITY AND TESTING

87
Rahul Publications

UNIT
V

Testing Client / Server Systems, Testing the Adequacy of System Documentation,
Testing Web-based Systems, Testing Off — the — Shelf Software, Testing in a
Multiplatform Environment, Testing Security, Testing a Data Warehouse, Creating
Test Documentation, Software Testing Tools, Taxonomy of’Testing Tools,
Methodology to Evaluate Automated Testing Tools, Load Runner, Win Runner
and Rational Testing Tools, Java Testing Tools, JMelra, JUNIT and Cactus.

 5.1 TESTING CLIENT / SERVER SYSTEMS

Q1. What is Client Server Testing? Discuss the
various scenarios of client serves testing?

Ans :
Client-server testing is a testing approach designed

to verify the accurate and secure exchange of data
between the client and server, guaranteeing that requests
and responses are synchronized correctly.

This testing also involves assessing the system’s
performance, scalability, and resource utilization to
confirm its ability to handle various loads and user
interactions without compromising performance.
Moreover, client-server testing includes functional testing
to ensure that the application’s features and
functionalities operate as expected on both the client
and server sides.

Example Of Client Server Testing

Web applications often utilize client-server
architecture, with the user’s web browser (client) sending
requests to a web server for data or services. In this
scenario, client-server testing involves ensuring that web
pages load correctly and that user interactions, such as
form submissions, result in proper data transmission and
server responses. Let’s discuss a few examples and test
scenarios of client-server testing in real life.

Test Scenario 1

Simulate a user registration process on a web
application. Verify that user data entered via the client-
side form is correctly transmitted to the server, stored in
the database, and retrievable upon subsequent logins.

Components Tested: Client, Web Server,
Database.

Test Scenario 2

Test the effectiveness of caching by repeatedly
accessing a frequently used page on the web application.

Measure the response time, and assess whether caching
(e.g., Redis) reduces server load and speeds up page
rendering.

Components Tested: Client, Web Server,
Caching.
Test Scenario 3

Test a chat feature within the web application.
Send messages between users and verify that they are
delivered in real-time using a message queue (e.g.,
RabbitMQ, Kafka). Confirm that messages are processed
asynchronously and that users receive them promptly.

Components Tested: Client, Web Server,
Message Queue.
Test Scenario 4

Test email synchronization between the email
client and the email server (e.g., IMAP). Ensure that
newly received emails are correctly displayed in the
client’s inbox and that read / unread statuses are
synchronized with the server.

Components Tested: Email Client, Email
Server, Database.
Test Scenario 5

Conduct a load test by simulating a surge in user
activity, increasing the number of concurrent users
significantly. Evaluate how the server scales to handle
the increased load and whether it maintains low latency
and responsiveness.

Components Tested: Web Users Client
Interface(Multiple), Database or Caching Server, Load
Balancer.
Q2. What are the Objectives of client server

testing.

Ans : (Imp.)

The main goal of client-server testing is to ensure
the robustness, availability, and reliability of software
applications or systems that are built upon a client-server
architecture.

MCA II YEAR III SEMESTER

88
Rahul Publications

Objectives

Key objectives of client-server testing include:

1. Functionality Validation

Confirm that the client and server components
work together to deliver the intended features and
functionalities without errors or inconsistencies.

2. Data Integrity and Security

Ensuring that data exchanged between the client
and server is accurate, secure, and protected from
unauthorized access or manipulation.

3. Performance Assessment

Evaluating the responsiveness, scalability, and
resource utilization of the system to guarantee
that it can handle various loads and user
interactions while maintaining acceptable
performance levels.

4. Fault Tolerance and Reliability

Testing the system’s ability to handle adverse
conditions, such as network failures or server
crashes, and recover gracefully without data loss
or service disruption.

5. Compatibility

Verifying that the client software is compatible
with different server configurations, versions, and
environments, ensuring a seamless user
experience.

6. Scalability and Load Handling

Determining how well the system scales to
accommodate a growing number of clients and
transactions while maintaining performance and
stability.

7. Security

Identifying vulnerabilities and weaknesses in data
transmission, authentication, and access control
mechanisms to enhance security measures and
protect user data.

Q3. Discuss the Basic Characteristics of Client
Server Testing Architecture

Ans :
Client-server testing architecture is characterized

by several fundamental attributes that distinguish it from
other software testing methodologies. These basic
characteristics include:

(i) Distributed Components

Client-server architecture consists of two primary
components the client, which runs on the user’s
device, and the server, hosted on remote
hardware. Testing involves evaluating the
interaction between these distributed components.

(i) Communication Over a Network

Clients and servers communicate over a network,
typically using protocols like HTTP, TCP/IP, or
custom communication protocols. Testing ensures
reliable and efficient data exchange between
them.

(ii) Service Independence

Each microservice is responsible for a specific
function or feature, making it crucial to verify
that each service operates independently and
integrates seamlessly with other services. Testing
assesses how well these services work together to
deliver end-to-end functionality.

(iii) Data Integrity

Ensuring the accuracy and integrity of data
transmission between the client and server is a
key concern. Testing validates that the data sent
and received is correct, complete, and secure.

(iv) Caching and Messaging

Depending on the architecture, client-server
systems may involve caching and message
queues. Testing these components ensures they
function correctly and enhance system
performance.

(v) Asynchronous Processing

In some cases, client-server systems handle
asynchronous operations. Testing verifies that
asynchronous tasks, such as background
processing, are executed reliably and efficiently.

(vi) Continuous Integration/Continuous
Deployment (CI/CD)

Typical client-server architectures are part of a
CI/CD pipeline these days due to automation.
Testing ensures that the testing and deployment
processes are automated, consistent, and reliable.

(vii) Monitoring and Observability

Effective monitoring and observability solutions
(e.g., Prometheus, Grafana) are crucial in any
distributed system. Testing these covers the
integration and functionality of these tools for
real-time system insights.

UNIT - V SOFTWARE QUALITY AND TESTING

89
Rahul Publications

Q4. Discuss various Types Client-Server Test.

Ans :
Performing a comprehensive range of testing types

is essential in client-server testing to ensure the reliability,
performance, and security of systems. Here are the

I. Pimary types of testing to consider

1. Functional Testing

(i) Unit Testing

Evaluate individual client and server components
to verify that they perform their specific functions
correctly.

(ii) Integration Testing

Assess how well client and server components
integrate and work together, ensuring that data is
exchanged accurately.

(iii) System Testing

Conduct end-to-end testing to validate that the
entire client-server system functions as expected
in real-world scenarios.

2. Performance Testing

(i) Load Testing

Measure the system’s response and behavior
under varying levels of user load to identify
performance bottlenecks.

(ii) Stress Testing

Push the system beyond its intended capacity to
determine breaking points and assess its ability
to recover.

(iii) Scalability Testing

Evaluate how well the system scales to
accommodate growing numbers of clients or data
transactions while maintaining performance.

3. Security Testing

(i) Authentication Testing

Verify that the authentication mechanisms (e.g.,
username/password, tokens) work correctly and
securely.

(ii) Authorization Testing

Ensure that users can only access resources and
functionalities they are permitted to, and
unauthorized access is prevented.

(iii) Encryption Testing

Confirm that data transmission between the client
and server is properly encrypted to protect sensitive
information.

4. Data Integrity Testing

(i) Data Validation Testing

Check that data sent and received between the
client and server is accurate, complete, and
follows validation rules.

(ii) Data Corruption Testing

Assess how the system handles data corruption
or loss scenarios, ensuring data integrity is
maintained.

5. Compatibility Testing

(i) Cross-Browser and Cross-Device Testing

Ensure that the client application functions
correctly on various browsers and devices.

(ii) Cross-Platform Testing

Confirm that the client application is compatible
with different server configurations, versions, and
operating systems.

II. Caching and Performance Optimization
Testing

(i) Cache Testing

Assess the effectiveness of caching mechanisms
(e.g., Redis) to speed up data retrieval and reduce
server load.

(ii) Performance Optimization Testing

Identify areas for optimization to enhance the
system’s overall performance and responsiveness.

III. Fault Tolerance and Recovery Testing

(i) Failover Testing

Simulate server failures and network disruptions
to evaluate how well the system can recover
without data loss.

(ii) Redundancy Testing

Verify that redundant server setups work as
intended to ensure system availability.

MCA II YEAR III SEMESTER

90
Rahul Publications

IV. Usability and User Experience Testing

(i) Usability Testing

Evaluate the client application’s user interface and
overall user experience to ensure it is user-friendly.

(ii) Accessibility Testing

Confirm that the application is accessible to users
with disabilities, complying with accessibility
standards.

V. Regression Testing

(i) Continuously run regression tests to ensure that
new updates or changes do not introduce
unexpected issues or regressions in existing
functionality.

VI. Load Balancing and Network Testing

(i) Test load balancers to ensure they distribute client
requests effectively and maintain high availability.

(ii) Assess network configurations to confirm they
support secure and efficient client-server
communication.

VII. Message Queue Testing

(i) Validate the reliability and efficiency of message
queues (e.g., RabbitMQ) in handling asynchronous
communication between client and server
components.

VIII. Containerization and Orchestration Testing

(i) Verify the functionality and compatibility of
containerized applications (e.g., Docker) and their
orchestration configurations (e.g., Kubernetes).

Manual Testing and Its Types

Manual testing is a fundamental testing approach
where human testers execute test cases without the use
of automation tools or scripts. It relies on human intuition
and expertise to evaluate an application’s functionality,
user interface, and overall quality. Manual testing
encompasses several types:

(i) Functional Testing

This involves testers verifying that an application’s
features and functionalities work as expected. For
example, in a client-server context, a functional
test may involve manually validating that a user
can log in to a web application and access their
account information without encountering errors.

(ii) Usability Testing

Usability testing assesses the user-friendliness of
an application. Testers, acting as end-users,

interact with the client-side interface and provide
feedback on the ease of use, navigation, and
overall user experience. For instance, in a client-
server environment, testers might evaluate the
intuitiveness of a web application’s menu
structure.

(iii) Exploratory Testing
Exploratory testing is an unscripted approach
where testers explore the application to uncover
defects, usability issues, or unexpected behavior.
Testers use their creativity and domain knowledge
to simulate real-world user interactions and
identify potential defects.

(iv) Automated Testing
Automated testing involves the use of specialized
tools and scripts to perform testing tasks
automatically. It is especially valuable for
repetitive or complex test scenarios. Automated
testing offers various advantages, such as
consistency, repeatability, and the ability to
perform tests quickly and efficiently.
Example: In a client-server application,
automated functional testing could involve using
a tool like Testsigma to create and execute test
scripts that validate the registration process. These
scripts can simulate user actions such as filling
out a registration form, submitting it and verifying
that the user’s data is correctly stored on the server.

(v) Black-Box Testing
Black-box testing focuses on evaluating an
application’s functionality without knowledge of
its internal code or structure. Testers interact with
the application’s interface and assess how it
responds to different inputs and conditions. This
approach ensures that testing is conducted from
a user’s perspective, emphasizing expected
outcomes and behaviors.
Example: In a client-server context, black-box
testing might involve validating that a file-sharing
application (client) can successfully upload files
to a server and that the server correctly stores
and retrieves these files. Testers would not need
to examine the server’s code but instead, assess
whether the system functions as expected.

(vi) White-Box Testing
White-box testing is an approach where testers
have access to the internal code and structure of
the application. They design tests to evaluate the
correctness of the code, its logic, and the execution
paths within the application. White-box testing
aims to uncover defects in the code’s
implementation.

UNIT - V SOFTWARE QUALITY AND TESTING

91
Rahul Publications

Example: In a client-server application, white-
box testing might involve code reviews and static
code analysis of the server-side components to
identify potential vulnerabilities or code quality
issues. Testers may inspect the server’s code to
ensure that it handles user authentication securely
and adheres to coding standards.

(vii) Mocking and Simulation

Mocking and simulation involve creating
simulated or mock components to mimic the
behavior of real components or services that an
application relies on. This is useful for testing
when the actual components or services are not
readily available or should not be used during
testing.

Example: In a client-server application, testers
can create a mock payment gateway that
simulates responses if the server depends on an
external payment gateway service that should not
be invoked during testing. This allows the testing
of payment-related scenarios without using the
actual payment service.

(viii) Network Testing

Network testing assesses how an application
performs under various network conditions, such
as latency, packet loss, or limited bandwidth. It
ensures that the client and server components
can maintain functionality and responsiveness in
real-world network environments.

Example: In a client-server setup, network testing
might involve simulating high-latency conditions
to evaluate how well the application handles
delayed responses. Testers can use network
emulation tools to introduce latency and assess
the impact on client-server communication.

(ix) Concurrency Testing

Concurrency testing evaluates how an application
behaves when multiple users or processes access
it simultaneously. This type of testing helps identify
synchronization issues, race conditions, and
potential conflicts that can occur in a multi-user
environment.

