
 Study Manual

 Important Question

 Short Question & Answers

 Multiple Choice Questions

 Fill in the blanks

 Solved Model Papers

`.189/-

Rahul’s 
Topper’s Voice

AS PER

CBCS SYLLABUS

B.Sc.
II Year IV Sem

DATABASE
MANAGEMENT SYSTEMS

Latest 2021-22 Edition

All disputes are subjects to Hyderabad Jurisdiction only

TM

Hyderabad. Ph : 66550071, 9391018098
Rahul Publications

Syllabus covered for :
Osmania University
Kakatiya University
Satavahana University
Useful for :
Mahatma Gandhi University
Palamuru University
Telangana University

Price `. 189-00

Sole Distributors :  : 65500071, Cell : 9391018098

VASU BOOK CENTRE
Shop No. 3, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

B.Sc.
II Year IV Sem

DATABASE
MANAGEMENT SYSTEMS

C
O
N
T
E
N
T
S

DATABASE
MANAGEMENT SYSTEMS

STUDY MANUAL

Important Questions V - X

Unit - I 1 - 46

Unit - II 47 - 98

Unit - III 99 - 174

Unit - IV 175 - 226

SOLVED MODEL PAPERS

Model Paper - I 227 - 227

Model Paper - II 228 - 228

Model Paper - III 229 - 229

SYLLABUS

UNIT – I

Introduction: Database-System Applications, Purpose of Database Systems, View of Data, Database
Languages, Relational Databases, Database Design, Data Storage and Querying, Transaction
Management, Database Architecture, Database Users and Administrators.

Introduction to the Relational Model: Structure of Relational Databases, Database Schema, Keys,
Schema Diagrams, Relational Query Languages, Relational Operations.

UNIT – II

Database Design and the E-R Model: Overview of the Design Process, The Entity- Relationship Model, Constraints,
Removing Redundant Attributes in Entity Sets, Entity-Relationship Diagrams, Reduction to Relational Schemas, Entity-
Relationship Design Issues, Extended E-R Features, Alternative Notations for Modeling Data, Other Aspects of Database
Design.

Relational Database Design: Features of Good Relational Designs, Atomic Domains and First Normal Form, Decomposition
Using Functional Dependencies, Functional- Dependency Theory, Decomposition Using Multivalued Dependencies,
Normal Forms-2 NF, 3 NF, BCNF, The Database Design Methodology for Relational Databases.

UNIT – III

Introduction to SQL: Overview of the SQL Query Language, SQL Data Definition, Basic Structure
of SQL Queries, Additional Basic Operations, Set Operations, Null Values, Aggregate Functions, Nested
Subqueries, Modification of the Database.

Intermediate SQL: Join Expressions, Views, Transactions, Integrity Constraints, SQL Data Types and
Schemas, Authorization.

Advanced SQL: Accessing SQL from a Programming Language, Functions and Procedures, Triggers,
Recursive Queries.

UNIT – IV

Transaction Management: Transaction Support–Properties of Transactions, Database Architecture,
Concurrency Control–The Need for Concurrency Control, Serializability and Recoverability, Locking
Methods, Deadlock, Time Stamping Methods, Multi-version Timestamp Ordering, Optimistic Techniques,
Granularity of Data Items, Database Recovery–The Need for Recovery, Transactions and Recovery,
Recovery Facilities, Recovery Techniques, Nested Transaction Model. Security: Database Security–Threats,
Computer-Based Controls–Authorization, Access Controls, Views, Backup and Recovery, Integrity,
Encryption, RAID.

I

Contents
Topic Page No.

UNIT - I

1.1 Introduction to Database...1

1.2 System Applications .. 5

1.3 Purpose of Database Systems ...5

1.4 View of data .. 9

1.5 Database Languages ...11

1.6 Relational Databases ...12

1.7 Database Design..15

1.8 Data storage and Querying ...20

1.9 Transaction Management ..21

1.10 Database Architecture ...23

1.11 Database users and Administrators ..24

1.12 Introduction to the Relational Model ...26

1.13 Structure of Relational Databases ..30

1.14 Database Schema ...31

1.15 Keys ..32

1.16 Schema Diagrams ...34

1.17 Relational Query Languages and Relational Operations ..35

 Short Question and Answers ...44

 Choose the Correct Answers ...45

 Fill in the blanks ..46

UNIT - II

2.1 Database design Model and ER – Model ...47

2.1.1 Overview of design process ...47

2.1.2 The Entity Relationship model ..51

2.1.3 Constraints ..55

2.1.4 Removing redundant attributes in entity set ..56

II

Topic Page No.

2.1.5 Entity Relationship Diagram ..58

2.1.6 Reduction to relational schemas ..62

2.1.7 Entity Relationship Design Issues ...66

2.1.8 Extended ER Features ...67

2.1.9 Alternative notations for modelling data ..69

2.1.10 Other aspects of database design ..70

2.2 Relational Database Design ...71

2.2.1 Features of good relational designs ..71

2.2.2 Atomic domains and first normal form ..73

2.2.3 Decomposition using functional dependencies, functional dependency80
theory, Decomposition using multi valued dependencies

2.2.4 Normal forms - 2NF, 3NF and BCNF ..84

2.2.5 The database design methodology for Relational databases88

 Short Question and Answers ...89

 Choose the Correct Answers ...97

 Fill in the blanks ..98

UNIT - III

3.1 Introduction to SQL ..99

3.1.1 Over Views of SQL ..99

3.1.2 SQL Data definition ..100

3.1.3 Basic structure of SQL Queries ..120

3.1.4 Additional basic operations ..122

3.1.5 Set Operations ..127

3.1.6 Null values ...129

3.1.7 Aggregate functions ...131

3.1.8 Nested subqueries ...133

3.1.9 Modification of the database ...136

3.2 Intermediate SQL ...138

3.2.1 Join Expressions ..138

3.2.2 Views ...145

III

Topic Page No.

3.2.3 Transactions ...147

3.2.4 Integrity constraints ...150

3.2.5 SQL Data types and Schemas ...154

3.2.6 Authorization ...156

3.3 Advanced SQL ..156

3.3.1 Accessing SQL from a programming language ..156

3.3.2 Functions and procedures ...158

3.3.3 Triggers ..161

3.3.4 Recursive Queries ..165

 Short Question and Answers ...167

 Choose the Correct Answers ...173

 Fill in the blanks ..174

UNIT - IV

4.1 Transaction Management ..175

4.1.1 Transaction Support, Properties of Transactions ..175

4.1.2 Database Architecture ...177

4.2 Concurrency Control ..178

4.2.1 The Need for Concurrency Control ..178

4.3 Serializability ..183

4.4 Recoverability ...187

4.5 Locking Methods ..188

4.6 Deadlock Prevention and Detection ..190

4.6.1 Timestamp Ordering, Optimistic Techniques, Granularity of Data Items192

4.7 Database Recovery ...194

4.7.1 The Need for Recovery ...194

4.7.2 Transactions and Recovery, Recovery Facilities ..196

4.7.3 Recovery Techniques ...198

4.7.4 Nested Transaction Model ...200

IV

Topic Page No.

4.8 Database Security ...201

4.8.1 Threats to Database Security ...202

4.8.2 Computer Based Controls ...204

4.9 Authorization ..206

4.10 Access Control Mechanisms ..210

4.11 Views ..211

4.11.1 Backup and Recovery, Integrity...213

4.12 Database Encryption and Decryption ...214

4.13 Redundant Array of Independent Disks (RAID) ..216

 Short Question and Answers ...218

 Choose the Correct Answers ...225

 Fill in the blanks ..226

IMPORTANT QUESTIONS DATABASE MANAGEMENT SYSTEMS

V
Rahul Publications

UNIT - I

1. Explain evolution of databases.

Ans :
Refer Unit-I, Q.No. 3

2. List out various applications of database.

Ans :
Refer Unit-I, Q.No. 5

3. Write the differences between file management system and database management
system.

Ans :
Refer Unit-I, Q.No. 10

4. Explain various techniques used to view data in database.

Ans :
Refer Unit-I, Q.No. 11

5. List and explain various types of database languages.

Ans :
Refer Unit-I, Q.No. 12

6. What are the differences between DBMS and RDBMS.

Ans :
Refer Unit-I, Q.No. 15

7. Why database design is important?

Ans :
Refer Unit-I, Q.No. 18

8. Explain the process of database designing.

Ans :
Refer Unit-I, Q.No. 19

9. Explain the major functional components of database.

Ans :
Refer Unit-I, Q.No. 20

10. Explain ACID Properties and how they are useful to transactions?

Ans :
Refer Unit-I, Q.No. 22

Important Questions

B.Sc. II YEAR IV SEMESTER

VI
Rahul Publications

11. Who is database administrator? What are the responsibilities of database administrator?

Ans :
Refer Unit-I, Q.No. 27

12. List out various types of database administrators?

Ans :
Refer Unit-I, Q.No. 28

13. What is mean by database schema?

Ans :
Refer Unit-I, Q.No. 31

14. What is Key ? how it is useful in database?

Ans :
Refer Unit-I, Q.No. 38

15. List out various types of relational query languages?

Ans :
Refer Unit-I, Q.No. 42

16. What is relational algebra? List and explain various types of relational operations.

Ans :
Refer Unit-I, Q.No. 43

UNIT - II

1. Explain database designing process ?

Ans :
Refer Unit-II, Q.No. 2

2. What is relational integrity constraints in DBMS ?

Ans :
Refer Unit-II, Q.No. 8

3. Explain the process of creating ER Diagram into table with an example.

Ans :
Refer Unit-II, Q.No. 18

4. What are data modelling notations ?

Ans :
Refer Unit-II, Q.No. 25

IMPORTANT QUESTIONS DATABASE MANAGEMENT SYSTEMS

VII
Rahul Publications

5. What are the other aspects of database design ?

Ans :
Refer Unit-II, Q.No. 26

6. What are the major objectives of good database design.

Ans :
Refer Unit-II, Q.No. 28

7. Explain first normal form (1NF) in detail.

Ans :
Refer Unit-II, Q.No. 34

8. Explain in detail Third Normal Form (3NF).

Ans :
Refer Unit-II, Q.No. 39

9. Explain in detail Boycecodd Normal Form (BCNF).

Ans :
Refer Unit-II, Q.No. 40

UNIT - III

1. What is an operator in SQL ? Explain the various types of an SQL ?

Ans :
Refer Unit-III, Q.No. 5

2. List out various types of SQL Commands.

Ans :
Refer Unit-III, Q.No. 6

3. Explain in detail DCL Commands

Ans :
Refer Unit-III, Q.No. 9

4. Explain the use of as clause in SQL.

Ans :
Refer Unit-III, Q.No. 15

5. List and explain various set operations of SQL.

Ans :

Refer Unit-III, Q.No. 19

B.Sc. II YEAR IV SEMESTER

VIII
Rahul Publications

6. SQL aggregation function is used to perform the calculations on multiple rows of a
single column of a table. It returns a single value.

Ans :
Refer Unit-III, Q.No. 20

7. What is Join? List out various types of joins supported by SQL?

Ans :
Refer Unit-III, Q.No. 23

8. Explain inner join concept with an example.

Ans :
Refer Unit-III, Q.No. 24

9. What is Left Join explain with an example.

Ans :
Refer Unit-III, Q.No. 25

10. What is mean by view in SQL? Explain the process of creating, updating and dropping a
view ?

Ans :
Refer Unit-III, Q.No. 29

11. What is transaction? Explain the properties of transaction ?

Ans :
Refer Unit-III, Q.No. 30

12. What is mean by constraints? List out most commonly used constraints in SQL?

Ans :
Refer Unit-III, Q.No. 32

13. Discuss in detail about SQL integrity constraints

Ans :
Refer Unit-III, Q.No. 33

14. List out various types of datatypes supported by SQL.

Ans :
Refer Unit-III, Q.No. 34

15. How can we access SQL from a prog-ramming language ?

Ans :
Refer Unit-III, Q.No. 36

IMPORTANT QUESTIONS DATABASE MANAGEMENT SYSTEMS

IX
Rahul Publications

UNIT - IV

1. State the architecture of transaction management.

Ans :

Refer Unit-IV, Q.No. 3

2. What is the purpose of concurrency control for a database?

Ans :

Refer Unit-IV, Q.No. 4

3. Define Serializability. State the importance of Serializability?

Ans :

Refer Unit-IV, Q.No. 6

4. Discuss in detail about the Recoverability of Schedules ?

Ans :

Refer Unit-IV, Q.No. 8

5. What is Lock? Explain various type of Locks in DBMS.

Ans :

Refer Unit-IV, Q.No. 9

6. Define deadlock. State the prevention and detection of deadlock?

Ans :

Refer Unit-IV, Q.No. 10

7. Discuss in detail about multi version timestamp ordering.

Ans :

Refer Unit-IV, Q.No. 12

8. Explain different Recovery Techniques/Approaches in DBMS ?

Ans :

Refer Unit-IV, Q.No. 18

9. Explain different Database Security Threats and How to Mitigate them?

Ans :

Refer Unit-IV, Q.No. 21

B.Sc. II YEAR IV SEMESTER

X
Rahul Publications

10. Explain various Computer Based Controls for a multi user environment.

Ans :

Refer Unit-IV, Q.No. 22

11. What are the types of Access Control Mechanisms ?

Ans :

Refer Unit-IV, Q.No. 25

12. Explain briefly about Backup and Recovery and Integrity

Ans :

Refer Unit-IV, Q.No. 28

13. Explain the concept of Database Encryption and Decryption.

Ans :

Refer Unit-IV, Q.No. 29

14. Explain the concept of RAID.

Ans :

Refer Unit-IV, Q.No. 30

UNIT - I DATABASE MANAGEMENT SYSTEMS

1
Rahul Publications

Rahul Publications

UNIT
I

Introduction: Database-System Applications, Purpose of Database Systems, View
of Data, Database Languages, Relational Databases, Database Design, Data
Storage and Querying, Transaction Management, Database Architecture, Database
Users and Administrators.
Introduction to the Relational Model: Structure of Relational Databases,
Database Schema, Keys, Schema Diagrams, Relational Query Languages,
Relational Operations.

1.1 INTRODUCTION TO DATABASE

Q1. What is Data?

Ans :
Data is a collection of a distinct small unit of

information. It can be used in a variety of forms like
text, numbers, media, bytes, etc. it can be stored in
pieces of paper or electronic memory, etc.

Word ‘Data’ is originated from the word
‘datum’ that means ‘single piece of information.’ It
is plural of the word datum.

In computing, Data is information that can
be translated into a form for efficient movement
and processing. Data is interchangeable.

Q2. What is Database?

Ans :
A database is an organized collection of

data, so that it can be easily accessed and managed.

Database handlers create a database in such
a way that only one set of software program provides
access of data to all the users.

The main purpose of the database is to
operate a large amount of information by storing,
retrieving, and managing data.

There are many dynamic websites on the
World Wide Web nowadays which are handled
through databases. For example, a model that
checks the availability of rooms in a hotel. It is an
example of a dynamic website that uses a database.

There are many databases available like
MySQL, Sybase, Oracle, MongoDB, Informix,
PostgreSQL, SQL Server, etc.

Modern databases are managed by the
database management system (DBMS).

SQL or Structured Query Language is used
to operate on the data stored in a database. SQL
depends on relational algebra and tuple relational
calculus.

A cylindrical structure is used to display the
image of a database.

Q3. Explain evolution of databases.

Ans : (Imp.)

The database has completed more than 50
years of journey of its evolution from flat-file system
to relational and objects relational systems. It has
gone through several generations.

Evolution
1. File-Based

1968 was the year when File-Based database
were introduced. In file-based databases, data was
maintained in a flat file. Though files have many
advantages, there are several limitations.

One of the major advantages is that the file
system has various access methods, e.g., sequential,
indexed, and random.

It requires extensive programming in a third-
generation language such as COBOL, BASIC.

B.Sc. II YEAR IV SEMESTER

2
Rahul Publications

Rahul Publications

2. Hierarchical Data Model

1968-1980 was the era of the Hierarchical Database. Prominent hierarchical database model was
IBM’s first DBMS. It was called IMS (Information Management System).

In this model, files are related in a parent/child manner.

Below diagram represents Hierarchical Data Model. Small circle represents objects.

Company

User Devices Applications

Marketing Personal

Like file system, this model also had some limitations like complex implementation, lack structural
independence, can’t easily handle a many-many relationship, etc.

3. Network data model

Charles Bachman developed the first DBMS at Honeywell called Integrated Data Store (IDS). It was
developed in the early 1960s, but it was standardized in 1971 by the CODASYL group (Conference on
Data Systems Languages).

In this model, files are related as owners and members, like to the common network model.

4. Network data model identified the following components

 Network schema (Database organization)

 Sub-schema (views of database per user)

 Data management language (procedural)

This model also had some limitations like system complexity and difficult to design and maintain.

5. Relational Database

1970 - Present

It is the era of Relational Database and Database Management. In 1970, the relational model was
proposed by E.F. Codd.

Relational database model has two main terminologies called instance and schema.

The instance is a table with rows or columns

Schema specifies the structure like name of the relation, type of each column and name.

This model uses some mathematical concept like set theory and predicate logic.

UNIT - I DATABASE MANAGEMENT SYSTEMS

3
Rahul Publications

Rahul Publications

The first internet database application had
been created in 1995.

During the era of the relational database,
many more models had introduced like object-
oriented model, object-relational model, etc.

6. Cloud database

Cloud database facilitates you to store,
manage, and retrieve their structured, unstructured
data via a cloud platform. This data is accessible
over the Internet. Cloud databases are also called a
database as service (DBaaS) because they are
offered as a managed service.

Some best cloud options are

 AWS (Amazon Web Services)

 Snowflake Computing

 Oracle Database Cloud Services

 Microsoft SQL server

 Google cloud spanner

Advantages

i) Lower costs: Generally, company provider
does not have to invest in databases. It can
maintain and support one or more data
centers.

ii) Automated: Cloud databases are enriched
with a variety of automated processes such
as recovery, failover, and auto-scaling.

iii) Increased accessibility: You can access
your cloud-based database from any location,
anytime. All you need is just an internet
connection.

7. NoSQL Database

A NoSQL database is an approach to design
such databases that can accommodate a wide
variety of data models. NoSQL stands for “not only
SQL.” It is an alternative to traditional relational
databases in which data is placed in tables, and data
schema is perfectly designed before the database is
built.

NoSQL databases are useful for a large set of
distributed data.

Some examples of NoSQL database system
with their category are:

 MongoDB, CouchDB, Cloudant (Document
-based).

 Memcached, Redis, Coherence (key-value
store).

 HBase, Big Table, Accumulo (Tabular).

Advantage

i) High Scalability

NoSQL can handle an extensive amount of
data because of scalability. If the data grows, NoSQL
database scale it to handle that data in an efficient
manner.

ii) High Availability

NoSQL supports auto replication. Auto
replication makes it highly available because, in case
of any failure, data replicates itself to the previous
consistent state.

Disadvantage

i) Open source: NoSQL is an open-source
database, so there is no reliable standard for
NoSQL yet.

ii) Management challenge: Data
management in NoSQL is much more
complicated than relational databases. It is
very challenging to install and even more
hectic to manage daily.

iii) GUI is not available: GUI tools for NoSQL
database are not easily available in the market.

iv) Backup: Backup is a great weak point for
NoSQL databases. Some databases, like
MongoDB, have no powerful approaches for
data backup.

8. The Object-Oriented Databases

The object-oriented databases contain data
in the form of object and classes. Objects are the
real-world entity, and types are the collection of
objects. An object-oriented database is a combina-
tion of relational model features with objects oriented
principles. It is an alternative implemen-tation to that
of the relational model.

B.Sc. II YEAR IV SEMESTER

4
Rahul Publications

Rahul Publications

Object-oriented databases hold the rules of object-oriented programming. An object-oriented
database management system is a hybrid application.

The object-oriented database model contains the following properties.

Object-oriented programming properties

 Objects

 Classes

 Inheritance

 Polymorphism

 Encapsulation

Relational database properties

 Atomicity

 Consistency

 Integrity

 Durability

 Concurrency

 Query processing

9. Graph Databases

A graph database is a NoSQL database. It is a graphical representation of data. It contains nodes
and edges. A node represents an entity, and each edge represents a relationship between two edges.
Every node in a graph database represents a unique identifier.

Graph databases are beneficial for searching the relationship between data because they highlight
the relationship between relevant data.

Employee Company City
Manager Located in

Graph databases are very useful when the database contains a complex relationship and dynamic
schema.

It is mostly used in supply chain management, identifying the source of IP telephony.

Q4. Define DBMS. List out its advantages and disadvantages.

Ans :
Database management System is software which is used to store and retrieve the database. For

example, Oracle, MySQL, etc.; these are some popular DBMS tools.

 DBMS provides the interface to perform the various operations like creation, deletion, modification,
etc.

 DBMS allows the user to create their databases as per their requirement.

 DBMS accepts the request from the application and provides specific data through the operating
system.

 DBMS contains the group of programs which acts according to the user instruction.

 It provides security to the database.

UNIT - I DATABASE MANAGEMENT SYSTEMS

5
Rahul Publications

Rahul Publications

Advantage

i) Controls redundancy

It stores all the data in a single database file,
so it can control data redundancy.

ii) Data sharing

An authorized user can share the data among
multiple users.

iii) Backup

It provides Backup and recovery subsystem.
This recovery system creates automatic data from
system failure and restores data if required.

iv) Multiple user interfaces

It provides a different type of user interfaces
like GUI, application interfaces.

Disadvantage

i) Size

It occupies large disk space and large memory
to run efficiently.

ii) Cost

DBMS requires a high-speed data processor
and larger memory to run DBMS software, so it is
costly.

iii) Complexity

DBMS creates additional complexity and
requirements.

1.2 SYSTEM APPLICATIONS

Q5. List out various applications of
database.

Ans : (Imp.)

Applications where we use Database Manage-
ment Systems are:

i) Telecom

There is a database to keeps track of the
information regarding calls made, network usage,
customer details etc. Without the database systems
it is hard to maintain that huge amount of data that
keeps updating every millisecond.

ii) Industry

Where it is a manufacturing unit, warehouse
or distribution centre, each one needs a database
to keep the records of ins and outs. For example
distribution centre should keep a track of the
product units that supplied into the centre as well
as the products that got delivered out from the
distribution centre on each day; this is where DBMS
comes into picture.

iii) Banking System

For storing customer info, tracking day to day
credit and debit transactions, generating bank
statements etc. All this work has been done with
the help of Database management systems.

iv) Sales

To store customer information, production
information and invoice details.

v) Airlines

To travel though airlines, we make early
reservations, this reservation information along with
flight schedule is stored in database.

vi) Education sector

Database systems are frequently used in
schools and colleges to store and retrieve the data
regarding student details, staff details, course details,
exam details, payroll data, attendance details, fees
details etc. There is a hell lot amount of inter-related
data that needs to be stored and retrieved in an
efficient manner.

vii) Online shopping

You must be aware of the online shopping
websites such as Amazon, Flipkart etc. These sites
store the product information, your addresses and
preferences, credit details and provide you the
relevant list of products based on your query. All
this involves a Database management system.

1.3 PURPOSE OF DATABASE SYSTEMS

Q6. Explain the database concept of system.

Ans :
Database systems arose in response to early

methods of computerized management of
commercial data. As an example of such methods,

B.Sc. II YEAR IV SEMESTER

6
Rahul Publications

Rahul Publications

typical of the 1960s, consider part of a university
organization that, among other data, keeps
information about all instructors, students,
departments, and course offerings. One way to keep
the information on a computer is to store it in
operating system files. To allow users to manipulate
the information, the system has a number of
application programs that manipulate the files,
including programs to:

1. Add new students, instructors, and
courses

2. Register students for courses and
generate class rosters

3. Assign grades to students, compute
grade point averages (GPA), and
generate transcripts

System programmers wrote these application
programs to meet the needs of the university.

New application programs are added to the
system as the need arises. For example, suppose
that a university decides to create a new major (say,
computer science).As a result, the university creates
a newdepartment and creates new permanent files
(or adds information to existing files) to record
information about all the instructors in the
department, students in that major, course offerings,
degree requirements, etc. The university may have
to write new application programs to deal with rules
specific to the new major. New application programs
may also have to be written to handle new rules in
the university. Thus, as time goes by, the system
acquires more files and more application programs.

This typical file-processing system is
supported by a conventional operating system. The
system stores permanent records in various files, and
it needs different application programs to extract
records from, and add records to, the appropriate
files. Before database management systems
(DBMSs) were introduced, organizations usually
stored information in such systems. Keeping
organizational information in a file-processing system
has a number of major disadvantages:

1. Data redundancy and inconsistency

Since different programmers create the files
and application programs over a long period, the
various files are likely to have different structures

and the programs may be written in several
programming languages. Moreover, the same
information may be duplicated in several places
(files). For example, if a student has a double major
(say, music and mathematics) the address and
telephone number of that student may appear in a
file that consists of student records of students in
the Music department and in a file that consists of
student records of students in the Mathematics
department. This redundancy leads to higher storage
and access cost. In addition, it may lead to data
inconsistency; that is, the various copies of the same
datamayno longer agree. For example, a changed
student address may be reflected in the Music
department records but not elsewhere in the system.

Difficulty in accessing data

Suppose that one of the university clerks
needs to find out the names of all students who live
within a particular postal-code area. The clerk asks
the data-processing department to generate such a
list. Because the designers of the original system did
not anticipate this request, there is no application
program on hand to meet it. There is, however, an
application program to generate the list of all
students. The university clerk has now two choices:
either obtain the list of all students and extract the
needed information manually or ask a programmer
to write the necessary application program. Both
alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several
days later, the same clerk needs to trim that list to
include only those students who have taken at least
60 credit hours. As expected, a program to generate
such a list does not exist. Again, the clerk has the
preceding two options, neither of which is
satisfactory.

The point here is that conventional file-
processing environments do not allow needed data
to be retrieved in a convenient and efficient manner.
More responsive data-retrieval systems are required
for general use.

2. Data isolation

Because data are scattered in various files,
and files may be in different formats, writing new
application programs to retrieve the appropriate data
is difficult.

UNIT - I DATABASE MANAGEMENT SYSTEMS

7
Rahul Publications

Rahul Publications

3. Integrity problems

The data values stored in the database must satisfy certain types of consistency constraints. Suppose
the university maintains an account for each department, and records the balance amount in each account.

Suppose also that the university requires that the account balance of a department may never fall
below zero. Developers enforce these constraints in the system by adding appropriate code in the various
application programs.

However, when new constraints are added, it is difficult to change the programs to enforce them.
The problem is compounded when constraints involve several data items from different files.

4. Atomicity problems

A computer system, like any other device, is subject to failure. In many applications, it is crucial that,
if a failure occurs, the data be restored to the consistent state that existed prior to the failure. Consider a
program to transfer $500 from the account balance of department A to the account balance of department
B. If a system failure occurs during the execution of the program, it is possible that the $500 was removed
from the balance of department A but was not credited to the balance of department B, resulting in an
inconsistent database state. Clearly, it is essential to database consistency that either both the credit and
debit occur, or that neither occur.

That is, the funds transfer must be atomic - it must happen in its entirety or not at all. It is difficult to
ensure atomicity in a conventional file-processing system.

5. Concurrent-access anomalies

For the sake of overall performance of the system and faster response, many systems allow multiple
users to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of
accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is
possible and may result in inconsistent data. Consider department A, with an account balance of $10,000.
If two department clerks debit the account balance (by say $500 and $100, respectively) of department
A at almost exactly the same time, the result of the concurrent executions may leave the budget in an
incorrect (or inconsistent) state. Suppose that the programs executing on behalf of each withdrawal read
the old balance, reduce that value by the amount being withdrawn, and write the result back. If the two
programs run concurrently, they may both read the value $10,000, and write back $9500 and $9900,
respectively. Depending on which one writes the value last, the account balance of department A may
contain either $9500 or $9900, rather than the correct value of $9400. To guard against this possibility,
the system must maintain some form of supervision.

But supervision is difficult to provide because data may be accessed by many different application
programs that have not been coordinated previously. As another example, suppose a registration program
maintains a count of students registered for a course, in order to enforce limits on the number of students
registered. When a student registers, the program reads the current count for the courses, verifies that the
count is not already at the limit, adds one to the count, and stores the count back in the database.
Suppose two students register concurrently, with the count at (say) 39. The two program executions may
both read the value 39, and both would then write back 40, leading to an incorrect increase of only 1,
even though two students successfully registered for the course and the count should be 41. Furthermore,
suppose the course registration limit was 40; in the above case both students would be able to register,
leading to a violation of the limit of 40 students.

6. Security problems

Not every user of the database system should be able to access all the data. For example, in a
university, payroll personnel need to see only that part of the database that has financial information.
They do not need access to information about academic records. But, since application programs are
added to the file-processing system in an ad hoc manner, enforcing such security constraints is difficult.

B.Sc. II YEAR IV SEMESTER

8
Rahul Publications

Rahul Publications

Q7. What is the purpose of DBMS ?

Ans :
The Database Management System (DBMS) is defined as a software system that allows the user to

define, create and maintain the database and provide control access to the data.

It is a collection of programs used for managing data and simultaneously it supports different types
of users to create, manage, retrieve, update and store information.

Purpose

The purpose of DBMS is to transform the following:

 Data into information.

 Information into knowledge.

 Knowledge to the action.

The diagram given below explains the process as to how the transformation of data to information
to knowledge to action happens respectively in the DBMS:

Previously, the database applications were built directly on top of the file system.

Q8. State the drawbacks in file system.

Ans :
There are so many drawbacks in using the file system. These are mentioned below:

 Data redundancy and inconsistency: Different file formats, duplication of information in different
files.

 Difficulty in accessing data: To carry out new task we need to write a new program.

 Data Isolation: Different files and formats.

 Integrity problems.

 Atomicity of updates: Failures leave the database in an inconsistent state. For example, the fund
transfer from one account to another may be incomplete.

 Concurrent access by multiple users.

 Security problems.

Database system offer so many solutions to all these problems

Q9. State the uses of DBMS.

Ans :
The main uses of DBMS are as follows:

 Data independence and efficient access of data.

 Application Development time reduces.

 Security and data integrity.

 Uniform data administration.

 Concurrent access and recovery from crashes.

UNIT - I DATABASE MANAGEMENT SYSTEMS

9
Rahul Publications

Rahul Publications

Q10. Write the differences between file management system and database management
system.

Ans : (Imp.)

There are following differences between DBMS and File system:

 DBMS File System

DBMS is a collection of data. In DBMS, the File system is a collection of data. In this
user is not required to write the procedures. system, the user has to write the procedures

for managing the database.

DBMS gives an abstract view of data that File system provides the detail of the data
hides the details. representation and storage of data.

DBMS provides a crash recovery mechanism, File system doesn’t have a crash mechanism,
i.e., DBMS protects the user from the system i.e., if the system crashes while entering some
failure. data, then the content of the file will lost.

DBMS provides a good protection mechanism. It is very difficult to protect a file under the
file system.

DBMS contains a wide variety of sophisticated File system can’t efficiently store and retrieve
techniques to store and retrieve the data. the data.

DBMS takes care of Concurrent access of data In the File system, concurrent access has many
using some form of locking. problems like redirecting the file while other

deleting some information or updating some
information.

1.4 VIEW OF DATA

Q11. Explain various techniques used to view data in database.

Ans : (Imp.)

A database system is a collection of interrelated data and a set of programs that allow users to access
and modify these data. A major purpose of a database system is to provide users with an abstract view of
the data. That is, the system hides certain details of how the data are stored and maintained.

To fully understand the view of data, you must have a basic knowledge of data abstraction and
instance & schema.

1. Data abstraction

2. Instance and schema

1. Data abstraction

Database systems are made-up of complex data structures. To ease the user interaction with database,
the developers hide internal irrelevant details from users. This process of hiding irrelevant details from
user is called data abstraction.

B.Sc. II YEAR IV SEMESTER

10
Rahul Publications

Rahul Publications

View 1 View 2 View n

Logical level

Physical level

Three Levels of data abstraction

We have three levels of abstraction:

i) Physical level

This is the lowest level of data abstraction. It
describes how data is actually stored in database.
You can get the complex data structure details at
this level.

ii) Logical level

This is the middle level of 3-level data
abstraction architecture. It describes what data is
stored in database.

iii) View level

Highest level of data abstraction. This level
describes the user interaction with database system.

Example

Let’s say we are storing customer information
in a customer table. At physical level these records
can be described as blocks of storage (bytes,
gigabytes, terabytes etc.) in memory. These details
are often hidden from the programmers.

At the logical level these records can be
described as fields and attributes along with their
data types, their relationship among each other can
be logically implemented. The programmers
generally work at this level because they are aware
of such things about database systems.

At view level, user just interact with system
with the help of GUI and enter the details at the
screen, they are not aware of how the data is stored
and what data is stored; such details are hidden from
them.

2. Instance and schema

Schema

Design of a database is called the schema.
Schema is of three types: Physical schema, logical
schema and view schema.

For example

In the following diagram, we have a schema
that shows the relationship between three tables:
Course, Student and Section. The diagram only
shows the design of the database, it doesn’t show
the data present in those tables. Schema is only a
structural view (design) of a database as shown in
the diagram below.

The design of a database at physical level is
called physical schema, how the data stored in
blocks of storage is described at this level.

Design of database at logical level is called
logical schema, programmers and database
administrators work at this level, at this level data
can be described as certain types of data records
gets stored in data structures, however the internal
details such as implementation of data structure is
hidden at this level (available at physical level).

Design of database at view level is called view
schema. This generally describes end user
interaction with database systems.

Course Student

Couse_id

Course_name

Department

Student_id

Student_name

Course_id

Schema

Section

Student_id

Section_id

Course_id

Instance

The data stored in database at a particular
moment of time is called instance of database.

UNIT - I DATABASE MANAGEMENT SYSTEMS

11
Rahul Publications

Rahul Publications

Database schema defines the variable declarations in tables that belong to a particular database; the value
of these variables at a moment of time is called the instance of that database.

For example, lets say we have a single table student in the database, today the table has 100
records, so today the instance of the database has 100 records. Lets say we are going to add another 100
records in this table by tomorrow so the instance of database tomorrow will have 200 records in table. In
short, at a particular moment the data stored in database is called the instance, that changes over time
when we add or delete data from the database.

1.5 DATABASE LANGUAGES

Q12. List and explain various types of database languages.

Ans : (Imp.)

 A DBMS has appropriate languages and interfaces to express database queries and updates.

 Database languages can be used to read, store and update the data in the database.

DBMS Language

DDL DCL DML TCLTCL

1. Data Definition Language

 DDL stands for Data Definition Language. It is used to define database structure or pattern.

 It is used to create schema, tables, indexes, constraints, etc. in the database.

 Using the DDL statements, you can create the skeleton of the database.

 Data definition language is used to store the information of metadata like the number of tables
and schemas, their names, indexes, columns in each table, constraints, etc.

Here are some tasks that come under DDL:

 Create: It is used to create objects in the database.

 Alter: It is used to alter the structure of the database.

 Drop: It is used to delete objects from the database.

 Truncate: It is used to remove all records from a table.

 Rename: It is used to rename an object.

 Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that’s why they come under Data
definition language.

2. Data Manipulation Language

DML stands for Data Manipulation Language. It is used for accessing and manipulating data in a
database. It handles user requests.

B.Sc. II YEAR IV SEMESTER

12
Rahul Publications

Rahul Publications

Here are some tasks that come under DML:
 Select: It is used to retrieve data from

a database.
 Insert: It is used to insert data into a

table.
 Update: It is used to update existing

data within a table.
 Delete: It is used to delete all records

from a table.
 Merge: It performs UPSERT operation,

i.e., insert or update operations.
 Call: It is used to call a structured query

language or a Java subprogram.
 Explain Plan: It has the parameter of

explaining data.
 Lock Table: It controls concurrency.

3. Data Control Language
 DCL stands for data control language.

It is used to retrieve the stored or saved
data.

 The DCL execution is transactional. It
also has rollback parameters.
(But in Oracle database, the execution
of data control language does not have
the feature of rolling back.)
Here are some tasks that come under
DCL:

 Grant: It is used to give user access
privileges to a database.

 Revoke: It is used to take back
permissions from the user.

There are the following operations which have
the authorization of Revoke:
CONNECT, INSERT, USAGE, EXECUTE,
DELETE, UPDATE and SELECT.

4. Transaction Control Language
TCL is used to run the changes made by the
DML statement. TCL can be grouped into a
logical transaction.
Here are some tasks that come under TCL:
 Commit: It is used to save the

transaction on the database.
 Rollback: It is used to restore the

database to original since the last
Commit.

1.6 RELATIONAL DATABASES

Q13. Define relational database?

Ans : (Imp.)

A relational database (RDB) is a collective set
of multiple data sets organized by tables, records
and columns. RDBs establish a well-defined
relationship between database tables. Tables
communicate and share information, which
facilitates data searchability, organization and
reporting.

RDBs use Structured Query Language (SQL),
which is a standard user application that provides
an easy programming interface for database
interaction.

RDB is derived from the mathematical
function concept of mapping data sets and was
developed by Edgar F. Codd.

RDBs organize data in different ways. Each
table is known as a relation, which contains one or
more data category columns. Each table record (or
row) contains a unique data instance defined for a
corresponding column category. One or more data
or record characteristics relate to one or many
records to form functional dependencies. These are
classified as follows:

 One to One: One table record relates to
another record in another table.

 One to Many: One table record relates to
many records in another table.

 Many to One: More than one table record
relates to another table record.

 Many to Many: More than one table record
relates to more than one record in another
table.

RDBs have many other advantages,
including:

 Easy extendibility, as new data may be added
without modifying existing records. This is also
known as scalability.

 New technology performance, power and
flexibility with multiple data requirement
capabilities.

UNIT - I DATABASE MANAGEMENT SYSTEMS

13
Rahul Publications

Rahul Publications

 Data security, which is critical when data sharing is based on privacy. For example, management
may share certain data privileges and access and block employees from other data, such as confidential
salary or benefit information.

Q14. What is RDBMS ? How it works ?