Example: In a client-server system, concurrency
testing could involve simulating concurrent logins
from multiple clients to assess whether the server
accurately handles authentication requests
without conflicts or unexpected behavior.

Q5. Advantages and Disadvantages Of Client
Server Testing.

Ans :
Here are a few pros and cons of performing client-

server testing to help you identify whether to adopt it for
your application.
Advantages
(i) Comprehensive

Allows for comprehensive testing of both client
and server components, ensuring that they work
seamlessly together.

(ii) Realistic Scenarios
Supports testing in realistic, production-like
environments, helping identify issues that may
occur in live settings.

(iii) Scalability
Enables scalability testing to determine how the
system performs under varying user loads and
concurrent connections.

(iv) Security Assessment
Allows for thorough security testing, including
authentication, authorization, and data
encryption, to identify and address vulnerabilities.

(v) Fault Tolerance
Facilitates fault tolerance and recovery testing to
ensure the system can recover gracefully from
failures without data loss.

Disadvantages
(i) Complexity

Testing client-server applications can be complex
due to the need to manage two distinct
components and their interactions.

(ii) Resource Intensive
Setting up and maintaining client-server testing
environments can be resource-intensive, requiring
additional hardware and infrastructure.

(iii) Network Dependencies
Testing may be influenced by network conditions,
which can be challenging to simulate accurately.

(iv) Cost
Establishing and maintaining client-server testing
configurations can be costly, particularly in terms
of hardware and licensing.

(v) Time-Consuming
Setting up and configuring client-server
environments can be time-consuming, potentially
delaying testing efforts.

MCA II YEAR III SEMESTER

92
Rahul Publications

Q6. Explain various challenges of client server
testing.

Ans :
Client-server testing, while essential for ensuring

the functionality and reliability of applications built on
this architecture, comes with its share of challenges. Here
are some common client-server testing challenges:
(i) Complexity of Dual Components

Testing client-server applications involves
evaluating both the client-side and server-side
components. This dual-component nature
introduces complexity, as it requires synchronized
testing of interactions between the two, potentially
leading to challenges in test design and
coordination.

(ii) Data Management
Testing data management can be complex in
client-server environments. Ensuring data
consistency between client and server, especially
during concurrent access, requires careful
planning and synchronization.

(iii) Compatibility Challenges
Client applications may run on a variety of devices
and platforms, each with its own configurations
and specifications. Ensuring compatibility across
different client environments adds complexity to
testing.

(iv) Versioning and Updates
Maintaining consistency between client and server
versions can be challenging, particularly when
clients need to be updated to work with new server
features or vice versa. Testing across different
versions adds an extra layer of complexity.

(v) Test Data Management
Managing test data, including creating realistic
test scenarios and ensuring data consistency, can
be challenging, especially when dealing with large
datasets and complex data structures.

(vi) Time Constraints
Setting up and configuring client-server
environments can be time-consuming. Testers
may face tight deadlines, making it challenging
to conduct thorough testing within limited time
frames.

(vii) Performance Bottlenecks
Identifying performance bottlenecks and
optimizing server-side code can be challenging,
as server-side components may interact with
multiple clients simultaneously, leading to complex
performance tuning requirements.

 5.2 TESTING THE ADEQUACY OF SYSTEM

DOCUMENTATION

Q7. Discuss the Adequacy of System
Documentation

Ans :
Testing the adequacy of system documentation

involves:

(i) Measuring project documentation needs

The level of detail, formality, and extent of
documentation needed depends on the project’s
complexity, risk, and size, as well as the
organization’s management practices.

(ii) Determining what documents are needed

Determine which documents need to be produced.

(iii) Checking the completeness of individual
documents

Ensure that each document is complete.

(iv) Assessing the currency of project
documents

Determine the currency of the project’s
documents.

It’s important to ensure that the right
documentation is prepared, as there’s little value in
making sure that unneeded documentation is adequate.
Too much documentation can also be wasteful.

Proper documentation can help find defects and
save project costs. It can also help improve the efficiency
of the system testing process.

Here are some other tips for system documen-
tation:

(i) Document test results

Document the lessons learned and test results
from the system testing process. This can help
communicate the findings, issues, and
recommendations.

(ii) Include test data and environment
information

Thorough test plans can help improve quality and
reduce development and maintenance expenses.

(iii) Use clear and concise language:

Avoid jargon, acronyms, slang, or abbreviations
that may confuse readers.

UNIT - V SOFTWARE QUALITY AND TESTING

93
Rahul Publications

 5.3 TESTING WEB-BASED SYSTEMS

Q8. Define webtesting. State various types of
web testing?

Ans : (Imp.)

Meaning

Web testing is a software testing technique to test
web applications or websites for finding errors and bugs.
A web application must be tested properly before it goes
to the end-users. Also, testing a web application does
not only mean finding common bugs or errors but also
testing the quality-related risks associated with the
application. Software Testing should be done with proper
tools and resources and should be done effectively. We
should know the architecture and key areas of a web
application to effectively plan and execute the testing.

Testing a web application is very common while
testing any other application like testing functionality,
configuration, or compatibility, etc. Testing a web
application includes the analysis of the web fault
compared to the general software faults. Web
applications are required to be tested on different browsers
and platforms so that we can identify the areas that
need special focus while testing a web application.

Types

Basically, there are 4 types of web-based testing
that are available and all four of them are discussed
below:

1. Static Website Testing

A static website is a type of website in which the
content shown or displayed is exactly the same
as it is stored in the server. This type of website
has great UI but does not have any dynamic
feature that a user or visitor can use. In static
testing, we generally focus on testing things like
UI as it is the most important part of a static
website. We check things font size, color, spacing,
etc. testing also includes checking the contact us
form, verifying URLs or links that are used in the
website, etc.

(ii) Dynamic Website Testing

A dynamic website is a type of website that
consists of both a frontend i.e, UI, and the
backend of the website like a database, etc. This

type of website gets updated or change regularly
as per the user’s requirements. In this website,
there are a lot of functionalities involved like what
a button will do if it is pressed, are error messages
are shown properly at their defined time, etc. We
check if the backend is working properly or not,
like does enter the data or information in the GUI
or frontend gets updated in the databases or not.

(iii) E-Commerce Website Testing

An e-commerce website is very difficult in
maintaining as it consists of different pages and
functionalities, etc. In this testing, the tester or
developer has to check various things like checking
if the shopping cart is working as per the
requirements or not, are user registration or login
functionality is also working properly or not, etc.
The most important thing in this testing is that
does a user can successfully do payment or not
and if the website is secured. And there are a lot
of things that a tester needs to test apart from
the given things.

(iv) Mobile-Based Web Testing

In this testing, the developer or tester basically
checks the website compatibility on different
devices and generally on mobile devices because
many of the users open the website on their
mobile devices. So, keeping that thing in mind,
we must check that the site is responsive on all
devices or platforms.

Q9. Discuss various Points to be Considered
While Testing a Website?

Ans : (Imp.)

As the website consists of a frontend, backend,
and servers, so things like HTML pages, internet
protocols, firewalls, and other applications running on
the servers should be considered while testing a website.
There are various examples of considerations that need
to be checked while testing a web application. Some of
them are:

 Do all pages are having valid internal and external
links or URLs?

 Whether the website is working as per the system
compatibility?

 As per the user interface-Does the size of displays
are the optimal and the best fit for the website?

MCA II YEAR III SEMESTER

94
Rahul Publications

 What type of security does the website need (if
unsecured)?

 What are the requirements for getting the website
analytics, and also controlling graphics, URLs,
etc.?

 The contact us or customer assistance feature
should be added or not on the page, etc.?

Q10. Discuss the Objectives of Web Based
Testing.

Ans :
Following are the Objectives of Web Based Testing

1. Testing for functionality
Make that the web application performs as
expected for all features and functions. Check
that user interface elements like form submissions
and navigation work as intended.

2. Testing for Compatibility

To make sure it is compatible, test the web
application across a variety of devices, operating
systems, and browsers. Verify that the program
operates consistently in a range of settings.

3. Evaluation of Performance
Analyze the online application’s overall
performance, speed, and responsiveness. Any
performance bottlenecks, such as slow page loads
or delayed server response times, should be
located and fixed.

4. Testing for load
Examine how well the web application can
manage a particular load or multiple user
connections at once. Determine and fix
performance problems when there is a lot of
traffic.

5. Testing for accessibility

Make sure the online application complies with
applicable accessibility standards (e.g., WCAG)
and is usable by people with disabilities. Make
sure the program can communicate with assistive
technologies efficiently.

6. Testing Across Browsers

Make sure the operation and appearance of the
web application are consistent by testing it in
various web browsers. Determine and fix any
problems that might develop with a particular
browser.

Q11. Discuss vstioud Steps in Software Testing.

Ans :
Following are the various steps in software testing

are :

1. App Functionality

In web-based testing, we have to check the
specified functionality, features, and operational
behavior of a web application to ensure they
correspond to its specifications. For example,
Testing all the mandatory fields, Testing the
asterisk sign should display for all the mandatory
fields, Testing the system should not display the
error message for optional fields, and also links
like external linking, internal linking, anchor links,
and mailing links should be checked properly and
checked if there’s any damaged link, so that
should be removed. We can do testing with the
help of Functional Testing in which we test the
app’s functional requirements and specifications.

2. Usability

While testing usability, the developers face issues
with scalability and interactivity. As different
numbers of users will be using the website, it is
the responsibility of developers to make a group
for testing the application across different browsers
by using different hardware. For example,
Whenever the user browses an online shopping
website, several questions may come to his/her
mind like, checking the credibility of the website,
testing whether the shipping charges are
applicable, etc.

3. Browser Compatibility

For checking the compatibility of the website to
work the same in different browsers we test the
web application to check whether the content that
is on the website is being displayed correctly across
all the browsers or not.

4. Security

Security plays an important role in every website
that is available on the internet. As a part of
security, the testers check things like testing the
unauthorized access to secure pages should not
be permitted, files that are confined to the users
should not be downloadable without the proper
access.

UNIT - V SOFTWARE QUALITY AND TESTING

95
Rahul Publications

5. Load Issues

We perform this testing to check the behavior of
the system under a specific load so that we can
measure some important transactions and the
load on the database, the application server, etc.
are also monitored.

6. Storage and Database

Testing the storage or the database of any web
application is also an important component and
we must sure that the database is properly tested.
We test things like finding errors while executing
any DB queries, checking the response time of
a\the query, testing whether the data retrieved
from the database is correctly shown on the
website or not.

5.3.1 Testing Off the Shelf Software
Q12. What is off the shelf software? State its

disadvantages?

Ans : (Imp.)

Off-the-shelf software is a product that is entirely
readymade and has expanded functionalities that satisfy
a large number of users. They aren’t one-of-a-kind, but
they are universal and designed for mass commercial
use, so they can usually be easily integrated with existing
systems without requiring complicated configurations.

A diverse set of software modules allows you to
meet various requirements, but more than standard
features are required for complex specific tasks. You can
customize them, but most off-the-shelf products can only
partially meet particular needs.

Off-The-Shelf Software Examples

ERP software like Oracle’s SAP ERP, Microsoft
Dynamics, and Sage Intact.

Insightly, HubSpot CRM, and Zoho CRM are
ready-made, user-friendly CRM suite solutions.

Gmail and Microsoft are basic and generic
software products that provide standard features such
as emailing and file sharing. These custom off the shelf
software solutions are secure solutions that enable
businesses to create private accounts.

Custom software vs off-the-shelf software

Let’s start with their essences to see how they
differ. Off-the-shelf software is a ready-to-use solution.
These tools are designed for a wide range of audiences
and business sectors. They are based on best practices
that have been proven effective by multiple users.

However, off-the-shelf apps only occasionally
meet all of the requirements of a specific task or area.

Well-known examples include Google and
Microsoft solutions and CRM systems such as Salesforce,
HubSpot, Oracle, and Zoho.

On the other hand, custom software
demonstrates the most personalized approach, as tailor-
made software can specifically consider business
demands. The entrepreneur should assemble or hire a
dedicated team to develop an application for specific
requirements to obtain it.

The disadvantages of off-the-shelf software

1. Cost-cutting measures

Off the shelf computer software is initially less
expensive. Still, its underlying costs may
accumulate over time due to the need for ongoing
service payments, licensing, and the connection
of additional users. Expansion of features and
migration to newer software versions will
undoubtedly raise the cost of your initial tariff
plan.

2. A compelled trade-off

Because the available features may or may not
fully meet your needs, you lose some flexibility.
Workflows must be adapted or drastically altered
to fit the software, not vice versa.

3. Complete dependency on the provider

The solution will be updated and changed at any
moment its vendor decides to, without the consent
of your enterprise modernization plans. Some
updates may adversely affect your system. There
is also a risk that the software developer may
stop supporting the application, and you will have
to look for an alternative vendor.

4. Closing Thoughts

Both off the shelf software and custom software
provide users with various solutions and benefits.
When you need to implement software quickly,
need an all-inclusive solution, and want a readily
available and extensive support system, off-the-
shelf software is helpful.

Testing off-the-shelf software (COTS) is important
to ensure that the software meets the needs of
your business and users. Here are some things to
consider when testing COTS software:

MCA II YEAR III SEMESTER

96
Rahul Publications

5. Validation

Test the software in real-world environments and
cases to determine if it’s fit for use.

6. Risk tolerance

Consider the system’s risk tolerance and how to
mitigate potential damage.

7. Detailed records

Keep detailed records of test plans, cases, and
results to help manage feedback loops.

 5.4 TESTING IN A MULTIPLATFORM

 ENVIRONMENT

Q13. What is Cross-Platform Testing? State its
importance?

Ans :
Cross-platform testing involves validating the

functionality and performance of an application across
different platforms, including various operating systems
(such as Windows, iOS, Android, macOS, and Linux),
browsers (Chrome, Firefox, Safari, Edge), and devices
(such as smartphones, tablets, and desktops from diverse
brands). The goal is to ensure that the application
provides a consistent user experience, regardless of the
platform being used.

This type of testing focuses on several key aspects
of an application, including functionality, usability, and
user interface, across different environments. By doing
so, it helps ensure that users will have a seamless
experience with the application, no matter which
platform they are using.

Importance

 With the global expansion of internet usage, users
access applications from a wide range of devices,
browsers, and operating systems. To ensure that
your application functions flawlessly on different
platforms, it must be rigorously tested across these
various environments. Starting with the most
popular and widely used platforms is a strategic
approach to reach your target audience effectively.

 Cross-platform testing is a crucial aspect of
software quality assurance, encompassing both
cross-platform browser testing and cross-platform
device testing for mobile and desktop applications.

 It aims to identify and resolve issues related to
usability, consistency, user interface, and
performance across different devices, browser
versions, and operating systems.

Without proper cross-platform testing, an
application that performs well on one platform
may malfunction on another, leading to a loss of
users, decreased web traffic, lower revenues, and
negative reviews.

Q14. Cross-Platform Testing Best Practices.

Ans : (Imp.)

1. Varied User Interfaces Across Platforms

Ensure consistency in design and usability across
platforms using UI test cases.

2. Diverse Screen Sizes and Resolutions

Test responsive designs to ensure the app displays
correctly on various screen sizes and resolutions.

3. Platform-Specific Security Concerns

Include security testing in your cross-platform
testing strategy, focusing on platform-specific
vulnerabilities.

4. Integration Problems

Perform integration testing to ensure the
application interacts correctly with external
systems on all platforms.

5. Platform-Specific Features

Test platform-specific functionality only on the
relevant platforms.

6. Different OS Version Support

Prioritize OS versions based on user demographics
and perform compatibility testing across these
versions.

7. Network Condition Variations

Test the application under different network
conditions to ensure consistent performance.

8. Multiple Language Support

Implement localization testing to ensure the
application works well in different languages.

9. Handling Updates

Create an update plan that aligns with platform
update cycles and perform regression testing after
each update.

UNIT - V SOFTWARE QUALITY AND TESTING

97
Rahul Publications

Q15. Discuss the Tips and Techniques for
Efficient Cross-Platform Testing.

Ans :
1. Identify and Prioritize Target Platforms

Determine the operating systems, web browsers,
and devices on which your software will run, and
prioritize testing based on market and user data.

2. Use Emulators or Real Devices

Balance the use of emulators and real devices
based on your testing needs. Emulators can save
costs, while real devices provide more accurate
results.

3. Conduct Functional and Non-Functional
Testing

Ensure that the application’s features work
correctly and meet performance, security, and
usability requirements across all platforms.

4. Automate Where Possible

Automation can greatly enhance cross-platform
testing by allowing tests to be executed consistently
across multiple platforms. Tools like Selenium or
Appium are valuable for this purpose, but not
every test is suitable for automation.

Q16. Discuss the Recommended Cross-Platform
Testing Tools.

Ans :
1. Selenium

An open-source automation testing tool that
supports multiple operating systems and browsers.

2. Appium

An open-source tool for automating native,
mobile web, and hybrid applications on iOS,
Android, and Windows platforms.

3. TestComplete

A versatile automation testing tool for desktop,
mobile, and web applications.

4. BrowserStack

A cloud-based testing platform for testing websites
and mobile applications across various browsers,
operating systems, and real devices.

5. Sauce Labs

A cloud-based platform offering continuous
testing for mobile and web applications across
various environments.

6. CrossBrowserTesting

A cloud-based testing platform by SmartBear for
automated and manual testing across a wide
range of browsers and devices.

7. Ranorex

A commercial GUI test automation framework
for testing desktop, web, and mobile applications,
offering both codeless and advanced scripting
capabilities.

 5.5 TESTING SECURITY

Q17. Define security testing.Explain the goals of
security testing?

Ans : (Imp.)

Security testing is a type of software testing that
focuses on evaluating the security of a system or
application. The goal of security testing is to identify
vulnerabilities and potential threats and to ensure that
the system is protected against unauthorized access, data
breaches, and other security-related issues.

The goal of Security Testing

The goal of security testing is to:

 To identify the threats in the system.

 To measure the potential vulnerabilities of the
system.

 To help in detecting every possible security risk in
the system.

 To help developers fix security problems through
coding.

 The goal of security testing is to identify
vulnerabilities and potential threats in a system
or application and to ensure that the system is
protected against unauthorized access, data
breaches, and other security-related issues. The
main objectives of security testing are to:

 Identify vulnerabilities

Security testing helps identify vulnerabilities in the
system, such as weak passwords, unpatched
software, and misconfigured systems, that could
be exploited by attackers.

MCA II YEAR III SEMESTER

98
Rahul Publications

 Evaluate the system’s ability to withstand
an attack

Security testing evaluates the system’s ability to
withstand different types of attacks, such as
network attacks, social engineering attacks, and
application-level attacks.

 Ensure compliance

Security testing helps ensure that the system meets
relevant security standards and regulations, such
as HIPAA, PCI DSS, and SOC2.

 Provide a comprehensive security
assessment

Security testing provides a comprehensive
assessment of the system’s security posture,
including the identification of vulnerabilities, the
evaluation of the system’s ability to withstand
an attack, and compliance with relevant security
standards.

 Help organizations prepare for potential
security incidents

Security testing helps organizations understand
the potential risks and vulnerabilities that they
face, enabling them to prepare for and respond
to potential security incidents.

 Identify and fix potential security issues
before deployment to production

Security testing helps identify and fix security issues
before the system is deployed to production. This
helps reduce the risk of a security incident
occurring in a production environment.

Q18. Discuss various Types of Security Testing.

Ans :
1. Vulnerability Scanning

Vulnerability scanning is performed with the help
of automated software to scan a system to detect
known vulnerability patterns.

2. Security Scanning

Security scanning is the identification of network
and system weaknesses. Later on, it provides
solutions for reducing these defects or risks.
Security scanning can be carried out in both
manual and automated ways.

3. Penetration Testing

Penetration testing is the simulation of the attack
from a malicious hacker. It includes an analysis
of a particular system to examine for potential
vulnerabilities from a malicious hacker who
attempts to hack the system.

4. Risk Assessment

In risk assessment testing security risks observed
in the organization are analyzed. Risks are
classified into three categories i.e., low, medium,
and high. This testing endorses controls and
measures to minimize the risk.

5. Security Auditing

Security auditing is an internal inspection of
applications and operating systems for security
defects. An audit can also be carried out via line-
by-line checking of code.

6. Ethical Hacking

Ethical hacking is different from malicious hacking.
The purpose of ethical hacking is to expose security
flaws in the organization’s system.

7. Posture Assessment

It combines security scanning, ethical hacking,
and risk assessments to provide an overall security
posture of an

8. Application security testing

Application security testing is a type of testing
that focuses on identifying vulnerabilities in the
application itself. It includes testing the
application’s code, configuration, and
dependencies to identify any potential
vulnerabilities.

9. Network security testing

Network security testing is a type of testing that
focuses on identifying vulnerabilities in the network
infrastructure. It includes testing firewalls, routers,
and other network devices to identify potential
vulnerabilities.

10. Social engineering testing

Social engineering testing is a type of testing that
simulates phishing, baiting, and other types of
social engineering attacks to identify vulnerabilities
in the system’s human element.

UNIT - V SOFTWARE QUALITY AND TESTING

99
Rahul Publications

11. Tools such as Nessus, OpenVAS, and Meta sploit
can be used to automate and simplify the process
of security testing. It’s important to ensure that
security testing is done regularly and that any
vulnerabilities or threats identified during testing
are fixed immediately to protect the system from
potential attacks. Organization.

Q19. State the advantages and disadvantages of
security testing?

Ans : (Imp.)

Advantages of Security Testing
1. Identifying vulnerabilities

Security testing helps identify vulnerabilities in the
system that could be exploited by attackers, such
as weak passwords, unpatched software, and
misconfigured systems.

2. Improving system security
Security testing helps improve the overall security
of the system by identifying and fixing
vulnerabilities and potential threats.

3. Ensuring compliance
Security testing helps ensure that the system meets
relevant security standards and regulations, such
as HIPAA, PCI DSS, and SOC2.

4. Reducing risk
By identifying and fixing vulnerabilities and
potential threats before the system is deployed to
production, security testing helps reduce the risk
of a security incident occurring in a production
environment.

5. Improving incident response
Security testing helps organizations understand
the potential risks and vulnerabilities that they
face, enabling them to prepare for and respond
to potential security incidents.

Disadvantages of Security Testing
6. Resource-intensive

Security testing can be resource-intensive, requiring
significant hardware and software resources to
simulate different types of attacks.

7. Complexity
Security testing can be complex, requiring
specialized knowledge and expertise to set up and
execute effectively.

8. Limited testing scope
Security testing may not be able to identify all
types of vulnerabilities and threats.

9. False positives and negatives

Security testing may produce false positives or
false negatives, which can lead to confusion and
wasted effort.

10. Time-consuming

Security testing can be time-consuming, especially
if the system is large and complex.

11. Difficulty in simulating real-world attacks

It’s difficult to simulate real-world attacks, and
it’s hard to predict how attackers will interact with
the system.

Q20. What is Data Warehouse testing? Explain
various tools of Data warehouse testing?

Ans :
Data Warehouse testing also known as dwh testing

is a process of building and executing the data test case
strategies to ensure that all comprehensive data in the
warehouse has integrity and is reliable, accurate, and
consistent within the organization’s data framework.
Primarily used to validate the reliability of analytical data
within an organization, ensuring the trustworthiness of
its overall business insights.

DWH testing is not a simple testing process, it
completely checks the data pipelines, when the data is
in ETL process operations. ETL testing and data
validation process are intermediate stages, it will process
the data time issues and resolve them quickly. In data
warehouse testing, the scope extends to BI reports and
dashboards. It encompasses the ETL testing stages from
the data warehouse to data marts, with data validation
ensuring the quality of data post-completion of ETL
testing operations. In this data warehouse testing
strategies encompass both ETL testing and BI Testing.

Tools

Data Warehouse Testing tools (DWH testing tools)
are specialized for data-centric systems, aiming to
automate testing and certification processes in data
warehousing. These tools play a crucial role during the
development phase of the data warehouse.

Datagaps DataOps Suite: Datagaps DataOps Suite is a
comprehensive solution for data warehousing testing. It
proficiently tests both data processes and data within a
Data Warehouse. Now, let’s delve into the Modern Data
Warehouse Testing Scenario.

MCA II YEAR III SEMESTER

100
Rahul Publications

End to End Data Testing Automation

Q21. Discuss the benetifts and challenges to data warehouse testing?

Ans : (Imp.)

Benefits of data warehouse testing

Although the primary benefit of data warehouse testing is the ability to test data integrity and consistency,
there are many advantages to instating a reliable process. For example, data warehouse testing is an extension of
the rigorous testing mindset that IT teams apply to aid development and deployment activities.

1. High confidence in data quality, the key building block of a superlative analytical model

2. Data acquisition errors are spotted early on rather than by data analysts or domain experts at a later point,
when the cost of fixing issues may be high

3. The financial impact due to subpar data quality can lead to losses in millions — a pegs the number at an
average of $15 million

4. Reputational loss due to bad data can prove to be costly. For example, systemic weaknesses in its reporting
systems cost its reputation along with fines to the tune of 5.9 million pounds.