Ans :
RDBMS stands for Relational Database Management Systems;

All modern database management systems like SQL, MS SQL Server, IBM DB2, ORACLE, My-
SQL and Microsoft Access are based on RDBMS.

It is called Relational Data Base Management System (RDBMS) because it is based on relational
model introduced by E.F. Codd.

Data is represented in terms of tuples (rows) in RDBMS. Relational database is most commonly
used database. It contains number of tables and each table has its own primary key.

Due to a collection of organized set of tables, data can be accessed easily in RDBMS.

Q15. What are the differences between DBMS and RDBMS.

Ans : (Imp.)

The main differences between DBMS and RDBMS are given below:

S.No. DBMS RDBMS

1. DBMS applications store data as file. RDBMS applications store data in a tabular
form.

2. In DBMS, data is generally stored in either In RDBMS, the tables have an identifier called
a hierarchical form or a navigational form. primary key and the data values are stored in

the form of tables.

3. Normalization is not present in DBMS. Normalization is present in RDBMS.

4. DBMS does not apply any security RDBMS defines the integrity constraint
with regards to data manipulation. for the purpose of ACID (Atomocity, Consis-

tency, Isolation and Durability) property.

5. DBMS uses file system to store data, so in RDBMS, data values are stored in the form
there will be no relation between the of tables, so a relationship between these data
tables. values will be stored in the form of a table as

well.

6. DBMS has to provide some uniform RDBMS system supports a tabular structure of
methods to access the stored information. the data and a relationship between them to

access the stored information.

7. DBMS does not support distributed RDBMS supports distributed database.
database.

8. DBMS is meant to be for small organiz RDBMS is designed to handle large amount
-ation and deal with small data. of data. it supports multiple users.
it supports single user.

9. Examples of DBMS are file systems, Example of RDBMS are mysql, postgre, sql
xml etc. server, oracle etc.

B.Sc. II YEAR IV SEMESTER

14
Rahul Publications

Rahul Publications

Q16. List and explain various types of
databases.

Ans :

Database technology has changed and
evolved over the years. Relational, NoSQL,
hierarchical…it can start to get confusing. Storing
data doesn’t have to be a headache. If you’re trying
to pick the right database for your organization,
here’s a guide to the properties and uses of each
type.

1. Relational databases

Relational databases have been around since
the 1970s. The name comes from the way
that data is stored in multiple, related tables.
Within the tables, data is stored in rows and
columns. The relational database
management system (RDBMS) is the
program that allows you to create, update,
and administer a relational database.
Structured Query Language (SQL) is the most
common language for reading, creating,
updating and deleting data. Relational
databases are very reliable. They are
compliant with ACID (Atomicity, Consistency,
Isolation, Durability), which is a standard set
of properties for reliable database
transactions. Relational databases work well
with structured data. Organizations that have
a lot of unstructured or semi-structured data
should not be considering a relational
database.

Examples: Microsoft SQL Server, Oracle
Database, MySQL, PostgreSQL and IBM Db2

2. NoSQL databases

NoSQL is a broad category that includes any
database that doesn’t use SQL as its primary
data access language. These types of
databases are also sometimes referred to as
non-relational databases. Unlike in relational
databases, data in a NoSQL database doesn’t
have to conform to a pre-defined schema,
so these types of databases are great for
organizations seeking to store unstructured
or semi-structured data. One advantage of

NoSQL databases is that developers can make
changes to the database on the fly, without
affecting applications that are using the
database.

Examples: Apache Cassandra, MongoDB,
CouchDB, and CouchBase

3. Cloud databases

A cloud database refers to any database that’s
designed to run in the cloud. Like other cloud-
based applications, cloud databases offer
flexibility and scalability, along with high
availability. Cloud databases are also often
low-maintenance, since many are offered via
a SaaS model.

Examples: Microsoft Azure SQL Database,
Amazon Relational Database Service, Oracle
Autonomous Database.

4. Columnar databases

Also referred to as column data stores,
columnar databases store data in columns
rather than rows. These types of databases
are often used in data warehouses because
they’re great at handling analytical queries.
When you’re querying a columnar database,
it essentially ignores all of the data that doesn’t
apply to the query, because you can retrieve
the information from only the columns you
want.

Examples: Google BigQuery, Cassandra,
HBase, MariaDB, Azure SQL Data
Warehouse

5. Wide column databases

Wide column databases, also known as wide
column stores, are schema-agnostic. Data is
stored in column families, rather than in rows
and columns. Highly scalable, wide column
databases can handle petabytes of data,
making them ideal for supporting real-time
big data applications.

Examples: BigTable, Apache Cassandra
and Scylla

6. Object-oriented databases

An object-oriented database is based on
object-oriented programming, so data and

UNIT - I DATABASE MANAGEMENT SYSTEMS

15
Rahul Publications

Rahul Publications

all of its attributes, are tied together as an
object. Object-oriented databases are
managed by object-oriented database
management systems (OODBMS). These
databases work well with object-oriented
programming languages, such as C++ and
Java. Like relational databases, object-
oriented databases conform to ACID
standards.

Examples: Wakanda, ObjectStore

7. Key-value databases

One of the simplest types of NoSQL data-
bases, key-value databases save data as a
group of key-value pairs made up of two data
items each. They’re also sometimes referred
to as a key-value store. Key-value databases
are highly scalable and can handle high
volumes of traffic, making them ideal for
processes such as session management for
web applications, user sessions for massive
multi-player online games, and online
shopping carts.

Examples: Amazon DynamoDB, Redis

8. Hierarchical databases

Hierarchical databases use a parent-child
model to store data. If you were to draw a
picture of a hierarchical database, it would
look like a family tree, with one object on
top branching down to multiple objects
beneath it. The one-to-many format is rigid,
so child records can’t have more than one
parent record. Originally developed by IBM
in the early 1960s, hierarchical databases are
commonly used to support high-performance
and high availability applications.

Examples: IBM Information Management
System (IMS), Windows Registry

9. Document databases

Document databases, also known as
document stores, use JSON-like documents
to model data instead of rows and columns.
Sometimes referred to as document-oriented
databases, document databases are designed
to store and manage document-oriented
information, also referred to as semi-

structured data. Document databases are
simple and scalable, making them useful for
mobile apps that need fast iterations.

Examples: MongoDB, Amazon Document
DB, Apache CouchDB

10. Graph databases

Graph databases are a type of NoSQL
database that are based on graph theory.
Graph-Oriented Database Management
Systems (DBMS) software is designed to
identify and work with the connections
between data points. Therefore graph
databases are often used to analyze the
relationships between heterogeneous data
points, such as in fraud prevention or for
mining data about customers from social
media.

Examples: Datastax Enterprise Graph,
Neo4J

11. Time series databases

A time series database is a database optimized
for time-stamped, or time series, data.
Examples of this type of data include network
data, sensor data, and application perfor-
mance monitoring data. All of those Internet
of Things sensors that are getting attached to
everything put out a constant stream of time
series data.

Examples: Druid, eXtremeDB, InfluxDB

1.7 DATABASE DESIGN

Q17. What is database design?

Ans :
Database design can be generally defined as

a collection of tasks or processes that enhance the
designing, development, implementation, and
maintenance of enterprise data management
system. Designing a proper database reduces the
maintenance cost thereby improving data
consistency and the cost-effective measures are
greatly influenced in terms of disk storage space.
Therefore, there has to be a brilliant concept of
designing a database. The designer should follow
the constraints and decide how the elements
correlate and what kind of data must be stored.

B.Sc. II YEAR IV SEMESTER

16
Rahul Publications

Rahul Publications

The main objectives behind database designing are to produce physical and logical design models
of the proposed database system. To elaborate this, the logical model is primarily concentrated on the
requirements of data and the considerations must be made in terms of monolithic considerations and
hence the stored physical data must be stored independent of the physical conditions. On the other hand,
the physical database design model includes a translation of the logical design model of the database by
keep control of physical media using hardware resources and software systems such as Database
Management System (DBMS).

Q18. Why database design is important?

Ans : (Imp.)

The important consideration that can be taken into account while emphasizing the importance of
database design can be explained in terms of the following points given below.

1. Database designs provide the blueprints of how the data is going to be stored in a system. A proper
design of a database highly affects the overall performance of any application.

2. The designing principles defined for a database give a clear idea of the behavior of any application
and how the requests are processed.

3. Another instance to emphasize the database design is that a proper database design meets all the
requirements of users.

4. Lastly, the processing time of an application is greatly reduced if the constraints of designing a highly
efficient database are properly implemented.

Life Cycle

Requirements
analysis

Database
designing

Implementation

 Planning
 System

definition

 Logical model
 Physical

model

 Data
conversion
and loading

 Testing

Requirements
analysis

Database
designing

Implementation

 Planning
 System

definition

 Logical model
 Physical

model

 Data
conversion
and loading

 Testing

Although, the life cycle of a database is not an important discussion that has to be taken forward in
this article because we are focused on the database design. But, before jumping directly on the designing
models constituting database design it is important to understand the overall workflow and life-cycle of
the database.

1. Requirement Analysis

First of all, the planning has to be done on what are the basic requirements of the project under
which the design of the database has to be taken forward. Thus, they can be defined as:-

i) Planning: This stage is concerned with planning the entire DDLC (Database Development
Life Cycle). The strategic considerations are taken into account before proceeding.

ii) System definition: This stage covers the boundaries and scopes of the proper database
after planning.

UNIT - I DATABASE MANAGEMENT SYSTEMS

17
Rahul Publications

Rahul Publications

2. Database Designing

The next step involves designing the database considering the user-based requirements and splitting
them out into various models so that load or heavy dependencies on a single aspect are not imposed.
Therefore, there has been some model-centric approach and that’s where logical and physical
models play a crucial role.

i) Physical Model: The physical model is concerned with the practices and implementations of
the logical model.

ii) Logical Model: This stage is primarily concerned with developing a model based on the
proposed requirements. The entire model is designed on paper without any implementation
or adopting DBMS considerations.

3. Implementation

The last step covers the implementation methods and checking out the behavior that matches our
requirements. It is ensured with continuous integration testing of the database with different data
sets and conversion of data into machine understandable language. The manipulation of data is
primarily focused on these steps where queries are made to run and check if the application is
designed satisfactorily or not.

i) Data conversion and loading: This section is used to import and convert data from the old
to the new system.

ii) Testing: This stage is concerned with error identification in the newly implemented system.
Testing is a crucial step because it checks the database directly and compares the requirement
specifications.

Q19. Explain the process of database designing.

Ans : (Imp.)

Database Design Process

The process of designing a database carries various conceptual approaches that are needed to be
kept in mind. An ideal and well-structured database design must be able to:

1. Save disk space by eliminating redundant data.

2. Maintains data integrity and accuracy.

3. Provides data access in useful ways.

4. Comparing Logical and Physical data models.

Logical

A logical data model generally describes the data in as many details as possible, without having to
be concerned about the physical implementations in the database. Features of logical data model might
include:

1. All the entities and relationships amongst them.

2. Each entity has well-specified attributes.

3. The primary key for each entity is specified.

4. Foreign keys which are used to identify a relationship between different entities are specified.

5. Normalization occurs at this level.

B.Sc. II YEAR IV SEMESTER

18
Rahul Publications

Rahul Publications

A logical model can be designed using the following approach:

1. Specify all the entities with primary keys.

2. Specify concurrent relationships between different entities.

3. Figure out each entity attributes

4. Resolve many-to-many relationships.

5. Carry out the process of normalization.

Also, one important factor after following the above approach is to critically examine the design
based on requirement gathering. If the above steps are strictly followed, there are chances of creating a
highly efficient database design that follows the native approach.

To understand these points, see the image below to get a clear picture.

If we compare the logical data model as shown in the figure above with some sample data in the
diagram, we can come up with facts that in a conceptual data model there are no presence of a primary
key whereas a logical data model has primary keys for all of its attributes. Also, logical data model the
cover relationship between different entities and carries room for foreign keys to establish relationships
among them.

Physical

A Physical data mode generally represents how the approach or concept of designing the database.
The main purpose of the physical data model is to show all the structures of the table including the column
name, column data type, constraints, keys(primary and foreign), and the relationship among tables. The
following are the features of a physical data model:

UNIT - I DATABASE MANAGEMENT SYSTEMS

19
Rahul Publications

Rahul Publications

1. Specifies all the columns and tables.

2. Specifies foreign keys that usually define the relationship between tables.

3. Based on user requirements, de-normalization might occur.

4. Since the physical consideration is taken into account so there will straightforward reasons for
difference than a logical model.

5. Physical models might be different for different RDBMS. For example, the data type column may
be different in MySQL and SQL Server.

While designing a physical data model, the following points should be taken into consideration:

1. Convert the entities into tables.

2. Convert the defined relationships into foreign keys.

3. Convert the data attributes into columns.

4. Modify the data model constraints based on physical requirements.

Comparing this physical data model with the logical with the previous logical model, we might
conclude the differences that in a physical database entity names are considered table names and attributes
are considered column names. Also, the data type of each column is defined in the physical model
depending on the actual database used.

B.Sc. II YEAR IV SEMESTER

20
Rahul Publications

Rahul Publications

1.8 DATA STORAGE AND QUERYING

Q20. Explain the major functional compo-
nents of database.

Ans : (Imp.)

A database system is partitioned into modules
that deal with each of the responsibilities of the
overall system. The functional components of a
database system can be broadly divided into the
storage manager and the query processor
components.

The storage manager is important because
databases typically require a large amount of storage
space. Corporate databases range in size from
hundreds of gigabytes to, for the largest databases,
terabytes of data. A gigabyte is approximately 1000
megabytes (actually 1024) (1 billion bytes), and a
terabyte is 1 million megabytes (1 trillion bytes).
Since the main memory of computers cannot store
this much information, the information is stored on
disks. Data are moved between disk storage and
main memory as needed. Since the movement of
data to and from disk is slow relative to the speed
of the central processing unit, it is imperative that
the database system structure the data so as to
minimize the need to move data between disk and
main memory.

The query processor is important because it
helps the database system to simplify and facilitate
access to data. The query processor allows database
users to obtain good performance while being able
to work at the view level and not be burdened with
understanding the physical-level details of the
implementation of the system. It is the job of the
database system to translate updates and queries
written in a nonprocedural language, at the logical
level, into an efficient sequence of operations at the
physical level.

1. Storage Manager

The storage manager is the component of
a database system that provides the interface
between the low-level data stored in the database
and the application programs and queries submitted
to the system. The storage manager is responsible
for the interaction with the file manager. The raw
data are stored on the disk using the file system

provided by the operating system. The storage
manager translates the various DML statements into
low-level file-system commands.

Thus, the storage manager is responsible for
storing, retrieving, and updating data in the database.

The storage manager components include:

 Authorization and integrity manager,
which tests for the satisfaction of integrity
constraints and checks the authority of users
to access data.

 Transaction manager, which ensures that
the database remains in a consistent (correct)
state despite system failures, and that
concurrent transaction executions proceed
without conflicting.

 File manager, which manages the allocation
of space on disk storage and the data
structures used to represent information
stored on disk.

 Buffer manager, which is responsible for
fetching data from disk storage into main
memory, and deciding what data to cache in
main memory. The buffer manager is a critical
part of the database system, since it enables
the database to handle data sizes that are
much larger than the size of main memory.

The storage manager implements several data
structures as part of the physical system implemen-
tation:

 Data files, which store the database itself.

 Data dictionary, which stores metadata
about the structure of the database, in
particular the schema of the database.

 Indices, which can provide fast access to
data items. Like the index in this textbook, a
database index provides pointers to those
data items that hold a particular value. For
example, we could use an index to find the
instructor record with a particular ID, or all
instructor records with a particular name.

Hashing is an alternative to indexing that is
faster in some but not all cases.

UNIT - I DATABASE MANAGEMENT SYSTEMS

21
Rahul Publications

Rahul Publications

2. The Query Processor

The query processor components include:

 DDL interpreter, which interprets DDL
statements and records the definitions in the
data dictionary.

 DML compiler, which translates DML
statements in a query language into an
evaluation plan consisting of low-level
instructions that the query evaluation engine
understands.

A query can usually be translated into any of
a number of alternative evaluation plans that
all give the same result. The DML compiler
also performs query optimization; that is, it
picks the lowest cost evaluation plan from
among the alternatives.

 Query evaluation engine, which executes
low-level instructions generated by the DML
compiler.

1.9 TRANSACTION MANAGEMENT

Q21. What is Transaction?
(OR)

Define the term transaction.

Ans :
A transaction can be defined as a group of

tasks. A single task is the minimum processing unit
which cannot be divided further.

Let’s take an example of a simple transaction.
Suppose a bank employee transfers Rs. 500 from
A’s account to B’s account. This very simple and
small transaction involves several low-level tasks.
A’s Account

Open_Account(A)
Old_Balance = A.balance
New_Balance = Old_Balance - 500
A.balance = New_Balance
Close_Account(A)

B’s Account
Open_Account(B)
Old_Balance = B.balance
New_Balance = Old_Balance + 500
B.balance = New_Balance
Close_Account(B)

Q22. Explain ACID Properties and how they
are useful to transactions?

Ans : (Imp.)

A transaction is a very small unit of a program
and it may contain several low level tasks. A
transaction in a database system must maintain
Atomicity, Consistency, Isolation, and Durability “
commonly known as ACID properties “ in order to
ensure accuracy, completeness, and data integrity.

(i) Atomicity: This property states that a
transaction must be treated as an atomic unit,
that is, either all of its operations are executed
or none. There must be no state in a database
where a transaction is left partially completed.
States should be defined either before the
execution of the transaction or after the
execution/abortion/failure of the transaction.

(ii) Consistency: The database must remain in
a consistent state after any transaction. No
transaction should have any adverse effect
on the data residing in the database. If the
database was in a consistent state before the
execution of a transaction, it must remain
consistent after the execution of the
transaction as well.

(iii) Durability: The database should be durable
enough to hold all its latest updates even if
the system fails or restarts. If a transaction
updates a chunk of data in a database and
commits, then the database will hold the
modified data. If a transaction commits but
the system fails before the data could be
written on to the disk, then that data will be
updated once the system springs back into
action.

(iv) Isolation: In a database system where more
than one transaction are being executed
simultaneously and in parallel, the property
of isolation states that all the transactions will
be carried out and executed as if it is the only
transaction in the system. No transaction will
affect the existence of any other transaction.

B.Sc. II YEAR IV SEMESTER

22
Rahul Publications

Rahul Publications

Q23. List out various states of a transaction

Ans :
A transaction in a database can be in one of

the following states:

 Active: In this state, the transaction is being
executed. This is the initial state of every
transaction.

 Partially Committed: When a transaction
executes its final operation, it is said to be in
a partially committed state.

 Failed: A transaction is said to be in a failed
state if any of the checks made by the
database recovery system fails. A failed
transaction can no longer proceed further.

 Aborted: If any of the checks fails and the
transaction has reached a failed state, then
the recovery manager rolls back all its write
operations on the database to bring the
database back to its original state where it was
prior to the execution of the transaction.
Transactions in this state are called aborted.
The database recovery module can select one
of the two operations after a transaction
aborts.

 Re-start the transaction

 Kill the transaction

 Committed: If a transaction executes all its
operations successfully, it is said to be
committed. All its effects are now permanently
established on the database system.

Q24. Explain in detail about transaction
management.

Ans :
A transaction is a collection of operations

that performs a single logical function in a database
application. Each transaction is a unit of both
atomicity and consistency. Thus, we require that
transactions do not violate any database consistency
constraints. That is, if the database was consistent
when a transaction started, the database must be
consistent when the transaction successfully
terminates.

However, during the execution of a
transaction, it may be necessary temporarily to allow

inconsistency, since either the debit of A or the credit
of B must be done before the other. This temporary
inconsistency, although necessary, may lead to
difficulty if a failure occurs.

It is the programmer’s responsibility to define
properly the various transactions, so that each
preserves the consistency of the database. For
example, the transaction to transfer funds from the
account of department A to the account of
department B could be defined to be composed
of two separate programs: one that debits
account A, and another that credits account B. The
execution of these two programs one after the
otherwill indeed preserve consistency. However,
each program by itself does not transform the
database from a consistent state to a new consistent
state. Thus, those programs are not transactions.

Ensuring the atomicity and durability
properties is the responsibility of the database system
itself - specifically, of the recovery manager. In the
absence of failures, all transactions complete
successfully, and atomicity is achieved easily.

However, because of various types of failure,
a transaction may not always complete its execution
successfully. If we are to ensure the atomicity
property, a failed transaction must have no effect
on the state of the database. Thus, the database
must be restored to the state in which it was before
the transaction in question started executing. The
database system must therefore perform failure
recovery, that is, detect system failures and restore
the database to the state that existed prior to the
occurrence of the failure.

Finally, when several transactions update the
database concurrently, the consistency of data may
no longer be preserved, even though each
individual transaction is correct. It is the responsibility
of the concurrency-control manager to control the
interaction among the concurrent transactions, to
ensure the consistency of the database.
The transaction manager consists of the
concurrency-control manager and the recovery
manager.

The concept of a transaction has been applied
broadly in database systems and applications. While
the initial use of transactions was in financial
applications, the concept is now used in real-time
applications in telecommunication, as well as in the
management of long-duration activities such as
product designer administrative workflows.

UNIT - I DATABASE MANAGEMENT SYSTEMS

23
Rahul Publications

Rahul Publications

1.10 DATABASE ARCHITECTURE

Q25. What do you mean by Database Archi-
tecture ? State various types of database
architecture.

Ans :
A Database Architecture is a representation

of DBMS design. It helps to design, develop,
implement, and maintain the database management
system. A DBMS architecture allows dividing the
database system into individual components that
can be independently modified, changed, replaced,
and altered. It also helps to understand the
components of a database.

A Database stores critical information and
helps access data quickly and securely. Therefore,
selecting the correct Architecture of DBMS helps in
easy and efficient data management.

 The DBMS design depends upon its architec-
ture. The basic client/server architecture is
used to deal with a large number of PCs, web
servers, database servers and other compo-
nents that are connected with networks.

 The client/server architecture consists of many
PCs and a workstation which are connected
via the network.

 DBMS architecture depends upon how users
are connected to the database to get their
request done.

Types

Database architecture can be seen as a single
tier or multitier. But logically, database architecture
is of two types like: 2-tier architecture and 3-tier
architecture.

DBMS
Architecture

2-tier
Architecture

3-tier
Architecture

1-tier
Architecture

i) 1-Tier Architecture

 In this architecture, the database is directly
available to the user. It means the user can
directly sit on the DBMS and uses it.

 Any changes done here will directly be done
on the database itself. It doesn’t provide a
handy tool for end users.

 The 1-Tier architecture is used for develo-
pment of the local application, where
programmers can directly communicate with
the database for the quick response.

ii) 2-Tier Architecture

 The 2-Tier architecture is same as basic client-
server. In the two-tier architecture, applica-
tions on the client end can directly
communicate with the database at the server
side. For this interaction, API’s like: ODBC,
JDBC are used.

Database system

Application

User

Server

Client

Fig: 2-tier Architecture

 The user interfaces and application programs
are run on the client-side.

 The server side is responsible to provide the
functionalities like: query processing and
transaction management.

 To communicate with the DBMS, client-side
application establishes a connection with the
server side.

iii) 3-Tier Architecture

 The 3-Tier architecture contains another layer
between the client and server. In this
architecture, client can’t directly communicate
with the server.

B.Sc. II YEAR IV SEMESTER

24
Rahul Publications

Rahul Publications

 The application on the client-end interacts with
an application server which further
communicates with the database system.

Application Server

Application Client

User

Server

Client

Database

Fig: 3-tier Architecture

 End user has no idea about the existence of
the database beyond the application server.
The database also has no idea about any
other user beyond the application.

 The 3-Tier architecture is used in case of large
web application.

1.11 DATABASE USERS AND ADMINISTRATORS

Q26. List out various types of database users.

Ans :
Database users are the ones who really use

and take the benefits of the database. There will be
different types of users depending on their needs
and way of accessing the database.
1. Application Programmers

They are the developers who interact with
the database by means of DML queries.
These DML queries are written in the
application programs like C, C++, JAVA,
Pascal, etc. These queries are converted into
object code to communicate with the
database. For example, writing a C program
to generate the report of employees who are
working in a particular department will
involve a query to fetch the data from the
database. It will include an embedded
SQL query in the C Program.

2. Sophisticated Users

They are database developers, who write SQL
queries to select/insert/delete/update data.
They do not use any application or programs
to request the database. They directly interact
with the database by means of a query
language like SQL. These users will be
scientists, engineers, analysts who thoroughly
study SQL and DBMS to apply the concepts
in their requirements. In short, we can say
this category includes designers and
developers of DBMS and SQL.

3. Specialized Users

These are also sophisticated users, but they
write special database application programs.
They are the developers who develop the
complex programs to the requirement.

4. Stand-alone Users

These users will have a stand-alone database
for their personal use. These kinds of the
database will have readymade database
packages which will have menus and graphical
interfaces.

5. Native Users

These are the users who use the existing
application to interact with the database. For
example, online library system, ticket booking
systems, ATMs etc which has existing
application and users use them to interact with
the database to fulfill their requests.

Q27. Who is database administrator? What
are the responsibilities of database
administrator?

Ans : (Imp.)

The life cycle of a database starts from
designing, implementing to the administration of it.
A database for any kind of requirement needs to
be designed perfectly so that it should work without
any issues. Once all the design is complete, it needs
to be installed. Once this step is complete, users start
using the database. The database grows as the data
grows in the database. When the database becomes
huge, its performance comes down. Also accessing
the data from the database becomes a challenge.
There will be unused memory in the database,

UNIT - I DATABASE MANAGEMENT SYSTEMS

25
Rahul Publications

Rahul Publications

making the memory inevitably huge. This administration and maintenance of the database are taken care
of by the database Administrator – DBA.

A DBA has many responsibilities. A good-performing database is in the hands of DBA.

 Installing and upgrading the DBMS Servers: DBA is responsible for installing a new DBMS
server for the new projects. He is also responsible for upgrading these servers as there are new
versions that come into the market or requirement. If there is any failure in the up-gradation of the
existing servers, he should be able to revert the new changes back to the older version, thus maintaining
the DBMS working. He is also responsible for updating the service packs/ hotfixes/ patches to the
DBMS servers.

 Design and implementation: Designing the database and implementing is also DBA’s responsibility.
He should be able to decide on proper memory management, file organizations, error handling,
log main-tenance, etc for the database.

 Performance tuning: Since the database is huge and it will have lots of tables, data, constraints,
and indices, there will be variations in the performance from time to time. Also, because of some
designing issues or data growth, the database will not work as expected. It is the responsibility of the
DBA to tune the database performance. He is responsible to make sure all the queries and programs
work in a fraction of seconds.

 Migrate database servers: Sometimes, users using oracle would like to shift to SQL server or
Netezza. It is the responsibility of DBA to make sure that migration happens without any failure, and
there is no data loss.

 Backup and Recovery: Proper backup and recovery programs needs to be developed by DBA and
has to be maintained him. This is one of the main responsibilities of DBA. Data/objects should be
backed up regularly so that if there is any crash, it should be recovered without much effort and
data loss.

 Security: DBA is responsible for creating various database users and roles, and giving them different
levels of access rights.

 Documentation: DBA should be properly documenting all his activities so that if he quits or any
new DBA comes in, he should be able to understand the database without any effort. He should
basically maintain all his installation, backup, recovery, security methods. He should keep various
reports about database performance.

Q28. List out various types of database administrators?

Ans : (Imp.)

There are different kinds of DBA depending on the responsibility that he owns.

 Administrative DBA : This DBA is mainly concerned with installing, and maintaining DBMS
servers. His prime tasks are installing, backups, recovery, security, replications, memory management,
configurations, and tuning. He is mainly responsible for all administrative tasks of a database.

 Development DBA: He is responsible for creating queries and procedures for the requirement.
Basically, his task is similar to any database developer.

 Database Architect: Database architect is responsible for creating and maintaining the users,
roles, access rights, tables, views, constraints, and indexes. He is mainly responsible for designing
the structure of the database depending on the requirement. These structures will be used by
developers and development DBA to code.

B.Sc. II YEAR IV SEMESTER

26
Rahul Publications

Rahul Publications

 Data Warehouse DBA: DBA should be able to maintain the data and procedures from various
sources in the data warehouse. These sources can be files, COBOL, or any other programs. Here
data and programs will be from different sources. A good DBA should be able to keep the
performance and function levels from these sources at the same pace to make the data warehouse
work.

 Application DBA: He acts like a bridge between the application program and the database. He
makes sure all the application program is optimized to interact with the database. He ensures all the
activities from installing, upgrading, and patching, maintaining, backup, recovery to executing the
records work without any issues.

 OLAP DBA: He is responsible for installing and maintaining the database in OLAP systems. He
maintains only OLAP databases.

1.12 INTRODUCTION TO THE RELATIONAL MODEL

Q29. What is relational model ?

Ans :
Relational Model (RM) represents the database as a collection of relations. A relation is nothing but

a table of values. Every row in the table represents a collection of related data values. These rows in the
table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each row. The
data are represented as a set of relations. In the relational model, data are stored as tables. However, the
physical storage of the data is independent of the way the data are logically organized.

Q30. Discuss basic relational model concepts.

Ans :

1. Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g.,
Student_Rollno, NAME,etc.

2. Tables: In the Relational model the, relations are saved in the table format. It is stored along with
its entities. A table has two properties rows and columns. Rows represent records and columns
represent attributes.

3. Tuple: It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

8. Relation instance: Relation instance is a finite set of tuples in the RDBMS system. Relation instances
never have duplicate tuples.

9. Relation key: Every row has one, two or multiple attributes, which is called relation key.

10. Attribute domain: Every attribute has some pre-defined value and scope which is known as
attribute domain

UNIT - I DATABASE MANAGEMENT SYSTEMS

27
Rahul Publications

Rahul PublicationsQ31. Explain in detail various types of integrity constrains?

Ans : (Imp.)

Relational Integrity constraints in DBMS are referred to conditions which must be present for a valid
relation. These Relational constraints in DBMS are derived from the rules in the mini-world that the
database represents.

There are many types of Integrity Constraints in DBMS. Constraints on the Relational database
management system is mostly divided into three main categories are:

1. Domain Constraints

2. Key Constraints

3. Referential Integrity Constraints

1. Domain Constraints

Domain constraints can be violated if an attribute value is not appearing in the corresponding
domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be unique.
This is specified as data types which include standard data types integers, real numbers, characters, Booleans,
variable length strings, etc.

Example

Create DOMAIN CustomerName

CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that CustomerName is not
NULL

2. Key Constraints

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The value
of the attribute for different tuples in the relation has to be unique.

B.Sc. II YEAR IV SEMESTER

28
Rahul Publications

Rahul Publications

Example

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a single
key for one customer, CustomerID =1 is only for the CustomerName =” Google”.

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

3. Referential Integrity Constraints

Referential Integrity constraints in DBMS are based on the concept of Foreign Keys. A foreign key
is an important attribute of a relation which should be referred to in other relationships. Referential
integrity constraint state happens where relation refers to a key attribute of a different or same relation.
However, that key element must exist in the table.

Example

In the above example, we have 2 relations, Customer and Billing.

Q32. List out various operations of relational model?

Ans ;
Operations in Relational Model

Four basic update operations performed on relational database model are

Insert, update, delete and select.

 Insert is used to insert data into the relation

 Delete is used to delete tuples from the table.

 Update allows you to change the values of some attributes in existing tuples.

 Select allows you to choose a specific range of data.

UNIT - I DATABASE MANAGEMENT SYSTEMS

29
Rahul Publications

Rahul Publications

Whenever one of these operations are applied, integrity constraints specified on the relational
database schema must never be violated.

Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted into a
relation.

Update Operation

You can see that in the below-given relation table CustomerName= ‘Apple’ is updated from Inactive
to Active.

Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

In the above-given example, CustomerName= “Apple” is deleted from the table.

The Delete operation could violate referential integrity if the tuple which is deleted is referenced by
foreign keys from other tuples in the same database.

Select Operation

In the above-given example, CustomerName= “Amazon” is selected

Q33. What are the advantages and disadvantages of relational data model ?

Ans ;
Advantages
i) Simplicity

A Relational data model in DBMS is simpler than the hierarchical and network model.

B.Sc. II YEAR IV SEMESTER

30
Rahul Publications

Rahul Publications

ii) Structural Independence

The relational database is only concerned with
data and not with a structure. This can improve the
performance of the model.

iii) Easy to use

The Relational model in DBMS is easy as tables
consisting of rows and columns are quite natural
and simple to understand

iv) Query capability

It makes possible for a high-level query
language like SQL to avoid complex database
navigation.

v) Data independence

The Structure of Relational database can be
changed without having to change any application.

vi) Scalable

Regarding a number of records, or rows, and
the number of fields, a database should be enlarged
to enhance its usability.

Disadvantages

 Few relational databases have limits on field
lengths which can’t be exceeded.

 Relational databases can sometimes become
complex as the amount of data grows, and
the relations between pieces of data become
more complicated.

 Complex relational database systems may
lead to isolated databases where the
information cannot be shared from one
system to another.

1.13 STRUCTURE OF RELATIONAL DATABASES

Q34. What is the basic structure of a relatio-
nal database ?

Ans :
A relational database consists of a collection

of tables, each of which is assigned a unique name.

Account-number Branch-name Balance

A-101 Downtown 500

A-102 Porryridge 400

A-201 Brighton 900

A-215 Mianus 700

A-217 Brighton 750

A-222 Redwood 700

A-305 Round Hill 350

Fig.: The account relation

A row in a table represents a relationship
among a set of values. Since a table is a collection
of such relationships, there is a close correspondence
between the concept of table and the mathematical
concept of relation, from which the relational data
model takes its name. In what follows, we introduce
the concept of relation.

Basic Structure

Consider the account table of above Figure.
It has three column headers: account-number,
branch-name, and balance. Following the
terminology of the relational model, these headers
are attributes. For each attribute, there is a set of
permitted values, called the domain of that
attribute. For the attribute branch-name, for
example, the domain is the set of all branch names.

LetD1 denote the set of all account numbers,
D2 the set of all branch names, and D3the set of all
balances. Any row of account must consist of a 3-
tuple (v1, v2, v3), where v1 is an account number
(that is, v1 is in domain D1),v2 is a branch name
(that is, v2 is in domain D2), and v3 is a balance
(that is, v3 is in domain D3). In general, account
will contain only a subset of the set of all possible
rows.

Account-number Branch-name Balance
A-101 Downtown 500

A-215 Mianus 700

A-102 Perryridge 400

A-305 Round Hill 350

A-201 Brighton 900

A-222 Redwood 700

A-217 Brighton 750

Fig.: The account relation with unordered tuples

UNIT - I DATABASE MANAGEMENT SYSTEMS

31
Rahul Publications

Rahul Publications

Therefore, account is a subset of,

D1 × D2 × D3

In general, a table of n attributes must be
a subset of

D1 × D2 × × Dn–1 × Dn

Mathematicians define a relation to be a
subset of a Cartesian product of a list of domains.
This definition corresponds almost exactly with our
definition of table. The only difference is that we
have assigned names to attributes, whereas
mathematicians rely on numeric “names,” using the
integer 1 to denote the attribute whose domain
appears first in the list of domains, 2 for the attribute
whose domain appears second, and so on. Because
tables are essentially relations, we shall use the
mathematical terms relation and tuple in place of
the terms table and row. A tuple variable is a variable
that stands for a tuple; in other words, a tuple
variable is a variable whose domain is the set of all
tuples.

In the account relation of above Figure , there
are seven tuples. Let the tuple variable t refer to the
first tuple of the relation. We use the notation
t[account-number] to denote the value of t on the
account-number attribute. Thus, t[account-number]
= “A-101,” and t[branch-name] = “Downtown”.
Alternatively, we may write t[1] to denote the value
of tuple t on the first attribute (account-number),
t[2] to denote branch-name, and so on. Since a
relation is a set of tuples, we use the mathematical
notation of t “r to denote that tuple t is in relation r.

The order in which tuples appear in a relation
is irrelevant, since a relation is a set of tuples. Thus,
whether the tuples of a relation are listed in sorted
order, as in Figure above or are unsorted, as in
Figure , does not matter; the relations in the two
figures above are the same, since both contain the
same set of tuples.

For all relations r, the domains of all attributes
of r be atomic. A domain is atomic if elements of
the domain are considered to be indivisible units.
For example, the set of integers is an atomic domain,
but the set of all sets of integers is a non atomic
domain.

1.14 DATABASE SCHEMA

Q35. What is mean by database schema?

Ans : (Imp.)

A database schema is the skeleton structure
that represents the logical view of the entire
database. It defines how the data is organized and
how the relations among them are associated. It
formulates all the constraints that are to be applied
on the data.

A database schema defines its entities and the
relationship among them. It contains a descriptive
detail of the database, which can be depicted by
means of schema diagrams. It’s the database
designers who design the schema to help
programmers understand the database and make
it useful.

A database schema can be divided broadly
into two categories:

i) Physical Database Schema

This schema pertains to the actual storage of
data and its form of storage like files, indices, etc. It
defines how the data will be stored in a secondary
storage.

ii) Logical Database Schema

This schema defines all the logical constraints
that need to be applied on the data stored. It defines
tables, views, and integrity constraints.

B.Sc. II YEAR IV SEMESTER

32
Rahul Publications

Rahul Publications

Q36. What is Database instance ?

Ans :
It is important that we distinguish these two

terms individually. Database schema is the skeleton
of database. It is designed when the database
doesn’t exist at all. Once the database is operational,
it is very difficult to make any changes to it. A
database schema does not contain any data or
information.

A database instance is a state of operational
database with data at any given time. It contains a
snapshot of the database. Database instances tend
to change with time. A DBMS ensures that its every
instance (state) is in a valid state, by diligently
following all the validations, constraints, and
conditions that the database designers have imposed.

Q37. List out Schema integration require-
ments.

Ans :
It can be useful to integrate multiple sources

into a single schema. Make sure these requirements
are met for a seamless transition:

i) Overlap preservation

Every overlapping element in the schemas
you are integrating should be in a database
schema table.

ii) Extended overlap preservation

Elements that only appear in one source, but
that are associated with overlapping elements,
should be copied to the resulting database
schema.

iii) Normalization

Independent relationships and entities should
not be lumped together in the same table in
the database schema.

iv) Minimality

It’s ideal if none of the elements in any of the
sources are lost.