5 Businesses spend huge resources in setting up a data warehouse, and testing data veracity is integral to
justifying this dollar spend

6 Non-compliance of regulatory acts can incur heavy penalties. The average cost of a data breach, a possible
consequence of not testing data thoroughly, is estimated to be around $8.19 million in the US, as per a
recent

Challenges to data warehouse testing

While there is no doubt that data warehouse testing is important to a successful business, the execution of
the process is not often straightforward due to the involved complexities and challenges. Let’s discuss the common
obstacles:

(i) Heterogeneity of data

As we need to validate data from heterogeneous sources, the testing scenarios can get unwieldy. For example,
the source could be an application, OLTP database such as Oracle or DB2, or even a flat file (different
formats). It could reside on premises or in the cloud. The destination again could be an in-house data
warehouse or a cloud data warehouse such as Amazon Redshift or Microsoft Azure.

UNIT - V SOFTWARE QUALITY AND TESTING

101
Rahul Publications

The testing framework needs to have the ability
to plug in to these diverse systems. Additionally,
the testing team members need to have the
expertise to deftly switch working between
different platforms.

(ii) High volumes and scalability

The number of datasets can get overwhelming
as organizations aim to assimilate data into a
common repository. The testing framework needs
to be able to run through large volumes of data
executing stress and regression tests. In addition,
it needs to be able to scale as new sources come
into the picture or as data load increases.

The pressure of having to deliver test results quickly
sometimes leads to shortcut methods such as
sampling, in which datasets are tested partially.
Although it helps in avoiding the handling of large
data volumes, sampling increases the probability
of errors in data.

(iii) Data mapping and transformations

Data is often represented differently in systems
and data types, and column names tend to vary.
Hence, one of the preliminary requirements to
activate data warehouse tests is to clearly map
data between source and destination databases.
This is a difficult task and prone to errors when
done manually.

Q22. Explain the process of data ware house
testing.

Ans :
Testing a data warehouse is a multi-step process

that involves activities such as identifying business
requirements, designing test cases, setting up a test
framework, executing the test cases, and validating data.

1. Identify the various entry points

As loading data into a warehouse involves
multiple stages, it’s essential to find out the various
entry points to test data at each of those stages.
If testing is done only at the destination, it can
be confusing when errors are found as it becomes
more difficult to determine the root cause.

Examples of entry points: sources, various points
between ETL such as before and after
transformation, staging database which is often
used as a temporary store before loading into the
warehouse, and BI engine where reports read from
warehouse data.

2. Prepare the required collaterals

Two fundamental collaterals required for the
testing process are database schema
representation and a mapping document.

The mapping document is usually a spreadsheet
which maps each column in the source database
to the destination database. It also includes
complex SQL queries (might need multiple table
joins) that compare the two columns to evaluate
if the data has landed correctly inside the
destination.

A data integration solution can help generate the
mapping document, which is then used as an
input to design test cases.

3. Design an elastic, automated, and
integrated testing framework

ETL is not a one-time activity. While some data
is loaded all at once and some through batches,
new updates may trickle in through streaming
queues. A testing framework design has to be
generic and architecturally f lexible to
accommodate new and diverse data sources and
types, more volumes, and the ability to work
seamlessly with cloud and on-premises databases.

Also, integrating the test framework with an
automated data solution (that contains features
as discussed in the previous section) increases the
efficiency of the testing process.

4. Adopt a comprehensive testing approach

The testing framework needs to aim for 100%
coverage of the data warehousing process. For
instance, although the primary focus here is on
the data itself, application components such as
ETL tools, reporting engines, or GUI applications
need to be included in the testing framework.
Also, it’s important to design multiple testing
approaches such as unit, integration, functional,
and performance testing.

The data itself has to be scrutinized for many
checks that includes looking for duplicates,
matching record counts, completeness, accuracy,
loss of data, and correctness of transformation.
Additionally, data on BI reports needs to be
evaluated for adherence to business rules along
with quality checks. Even the metadata and
mapping document needs to be validated for
accuracy.

MCA II YEAR III SEMESTER

102
Rahul Publications

 5.6 CREATING TEST DOCUMENTATION

Q23. What is a Test Strategy? Explain the
benefits of test strategy?

Ans : (Imp.)

A test strategy outlines the approach, goals, and
standards for testing activities within a project. It provides
a structured framework for defining testing scope,
objectives, methodologies, and tools, ensuring
consistency and alignment with project requirements.

Benefits of Test Strategy

(i) Clarity and Consistency

A test strategy provides a clear structure and
standardized approach for testing activities,
ensuring that every team member understands
the objectives, scope, and expectations. This
clarity reduces confusion, aligns team efforts, and
maintains consistency across all testing phases,
from initial planning to final execution.

(ii) Risk Mitigation

A well-defined test strategy helps prevent issues
that could compromise the quality or delay the
release of the software by identifying potential
risks and setting up contingency plans early.
Proactively addressing high-risk areas enables the
team to focus on critical functionalities, thus
minimizing the impact of potential setbacks on
the project.

(iii) Resource Efficiency

A test strategy allocates resources such as tools,
personnel, and time more effectively. The strategy
helps teams prioritize testing activities based on
project needs, avoiding redundant efforts and
optimizing team capacity. Efficient resource
management helps cost savings and prevents
unnecessary delays in the testing lifecycle.

(iv) Stakeholder Alignment

A test strategy is a communication tool for aligning
the testing approach with stakeholder
expectations. Defining the goals, methods, and
scope of testing keeps project managers,
developers, and stakeholders informed, ensuring
everyone is on the same page about testing
objectives and outcomes.

(v) Enhanced Quality Assurance

A strategic approach to testing ensures
comprehensive coverage of functionalities,
reducing the likelihood of undetected issues in
production. This structured methodology
enhances the overall quality of the software by
focusing on thorough validation and verification
that is aligned with user requirements.

Q24. What to Include in a Test Strategy
Document?

Ans :
A comprehensive test strategy document guides

the testing process and ensures alignment among team
members and stakeholders. Key elements to include are:

Scope of Testing

(i) Define the areas of the application that will
undergo testing, outlining both included and
excluded features.

(ii) Specify the testing boundaries, including any
limitations affecting testing, like time constraints
or restricted access to certain system parts.

Testing Objectives

(i) Clearly state the goals for the testing phase, such
as ensuring compatibility, performance,
functionality, or security.

(ii) Include specific success criteria or benchmarks
to indicate the objectives met.

Testing Approach and Methodology

(i) Describe the approach for different types of testing
(e.g., functional, performance, regression, security)
and how each type aligns with the objectives.

(ii) Outline whether tests will be manual, automated,
or combined, and provide reasoning for the
selected methods.

(iii) Include details on the testing phases (unit,
integration, system, and acceptance testing) and
how they will be executed.

Test Environment Setup

(i) Specify the environments where testing will occur
(e.g., development, staging, production-like) and
detail any setup requirements.

(ii) List hardware and software configurations,
operating systems, network specifications, and
any dependencies required for consistent test
results.

UNIT - V SOFTWARE QUALITY AND TESTING

103
Rahul Publications

Resource Allocation and Roles

(i) Identify key roles and responsibilities, assigning
specific tasks to team members involved in
testing.

(ii) Include any additional resources like third-party
vendors, consultants, or external testing teams.

Types of test cases

Test cases can be categorized based on the
purpose they serve in testing. As a quality assurance
professional, knowing the difference between them helps
focus your efforts and choose the right test format.

(i) Functionality test cases

These are the most basic and obvious test cases
to write. They ensure that each feature of your
system works correctly.

(ii) Performance test case

This test ensures that the system runs fast enough.
It makes sure that all system requirements work
as expected regarding speed, scalability, or
stability.

(iii) Unit test cases

Software developers usually write unit tests for
their code to check individual units, for example,
modules, procedures, or functions, to determine
if they work as expected.

(iv) User interface (UI) test cases

It’s important to remember that the user interface
is part of the overall system and not just a shell
where functionality appears. UI test cases check
that each UI element works correctly, displays,
and is easy to use.

(v) Security test cases

Security test cases help ensure that a product or
system functions properly under all conditions,
including when malicious users attempt to gain
unauthorized access or damage the system. These
test cases safeguard the security, privacy, and
confidentiality of data.

(vi) Integration test cases

These ensure that the application components
work together as expected. These test cases check
whether modules or components integrate
seamlessly to form a complete product.

(vii) Database test cases

These test cases ensure that the database meets
its functional and non-functional requirements.
They make sure database management systems
(DBMS) support all business requirements.

(viii) Usability test cases

Usability test cases help check if users can use
the application successfully. These determine
whether users can easily use the system without
difficulty or confusion. They also verify if users
can navigate the system using common
procedures and functions.

(ix) User acceptance test cases

User acceptance test cases verify that an
application satisfies its business requirements
before users accept it. These determine whether
users accept or reject the output produced by a
particular system before release to the live
environment.

(x) Regression testing

Regression test cases verify that changes made
during development don’t cause any existing
functionality to stop working. Regression testing
happens after changes have been made to existing
code to test that all existing or legacy functionality
continues to work as expected after making the
changes.

Types of Software Testing Strategies

An appropriate test strategy in software testing is
vital for effective quality assurance. Here are some
common types:

1. Analytical Approach

Analyze requirements, risks, and critical
functionalities to determine the testing scope and
prioritize test activities accordingly.

2. Model-Based Approach

Utilize modeling techniques to create test models
that represent system behavior, interactions, and
expected outcomes, facilitating strategic test
planning and execution.

3. Regression-Based Approach

Focus on ensuring that modifications or

MCA II YEAR III SEMESTER

104
Rahul Publications

enhancements to the software do not introduce
new defects or impact existing functionalities.
Regression test strategy in software testing
validates system stability after changes.

4. Risk-Based Approach

Direct efforts to the test strategy in software testing
to areas of the software deemed high-risk based
on factors like impact, probability, and criticality.
This approach optimizes resource allocation and
prioritization of testing activities.

5. Agile Testing Strategy

This approach aligns with the Agile methodology,
emphasizing iterative and incremental testing
throughout development. It involves close
collaboration between testers, developers, and
stakeholders, enabling continuous feedback and
frequent testing cycles.

6. Exploratory Testing Strategy

Exploratory test strategy in software testing is an
approach where testers actively explore the
application under test, focusing on learning,
investigation, and discovery. This strategy involves
less pre-planning and more real-time test design,
allowing flexibility and adaptability to uncover
unexpected defects.

7. User-Centric Testing Strategy

This strategy places the end-user at the center of
the testing process. Testers simulate real-world user
scenarios and interactions to validate the
application’s usability, accessibility, and overall
user experience. Usability testing, user acceptance
testing (UAT), and beta testing are standard
techniques employed in this strategy.

8. Compliance-Based Testing Strategy

Compliance-base test strategy in software testing
are crucial in the industries such as healthcare or
finance. These strategies ensure that the software
meets regulatory standards, legal requirements,
and industry-specific guidelines. Compliance
testing often involves validating data privacy,
security measures, and adherence to industry-
specific regulations.

9. Continuous Testing Strategy

Continuous test strategy in software testing is a
DevOps and Agile-oriented approach that

emphasizes integrating testing throughout the
software development lifecycle. It involves running
automated tests continuously, incorporating them
into the CI/CD pipeline, and providing quick
feedback on software quality. Continuous testing
enables faster releases, early bug detection, and
improved collaboration between development
and testing teams.

10. Crowdtesting Strategy

Crowdtesting involves harnessing a community
of external testers who test the software across
various devices, platforms, and real-world
conditions. This strategy leverages testers’ diversity
and unique perspectives to uncover defects that
may go unnoticed with traditional in-house testing
teams. Crowdtesting can provide valuable insights
from a broader user perspective.

Q25. Discuss the Key Components of a Software
Testing Strategy Document Template.

Ans : (Imp.)

To create an effective software testing strategy
document, consider incorporating the following
components:

 Introduction

Provide an overview of the document, including
its purpose, intended audience, and project
background.

 Test Objectives

Clearly define the goals and objectives of the
testing effort, aligning them with the project’s
overall objectives.

 Testing Scope

Specify the testing boundaries, including the
features, functionalit ies, platforms, and
environments to be covered.

 Test Approach

Outline the high-level strategy and techniques to
be employed during testing, such as manual
testing, automated testing, or both.

 Test Deliverables

Enumerate the artifacts and documentation to
be produced during the testing process, such as
test plans, test cases, and test reports.

UNIT - V SOFTWARE QUALITY AND TESTING

105
Rahul Publications

 Test Schedule and Timeline

Provide a timeline for testing activities, including
milestones, dependencies, and estimated effort
for each testing phase.

 Resource Allocation

Specify the resources required for testing,
encompassing personnel, hardware, software, and
tools.

 Risk Assessment

Identify potential risks and mitigation strategies
associated with testing, ensuring proactive risk
management.

 Test Environment

Describe the necessary test environment setup,
including hardware, software, network
configurations, and data requirements.

 Exit Criteria

These are the predefined conditions that must be
met to conclude the testing process, such as a
specific defect density threshold or completion of
a predefined set of test cases.

Q26. Discuss the process of testing strategy
document.

Ans :
Now that we understand the significance of a

test strategy document, let’s explore the step-by-step
process of creating one:

Step 1: Define the Testing Goals and Objectives

 Clearly define the goals as well as the objectives
of the testing effort.

 Understand the project requirements, business
goals, and user expectations to align testing
activities accordingly.

Step 2: Identify the Testing Scope

 Define the testing boundaries, including the
modules or functionalities to be tested, the test
levels, and the types of testing required.

 Determine any exclusions or limitations in the
testing scope.

Step 3: Determine the Testing Approach

 Choose the appropriate testing approaches and
techniques based on the project requirements and
objectives.

 Consider risk, complexity, and the software
development lifecycle model being used.

Step 4: Specify the Test Environment and
Infrastructure

 Identify the hardware, software, and network
configurations needed for testing.

 Determine if any specialized tools or resources
are required and plan their procurement or setup.

Step 5: Define the Test Data Management Strategy

 Establish guidelines for test data creation,
identification of data dependencies, and data
management practices.

 Ensure data security, privacy, and compliance
with relevant regulations.

Step 6: Outline the Test Execution and Reporting
Process

 Detail the test execution methodology, including
creating test cases, test execution cycles, and
defect tracking.

 Specify the reporting formats, metrics, and KPIs
to measure the testing progress and quality.

Step 7: Develop the Test Automation Strategy
Document

 Identify the areas suitable for test automation
and outline the implementation strategy.

 Choose appropriate tools, define the framework,
and allocate resources for test automation.

Step 8: Address Risks and Mitigation Strategies

 Identify potential risks and challenges in the testing
process.

 Devise mitigation strategies to minimize the
impact of risks on project timelines and
deliverables.

Step 9: Define Test Deliverables and Exit Criteria

 Specify the expected test deliverables, including
test plans, cases, reports, and other artifacts.

Establish the criteria for deciding when testing
can be considered complete.

Q27. How HeadSpin Empowers Organizations to
Enhance Their Testing Strategy

Ans :
HeadSpin, a leading mobile, web, and IoT testing

Platform, offers a comprehensive solution that optimizes
software testing strategies and empowers organizations

MCA II YEAR III SEMESTER

106
Rahul Publications

to deliver exceptional user experiences. Let’s explore four
key capabilities of the HeadSpin Platform that transform
software testing.

1. Global Device Infrastructure

HeadSpin provides access to an extensive global
device infrastructure, enabling testing on real
devices in various locations worldwide. With this
capability, organizations can ensure that their
applications are thoroughly tested across different
devices, operating systems, network conditions,
and geographical regions. Testing on real devices
eliminates the pitfalls of relying solely on emulators
or simulators, providing accurate results and
insights into how the application performs in real-
world scenarios.

2. Test Automation

HeadSpin Platform offers robust test automation
capabilities, empowering organizations to
streamline and scale their testing efforts. Through
integration with popular test automation
frameworks and tools, such as Appium,
Selenium, and Espresso, HeadSpin enables the
creation and execution of automated test scripts
across various devices and platforms. This
significantly reduces manual effort, accelerates
test cycles, and enhances overall test coverage,
leading to faster time-to-market and improved
software quality.

3. Performance Testing at Scale

Performance is a crucial aspect of any software
application, and HeadSpin excels in providing
performance testing at scale. By leveraging its
distributed infrastructure and network
virtualization capabilities, organizations can
simulate a high volume of user traffic, replicate
real-world network conditions, and accurately
measure application performance under different
loads. This empowers teams to proactively identify
and address performance bottlenecks, scalability
issues, and response time constraints, ensuring
optimal user experiences even under demanding
conditions.

4. AI-driven Insights and Analytics

HeadSpin leverages the power of artificial
intelligence (AI) and machine learning (ML) to
provide actionable insights and advanced
analytics for software testing. By analyzing vast

amounts of data collected during test executions,
the HeadSpin Platform uncovers hidden patterns,
trends, and anomalies, allowing organizations to
make data-driven decisions to optimize their
testing strategies. These AI-driven insights enable
teams to prioritize testing efforts, identify
improvement areas, and enhance their testing
practices’ overall effectiveness.

5. Collaborative Platform

HeadSpin provides a centralized Platform that
facilitates effective collaboration among team
members involved in the testing process. The
platform allows testers, developers, and other
stakeholders to easily share test artifacts, results,
and insights. This promotes efficient
communication, knowledge sharing, and
collaboration, leading to faster issue resolution
and improved overall testing outcomes.

 5.7 SOFTWARE TESTING TOOLS

Q28. Discuss briefly about various Software
Testing Tools.

Ans : (Imp.)

Software Testing tools are the tools that are used
for the testing of software. Software testing tools are
often used to assure firmness, thoroughness, and
performance in testing software products. Unit testing
and subsequent integration testing can be performed by
software testing tools. These tools are used to fulfill all
the requirements of planned testing activities. These tools
also work as commercial software testing tools. The
quality of the software is evaluated by software testers
with the help of various testing tools.

Top 10 Software Testing Tools

1. BrowserStack Test Management

BrowserStack Test management is the latest
software test management platform that offers a
centralized test case repository with the best-in-
class UI/UX. Integrates with other BrowserStack
software testing tools such as Live, Test
Observability, Automate & App Automate.

Features :

 Facilitates two-way integration with Jira,
enhancing traceability for test cases and runs.

UNIT - V SOFTWARE QUALITY AND TESTING

107
Rahul Publications

 Provides a rich dashboard for real-time reports &
insights.

 Users can import data from existing tools using
APIs or CSVs, with smart parsing for CSV fields.

 Test results can be uploaded from Test
Observability or report formats like JUnit-XML/
BDD-JSON.

 Supports test automation frameworks such as
TestNG, WebdriverIO, Nightwatch.js, Appium,
Playwright, etc.

 Integrates with CI/CD tools such as Jenkins, Azure
Pipelines, Bamboo & CircleCI.

2. Lambda Test

Lambda Test is an AI-powered test orchestration
and execution platform that allows developers
and testers to perform manual and automated
software testing at scale across different
permutations of real browsers, devices, and
operating systems.

Features:

 Run your test scripts on a cloud grid using popular
test automation frameworks like Selenium,
Playwright, Cypress, Appium, and more.

 Accelerate your software release cycles by
multiple fold folds with parallel test execution.

 Test locally hosted projects with LambdaTest
Tunnel and UnderPass before going live with your
websites.

 Leverage the HyperExecute platform to perform
end-to-end test orchestration and get high-test
execution speed up to 70% faster than traditional
cloud grids.

 Integrate LambdaTest with third-party tools like
Jira, Asana, Jenkins, GitHub Actions, and more
as per your project requirements.

3. Test Grid

Test Grid is a leading cloud-based end-to-end
testing and test infrastructure platform designed
to streamline and enhance the automated testing
of web and mobile applications. The platform
integrates seamlessly with leading test automation
frameworks like Selenium, Appium, and Cypress,
allowing for the automated execution of test
scripts and enhancing testing efficiency and
reliability.

Features:

 It supports integration with popular CI/CD tools
such as Jenkins, CircleCI, and GitLab.

 Offers true scriptless testing for test case
generation & execution

 It allows remote access to testers and developers
for manual testing and debugging.

 It offers detailed reporting and analytics features
for testing results.

 It enables cross-browser and cross-device testing.

 Both private and on-premise browser and mobile
cloud infrastructure are available

4. QA Wolf

QA Wolf revolutionizes software testing by
offering a powerful fusion of automated testing
tools and professional QA services, enabling web
application teams to attain 80% end-to-end test
coverage at an unprecedented pace.

Features

 Accelerates end-to-end user workflow test
coverage to 80% in a matter of weeks

 Runs complete test suites in minutes via parallel
execution.

 Completely eliminates flaky tests through
proactive maintenance

 Charges are based on achieved test coverage, not
hourly

 Frees up developers to focus on feature
development

 Speeds up releases and minimizes production bugs

 Tests end-to-end web and native mobile
applications including performance, accessibility,
Salesforce, SAP, and more.

5. Aqua cloud

aqua cloud is an AI-powered test management
solution designed to streamline and enhance the
efficiency of QA teams. Offering 100%
traceability, aqua helps you manage all testing
activities with unparalleled ease and precision.
The platform seamlessly integrates with leading
test automation frameworks like Selenium,
JMeter, Ranorex, and SoapUI, as well as any
other tool via REST API, empowering teams
without limiting their options.

MCA II YEAR III SEMESTER

108
Rahul Publications

6. Zephyr Scale

Zephyr Scale is a test management provides a
smarter and more structured way to plan,
manage, and measure tests inside Jira.

Features

 It offers cross-project integration, traceability, and
a structured designed useful in large environments.

 It helps to scale tests in Jira.

 It helps to improve visibility, data analysis, and
collaboration.

 It provides detailed changed history, test case
versioning, and end-to-end traceability with Jira
issues and challenges.

7. Selenium

Selenium provides a playback tool for authoring
tests across most web browsers without the need
to learn a test scripting language.

Features

 It provides multi-browser support.

 It makes it easy to identify web elements on the
web apps with the help of its several locators.

 It is able to execute test cases quicker than the
other tools.

8. Ranorex

Ranorex Studio is a GUI test automation
framework used for testing web-based, desktop,
and mobile applications. It does not have its own
scripting language to automate application.

Features

 It helps to automate tests on Windows desktop,
then execute locally or remotely on real or virtual
machines.

 It runs tests in parallel to accelerate cross-browser
testing for Chrome, Firefox, Safari, etc.

 It tests on real iOS or Android devices, simulators,
emulators, etc.

9. Test Project

Test Project is a test automation tool that allows
users to create automated tests for mobile and
web applications. It is built on top of popular
frameworks like Selenium and Appium.

Features

 It is a free end-to-end test automation platform
for web, mobile, and API testing.

 Tests are saved as local files directly on your
machine with no cloud-footprint to get a complete
offline experience.

 It helps to create reliable codeless tests powered
by self-healing, adaptive wait, and community
add-ons.

 It provides insights about release quality, step-
by-step detailed report with screenshots and logs.

10. Katalon Platform

Katalon Platform is a comprehensive quality
management platform that enables team to easily
and efficiently test, launch, and optimize the best
digital experiences.

Features

 It is designed to create and reuse automated test
scripts for UI without coding.

 It allows running automated tests of UI elements
including pop-ups, iFrames, and wait-time.

 It eases deployment and allows wider set of
integrations compared to Selenium.

 5.8 TAXONOMY OF TESTING TOOLS

Q29. Discuss the concept of Taxonomy Testing
Tools.

Ans :
The taxonomy of testing tools organizes testing

tools into categories based on their functionality, purpose,
and usage in the software development lifecycle. Below
is an outline of this taxonomy:

1. Test Management Tools

 Purpose: To manage the testing process, plan
tests, and track test progress.

Examples:

 Test case management: TestRail, Zephyr

 Bug tracking: Jira, Bugzilla

 Requirements management: HP ALM,
ReQtest

2. Functional Testing Tools

 Purpose: To verify the application’s functionality
against requirements.

UNIT - V SOFTWARE QUALITY AND TESTING

109
Rahul Publications

 Types

 Manual Testing Tools: Excel sheets, test case
templates

 Automated Functional Testing Tools:
Selenium, QTP/UFT, TestComplete

3. Non-Functional Testing Tools

 Purpose: To evaluate the application’s
performance, security, usability, etc.

 Types

 Performance Testing Tools:

 Load testing: JMeter, LoadRunner

 Stress testing: BlazeMeter, Gatling

 Security Testing Tools:

 Vulnerability scanning: OWASP ZAP, Nessus

 Penetration testing: Metasploit, Burp Suite

 Usability Testing Tools:

 Heatmaps and user interaction: Hotjar, Crazy
Egg

4. Test Automation Tools

 Purpose: To automate repetitive testing tasks.

 Examples:

 Selenium, Appium, Katalon Studio, Robot
Framework

5. API Testing Tools

 Purpose: To test APIs for functionality,
performance, and security.

 Examples:

 Postman, SoapUI, REST Assured

6. Unit Testing Tools

 Purpose: To test individual components or
modules of code.

 Examples:

 JUnit (Java), NUnit (.NET), PyTest (Python),
Jasmine (JavaScript)

7. Mobile Testing Tools

 Purpose: To test mobile applications for
functionality, compatibility, and performance.

 Examples:

 Appium, Espresso, TestProject

8. Continuous Integration/Continuous
Deployment (CI/CD) Tools

 Purpose: To integrate and automate the testing
process in the CI/CD pipeline.