1.15 KEYS

Q38. What is Key ? how it is useful in
database?

Ans : (Imp.)

 Keys play an important role in the relational
database.

 It is used to uniquely identify any record or
row of data from the table. It is also used to
establish and identify relationships between
tables.

For example

In Student table, ID is used as a key because
it is unique for each student. In PERSON table,
passport_number, license_number, SSN are keys
since they are unique for each person.

STUDENT

ID

Name

Address

Course

PERSON

Name

DOB

Passport_Number

License_Number

SSN

Q39. List out various types of Keys.

Ans :
Primary Key

A primary is a column or set of columns in a
table that uniquely identifies tuples (rows) in that
table.

Super Key

A super key is a set of one of more columns
(attributes) to uniquely identify rows in a table.

Candidate Key

A super key with no redundant attribute is
known as candidate key

UNIT - I DATABASE MANAGEMENT SYSTEMS

33
Rahul Publications

Rahul Publications

Alternate Key

Out of all candidate keys, only one gets
selected as primary key, remaining keys are known
as alternate or secondary keys.

Composite Key

A key that consists of more than one attribute
to uniquely identify rows (also known as records &
tuples) in a table is called composite key.

Foreign Key

Foreign keys are the columns of a table that
points to the primary key of another table. They
act as a cross-reference between tables.

Q40. Discuss the following keys in detail.

a) Primary key

b) candidate key

c) Super key

d) foreign key

Ans :
(a) Primary key

 It is the first key which is used to identify
one and only one instance of an entity
uniquely. An entity can contain multiple
keys as we saw in PERSON table. The
key which is most suitable from those
lists become a primary key.

EMPLOYEE

Employee_ID

Employee_Name

Employee_Address

Passport_Number

License_Number

SSN

Primary Key

 In the EMPLOYEE table, ID can be
primary key since it is unique for each

employee. In the EMPLOYEE table, we
can even select License_Number and
Passport_Number as primary key since
they are also unique.

 For each entity, selection of the primary
key is based on requirement and
developers.

b) Candidate key

 A candidate key is an attribute or set of
an attribute which can uniquely identify
a tuple.

 The remaining attributes except for
primary key are considered as a
candidate key. The candidate keys are
as strong as the primary key.

For example

In the EMPLOYEE table, id is best suited for
the primary key. Rest of the attributes like SSN,
Passport_Number, and License_Number, etc. are
considered as a candidate key.

c) Super Key

Super key is a set of an attribute which can
uniquely identify a tuple. Super key is a superset of
a candidate key.

For example

In the above EMPLOYEE table, for
(EMPLOEE_ID, EMPLOYEE_NAME) the name of
two employees can be the same, but their
EMPLYEE_ID can’t be the same. Hence, this
combination can also be a key.

The super key would be EMPLOYEE-ID,
(EMPLOYEE_ID, EMPLOYEE-NAME), etc.

B.Sc. II YEAR IV SEMESTER

34
Rahul Publications

Rahul Publications

d) Foreign key

 Foreign keys are the column of the table which is used to point to the primary key of another
table.

 In a company, every employee works in a specific department, and employee and department
are two different entities. So we can’t store the information of the department in the employee
table. That’s why we link these two tables through the primary key of one table.

 We add the primary key of the DEPARTMENT table, Department_Id as a new attribute in the
EMPLOYEE table.

 Now in the EMPLOYEE table, Department_Id is the foreign key, and both the tables are
related.

Employee

Employee_ID

Employee_Name

Passport_Number

License_Number

SSN

Department_ID

DEPARTMENT

Department_ID

Department_Name

1.16 SCHEMA DIAGRAMS

Q41. Draw and explain schema diagram for University Database.

Ans :
A database schema, along with primary key and foreign key dependencies, can be depicted by

schema diagrams. Following Figure shows the schema diagram for our university organization. Each
relation appears as a box, with the relation name at the top in blue, and the attributes listed inside the box.
Primary key attributes are shown underlined. Foreign key dependencies appear as arrows from the foreign
key attributes of the referencing relation to the primary key of the referenced relation.

Figure: Schema diagram for the university database

UNIT - I DATABASE MANAGEMENT SYSTEMS

35
Rahul Publications

Rahul Publications

Referential integrity constraints other than foreign key constraints are not shown explicitly in schema
diagrams. Entity relationship diagrams let us represent several kinds of constraints, including general
referential integrity constraints.Many database systems provide design tools with a graphical user interface
for creating schema diagrams.

1.17 RELATIONAL QUERY LANGUAGES AND RELATIONAL OPERATIONS

Q42. List out various types of relational query languages?

Ans : (Imp.)

Relational query languages use relational algebra to break the user requests and instruct the DBMS
to execute the requests. It is the language by which user communicates with the database. These relational
query languages can be procedural or non-procedural.

i) Procedural Query Language: A procedural query language will have set of queries instructing
the DBMS to perform various transactions in the sequence to meet the user request. For
example, get_CGPA procedure will have various queries to get the marks of student in each subject,
calculate the total marks, and then decide the CGPA based on his total marks. This procedural
query language tells the database what is required from the database and how to get them from the
database. Relational algebra is a procedural query language.

ii) Non-Procedural Query Language: Non-procedural queries will have single query on one or
more tables to get result from the database. For example, get the name and address of the student
with particular ID will have single query on STUDENT table. Relational Calculus is a non procedural
language which informs what to do with the tables, but doesn’t inform how to accomplish this.

These query languages basically will have queries on tables in the database. In the relational database,
a table is known as relation. Records / rows of the table are referred as tuples. Columns of the table
are also known as attributes. All these names are used interchangeably in relational database.

Q43. What is relational algebra? List and explain various types of relational operations.

Ans : (Imp.)

Relational algebra is a procedural query language. It gives a step by step process to obtain the result
of the query. It uses operators to perform queries.

Types of Relational operation

B.Sc. II YEAR IV SEMESTER

36
Rahul Publications

Rahul Publications

1. Select Operation

 The select operation selects tuples that satisfy a given predicate.

 It is denoted by sigma ().

i) Notation: p(r)

Where:

 is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT.
These relational can use as relational operators like =,  ,  , <, >,  .

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Mianus L-13 500

Roundhill L-11 900

Perryride L-16 1300

Input

ii)  BRANCH_NAME= “perryride” (LOAN)

Output

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation

 This operation shows the list of those attributes that we wish to appear in the result. Rest of the
attributes are eliminated from the table.

 It is denoted by  .

1. Notation: A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

UNIT - I DATABASE MANAGEMENT SYSTEMS

37
Rahul Publications

Rahul Publications

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input

1.  NAME, CITY (CUSTOMER)

Output

NAME CITY

Jones Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation

 Suppose there are two tuples R and S. The union operation contains all the tuples that are
either in R or S or both in R & S.

 It eliminates the duplicate tuples. It is denoted by  .

Notation: RS

A union operation must hold the following condition:

 R and S must have the attribute of the same number.

 Duplicate tuples are eliminated automatically.

B.Sc. II YEAR IV SEMESTER

38
Rahul Publications

Rahul Publications

Example

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input

1.  CUSTOMER_NAME (BORROW)  CUSTOMER_NAME (DEPOSITOR)

Output

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

UNIT - I DATABASE MANAGEMENT SYSTEMS

39
Rahul Publications

Rahul Publications

4. Set Intersection

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that
are in both R and S.

 It is denoted by intersection  .

i) Notation: RS

Example: Using the above DEPOSITOR table and BORROW table

Input

 CUSTOMER_NAME (BORROW)  CUSTOMER_NAME (DEPOSITOR)

Output

CUSTOMER_NAME

Smith

Jones

5. Set Difference

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that
are in R but not in S.

 It is denoted by intersection minus (–).

ii) Notation: R – S

Example: Using the above DEPOSITOR table and BORROW table

Input

 CUSTOMER_NAME (BORROW) -  CUSTOMER_NAME (DEPOSITOR)

Output

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product

 The Cartesian product is used to combine each row in one table with each row in the other
table. It is also known as a cross product.

 It is denoted by X.

B.Sc. II YEAR IV SEMESTER

40
Rahul Publications

Rahul Publications

iii) Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing

1 Smith A B Sales

1 Smith A C Legal

2 Harry C A Marketing

2 Harry C B Sales

2 Harry C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

7. Rename Operation

The rename operation is used to rename the output relation. It is denoted by rho ().

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. (STUDENT1, STUDENT)

UNIT - I DATABASE MANAGEMENT SYSTEMS

41
Rahul Publications

Rahul Publications

Short Question and Answers
1. What is Database?

Ans :
A database is an organized collection of

data, so that it can be easily accessed and managed.

Database handlers create a database in
such a way that only one set of software program
provides access of data to all the users.

The main purpose of the database is to
operate a large amount of information by storing,
retrieving, and managing data.

There are many dynamic websites on the
World Wide Web nowadays which are handled
through databases. For example, a model that
checks the availability of rooms in a hotel. It is an
example of a dynamic website that uses a database.

There are many databases available like
MySQL, Sybase, Oracle, MongoDB, Informix,
PostgreSQL, SQL Server, etc.

Modern databases are managed by the
database management system (DBMS).

SQL or Structured Query Language is used
to operate on the data stored in a database. SQL
depends on relational algebra and tuple relational
calculus.

2. Define DBMS.

Ans :
Database management System is software

which is used to store and retrieve the database.
For example, Oracle, MySQL, etc.; these are some
popular DBMS tools.

 DBMS provides the interface to perform the
various operations like creation, deletion,
modification, etc.

 DBMS allows the user to create their
databases as per their requirement.

 DBMS accepts the request from the
application and provides specific data through
the operating system.

 DBMS contains the group of programs which
acts according to the user instruction.

 It provides security to the database.

3. What is the purpose of DBMS ?

Ans :
The Database Management System (DBMS)

is defined as a software system that allows the user
to define, create and maintain the database and
provide control access to the data.

It is a collection of programs used for
managing data and simultaneously it supports
different types of users to create, manage, retrieve,
update and store information.

Purpose

The purpose of DBMS is to transform the
following:

 Data into information.

 Information into knowledge.

 Knowledge to the action.

The diagram given below explains the process
as to how the transformation of data to information
to knowledge to action happens respectively in the
DBMS:

Previously, the database applications were
built directly on top of the file system.

4. Data Definition Language (DDL)

Ans :
 DDL stands for Data Definition Language.

It is used to define database structure or
pattern.

 It is used to create schema, tables, indexes,
constraints, etc. in the database.

 Using the DDL statements, you can create
the skeleton of the database.

 Data definition language is used to store the
information of metadata like the number of
tables and schemas, their names, indexes,
columns in each table, constraints, etc.

Here are some tasks that come under DDL:

 Create: It is used to create objects in the
database.

B.Sc. II YEAR IV SEMESTER

42
Rahul Publications

Rahul Publications

 Alter: It is used to alter the structure of the
database.

 Drop: It is used to delete objects from the
database.

 Truncate: It is used to remove all records
from a table.

 Rename: It is used to rename an object.

 Comment: It is used to comment on the data
dictionary.

These commands are used to update the
database schema that’s why they come under Data
definition language.

5. Data Manipulation Language (DML)

Ans :
DML stands for Data Manipulation

Language. It is used for accessing and manipulating
data in a database. It handles user requests.

Here are some tasks that come under DML:

 Select: It is used to retrieve data from a
database.

 Insert: It is used to insert data into a table.

 Update: It is used to update existing data
within a table.

 Delete: It is used to delete all records from a
table.

 Merge: It performs UPSERT operation, i.e.,
insert or update operations.

 Call: It is used to call a structured query
language or a Java subprogram.

 Explain Plan: It has the parameter of
explaining data.

 Lock Table: It controls concurrency.

6. Data Control Language

Ans :
 DCL stands for data control language. It is

used to retrieve the stored or saved data.

 The DCL execution is transactional. It also
has rollback parameters.

(But in Oracle database, the execution of data
control language does not have the feature
of rolling back.)

Here are some tasks that come under DCL:

 Grant: It is used to give user access privileges
to a database.

 Revoke: It is used to take back permissions
from the user.

There are the following operations which have
the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE,
DELETE, UPDATE and SELECT.

7. Transaction Control Language

Ans :
TCL is used to run the changes made by the

DML statement. TCL can be grouped into a logical
transaction.

Here are some tasks that come under TCL:

 Commit: It is used to save the transaction
on the database.

 Rollback: It is used to restore the database
to original since the last Commit.

8. What is RDBMS ?

Ans :
RDBMS stands for Relational Database

Management Systems;

All modern database management systems
like SQL, MS SQL Server, IBM DB2, ORACLE, My-
SQL and Microsoft Access are based on RDBMS.

It is called Relational Data Base Management
System (RDBMS) because it is based on relational
model introduced by E.F. Codd.

Data is represented in terms of tuples (rows)
in RDBMS. Relational database is most commonly
used database. It contains number of tables and
each table has its own primary key.

Due to a collection of organized set of tables,
data can be accessed easily in RDBMS.

9. What is database design?

Ans :
Database design can be generally defined as

a collection of tasks or processes that enhance the
designing, development, implementation, and

UNIT - I DATABASE MANAGEMENT SYSTEMS

43
Rahul Publications

Rahul Publications

maintenance of enterprise data management
system. Designing a proper database reduces the
maintenance cost thereby improving data
consistency and the cost-effective measures are
greatly influenced in terms of disk storage space.
Therefore, there has to be a brilliant concept of
designing a database. The designer should follow
the constraints and decide how the elements
correlate and what kind of data must be stored.

The main objectives behind database
designing are to produce physical and logical design
models of the proposed database system. To
elaborate this, the logical model is primarily
concentrated on the requirements of data and the
considerations must be made in terms of monolithic
considerations and hence the stored physical data
must be stored independent of the physical
conditions. On the other hand, the physical database
design model includes a translation of the logical
design model of the database by keep control of
physical media using hardware resources and
software systems such as Database Management
System (DBMS).

10. Define the term transaction.

Ans :
A transaction can be defined as a group of

tasks. A single task is the minimum processing unit
which cannot be divided further.

Let’s take an example of a simple transaction.
Suppose a bank employee transfers Rs. 500 from
A’s account to B’s account. This very simple and
small transaction involves several low-level tasks.

A’s Account
Open_Account(A)
Old_Balance = A.balance
New_Balance = Old_Balance - 500
A.balance = New_Balance
Close_Account(A)

B’s Account
Open_Account(B)
Old_Balance = B.balance
New_Balance = Old_Balance + 500
B.balance = New_Balance
Close_Account(B)

11. Explain ACID Properties and how they
are useful to transactions?

Ans :
A transaction is a very small unit of a program

and it may contain several lowlevel tasks. A
transaction in a database system must maintain
Atomicity, Consistency, Isolation, and Durability “
commonly known as ACID properties “ in order to
ensure accuracy, completeness, and data integrity.

(i) Atomicity: This property states that a
transaction must be treated as an atomic unit,
that is, either all of its operations are executed
or none. There must be no state in a database
where a transaction is left partially completed.
States should be defined either before the
execution of the transaction or after the
execution/abortion/failure of the transaction.

(ii) Consistency: The database must remain in
a consistent state after any transaction. No
transaction should have any adverse effect
on the data residing in the database. If the
database was in a consistent state before the
execution of a transaction, it must remain
consistent after the execution of the
transaction as well.

(iii) Durability: The database should be durable
enough to hold all its latest updates even if
the system fails or restarts. If a transaction
updates a chunk of data in a database and
commits, then the database will hold the
modified data. If a transaction commits but
the system fails before the data could be
written on to the disk, then that data will be
updated once the system springs back into
action.

(iv) Isolation: In a database system where more
than one transaction are being executed
simultaneously and in parallel, the property
of isolation states that all the transactions will
be carried out and executed as if it is the only
transaction in the system. No transaction will
affect the existence of any other transaction.

12. Who is database administrator?

Ans :
The life cycle of a database starts from

designing, implementing to the administration of it.
A database for any kind of requirement needs to

B.Sc. II YEAR IV SEMESTER

44
Rahul Publications

Rahul Publications

be designed perfectly so that it should work without any issues. Once all the design is complete, it needs to
be installed. Once this step is complete, users start using the database. The database grows as the data
grows in the database. When the database becomes huge, its performance comes down. Also accessing
the data from the database becomes a challenge. There will be unused memory in the database, making
the memory inevitably huge. This administration and maintenance of the database are taken care of by
the database Administrator – DBA.

13. What is relational model ?

Ans :
Relational Model (RM) represents the database as a collection of relations. A relation is nothing but

a table of values. Every row in the table represents a collection of related data values. These rows in the
table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each row. The
data are represented as a set of relations. In the relational model, data are stored as tables. However, the
physical storage of the data is independent of the way the data are logically organized.

14. List out various types of Keys.

Ans :
i) Primary Key: A primary is a column or set of columns in a table that uniquely identifies tuples

(rows) in that table.

ii) Super Key: A super key is a set of one of more columns (attributes) to uniquely identify rows in a
table.

iii) Candidate Key: A super key with no redundant attribute is known as candidate key

iv) Alternate Key: Out of all candidate keys, only one gets selected as primary key, remaining keys
are known as alternate or secondary keys.

v) Composite Key: A key that consists of more than one attribute to uniquely identify rows (also
known as records & tuples) in a table is called composite key.

vi) Foreign Key: Foreign keys are the columns of a table that points to the primary key of another
table. They act as a cross-reference between tables.

15. What is Key ?

Ans :
 Keys play an important role in the relational database.

 It is used to uniquely identify any record or row of data from the table. It is also used to establish
and identify relationships between tables.

UNIT - I DATABASE MANAGEMENT SYSTEMS

45
Rahul Publications

Rahul Publications

1. language used to query ad database [a]

a) Query b) Relational

c) Structural d) Compiler

2. The operation allows the combining of two results [b]

a) Select b) Join

c) Union d) Intersection

3. Which of the following is not the degree of relationship [a]

a) Single b) Binary

c) Tevnary d) n-ary

4. In an ER diagram double-rectangle represents [b]

a) Relationship b) Weak emity set

c) Derived set d) Attribute

5. Dis-advantage of file system is [d]

a) Data redundancy b) Accessing data

c) Data isolation d) All

6. Which of following is a data model [a]

a) Entity - relational model b) Relational data model

c) Object based data model d) All

7. Which of the following is not binary operation. [b]

a) Union b) Project

c) Set Difference d) Product

8. Primary key must be [c]

a) Not null b) Unique

c) A or B c) A and B

9. Which of the following is not an aggregation [c]

a) Max b) Min

c) Select d) Average

10. Which algebra is widely used in DBMS ? [a]

a) Relational Algebra b) Arithmetic algebra

c) Both d) None

Choose the Correct Answers

B.Sc. II YEAR IV SEMESTER

46
Rahul Publications

Rahul Publications

Fill in the blanks

1. is a collection of related data is a collection of facts.

2. are those who get benefits of DBMS.

3. A DBMS is a software for and

4. The logical structure of the data stored in database in

5. defines how file records are mapped onto disk blocks.

6. Controlling access tod ata and prevent unauthorised access and update is known as

7. Data independence is caterio into and

8. The plan of database is known as

9. is a series of database operations

10. Symbol stands for selection predicate

11. is used to combine the two or more results.

12. Operator combines results of two select statements and return only those results belongs
to first set.

13. The division operator is used when we have query which contain keyword.

Answer

1. Data Base

2. End users

3. Creating and Managing

4. Database Schema

5. File Organisations

6. Security of data

7. (Logical independence, Physical independence)

8. Schema

9. Transaction

10. ()

11. Union

12. Minus

13. All

UNIT - II DATABASE MANAGEMENT SYSTEMS

47
Rahul Publications

Rahul Publications
2.1 DATABASE DESIGN MODEL AND

ER – MODEL

2.1.1 Overview of design process

Q1. What is database design?

Ans :
Meaning

Database design can be generally defined as
a collection of tasks or processes that enhance the
designing, development, implementation, and
maintenance of enterprise data management
system. Designing a proper database reduces the
maintenance cost thereby improving data
consistency and the cost-effective measures are
greatly influenced in terms of disk storage space.
Therefore, there has to be a brilliant concept of
designing a database. The designer should follow
the constraints and decide how the elements
correlate and what kind of data must be stored.

The main objectives behind database
designing are to produce physical and logical design
models of the proposed database system. To
elaborate this, the logical model is primarily
concentrated on the requirements of data and the
considerations must be made in terms of monolithic
considerations and hence the stored physical data
must be stored independent of the physical
conditions. On the other hand, the physical database
design model includes a translation of the logical
design model of the database by keep control of
physical media using hardware resources and
software systems such as Database Management
System (DBMS).

Q2. What is a Good Database Design?

Ans :
A good database design process is governed

by specific rules. The first rule is to avoid data

redundancy. It wastes space and increases the
probability of faults and discrepancies within the
database. The second rule is that the accuracy and
comprehensiveness of information are imperative.
A database containing erroneous information will
lead to inaccurate analysis and reporting.
Consequently, it can mislead decision-makers and
adversely affect a company’s performance.
Therefore, it’s important to keep things rules in mind
when designing the database for your organization.

A well-designed database is the one that:

 Distributes your data into tables based on
specific subject areas to decrease data
redundancy

 Delivers the database the information needed
to link the data in the tables

 Provides support, and guarantees the
precision and reliability of data

 Caters to your information processing and
reporting requirements

 Functions interactively with the database
operators.

Q3. Why database design is important ?

Ans :
The important consideration that can be

taken into account while emphasizing the
importance of database design can be explained in
terms of the following points given below.

1. Database designs provide the blueprints of
how the data is going to be stored in a system.
A proper design of a database highly affects
the overall performance of any application.

UNIT
II

Database Design and the E-R Model: Overview of the Design Process, The
EntityRelationship Model, Constraints, Removing Redundant Attributes in Entity Sets,
EntityRelationship Diagrams, Reduction to Relational Schemas, Entity-Relationship
Design Issues, Extended E-R Features, Alternative Notations for Modeling Data, Other
Aspects of Database Design.

Relational Database Design: Features of Good Relational Designs, Atomic Domains
and First Normal Form, Decomposition Using Functional Dependencies, Functional-
Dependency Theory, Decomposition Using Multivalued Dependencies, Normal Forms-
2 NF, 3 NF, BCNF, The Database Design Methodology for Relational Databases.

B.Sc. II YEAR IV SEMESTER

48
Rahul Publications

Rahul Publications

2. The designing principles defined for a database give a clear idea of the behavior of any application
and how the requests are processed.

3. Another instance to emphasize the database design is that a proper database design meets all the
requirements of users.

4. Lastly, the processing time of an application is greatly reduced if the constraints of designing a highly
efficient database are properly implemented.

Life Cycle

Requirements
analysis

Database
designing

Implementation

 Planning
 System

definition

 Logical model
 Physical

model

 Data
conversion
and loading

 Testing

Requirements
analysis

Database
designing

Implementation

 Planning
 System

definition

 Logical model
 Physical

model

 Data
conversion
and loading

 Testing

Although, the life cycle of a database is not an important discussion that has to be taken forward in
this article because we are focused on the database design. But, before jumping directly on the designing
models constituting database design it is important to understand the overall workflow and life-cycle of
the database.

1. Requirement Analysis

First of all, the planning has to be done on what are the basic requirements of the project under
which the design of the database has to be taken forward. Thus, they can be defined as:-

i) Planning: This stage is concerned with planning the entire DDLC (Database Development
Life Cycle). The strategic considerations are taken into account before proceeding.

ii) System definition: This stage covers the boundaries and scopes of the proper database
after planning.

2. Database Designing

The next step involves designing the database considering the user-based requirements and splitting
them out into various models so that load or heavy dependencies on a single aspect are not imposed.
Therefore, there has been some model-centric approach and that’s where logical and physical
models play a crucial role.

i) Physical Model: The physical model is concerned with the practices and implementations of
the logical model.

ii) Logical Model: This stage is primarily concerned with developing a model based on the
proposed requirements. The entire model is designed on paper without any implementation
or adopting DBMS considerations.

UNIT - II DATABASE MANAGEMENT SYSTEMS

49
Rahul Publications

Rahul Publications

3. Implementation

The last step covers the implementation
methods and checking out the behavior that
matches our requirements. It is ensured with
continuous integration testing of the database
with different data sets and conversion of data
into machine understandable language. The
manipulation of data is primarily focused on
these steps where queries are made to run
and check if the application is designed
satisfactorily or not.

i) Data conversion and loading: This
section is used to import and convert
data from the old to the new system.

ii) Testing: This stage is concerned with
error identification in the newly
implemented system. Testing is a crucial
step because it checks the database
directly and compares the requirement
specifications.

Q4. Explain database designing process ?

Ans : (Imp.)

The process of designing a database carries
various conceptual approaches that are needed to
be kept in mind. An ideal and well-structured
database design must be able to:

 Save disk space by eliminating redundant
data.

 Maintains data integrity and accuracy.

 Provides data access in useful ways.

 Comparing Logical and Physical data models.

1. Logical

A logical data model generally describes the
data in as many details as possible, without having
to be concerned about the physical implementations
in the database. Features of logical data model might
include:

 All the entities and relationships amongst
them.

 Each entity has well-specified attributes.

 The primary key for each entity is specified.

 Foreign keys which are used to identify a
relationship between different entities are
specified.

 Normalization occurs at this level.

A logical model can be designed using the
following approach:

 Specify all the entities with primary keys.

 Specify concurrent relationships between
different entities.

 Figure out each entity attributes

 Resolve many-to-many relationships.

 Carry out the process of normalization.

Also, one important factor after following the
above approach is to critically examine the design
based on requirement gathering. If the above steps
are strictly followed, there are chances of creating a
highly efficient database design that follows the
native approach.

To understand these points, see the image
below to get a clear picture.

If we compare the logical data model as
shown in the figure above with some sample data
in the diagram, we can come up with facts that in a
conceptual data model there are no presence of a
primary key whereas a logical data model has
primary keys for all of its attributes. Also, logical data

B.Sc. II YEAR IV SEMESTER

50
Rahul Publications

Rahul Publications

model the cover relationship between different entities and carries room for foreign keys to establish
relationships among them.

2. Physical

A Physical data mode generally represents how the approach or concept of designing the database.
The main purpose of the physical data model is to show all the structures of the table including the column
name, column data type, constraints, keys (primary and foreign), and the relationship among tables. The
following are the features of a physical data model:

 Specifies all the columns and tables.

 Specifies foreign keys that usually define the relationship between tables.

 Based on user requirements, de-normalization might occur.

 Since the physical consideration is taken into account so there will straightforward reasons for
difference than a logical model.

 Physical models might be different for different RDBMS. For example, the data type column may
be different in MySQL and SQL Server.

While designing a physical data model, the following points should be taken into consideration:

i) Convert the entities into tables.

ii) Convert the defined relationships into foreign keys.

iii) Convert the data attributes into columns.

iv) Modify the data model constraints based on physical requirements.

UNIT - II DATABASE MANAGEMENT SYSTEMS

51
Rahul Publications

Rahul Publications

Comparing this physical data model with the logical with the previous logical model, we might
conclude the differences that in a physical database entity names are considered table names and attributes
are considered column names. Also, the data type of each column is defined in the physical model
depending on the actual database used.

2.1.2 The Entity Relationship model

Q5. What is ER Model ?

Ans :
 ER model stands for an Entity-Relationship model. It is a high-level data model. This model is used

to define the data elements and relationship for a specified system.

 It develops a conceptual design for the database. It also develops a very simple and easy to design
view of data.

 In ER modeling, the database structure is portrayed as a diagram called an entity-relationship
diagram.

For example

Suppose we design a school database. In this database, the student will be an entity with attributes
like address, name, id, age, etc. The address can be another entity with attributes like city, street name, pin
code, etc and there will be a relationship between them.

Name address

id age

student

Q6. List and explain various components of ER Model ?

Ans :
Component of ER Diagram

ER Model

Entity Attribute

Weak Entity

Key Attribute

Composite Attribute

Multivalued Attribute

Derived Attribute

Relation

One to one

One to many

Many to one

Many to many

B.Sc. II YEAR IV SEMESTER

52
Rahul Publications

Rahul Publications

1. Entity

An entity may be any object, class, person or place. In the ER diagram, an entity can be represented
as rectangles.

Consider an organization as an example- manager, product, employee, department etc. can be
taken as an entity.

Employee Works
for Department

(a) Weak Entity: An entity that depends on another entity called a weak entity. The weak entity
doesn’t contain any key attribute of its own. The weak entity is represented by a double
rectangle.

InstallmentLoan

2. Attribute

The attribute is used to describe the property of an entity. Eclipse is used to represent an attribute.

For example, id, age, contact number, name, etc. can be attributes of a student.

id phone_no

name age

Student

(b) Key Attribute: The key attribute is used to represent the main characteristics of an entity. It
represents a primary key. The key attribute is represented by an ellipse with the text underlined.

id phone_no

name age

Student

UNIT - II DATABASE MANAGEMENT SYSTEMS

53
Rahul Publications

Rahul Publications

(c) Composi te Att ribute: An attribute that composed of many other attributes is known as a
composite attribute. The composite attribute is represented by an ellipse, and those ellipses
are connected with an ellipse.

Name

First_name Middle_name Last_name

(d) Multivalued Attribute: An attribute can have more than one value. These attributes are
known as a multivalued attribute. The double oval is used to represent multivalued attribute.

For example, a student can have more than one phone number.

Phone_no.

(e) Derived Attribute: An attribute that can be derived from other attribute is known as a
derived attribute. It can be represented by a dashed ellipse.

For example, A person’s age changes over time and can be derived from another attribute
like Date of birth.

Name Birth Date

Roll_no. age

Student

3. Relationship

A relationship is used to describe the relation between entities. Diamond or rhombus is used to
represent the relationship.

Teacher Teaches Student

B.Sc. II YEAR IV SEMESTER

54
Rahul Publications

Rahul Publications

Types of relationship are as follows:

(a) One-to-One Relationship

When only one instance of an entity is associated with the relationship, then it is known as one to
one relationship.

For example, A female can marry to one male, and a male can marry to one female.

Female Married to Male
1 1

(b) One-to-many relationship

When only one instance of the entity on the left, and more than one instance of an entity on the
right associates with the relationship then this is known as a one-to-many relationship.

For example, Scientist can invent many inventions, but the invention is done by the only specific
scientist.

Scientist Invents Invention
1 M

(c) Many-to-one relationship

When more than one instance of the entity on the left, and only one instance of an entity on the
right associates with the relationship then it is known as a many-to-one relationship.

For example, Student enrolls for only one course, but a course can have many students.

Student enroll Course
M 1

(d) Many-to-many relationship

When more than one instance of the entity on the left, and more than one instance of an entity on
the right associates with the relationship then it is known as a many-to-many relationship.

For example, Employee can assign by many projects and project can have many employees.

Student Is assigned Project
M M

Q7. What are the differences between strong entity set and weak entity set.

Ans : (Imp.)

i) Strong Entity
A strong entity is not dependent on any other entity in the schema. A strong entity will always have

a primary key. Strong entities are represented by a single rectangle. The relationship of two strong entities
is represented by a single diamond.

Various strong entities, when combined together, create a strong entity set.

UNIT - II DATABASE MANAGEMENT SYSTEMS

55
Rahul Publications

Rahul Publications

ii) Weak Entity

A weak entity is dependent on a strong entity to ensure its existence. Unlike a strong entity, a weak
entity does not have any primary key. It instead has a partial discriminator key. A weak entity is represented
by a double rectangle.

The relation between one strong and one weak entity is represented by a double diamond.

S.No. Strong Entity Set Weak Entity Set

1. Strong entity set always has a primary It does not have enough attributes to build
key. a primary key.

2. It is represented by a rectangle symbol. It is represented by a double rectangle symbol.

3. It contains a Primary key represented It contains a Partial Key which is represented by
by the underline symbol. a dashed underline symbol.

4. The member of a strong entity set is The member of a weak entity set called as
called as dominant entity set. a subordinate entity set.

5. Primary Key is one of its attributes In a weak entity set, it is a combination of
which helps to identify its member. primary key and partial key of the strong
entity set.

6. In the ER diagram the relationship The relationship between one strong and a
between two strong entity set shown weak entity set shown by using the double
by using a diamond symbol. diamond symbol.

7. The connecting line of the strong entity The line connecting the weak entity set
set with the relationship is single. for identifying relationship is double.

2.1.3 Constraints

Q8. What is relational integrity constraints in DBMS ?

Ans : (Imp.)

On modeling the design of the relational database we can put some restrictions like what values
are allowed to be inserted in the relation, what kind of modifications and deletions are allowed in the
relation. These are the restrictions we impose on the relational database.

B.Sc. II YEAR IV SEMESTER

56
Rahul Publications

Rahul Publications

In models like ER models, we did not have
such features.

Constraints in the databases can be
categorized into 3 main categories:

1. Constraints that are applied in the data model
is called Implicit constraints.

2. Constraints that are directly applied in the
schemas of the data model, by specifying
them in the DDL(Data Definition Language).
These are called as schema-based constraints
or Explicit constraints.

3. Constraints that cannot be directly applied in
the schemas of the data model. We call these
Application based or semantic constraints.

So here we will deal with Implicit constraints.

Mainly Constraints on the relational database
are of 4 types:

1. Domain constraints

2. Key constraints

3. Entity Integrity constraints

4. Referential integrity constraints

Let discuss each of the above constraints in
detail.

1. Domain constraints

i) Every domain must contain atomic
values(smallest indivisible units) it means
composite and multi-valued attributes
are not allowed.

ii) We perform datatype check here, which
means when we assign a data type to a
column we limit the values that it can
contain. Eg. If we assign the datatype of
attribute age as int, we cant give it values
other then int datatype.

2. Key constraints or uniqueness
constraints

i) These are called uniqueness constraints
since it ensures that every tuple in the
relation should be unique.

ii) A relation can have multiple keys or
candidate keys (minimal superkey), out
of which we choose one of the keys as

primary key, we don’t have any
restriction on choosing the primary key
out of candidate keys, but it is suggested
to go with the candidate key with less
number of attributes.

iii) Null values are not allowed in the
primary key, hence Not Null constraint
is also a part of key constraint.

3. Entity Integrity Constraints

Entity Integrity constraints says that no primary
key can take NULL value, since using primary
key we identify each tuple uniquely in a
relation.

4. Referential Integrity Constraints

i) The Referential integrity constraints is
specified between two relations or tables
and used to maintain the consistency
among the tuples in two relations.

ii) This constraint is enforced through
foreign key, when an attribute in the
foreign key of relation R1 have the same
domain(s) as the primary key of relation
R2, then the foreign key of R1 is said to
reference or refer to the primary key of
relation R2.

iii) The values of the foreign key in a tuple
of relation R1 can either take the values
of the primary key for some tuple in
relation R2, or can take NULL values,
but can’t be empty.

2.1.4 Removing redundant attributes in
entity set

Q9. What is Data Redundancy?

Ans :
Data redundancy occurs in database systems

which have a field that is repeated in two or more
tables. When customer data is duplicated and
attached with each product bought, then
redundancy of data is a known source of
inconsistency, since the entity “customer” might
appear with different values for a given attribute.

Data redundancy leads to data anomalies and
corruption and should be avoided when creating a
relational database consisting of several entities.

UNIT - II DATABASE MANAGEMENT SYSTEMS

57
Rahul Publications

Rahul Publications

Database normalization prevents redundancy and
makes the best possible usage of storage. The proper
use of foreign keys can minimize data redundancy
and reduce the chance of destructive anomalies
appearing. Concerns with respect to the efficiency
and convenience can sometimes result in redundant
data design despite the risk of corrupting the data.

Q10. How does data redundancy occur?

Ans :
Data redundancy can be designed; for

example, suppose you want to back up your
company’s data nightly. This creates a redundancy.
Data redundancy can also occur by mistake. For
example, the database designer who created a
system with a new record for each sale may not
have realized that his design caused the same address
to be entered repeatedly. You may also end up with
redundant data when you store the same
information in multiple systems. For instance,
suppose you store the same basic employee
information in Human Resources records and in
records maintained for your local site office.

Q11. List out advantages and disadvantages
of date redundancy.

Ans : (Imp.)

Advantages

Although data redundancy sounds like a
negative event, there are many organizations that
can benefit from this process when it’s intentionally
built into daily operations.

1. Alternative data backup method

Backing up data involves creating compressed
and encrypted versions of data and storing it
in a computer system or the cloud. Data
redundancy offers an extra layer of
protection and reinforces the backup by
replicating data to an additional system. It’s
often an advantage when companies
incorporate data redundancy into their
disaster recovery plans.

2. Better data security

Data security relates to protecting data, in a
database or a file storage system, from
unwanted activities such as cyberattacks or

data breaches. Having the same data stored
in two or more separate places can protect
an organization in the event of a cyberattack
or breach — an event which can result in
lost time and money, as well as a damaged
reputation.

3. Faster data access and updates

When data is redundant, employees enjoy
fast access and quick updates because the
necessary information is available on multiple
systems. This is particularly important for
customer service-based organizations whose
customers expect promptness and efficiency.

4. Improved data reliability

Data that is reliable is complete and accurate.
Organizations can use data redundancy to
double check data and confirm it’s correct
and completed in full - a necessity when
interacting with customers, vendors, internal
staff, and others.

Disadvantages

Although there are noteworthy advantages
of intentional data redundancy, there are also
several significant drawbacks when
organizations are unaware of its presence.

1. Possible data inconsistency

Data redundancy occurs when the same
piece of data exists in multiple places, whereas
data inconsistency is when the same data
exists in different formats in multiple tables.
Unfortunately, data redundancy can cause
data inconsistency, which can provide a
company with unreliable and/or meaningless
information.

2. Increase in data corruption

Data corruption is when data becomes
damaged as a result of errors in writing,
reading, storage, or processing. When the
same data fields are repeated in a database
or file storage system, data corruption arises.
If a file gets corrupted, for example, and an
employee tries to open it, they may get an
error message and not be able to complete
their task.

B.Sc. II YEAR IV SEMESTER

58
Rahul Publications

Rahul Publications

3. Increase in database size

Data redundancy may increase the size and complexity of a database - making it more of a challenge
to maintain. A larger database can also lead to longer load times and a great deal of headaches and
frustrations for employees as they’ll need to spend more time completing daily tasks.

4. Increase in cost

When more data is created due to data redundancy, storage costs suddenly increase. This can be a
serious issue for organizations who are trying to keep costs low in order to increase profits and meet
their goals. In addition, implementing a database system can become more expensive.

2.1.5 Entity Relationship Diagram

Q12. How to create an ER Diagram ?

Ans : (Imp.)

Following are the steps involved to develop the ER Diagrams.

Entity Identification Create ERD
Identify

Attributes
Cardinality

Identification
Relationship
Identification

Step 1: Entity Identification

We have three entities

 Student

 Course

 Professor

Student Course Professor

Step 2: Relationship Identification

We have the following two relationships

 The student is assigned a course

 Professor delivers a course

Student

Assigned

Course

Delivers

Professor

Step 3: Cardinality Identification

For them problem statement we know that,

 A student can be assigned multiple courses

 A Professor can deliver only one course

UNIT - II DATABASE MANAGEMENT SYSTEMS

59
Rahul Publications

Rahul Publications

Student

Assigned

Course

Delivers

ProfessorStudent

Assigned

Course

Delivers

Professor

Step 4: Identify Attributes
You need to study the files, forms, reports, data currently maintained by the organization to identify

attributes. You can also conduct interviews with various stakeholders to identify entities. Initially, it’s important
to identify the attributes without mapping them to a particular entity.

Once, you have a list of Attributes, you need to map them to the identified entities. Ensure an
attribute is to be paired with exactly one entity. If you think an attribute should belong to more than one
entity, use a modifier to make it unique.

Once the mapping is done, identify the primary Keys. If a unique key is not readily available, create
one.

Entity Primary Key Attribute
Student Student_ID StudentName
Professor Employee_ID ProfessorName
Course Course_ID CourseName

Student

Assigned

Course

Delivers

Professor

Student_ID Course_ID Employee_ID

StudentName CourseName ProfessorName

Student

Assigned

Course

Delivers

ProfessorStudent

Assigned

Course

Delivers

Professor

Student_ID Course_ID Employee_ID

StudentName CourseName ProfessorName

For Course Entity, attributes could be Duration, Credits, Assignments, etc. For the sake of ease we
have considered just one attribute.

Step 5: Create the ERD Diagram

A more modern representation of Entity Relationship Diagram Example

Student Course Professor

Student_ID
StudentName

Course_ID
CourseName

Assigned Delivers
ProfessorName
Employee_ID

Q13. List out best practices for developing effective ER Diagrams ?

Ans :
Here are some best practice or example for Developing Effective ER Diagrams.

 Eliminate any redundant entities or relationships.

 You need to make sure that all your entities and relationships are properly labeled.

B.Sc. II YEAR IV SEMESTER

60
Rahul Publications

Rahul Publications

 There may be various valid approaches to an ER diagram. You need to make sure that the ER
diagram supports all the data you need to store

 You should assure that each entity only appears a single time in the ER diagram

 Name every relationship, entity, and attribute are represented on your diagram

 Never connect relationships to each other

 You should use colors to highlight important portions of the ER diagram

Q14. Draw an ER Diagram for college management system.

Ans :

login_role_id

#login_id
user_username

user_password
Login

Has Roles

#role_id

role_name

role_desc

User

#user_id
user_name

user_mobile

user_email

user_address

Permission

#per_id

per_role_id

per_moduleper_name

Has

issues

Issu_stu_id

#issu_id

#issu_id

Issu_date

Issu_book_id

books

book_price

book_data

book_stu_id

book_name

#book_id

Has

branch

brn_name

brn_add#brn_id

Student

stu_name
#stu_id

stu_mobile

stu_email

stu_add

stu_pass

login_role_id

#login_id
user_username

user_password
Login

Has Roles

#role_id

role_name

role_desc

User

#user_id
user_name

user_mobile

user_email

user_address

Permission

#per_id

per_role_id

per_moduleper_name

Has

issues

Issu_stu_id

#issu_id

#issu_id

Issu_date

Issu_book_id

books

book_price

book_data

book_stu_id

book_name

#book_id

Has

branch

brn_name

brn_add#brn_id

Student

stu_name
#stu_id

stu_mobile

stu_email

stu_add

stu_pass

UNIT - II DATABASE MANAGEMENT SYSTEMS

61
Rahul Publications

Rahul Publications

Q15. Draw an ER Diagram for describing employee information.

Ans :

Q16. Draw an ER Diagram for Hospital information.

Ans :

B.Sc. II YEAR IV SEMESTER

62
Rahul Publications

Rahul Publications

Q17. List out the benefits of ER Diagrams

Ans :
Benefits of ER diagrams

ER diagrams constitute a very useful framework for creating and manipulating databases. First, ER
diagrams are easy to understand and do not require a person to undergo extensive training to be able to
work with it efficiently and accurately. This means that designers can use ER diagrams to easily communicate
with developers, customers, and end users, regardless of their IT proficiency.

Second, ER diagrams are readily translatable into relational tables which can be used to quickly
build databases. In addition, ER diagrams can directly be used by database developers as the blueprint for
implementing data in specific software applications.

Lastly, ER diagrams may be applied in other contexts such as describing the different relationships
and operations within an organization.

2.1.6 Reduction to relational schemas

Q18. Explain the process of creating ER Diagram into table with an example.

Ans : (Imp.)

Reduction of ER diagram to Table

The database can be represented using the notations, and these notations can be reduced to a
collection of tables.

In the database, every entity set or relationship set can be represented in tabular form.

The ER diagram is given below

UNIT - II DATABASE MANAGEMENT SYSTEMS

63
Rahul Publications

Rahul Publications

There are some points for converting the ER diagram to the table:

 Entity type becomes a table: In the given ER diagram, LECTURE, STUDENT, SUBJECT and
COURSE forms individual tables.

 All single-valued attribute becomes a column for the table: In the STUDENT entity,
STUDENT_NAME and STUDENT_ID form the column of STUDENT table. Similarly,
COURSE_NAME and COURSE_ID form the column of COURSE table and so on.

 A key attribute of the entity type represented by the primary key: In the given ER diagram,
COURSE_ID, STUDENT_ID, SUBJECT_ID, and LECTURE_ID are the key attribute of the entity.

 The multivalued attribute is represented by a separate table: In the student table, a hobby
is a multivalued attribute. So it is not possible to represent multiple values in a single column of
STUDENT table. Hence we create a table STUD_HOBBY with column name STUDENT_ID and
HOBBY. Using both the column, we create a composite key.

 Composite attribute represented by components: In the given ER diagram, student address is
a composite attribute. It contains CITY, PIN, DOOR#, STREET, and STATE. In the STUDENT
table, these attributes can merge as an individual column.

 Derived attributes are not considered in the table: In the STUDENT table, Age is the derived
attribute. It can be calculated at any point of time by calculating the difference between current date
and Date of Birth.

Using these rules, you can convert the ER diagram to tables and columns and assign the mapping
between the tables. Table structure for the given ER diagram is as below:

Fig.: Table structure

B.Sc. II YEAR IV SEMESTER

64
Rahul Publications

Rahul Publications

Q19. Convert/reduce the ER Diagram given in figure below.

Ans :
Given in the figure;

Entity sets and relationship sets

Name Entity set / Relationship set Type

Scientist Entity set Strong entity set

Invention Entity set Strong entity set

Invents Relationship set Many-to-Many relationship

Entity set Scientist

Attributes Attribute Type Description

SID Simple and Primary key Scientist ID

SNam Composite Scientist Name

RArea Multi-valued Research Area

Country Simple Country

Entity set Invention

Attributes Attribute Type Description

IID Simple and Primary key Invention ID

IName Simple Name of the invention

Year Simple Year of invention

Reduction into relational schema

Strong entity sets – Entity set that has a primary key to uniquely represent each entity is Strong
entity set.

Strong entity sets can be converted into relational schema by having the entity set name as the
relation schema name and the attributes of that entity set as the attributes of relation schema.

Then we have,

Scientist (SID, SName, RArea, Country)

Invention (IID, IName, Year)

UNIT - II DATABASE MANAGEMENT SYSTEMS

65
Rahul Publications

Rahul Publications

1. After converting strong entity sets into relation schema

Scientist (SID, SName, RArea, Country)

Invention (IID, IName, Year)

Composite attributes

If an attribute can be further divided into two or more component attributes, that attribute is called
composite attribute.

While converting into relation schemas, component attributes can be part of the strong entity sets’
relation schema. No need to retain the composite attribute.

In our case, SNam becomes FName, and LName as follows;

Scientist (SID, FName, LName, RArea, Country)

2. After converting composite attributes into relation schema

Scientist (SID, FName, LName, RArea, Country)

Invention (IID, IName, Year)

Multi-valued attributes

Attributes that may have multiple values are referred as multi-valued attributes.

In our ER diagram, R Area is a multi-valued attribute. That means, a scientist may have one or
more areas as their research areas.

To reduce a multi-valued attribute into a relation schema, we have to create a separate table for
each multi-valued attribute. Also, we need to include the primary key of strong entity set (parent entity set
where the multi-valued attribute belongs) as a foreign key attribute to establish link.

In our case, the strong entity set Scientist will be further divided as follows;

Scientist (SID, FName, LName, RArea, Country)

Scientist_Area (SID, RArea)

3. After converting multi-valued attributes into relation schema

Scientist (SID, FName, LName, Country)

Scientist_Area (SID, RArea)

Invention (IID, IName, Year)

Relationship set

The association between two or more entity sets is termed as relationship set.

A relationship may be either converted into a separate table or not. That can be decided based on
the type of the relationship. Only many-to-many relationship needs to be created as a separate table.

Here, we are given a many-to-many relationship. That means,

 One entity (record/row) of Scientist is related to one or more entities (records/rows)
of Invention entity set (that is, one scientist may have one or more inventions) and,

 One entity (record/row) of Invention is related to one or more entities (records/rows)
of Scientist entity set. (that is, one or more scientists may have invented one thing collectively).

B.Sc. II YEAR IV SEMESTER

66
Rahul Publications

Rahul Publications

To reduce the relationship invents into relational schema, we need to create a separate table
for Invents, because Invents is a many-to-many relationship set. Hence, create a table Invents with
the primary keys of participating entity sets (both, Scientist and Invention) as the attributes.

Then we have,

Invents (SID, IID)

Here, SID and IID are both foreign keys and collectively forms the primary key of Invents table.

Finally, we have the following relation schemas;

4. After converting relationship sets into relation schema

Scientist (SID, FName, LName, Country)
Scientist_Area (SID, RArea)Invention
(IID, IName, Year)
Invents (SID, IID)

2.1.7 Entity Relationship Design Issues

Q20. Discuss the basic design issues of an ER database schema ?

Ans :
The basic design issues of an ER database schema in the following points:

1. Use of Entity Set vs Attributes: The use of an entity set or attribute depends on the structure of
the real-world enterprise that is being modelled and the semantics associated with its attributes. It
leads to a mistake when the user use the primary key of an entity set as an attribute of another
entity set. Instead, he should use the relationship to do so. Also, the primary key attributes are
implicit in the relationship set, but we designate it in the relationship sets.

2. Use of Entity Set vs. Relationship Sets: It is difficult to examine if an object can be best expressed
by an entity set or relationship set. To understand and determine the right use, the user need to
designate a relationship set for describing an action that occurs in-between the entities. If there is a
requirement of representing the object as a relationship set, then its better not to mix it with the
entity set.

3. Use of Binary vs n-ary Relationship Sets: Generally, the relationships described in the databases
are binary relationships. However, non-binary relationships can be represented by several binary
relationships. For example, we can create and represent a ternary relationship ‘parent’ that may
relate to a child, his father, as well as his mother. Such relationship can also be represented by two
binary relationships i.e, mother and father, that may relate to their child. Thus, it is possible to
represent a non-binary relationship by a set of distinct binary relationships.

4. Placing Relationship Attributes: The cardinality ratios can become an affective measure in the
placement of the relationship attributes. So, it is better to associate the attributes of one-to-one or
one-to-many relationship sets with any participating entity sets, instead of any relationship set. The
decision of placing the specified attribute as a relationship or entity attribute should possess the
charactestics of the real world enterprise that is being modelled.

For example, if there is an entity which can be determined by the combination of participating
entity sets, instead of determing it as a separate entity. Such type of attribute must be associated
with the many-to-many relationship sets.

UNIT - II DATABASE MANAGEMENT SYSTEMS

67
Rahul Publications

Rahul Publications

Thus, it requires the overall knowledge of
each part that is involved inbdesgining and
modelling an ER diagram. The basic
requirement is to analyse the real-world
enterprise and the connectivity of one entity
or attribute with other.

2.1.8 Extended ER Features

Q21. What are the main features of Entity
Relationship design issues?

(OR)
Discuss various extended ER features.

Ans :
The various extended E-R features are as

follows,

1. Generalization

Generalization is a bottom-up approach
which creates generalized entities. In this approach,
entities present in the lower level combine together
to form a higher level entity. Higher level entity is
also called super class entity and lower level entity is
also called subclass entity. Subclass/lower level entities
are the entities that posses similar characteristics.
These characteristics can be attributes, associations
or methods. Generalization method aims at hiding
the distinguishing characteristics of subclass entities
thereby grouping all the similar characteristics.

2. Specialization

Specialization is a top-down approach in
which lower-level entities are formed by the
decomposition of a higher level entity. Higher level
entity is the super class entity and lower level entity
is the subclass entity. This method identifies subsets
of super class entity that shares differentiating
characteristics and separates those sets. These sets
are known as sub-class sets. In specialization method,
first a super class is defined followed by its sub­classes
and then their attributes and relationships are
defined.

3. Aggregation

Aggregation represents a relationship
between a whole object and its component parts.

Aggregation is the process of compiling
information on an object, thereby abstracting a
higher level object. In this manner, the entity person

is derived by aggregating the characteristics like
name, address and social security number. Another
form of aggregation is abstracting a relationship
between objects and viewing the relationship as an
object. In essence, the ENROLMENT relationship
between entities student and course could be viewed
as entity REGISTRATION.

In simple terms it can be said that
“Aggregation is an abstraction through which
relationships are treated as higher level entities”.
Aggregation allows the users to indicate that a
relationship set (identified through a dashed box)
participates in other relationship set. This is shown
in the below figure with a dashed box around
sponsors (and its participating entity sets) used to
denote aggregation. This effectively allows the users
to treat sponsors as an entity set for purposes of
defining the monitors relationship set.

4. Composition

Composition is derived from aggregation and
is used to represent entity relationships having strong
ownerships and coincidental lifetime among ‘whole’
and ‘part’ in a whole-part relationship. In composite
aggregation, the part belongs to a single composite
object. In other words, the composition is
responsible for handling the creation and deletion
of the parts. An example of composition is
‘Publishes’ relationship in a whole-part relationship
where whole is’ Website’ and part is ‘Advertisement’.
In such a relationship, the advertisement belongs
to only one website?

5. Attribute Inheritance

In database system’ inheritance can be
defined as a mechanism in which one class inherits
the feature of another class. The class which acquires
the features (attributes) are called subclass or child
class whereas the class which gets inherited is called
as a super class or parent class. A super class contains
all the common variables in them.

Inheritance allows one class to specialize
another class using addition and substitution
mechanisms. Some systems support single
inheritance while others support multiple
inheritance. Single inheritance is the class
specialization of only one super class while multiple
inherence allows a class to be the specialization of
multiple classes.

B.Sc. II YEAR IV SEMESTER

68
Rahul Publications

Rahul Publications

Q22. Explain the concept of Generalization.

Ans :
 Generalization is like a bottom-up approach

in which two or more entities of lower level
combine to form a higher level entity if they
have some attributes in common.

 In generalization, an entity of a higher level
can also combine with the entities of the lower
level to form a further higher level entity.

 Generalization is more like subclass and
superclass system, but the only difference is
the approach. Generalization uses the bottom-
up approach.

 In generalization, entities are combined to
form a more generalized entity, i.e., subclasses
are combined to make a superclass.

For example, Faculty and Student entities
can be generalized and create a higher level entity
Person.

Q23. Explain Specialization in detail.

Ans :
 Specialization is a top-down approach, and

it is opposite to Generalization. In speciali-
zation, one higher level entity can be broken
down into two lower level entities.

 Specialization is used to identify the subset of
an entity set that shares some distinguishing
characteristics.

 Normally, the superclass is defined first, the
subclass and its related attributes are defined
next, and relationship set are then added.

For example

In an Employee management system,
EMPLOYEE entity can be specialized as TESTER
or DEVELOPER based on what role they play in
the company.

Q24. Explain Aggregation in detail.

Ans :
In aggregation, the relation between two

entities is treated as a single entity. In aggregation,
relationship with its corresponding entities is
aggregated into a higher level entity.

For example

Center entity offers the Course entity act as a
single entity in the relationship which is in a
relationship with another entity visitor. In the real
world, if a visitor visits a coaching center then he
will never enquiry about the Course only or just
about the Center instead he will ask the enquiry
about both.

UNIT - II DATABASE MANAGEMENT SYSTEMS

69
Rahul Publications

Rahul Publications

2.1.9 Alternative notations for modelling
data

Q25. What are data modelling notations ?

Ans : (Imp.)

Following are the symbols(Notations) used
for constructing ER Diagrams.

1. Entities

Definition: An entity is a representation of
a class of object. It can be a person, place,
thing, etc. Entities usually have attributes that
describe them.

In crow’s foot notation, an entity is
represented by a rectangle, with its name on
the top. The name is singular (entity) rather
than plural (entities).

2. Attributes

Definition: An attribute is a property that
describes a particular entity.

The attribute(s) that uniquely distinguishes an
instance of the entity is the identifier.
Usually, this type of attribute is marked with
an asterisk.

3. Relationships

Definition: Relationships illustrate the
association between two entities. They are
presented as a straight line. Usually, each
relationship has a name, expressed as a verb,
written on the relationship line. This describes
what kind of relationship connects the objects.

Note that the mentioned type of relationship
is binary. In the Entity-Relationship model,
representing a ternary or higher order of
relationship is problematic.

4. Cardinality

Relationships have two indicators. These are
shown on both sides of the line.

 The first one (often called multiplicity)
refers to the maximum number of
times that an instance of one entity can
be associated with instances in the related
entity. It can be one or many.

 The second describes the minimum
number of times one instance can be
related to others. It can be zero or one,
and accordingly describes the
relationship as optional or mandatory.

The combination of these two indicators is
always in a specific order. Placed on the outside edge
of the relationship, the symbol of multiplicity comes
first. The symbol indicating whether the relationship
is mandatory or optional is shown after the symbol
of multiplicity.

In crow’s foot notation:

 A multiplicity of one and a mandatory
relationship is represented by a straight line
perpendicular to the relationship line.

 A multiplicity of many is represented by the
three-pronged ‘crow-foot’ symbol.

 An optional relationship is represented by
an empty circle.

Finally, there are four possible edges to the
relationship, illustrated here:

 zero or many

B.Sc. II YEAR IV SEMESTER

70
Rahul Publications

Rahul Publications

 one or many

 one and only one

 zero or one

Relationship degrees make them readable as:

 One-to-one

 One-to-many

 Many-to-many

2.1.10 Other aspects of database design

Q26. What are the other aspects of database
design ?

Ans : (Imp.)

Following are the aspects of good database
design

i) Defining the System Parameters

Ideally, every project should begin with a clear
definition of what the scope of the project, the
motivation, and how your success will be judged.
Most projects will not have this definition prior to
commencement, so this is what the first phase of
the design process is about.

ii) Defining the Work Processes

Although ostensibly involved in the storage
and retrieval of data, the majority of database
systems support one or more work processes. The
users are not just storing data, they need to use it in
their applications. Understanding the work processes
the data needs to support is crucial to understanding
the semantics of the data model.

iii) Building the Conceptual Data Model

More than simply a set of table structures,
the conceptual data model defines the data usage
for the entire system. This includes not only the
logical data model, but also a description of how
the work processes interact with the data

iv) Preparing the Database Schema

The database schema translates the
conceptual data model into physical terms. It
includes a description of the tables that will be
implemented in the system and also the physical
architecture of the data.

v) Designing the User Interface

No matter how impressive the technical
performance of the system, if the user interface is
not easy-to-use, confusing, or patronizing, the
project is unlikely to be successful. To most users,
after all, the interface is the system. In human-
computer interaction and computer science, there
exists the concept of usability, that usually refers to
the elegance and clarity with which the interaction
with a computer program or a web site is designed.
In database design it is important to implement this
concept of usability

UNIT - II DATABASE MANAGEMENT SYSTEMS

71
Rahul Publications

Rahul Publications

2.2 RELATIONAL DATABASE DESIGN

2.2.1 Features of good relational designs

Q27. What is relational database design ?

Ans : (Imp.)

The relational data model was introduced by C. F. Codd in 1970. Currently, it is the most widely
used data model. The relational data model describes the world as “a collection of inter-related relations
(or tables).” A relational data model involves the use of data tables that collect groups of elements into
relations. These models work based on the idea that each table setup will include a primary key or
identifier. Other tables use that identifier to provide “relational” data links and results.

Today, there are many commercial Relational Database Management System (RDBMS), such as
Oracle, IBM DB2, and Microsoft SQL Server. There are also many free and open-source RDBMS, such as
MySQL, mSQL (mini-SQL) and the embedded Java DB (Apache Derby). Database administrators use
Structured Query Language (SQL) to retrieve data elements from a relational database.

Data Modelling Relational
schema

Physical
storage

E-R Diagrams Tables
Columns: Attributes

Row: Tuples

Complex file
organization and
index structures

As mentioned, the primary key is a fundamental tool in creating and using relational data models.
It must be unique for each member of a data set. It must be populated for all members. Inconsistencies
can cause problems in how developers retrieve data. Other issues with relational database designs include
excessive duplication of data, faulty or partial data, or improper links or associations between tables. A
large part of routine database administration involves evaluating all the data sets in a database to make
sure that they are consistently populated and will respond well to SQL or any other data retrieval method.

For example, a conventional database row would represent a tuple, which is a set of data that
revolves around an instance or virtual object so that the primary key is its unique identifier. A column
name in a data table is associated with an attribute, an identifier or feature that all parts of a data set have.
These and other strict conventions help to provide database administrators and designers with standards
for crafting relational database setups.

Q28. What are the major objectives of good database design.

Ans : (Imp.)

 Eliminate Data Redundancy: the same piece of data shall not be stored in more than one
place. This is because duplicate data not only waste storage spaces but also easily lead to
inconsistencies.

B.Sc. II YEAR IV SEMESTER

72
Rahul Publications

Rahul Publications

 Ensure Data Integrity and Accuracy: is the maintenance of, and the assurance of the accuracy
and consistency of, data over its entire life-cycle, and is a critical aspect to the design, implementation,
and usage of any system which stores, processes, or retrieves data.

The relational model has provided the basis for:

 Research on the theory of data/relationship/constraint

 Numerous database design methodologies

 The standard database access language called structured query language (SQL)

 Almost all modern commercial database management systems

Relational databases go together with the development of SQL. The simplicity of SQL - where even
a novice can learn to perform basic queries in a short period of time - is a large part of the reason for the
popularity of the relational model.

The two tables below relate to each other through the product code field. Any two tables can relate
to each other simply by creating a field they have in common.

Table 1

Product_code Description Price

A416 Colour Pen 25.00

C923 Pencil box 45.00

Table 2

Invoice_code Invoice_line Product_code Quantity

3804 1 A416 15

3804 2 C923 24

There are four stages of an RDM which are as follows:

 Relations and attributes: The various tables and attributes related to each table are identified.
The tables represent entities, and the attributes represent the properties of the respective entities.

 Primary keys: The attribute or set of attributes that help in uniquely identifying a record is identified
and assigned as the primary key.

 Relationships: The relationships between the various tables are established with the help of foreign
keys. Foreign keys are attributes occurring in a table that are primary keys of another table. The
types of relationships that can exist between the relations (tables) are One to one, One to many,
and Many to many.

 Normalization: This is the process of optimizing the database structure. Normalization simplifies
the database design to avoid redundancy and confusion. The different normal forms are as follows:

1. First normal form

2. Second normal form

3. Third normal form

4. Boyce-Codd normal form

5. Fifth normal form

UNIT - II DATABASE MANAGEMENT SYSTEMS

73
Rahul Publications

Rahul Publications

By applying a set of rules, a table is normalized
into the above normal forms in a linearly progressive
fashion. The efficiency of the design gets better with
each higher degree of normalization.

Q29. What are the advantages of relational
databases.

Ans :
 The main advantages of relational databases

are that they enable users to easily categorize
and store data that can later be queried and
filtered to extract specific information for
reports.

 Relational databases are also easy to extend
and aren’t reliant on the physical organization.

 After the original database creation, a new
data category can be added without all
existing applications being modified.

 Accurate: Data is stored just once, which
eliminates data deduplication.

 Flexible: Complex queries are easy for users
to carry out.

 Collaborative: Multiple users can access the
same database.

 Trusted: Relational database models are
mature and well-understood.

 Secure: Data in tables within relational
database management systems (RDBMS) can
be limited to allow access by only particular
users.

2.2.2 Atomic domains and first normal form

Q30. What is meant by Normalization ?

Ans :
Database Normalization is a technique of

organizing the data in the database. Normalization
is a systematic approach of decomposing tables to
eliminate data redundancy(repetition) and
undesirable characteristics like Insertion, Update and
Deletion Anomalies. It is a multi-step process that
puts data into tabular form, removing duplicated
data from the relation tables.

Normalization is used for mainly two
purposes:

 Eliminating redundant(useless) data.

 Ensuring data dependencies make sense
i.e data is logically stored.

Q31. What are the problems normalization
with an example.

Ans :
If a table is not properly normalized and have

data redundancy then it will not only eat up extra
memory space but will also make it difficult to handle
and update the database, without facing data loss.
Insertion, Updation and Deletion Anomalies are
very frequent if database is not normalized. To
understand these anomalies let us take an example
of a Student table.

rollno name branch hod office_tel

401 Akon CSE Mr. X 53337

402 Bkon CSE Mr. X 53337

403 Ckon CSE Mr. X 53337

404 Dkon CSE Mr. X 53337

In the table above, we have data of 4
Computer Sci. students. As we can see, data for the
fields branch, hod(Head of Department) and
office_tel is repeated for the students who are in
the same branch in the college, this is Data
Redundancy.

i) Insertion Anomaly

Suppose for a new admission, until and unless
a student opts for a branch, data of the student
cannot be inserted, or else we will have to set the
branch information as NULL.

Also, if we have to insert data of 100 students
of same branch, then the branch information will
be repeated for all those 100 students.

These scenarios are nothing but Insertion
anomalies.

ii) Updation Anomaly

What if Mr. X leaves the college? or is no
longer the HOD of computer science department?
In that case all the student records will have to be
updated, and if by mistake we miss any record, it
will lead to data inconsistency. This is Updation
anomaly.

B.Sc. II YEAR IV SEMESTER

74
Rahul Publications

Rahul Publications

iii) Deletion Anomaly

In our Student table, two different informations are kept together, Student information and Branch
information. Hence, at the end of the academic year, if student records are deleted, we will also lose the
branch information. This is Deletion anomaly.

Q32. What is Redundency ? How it create Problem in Database ?

Ans :
Data redundancy is a condition created within a database or data storage technology in which the

same piece of data is held in two separate places.

This can mean two different fields within a single database, or two different spots in multiple software
environments or platforms. Whenever data is repeated, this basically constitutes data redundancy. This
can occur by accident, but is also done deliberately for backup and recovery purposes.

Redundancy means having multiple copies of same data in the database. This problem arises when
a database is well normalized. Suppose a table of student details attributes are: student Id, student name,
college name, college rank, course opted.

StudentJD Name Contact College Course Rank

100 Himanshu 7300934851 GEU Btech 1

101 Ankit 7900734858 GEU Btech 1

102 Aysuh 7300936759 GEU Btech 1

103 Ravi 7300901556 GEU Btech 1

As it can be observed that values of attribute college name, college rank, course is being repeated
which can lead to problems. Problems caused due to redundancy are:

1. Insertion anomaly,

2. Deletion anomaly, and

3. Updation anomaly.

1. Insertion Anomaly

If a student detail has to be inserted whose course is not being decided yet then insertion will not be
possible till the time course is decided for student.

StudentJD Name Contact College Course Rank

100 Himanshu 7300934851 GEU Btech 1

This problem happens when the insertion of a data record is not possible without adding some
additional unrelated data to the record.

2. Deletion Anomaly

If the details of students in this table is deleted then the details of college will also get deleted which
should not occur by common sense.

This anomaly happens when deletion of a data record results in losing some unrelated information
that was stored as part of the record that was deleted from a table.

UNIT - II DATABASE MANAGEMENT SYSTEMS

75
Rahul Publications

Rahul Publications

3. Updation Anomaly

Suppose if the rank of the college changes then changes will have to be all over the database which
will be time-consuming and computationally costly.

If updation do not occur at all places then database will be in inconsistent state.

NORMALIZATION PROCESS

Normalization Rule
Normalization rules are divided into the following normal forms:

 UN- Normalized form (UNF)
 First Normal Form (1NF)

 Second Normal Form(2NF)

 Third Normal Form(3NF)
 BCNF

 Fourth Normal Form(4NF)

B.Sc. II YEAR IV SEMESTER

76
Rahul Publications

Rahul Publications

Q33. Explain the Rules of Normalization? Following are the 5 Rules of Data Normalization

Ans :
i) Eliminate Repeating Groups: Make a separate table for each set of related attributes, and give

each table a primary key.

ii) Eliminate Redundant Data: If an attribute depends on only part of a multi valued key, remove
it to a separate table.

iii) Eliminate Columns Not Dependent On Key: If attributes do not contribute to a description of
the key, remove them to a separate table.

iv) Isolate Independent Multiple Relation-ships: No table may contain two or more 1:n or n:m
relationships that are not directly related.

v) Isolate Semantically Related Multiple Relationships: There may be practical constrains on
information that justify separating logically related many-to-many relationships.

i) Eliminate Repeating Groups

In the original member list, each member name is followed by any databases that the member has
experience with. Some might know many, and others might not know any. To answer the question, “Who
knows DB2?” we need to perform an awkward scan of the list looking for references to DB2. This is
inefficient and an extremely untidy way to store information.

Moving the known databases into a separate table helps a lot. Separating the repeating groups of
databases from the member information results in first normal form. The MemberID in the database
table matches the primary key in the member table, providing a foreign key for relating the two tables
with a join operation. Now we can answer the question by looking in the database table for “DB2” and
getting the list of members.

UNIT - II DATABASE MANAGEMENT SYSTEMS

77
Rahul Publications

Rahul Publications

ii) Eliminate Redundant Data

In the Database Table, the primary key is made up of the MemberID and the DatabaseID. This
makes sense for the “Where Learned” and “Skill Level” attributes, since they will be different for every
member/database combination. But the database name depends only on the DatabaseID. The same
database name will appear redundantly every time its associated ID appears in the Database Table.

Suppose you want to reclassify a database - give it a different DatabaseID. The change has to be
made for every member that lists that database! If you miss some, you’ll have several members with the
same database under different IDs. This is an update anomaly.

Or suppose the last member listing a particular database leaves the group. His records will be
removed from the system, and the database will not be stored anywhere! This is a delete anomaly. To
avoid these problems, we need second normal form.

To achieve this, separate the attributes depending on both parts of the key from those depending
only on the DatabaseID. This results in two tables: “Database” which gives the name for each DatabaseID,
and “MemberDatabase” which lists the databases for each member.

Now we can reclassify a database in a single operation: look up the DatabaseID in the “Database”
table and change its name. The result will instantly be available throughout the application.

iii) Eliminate Columns Not Dependent On Key

The Member table satisfies first normal form - it contains no repeating groups. It satisfies second
normal form - since it doesn’t have a multivalued key. But the key is MemberID, and the company name
and location describe only a company, not a member. To achieve third normal form, they must be moved
into a separate table. Since they describe a company, CompanyCode becomes the key of the new
“Company” table.

The motivation for this is the same for second normal form: we want to avoid update and delete
anomalies. For example, suppose no members from the IBM were currently stored in the database. With
the previous design, there would be no record of its existence, even though 20 past members were from
IBM!

B.Sc. II YEAR IV SEMESTER

78
Rahul Publications

Rahul Publicationsiv) Isolate Independent Multiple Relationships

This applies only to designs that include one-to-many and many-to-many relationships. An example
of one-to-many is that one company can employ many members. An example of a many-to-many
relationship is that a member can know many databases and several members might know the same
database.

Suppose we want to add a new attribute to the Member Database table called “Attire”. This way we
can look for members that not only know DB2, but also typically wear a suit and tie. Fourth normal form
dictates against this (using the Member Database table, not wearing suits and ties). The two attributes do
not share a meaningful relationship. A member may know a certain database, and he/she might just wear
a wet suit. This doesn’t mean he/she can do both at the same time (unless you have a water-proof
computer terminal). How will you represent this if you store both attributes in the same table.

v) Isolate Semantically Related Multiple Relationships

Usually, related attributes belong together. For example, if we really wanted to record which databases
each member works on wearing which kinds of clothes, we would want to keep the attire attribute in the
MemberDatabase table. But there are times when special characteristics of the data make it more efficient
to separate even logically related attributes.

Imagine that our system will record which jobs are available in each company, and which schools
typically supply candidates to those companies. This suggests a CompanySchoolJob table which satisfies
fourth normal form. As long as any company can use any candidates from any school, this works fine.

Now suppose a law is passed to prevent exclusive arangements: a company accepting candidates
must accept them from all schools it deals with. In other words, if IBM is hiring DBAs and wants to
maintain a relationship with MIT, it must accept DBAs from MIT.

The need for fifth normal form becomes clear when we consider inserts and deletes. Suppose a
company decides to create 3 new jobs types: HTML DBA, Java Programmer and Underwater DB2 DBA.
Suppose further that it already deals with three schools that can supply candidates for those positions. This
will require nine new rows in the database, one for each school/job combination.

Breaking up the table reduces the number of inserts to six. Here are the tables neccessary for fifth
normal form, shown with the six newly inserted rows in bold type. If an application involves significant
update activity, fifth normal form can mean important savings. Note that these combination tables develop
naturally out of entity-relationship analysis.

UNIT - II DATABASE MANAGEMENT SYSTEMS

79
Rahul Publications

Rahul Publications

Q34. Explain first normal form (1NF) in detail.

Ans : (Imp.)

He first normal form expects you to follow a few simple rules while designing your database, and
they are:

Rule 1: Single Valued Attributes

Each column of your table should be single valued which means they should not contain multiple
values. We will explain this with help of an example later, let’s see the other rules for now.

Rule 2: Attribute Domain should not change

This is more of a “Common Sense” rule. In each column the values stored must be of the same kind
or type.

For example: If you have a column dob to save date of births of a set of people, then you
cannot or you must not save ‘names’ of some of them in that column along with ‘date of birth’ of others
in that column. It should hold only ‘date of birth’ for all the records/rows.

Rule 3: Unique name for Attributes/Columns

This rule expects that each column in a table should have a unique name. This is to avoid confusion
at the time of retrieving data or performing any other operation on the stored data.

If one or more columns have same name, then the DBMS system will be left confused.

Rule 4: Order doesn’t matters

This rule says that the order in which you store the data in your table doesn’t matter.

Example

Although all the rules are self explanatory still let’s take an example where we will create a table to
store student data which will have student’s roll no., their name and the name of subjects they have opted
for.

Here is our table, with some sample data added to it.

roll_no name subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C,C++

Our table already satisfies 3 rules out of the 4 rules, as all our column names are unique, we have
stored data in the order we wanted to and we have not inter-mixed different type of data in columns.

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And we have
stored the subject names in a single column. But as per the 1st Normal form each column must contain
atomic value.

To solve this problem It’s very simple, because all we have to do is break the values into atomic
values.

B.Sc. II YEAR IV SEMESTER

80
Rahul Publications

Rahul Publications

Here is our updated table and it now satisfies the First Normal Form.

C++Bkon102

CBkon102

JavaCkon103

CNAkon101

OSAkon101

subjectnameroll_no

C++Bkon102

CBkon102

JavaCkon103

CNAkon101

OSAkon101

subjectnameroll_no

By doing so, although a few values are getting repeated but values for the subject column are now
atomic for each record/row.

Using the First Normal Form, data redundancy increases, as there will be many columns with same
data in multiple rows but each row as a whole will be unique.

2.2.3 Decomposition using functional dependencies, functional dependency theory,
Decomposition using multi valued dependencies

Q35. What is Functional Dependency ?

Ans :
Functional Dependency is when one attribute determines another attribute in a DBMS system.

Functional Dependency plays a vital role to find the difference between good and bad database design.

Example

Employee number Employee Name Salary City

1. Dana 50000 San Francisco

2. Francis 38000 London

3. Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name, city,
salary, etc.

By this, we can say that the city, Employee Name, and salary are functionally depended on Employee
number.

A functional dependency is denoted by an arrow 

The functional dependency of X on Y is represented by X Y..

Q36. List and explain types of Functional Dependencies ?

Ans : (Imp.)

1. Multivalued dependency

2. Trivial functional dependency

3. Non-trivial functional dependency

4. Transitive dependency

UNIT - II DATABASE MANAGEMENT SYSTEMS

81
Rahul Publications

Rahul Publications

1. Multivalued dependency in DBMS

Multivalued dependency occurs in the
situation where there are multiple independent
multivalued attributes in a single table. A multivalued
dependency is a complete constraint between two
sets of attributes in a relation. It requires that certain
tuples be present in a relation.

Example

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

In this example, maf_year and color are
independent of each other but dependent on
car_model. In this example, these two columns are
said to be multivalue dependent on car_model.

This dependence can be represented like this:

car_model ->maf_year

car_model-> colour

2. Trivial Functional dependency

The Trivial dependency is a set of attributes
which are called a trivial if the set of attributes are
included in that attribute.

So, X -> Y is a trivial functional dependency
if Y is a subset of X.

For example

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Consider this table with two columns Emp_id
and Emp_name.