 Examples

 Jenkins, CircleCI, TravisCI

9. Code Quality Analysis Tools

 Purpose: To analyze code for potential defects
or adherence to coding standards.

 Examples

 SonarQube, Checkmarx, Coverity

10. Specialized Testing Tools

 Purpose: For niche testing areas.

 Types:

 Compatibility Testing: BrowserStack, Sauce
Labs

 Data Testing: QuerySurge, Talend

 Accessibility Testing: AXE, WAVE

11. Simulation and Emulation Tools

 Purpose: To mimic real-world scenarios and
systems for testing.

 Examples

 Network simulators: Packet Tracer, GNS3

 Device emulators: Android Emulator, iOS
Simulator

12. Collaboration and Reporting Tools

 Purpose: To enhance communication and report
sharing among the testing team.

 Examples:

 Slack, Microsoft Teams, Confluence

 5.9 METHODOLOGY TO EVALUATE

 AUTOMATED TESTING TOOLS

Q30. Discuss the Methodology to Evaluate
Automated Testing Tools.

Ans :
Test automation framework is an application that

allows you to write a series of tests without worrying
about the constraints or limitations of the underlying

MCA II YEAR III SEMESTER

110
Rahul Publications

test tools. Regardless of the automation tool, you would
be able to achieve your automation desires and
objectives. Our automation expert building framework
to include the following:

 Common codebase and database

 Exception and error handling

 Modularized reusable, and maintainable code and
data

 Standardized test idioms

 Configurable test suites

 Global test properties

One of the main advantages of our proprietary
framework is

 Optimization of testing efforts through unattended
execution

 Customized reporting and Test evidence recording

 Multi-environment run with minimal configuration
changes

 Metrics data collation and analysis

 Comprehensive documentation facilitating quick
learning and easy maintenance

Test automation has undergone several stages of
evolution, both in the development of marketable test
tool technologies and in the development of test
automation processes and frameworks within individual
QA organizations. The typical path followed is described
below:

 Record and Playback

Monitoring of an active user session, recording
user inputs related to objects encountered in the
user interface, and storing all steps and input data
in a procedural script. This method is useful in
learning how to use a test tool, but the scripts
produced are difficult to maintain after the
application under test changes and do not
produce reliable, consistent results.

 Test Script Modularity

Creating small, independent scripts that represent
modules, sections, and functions of the
application-under-test; then combining them in
a hierarchical fashion to construct larger tests.
This represents the first step toward creating
reusable test assets.

 Test Library Architecture

Dividing the application under test into procedures
and functions – also known as objects and
methods depending on your implementation
language – instead of a series of unique scripts.
This requires the creation of library files that
represent modules, sections, and functions of the
application under test. These files, often referred
to as function libraries, are then called directly
from within test case scripts. Thus, as elements
of the application change, only the common
library components which reference them must
be changed, not multiple test scripts with hard-
coded references which might be difficult to locate
and validate.

 Data-Driven Testing

Reading input and output values from data files
or tables into the variables used in recorded or
manually coded test scripts. These scripts include
navigation through the application and logging
of test status. This abstraction of data from the
test script logic allows testers with limited
knowledge of the test tool to focus on developing,
executing and maintaining larger and more
complex sets of test data. This increase in
organizational efficiency fosters enhanced test
coverage with shorter test cycles.

 Keyword-Driven Testing

Including test step functionality in the data driven
process by using data tables and keywords to
trigger test events. Test steps are expressed as
Object ’! Action ’!Expected Result. The difference
between data-driven and keyword-driven testing
is that each line of data in a keyword script
includes a reference that tells the framework what
to do with the test data on that line. The keyword
attached to the test step generally maps to a call
to a library function using parameters read in from
the data file or table. One major benefit is the
improved maintainability of the test scripts: by
fully modularizing automation of each step, it’s
easier to accommodate any user interface changes
in the application under test.

Automation Framework Describes

How test data will be handled

Script naming conventions

Test script creation standards

Script organization

UNIT - V SOFTWARE QUALITY AND TESTING

111
Rahul Publications

As noted earlier, one of the challenges facing test
automation is to speed up testing processes while
increasing the accuracy and completeness of tests.
The evolution of test automation frameworks has
been driven by accepting this challenge.

Data-Driven Frameworks

This type of functional test automation framework
abstracts the data layer from the test script logic. Ideally,
only data used as inputs to test objects and outputs
from test events would need to change from one iteration
to the next. The types of test scripts used in this
architecture are described below.

Driver Script

 Performs initialization of the test environment (as
required)

 Calls each Test Case Script in the order specified
by the Test Plan

 Controls the flow of test set execution

Test Case Script

 Executes application test case logic using Business
Component Function scripts

 Loads test data inputs (function parameters) from
data files and tables

 Evaluates actual result based on the expected
result loaded from data files and tables

Business Component Function Script

 Exercises specific business process functions within
an application

 Issues a return code to indicate result or exception

 Uses parameter (input) data derived from data
files and tables

Common Subroutine Function Script

 Performs application specific tasks required by
two or more business component functions

 Issues a return code to indicate result or exception

 Uses parameter (input) data derived from data
files and tables

User-Defined Function Script

 Contains logic for generic, application-specific,
and screen-access functions

 Can include code for test environment
initialization, debugging and results logging

In this architectural model, the “Business
Component” and “Common Subroutine”
function scripts invoke “User Defined Functions”
to perform navigation. The “Test Case” script
would call these two scripts, and the “Driver” script
would call this “Test Case” script the number of
times required to execute Test Cases of this kind.
In each case, the only change between iterations
is in the data contained in the files that are read
and processed by the “Business Function” and
“Subroutine” scripts.

Keyword-driven Frameworks

This type of framework builds on the data-driven
framework by including business component
functionality in the data tables. Keywords are used within
each test step to trigger specific actions performed on
application objects.

Driver Script

 Governs text execution workflow

 Performs initialization of the test environment (as
required)

 Calls the application-specific Action (“Controller”)
Script, passing to it the names of the business
process test cases. These test cases can be stored
in spreadsheets, delimited text files, or database
records.

Action Script

 Acts as the “controller” for test case execution

 Reads and processes the business process test case
name received from the Driver Script

 Matches on “key words” contained in the input
dataset

 Builds a list of parameters from values included
with the test data record

 Calls “Utility” scripts associated with the “key
words”, passing the created list of parameters

Utility Scripts

 Process the list of input parameter received from
the Action Script

 Perform specific tasks (e.g. press a key or button,
enter data, verify data, etc.), calling “User Defined
Functions” as required

 Record any errors encountered during test case
execution to a Test Report (e.g. data sheet, table,
test tool UI, etc.)

MCA II YEAR III SEMESTER

112
Rahul Publications

 Return to the Action Script, passing a result code
for processing status (e.g. pass, fail, incomplete,
error)

User-Defined Function Libraries

 Contain code for general and application-specific
functions

 May be called by any of the above script-types in
order to perform specific tasks

 Can contain business rules

Mercury Quality Center with TestDirector and
QuickTest Professional

Business Process Testing uses a role-based model,
allowing collaboration between non-technical
Subject Matter Experts and QA Engineers versed
in QuickTest Pro.

 5.10 LOAD RUNNER

Q31. What is LoadRunner? How does Load
Runner work?

Ans :
Load Runner is one of the oldest performance

testing tools on the market. It is used to test the behavior
and performance of applications under load. You can
create your performance test scripts with its logger or
you can do some coding from scratch using your own
development language. Then, of course, analyze the test
results with reporting tools. Since Load Runner has been
on the market for a long time, it supports many different
technologies.

LoadRunner works on the concept of recording
and replaying user activities and generating the desired
load on the server. It simply simulates the actions of the
user in the real world and creates a virtual load, helping
to determine the performance of the software application
or system. The main steps include:

1. Recording/Scripting

To record user action in a script.

2. Test Execution

Replaying the script along with the virtual payload
to simulate the real world situation in the test
environment.

3. Result Analysis

To provide accurate result in terms of load carrying
capacity and responsiveness of the application.

LoadRunner simulates real user activities in the
form of scripts (program) and runs these scripts
by creating virtual users (threads/processes). These
virtual users are known as ‘Vusers’. During
performance test execution, Vusers runs
synchronously and generates the traffic on the
server. Upon completion of the test, LoadRunner
compiles the results and saves them to a file (called
RAW results). This file can be opened through
the Microfocus Analysis tool and further analysis
can be performed on the test result. Finally, the
Analysis tool generates the report (in pdf, HTML,
excel, etc. format) that concludes the test result.

Pros of LoadRunner

Here are some of the most prominent benefits
for LoadRunner

 LoadRunner can accurately detect system-level,
end-user, and code-based bottlenecks in code and
intent fixtures

 Helps minimize the cost of application downtime
by identifying the root cause of application
performance issues

 Allows testing of legacy software with updated
technologies

 Allows easy mobile app testing

 LoadRunner helps reduce software and hardware
costs by informing its users about the full capacity
and scalability of its software.

 Enables teams to develop smart service-level deals
before their products are released

 It offers its users short test cycles that help
accelerate application delivery across global test
resources.

 It makes optimum use of load generators and
gives better load test results.

 Optimum use of load builder farm

UNIT - V SOFTWARE QUALITY AND TESTING

113
Rahul Publications

Cons of LoadRunner

 Much more expensive compared to other test tools available on the market

 Debugging features need fundamental improvements for better results.

 LoadRunner crashes a lot when the system cannot meet the computing requirements

 It uses a lot of memory space and has major compatibility issues with other frameworks.

 It has a limited load generation capacity.

Some features of LoadRunner are

 Reduce hardware and software costs by accurately estimating system capacity

 Quickly and accurately identifies root cause of application performance issues

 Has effective team usage tracking

 Browser-based access to global testing resources and optimal use of load generator farm.

What is LoadRunner Architecture?

Broadly speaking, the architecture of HP LoadRunner is complex, yet easy to understand.

LoadRunner Architecture Diagram

Suppose you are assigned to check the performance of Amazon.com for 5000 users

In a real-life situation, these all these 5000 users will not be at homepage but in a different section of the
websites. How can we simulate differently.

VUGen

VUGen or Virtual User Generator is an IDE (Integrated Development Environment) or a rich coding editor.
VUGen is used to replicate System Under Load (SUL) behavior. VUGen provides a “recording” feature which
records communication to and from client and Server in form of a coded script – also called VUser script.

MCA II YEAR III SEMESTER

114
Rahul Publications

So considering the above example, VUGen can
record to simulate following business processes:

1. Surfing the Products Page of Amazon.com

2. Checkout

3. Payment Processing

4. Checking MyAccount Page

Controller

Once a VUser script is finalized, Controller is one
of the main LoadRunner components which controls
the Load simulation by managing, for example:

 How many VUsers to simulate against each
business process or VUser Group

 Behavior of VUsers (ramp up, ramp down,
simultaneous or concurrent nature etc.)

 Nature of Load scenario e.g. Real Life or Goal
Oriented or verifying SLA

 Which injectors to use, how many VUsers against
each injector

 Collate results periodically

 IP Spoofing

 Error reporting

 Transaction reporting etc.

Taking an analogy from our example controller
will add the following parameter to the VUGen Script

1. 3500 Users are Surfing the Products Page of
Amazon.com

2. 750 Users are in Checkout

3. 500 Users are performing Payment Processing

4. 250 Users are Checking MyAccount Page ONLY
after 500 users have done Payment Processing

Even more complex scenarios are possible

1. Initiate 5 VUsers every 2 seconds till a load of
3500 VUsers (surfing Amazon product page) is
achieved.

2. Iterate for 30 minutes

3. Suspend iteration for 25 VUsers

4. Re-start 20 VUSers

5. Initiate 2 users (in Checkout, Payment Processing,
MyAccounts Page) every second.

6. 2500 VUsers will be generated at Machine A

7. 2500 VUsers will be generated at Machine B

Agents Machine/Load Generators/Injectors

HP LoadRunner Controller is responsible to
simulate thousands of VUsers – these VUsers consume
hardware resources for example processor and memory
– hence putting a limit on the machine which is
simulating them. Besides, Controller simulates these
VUsers from the same machine (where Controller resides)
& hence the results may not be precise. To address this
concern, all VUsers are spread across various machines,
called Load Generators or Load Injectors.

As a general practice, Controller resides on a
different machine and load is simulated from other
machines. Depending upon the protocol of VUser scripts
and machine specifications, a number of Load Injectors
may be required for full simulation. For example, VUsers
for an HTTP script will require 2-4MB per VUser for
simulation, hence 4 machines with 4 GB RAM each will
be required to simulate a load of 10,000 VUsers.

Taking Analogy from our Amazon Example, the
output of this component will be Analysis

Once Load scenarios have been executed, the
role of “Analysis” components of LoadRunner comes
in.