{Emp_id, Emp_name} ->Emp_id is a trivial
functional dependency as Emp_id is a subset of
{Emp_id,Emp_name}.

3. Non trivial functional dependency in
DBMS

Functional dependency which also known as
a nontrivial dependency occurs when A->B holds
true where B is not a subset of A. In a relationship,
if attribute B is not a subset of attribute A, then it is
considered as a non-trivial dependency.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example

(Company} -> {CEO} (if we know the
Company, we knows the CEO name)

But CEO is not a subset of Company, and
hence it’s non-trivial functional dependency.

4. Transitive dependency

A transitive is a type of functional
dependency which happens when to is indirectly
formed by two functional dependencies.

Example

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

{Company} -> {CEO} (if we know the
company, we know its CEO’s name)

{CEO } -> {Age} If we know the CEO, we
know the Age

Therefore according to the rule of rule of
transitive dependency:

{Company} -> {Age} should hold, that
makes sense because if we know the company
name, we can know his age.

Advantages

 Functional Dependency avoids data
redundancy. Therefore same data do not
repeat at multiple locations in that database

 It helps you to maintain the quality of data in
the database

B.Sc. II YEAR IV SEMESTER

82
Rahul Publications

Rahul Publications

 It helps you to defined meanings and constraints of databases

 It helps you to identify bad designs

 It helps you to find the facts regarding the database design

Q37. Define Decomposition ? What is the use of Decomposition ? Explain its types ?

Ans :

 When a relation in the relational model is not in appropriate normal form then the decomposition
of a relation is required.

 In a database, it breaks the table into multiple tables.

 If the relation has no proper decomposition, then it may lead to problems like loss of information.

 Decomposition is used to eliminate some of the problems of bad design like anomalies, inconsistencies,
and redundancy.

Types of Decomposition

i) Lossless Decomposition

 If the information is not lost from the relation that is decomposed, then the decomposition will be
lossless.

 The lossless decomposition guarantees that the join of relations will result in the same relation as it
was decomposed.

 The relation is said to be lossless decomposition if natural joins of all the decomposition give the
original relation.

Example

EMPLOYEE_DEPARTMENT Table

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

UNIT - II DATABASE MANAGEMENT SYSTEMS

83
Rahul Publications

Rahul Publications

The above relation is decomposed into two relations EMPLOYEE and DEPARTMENT

EMPLOYEE table:

EMP_ID EMP_NAME EMP_AGE EMP_CITY

22 Denim 28 Mumbai

33 Alina 25 Delhi

46 Stephan 30 Bangalore

52 Katherine 36 Mumbai

60 Jack 40 Noida

DEPARTMENT table

DEPT_ID EMP_ID DEPT_NAME

827 22 Sales

438 33 Marketing

869 46 Finance

575 52 Production

678 60 Testing

Now, when these two relations are joined on the common column “EMP_ID”, then the resultant
relation will look like:

Employee 





 Department

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME

22 Denim 28 Mumbai 827 Sales

33 Alina 25 Delhi 438 Marketing

46 Stephan 30 Bangalore 869 Finance

52 Katherine 36 Mumbai 575 Production

60 Jack 40 Noida 678 Testing

Hence, the decomposition is Lossless join decomposition.

ii) Dependency Preservation

 It is an important constraint of the database.

 In the dependency preservation, at least one decomposed table must satisfy every dependency.

 If a relation R is decomposed into relation R1 and R2, then the dependencies of R either must be a
part of R1 or R2 or must be derivable from the combination of functional dependencies of R1 and
R2.

 For example, suppose there is a relation R (A, B, C, D) with functional dependency set (A->BC).
The relational R is decomposed into R1(ABC) and R2(AD) which is dependency preserving because
FD A->BC is a part of relation R1(ABC).

Attribute preservation

This is simple requirement that involves preserving all the attributes that were there in the relation
that is being decomposed.

B.Sc. II YEAR IV SEMESTER

84
Rahul Publications

Rahul Publications

All attributes must be preserved through the process of normalization.

Start with universal relation schema R

R = {A1, A2, A3,, An}, the set of attributes

D is a decomposition of R such that

D = {R1, R2,, Rm} and R = U Ri.

2.2.4 Normal forms - 2NF, 3NF and BCNF

Q38. Explain in detail second Normal Form (2NF)

Ans :
Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example

Suppose a school wants to store the data of teachers and the subjects they teach. They create a
table that looks like this: Since a teacher can teach more than one subjects, the table can have multiple
rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because
non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of candidate
key. This violates the rule for 2NF as the rule says “no non-prime attribute is dependent on the proper
subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

UNIT - II DATABASE MANAGEMENT SYSTEMS

85
Rahul Publications

Rahul Publications

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Q39. Explain in detail Third Normal Form (3NF).

Ans : (Imp.)

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional
dependency X-> Y at least one of the following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example

Suppose a company wants to store the complete address of each employee, they create a table
named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any
candidate keys.

Here, emp_state, emp_city&emp_district dependent on emp_zip. And, emp_zip is dependent on
emp_id that makes non-prime attributes (emp_state, emp_city&emp_district) transitively dependent on
super key (emp_id). This violates the rule of 3NF.

B.Sc. II YEAR IV SEMESTER

86
Rahul Publications

Rahul Publications

To make this table complies with 3NF we have to break the table into two tables to remove the
transitive dependency:

employee table

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Q40. Explain in detail Boycecodd Normal Form (BCNF).

Ans : (Imp.)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF. A
table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X should be the super
key of the table.

Example

Suppose there is a company wherein employees work in more than one department. They store
the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

UNIT - II DATABASE MANAGEMENT SYSTEMS

87
Rahul Publications

Rahul Publications

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys

For first table: emp_id7077777777777777777777777

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key

Q41. List out the advantages and disadvantages of Normalization.

Ans :
Advantages of Normalization

Here we can see why normalization is an attractive prospect in RDBMS concepts.

1. A smaller database can be maintained as normalization eliminates the duplicate data. Overall size of
the database is reduced as a result.

2. Better performance is ensured which can be linked to the above point. As databases become lesser
in size, the passes through the data becomes faster and shorter thereby improving response time
and speed.

3. Narrower tables are possible as normalized tables will be fine-tuned and will have lesser columns
which allows for more data records per page.

B.Sc. II YEAR IV SEMESTER

88
Rahul Publications

Rahul Publications

4. Fewer indexes per table ensures faster maintenance tasks (index rebuilds).

5. Also realizes the option of joining only the tables that are needed.

Disadvantages of Normalization

1. More tables to join as by spreading out data into more tables, the need to join table’s increases and
the task becomes more tedious. The database becomes harder to realize as well.

2. Tables will contain codes rather than real data as the repeated data will be stored as lines of codes
rather than the true data. Therefore, there is always a need to go to the lookup table.

3. Data model becomes extremely difficult to query against as the data model is optimized for
applications, not for ad hoc querying. (Ad hoc query is a query that cannot be determined before
the issuance of the query. It consists of an SQL that is constructed dynamically and is usually constructed
by desktop friendly query tools.). Hence it is hard to model the database without knowing what the
customer desires.

4. As the normal form type progresses, the performance becomes slower and slower.

5. Proper knowledge is required on the various normal forms to execute the normalization process
efficiently. Careless use may lead to terrible design filled with major anomalies and data inconsistency.

2.2.5 The database design methodology for Relational databases.

Q42. Discuss database design methodologies

Ans :
Database Design Methodologies has phases to guide the designer for assistance. The Methodology

has a structured approach to help in the design process.

The following are the phases/ models:

Conceptual Phase

The Conceptual phase lets you know the entities and the relation between them. It describes the
conceptual schema. The entities & relations are defined here.

Logical Phase

Logical data model provides details about the data to the physical phase. The physical process gives
ER Diagram, data dictionary, schema, etc that acts as a source for the physical design process.

Physical Phase

The physical database design allows the designer to decide on how the database will be implemented.

UNIT - II DATABASE MANAGEMENT SYSTEMS

89
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is database design?

Ans :
Meaning

Database design can be generally defined as
a collection of tasks or processes that enhance the
designing, development, implementation, and
maintenance of enterprise data management
system. Designing a proper database reduces the
maintenance cost thereby improving data
consistency and the cost-effective measures are
greatly influenced in terms of disk storage space.
Therefore, there has to be a brilliant concept of
designing a database. The designer should follow
the constraints and decide how the elements
correlate and what kind of data must be stored.

The main objectives behind database
designing are to produce physical and logical design
models of the proposed database system. To
elaborate this, the logical model is primarily
concentrated on the requirements of data and the
considerations must be made in terms of monolithic
considerations and hence the stored physical data
must be stored independent of the physical
conditions. On the other hand, the physical database
design model includes a translation of the logical
design model of the database by keep control of
physical media using hardware resources and
software systems such as Database Management
System (DBMS).

2. What is ER Model ?

Ans :
 ER model stands for an Entity-Relationship

model. It is a high-level data model. This
model is used to define the data elements
and relationship for a specified system.

 It develops a conceptual design for the
database. It also develops a very simple and
easy to design view of data.

 In ER modeling, the database structure is
portrayed as a diagram called an entity-
relationship diagram.

For example

Suppose we design a school database. In this
database, the student will be an entity with attributes
like address, name, id, age, etc. The address can be
another entity with attributes like city, street name,
pin code, etc and there will be a relationship between
them.

Name address

id age

student

3. What is Data Redundancy?

Ans :
Data redundancy occurs in database systems

which have a field that is repeated in two or more
tables. When customer data is duplicated and
attached with each product bought, then
redundancy of data is a known source of
inconsistency, since the entity “customer” might
appear with different values for a given attribute.

Data redundancy leads to data anomalies and
corruption and should be avoided when creating a
relational database consisting of several entities.
Database normalization prevents redundancy and
makes the best possible usage of storage. The proper
use of foreign keys can minimize data redundancy
and reduce the chance of destructive anomalies
appearing. Concerns with respect to the efficiency
and convenience can sometimes result in redundant
data design despite the risk of corrupting the data.

4. How does data redundancy occur?

Ans :
Data redundancy can be designed; for

example, suppose you want to back up your
company’s data nightly. This creates a redundancy.
Data redundancy can also occur by mistake. For

B.Sc. II YEAR IV SEMESTER

90
Rahul Publications

Rahul Publications

example, the database designer who created a
system with a new record for each sale may not
have realized that his design caused the same address
to be entered repeatedly. You may also end up with
redundant data when you store the same
information in multiple systems. For instance,
suppose you store the same basic employee
information in Human Resources records and in
records maintained for your local site office.

5. List out the benefits of ER Diagrams

Ans :
ER diagrams constitute a very useful

framework for creating and manipulating databases.

 First, ER diagrams are easy to understand and
do not require a person to undergo extensive
training to be able to work with it efficiently
and accurately.

 This means that designers can use ER
diagrams to easily communicate with
developers, customers, and end users,
regardless of their IT proficiency.

 Second, ER diagrams are readily translatable
into relational tables which can be used to
quickly build databases. In addition, ER
diagrams can directly be used by database
developers as the blueprint for implementing
data in specific software applications.

 Lastly, ER diagrams may be applied in other
contexts such as describing the different
relationships and operations within an
organization.

6. Explain the concept of Generalization.

Ans :
 Generalization is like a bottom-up approach

in which two or more entities of lower level
combine to form a higher level entity if they
have some attributes in common.

 In generalization, an entity of a higher level
can also combine with the entities of the lower
level to form a further higher level entity.

 Generalization is more like subclass and
superclass system, but the only difference is
the approach. Generalization uses the bottom-
up approach.

 In generalization, entities are combined to
form a more generalized entity, i.e., subclasses
are combined to make a superclass.

For example, Faculty and Student entities
can be generalized and create a higher level entity
Person.

7. Specialization

Ans :
 Specialization is a top-down approach, and

it is opposite to Generalization. In speciali-
zation, one higher level entity can be broken
down into two lower level entities.

 Specialization is used to identify the subset of
an entity set that shares some distinguishing
characteristics.

 Normally, the superclass is defined first, the
subclass and its related attributes are defined
next, and relationship set are then added.

8. Aggregation

Ans :
In aggregation, the relation between two

entities is treated as a single entity. In aggregation,
relationship with its corresponding entities is
aggregated into a higher level entity.

For example

Center entity offers the Course entity act as a
single entity in the relationship which is in a
relationship with another entity visitor. In the real
world, if a visitor visits a coaching center then he
will never enquiry about the Course only or just
about the Center instead he will ask the enquiry
about both.

UNIT - II DATABASE MANAGEMENT SYSTEMS

91
Rahul Publications

Rahul Publications
9. Normalization

Ans :
Database Normalization is a technique of

organizing the data in the database. Normalization
is a systematic approach of decomposing tables to
eliminate data redundancy(repetition) and
undesirable characteristics like Insertion, Update and
Deletion Anomalies. It is a multi-step process that
puts data into tabular form, removing duplicated
data from the relation tables.

Normalization is used for mainly two
purposes:

 Eliminating redundant(useless) data.

 Ensuring data dependencies make sense
i.e data is logically stored.

10. Rules Data Normalization.

Ans :
i) Eliminate Repeating Groups: Make a

separate table for each set of related attributes,
and give each table a primary key.

ii) Eliminate Redundant Data: If an attribute
depends on only part of a multi valued key,
remove it to a separate table.

iii) Eliminate Columns Not Dependent On
Key: If attributes do not contribute to a
description of the key, remove them to a
separate table.

iv) Isolate Independent Multiple Relation-
ships: No table may contain two or more
1:n or n:m relationships that are not directly
related.

v) Isolate Semantically Related Multiple
Relationships: There may be practical
constrains on information that justify
separating logically related many-to-many
relationships.

11. Explain first normal form (1NF) in
detail.

Ans :
The first normal form expects you to follow a

few simple rules while designing your database, and
they are:

Rule 1: Single Valued Attributes

Each column of your table should be single
valued which means they should not contain
multiple values. We will explain this with help of an
example later, let’s see the other rules for now.

Rule 2: Attribute Domain should not change

This is more of a “Common Sense” rule. In
each column the values stored must be of the same
kind or type.

For example: If you have a
column dob to save date of births of a set of people,
then you cannot or you must not save ‘names’ of
some of them in that column along with ‘date of
birth’ of others in that column. It should hold only
‘date of birth’ for all the records/rows.

Rule 3: Unique name for Attributes/Columns

This rule expects that each column in a table
should have a unique name. This is to avoid
confusion at the time of retrieving data or
performing any other operation on the stored data.

If one or more columns have same name, then the
DBMS system will be left confused.

Rule 4: Order doesn’t matters

This rule says that the order in which you
store the data in your table doesn’t matter.

12. What is Functional Dependency ?

Ans :
Functional Dependency is when one attribute

determines another attribute in a DBMS system.
Functional Dependency plays a vital role to find the
difference between good and bad database design.

B.Sc. II YEAR IV SEMESTER

92
Rahul Publications

Rahul Publications

Example

Employee number Employee Name Salary City

1. Dana 50000 San Francisco

2. Francis 38000 London

3. Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name, city,
salary, etc.

By this, we can say that the city, Employee Name, and salary are functionally depended on Employee
number.

A functional dependency is denoted by an arrow 

The functional dependency of X on Y is represented by X Y..

13. Define Decomposition ?

Ans :
 When a relation in the relational model is not in appropriate normal form then the decomposition

of a relation is required.

 In a database, it breaks the table into multiple tables.

 If the relation has no proper decomposition, then it may lead to problems like loss of information.

 Decomposition is used to eliminate some of the problems of bad design like anomalies, inconsistencies,
and redundancy.

14. Explain in detail second Normal Form (2NF)

Ans :
A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example

Suppose a school wants to store the data of teachers and the subjects they teach. They create a
table that looks like this: Since a teacher can teach more than one subjects, the table can have multiple
rows for a same teacher.

teacher_id subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

UNIT - II DATABASE MANAGEMENT SYSTEMS

93
Rahul Publications

Rahul Publications

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because
non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of candidate
key. This violates the rule for 2NF as the rule says “no non-prime attribute is dependent on the proper
subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

15. Explain in detail Third Normal Form (3NF).

Ans :
Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional
dependency X-> Y at least one of the following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example

Suppose a company wants to store the complete address of each employee, they create a table
named employee_details that looks like this:

B.Sc. II YEAR IV SEMESTER

94
Rahul Publications

Rahul Publications

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any
candidate keys.

Here, emp_state, emp_city&emp_district dependent on emp_zip. And, emp_zip is dependent on
emp_id that makes non-prime attributes (emp_state, emp_city&emp_district) transitively dependent on
super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the
transitive dependency:

employee table

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

16. Explain in detail Boycecodd Normal Form (BCNF).

Ans : (Imp.)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF. A
table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X should be the super
key of the table.

Example
Suppose there is a company wherein employees work in more than one department. They store

the data like this:

UNIT - II DATABASE MANAGEMENT SYSTEMS

95
Rahul Publications

Rahul Publications

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies

emp_id ->emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys

For first table: emp_id7077777777777777777777777

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key

B.Sc. II YEAR IV SEMESTER

96
Rahul Publications

Rahul Publications

17. Advantages of Normalization

Ans :
Here we can see why normalization is an attractive prospect in RDBMS concepts.

1. A smaller database can be maintained as normalization eliminates the duplicate data. Overall size of
the database is reduced as a result.

2. Better performance is ensured which can be linked to the above point. As databases become lesser
in size, the passes through the data becomes faster and shorter thereby improving response time
and speed.

3. Narrower tables are possible as normalized tables will be fine-tuned and will have lesser columns
which allows for more data records per page.

4. Fewer indexes per table ensures faster maintenance tasks (index rebuilds).

5. Also realizes the option of joining only the tables that are needed.

18. Disadvantages of Normalization

Ans :
1. More tables to join as by spreading out data into more tables, the need to join table’s increases and

the task becomes more tedious. The database becomes harder to realize as well.

2. Tables will contain codes rather than real data as the repeated data will be stored as lines of codes
rather than the true data. Therefore, there is always a need to go to the lookup table.

3. Data model becomes extremely difficult to query against as the data model is optimized for
applications, not for ad hoc querying. (Ad hoc query is a query that cannot be determined before
the issuance of the query. It consists of an SQL that is constructed dynamically and is usually constructed
by desktop friendly query tools.). Hence it is hard to model the database without knowing what the
customer desires.

4. As the normal form type progresses, the performance becomes slower and slower.

5. Proper knowledge is required on the various normal forms to execute the normalization process
efficiently. Careless use may lead to terrible design filled with major anomalies and data inconsistency.

UNIT - II DATABASE MANAGEMENT SYSTEMS

97
Rahul Publications

Rahul Publications

1. In SQL which command is used to change a table structure [a]

a) Alter table b) Modify table

c) Change table d) All

2. A command that lets you change one or more fields in a records is [b]

a) insert b) modify

c) look-up d) all

3. Which SQL contraints is used to retrive only unique value ? [b]

a) Distinctive b) Unique

c) Distinct b) Different

4. Which SQL command is used to retreive data [c]

a) delete b) insert

c) select d) join

5. The command used to create a database [a]

a) create database b) make user

c) create user d) all

6. operator is used for appending two strings [c]

a) & b) %

c) || d) ~

7. Which is a simple or compound symbol that has special meaning in PL/SQL [a]

a) delimiters b) identifiers

c) literals d) comments

8. Which statement lets us to crate stand alone functions [b]

a) SQL create procedure b) SQL create function

c) a & b d) None

9. Which of the following is used to define code that fire an event. [c]

a) replace b) keywords

c) trigger d) cursor

10. Which of the following are implicit cursor attributes. [b]

a) % found b) % not found

c) % row count d) % row type

Choose the Correct Answers

B.Sc. II YEAR IV SEMESTER

98
Rahul Publications

Rahul Publications

Fill in the blanks

1. SQL is a language for manipulating databases developed by

2. SQL commands are used to interact with

3. All SQL statements start with

4. is also known as nested query..

5. The & operators are used with wehre or having clause.

6. The clause will & evaluate true/false.

7. operator is used to negate a condition.

8. Maximum length of characters datatype is

9. Uniquely identifies each row or column in a database table is

10. is a keyword used to create a table or database.

11. The table alterations are done using command

12. are used in dataware houses to increase the speed of queries.

13. PL/SQL is called as extension of SQL.

14. A is a symbol with special meaning.

15. The result of comparison operator is or .

ANSWERS

1. IBM

2. Databases

3. Keyword

4. Subquery

5. Any, All

6. Exists

7. Not

8. 8,000

9. Primary key

10. Create

11. Alter

12. Mateialised views

13. Procedural language

14. Delimiter

15. True/False

UNIT - III DATABASE MANAGEMENT SYSTEMS

99
Rahul Publications

Rahul Publications

UNIT
III

3.1 INTRODUCTION TO SQL

3.1.1 Over Views of SQL

Q1. What is SQL ?

Ans :
SQL is Structured Query Language, which is

a computer language for storing, manipulating and
retrieving data stored in a relational database.

SQL is the standard language for Relational
Database System. All the Relational Database
Management Systems (RDMS) like MySQL, MS
Access, Oracle, Sybase, Informix, Postgres and SQL
Server use SQL as their standard database language.

Also, they are using different dialects, such
as:

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET
SQL (native format) etc.

IBM developed the original version of SQL,
originally called Sequel, as part of the System R
project in the early 1970s. The Sequel language
has evolved since then, and its name has changed
to SQL (Structured Query Language). Many
products now support the SQL language. SQL has
clearly established itself as the standard relational
database language.

In 1986, the American National Standards
Institute (ANSI) and the International Organization
for Standardization (ISO) published an SQL
standard, called

SQL-86. ANSI published an extended
standard for SQL, SQL-89, in 1989. The next

version of the standard was SQL-92 standard,
followed by SQL:1999, SQL:2003, SQL:2006,
and most recently SQL:2008. The bibliographic
notes provide references to these standards.

The SQL language has several parts:

Data definition language (DDL)

The SQL DDL provides commands for
defining relation schemas, deleting relations, and
modifying relation schemas.

Data manipulation language (DML)

The SQL DML provides the ability to query
information from the database and to insert tuples
into, delete tuples from, and modify tuples in the
database.

Integrity

The SQL DDL includes commands for
specifying integrity constraints that the data stored
in the database must satisfy. Updates that violate
integrity constraints are disallowed.

View definition

The SQL DDL includes commands for
defining views.

Transaction control

SQL includes commands for specifying the
beginning and ending of transactions.

Embedded SQL and dynamic SQL

Embedded and dynamic SQL define how
SQL statements can be embedded within general-
purpose programming languages, such as C, C++,
and Java.

Authorization

The SQL DDL includes commands for
specifying access rights to relations and views.

Introduction to SQL: Overview of the SQL Query Language, SQL Data
Definition, Basic Structure of SQL Queries, Additional Basic Operations, Set
Operations, Null Values, Aggregate Functions, Nested Subqueries, Modification
of the Database.
Intermediate SQL: Join Expressions, Views, Transactions, Integrity Constraints,
SQL Data Types and Schemas, Authorization.
Advanced SQL: Accessing SQL from a Programming Language, Functions
and Procedures, Triggers, Recursive Queries.

B.Sc. II YEAR IV SEMESTER

100
Rahul Publications

Rahul Publications

Q2. What are the advantages of SQL ?

Ans :
SQL is widely popular because it offers the

following advantages:

 Allows users to access data in the relational
database management systems.

 Allows users to describe the data.

 Allows users to define the data in a database
and manipulate that data.

 Allows to embed within other languages using
SQL modules, libraries & pre-compilers.

 Allows users to create and drop databases
and tables.

 Allows users to create view, stored procedure,
functions in a database.

 Allows users to set permissions on tables,
procedures and views.

Q3. Explain briefly about SQL Process.

Ans :
When we are executing an SQL command

for any RDBMS, the system determines the best
way to carry out your request and SQL engine
figures out how to interpret the task.

There are various components included in
this process.

These components are:

 Query Dispatcher

 Optimization Engines

 Classic Query Engine

 SQL Query Engine, etc.

A classic query engine handles all the non-
SQL queries, but a SQL query engine won’t handle
logical files.

Following is a simple diagram showing the
SQL Architecture:

SQL Query

Query Language
Processor

DBMS
Engine

Physical
Database

Parser + Optimizer

File Manager
+

Transaction Manager

3.1.2 SQL Data definition

Q4. List and explain basic data types
supported by SQL ?

Ans :

The data type of a column defines what value
the column can hold: integer, character, money, date

and time, binary, and so on.

SQL Data Types

Each column in a database table is required

to have a name and a data type.

An SQL developer must decide what type of

data that will be stored inside each column when

creating a table. The data type is a guideline for
SQL to understand what type of data is expected

inside of each column, and it also identifies how

SQL will interact with the stored data.

MySQL Data Types

In MySQL there are three main data types:

1. Text data types

2. Number data types

3. Date data types

UNIT - III DATABASE MANAGEMENT SYSTEMS

101
Rahul Publications

Rahul Publications

1. Text data types

Data type Description

CHAR(size) Holds a fixed length string (can contain letters, numbers, and special
characters). The fixed size is specified in parenthesis. Can store up to 255
characters

VARCHAR(size) Holds a variable length string (can contain letters, numbers, and special
characters). The maximum size is specified in parenthesis. Can store up to
255 characters. Note: If you put a greater value than 255 it will be
converted to a TEXT type

TINYTEXT Holds a string with a maximum length of 255 characters

TEXT Holds a string with a maximum length of 65,535 characters

BLOB For BLOBs (Binary Large Objects). Holds up to 65,535 bytes of data

MEDIUMTEXT Holds a string with a maximum length of 16,777,215 characters

MEDIUMBLOB For BLOBs (Binary Large OBjects). Holds up to 16,777,215 bytes of
data

LONGTEXT Holds a string with a maximum length of 4,294,967,295 characters

LONGBLOB For BLOBs (Binary Large OBjects). Holds up to 4,294,967,295 bytes of
data

ENUM(x,y,z,etc.) Let you enter a list of possible values. You can list up to 65535 values in
an ENUM list. If a value is inserted that is not in the list, a blank value will
be inserted.

Note:

The values are sorted in the order you enter them.

You enter the possible values in this format: ENUM(‘X’,’Y’,’Z’)

SET Similar to ENUM except that SET may contain up to 64 list items and can
store more than one choice

2. Number data types

Data type Description

TINYINT(size) -128 to 127 normal. 0 to 255 UNSIGNED*. The maximum number of
digits may be specified in parenthesis

SMALLINT(size) -32768 to 32767 normal. 0 to 65535 UNSIGNED*. The maximum
number of digits may be specified in parenthesis

MEDIUMINT(size) -8388608 to 8388607 normal. 0 to 16777215 UNSIGNED*. The
maximum number of digits may be specified in parenthesis

INT(size) -2147483648 to 2147483647 normal. 0 to 4294967295 UNSIGNED*.
The maximum number of digits may be specified in parenthesis

BIGINT(size) -9223372036854775808 to 9223372036854775807 normal. 0 to
18446744073709551615 UNSIGNED*. The maximum number of digits
may be specified in parenthesis

FLOAT(size,d) A small number with a floating decimal point. The maximum number of
digits may be specified in the size parameter. The maximum number of
digits to the right of the decimal point is specified in the d parameter

B.Sc. II YEAR IV SEMESTER

102
Rahul Publications

Rahul Publications

DOUBLE(size,d) A large number with a floating decimal point. The maximum number of
digits may be specified in the size parameter. The maximum number of
digits to the right of the decimal point is specified in the d parameter

DECIMAL(size,d) A DOUBLE stored as a string, allowing for a fixed decimal point. The
maximum number of digits may be specified in the size parameter. The
maximum number of digits to the right of the decimal point is specified in
the d parameter

*The integer types have an extra option called UNSIGNED. Normally, the integer goes from an
negative to positive value. Adding the UNSIGNED attribute will move that range up so it starts at zero
instead of a negative number.

3. Date data types

Data type Description

DATE() A date. Format: YYYY-MM-DDNote: The supported range is from ‘1000-
01-01’ to ‘9999-12-31’

DATETIME() *A date and time combination. Format: YYYY-MM-DD HH:MI:SSNote:
The supported range is from ‘1000-01-01 00:00:00’ to ‘9999-12-31
23:59:59’

TIMESTAMP() *A timestamp. TIMESTAMP values are stored as the number of seconds
since the Unix epoch (‘1970-01-01 00:00:00’ UTC). Format: YYYY-MM-
DD HH:MI:SSNote: The supported range is from ‘1970-01-01 00:00:01’
UTC to ‘2038-01-09 03:14:07’ UTC

TIME() A time. Format: HH:MI:SSNote: The supported range is from ‘-838:59:59’
to ‘838:59:59’

YEAR() A year in two-digit or four-digit format. Note: Values allowed in four-digit
format: 1901 to 2155. Values allowed in two-digit format: 70 to 69,
representing years from 1970 to 2069

*Even if DATETIME and TIMESTAMP return the same format, they work very differently. In an
INSERT or UPDATE query, the TIMESTAMP automatically set itself to the current date and time.
TIMESTAMP also accepts various formats, like YYYYMMDDHHMISS, YYMMDDHHMISS, YYYYMMDD,
or YYMMDD.

Q5. What is an operator in SQL ? Explain the various types of an SQL ?

Ans : (Imp.)

An operator is a reserved word or a character used primarily in an SQL statement’s WHERE clause
to perform operation(s), such as comparisons and arithmetic operations. These Operators are used to
specify conditions in an SQL statement and to serve as conjunctions for multiple conditions in a statement.

1. Arithmetic operators

2. Comparison operators

3. Logical operators

4. Operators used to negate conditions

1. Arithmetic Operators

Assume ‘variable a’ holds 10 and ‘variable b’ holds 20, then

UNIT - III DATABASE MANAGEMENT SYSTEMS

103
Rahul Publications

Rahul Publications

Operator Description Example

+ (Addition) Adds values on either side of the operator. a + b will give 30

- (Subtraction) Subtracts right hand operand from left hand operand. a - b will give -10

* (Multiplication) Multiplies values on either side of the operator. a * b will give 200

/ (Division) Divides left hand operand by right hand operand. b / a will give 2

% (Modulus) Divides left hand operand by right hand operand b % a will give 0
and returns remainder.

2. Comparison Operators

Assume ‘variable a’ holds 10 and ‘variable b’ holds 20, then

Operator Description Example

= Checks if the values of two operands are equal (a = b) is not true.
or not, if yes then condition becomes true.

!= Checks if the values of two operands are equal (a != b) is true.
or not, if values are not equal then condition
becomes true.

<> Checks if the values of two operands are equal (a <> b) is true.
or not, if values are not equal then condition
becomes true.

> Checks if the value of left operand is greater (a > b) is not true.
than the value of right operand, if yes then
condition becomes true.

< Checks if the value of left operand is less than (a < b) is true.
the value of right operand, if yes then condition
becomes true.

>= Checks if the value of left operand is greater than (a >= b) is not true.
or equal to the value of right operand, if yes then
condition becomes true.

<= Checks if the value of left operand is less than or (a <= b) is true.
equal to the value of right operand, if yes then
condition becomes true.

!< Checks if the value of left operand is not less than (a !< b) is false.
the value of right operand, if yes then condition
becomes true.

!> Checks if the value of left operand is not greater (a !> b) is true.
than the value of right operand, if yes then condition
becomes true.

B.Sc. II YEAR IV SEMESTER

104
Rahul Publications

Rahul Publications

SQL Logical Operators

Here is a list of all the logical operators available in SQL.

Sr. No. Operator Description

1 ALL The ALL operator is used to compare a value to all values in another
value set.

2 AND The AND operator allows the existence of multiple conditions in an SQL
statement’s WHERE clause.

3 ANY The ANY operator is used to compare a value to any applicable value in
the list as per the condition.

4 BETWEEN The BETWEEN operator is used to search for values that are within a set

of values, given the minimum value and the maximum value.

5 EXISTS The EXISTS operator is used to search for the presence of a row in a

specified table that meets a certain criterion.

6 IN The IN operator is used to compare a value to a list of literal values that

have been specified.

7 LIKE The LIKE operator is used to compare a value to similar values using

wildcard operators.

8 NOT The NOT operator reverses the meaning of the logical operator with which

it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a
negate operator.

9 OR The OR operator is used to combine multiple conditions in an SQL
statement’s WHERE clause.

10 IS NULL The NULL operator is used to compare a value with a NULL value.

11 UNIQUE The UNIQUE operator searches every row of a specified table for uniqueness
(no duplicates).

Q6. List out various types of SQL Commands.

Ans : (Imp.)

 SQL commands are instructions. It is used to communicate with the database. It is also used to
perform specific tasks, functions, and queries of data.

 SQL can perform various tasks like create a table, add data to tables, drop the table, modify the

table, set permission for users.

Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL, and DQL.

UNIT - III DATABASE MANAGEMENT SYSTEMS

105
Rahul Publications

Rahul Publications
1. Data Definition Language (DDL)

 DDL changes the structure of the table like creating a table, deleting a table, altering a table,
etc.

 All the command of DDL are auto-committed that means it permanently save all the changes
in the database.

Here are some commands that come under DDL:

(a) CREATE

(b) ALTER

(c) DROP

(d) TRUNCATE

(a) CREATE: It is used to create a new table in the database.

Syntax

1. CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);

Example

1. CREATE TABLE EMPLOYEE (Name VARCHAR2(20), Email VARCHAR2(100), DOB
DATE);

(b) DROP: It is used to delete both the structure and record stored in the table.

Syntax

1. DROP TABLE table_name;

Example

1. DROP TABLE EMPLOYEE;

(c) ALTER: It is used to alter the structure of the database. This change could be either to modify
the characteristics of an existing attribute or probably to add a new attribute.

Syntax
To add a new column in the table

1. ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify existing column in the table:

1. ALTER TABLE table_name MODIFY(column_definitions....);

B.Sc. II YEAR IV SEMESTER

106
Rahul Publications

Rahul Publications

Example

1. ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20));

2. ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

(d) TRUNCATE: It is used to delete all the rows from the table and free the space containing the
table.

Syntax

1. TRUNCATE TABLE table_name;

Example

1. TRUNCATE TABLE EMPLOYEE;

2. Data Manipulation Language

 DML commands are used to modify the database. It is responsible for all form of changes in
the database.

 The command of DML is not auto-committed that means it can’t permanently save all the
changes in the database. They can be rollback.

Here are some commands that come under DML:

(a) INSERT

(b) UPDATE

(c) DELETE

(a) INSERT: The INSERT statement is a SQL query. It is used to insert data into the row of a
table.

Syntax

1. INSERT INTO TABLE_NAME

2. (col1, col2, col3,.... col N)

3. VALUES (value1, value2, value3, valueN);

(OR)

1. INSERT INTO TABLE_NAME

2. VALUES (value1, value2, value3, valueN);

For example

1. INSERT INTO javatpoint (Author, Subject) VALUES (“Sonoo”, ”DBMS”);

(b) UPDATE: This command is used to update or modify the value of a column in the table.

Syntax

1. UPDATE table_name SET [column_name1= value1,...column_nameN = valueN]
[WHERE CONDITION]

For example

1. UPDATE students

2. SET User_Name = ’Sonoo’

3. WHERE Student_Id = ’3'

UNIT - III DATABASE MANAGEMENT SYSTEMS

107
Rahul Publications

Rahul Publications

(c) DELETE: It is used to remove one or more row from a table.

Syntax

1. DELETE FROM table_name [WHERE condition];

For example

1. DELETE FROM javatpoint

2. WHERE Author=”Sonoo”;

3. Data Control Language

DCL commands are used to grant and take back authority from any database user.

Here are some commands that come under DCL:

(a) Grant

(b) Revoke

(a) Grant: It is used to give user access privileges to a database.

Example

1. GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

(b) Revoke: It is used to take back permissions from the user.

Example

1. REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

4. Transaction Control Language

TCL commands can only use with DML commands like INSERT, DELETE and UPDATE only.

These operations are automatically committed in the database that’s why they cannot be used
while creating tables or dropping them.

Here are some commands that come under TCL:

(a) COMMIT

(b) ROLLBACK

(c) SAVEPOINT

(a) Commit: Commit command is used to save all the transactions to the database.

Syntax

1. COMMIT;

Example

1. DELETE FROM CUSTOMERS

2. WHERE AGE = 25;

3. COMMIT;

B.Sc. II YEAR IV SEMESTER

108
Rahul Publications

Rahul Publications

(b) Rollback: Rollback command is used to undo transactions that have not already been saved
to the database.

Syntax

1. ROLLBACK;

Example

1. DELETE FROM CUSTOMERS

2. WHERE AGE = 25;

3. ROLLBACK;

(c) SAVEPOINT: It is used to roll the transaction back to a certain point without rolling back the
entire transaction.

Syntax

1. SAVEPOINT SAVEPOINT_NAME;

5. Data Query Language

DQL is used to fetch the data from the database.

It uses only one command:

(a) SELECT: This is the same as the projection operation of relational algebra. It is used to select
the attribute based on the condition described by WHERE clause.

Syntax

1. SELECT expressions

2. FROM TABLES

3. WHERE conditions;

For example

1. SELECT emp_name

2. FROM employee

3. WHERE age > 20;

Q7. Describe in detail about DDL commands in SQL ?

Ans :
Data definition language commands are used to create , Modify and delete the structure of the

object in the database. The syntax of the DDL command definitely includes a table keyword after the
command name.

All DDL command are given below;

1. Create

2. Describe

3. Alter

4. Rename

5. Truncate and

6. Drop

UNIT - III DATABASE MANAGEMENT SYSTEMS

109
Rahul Publications

Rahul Publications

1. CREATE

Creating a basic table involves naming the
table and defining its columns and each column’s
data type.

The SQL CREATE TABLE statement is used
to create a new table.

Syntax

The basic syntax of the CREATE TABLE
statement is as follows:

CREATE TABLE table_name(

column1 datatype,

column2 datatype,

column3 datatype,

.....

columnN datatype,

PRIMARY KEY(one or more columns)

);

CREATE TABLE is the keyword telling the
database system what you want to do. In this case,
you want to create a new table. The unique name
or identifier for the table follows the CREATE
TABLE statement.

Then in brackets comes the list defining each
column in the table and what sort of data type it is.
The syntax becomes clearer with the following
example.

A copy of an existing table can be created
using a combination of the CREATE TABLE
statement and the SELECT statement.

Example

CREATE TABLE Employee

(

Emp id number(5),

name varchar(20),

salary number(10),

);

2. Describe

As the name suggests, DESCRIBE is used to
describe something. Since in database we have
tables, that’s why we use DESCRIBE or DESC
(both are same) command to describe the structure
of a table.

Syntax

DESCRIBE employee;

OR

DESC employee;

Then for the above we will get sample output
as

Empid varchar(5)

Name varchar(20)

Salary number(10)

3. ALTER

The SQL ALTER TABLE command is used
to add, delete or modify columns in an existing
table. You should also use the ALTER TABLE
command to add and drop various constraints on
an existing table.

Syntax

The basic syntax of an ALTER TABLE com-
mand to add a New Column in an existing table is
as follows.

ALTER TABLE table_name ADD column_
name datatype;

The basic syntax of an ALTER TABLE
command to DROP COLUMN in an existing table
is as follows.

ALTER TABLE table_name DROP COLUMN
column_name;

The basic syntax of an ALTER TABLE
command to change the DATA TYPE of a column
in a table is as follows.

ALTER TABLE table_name MODIFY
COLUMN column_name datatype;

The basic syntax of an ALTER TABLE
command to add a NOT NULL constraint to a
column in a table is as follows.

B.Sc. II YEAR IV SEMESTER

110
Rahul Publications

Rahul Publications

ALTER TABLE table_name MODIFY column _name datatype NOT NULL;

The basic syntax of ALTER TABLE to ADD UNIQUE CONSTRAINT to a table is as follows.

ALTER TABLE table_name

ADD CONSTRAINT MyUniqueConstraint UNIQUE(column1, column2...);

The basic syntax of an ALTER TABLE command to ADD CHECK CONSTRAINT to a table is as
follows.

ALTER TABLE table_name

ADD CONSTRAINT MyUniqueConstraint CHECK (CONDITION);

The basic syntax of an ALTER TABLE command to ADD PRIMARY KEY constraint to a table is as
follows.

ALTER TABLE table_name

ADD CONSTRAINT MyPrimaryKey PRIMARY KEY (column1, column2...);

The basic syntax of an ALTER TABLE command to DROP CONSTRAINT from a table is as
follows.

ALTER TABLE table_name

DROP CONSTRAINT MyUniqueConstraint;

If you’re using MySQL, the code is as follows “

ALTER TABLE table_name

DROP INDEX MyUniqueConstraint;

The basic syntax of an ALTER TABLE command to DROP PRIMARY KEY constraint from a table
is as follows.

ALTER TABLE table_name

DROP CONSTRAINT MyPrimaryKey;

If you’re using MySQL, the code is as follows “

ALTER TABLE table_name

DROP PRIMARY KEY;

Example

Consider the CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 1000.00

UNIT - III DATABASE MANAGEMENT SYSTEMS

111
Rahul Publications

Rahul Publications

Following is the example to ADD a New Column to an existing table “

ALTER TABLE CUSTOMERS ADD SEX char(1);

Now, the CUSTOMERS table is changed and following would be output from the SELECT statement.

ID NAME AGE ADDRESS SALARY SEX

1 Ramesh 32 Ahmedabad 2000.00 NULL

2 Ramesh 25 Delhi 1500.00 NULL

3 Kaushik 23 Kota 2000.00 NULL

4 Kaushik 25 Mumbai 6500.00 NULL

5 Hardik 27 Bhopal 8500.00 NULL

6 Komal 22 MP 4500.00 NULL

7 Muffy 24 Indore 10000.00 NULL

Following is the example to DROP sex column from the existing table.

ALTER TABLE CUSTOMERS DROP SEX;

Now, the CUSTOMERS table is changed and following would be the output from the SELECT
statement.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Ramesh 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Kaushik 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

4. DROP

The SQL DROP TABLE statement is used to remove a table definition and all the data, indexes,
triggers, constraints and permission specifications for that table.

NOTE

You should be very careful while using this command because once a table is deleted then all the
information available in that table will also be lost forever.

Syntax

The basic syntax of this DROP TABLE statement is as follows:

DROP TABLE table_name;

Example

Let us first verify the CUSTOMERS table and then we will delete it from the database as shown
below:

SQL> DESC CUSTOMERS;

B.Sc. II YEAR IV SEMESTER

112
Rahul Publications

Rahul Publications

Field Type Null Key Default Extra

ID int(11) NO PRI |||

NAME varchar(20) NO ||||

AGE int(11) NO ||||

ADDRESS char(25) YES NULL ||

SALARY decimal(18,2) YES NULL ||

5 rows inset(0.00 sec)

This means that the CUSTOMERS table is available in the database, so let us now drop it as shown
below.

SQL> DROP TABLE CUSTOMERS;

Query OK,0 rows affected (0.01 sec)

Now, if you would try the DESC command, then you will get the following error “

SQL> DESC CUSTOMERS;

OUTPUT

ERROR 1146(42S02):Table’TEST.CUSTOMERS’ doesn’t exist

5. TRUNCATE

The SQL TRUNCATE TABLE command is used to delete complete data from an existing table.

You can also use DROP TABLE command to delete complete table but it would remove complete
table structure form the database and you would need to re-create this table once again if you wish you
store some data.

Syntax

The basic syntax of a TRUNCATE TABLE command is as follows.

TRUNCATE TABLE table_name;

Example

Consider a CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Following is the example of a Truncate command.
SQL > TRUNCATE TABLE CUSTOMERS;

UNIT - III DATABASE MANAGEMENT SYSTEMS

113
Rahul Publications

Rahul Publications

Now, the CUSTOMERS table is truncated and the output from SELECT statement will be as shown
in the code block below:

SQL> SELECT * FROM CUSTOMERS;

OUTPUT:

Empty set (0.00 sec)

6. RENAME

SQL RENAME Statement

With RENAME statement you can rename a table.

Syntax for SQL RENAME is:

RENAME TABLE {tbl_name} TO {new_tbl_name};

Where {tbl_name} table that exists in the current database, and {new_tbl_name} is new
table name.

ALTER TABLE {tbl_name} RENAME TO {new_tbl_name};

As Example

CREATE TABLE employees

(id NUMBER(6), name VARCHAR(20)

);

INSERT INTO employees(id, name) values(1, ‘name 1’);

INSERT INTO employees(id, name) values(2, ‘name 2’);

INSERT INTO employees(id, name) values(3, ‘name 3’);

SELECT * FROM employees;

SELECT Output

id Name

1 name 1

2 name 2

3 name 3

RENAME TABLE employees TO employees_new;

SELECT * FROM employees_new;

SELECT Output

id Name

1 name 1

2 name 2

3 name 3

B.Sc. II YEAR IV SEMESTER

114
Rahul Publications

Rahul Publications

Q8. Explain in detail about DML commands ?

Ans :
DML(Data Manipulation Language)

The SQL commands that deals with the manipulation of data present in database belong to DML or
Data Manipulation Language and this includes most of the SQL statements.

Examples of DML

 SELECT is used to retrieve data from the a database.

 INSERT is used to insert data into a table.

 UPDATE is used to update existing data within a table.

 DELETE is used to delete records from a database table.

1. INSERT

The SQL INSERT INTO Statement is used to add new rows of data to a table in the database.

Syntax

There are two basic syntaxes of the INSERT INTO statement which are shown below.

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)

VALUES (value1, value2, value3,...valueN);

Here, column1, column2, column3,...columnN are the names of the columns in the table into
which you want to insert the data.

You may not need to specify the column(s) name in the SQL query if you are adding values for all
the columns of the table. But make sure the order of the values is in the same order as the columns
in the table.

The SQL INSERT INTO syntax will be as follows:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example

The following statements would create six records in the CUSTOMERS table.

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1,’Ramesh’,32,’Ahmedabad’,2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2,’Khilan’,25,’Delhi’,1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3,’kaushik’,23,’Kota’,2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4,’Chaitali’,25,’Mumbai’,6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5,’Hardik’,27,’Bhopal’,8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6,’Komal’,22,’MP’,4500.00);

UNIT - III DATABASE MANAGEMENT SYSTEMS

115
Rahul Publications

Rahul Publications

You can create a record in the CUSTOMERS table by using the second syntax as shown below.

INSERT INTO CUSTOMERS

VALUES (7, ‘Muffy’, 24, ‘Indore’, 10000.00);

All the above statements would produce the following records in the CUSTOMERS table as shown
below.

ID NAME AGE ADDRESS SALARY

1. Ramesh 32 Ahmedabad 2000.00

2. Khilan 25 Delhi 1500.00

3. Kaushik 23 Kota 2000.00

4. Chaitali 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

2. SELECT

The SQL SELECT statement is used to fetch the data from a database table which returns this data
in the form of a result table. These result tables are called result-sets.

Syntax

The basic syntax of the SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2... are the fields of a table whose values you want to fetch. If you want to
fetch all the fields available in the field, then you can use the following syntax.

SELECT * FROM table_name;

Example

Consider the CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

The following code is an example, which would fetch the ID, Name and Salary fields of the customers
available in CUSTOMERS table.

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

B.Sc. II YEAR IV SEMESTER

116
Rahul Publications

Rahul Publications

This would produce the following result:

ID NAME SALARY

1 Ramesh 2000.00

2 Khilan 1500.00

3 Kaushik 2000.00

4 Chaitali 6500.00

5 Hardik 8500.00

6 Komal 4500.00

7 Muffy 10000.00

If you want to fetch all the fields of the CUSTOMERS table, then you should use the following
query.

SQL> SELECT * FROM CUSTOMERS;

This would produce the result as shown below.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

3. UPDATE

He SQL UPDATE Query is used to modify the existing records in a table. You can use the WHERE
clause with the UPDATE query to update the selected rows, otherwise all the rows would be affected.

Syntax

The basic syntax of the UPDATE query with a WHERE clause is as follows “

UPDATE table_name

SET column1 = value1, column2 = value2...., columnN = valueN

WHERE [condition];

You can combine N number of conditions using the AND or the OR operators.

UNIT - III DATABASE MANAGEMENT SYSTEMS

117
Rahul Publications

Rahul Publications

Example

Consider the CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

The following query will update the ADDRESS for a customer whose ID number is 6 in the table.

SQL> UPDATE CUSTOMERS

SET ADDRESS =’Pune’

WHERE ID =6;

Now, the CUSTOMERS table would have the following records :

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

If you want to modify all the ADDRESS and the SALARY column values in the CUSTOMERS table,
you do not need to use the WHERE clause as the UPDATE query would be enough as shown in the
following code block.

SQL> UPDATE CUSTOMERS

SET ADDRESS =’Pune’, SALARY =1000.00;

Now, CUSTOMERS table would have the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Pune 1000.00
2 Khilan 25 Pune 1000.00
3 Kaushik 23 Pune 1000.00
4 Chaitali 25 Pune 1000.00
5 Hardik 27 Pune 1000.00
6 Komal 22 Pune 1000.00
7 Muffy 24 Pune 1000.00

B.Sc. II YEAR IV SEMESTER

118
Rahul Publications

Rahul Publications

DELETE

The SQL DELETE Query is used to delete the existing records from a table.

You can use the WHERE clause with a DELETE query to delete the selected rows, otherwise all the
records would be deleted.

Syntax

The basic syntax of the DELETE query with the WHERE clause is as follows “

DELETE FROM table_name

WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example

Consider the CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

The following code has a query, which will DELETE a customer, whose ID is 6.

SQL> DELETE FROM CUSTOMERS

WHERE ID =6;

Now, the CUSTOMERS table would have the following records.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

If you want to DELETE all the records from the CUSTOMERS table, you do not need to use the
WHERE clause and the DELETE query would be as follows “

SQL> DELETE FROM CUSTOMERS;

Now, the CUSTOMERS table would not have any record.

UNIT - III DATABASE MANAGEMENT SYSTEMS

119
Rahul Publications

Rahul Publications

Q9. Explain in detail about DCL Commands

Ans : (Imp.)

Data Control Language(DCL) is used to control privileges in Database. To perform any operation in
the database, such as for creating tables, sequences or views, a user needs privileges. Privileges are of two
types,

 System: This includes permissions for creating session, table, etc and all types of other system
privileges.

 Object: This includes permissions for any command or query to perform any operation on the
database tables.

In DCL we have two commands,

1. GRANT: Used to provide any user access privileges or other privileges for the database.

2. REVOKE: Used to take back permissions from any user.

1. GRANT COMMAND

 GRANT command gives user’s access privileges to the database.

 This command allows specified users to perform specific tasks.

Syntax:

GRANT <privilege list>

ON <relation name or view name>

TO <user/role list>;

Example : GRANT Command

GRANT ALL ON employee

TO ABC;

[WITH GRANT OPTION]

In the above example, user ‘ABC’ has been given permission to view and modify the records in the
‘employee’ table.

2. REVOKE COMMAND

 REVOKE command is used to cancel previously granted or denied permissions.

 This command withdraw access privileges given with the GRANT command.

 It takes back permissions from user.

Syntax:

REVOKE <privilege list>

ON <relation name or view name>

FROM <user name>;

Example : REVOKE Command

REVOKE UPDATE

ON employee

FROM ABC;

B.Sc. II YEAR IV SEMESTER

120
Rahul Publications

Rahul Publications

Q10. What are the differences between grant and revoke

Ans :
 GRANT REVOKE

GRANT command allows a user to perform REVOKE command disallows a user to per-
certain activities on the database. form certain activities.

It grants access privileges for database objects It revokes access privileges for database
to other users. objects previously granted to other users.

Example: Example:

GRANT privilege_name REVOKE privilege_name

ON object_name ON object_name

TO FROM

{ {

user_name|PUBLIC|role_name user_name|PUBLIC|role_name

} }

[WITH GRANT OPTION];

3.1.3 Basic structure of SQL Queries

Q11. What is the basic structure of SQL commands.

Ans :
A relational database is a collection of tables. Each table has its own unique name.

The basic structure of an SQL expression consists of three clauses:

 The select clause which corresponds to the projection operation. It is the list of attributes that will
appear in the resulting table.

 The from clause which corresponds to the Cartesian-product operation. It is the list of tables that
will be joined in the resulting table.

 The where clause which corresponds to the selection operation. It is the expression that controls
the which rows appear in the resulting table.

A typical SQL query has the form of:

select A1, A2, ..., An

from r1, r2, ..., rn,

where P

The query is the equivalent to the relational algebra expression

pA1, A2, ..., An (P(r1 C r2 C ... C rn))

The select Clause

Formal query languages are based on the mathematical notion of a relation being a set. Duplicate
tuples never appear in relations. In practice, duplicate elimination is relatively time consuming. SQL allows
duplicates in relations as well as the results of SQL expressions.

UNIT - III DATABASE MANAGEMENT SYSTEMS

121
Rahul Publications

Rahul Publications

In those cases where we want to force the elimination of duplicates, we insert the keyword distinct
after select. The default is to retain duplicates. This can be explicitly required with the keyword all.

The asterisk symbol “*” can be used in place of listing all the attributes.

The clause can also contain arithmetic expressions involving the operators +, -, *, and /.

A dot notation is used when explicitly identifying the table that the attribute comes
from: borrower.loan-number

The from Clause

The from clause defines a Cartesian product of the tables in the clause.

The where Clause

SQL uses and, or and not (not symbols) and the comparison operators <, <=, >, >=, = , and
<>. Also available is between:

where amount between 90000 and 100000

Additional, not between can be used.

The rename Operation

SQL uses the as clause:

old_name as new_name

You can do pattern matching on strings, using like and special characters:

 % which matching any substring>/li>

 _which matches any single character

 escape which allows you override another character:

 like “ab\%cd%” escape “\” which matches any strong that starts with “ab\cd”

Ordering the Display of Tuples

SQL uses the order by clause to control the order of the display of rows, either ascending (asc)
or descending (desc):

order by amount desc

Sorting a large number of tuples may be costly and its use should be limited.

Q12. How to use expressions in the WHERE Clause?

Ans :
Expressions can also be used in the WHERE clause of the SELECT statement.

For example:

Lets consider the employee table. If you want to display employee name, current salary, and a 20%
increase in the salary for only those products where the percentage increase in salary is greater than
30000, the SELECT statement can be written as shown below

SELECT name, salary, salary*1.2 AS new_salary FROM employee

WHERE salary*1.2 > 30000;

B.Sc. II YEAR IV SEMESTER

122
Rahul Publications

Rahul Publications

Output

name salary new_salary

Hrithik 35000 37000

Harsha 35000 37000

Priya 30000 360000

Q13. What is the use of Group by clause in
SQL ?

Ans :
SQL GROUP BY Clause

The SQL GROUP BY Clause is used along
with the group functions to retrieve data grouped
according to one or more columns.

For Example: If you want to know the total
amount of salary spent on each department, the
query would be:

SELECT dept, SUM (salary)

FROM employee

GROUP BY dept;

The output would be like:

dept salary

Electrical 25000

Electronics 55000

Aeronautics 35000

InfoTech 30000

Note:

The group by clause should contain all the
columns in the select list expect those used along
with the group functions.

SELECT location, dept, SUM (salary)

FROM employee

GROUP BY location, dept;

The output would be like:

location dept salary

Bangalore Electrical 25000

Bangalore Electronics 55000

Mysore Aeronautics 35000

Mangalore InfoTech 30000

Q14. What is the use of Having clause in SQL?

Ans :
SQL HAVING Clause

Having clause is used to filter data based on
the group functions. This is similar to WHERE
condition but is used with group functions. Group
functions cannot be used in WHERE Clause but
can be used in HAVING clause.

SQL HAVING Clause Example

If you want to select the department that has
total salary paid for its employees more than 25000,
the sql query would be like;

SELECT dept, SUM (salary)

FROM employee

GROUP BY dept

HAVING SUM (salary) > 25000

The output would be like:

dept salary

Electronics 55000

Aeronautics 35000

InfoTech 30000

When WHERE, GROUP BY and HAVING
clauses are used together in a SELECT statement,
the WHERE clause is processed first, then the rows
that are returned after the WHERE clause is
executed are grouped based on the GROUP BY
clause.

Finally, any conditions on the group functions
in the HAVING clause are applied to the grouped
rows before the final output is displayed.

3.1.4 Additional basic operations

Q15. Explain the use of as clause in SQL.

Ans : (Imp.)

 SQL ‘AS’ is used to assign a new name
temporarily to a table column or even a table.

 It makes an easy presentation of query results
and allows the developer to label results more
accurately without permanently renaming
table columns or even the table itself.

 Let’s see the syntax of select as:

UNIT - III DATABASE MANAGEMENT SYSTEMS

123
Rahul Publications

Rahul Publications

1. SELECT Column_Name1 AS New_Column_Name, Column_Name2 As New_Column_Name
FROM Table_Name;

Here, the Column_Name is the name of a column in the original table, and the New_Column_Name
is the name assigned to a particular column only for that specific query. This means that
New_Column_Name is a temporary name that will be assigned to a query.

Assigning a temporary name to the column of a table:

Let us take a table named orders, and it contains the following data:

Day_of_order Customer Product Quantity

11-09-2001 Ajeet Mobile 2

13-12-2001 Mayank Laptop 20

26-12-2004 Balaswamy Water cannon 35

Example:

Suppose you want to rename the ‘day_of_order’ column and the ‘customer’ column as ‘Date’ and
‘Client’, respectively.

Query:

1. SELECT day_of_order AS ‘Date’, Customer As ’Client’, Product, Quantity FROM
orders;

The result will be shown as this table:

Day_of_order Customer Product Quantity

11-09-2001 Ajeet Mobile 2

13-12-2001 Mayank Laptop 20

26-12-2004 Balaswamy Water cannon 35

From the above results, we can see that temporarily the ‘Day_of_order’ is renamed as ‘date’
and ‘customer’ is renamed as ‘client’.

Let us take another example. Consider we have a students table with the following data.

9421Surat8657983476FemaleSnehal Jain5

9224Chennai8890907656FemaleAnupama Shah4

8922Ahemdabad9908743576MaleKartik Goenka3

9220Chandigarh7789056784MaleKunal Shah2

7523Lucknow9890786123MaleRohit More1

Student_
Percentage

Student_
Age

Student_Home
Town

Student_Mobile
Number

Student_
Gender

Student_
Name

Student_
RollNo

9421Surat8657983476FemaleSnehal Jain5

9224Chennai8890907656FemaleAnupama Shah4

8922Ahemdabad9908743576MaleKartik Goenka3

9220Chandigarh7789056784MaleKunal Shah2

7523Lucknow9890786123MaleRohit More1

Student_
Percentage

Student_
Age

Student_Home
Town

Student_Mobile
Number

Student_
Gender

Student_
Name

Student_
RollNo

Example 1
Write a query to get the student name and the average of the percentage of the student under the

temporary column name ‘Student’ and ‘Student_Percentage’, respectively.
Query:
1. SELECT Student_Name AS Student, AVG (Student_Percentage) AS Average_Percentage FROM

students;

B.Sc. II YEAR IV SEMESTER

124
Rahul Publications

Rahul Publications

Here, to calculate the average, we have used AVG () function. Further, the calculated average
value of the percentage will be stored under the temporary name ‘Average_Percentage’.

The result will be shown as this table:

Student Average_Percentage

Rohit More 88.4000

Example 2

Write a query to get the student roll number and the student mobile number under the temporary
column name ‘Roll No’ and ‘Mobile Number’, respectively.

Query

1. mysql> SELECT Student_RollNo AS ’Roll No’, Student_PhoneNumber AS ’Mobile Number’
FROM students;

The result will be shown as this table:

Roll No Mobile Number

1 9890786123

2 7789056784

3 9908743576

4 8890907656

5 8657983476

Q16. What is the use of Rename command in SQL ?

Ans :
In some situations, database administrators and users want to change the name of the table in the

SQL database because they want to give a more relevant name to the table.
Any database user can easily change the name by using the RENAME TABLE and ALTER TABLE

statement in Structured Query Language.
The RENAME TABLE and ALTER TABLE syntax help in changing the name of the table.
Syntax of RENAME statement in SQL

1. RENAME old_table _name To new_table_name;
Examples of RENAME statement in SQL
Here, we have taken the following two different SQL examples, which will help you how to change
the name of the SQL table in the database using RENAME statement:
Example 1: Let’s take an example of a table named Cars:

Car Name Car Color Car Cost

Hyundai Creta White 10,85,000

Hyundai Venue White 9,50,000

Hyundai i20 Red 9,00,000

Kia Sonet White 10,00,000

Kia Seltos Black 8,00,000

Swift Dezire Red 7,95,000

UNIT - III DATABASE MANAGEMENT SYSTEMS

125
Rahul Publications

Rahul Publications

Table: Cars

 Suppose, you want to change the above table name into “Car_2021_Details”. For this, you have to
type the following RENAME statement in SQL:

1. RENAME Cars To Car_2021_Details ;

 After this statement, the table “Cars” will be changed into table name “Car_2021_Details”.

Q17. What are the basic string operations of SQL ?

Ans :
The string operators in SQL are used to perform important operations such as pattern matching,

concatenation, etc. where pattern matching is performed by using the wildcard characters such as ‘%’ and
‘_’ in concurrence with the Like operator to search for the specific patterns in strings and by the usage of
concatenation operation one or more strings or columns of the tables can be combined together.

The concatenation of strings, as well as pattern matching, can be performed by using the below
operators in SQL. Let us look at a few examples.

1. Concatenation Operator

The concatenation operation is used to combine character strings, columns of a table or it can also
be used for the combination of column and strings.

In the below example, we can see that the two strings ‘Hello’ and ‘World!’ are combined by using
the ‘+’ in between the string values.

SELECT ‘Hello’ + ‘World!’ AS StringConcatenated;

The above statement gives the below result where both the strings are combined and the same is
displayed in the output.

In the below statement, it can be seen that the two strings are concatenated along with space in
between.

SELECT ‘Hello’ + ‘ ‘ + ‘World!’ AS StringConcatenated;

In the result below, the concatenation is performed where both the strings ‘Hello’ and ‘World!’ are
combined along with a space in between them.

In the above examples, we could see that the concatenation operation is performed and ‘+’ is used
along with the strings to combine strings as well as space between the strings values. The concatenation
can be performed on the columns of the table also.

B.Sc. II YEAR IV SEMESTER

126
Rahul Publications

Rahul Publications

Let us take the example of the table “STUDENTS” as shown below.

select * from STUDENTS;

In the below example, the columns FIRSTNAME and LASTNAME of the table “STUDENTS” are
combined with space in between the columns.

SELECT FIRSTNAME + ‘ ‘ + LASTNAME AS ConcatenatedName FROM STUDENTS;

In the below result, we can see that the FIRSTNAME and LASTNAME and the space in between
them are concatenated.

2. Like Operator

This operator is used to decide if the specific character string matches the specific pattern where the
pattern can be a regular or wildcard character. While pattern matching, the regular characters should
match exactly with the specific characters of the string but when we want to match the arbitrary fragments
of the string, wildcard characters can be used.

Let us take the example of the below query.

SELECT * FROM STUDENTS WHERE FIRSTNAME=’Preety’;

The result of the above query is as shown below.

Here if we need to retrieve the details of the STUDENT Preeti, we need to remember the complete
FIRSTNAME. In some other cases it might occur that it is not possible to remember the FIRSTNAME
easily and in such cases the usage of pattern matching is helpful so that the retrieval of the data is possible
even with a partial match of the student’s first name. The usage of Like in the below query will check if the
data value in the column matches with the specific pattern. Here the pattern may also include the wildcard
characters. The wildcard character used in the below query is % and any sequence of zero or more
characters are matched by %.

UNIT - III DATABASE MANAGEMENT SYSTEMS

127
Rahul Publications

Rahul Publications

So the previous query is now altered as below with the usage of Like along with the wildcard
character.

SELECT * FROM STUDENTS WHERE FIRSTNAME LIKE ‘p%’;

In the above query, the FIRSTNAME column is compared with the pattern ‘p%’ and then it finds
the Student name which starts with ‘p’ as shown below.

In the below query, it can be seen that the wildcard character % is used before ‘j’ and this will find
the values which end with ‘j’.

SELECT * FROM STUDENTS WHERE FIRSTNAME LIKE ‘%j’;

The result of the above statement below shows the output of the Student name which ends with ‘j’.

3.1.5 Set Operations

Q18. List and explain various set operations of SQL.

Ans : (Imp.)

SQL supports few Set operations which can be performed on the table data. These are used to get
meaningful results from data stored in the table, under different special conditions.

In this tutorial, we will cover 4 different types of SET operations, along with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

1. Union

 The SQL Union operation is used to combine the result of two or more SQL SELECT queries.

 In the union operation, all the number of datatype and columns must be same in both the
tables on which UNION operation is being applied.

 The union operation eliminates the duplicate rows from its resultset.

Syntax

1. SELECT column_name FROM table1

2. UNION

3. SELECT column_name FROM table2;

B.Sc. II YEAR IV SEMESTER

128
Rahul Publications

Rahul Publications

Example:

The First table

ID NAME

1 Jack

2 Harry

3 Jackson

The Second table

ID NAME

3 Jackson

4 Stephan

5 David

Union SQL query will be:

1. SELECT * FROM First

2. UNION

3. SELECT * FROM Second;

The resultset table will look like:

ID NAME

1 Jack

2 Harry

3 Jackson

4 Stephan

5 David

2. Union All

Union All operation is equal to the Union
operation. It returns the set without removing
duplication and sorting the data.

Syntax:

1. SELECT column_name FROM table1

2. UNION ALL

3. SELECT column_name FROM table2;

Example: Using the above First and Second table.

Union All query will be like:

1. SELECT * FROM First

2. UNION ALL

3. SELECT * FROM Second;

The resultset table will look like:

ID NAME

1 Jack

2 Harry

3 Jackson

3 Jackson

4 Stephan

5 David

3. Intersect

 It is used to combine two SELECT statements.
The Intersect operation returns the common
rows from both the SELECT statements.

 In the Intersect operation, the number of
datatype and columns must be the same.

 It has no duplicates and it arranges the data
in ascending order by default.

Syntax

1. SELECT column_name FROM table1

2. INTERSECT

3. SELECT column_name FROM table2;

Example:

Using the above First and Second table.

Intersect query will be:

1. SELECT * FROM First

2. INTERSECT

3. SELECT * FROM Second;

The resultset table will look like:

ID NAME

3 Jackson

4. Minus

 It combines the result of two SELECT
statements. Minus operator is used to display
the rows which are present in the first query
but absent in the second query.

 It has no duplicates and data arranged in
ascending order by default.

UNIT - III DATABASE MANAGEMENT SYSTEMS

129
Rahul Publications

Rahul Publications

Syntax:

1. SELECT column_name FROM table1

2. MINUS

3. SELECT column_name FROM table2;

Example

Using the above First and Second table.

Minus query will be:

1. SELECT * FROM First

2. MINUS

3. SELECT * FROM Second;

The resultset table will look like:

ID NAME

1 Jack

2 Harry

3.1.6 Null values

Q19. What is the use of Null values?

Ans :
The SQL NULL is the term used to represent a missing value. A NULL value in a table is a value

in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL
value is different than a zero value or a field that contains spaces.

Syntax

The basic syntax of NULL while creating a table.

SQL> CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25),

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit value of the given data
type. There are two columns where we did not use NOT NULL, which means these columns could be
NULL.

A field with a NULL value is the one that has been left blank during the record creation.

B.Sc. II YEAR IV SEMESTER

130
Rahul Publications

Rahul Publications

Example

The NULL value can cause problems when selecting data. However, because when comparing an
unknown value to any other value, the result is always unknown and not included in the results. You must
use the IS NULL or IS NOT NULL operators to check for a NULL value.

Consider the following CUSTOMERS table having the records as shown below.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

Now, following is the usage of the IS NOT NULLoperator.

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS

WHERE SALARY IS NOT NULL;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5. Hardik 27 Bhopal 8500.00

Now, following is the usage of the IS NULL operator.

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS

WHERE SALARY IS NULL;

This would produce the following result:

ID NAME AGE ADDRESS SALARY

6. Komal 22 MP 4500.00

7. Muffy 24 Indore 10000.00

UNIT - III DATABASE MANAGEMENT SYSTEMS

131
Rahul Publications

Rahul Publications

3.1.7 Aggregate functions

Q20. Explain the concept of various aggregate functions.

Ans : (Imp.)

SQL aggregation function is used to perform the calculations on multiple rows of a single column of
a table. It returns a single value.

Aggregate operators (functions) improves the data retrieval property of SQL statement. These
operators enables the users to summarize the data retrieved from the relations. Basically, the aggregate
operators takes the entire column of data as its argument and generates a result set that summarizes the
column. The following are the different aggregate operators supported by SQL.

It is also used to summarize the data.
Types of SQL Aggregation Function

1. Count Function
 COUNT function is used to Count the number of rows in a database table. It can work on

both numeric and non-numeric data types.
 COUNT function uses the COUNT(*) that returns the count of all the rows in a specified table.

COUNT(*) considers duplicate and Null.
Syntax

COUNT(*)
or

COUNT([ALL|DISTINCT] expression)
Sample table
PRODUCT_MAST

PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20

Item2 Com2 3 25 75
Item3 Com1 2 30 60

Item4 Com3 5 10 50

Item5 Com2 2 20 40
Item6 Cpm1 3 25 75

Item7 Com1 5 30 150

Item8 Com1 3 10 30
Item9 Com2 2 25 50

Item10 Com3 4 30 120

B.Sc. II YEAR IV SEMESTER

132
Rahul Publications

Rahul Publications

Example: COUNT()

SELECT COUNT(*)

FROM PRODUCT_MAST;

Output:

10

Example: COUNT with WHERE

SELECT COUNT(*)

FROM PRODUCT_MAST;

WHERE RATE>=20;

Output:

7

Example: COUNT() with DISTINCT

SELECT COUNT(DISTINCT COMPANY)

FROM PRODUCT_MAST;

Output:

3

Example: COUNT() with GROUP BY

SELECT COMPANY, COUNT(*)

FROM PRODUCT_MAST

GROUP BY COMPANY;

Output:

Com1 5

Com2 3

Com3 2

Example: COUNT() with HAVING

SELECT COMPANY, COUNT(*)

FROM PRODUCT_MAST

GROUP BY COMPANY

HAVING COUNT(*)>2;

Output:

Com1 5

Com2 3

2. SUM Function

Sum function is used to calculate the sum of
all selected columns. It works on numeric fields only.

Syntax

SUM()

or

SUM([ALL|DISTINCT] expression)

Example: SUM()

SELECT SUM(COST)

FROM PRODUCT_MAST;

Output

670

Example: SUM() with WHERE

SELECT SUM(COST)

FROM PRODUCT_MAST

WHERE QTY>3;

Output:

320

Example: SUM() with GROUP BY

SELECT SUM(COST)

FROM PRODUCT_MAST

WHERE QTY>3

GROUP BY COMPANY;

Output:

Com1 150

Com2 170

Example: SUM() with HAVING

SELECT COMPANY, SUM(COST)

FROM PRODUCT_MAST

GROUP BY COMPANY

HAVING SUM(COST)>=170;

Output:

Com1 335

Com3 170

3. AVG function

The AVG function is used to calculate the
average value of the numeric type. AVG function
returns the average of all non-Null values.

UNIT - III DATABASE MANAGEMENT SYSTEMS

133
Rahul Publications

Rahul Publications

Syntax

AVG()

or

AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST)

FROM PRODUCT_MAST;

Output:

67.00

4. MAX Function

MAX function is used to find the maximum
value of a certain column. This function determines
the largest value of all selected values of a column.

Syntax

MAX()

or

MAX([ALL|DISTINCT] expression)

Example:

SELECT MAX(RATE)

FROM PRODUCT_MAST;

30

5. MIN Function

MIN function is used to find the minimum
value of a certain column. This function determines
the smallest value of all selected values of a column.

Syntax

MIN()

or

MIN([ALL|DISTINCT] expression)

Example:

SELECT MIN(RATE)

FROM PRODUCT_MAST;

Output:

10

3.1.8 Nested subqueries

Q21. What is the nested sub query in SQL ?

(OR)

How many Subqueries can be nested in
SQL?

Ans :
A Subquery or Inner query or a Nested query

is a query within another SQL query and embedded
within the WHERE clause.

A subquery is used to return data that will be
used in the main query as a condition to further
restrict the data to be retrieved.

Subqueries can be used with the SELECT,
INSERT, UPDATE, and DELETE statements along
with the operators like =, <, >, >=, <=, IN,
BETWEEN, etc.

There are a few rules that subqueries must
follow:

 A subquery can be placed in a number of
SQL clauses like WHERE clause, FROM
clause, HAVING clause.

 You can use Subquery with SELECT,
UPDATE, INSERT, DELETE statements along
with the operators like =, <, >, >=, <=,
IN, BETWEEN, etc.

 A subquery is a query within another query.
The outer query is known as the main query,
and the inner query is known as a subquery.

 Subqueries are on the right side of the
comparison operator.

 A subquery is enclosed in parentheses.

 In the Subquery, ORDER BY command
cannot be used. But GROUP BY command
can be used to perform the same function as
ORDER BY command.

1. Subqueries with the Select Statement

SQL subqueries are most frequently used with
the Select statement.

Syntax

Exception Handling in Java - Javatpoint

1. SELECT column_name

B.Sc. II YEAR IV SEMESTER

134
Rahul Publications

Rahul Publications

2. FROM table_name

3. WHERE column_name expression operator

4. (SELECT column_name from table_name WHERE ...);

Example

Consider the EMPLOYEE table have the following records:

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

6 Harry 42 China 4500.00

7 Jackson 25 Mizoram 10000.00

The subquery with a SELECT statement will be:

1. SELECT *

2. FROM EMPLOYEE

3. WHERE ID IN (SELECT ID

4. FROM EMPLOYEE

5. WHERE SALARY>4500);

This would produce the following result:

ID NAME AGE ADDRESS SALARY

4 Alina 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

7 Jackson 25 Mizoram 10000.00

2. Subqueries with the INSERT Statement

 SQL subquery can also be used with the Insert statement. In the insert statement, data returned
from the subquery is used to insert into another table.

 In the subquery, the selected data can be modified with any of the character, date functions.

Syntax

1. INSERT INTO table_name (column1, column2, column3....)

2. SELECT

3. FROM table_name

4. WHERE VALUE OPERATOR

UNIT - III DATABASE MANAGEMENT SYSTEMS

135
Rahul Publications

Rahul Publications

Example

Consider a table EMPLOYEE_BKP with similar as EMPLOYEE.

Now use the following syntax to copy the complete EMPLOYEE table into the EMPLOYEE_BKP
table.

1. INSERT INTO EMPLOYEE_BKP

2. SELECT * FROM EMPLOYEE

3. WHERE ID IN (SELECT ID

4. FROM EMPLOYEE);

3. Subqueries with the UPDATE Statement

The subquery of SQL can be used in conjunction with the Update statement. When a subquery is
used with the Update statement, then either single or multiple columns in a table can be updated.

Syntax

1. UPDATE table

2. SET column_name = new_value

3. WHERE VALUE OPERATOR

4. (SELECT COLUMN_NAME

5. FROM TABLE_NAME

6. WHERE condition);

Example

Let’s assume we have an EMPLOYEE_BKP table available which is backup of EMPLOYEE table.
The given example updates the SALARY by .25 times in the EMPLOYEE table for all employee
whose AGE is greater than or equal to 29.

1. UPDATE EMPLOYEE

2. SET SALARY = SALARY * 0.25

3. WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

4. WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 1625.00

5 Kathrin 34 Bangalore 2125.00

6 Harry 42 China 1125.00

7 Jackson 25 Mizoram 10000.00

B.Sc. II YEAR IV SEMESTER

136
Rahul Publications

Rahul Publications

4. Subqueries with the DELETE Statement

The subquery of SQL can be used in conjunction with the Delete statement just like any other
statements mentioned above.

Syntax

1. DELETE FROM TABLE_NAME

2. WHERE VALUE OPERATOR

3. (SELECT COLUMN_NAME

4. FROM TABLE_NAME

5. WHERE condition);

Example

Let’s assume we have an EMPLOYEE_BKP table available which is backup of EMPLOYEE table.
The given example deletes the records from the EMPLOYEE table for all EMPLOYEE whose AGE
is greater than or equal to 29.