During the execution, Controller creates a dump
of results in raw form & contains information like, which
version of LoadRunner created this results dump and
what were configurations.

All the errors and exceptions are logged in a
Microsoft access database, named, output.mdb. The
“Analysis” component reads this database file to perform
various types of analysis and generates graphs.

These graphs show various trends to understand
the reasoning behind errors and failure under load; thus
help to figure whether optimization is required in SUL,
Server (e.g. JBoss, Oracle) or infrastructure.

Below is an example where bandwidth could be
creating a bottleneck. Let’s say Web server has 1GBps
capacity whereas the data traffic exceeds this capacity

UNIT - V SOFTWARE QUALITY AND TESTING

115
Rahul Publications

causing subsequent users to suffer. To determine system caters to such needs, Performance Engineer needs to
analyze application behavior with an abnormal load. Below is a graph LoadRunner generates to elicit bandwidth.

 5.11 WIN RUNNER

Q32. Explain the concept of Win Runner?

Ans :
Win Runner is the most used Automated Software Testing Tool.

Main Features of Win Runner are

 Developed by Mercury Interactive

 Functionality testing tool

 Supports C/s and web technologies such as (VB, VC++, D2K, Java, HTML, Power Builder, Delphe, Cibell
(ERP))

 To Support .net, xml, SAP, Peoplesoft, Oracle applications, Multimedia we can use QTP.

 Winrunner run on Windows only.

 Xrunner run only UNIX and linux.

 Tool developed in C on VC++ environment.

 To automate our manual test win runner used TSL (Test Script language like c)

The main Testing Process in Win Runner is

1. Learning

Recognazation of objects and windows in our application by winrunner is called learning. Winrunner 7.0
follows Auto learning.

2. Recording

Winrunner records over manual business operation in TSL

3. Edit Script

Depends on corresponding manual test, test engineer inserts check points in to that record script.

MCA II YEAR III SEMESTER

116
Rahul Publications

4. Run Script

During test script execution, winrunner compare
tester given expected values and application
actual values and returns results.

5. Analyze Results

Tester analyzes the tool given results to concentrate
on defect tracking if required.

 5.12 RATIONAL TESTING TOOLS

Q33. Describe the concept Rational Testing Tools

Ans :
Rational Testing Tools are a suite of software

testing tools developed by IBM under the Rational
Software brand. These tools are designed to support
various stages of the software development and testing
lifecycle, including requirements management, functional
testing, performance testing, and test management.
Below is an overview of key Rational Testing Tools and
their functions:

1. Rational Functional Tester (RFT)

 Purpose: Automated functional and regression
testing.

 Key Features

 Scriptless testing using visual record-and-playback.

 Supports testing of web, desktop, and mobile
applications.

 Integration with other Rational tools like Rational
Quality Manager.

 Supports Java and VBScript for scripting.

2. Rational Quality Manager (RQM)

 Purpose: Test planning, test execution, and test
lifecycle management.

 Key Features

 Centralized test management system.

 Integration with Rational Functional Tester and
Rational Performance Tester.

 Role-based access and customizable workflows.

 Comprehensive reporting and analytics.

3. Rational Performance Tester (RPT)

 Purpose: Performance and load testing of web
and server-based applications.

 Key Features

 Simulates multiple virtual users to measure system
performance under load.

 Generates detailed performance reports and
bottleneck analysis.

 Integration with other Rational tools for end-to-
end testing.

4. Rational Test Workbench

 Purpose: Provides a comprehensive set of tools
for test automation and service virtualization.

 Key Features

 Includes capabilities for API testing, performance
testing, and mobile testing.

 Service virtualization to simulate system
dependencies.

 Enables continuous integration and delivery
workflows.

5. Rational Test Virtualization Server

 Purpose: Service virtualization for simulating
unavailable systems or components.

 Key Features:

 Allows testing in incomplete environments by
virtualizing dependent services.

 Reduces costs and delays in test environment
setup.

6. Rational Test Automation Server

 Purpose: Centralized management and
execution of automated tests.

 Key Features

 Enables scheduling and monitoring of automated
test suites.

 Supports DevOps and continuous testing
strategies.

 Integration with Rational Quality Manager and
Rational Functional Tester.

7. Rational ClearQuest

 Purpose: Defect and change tracking system.

 Key Features:

 Tracks defects, enhancements, and change
requests throughout the lifecycle.

UNIT - V SOFTWARE QUALITY AND TESTING

117
Rahul Publications

 Customizable workflows and reporting.

 Integration with Rational tools and third-party
systems.

8. Rational ClearCase

 Purpose: Configuration and version control.

 Key Features

 Manages source code and software artifacts
across teams.

 Integration with Rational testing tools for
traceability.

9. Rational Requirements Composer (Now
part of IBM Engineering Requirements
Management DOORS Next)

 Purpose: Requirements management and
traceability.

 Key Features:

 Captures, manages, and tracks requirements.

 Links requirements to test cases and other
artifacts for traceability.

10. Rational Software Architect

 Purpose: Design and modeling tool.

 Key Features:

 Supports UML modeling for software architecture
and design.

 Integrates with Rational testing tools to align
design and testing efforts.

Integration with DevOps

IBM Rational Testing Tools are designed to
integrate seamlessly into DevOps workflows. They support
continuous integration (CI) and continuous delivery (CD)
pipelines by enabling automated testing, version control,
and performance monitoring.

 5.13 JAVA TESTING TOOLS

Q34. Describe the concept of Java testing tools?

Ans : (Imp.)

In Java, the code can be smaller or larger that
depends on the functionality. If a user requires small
functionality, the code will be smaller in length and easy
to do testing. But if a user requires more functionality in
the application, the code will be larger in length and not

so easy to do testing. There are various testing tools like
Junit, Mockito, and Selenium for testing Java codes.

Below are the top 10 testing tools or framework
which are best and essential to test the Java code.

1. JUnit

2. Mockito

3. Selenium

4. TestNG

5. Spock Framework

6. Cucumber

7. FitNesse

8. Arquillian

9. DBUnit

10. Rest Assured

Let’s understand each tool one by one and get
the difference between these tools.

1. JUnit

JUnit promotes the idea of “first testing then
coding”, which emphasizes setting test data for a
piece of code that can be tested first and then
implemented. Junit increases the stability of the
code. It also increases the productivity of the
programmer.

Features

These are the following features of JUnit:

 An open-source framework used to write
and run tests.

 For testing the expected result, the JUnit
provides assertions.

 To identify the test methods, it provides
annotation.

 We can write the code faster for increasing
quality using JUnit.

 For running tests, it provides test runners.

 It is very simple, not so complex and requires
less time.

MCA II YEAR III SEMESTER

118
Rahul Publications

2. Mockito

Mockito is a Java-based library or mocking
framework that is mainly used to perform unit
testing of Java applications. Mockito allows us
to add mock data or dummy functionality to the
mock interface to perform unit testing.

In order to create a dummy object for a given
interface, Mockito uses Java reflection. The mock
objects are the proxy of the actual
implementations. Testing the functionality of a
class without requiring a database connection is
referred to as Mocking. For performing the
Mocking of the real service, mock objects are used.

These are the following benefits of using the
Mockito for testing:

3. Selenium

Selenium is another important testing suite.

Selenium is an open-source Web User Interface

for performing automation testing of the Java

application. Selenium can be easily deployed on

platforms like Linux, Windows etc. Selenium also

supports multiple browsers like Firefox, Chrome,

and Microsoft Edge etc. In Java, Selenium is

mostly used for automated functional tests.

Selenium is very easy to integrate with tools such

as Jenkins, Maven and Docker to achieve a

consistent testing approach. Tools like TestNG and

JUnit help in structuring selenium tests for easy

maintenance and report generation.

Below are some features of Selenium which make

it useful for automation testing.

 For controlling the speed of test cases,

Selenium provides help to the user.

 It allows us to execute the entire Test Suite.

 Selenium helps to run the currently selected
test.

 It helps step into each specific command in
the test script.

 It helps group all the Selenese Commands
together and make them execute as a single
operation.

4. Test NG

TestNG is a special testing framework that is
derived from JUnit and NUnit. It defines some
more functionality compared to JUnit and NUnit
that make TestNG more powerful and easier to
use.

TestNG is also used for performing automation
testing. In the name of this framework, NG
represents NextGeneration. TestNG is similar to
the JUnit but an extension of it. TestNG removed
the limitations of JUnit and NUnit like frameworks.

These are the following features of TestNG:

 Just like JUnit, TestNG also supports the
annotations.

 TestNG supports the testing of integrated
classes.

 TestNG has a flexible runtime configuration.

 TestNG supports several features like load
testing, dependent test methods, partial
failure and parallel testing.

 TestNG separates compile-time test code
from runtime configuration/data info.

5. Spoke Framework

Spoke Framework is another important testing
framework for the Java application. The Mockito
framework, which we discussed above, is not a
complete testing framework for Java applications.
Unlike Mockito, the Spoke framework is a
complete testing framework for both the Java and
Groovy code. The Spoke framework function on
its own, which means Mockito works in addition
to JUnit.

These are the following features of the Spoke
framework that make it more useful in
comparison to JUnit:

 Spoke has more readability in comparison to
JUnit.

 It has a clear, documented code.

 There is no need to use a third party.

 Easy and fast to perform API testing.

 It is inspired by several frameworks and tools like
Scala, Groovy, JUnit and jMock etc. So, it has
features of all these frameworks.

UNIT - V SOFTWARE QUALITY AND TESTING

119
Rahul Publications

6. Cucumber

Cucumber is another special tool for performing
testing of Java applications. A Behavior Driven
Development tool for developing test cases is
referred to as Cucumber. It is one of the essential
tools for testing the behavior of the Java
application. It is mainly used to design test cases,
but however, it also plays a supporting role in
automation testing.

For observing the functionality of the application,
the Cucumber tool follows the BDD(Behavior
Driven Development) framework. In Cucumber
testing, we write the test cases in the Gherkin
language, which is very easy and simple to
understand.

7. FitNesse

FitNesse is another important testing tool. It is a
new tool that is mainly focused on requirements
and acceptance testing. It is used to specify and
verify the application acceptance criteria. It is a
bridge between different disciplines in a software
delivery process.

Its test-execution capabilities allow us to verify
documentation against the software to ensure that
the document remains up-to-date and does not
experience regression.

These are the following features of the
FitNesse tool:

 It is easy to use the wiki web server.

 It is very easy to setup. We just need to
download the application, i.e., the Java jar
file.

 It uses the specifications and requirements
as test input.

 It supports all the major languages like Java,
Python, and C# etc.

8. Arquillian

Arquillian is another testing platform design for
JVM. It is a highly innovative and extendible tool
that allows us to create automated integration,
functional and acceptance tests for Java. We
don’t need to manage the runtime from the test
because it allows us to run the test in the runtime.

9. DBUnit

DBUnit is another testing tool to test Java
applications. It is an extension of JUnit, which is
mainly used to test those applications which are
highly dependent on the database.

Many times, we need to run all our test cases
multiple times, and the data comes from the
database. In such cases, there is a high risk of
corrupting the database. The DBUnit helps us to
get rid of the risk of corrupting the database.
DBUnit fetches the data from the database and
test that data.

10. Rest Assured

Rest Assured is also a Java-based library that is
mainly used to test Restful Web Services. For
accessing Restful Web Service, Rest Assured
library work as a headless client. By using the
Rest Assured library, we can create a highly
customizable HTTP request to send to the Restful
server.

These are the following features of Rest
Assured:

 It allows us to validate JSON responses
according to the schema.

 It provides timeouts in tests.

 It allows us to use Groovy closures or Java
8 lambdas to validate the response.

 It can test different authentication methods
and SSL.

 It allows us to work with HTTP headers.

 It works with cookies.

 It allows us to work with XML data instead
of JSON.

 It allows us to write custom de-serializers.

 5.14 JMETRA

Q35. Define JMetra. Explain the features of J
Metra.

Ans :
Apache JMeter is a pure Java-based open-source

software application used for testing load testing
functional behavior and measuring performance. It is
used for testing a variety of services, i.e. web applications,
databases, etc.

MCA II YEAR III SEMESTER

120
Rahul Publications

Features
Features of JMeter that make it so powerful are mentioned below:

1. Performance Testing
Performance is one of the most important features of any application, so performance testing plays a vital
role in testing any application. JMeter tool has this feature of Performance Testing.

2. Load Testing
Load Testing is where we assess how the application will perform when it faces a load of users and activity,
and JMeter is good with this type of testing both with web applications and databases.

3. Functional Testing

Functional Testing checks if the functionality of the application is up to the mark. It ensures that the application
behaves as expected and delivers the desired features and functionalities to the user.