1. DELETE FROM EMPLOYEE

2. WHERE AGE IN (SELECT AGE FROM EMPLOYEE_BKP

3. WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

7 Jackson 25 Mizoram 10000.00

3.1.9 Modification of the database

Q22. How can we modify the database using SQL ?

Ans :
The SQL commands (UPDATE and DELETE) are used to modify the data that is already in the

database. The SQL DELETE command uses a WHERE clause.

SQL UPDATE statement is used to change the data of the records held by tables. Which rows is to
be update, it is decided by a condition. To specify condition, we use WHERE clause.

The UPDATE statement can be written in following form:

UPDATE table_name SET [column_name1= value1,... column_nameN = valueN] [WHERE
condition]

Syntax

UPDATE table_name

SET column_name = expression

WHERE conditions

UNIT - III DATABASE MANAGEMENT SYSTEMS

137
Rahul Publications

Rahul Publications

Example:

Below is a selection from the “Customers” table in the Northwind sample database:

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds snabbköp5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución
2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

Germany12209BerlinObere Str. 57Maria AndersAlfreds Futterkiste1

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds snabbköp5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución
2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

Germany12209BerlinObere Str. 57Maria AndersAlfreds Futterkiste1

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

UPDATE Table

The following SQL statement updates the first customer (CustomerID = 1) with a new contact
person and a new city.

Example

UPDATE Customers

SET ContactName = ’Alfred Schmidt’, City= ’Frankfurt’

WHERE CustomerID = 1;

Try it Yourself

The selection from the “Customers” table will now look like this:

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds snabbköp5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución
2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

Germany12209FrankfurtObere Str. 57Alfred SchmidtAlfreds Futterkiste1

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds snabbköp5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución
2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

Germany12209FrankfurtObere Str. 57Alfred SchmidtAlfreds Futterkiste1

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

Delete statement

The DELETE statement is used to delete existing records in a table.

Syntax

DELETE FROM table_name WHERE condition;

The following SQL statement deletes the customer “Alfreds Futterkiste” from the “Customers”
table:

Example

DELETE FROM Customers WHERE CustomerName=’Alfreds Futterkiste’;

B.Sc. II YEAR IV SEMESTER

138
Rahul Publications

Rahul Publications

The “Customers” table will now look like this:

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds
snabbköp

5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución 2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

SwedenS-958 22LuleåBerguvsvägen 8Christina
Berglund

Berglunds
snabbköp

5

UKWA1 1DPLondon120 Hanover Sq.Thomas HardyAround the Horn4

Mexico05023México D.F.Mataderos 2312Antonio MorenoAntonio Moreno
Taquería

3

Mexico05021México D.F.Avda. de la
Constitución 2222

Ana TrujilloAna Trujillo
Emparedados y
helados

2

CountryPostalCodeCityAddressContactNameCustomerNameCustomerID

3.2 INTERMEDIATE SQL

3.2.1 Join Expressions

Q23. What is Join? List out various types of joins supported by SQL?

Ans : (Imp.)

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN
is a means for combining fields from two tables by using values common to each.

a Consider the following two tables:

Table 1: CUSTOMERS Table

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: ORDERS Table

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-0800:00:00 3 3000

100 2009-10-0800:00:00 3 1500

101 2009-11-2000:00:00 2 1560

103 2008-05-2000:00:00 4 2060

Now, let us join these two tables in our SELECT statement as shown below.

SQL> SELECT ID, NAME, AGE, AMOUNT

FROM CUSTOMERS, ORDERS

WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

UNIT - III DATABASE MANAGEMENT SYSTEMS

139
Rahul Publications

Rahul Publications

This would produce the following result.

ID NAME AGE AMOUNT

3 Kaushik 23 3000

 3 Kaushik 23 1500

 2 Khilan 25 1560

4 Chaitali 25 2060

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be
used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used
to join tables. However, the most common operator is the equal to symbol.

There are different types of joins available in SQL “

 INNER JOIN: returns rows when there is a match in both tables.

 LEFT JOIN: returns all rows from the left table, even if there are no matches in the right table.

 RIGHT JOIN: returns all rows from the right table, even if there are no matches in the left table.

 FULL JOIN: returns rows when there is a match in one of the tables.

 SELF JOIN: is used to join a table to itself as if the table were two tables, temporarily renaming at
least one table in the SQL statement.

 CARTESIAN JOIN: returns the Cartesian product of the sets of records from the two or more
joined tables.

Q24. Explain inner join concept with an example.

Ans : (Imp.)

The most important and frequently used of the joins is the INNER JOIN. They are also referred to
as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables (table1 and
table2) based upon the join-predicate. The query compares each row of table1 with each row of table2 to
find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, column values
for each matched pair of rows of A and B are combined into a result row.

Syntax

The basic syntax of the INNER JOIN is as follows.

SELECT table1.column1, table2.column2...

FROM table1

INNER JOIN table2

ON table1.common_field = table2.common_field;

Example

Consider the following two tables.

B.Sc. II YEAR IV SEMESTER

140
Rahul Publications

Rahul Publications

Table 1: CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: ORDERS Table is as follows.

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-0800:00:00 3 3000

100 2009-10-0800:00:00 3 1500

101 2009-11-2000:00:00 2 1560

103 2008-05-2000:00:00 4 2060

Now, let us join these two tables using the INNER JOIN as follows

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

INNER JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result.

ID NAME AMOUNT DATE

3 Kaushik 3000 2009-10-0800:00:00

 3 Kaushik 1500 2009-10-0800:00:00

 2 Khilan 1560 2009-11-2000:00:00

4 Chaitali 2060 2008-05-2000:00:00

Q25. What is Left Join explain with an example.

Ans : (Imp.)

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the right
table. This means that if the ON clause matches 0 (zero) records in the right table; the join will still return
a row in the result, but with NULL in each column from the right table.

This means that a left join returns all the values from the left table, plus matched values from the
right table or NULL in case of no matching join predicate.

Syntax

The basic syntax of a LEFT JOIN is as follows.

UNIT - III DATABASE MANAGEMENT SYSTEMS

141
Rahul Publications

Rahul Publications

SELECT table1.column1, table2.column2...
FROM table1
LEFT JOIN table2
ON table1.common_field = table2.common_field;
Here, the given condition could be any given expression based on your requirement.

Example
Consider the following two tables,

Table 1: CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: Orders Table is as follows.

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-0800:00:00 3 3000

100 2009-10-0800:00:00 3 1500

101 2009-11-2000:00:00 2 1560

103 2008-05-2000:00:00 4 2060

Now, let us join these two tables using the LEFT JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS
LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result:

ID NAME AMOUNT DATE

3 Kaushik 3000 2009-10-0800:00:00

3 Kaushik 1500 2009-10-0800:00:00

2 Khilan 1560 2009-11-2000:00:00

4 Chaitali 2060 2008-05-2000:00:00

5 Hardik NULL NULL

6 Komal NULL NULL

7 Muffy NULL NULL

B.Sc. II YEAR IV SEMESTER

142
Rahul Publications

Rahul Publications

Q26. What is Right Join? Explain with an example.

Ans :
The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches in the

left table. This means that if the ON clause matches 0 (zero) records in the left table; the join will still return
a row in the result, but with NULL in each column from the left table.

This means that a right join returns all the values from the right table, plus matched values from the
left table or NULL in case of no matching join predicate.

Syntax

The basic syntax of a RIGHT JOIN is as follow.

SELECT table1.column1, table2.column2...

FROM table1

RIGHT JOIN table2

ON table1.common_field = table2.common_field;

Example

Consider the following two tables,

Table 1: CUSTOMERS Table is as follows

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: ORDERS Table is as follows.

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-0800:00:00 3 3000

100 2009-10-0800:00:00 3 1500

101 2009-11-2000:00:00 2 1560

103 2008-05-2000:00:00 4 2060

Now, let us join these two tables using the RIGHT JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

UNIT - III DATABASE MANAGEMENT SYSTEMS

143
Rahul Publications

Rahul Publications

This would produce the following result:

ID NAME AMOUNT DATE

3 Kaushik 3000 2009-10-0800:00:00

3 Kaushik 1500 2009-10-0800:00:00

2 Khilan 1560 2009-11-2000:00:00

4 Chaitali 2060 2008-05-2000:00:00

Q27. What is Full join ? Explain with an example.

Ans :
The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both the tables and fill in NULLs for missing matches
on either side.

Syntax

The basic syntax of a FULL JOIN is as follows “

SELECT table1.column1, table2.column2...

FROM table1

FULL JOIN table2

ON table1.common_field = table2.common_field;

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables.

Table 1: CUSTOMERS Table is as follows

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Table 2: ORDERS Table is as follows

OID DATE CUSTOMER_ID AMOUNT

102 2009-10-0800:00:00 3 3000

100 2009-10-0800:00:00 3 1500

101 2009-11-2000:00:00 2 1560

103 2008-05-2000:00:00 4 2060

B.Sc. II YEAR IV SEMESTER

144
Rahul Publications

Rahul Publications

Now, let us join these two tables using FULL JOIN as follows.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

FULL JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

This would produce the following result:

ID NAME AMOUNT DATE

1 Ramesh NULL NULL

2 Khilan 1560 2009-11-200 0:00:00

3 Kaushik 3000 2009-10-080 0:00:00

3 Kaushik 1500 2009-10-080 0:00:00

4 Chaitali 2060 2008-05-200 0:00:00

5 Hardik NULL NULL

6 Komal NULL NULL

7 Muffy NULL NULL

3 Kaushik 3000 2009-10-080 0:00:00

3 Kaushik 1500 2009-10-080 0:00:00

2 Khilan 1560 2009-11-200 0:00:00

4 Chaitali 2060 2008-05-200 0:00:00

If your Database does not support FULL JOIN (MySQL does not support FULL JOIN), then you
can use UNION ALL clause to combine these two JOINS as shown below.

SQL> SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

LEFT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

UNION ALL

SELECT ID, NAME, AMOUNT, DATE

FROM CUSTOMERS

RIGHT JOIN ORDERS

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID

Q28. What is self join ? Explain with an example?

Ans :
The SQL SELF JOIN is used to join a table to itself as if the table were two tables; temporarily

renaming at least one table in the SQL statement.

UNIT - III DATABASE MANAGEMENT SYSTEMS

145
Rahul Publications

Rahul Publications

Syntax

The basic syntax of SELF JOIN is as follows:

SELECT a.column_name, b.column_name...

FROM table1 a, table1 b

WHERE a.common_field = b.common_
field;

Here, the WHERE clause could be any given
expression based on your requirement.

Example

Consider the following table.

CUSTOMERS Table is as follows.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Now, let us join this table using SELF JOIN
as follows:

SQL> SELECT a.ID, b.NAME, a.SALARY
FROM CUSTOMERS a, CUSTOMERS b
WHERE a.SALARY < b.SALARY;
This would produce the following result:

ID NAME SALARY

2 Ramesh 1500.00

2 Kaushik 1500.00

1 Chaitali 2000.00

2 Chaitali 1500.00

3 Chaitali 2000.00

6 Chaitali 4500.00

1 Hardik 2000.00

2 Hardik 1500.00

3 Hardik 2000.00

4 Hardik 6500.00

6 Hardik 4500.00

1 Komal 2000.00

2 Komal 1500.00

3 Komal 2000.00

1 Muffy 2000.00

2 Muffy 1500.00

3 Muffy 2000.00

4 Muffy 6500.00

5 Muffy 8500.00

6 Muffy 4500.00

3.2.2 Views

Q29. What is mean by view in SQL? Explain
the process of creating, updating and
dropping a view ?

Ans : (Imp.)

A view is nothing more than a SQL statement
that is stored in the database with an associated
name. A view is actually a composition of a table in
the form of a predefined SQL query.

A view can contain all rows of a table or select
rows from a table. A view can be created from one
or many tables which depends on the written SQL
query to create a view.

Views, which are a type of virtual tables allow
users to do the following:

 Structure data in a way that users or classes
of users find natural or intuitive.

 Restrict access to the data in such a way that
a user can see and (sometimes) modify
exactly what they need and no more.

 Summarize data from various tables which
can be used to generate reports.

Creating Views

Database views are created using the
CREATE VIEW statement. Views can be created
from a single table, multiple tables or another view.

To create a view, a user must have the
appropriate system privilege according to the specific
implementation.

B.Sc. II YEAR IV SEMESTER

146
Rahul Publications

Rahul Publications

The basic CREATE VIEW syntax is as
follows:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your
SELECT statement in a similar way as you use them
in a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the
following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Following is an example to create a view from
the CUSTOMERS table. This view would be used
to have customer name and age from the
CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW
AS

SELECT name, age

FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in
a similar way as you query an actual table. Following
is an example for the same.

SQL > SELECT * FROM CUSTOMERS_
VIEW;

This would produce the following result.

name age

Ramesh 32

Khilan 25

Kaushik 23

Chaitali 25

Hardik 27

Komal 22

Muffy 24

The WITH CHECK OPTION

The with check option is a create view state-
ment option. The purpose of the with check option
is to ensure that all Update and Inserts satisfy the
condition(s) in the view definition.

If they do not satisfy the condition(s), the
UPDATE or INSERT returns an error.

The following code block has an example of
creating same view CUSTOMERS_VIEW with the
WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age
FROM CUSTOMERS
WHERE age IS NOT NULL

WITH CHECK OPTION;

The WITH CHECK OPTION in this case
should deny the entry of any NULL values in the
view’s AGE column, because the view is defined by
data that does not have a NULL value in the AGE
column.

Updating a View

A view can be updated under certain
conditions which are given below:

 The SELECT clause may not contain the
keyword DISTINCT.

 The SELECT clause may not contain
summary functions.

 The SELECT clause may not contain set
functions.

 The SELECT clause may not contain set
operators.

UNIT - III DATABASE MANAGEMENT SYSTEMS

147
Rahul Publications

Rahul Publications

 The SELECT clause may not contain an
ORDER BY clause.

 The FROM clause may not contain multiple
tables.

 The WHERE clause may not contain
subqueries.

 The query may not contain GROUP BY or
HAVING.

 Calculated columns may not be updated.

 All NOT NULL columns from the base table
must be included in the view in order for the
INSERT query to function.

So, if a view satisfies all the above-mentioned
rules then you can update that view. The following
code block has an example to update the age of
Ramesh.

SQL > UPDATE CUSTOMERS_VIEW

SET AGE =35
WHERE name =’Ramesh’;

This would ultimately update the base table
CUSTOMERS and the same would reflect in the
view itself. Now, try to query the base table and the
SELECT statement would produce the following
result.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Inserting Rows into a View

Rows of data can be inserted into a view. The
same rules that apply to the UPDATE command
also apply to the INSERT command.

Here, we cannot insert rows in the
CUSTOMERS _VIEW because we have not included
all the NOT NULL columns in this view, otherwise
you can insert rows in a view in a similar way as you
insert them in a table.

Deleting Rows into a View

Rows of data can be deleted from a view.
The same rules that apply to the UPDATE and
INSERT commands apply to the DELETE
command.

Following is an example to delete a record
having AGE = 22.

SQL>DELETE FROM CUSTOMERS _VIEW

WHERE age =22;

This would ultimately delete a row from the
base table CUSTOMERS and the same would reflect
in the view itself. Now, try to query the base table
and the SELECT statement would produce the
following result.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

7 Muffy 24 Indore 10000.00

Dropping Views

Obviously, where you have a view, you need
a way to drop the view if it is no longer needed.
The syntax is very simple and is given below:

DROP VIEW view_name;

Following is an example to drop the
CUSTOMERS_VIEW from the CUSTOMERS table.

DROP VIEW CUSTOMERS_VIEW;

3.2.3 Transactions

Q30. What is transaction? Explain the
properties of transaction ?

Ans : (Imp.)

A transaction is a unit of work that is
performed against a database. Transactions are units
or sequences of work accomplished in a logical
order, whether in a manual fashion by a user or
automatically by some sort of a database program.

B.Sc. II YEAR IV SEMESTER

148
Rahul Publications

Rahul Publications

A transaction is the propagation of one or
more changes to the database. For example, if you
are creating a record or updating a record or deleting
a record from the table, then you are performing a
transaction on that table. It is important to control
these transactions to ensure the data integrity and
to handle database errors.

Practically, you will club many SQL queries
into a group and you will execute all of them
together as a part of a transaction.
Properties of Transactions

Transactions have the following four standard
properties, usually referred to by the acronym
ACID.
 Atomicity: Ensures that all operations within

the work unit are completed successfully.
Otherwise, the transaction is aborted at the
point of failure and all the previous operations
are rolled back to their former state.

 Consistency: Ensures that the database
properly changes states upon a successfully
committed transaction.

 Isolation: Enables transactions to operate
independently of and transparent to each
other.

 Durability: Ensures that the result or effect
of a committed transaction persists in case of
a system failure.

Q31. List out the commands used to control
transactions?

Ans :
The following commands are used to control

transactions.
 COMMIT: to save the changes.
 ROLLBACK: to roll back the changes.
 SAVEPOINT: creates points within the

groups of transactions in which to
ROLLBACK.

 SET TRANSACTION: Places a name on a
transaction.

Transactional Control Commands

Transactional control commands are only
used with the DML Commands such as - INSERT,
UPDATE and DELETE only. They cannot be used
while creating tables or dropping them because these
operations are automatically committed in the
database.

The COMMIT Command

The COMMIT command is the transactional
command used to save changes invoked by a
transaction to the database.

The COMMIT command is the transactional
command used to save changes invoked by a
transaction to the database. The COMMIT
command saves all the transactions to the database
since the last COMMIT or ROLLBACK command.

The syntax for the COMMIT command is as
follows.

COMMIT;

Example

Consider the CUSTOMERS table having the
following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Following is an example which would delete
those records from the table which have age = 25
and then COMMIT the changes in the database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE =25;

SQL> COMMIT;

Thus, two rows from the table would be
deleted and the SELECT statement would produce
the following result.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

3 Kaushik 23 Kota 2000.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

UNIT - III DATABASE MANAGEMENT SYSTEMS

149
Rahul Publications

Rahul Publications

The ROLLBACK Command

The ROLLBACK command is the
transactional command used to undo transactions
that have not already been saved to the database.
This command can only be used to undo
transactions since the last COMMIT or ROLLBACK
command was issued.

The syntax for a ROLLBACK command is as
follows:

ROLLBACK;

Example

Consider the CUSTOMERS table having the
following records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Following is an example, which would delete
those records from the table which have the age =
25 and then ROLLBACK the changes in the
database.

SQL> DELETE FROM CUSTOMERS

WHERE AGE =25;

SQL> ROLLBACK;

Thus, the delete operation would not impact
the table and the SELECT statement would produce
the following result.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00
2 Khilan 25 Delhi 1500.00
3 Kaushik 23 Kota 2000.00
4 Chaitali 25 Mumbai 6500.00
5 Hardik 27 Bhopal 8500.00
6 Komal 22 MP 4500.00
7 Muffy 24 Indore 10000.00

The SAVEPOINT Command

A SAVEPOINT is a point in a transaction
when you can roll the transaction back to a certain
point without rolling back the entire transaction.

The syntax for a SAVEPOINT command is as
shown below.

SAVEPOINT SAVEPOINT_NAME;

This command serves only in the creation of
a SAVEPOINT among all the transactional
statements. The ROLLBACK command is used to
undo a group of transactions.

The syntax for rolling back to a SAVEPOINT
is as shown below.

ROLLBACK TO SAVEPOINT_NAME;

Following is an example where you plan to
delete the three different records from the
CUSTOMERS table. You want to create a
SAVEPOINT before each delete, so that you can
ROLLBACK to any SAVEPOINT at any time to
return the appropriate data to its original state.

Example

Consider the CUSTOMERS table having the
following records.

ID NAME AGE ADDRESS SALARY

1 Ramesh 32 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

The following code block contains the series
of operations.

SQL> SAVEPOINT SP1;

Savepoint created.

SQL> DELETE FROM CUSTOMERS
WHERE ID=1;

1 row deleted.

SQL> SAVEPOINT SP2;

B.Sc. II YEAR IV SEMESTER

150
Rahul Publications

Rahul Publications

Savepoint created.

SQL> DELETE FROM CUSTOMERS
WHERE ID=2;

1 row deleted.

SQL> SAVEPOINT SP3;

Savepoint created.

SQL> DELETE FROM CUSTOMERS
WHERE ID=3;

1 row deleted.

Now that the three deletions have taken place,
let us assume that you have changed your mind
and decided to ROLLBACK to the SAVEPOINT that
you identified as SP2. Because SP2 was created after
the first deletion, the last two deletions are undone:

SQL> ROLLBACK TO SP2;

Rollback complete.

Notice that only the first deletion took place
since you rolled back to SP2.

SQL> SELECT * FROM CUSTOMERS;

ID NAME AGE ADDRESS SALARY

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

6 rows selected

The RELEASE SAVEPOINT Command

The RELEASE SAVEPOINT command is
used to remove a SAVEPOINT that you have
created.

The syntax for a RELEASE SAVEPOINT
command is as follows.

RELEASE SAVEPOINT SAVEPOINT_NAME;

Once a SAVEPOINT has been released, you
can no longer use the ROLLBACK command to
undo transactions performed since the last
SAVEPOINT.

The SET TRANSACTION Command

The SET TRANSACTION command can be
used to initiate a database transaction. This
command is used to specify characteristics for the
transaction that follows. For example, you can
specify a transaction to be read only or read write.

The syntax for a SET TRANSACTION
command is as follows.

SET TRANSACTION [READ WRITE | READ
ONLY];

3.2.4 Integrity constraints

Q32. What is mean by constraints? List out
most commonly used constraints in
SQL?

Ans : (Imp.)

Constraints are the rules enforced on the data
columns of a table. These are used to limit the type
of data that can go into a table. This ensures the
accuracy and reliability of the data in the database.

Constraints could be either on a column level or a
table level. The column level constraints are applied
only to one column, whereas the table level
constraints are applied to the whole table.

Following are some of the most commonly
used constraints available in SQL:

 NOT NULL Constraint: Ensures that a
column cannot have NULL value.

 DEFAULT Constraint: Provides a default
value for a column when none is specified.

 UNIQUE Constraint: Ensures that all values
in a column are different.

 PRIMARY Key: Uniquely identifies each
row/record in a database table.

 FOREIGN Key: Uniquely identifies a row/
record in any of the given database table.

 CHECK Constraint: The CHECK
constraint ensures that all the values in a
column satisfies certain conditions.

 INDEX: Used to create and retrieve data from
the database very quickly.

UNIT - III DATABASE MANAGEMENT SYSTEMS

151
Rahul Publications

Rahul Publications

Constraints can be specified when a table is
created with the CREATE TABLE statement or you
can use the ALTER TABLE statement to create
constraints even after the table is created.

Q33. Discuss in detail about SQL integrity
constraints

Ans : (Imp.)

Integrity constraints are used to ensure
accuracy and consistency of the data in a relational
database. Data integrity is handled in a relational
database through the concept of referential integrity.

There are many types of integrity constraints
that play a role in Referential Integrity (RI). These
constraints include Primary Key, Foreign Key,
Unique Constraints and other constraints

Integrity Constraints are used to apply
business rules for the database tables.

The constraints available in SQL are

1. Primary key

2. Foreign Key

3. Not Null

4. Unique

5. Check.

Constraints can be defined in two ways

1. The constraints can be specified immediately
after the column definition. This is called
column-level definition.

2. The constraints can be specified after all the
columns are defined. This is called table-level
definition.

1. Primary Key

A primary key is a field in a table which
uniquely identifies each row/record in a database
table. Primary keys must contain unique values. A
primary key column cannot have NULL values.

A table can have only one primary key, which
may consist of single or multiple fields. When multiple
fields are used as a primary key, they are called a
composite key.

If a table has a primary key defined on any
field(s), then you cannot have two records having
the same value of that field(s).

Note:

You would use these concepts while creating
database tables.

Create Primary Key

Here is the syntax to define the ID attribute
as a primary key in a CUSTOMERS table.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25) ,

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

2. Foreign key

A foreign key is a key used to link two tables
together. This is sometimes also called as a
referencing key.

A Foreign Key is a column or a combination
of columns whose values match a Primary Key in a
different table.

The relationship between 2 tables matches
the Primary Key in one of the tables with a Foreign
Key in the second table.

If a table has a primary key defined on any
field(s), then you cannot have two records having
the same value of that field(s).

Example

Consider the structure of the following two
tables.

CUSTOMERS table

CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18,2),
PRIMARY KEY (ID)

);

B.Sc. II YEAR IV SEMESTER

152
Rahul Publications

Rahul Publications

ORDERS table
CREATE TABLE ORDERS (

ID INT NOT NULL,

DATE DATETIME,
CUSTOMER_ID INT references

CUSTOMERS(ID),

AMOUNT double,
PRIMARY KEY (ID)

);

If the ORDERS table has already been created
and the foreign key has not yet been set, the use
the syntax for specifying a foreign key by altering a
table.

ALTER TABLE ORDERS
ADD FOREIGN KEY (Customer_ID)
REFERENCES CUSTOMERS (ID);

DROP a FOREIGN KEY Constraint
To drop a FOREIGN KEY constraint, use the

following SQL syntax.
ALTER TABLE ORDERS

DROP FOREIGN KEY;

3. Not Null constraint
By default, a column can hold NULL values.

If you do not want a column to have a NULL value,
then you need to define such a constraint on this
column specifying that NULL is now not allowed
for that column.

A NULL is not the same as no data, rather, it
represents unknown data.
Example

For example, the following SQL query creates
a new table called CUSTOMERS and adds five
columns, three of which, are ID NAME and AGE,
In this we specify not to accept NULLs “

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25),
SALARY DECIMAL (18,2),

 PRIMARY KEY (ID)

);

If CUSTOMERS table has already been
created, then to add a NOT NULL constraint to the
SALARY column in Oracle and MySQL, you would
write a query like the one that is shown in the
following code block.

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL (18,2) NOT
NULL;

4. Unique Constraint

The UNIQUE Constraint prevents two records
from having identical values in a column. In the
CUSTOMERS table, for example, you might want
to prevent two or more people from having an
identical age.

Example

For example, the following SQL query creates
a new table called CUSTOMERS and adds five
columns. Here, the AGE column is set to UNIQUE,
so that you cannot have two records with the same
age.

CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL UNIQUE,

ADDRESS CHAR (25),

SALARY DECIMAL (18,2),

PRIMARY KEY (ID)

);

If the CUSTOMERS table has already been
created, then to add a UNIQUE constraint to the
AGE column. You would write a statement like the
query that is given in the code block below.

ALTER TABLE CUSTOMERS

 MODIFY AGE INT NOT NULL UNIQUE;

You can also use the following syntax, which
supports naming the constraint in multiple columns
as well.

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myUniqueConstraint
UNIQUE(AGE, SALARY);

DROP a UNIQUE Constraint

UNIT - III DATABASE MANAGEMENT SYSTEMS

153
Rahul Publications

Rahul Publications

To drop a UNIQUE constraint, use the following SQL query.

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myUniqueConstraint;

If you are using MySQL, then you can use the following syntax “

ALTER TABLE CUSTOMERS

DROP INDEX myUniqueConstraint;

5. Check constraint

The CHECK Constraint enables a condition to check the value being entered into a record. If the
condition evaluates to false, the record violates the constraint and isn’t entered the table.

Example

For example, the following program creates a new table called CUSTOMERS and adds five columns.
Here, we add a CHECK with AGE column, so that you cannot have any CUSTOMER who is below 18
years.

CREATE TABLE CUSTOMERS

(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL CHECK (AGE >=18),

ADDRESS CHAR (25),

SALARY DECIMAL (18,2),

PRIMARY KEY (ID)

);

If the CUSTOMERS table has already been created, then to add a CHECK constraint to AGE
column, you would write a statement like the one given below.

ALTER TABLE CUSTOMERS

MODIFY AGE INT NOT NULL CHECK (AGE >=18);

You can also use the following syntax, which supports naming the constraint in multiple columns as
well:

ALTER TABLE CUSTOMERS

ADD CONSTRAINT myCheckConstraint CHECK(AGE >=18);

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL syntax. This syntax does not work with MySQL.

ALTER TABLE CUSTOMERS

DROP CONSTRAINT myCheckConstraint;

B.Sc. II YEAR IV SEMESTER

154
Rahul Publications

Rahul Publications

3.2.5 SQL Data types and Schemas

Q34. List out various types of datatypes supported by SQL.

Ans : (Imp.)

SQL Data Type is an attribute that specifies the type of data of any object. Each column, variable
and expression has a related data type in SQL. You can use these data types while creating your tables.
You can choose a data type for a table column based on your requirement.

SQL Server offers six categories of data types for your use which are listed below “

1. SQL Numeric Data Types

Datatype From To

bit 0 1

tinyint 0 255

smallint -32,768 32,767

int -2,147,483,648 2,147,483,647

bigint -9,223,372,036, 854,775,808 9,223,372,036, 854,775,807

decimal -10^38 +1 10^38 -1

numeric -10^38 +1 10^38 -1

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

UNIT - III DATABASE MANAGEMENT SYSTEMS

155
Rahul Publications

Rahul Publications

2. SQL Date and Time Data Types

Datatype Description

DATE Stores date in the format YYYY-MM-DD

TIME Stores time in the format HH:MI:SS

DATETIME Stores date and time information in the format YYYY-MM-DD
HH:MI:SS

TIMESTAMP Stores number of seconds passed since the Unix epoch (‘1970-01-01
00:00:00’ UTC)

YEAR Stores year in 2 digits or 4 digit format. Range 1901 to 2155 in 4-digit
format. Range 70 to 69, representing 1970 to 2069.

3. SQL Character and String Data Types

Datatype Description

CHAR Fixed length with a maximum length of 8,000 characters

VARCHAR Variable-length storage with a maximum length of 8,000 characters

VARCHAR(max) Variable-length storage with provided max characters, not supported
in MySQL

TEXT Variable-length storage with maximum size of 2GB data

Note that all the above data types are for character stream, they should not be used
with Unicode data.

4. SQL Unicode Character and String Data Types

Datatype Description

NCHAR Fixed length with maximum length of 4,000 characters

NVARCHAR Variable-length storage with a maximum length of 4,000 characters

NVARCHAR(max) Variable-length storage with provided max characters

NTEXT Variable-length storage with a maximum size of 1GB data

Note that above data types are not supported in MySQL database.

5. SQL Binary Data Types

Datatype Description

BINARY Fixed length with a maximum length of 8,000 bytes

VARBINARY Variable-length storage with a maximum length of 8,000 bytes

VARBINARY(max) Variable-length storage with provided max bytes

IMAGE Variable-length storage with maximum size of 2GB binary data

6. SQL Miscellaneous Data Types

Datatype Description

CLOB Character large objects that can hold up to 2GB

BLOB For binary large objects

XML for storing XML data

JSON for storing JSON data

B.Sc. II YEAR IV SEMESTER

156
Rahul Publications

Rahul Publications

3.2.6 Authorization

Q35. Explain authorization process in SQL.

Ans :
 Authorization is finding out if the person, once

identified, is permitted to have the resource.

 Authorization explains that what you can do
and is handled through the DBMS unless
external security procedures are available.

 Database management system allows DBA to
give different access rights to the users as per
their requirements.

 Basic Authorization we can use any one form
or combination of the following basic forms
of authorizations

i. Resource authorization: Authoriza-
tion to access any system resource. e.g.
sharing of database, printer etc.

ii. Alternation Authorization: Authori-
zation to add attributes or delete
attributes from relations

iii. Drop Authorization: Authorization to
drop a relation.

Granting of privileges

A system privilege is the right to perform a
particular action, or to perform an action on any
schema objects of a particular type.

An authorized user may pass on this
authorization to other users. This process is called
as ganting of privileges.

Syntax

GRANT <privilege list>

ON<relation name or view name>

TO<user/role list>

Example:

The following grant statement grants user
U1,U2 and U3 the select privilege on Emp_Salary
relation:

Revoking of privileges:

We can reject the privileges given to particular
user with help of revoke statement.

To revoke an authorization, we use the
revoke statement.

Syntax

REVOKE <privilege list>

ON<relation name or view name>

FROM <user/role list>[restrict/cascade]

Example

The revocation of privileges from user or role
may cause other user or roles also have to loose
that privileges. This behavior is called cascading of
the revoke.

Revoke select

ON Emp_Salary

FROM U1,U2,U3.

GRANT select

ON Emp_Salary

TO U1,U2 and U3.

3.3 ADVANCED SQL

3.3.1 Accessing SQL from a programming
language

Q36. How can we access SQL from a prog-
ramming language ?

Ans: (Imp.)

To access SQL from other programming
languages, we can use:

 Dynamic SQL: JDBC and ODBC

 Embedded SQL

 PHP

ODBC (Open Database Connectivity) and
JDBC (Java Database Connectivity) serve as APIs
for a program to interact with a database server.

In general, the application must make calls
to:

1. Connect with the database server

2. Send SQL commands to the database server

3. Fetch tuples of result one-by-one into
program variables

UNIT - III DATABASE MANAGEMENT SYSTEMS

157
Rahul Publications

Rahul Publications

ODBC

ODBC works with C, C++, C# and Visual Basic (other APIs such as ADO.NET sit on top of
ODBC).

ODBC is the standard for application programs communicating with a database server.

The API will:

1. open a connection with a database

2. send queries and updates

3. get back results

ODBC can be used with applications such as GUIs, spreadsheets etc.

JDBC

JDBC works with Java.

Along with supporting various features for querying and updating data, and for retrieving query
results, JDBC also supports metadata retrieval i.e. retrieving information about the database such as
relations present in the database and the names and types of relation attributes.

JDBC connects with the database as follows:

1. open a connection

2. create a “Statement” object

3. execute queries using the Statement object to send queries and fetch results

4. exception mechanism to handle errors

Embedded SQL

Embedded SQL refers to embedding SQL queries in another language.

SQL can be embedded in various languages including C, Java and Cobol.

A language into which SQL queries are embedded is referred to as a host language, and the SQL
structures permitted in the host language comprise embedded SQL.

The EXEC SQL statement is used to identify embedded SQL request to the preprocessor:

EXEC SQL <embedded SQL statement> END_EXEC

Note that this varies by language. Java embedding uses:

SQL {...};

PHP

PHP is a server-side scripting language.

It was mainly developed for the web but can also be used as a general-purpose programming
language.

PHP works well with MySQL and can be used in combination with HTML to create a webapp that
connects to a database.

Working

1. web browser sends HTTP requests and receives HTTP responses

2. PHP script (on the server-side) connects to DBMS and uses query results to produce its output

3. web server calls the PHP script and incorporates its output into the response

4. web browser renders the HTML document from the response

B.Sc. II YEAR IV SEMESTER

158
Rahul Publications

Rahul Publications

Executing SQL from PHP

1. connect to server (mysql_connect)

2. select the database (mysql_select_db)

3. run query

4. retrieve row of results (mysql_fetch_array)

5. retrieve attributes (foreach)

A typical web-app will have the following
components:

Login page

Collect credentials and pass them to setup
page via POST

 Setup page

 Check credentials

 Initialize session and session variables

 Redirect to welcome page

 Application pages

Call session_start(), authenticate the session,
and use/ update session variables, as needed

 Logout page:

 Calls session_destroy()

 Redirects to “goodbye” page

3.3.2 Functions and procedures

Q37. What is Procedure ?

Ans :

A procedure is a named PL/SQL block which
performs one or more specific task. This is similar to
a procedure in other programming languages. A
procedure has a header and a body.

The header consists of the name of the
procedure and the parameters or variables passed
to the procedure. The body consists or declaration
section, execution section and exception section
similar to a general PL/SQL Block. A procedure is
similar to an anonymous PL/SQL Block but it is
named for repeated usage.

We can pass parameters to procedures in
three ways :

Parameters Description

IN type These types of parameters are
used to send values to stored
procedures.

OUT type These types of parameters are
used to get values from stored
procedures. This is similar to a
return type in functions.

IN OUT type These types of parameters are
used to send values and get
values from stored procedures.

A procedure may or may not return any
value.

Syntax

CREATE [ORREPLACE] PROCEDURE _name
(<Argument> {IN, OUT, INOUT}
<Datatype>,…)

IS

 Declaration section<variable, constant> ;

BEGIN

Execution section

EXCEPTION

Exceptionsection

END

IS - marks the beginning of the body of the
procedure and is similar to DECLARE in anonymous
PL/SQL Blocks. The code between IS and BEGIN
forms the Declaration section.

The syntax within the brackets [] indicate
they are optional. By using CREATE OR REPLACE
together the procedure is created if no other
procedure with the same name exists or the existing
procedure is replaced with the current code.

Q38. How to execute a procedure ?

Ans :
There are two ways to execute a procedure :

 From the SQL prompt : EXECUTE [or
EXEC] procedure_name;

UNIT - III DATABASE MANAGEMENT SYSTEMS

159
Rahul Publications

Rahul Publications

 Within another procedure – simply use the procedure name : procedure_name;

Example:

create table named emp have two column id and salary with number datatype.

CREATEORREPLACEPROCEDURE p1(idINNUMBER, sal INNUMBER)

AS

BEGIN

INSERTINTO emp VALUES(id, sal);

DBMD_OUTPUT.PUT_LINE(‘VALUE INSERTED.’);

END;

/

Output

Run SQL Command Line

SQL>set serveroutput on
SQL>start D://pr.sql
Procedure created.
SQL>exec p1(5,4);
VALUE INSERTED.
PL/SQL procudere successfully completed.
SQL>select * from emp;

ID SALARY
 ——- ————

2 5000

Q39. What is function ? Write the syntax to declare functions in SQL.

Ans :
A function is a named PL/SQL Block which is similar to a procedure. The major difference between

a procedure and a function is, a function must always return a value, but a procedure may or may not
return a value.