4. Protocol Support

Protocol Support is the ability of an application to exchange data with other systems using specific
communication protocols. Like protocols supported by JMeter are mentioned below:

– Web: HTTP, HTTP, FTP

– Web Services: SOAP/XML-RPC

– Network Devices: TCP/IP, Ethernet

– API: REST, GraphQL

5. Scripting

Scripting allows us to create custom test scenarios which can’t be created by pre-built components, because
of this feature JMeter is able to test wide range scenarios and corner cases.

6. Distributed Testing

Distributed Testing is technique which allows to distribute the load for testing into multiple machines rather
than a single machine. These multiple machines are controlled by a single parent machine. It is poweful
technique used JMeter check the real time consequences of load.

7. Graphical Reporting

Graphical Reporting is where we use Interactive visual to represent the report to understand performance
trends, identify bottlenecks, and optimize your application’s performance.

Q36. Explain the Applications of Apache JMeter

Ans :
Applications of Apache JMeter are not limited as it covers the wide range of systems mentioned below:

1. Web Application Testing: Web Application covers many frameworks web testing can be divided into Load
Testing, Stress Testing, Functional Testing, API Testing, etc.

2. Mobile Application Testing: Wide range features of JMeter supports various protocols, scripting which effectively
helps in Mobile Testing. Some uses of JMeter testing in Mobile Application are Performance Testing, Battery
Consumption Testing, etc.

3. Database Testing: It is the process in we evaluate how a database responds under different workloads and
conditions. It is very beneficial for improving performance and for enhancing the user experience. And,
JMeter is one of the tool used for doing so, as it offers various plugins and customization operation to
improve the database testing.

4. Other Application: Apart from Web , Mobile and Database JMeter can be used for other applications like
Desktop Applications , Testing Network Protocols, etc.

UNIT - V SOFTWARE QUALITY AND TESTING

121
Rahul Publications

Server
Connection

Request

Server
Response

JMeter

Server

Process Report

JMeter Analyses

Data to collect
Statistical
Information

GeneratedCompleted

Serves
Responses

Request

Request

 5.15 JUNIT AND CACTUS

Q37. What is JUnit? Discuss the features of Junit?

Ans :
JUnit is a unit testing open-source framework for the Java programming language. Java Developers use this

framework to write and execute automated tests. In Java, there are test cases that have to be re-executed every
time a new code is added. This is done to make sure that nothing in the code is broken.

JUnit has several graphs that represent the progress of a test. When the test runs smoothly, the graph
displays a green color, and it turns red if the test fails. JUnit Testing enables developers to develop highly reliable and
bug-free code.

Unit testing, as the name suggests, refers to the testing of small segments of code. Here, a unit indicates the
smallest bit of code that can be fetched out of the system. This small bit can be a line of the code, a method, or
a class. The smaller the chunk of code, the better it is, as smaller chunks will tend to run faster. And this provides
a better insight into the code and its performance.

 This makes the code more readable, reliable, and bug-free

 It boosts the confidence of the developer and motivates them immensely

Features of JUnit

There are several features of JUnit that make it so popular. Some of them are as follows:

MCA II YEAR III SEMESTER

122
Rahul Publications

Open Source Network: JUnit is an open-source network that enables developers to write codes fast and with better
quality.

 Provides Annotations: It provides several annotations to identify test methods.

 Provides Assertions: There are assertions to test expected results.

 Provides Test Runners: JUnit has test runners to run tests.

 Improves Code Quality

JUnit is the most popular testing framework for efficient testing. It allows faster code writing, which results in
an increase in the code’s quality.

 Automated Test Running

The test results do not require manual checking. All the tests run automatically on JUnit, the results obtained
again automatically checked, and it provides feedback.

UNIT - V SOFTWARE QUALITY AND TESTING

123
Rahul Publications

 Easily interpretable results

The test results are represented interactively by showing test progress in a bar, thus making them easily
interpretable.

Moving on, let’s have a look at JUnit Annotations.

JUnit Annotations

 JUnit Annotations refer to the syntactic meta-data added to the Java source code for better structure and
readability. Here, syntactic meta-data refers to the type of data representing the structure of a file with
references to bytes, data types, and data structures.

 The main point of difference between JUnit4 and JUnit3 is the introduction of Junit Annotations.

Tells JUnit which public void method can be run as a test case

To execute some statement before each test case

To execute some statement after each test case

Used to ignore some statements during test execution

@ Test

@ Before

@ After

@ Ignores

The Cactus Testing Tool is a testing framework that was specifically designed for testing server-side Java
components, such as Java Servlets, Enterprise JavaBeans (EJBs), and JSPs. It was part of the Apache Jakarta
Project and focused on unit testing in a container-based environment.

Introduction to Cactus Testing Tool

 Purpose: To perform in-container testing of server-side Java code.

 Developer: Apache Software Foundation (as part of the Jakarta Project).

 Type: Unit testing framework with container support.

 Core Idea: Tests are executed in the actual environment where the application is deployed, ensuring realistic
testing of server-side components.

Key Features

1. In-Container Testing

 Executes tests inside the application server or servlet container to replicate the actual runtime environment.

 Provides higher fidelity testing compared to mocks or standalone tests.

2. Servlet Redirection Mechanism

 Routes test requests through a proxy servlet to control and execute test logic inside the container.

3. Support for Java Components

 Java Servlets

 JSPs

 Enterprise JavaBeans (EJBs)

 Custom server-side Java code

MCA II YEAR III SEMESTER

124
Rahul Publications

4. Integration with JUnit

 Built on top of JUnit, it leverages JUnit’s features while extending it for server-side testing.

5. Test Isolation

 Tests are isolated in the context of the container, ensuring no interference between tests.

Workflow of Cactus

1. Test Runner

 Starts the test execution process.

 Sends requests to the server-side container.

2. Redirector

 Acts as a middle layer between the test runner and the container.

 Executes the test logic within the server-side container.

3. Response Validation

 The framework validates responses and behaviors against expected results.

Advantages

 Realistic testing in a production-like environment.

 Simplifies testing of complex server-side components.

 Reduces reliance on mocks or stubs for testing.

Disadvantages

 Configuration complexity compared to modern frameworks.

 Performance overhead due to in-container testing.

 Deprecation: As of now, Cactus is no longer actively maintained, and modern frameworks like JUnit, TestNG,
and Spring Boot Testing have largely replaced it.

Alternatives

Given that Cactus is outdated, consider using:

 JUnit or TestNG for standalone and unit testing.

 Mockito for mocking server-side dependencies.

 Spring Boot Test for comprehensive testing in Spring-based applications.

 Arquillian for in-container testing in modern Java EE applications.

SOLVED MODEL PAPERS SOFTWARE QUALITY AND TESTING

125
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. II Year III Semester Examination

Model Paper - I

SOFTWARE QUALITY AND TESTING
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. (a) What are software quality challenges? Explain. (Unit-I, Q.No. 4)

(b) What is software ? Explain about the types of software. (Unit-I, Q.No. 1)

OR

2. (a) Write about the strategies to over come quality assurance testing challenges. (Unit-I, Q.No. 5)

(b) What is the Quality Attribute of a software? (Unit-I, Q.No. 10)

3. (a) What are the various requirements of software quality. (Unit-II, Q.No. 5)

(b) What are procedures and work instructions? Why do we use them. (Unit-II, Q.No. 9)

OR

4. (a) Explain the importance of staff training and certification to improve the (Unit-II, Q.No. 16)

software quality.

(b) Explain briefly about configuration management. (Unit-II, Q.No. 18)

5. (a) What is Malcom Balridge? Explain. (Unit-III, Q.No. 10)

(b) Write ISO 9000 standards for quality management. (Unit-III, Q.No. 3)

OR

6. (a) What is Six Sigma? Explain the Characteristics of Six Sigma. (Unit-III, Q.No. 12)

(b) Explain about SQA project protocol standards. (Unit-III, Q.No. 15)

7. (a) What are Testing Methodologies? Explain. (Unit-IV, Q.No. 9)

(b) What is Test Execution? Explain the impor-tance test execution? (Unit-IV, Q.No. 22)

OR

8. (a) Explain the concept of test execution cycle. (Unit-IV, Q.No. 27)

(b) How do you evaluate the test effectivess? (Unit-IV, Q.No. 33)

MCA II YEAR III SEMESTER

126
Rahul Publications

9. (a) Discuss various Types Client-Server Test. (Unit-V, Q.No. 4)

(b) What is Data Warehouse testing? Explain various tools of Data warehouse (Unit-V, Q.No. 20)
testing?

OR

10. (a) What is Client Server Testing? Discuss the various scenarios of client serves testing? (Unit-V, Q.No. 1)

(b) What is off the shelf software? State its disadvantages? (Unit-V, Q.No. 12)

SOLVED MODEL PAPERS SOFTWARE QUALITY AND TESTING

127
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. II Year III Semester Examination

Model Paper - II

SOFTWARE QUALITY AND TESTING
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. (a) Discuss the causes of software error. (Unit-I, Q.No. 3)

(b) What are the factors for product quality? (Unit-I, Q.No. 8)

OR

2. (a) What is software quality? Explain the factors affecting software quality factors. (Unit-I, Q.No. 6)

(b) Write about the classification of software errors. (Unit-I, Q.No. 2)

3. (a) Explain different types of SDLC models. (Unit-II, Q.No. 1)

(b) Explain the difference between procedures and work instructions? (Unit-II, Q.No. 13)

OR

4. (a) What are the uses of checklists in software quality Checklists. (Unit-II, Q.No. 15)

(b) Explain the components of project progress control? (Unit-II, Q.No. 22)

5. (a) What is Capability Maturity Model Integration (CMMI)? (Unit-III, Q.No. 6)

(b) What is PCMM? Explain various methods of PCMM. (Unit-III, Q.No. 9)

OR

6. (a) Explain various methodologies of six sigma (Unit-III, Q.No. 14)

(b) Discuss the various levels of CMMI. (Unit-III, Q.No. 7)

7. (a) Explain how to determining your software testing techniques. (Unit-IV, Q.No. 12)

(b) Explain the Software Testing Strategy Document. (Unit-IV, Q.No. 3)

OR

8. (a) What is Acceptance Testing? Explain various types of acceptance testing? (Unit-IV, Q.No. 29)

(b) Discuss the techniques and challenges of requirement phasing testing? (Unit-IV, Q.No. 17)

MCA II YEAR III SEMESTER

128
Rahul Publications

9. (a) Define webtesting. State various types of web testing? (Unit-V, Q.No. 8)

(b) Discuss the Recommended Cross-Platform Testing Tools. (Unit-V, Q.No. 16)

OR

10. (a) Discuss the Basic Characteristics of Client Server Testing Architecture (Unit-V, Q.No. 3)

(b) Discuss various Types of Security Testing. (Unit-V, Q.No. 18)

SOLVED MODEL PAPERS SOFTWARE QUALITY AND TESTING

129
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. II Year III Semester Examination

Model Paper - III

SOFTWARE QUALITY AND TESTING
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. (a) What is Quality Assurance (QA)? (Unit-I, Q.No. 9)

(b) What are various techniques of SQA? (Unit-I, Q.No. 13)

OR

2. (a) Write the overview of a Software Quality Assurance. (Unit-I, Q.No. 14)

(b) What is McCall’s Software Quality Model? (Unit-I, Q.No. 7)

3. (a) What are the Factors affecting intensity of quality assurance activities (Unit-II, Q.No. 2)

in the development process?

(b) Explain about work instructions and work instructions manuals. (Unit-II, Q.No. 11)

OR

4. (a) Explain about various corrective and preventive actions to improve the (Unit-II, Q.No. 17)

software quality

(b) What is document control? Explain. (Unit-II, Q.No. 21)

5. (a) Explain briefly about software quality Metrics. (Unit-III, Q.No. 1)

(b) What is Malcom Balridge? Explain. (Unit-III, Q.No. 10)

OR

6. (a) Explain about IEEE Software engineering standards. (Unit-III, Q.No. 16)

(b) What is PCMM? Explain various methods of PCMM. (Unit-III, Q.No. 9)

7. (a) Define requirment phase testing. State the objectives, activities of requirements (Unit-IV, Q.No. 16)

Phase Testing.

(b) What are the steps to develop a test strategy document. (Unit-IV, Q.No. 8)

OR

8. (a) State the uses, advantages and disadvantages of acceptance testing. (Unit-IV, Q.No. 30)

(b) Explain briefly about test execution priorities. (Unit-IV, Q.No. 26)

MCA II YEAR III SEMESTER

130
Rahul Publications

9. (a) Explain various challenges of client server testing. (Unit-V, Q.No. 6)

(b) Discuss the Tips and Techniques for Efficient Cross-Platform Testing. (Unit-V, Q.No. 15)

OR

10. (a) Discuss various Points to be Considered While Testing a Website? (Unit-V, Q.No. 9)

(b) Discuss the process of testing strategy document. (Unit-V, Q.No. 26)