Syntax:

CREATE [OR REPLACE] FUNCTION function_name [parameters]
RETURN return_datatype; {IS, AS}

Declaration_section <variable,constant> ;
BEGIN
Execution_section
Return return_variable;
EXCEPTION
exception section
Return return_variable;
 END;

B.Sc. II YEAR IV SEMESTER

160
Rahul Publications

Rahul Publications

RETURN TYPE

The header section defines the return type of the function. The return datatype can be any of the
oracle datatype like varchar, number etc.

The execution and exception section both should return a value which is of the datatype defined in
the header section.

Q40. How to execute functions?

Ans :
A function can be executed in the following ways.

 As a part of a SELECT statement : SELECT emp_details_func FROM dual;

 In a PL/SQL Statements like,: dbms_ output.put_line(emp_details_func);

This line displays the value returned by the function.

Example

Createorreplacefunction getsal (noINnumber) returnnumber is

sal number(5);

begin

select salary into sal from emp whereid=no;

return sal;

end;

/

Output:

Run SQL Command Line

SQL>select * from emp;

ID SALARY

——- ————

2 5000

SQL>start D://fun.sql

Function created.

SQL>select getsal(2) from dual;

GETSAL(2)

————

 5000

In the example we are retrieving the ‘salary’ of employee with id 2 to variable ‘sal’.

The return type of the function is number.

UNIT - III DATABASE MANAGEMENT SYSTEMS

161
Rahul Publications

Rahul Publications

Q41. What are the differences between functions and procedures in SQL.

Ans :
Function

Function, in computer programming language context, a set of instructions which takes some input
and performs certain tasks. In SQL, a function returns a value.

Procedure

Procedure, as well, is a set of instructions which takes input and performs certain task. In SQL,
procedure does not return a value. In java, procedure and functions are same and also called sub-
routines.

Following are the important differences between SQL Function and SQL Procedure.

A procedure can use explicit
transaction handling.

A function can not have explicit
transaction handling.

Explicit Transaction
Handling

9

A select statement can't have a
procedure call.

A select statement can have a
function call.

SELECT8

A procedure has support for try-catch
blocks.

A function has no support for try-
catch

try-catch7

A procedure returns the control but
not any value to calling function or
code.

A function returns a value and
control to calling function or
code.

SQL, Return
6

A procedure is compiled once and
can be called multiple times without
being compiled.

Whenever a function is called, it
is first compiled before being
called.

SQL, Call
5

A procedure cannot be called within
a query.

A function can be called within a
query.

SQL, Query4

DML statements can be executed
within a procedure.

DML statments cannot be
executed within a function.

DML3

A procedure cannot be called by a
function.

A function can be called by a
procedure.

Call2

A procedure is used to perform
certain task in order.

A function is used to calculate
result using given inputs.

Definition
1

ProcedureFunctionKeySr. No.

A procedure can use explicit
transaction handling.

A function can not have explicit
transaction handling.

Explicit Transaction
Handling

9

A select statement can't have a
procedure call.

A select statement can have a
function call.

SELECT8

A procedure has support for try-catch
blocks.

A function has no support for try-
catch

try-catch7

A procedure returns the control but
not any value to calling function or
code.

A function returns a value and
control to calling function or
code.

SQL, Return
6

A procedure is compiled once and
can be called multiple times without
being compiled.

Whenever a function is called, it
is first compiled before being
called.

SQL, Call
5

A procedure cannot be called within
a query.

A function can be called within a
query.

SQL, Query4

DML statements can be executed
within a procedure.

DML statments cannot be
executed within a function.

DML3

A procedure cannot be called by a
function.

A function can be called by a
procedure.

Call2

A procedure is used to perform
certain task in order.

A function is used to calculate
result using given inputs.

Definition
1

ProcedureFunctionKeySr. No.

3.3.3 Triggers

Q42. What is PL/SQL Trigger ? List out the advantages of Triggers ?

Ans :
Trigger is invoked by Oracle engine automatically whenever a specified event occurs. Trigger is

stored into database and invoked repeatedly, when specific condition match.

Triggers are stored programs, which are automatically executed or fired when some event occurs.

Triggers are written to be executed in response to any of the following events.

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

B.Sc. II YEAR IV SEMESTER

162
Rahul Publications

Rahul Publications

Triggers could be defined on the table, view, schema, or database with which the event is associated.

Advantages of Triggers

These are the following advantages of Triggers:

 Trigger generates some derived column values automatically

 Enforces referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Q43. Write the syntax to create a trigger.

Ans :
Syntax for creating trigger

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Here,

 CREATE [OR REPLACE] TRIGGER trigger_name: It creates or replaces an existing trigger with the
trigger_name.

 {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be executed. The
INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

 [OF col_name]: This specifies the column name that would be updated.

UNIT - III DATABASE MANAGEMENT SYSTEMS

163
Rahul Publications

Rahul Publications

 [ON table_name]: This specifies the name of the table associated with the trigger.
 [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for various

DML statements, like INSERT, UPDATE, and DELETE.
 [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for each

row being affected. Otherwise the trigger will execute just once when the SQL statement is executed,
which is called a table level trigger.

 WHEN (condition): This provides a condition for rows for which the trigger would fire. This clause
is valid only for row level triggers.

PL/SQL Trigger Example
Let’s take a simple example to demonstrate the trigger. In this example, we are using the following

CUSTOMERS table:
Create table and have records

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 20000

2 Suresh 22 Kanpur 22000

3 Mahesh 24 Ghaziabad 24000

4 Chandan 25 Noida 26000

5 Alex 21 Paris 28000

6 Sunita 20 Delhi 30000

Create trigger

Let’s take a program to create a row level trigger for the CUSTOMERS table that would fire for
INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display
the salary difference between the old values and new values:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line(‘Old salary: ’ | | :OLD.salary);

dbms_output.put_line(‘New salary: ’ || :NEW.salary);

dbms_output.put_line(‘Salary difference: ’ || sal_diff);

END;

/

After the execution of the above code at SQL Prompt, it produces the following result.

Trigger created.

B.Sc. II YEAR IV SEMESTER

164
Rahul Publications

Rahul Publications

Q44. Write a code to get the old salary, new
salary and salary difference after the
trigger created.

Ans :
Check the salary difference by procedure

Use the following code to get the old salary,
new salary and salary difference after the trigger
created.

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 5000;

 IF sql%notfound THEN

 dbms_output.put_line(‘no customers updated’);

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ’ customers updated ’);

 END IF;

END;

/

Output:

Old salary: 20000
New salary: 25000
Salary difference: 5000
Old salary: 22000
New salary: 27000
Salary difference: 5000
Old salary: 24000
New salary: 29000
Salary difference: 5000
Old salary: 26000
New salary: 31000
Salary difference: 5000
Old salary: 28000
New salary: 33000
Salary difference: 5000
Old salary: 30000

New salary: 35000
Salary difference: 5000
6 customers updated
Note

As many times you executed this code, the
old and new both salary is incremented by 5000
and hence the salary difference is always 5000.

result

Old salary: 25000

New salary: 30000

Salary difference: 5000

Old salary: 27000

New salary: 32000

Salary difference: 5000

Old salary: 29000

New salary: 34000

Salary difference: 5000

Old salary: 31000

New salary: 36000

Salary difference: 5000

Old salary: 33000

New salary: 38000

Salary difference: 5000

Old salary: 35000

New salary: 40000

Salary difference: 5000

6 customers updated

Important Points

Following are the two very important point
and should be noted carefully.

 OLD and NEW references are used for record
level triggers these are not available for table
level triggers.

 If you want to query the table in the same
trigger, then you should use the AFTER
keyword, because triggers can query the table
or change it again only after the initial changes
are applied and the table is back in a consistent
state.

UNIT - III DATABASE MANAGEMENT SYSTEMS

165
Rahul Publications

Rahul Publications

3.3.4 Recursive Queries

Q45. Explain the process of creating recursive queries.

Ans : (Imp.)

A recursive query is a way to query hierarchies of data, such as an organizational structure, bill-of-
materials, and document hierarchy.

Recursion is typically characterized by three steps:
1. Initialization
2. Recursion, or repeated iteration of the logic through the hierarchy
3. Termination
Similarly, a recursive query has three execution phases:
1. Create an initial result set.
2. Recursion based on the existing result set.
3. Final query to return the final result set.
You can specify a recursive query by:
 Preceding a query with the WITH RECURSIVE clause
 Creating a view using the RECURSIVE clause in a CREATE VIEW statement

Consider the following employee table
CREATE TABLE employee

(employee_number INTEGER
 ,manager_employee_number INTEGER
 ,last_name CHAR(20)
 ,first_name VARCHAR(30));

The table represents an organizational structure containing a hierarchy of employee-manager data.
The following figure depicts what the employee table looks like hierarchically.

B.Sc. II YEAR IV SEMESTER

166
Rahul Publications

Rahul Publications

The following recursive query retrieves the
employee numbers of all employees who directly
or indirectly report to the manager with
employee_number 801:

 WITH RECURSIVE temp_table (employee_
number) AS

(SELECT root.employee_number

FROM employee root

WHERE root.manager_employee_number
= 801

 UNION ALL

 SELECT indirect.employee_number

 FROM temp_table direct, employee indirect

 WHERE direct.employee_number =
indirect.manager_employee_number

)

 SELECT * FROM temp_table ORDER BY
employee_number;

In the example, temp_table is a temporary
named result set that can be referred to in the FROM
clause of the recursive statement.

The initial result set is established in
temp_table by the nonrecursive, or seed, statement
and contains the employees that report directly to
the manager with an employee_number of 801:

SELECT root.employee_number

FROM employee root

WHERE root.manager_employee_number
= 801

The recursion takes place by joining each
employee in temp_table with employees who report
to the employees in temp_table. The UNION ALL
adds the results to temp_table.

SELECT indirect.employee_number

FROM temp_table direct, employee indirect

WHERE direct.employee_number = indirect.
manager_employee_number.

Recursion stops when no new rows are added
to temp_table.

The final query is not part of the recursive
WITH clause and extracts the employee information
out of temp_table:

 SELECT * FROM temp_table ORDER BY
employee_number;

Here are the results of the recursive query:

employee_number
———————

1001

1002

1003

1004

1006

1008

1010

1011

1012

1014

1015

1016

1019

UNIT - III DATABASE MANAGEMENT SYSTEMS

167
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is SQL ?

Ans :
SQL is Structured Query Language, which is a computer language for storing, manipulating and

retrieving data stored in a relational database.

SQL is the standard language for Relational Database System. All the Relational Database Management
Systems (RDMS) like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as
their standard database language.

Also, they are using different dialects, such as:

 MS SQL Server using T-SQL,

 Oracle using PL/SQL,

 MS Access version of SQL is called JET SQL (native format) etc.

IBM developed the original version of SQL, originally called Sequel, as part of the System R project
in the early 1970s. The Sequel language has evolved since then, and its name has changed to SQL
(Structured Query Language). Many products now support the SQL language. SQL has clearly established
itself as the standard relational database language.

In 1986, the American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO) published an SQL standard, called

SQL-86. ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of the
standard was SQL-92 standard, followed by SQL:1999, SQL:2003, SQL:2006, and most recently
SQL:2008. The bibliographic notes provide references to these standards.

2. What are the advantages of SQL ?

Ans :
SQL is widely popular because it offers the following advantages:

 Allows users to access data in the relational database management systems.

 Allows users to describe the data.

 Allows users to define the data in a database and manipulate that data.

 Allows to embed within other languages using SQL modules, libraries & pre-compilers.

 Allows users to create and drop databases and tables.

 Allows users to create view, stored procedure, functions in a database.

 Allows users to set permissions on tables, procedures and views.

B.Sc. II YEAR IV SEMESTER

168
Rahul Publications

Rahul Publications

3. What are the differences between grant and revoke

Ans :
 GRANT REVOKE

GRANT command allows a user to perform REVOKE command disallows a user to per-

certain activities on the database. form certain activities.

It grants access privileges for database objects It revokes access privileges for database

to other users. objects previously granted to other users.

Example: Example:

GRANT privilege_name REVOKE privilege_name

ON object_name ON object_name

TO FROM

{ {

user_name|PUBLIC|role_name user_name|PUBLIC|role_name

} }

[WITH GRANT OPTION];

4. What is the use of Null values?

Ans :
The SQL NULL is the term used to represent a missing value. A NULL value in a table is a value

in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand that a NULL
value is different than a zero value or a field that contains spaces.

Syntax

The basic syntax of NULL while creating a table.

SQL> CREATE TABLE CUSTOMERS(

ID INT NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS CHAR (25),

SALARY DECIMAL (18, 2),

PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit value of the given data
type. There are two columns where we did not use NOT NULL, which means these columns could be
NULL.

A field with a NULL value is the one that has been left blank during the record creation.

UNIT - III DATABASE MANAGEMENT SYSTEMS

169
Rahul Publications

Rahul Publications

5. Nested subquery

Ans :
A Subquery or Inner query or a Nested query

is a query within another SQL query and embedded
within the WHERE clause.

A subquery is used to return data that will be
used in the main query as a condition to further
restrict the data to be retrieved.

Subqueries can be used with the SELECT,
INSERT, UPDATE, and DELETE statements along
with the operators like =, <, >, >=, <=, IN,
BETWEEN, etc.

There are a few rules that subqueries must
follow:

 A subquery can be placed in a number of
SQL clauses like WHERE clause, FROM
clause, HAVING clause.

 You can use Subquery with SELECT,
UPDATE, INSERT, DELETE statements along
with the operators like =, <, >, >=, <=,
IN, BETWEEN, etc.

 A subquery is a query within another query.
The outer query is known as the main query,
and the inner query is known as a subquery.

 Subqueries are on the right side of the
comparison operator.

 A subquery is enclosed in parentheses.

 In the Subquery, ORDER BY command
cannot be used. But GROUP BY command
can be used to perform the same function as
ORDER BY command.

6. How can we modify the database using
SQL ?

Ans :
The SQL commands (UPDATE and DELETE)

are used to modify the data that is already in the
database. The SQL DELETE command uses a
WHERE clause.

SQL UPDATE statement is used to change
the data of the records held by tables. Which rows
is to be update, it is decided by a condition. To
specify condition, we use WHERE clause.

The UPDATE statement can be written in
following form:

UPDATE table_name SET [column_name1
= value1,... column_nameN = valueN] [WHERE
condition]

Syntax

UPDATE table_name

SET column_name = expression

WHERE conditions

7. What is Left Join explain with an
example.

Ans : (Imp.)

The SQL LEFT JOIN returns all rows from
the left table, even if there are no matches in the
right table. This means that if the ON clause matches
0 (zero) records in the right table; the join will still
return a row in the result, but with NULL in each
column from the right table.

This means that a left join returns all the
values from the left table, plus matched values from
the right table or NULL in case of no matching join
predicate.

Syntax

The basic syntax of a LEFT JOIN is as
follows.

SELECT table1.column1, table2.column2...
FROM table1
LEFT JOIN table2
ON table1.common_field

= table2.common_field;
Here, the given condition could be any given

expression based on your requirement.
8. What is Right Join?

Ans :
The SQL RIGHT JOIN returns all rows

from the right table, even if there are no matches in
the left table. This means that if the ON clause
matches 0 (zero) records in the left table; the join
will still return a row in the result, but with NULL in
each column from the left table.

This means that a right join returns all the
values from the right table, plus matched values from
the left table or NULL in case of no matching join
predicate.

B.Sc. II YEAR IV SEMESTER

170
Rahul Publications

Rahul Publications

Syntax

The basic syntax of a RIGHT JOIN is as
follow.

SELECT table1.column1, table2.column2...

FROM table1

RIGHT JOIN table2

ON table1.common_field

= table2.common_field;

9. What is mean by view in SQL? Explain
the process of creating, updating and
dropping a view ?

Ans :
A view is nothing more than a SQL statement

that is stored in the database with an associated
name. A view is actually a composition of a table in
the form of a predefined SQL query.

A view can contain all rows of a table or select
rows from a table. A view can be created from one
or many tables which depends on the written SQL
query to create a view.

Views, which are a type of virtual tables allow
users to do the following:

 Structure data in a way that users or classes
of users find natural or intuitive.

 Restrict access to the data in such a way that
a user can see and (sometimes) modify
exactly what they need and no more.

 Summarize data from various tables which
can be used to generate reports.

10. What is transaction? Explain the
properties of transaction ?

Ans :
A transaction is a unit of work that is

performed against a database. Transactions are units
or sequences of work accomplished in a logical
order, whether in a manual fashion by a user or
automatically by some sort of a database program.

A transaction is the propagation of one or
more changes to the database. For example, if you
are creating a record or updating a record or deleting
a record from the table, then you are performing a

transaction on that table. It is important to control
these transactions to ensure the data integrity and
to handle database errors.

Practically, you will club many SQL queries
into a group and you will execute all of them
together as a part of a transaction.
Properties

Transactions have the following four standard
properties, usually referred to by the acronym
ACID.
 Atomicity: Ensures that all operations within

the work unit are completed successfully.
Otherwise, the transaction is aborted at the
point of failure and all the previous operations
are rolled back to their former state.

 Consistency: Ensures that the database
properly changes states upon a successfully
committed transaction.

 Isolation: Enables transactions to operate
independently of and transparent to each
other.

 Durability: Ensures that the result or effect
of a committed transaction persists in case of
a system failure.

11. Explain authorization process in SQL.

Ans :
 Authorization is finding out if the person, once

identified, is permitted to have the resource.

 Authorization explains that what you can do
and is handled through the DBMS unless
external security procedures are available.

 Database management system allows DBA to
give different access rights to the users as per
their requirements.

 Basic Authorization we can use any one form
or combination of the following basic forms
of authorizations

i. Resource authorization: Authoriza-
tion to access any system resource. e.g.
sharing of database, printer etc.

ii. Alternation Authorization: Authori-
zation to add attributes or delete
attributes from relations

iii. Drop Authorization: Authorization to
drop a relation.

UNIT - III DATABASE MANAGEMENT SYSTEMS

171
Rahul Publications

Rahul Publications

12. What is function ? Write the syntax to declare functions in SQL.

Ans :
A function is a named PL/SQL Block which is similar to a procedure. The major difference between

a procedure and a function is, a function must always return a value, but a procedure may or may not
return a value.
Syntax:

CREATE [OR REPLACE] FUNCTION function_name [parameters]
RETURN return_datatype; {IS, AS}

Declaration_section <variable,constant> ;
BEGIN
Execution_section
Return return_variable;
EXCEPTION
exception section
Return return_variable;
 END;

RETURN TYPE
The header section defines the return type of the function. The return datatype can be any of the

oracle datatype like varchar, number etc.
The execution and exception section both should return a value which is of the datatype defined in

the header section.
13. What are the differences between functions and procedures in SQL.

Ans :
Following are the important differences between SQL Function and SQL Procedure.

A procedure can use explicit
transaction handling.

A function can not have explicit
transaction handling.

Explicit Transaction
Handling

9

A select statement can't have a
procedure call.

A select statement can have a
function call.

SELECT8

A procedure has support for try-catch
blocks.

A function has no support for try-
catch

try-catch7

A procedure returns the control but
not any value to calling function or
code.

A function returns a value and
control to calling function or
code.

SQL, Return
6

A procedure is compiled once and
can be called multiple times without
being compiled.

Whenever a function is called, it
is first compiled before being
called.

SQL, Call
5

A procedure cannot be called within
a query.

A function can be called within a
query.

SQL, Query4

DML statements can be executed
within a procedure.

DML statments cannot be
executed within a function.

DML
3

A procedure cannot be called by a
function.

A function can be called by a
procedure.

Call2

A procedure is used to perform
certain task in order.

A function is used to calculate
result using given inputs.

Definition
1

ProcedureFunctionKeySr. No.

A procedure can use explicit
transaction handling.

A function can not have explicit
transaction handling.

Explicit Transaction
Handling

9

A select statement can't have a
procedure call.

A select statement can have a
function call.

SELECT8

A procedure has support for try-catch
blocks.

A function has no support for try-
catch

try-catch7

A procedure returns the control but
not any value to calling function or
code.

A function returns a value and
control to calling function or
code.

SQL, Return
6

A procedure is compiled once and
can be called multiple times without
being compiled.

Whenever a function is called, it
is first compiled before being
called.

SQL, Call
5

A procedure cannot be called within
a query.

A function can be called within a
query.

SQL, Query4

DML statements can be executed
within a procedure.

DML statments cannot be
executed within a function.

DML
3

A procedure cannot be called by a
function.

A function can be called by a
procedure.

Call2

A procedure is used to perform
certain task in order.

A function is used to calculate
result using given inputs.

Definition
1

ProcedureFunctionKeySr. No.

B.Sc. II YEAR IV SEMESTER

172
Rahul Publications

Rahul Publications

14. What is PL/SQL Trigger ?

Ans :
Trigger is invoked by Oracle engine automatically whenever a specified event occurs. Trigger is

stored into database and invoked repeatedly, when specific condition match.

Triggers are stored programs, which are automatically executed or fired when some event occurs.

Triggers are written to be executed in response to any of the following events.

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is associated.

Advantages of Triggers

These are the following advantages of Triggers:

 Trigger generates some derived column values automatically

 Enforces referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

15. Explain the process of creating recursive queries.

Ans :
A recursive query is a way to query hierarchies of data, such as an organizational structure, bill-of-

materials, and document hierarchy.
Recursion is typically characterized by three steps:
1. Initialization
2. Recursion, or repeated iteration of the logic through the hierarchy
3. Termination
Similarly, a recursive query has three execution phases:
1. Create an initial result set.
2. Recursion based on the existing result set.
3. Final query to return the final result set.

UNIT - III DATABASE MANAGEMENT SYSTEMS

173
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. An is a set of entities of the same type [a]

a) entity set b) attribute set

c) relationset d) entity model

2. The descriptive property of each entity is [b]

a) entity b) attribute

c) relation d) model

3. Binary relation ship is [d]

a) 1 : 1 b) M : N

c) 1 : N d) All

4. Every weak entity can be converted into strong entity using [c]

a) Generalisation b) Using Aggregation

c) Attributes d) None

5. Concepts in which shared subclass take voer relationship from multiple classes is [c]

a) joint inheritance b) partial inheritance

c) multiple inheritance d) independent inheritance

6. E-R modeling technique is [a]

a) Top down approach b) Bottom up approach

c) left - right approach d) None

7. Relations produced from an ER-model is always in [c]

a) 1 NF b) 2 NF

c) 3 NF d) 4 NF

8. A function has partial functional dependencies is form [b]

a) 3 NF b) 2 NF

c) 4 NF d) BCNF

9. Consider the relation R(S, T, U, V) and the dependencies S T, T U, U V then V S then the
decomposition is in form. [b]

a) Not in 2NF b) 2NF

c) 3NF but not in 2NF d) 3NF & 2NF

10. A functional dependency of the form X Y is trivial if [b]

a) X X b) Y X

c) X Y d) X Y & Y X

B.Sc. II YEAR IV SEMESTER

174
Rahul Publications

Rahul Publications

Fill in the blanks

1. An is a symmantic way of discribing and defining a business model.

2. ER Model is used to model. The of the system (logical view)

3. is an object whose inforamtion is stored in DBMS (entity)

4. The of a relationship is the number of entitites associated in DBMS (Degree)

5. A occurs when 1 to many relationships farout from single entity (fan trap)

6. creates a design more accurate to database schema.

7. and relationship lead to inheritance in DBMS.

8. is a process that defines group of entities

9. Generalisation is a approach in two level entities.

10. anomalies are defined while performing white box testing.

11. occurs when two or more independent multi-valued attribute exists

12. A B, B C, A C is known as

13. is used to organised a data and remove unnecessary duplication of data.

14. BCNF stands for

15. The Datamodel is maintained by documentation ER diagrams and Data dictionary..

ANSWERS

1. ER Model

2. Logical view

3. Entity

4. Degree

5. Fan trap

6. ERR Model

7. Super class and Subclass

8. Specialisation

9. Button up

10. Dataflow

11. Multivalued dependency

12. Functional dependency

13. Data Redendency

14. Boycee code nornal form

15. Conceptual

UNIT - IV DATABASE MANAGEMENT SYSTEMS

175
Rahul Publications

Rahul Publications
4.1 TRANSACTION MANAGEMENT

4.1.1 Transaction Support, Properties of
Transactions

Q1. What is Transaction in DBMS? Explain
Properties of Transaction.

Ans :
A transaction is a set of changes that must all

be made together. It is a program unit whose
execution mayor may not change the contents of a
database. Transaction is executed as a single unit. If
the database was in consistent state before a
transaction, then after execution of the transaction
also, the database must be in a consistate. For
example, a transfer of money from one bank
account to another requires two changes to the
database both must succeed or fail together.

You are working on a system for a bank. A
customer goes to the ATM and instructs it to transfer
Rs. 1000 from savings to a checking account. This
simple transaction requires two steps:

 Subtracting the money from the savings
account balance.

 Adding the money to the checking account
balance.

The code to create this transaction will require
two updates to the database. For example, there
will be two SQL statements: one UPDATE command
to decrease the balance in savings and a second
UPDATE command to increase the balance in the
checking account.

UNIT
IV

Transaction Management: Transaction Support–Properties of Transactions,
Database Architecture, Concurrency Control–The Need for Concurrency
Control, Serializability and Recoverability, Locking Methods, Deadlock, Time
Stamping Methods, Multi-version Timestamp Ordering, Optimistic
Techniques, Granularity of Data Items, Database Recovery–The Need for
Recovery, Transactions and Recovery, Recovery Facilities, Recovery
Techniques, Nested Transaction Model. Security: Database Security–Threats,
Computer-Based Controls–Authorization, Access Controls, Views, Backup
and Recovery, Integrity, Encryption, RAID.

You have to consider what would happen if
a machine crashed between these two operations.
The money has already been subtracted from the
savings account will not be added to the checking
account. It is lost. You might consider performing
the addition to checking first, but then the customer
ends up with extra money, and the bank loses.

The point is that both changes must be made
successfully. Thus, a transaction is defined as a set
of changes that must be made together.

Saving Accounts
Rs. 6000 to 1000

Checking Accounts
Rs. 1000 to 2000

Transaction
1. Subtract Rs. 1000 from
saving (machine crashes)

2. Add Rs. 1000 to checking
(money disappears)

A Sample Transaction

Process of Transaction

The transaction is executed as a series of reads
and writes of database objects, which are explained
below :

Read Operation

To read a database object, it is first brought
into main memory from disk, and then its value is
copied into a program variable as shown in figure.

B.Sc. II YEAR IV SEMESTER

176
Rahul Publications

Rahul Publications

 5000 A Block

Disk

Input(1)

Read Operation

A
5000

5000 a

Read(2)

A

Program
variablesMain memory

R
ea

d

Write Operation

To write a database object, an in-memory
copy of the object is first modified and then written
to disk.

5000 A Block

Disk

Input(1)

Read Operation

A
5000

5000 a

Read(2)

A

Program
variablesMain memory

R
ea

d

Properties

A transaction is a very small unit of a program
and it may contain several lowlevel tasks. A
transaction in a database system must maintain
Atomicity, Consistency, Isolation, and Durability “
commonly known as ACID properties “ in order to
ensure accuracy, completeness, and data integrity.

1. Atomicity

This property states that a transaction must
be treated as an atomic unit, that is, either all
of its operations are executed or none. There
must be no state in a database where a
transaction is left partially completed. States
should be defined either before the execution
of the transaction or after the execution/
abortion/failure of the transaction.

2. Consistency

The database must remain in a consistent
state after any transaction. No transaction
should have any adverse effect on the data
residing in the database. If the database was
in a consistent state before the execution of a
transaction, it must remain consistent after the
execution of the transaction as well.

3. Durability

The database should be durable enough to
hold all its latest updates even if the system
fails or restarts. If a transaction updates a chunk
of data in a database and commits, then the
database will hold the modified data. If a
transaction commits but the system fails
before the data could be written on to the
disk, then that data will be updated once the
system springs back into action.

4. Isolation

In a database system where more than one
transaction are being executed simultaneously
and in parallel, the property of isolation states
that all the transactions will be carried out and
executed as if it is the only transaction in the
system. No transaction will affect the existence
of any other transaction.

Q2. Explain about Transaction States and its
Advantages ?

Ans :
There are the following six states in which a

transaction may exist :

1. Active

The initial state when the transaction has just
started execution.

2. Partially Committed

At any given point of time if the transaction is
executing properly, then it is going towards it
COMMIT POINT. The values generated
during the execution are all stored in volatile
storage.

3. Failed

If the transaction fails for some reason. The
temporary values are no longer required, and
the transaction is set to ROLLBACK. It means
that any change made to the database by
this transaction up to the point of the failure
must be undone. If the failed transaction has
withdrawn Rs. 100/- from account A, then
the ROLLBACK operation should add Rs
100/- to account A.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

177
Rahul Publications

Rahul Publications

4. Aborted

When the ROLLBACK operation is over, the
database reaches the BFIM. The transaction
is now said to have been aborted.

5. Committed

If no failure occurs then the transaction
reaches the COMMIT POINT. All the
temporary values are written to the stable
storage and the transaction is said to have
been committed.

6. Terminated

Either committed or aborted, the transaction
finally reaches this state.

The whole process can be described using the
following diagram :

Advantages

The DBMS interleaves the actions of different
transactions to improve performance of system as
discussed below :

(i) Improved Throughput

Consider that transaction are performed in
serial order and active transaction is waiting
for a page to be read in from disk, then instead
of CPU waiting for a page, it can process
another transaction. This is because Input/
Output activity can be done in parallel with
the CPU activity. The overlapping of Input/
Output activities of CPU reduces the amount
of time disks and processors are idle and
increases system throughput (the average
number of transaction completed in a given
time.)

(ii) Reduced Waiting time

Interleaved execution of a short transaction
with a long transaction usually allows the short

transaction to complete quickly. In serial
execution a short transaction could get stuck
behind a long transaction leading to
unpredictable delays in response time or
average time taken to complete a transaction.

4.1.2 Database Architecture

Q3. State the architecture of transaction
management.

Ans : (Imp.)

Typical database architecture with modules
that manage transactions, concurrency control and
recovery is shown in the figure below:

1. Transaction Manager

It manages the transactions so as to ensure
that data remain in consistent state even after
the system failures. It also enables the
execution of concurrent transactions without
any conflicts.

B.Sc. II YEAR IV SEMESTER

178
Rahul Publications

Rahul Publications

2. Scheduler

The task of scheduler is to apply appropriate
concurrency control mechanism while
interacting with the transaction manager. In
case if the adopted mechanism is based on
the concept of locking it acts as a lock
manager. Use of scheduler increases the rate
of concurrent transactions while eliminating
the risk of interfering each other.

3. Recovery Manager

Recovery manager is responsible for restoring
the failed database to a consistent state. It
typically roll back the failed transaction.

4. Buffer Manager

It handles the transfer of data from disk onto
the main memory and decides what data
must be kept in main memory.

5. File Manager

It manages the process of allocating disk and
data structures that are used for representing
the information saved on disk.

6. Authorization Manager

It checks the authority of users and allows only
authorized users to access the data.

7. System Manager

System manager acts as a query processor
which retrieves the data from database.

4.2 CONCURRENCY CONTROL

4.2.1 The Need for Concurrency Control

Q4. What is the purpose of concurrency
control for a database?

(OR)

Why do we need Concurrency control?

(OR)

Why DBMS needs a concurrency
control?

Ans : (Imp.)

1. Transaction management (TM) handles all
transactions properly in DBMS. Database
transactions are the events or activities such as
series of data read/write operations on data
object(s) stored in database system.

2. Concurrency control (CC) is a process to
ensure that data is updated correctly and
appropriately when multiple transactions are
concurrently executed in DBMS.

Needs

In general, concurrency control is an essential
part of TM. It is a mechanism for correctness when
two or more database transactions that access the
same data or data set are executed concurrently
with time overlap. According to Wikipedia.org, if
multiple transactions are executed serially or
sequentially, data is consistent in a database.
However, if concurrent transactions with interleaving
operations are executed, some unexpected data and
inconsistent result may occur. Data interference is
usually caused by a write operation among
transactions on the same set of data in DBMS.

There are two main kinds of concurrency
control mechanisms :

 Pessimistic (conservative) concurrency
control: The pessimistic concurrency control
delays the transactions if they conflict with
other transactions at some time in the future
by locking or a time-stamping technique.

 Optimistic concurrency control:
According to Kung and Robinson (1981), the
optimistic concurrency control, that assumes
that the conflict is rare, allows concurrent
transactions to proceed without imposing
delays to ensure serializability then check
conflict only at the end, when a transaction
commits. Notice that there is another

UNIT - IV DATABASE MANAGEMENT SYSTEMS

179
Rahul Publications

Rahul Publications

mechanism, semi-optimistic technique, which
uses lock operations in some situations (if they
may violate some rules), and does not lock
in other circumstances.

 The pros and cons of the pessimistic and
optimistic concurrency control
mechanisms: Both pessimistic and
optimistic concurrency control mechanisms
provide different performance, e.g., the
different average transaction completion rates
or throughput, depending on transaction
types mix, computing level of parallelism, and
other events.

According to Vallejo, Sanyal, Harris, Vallejo,
Beivide, Unsal, Valero (2011), there is a
tradeoff between the concurrency control
techniques. Their pros and cons are shown
below:

For pessimistic concurrency control, the
strength is :

 Guarantee that all transactions can be
executed correctly.

 Data is properly consistent by either rolling
back to the previous state (Abort operation)
or new content (Commit operation) when
the transaction conflict is cleared.

 Database is relatively stable and reliable.

Its weakness is :

 Transactions are slow due to the delay by
locking or time-stamping event.

 Runtime is longer. Transaction latency
increases significantly.

 Throughput or the amount of work (e.g.
read/write, update, rollback operations, etc.)
is reduced.

For optimistic concurrency control, the
strength is:

 Transactions are executed more efficiently.

 Data content is relatively safe.

 Throughput is much higher.

Its weakness is :

 There is a risk of data interference among
concurrent transactions since it transactions
conflict may occur during execution. In this
case, data is no longer correct.

 Database may have some hidden errors with
inconsistent data; even conflict check is
performed at the end of transactions.

 Transactions may be in deadlock that causes
the system to hang.

Many users often encounter the data
interference issue in database management system
in stock markets. The simple example addresses the
inconsistent data issue as shown below.

Multiple analysts or investors from Fidelity
Investments, LLC access a client’s fund in a database
for stock trading from either Dow, Bonds or Mutual
Funds. Both analysts A, B perform some transactions
to transfer some amount of money to buy stocks
from different funds for their daily works. In this
scenario, the nested transaction is used in database.
At scheduled step T7, a transaction manager faces
inconsistent data (i.e. $800 or $1000) in the client’s
balance. The Operating System can execute either
thread A for a balanced result of 1000 or thread B
for a balanced result of 800. Either case the balance
content is incorrect. For pessimistic technique, the
transaction B may be delayed for a long time or in
a deadlock. For optimistic technique, it goes through
with incorrect data in the database. Furthermore,
the micro execution of the software threads is
unknown, ambiguous and out of control. Database
is in the unknown state.

B.Sc. II YEAR IV SEMESTER

180
Rahul Publications

Rahul Publications

Steps Operations Analyst A’s Analyst B’s Clients’ Balance
Transactions Transactions Bal $ US

T1 Beginning Start 1000

T2 A reads blanace Read(Bal) 1000

T3 Transfer 100 to Fund A Bal = Bal – 100 Start 1000

T4 B reads balance Read(Bal) 1000

T5 A updates balance Write (Bal) Bal = Bal – 200 900
Transfer 200 to Fund B

T6 B updates balance Write(Bal) 800

T7 A aborts, B commits Rollback Commit 1000? or 800?

T8 End End Edn Conflict

In conclusion, concurrency control is one of the primary mechanisms in transaction management
to provide integrity of data and safety in DBMS. Today, with hundred thousand or more transactions in a
few minutes, transaction management and concurrency control become much more complex and
sophisticated. Two pessimistic and optimistic mechanisms are still popular, but other techniques such as
semi-optimistic are also applied in DBMS for higher performance, better throughput, more accurate
results, and faster run time.

Q5. What are the difference concurrent control problems? Explain with examples.

Ans :
 The coordination of the simultaneous execution of transactions in a multiuser database system is
known as concurrency control. The objective of concurrency control is to ensure the serializability of
transactions in a multiuser database environment. Concurrency control is important because the
simultaneous execution of transactions over a shared database can create several data integrity and
consistency problems. The three main problems are lost updates, uncommitted data, and inconsistent
retrievals.

Lost Updates

The lost update problem occurs when two concurrent transactions, T1 and T2, are updating the
same data element and one of the updates is lost (overwritten by the other transaction). Consider the
following PRODUCT table example.

One of the PRODUCT table’s attributes is a product’s quantity on hand (PROD_QOH).

Assume that you have a product whose current PROD_QOH value is 35. Also assume that two
concurrent transactions, T1 and T2, occur that update the PROD_QOH value for some item in the
PRODUCT table.

The transactions are as follows.

Two concurrent transactions update PROD_QOH :

TransactionOperation

T1: Purchase 100 units PROD_QOH = PROD_QOH + 100

T2: Sell 30 units PROD_QOH = PROD_QOH – 30

The Following table shows the serial execution of those transactions under normal circumstances,
yielding the correct answer PROD_QOH = 105.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

181
Rahul Publications

Rahul Publications

Time Transaction Step Stored Value

1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 +100

3 T1 Write PROD_QOH 135

4 T2 Read PROD_QOH 135

5 T2 PROD_QOH = 135 - 30

6 T2 Write PROD_QOH 105

But suppose that a transaction is able to read a product’s PROD_QOH value from the table before
a previous transaction (using the same product) has been committed.

The sequence depicted in the following Table shows how the lost update problem can arise.

Note that the first transaction (T1) has not yet been committed when the second transaction (T2) is
executed. Therefore, T2 still operates on the value 35, and its subtraction yields 5 in memory. In the
meantime, T1 writes the value 135 to disk, which is promptly overwritten by T2. In short, the addition of
100 units is “lost” during the process.

Time Transaction Step Stored Value

1 T1 Read PROD_QOH 35

2 T1 Read PROD_QOH 35

3 T1 PROD_QOH = 35 + 100

4 T2 PROD_QOH = 35 – 30

5 T1 Write PRPD_QOH (Lost update) 135

6 T2 Write PROD_QOH 5

Uncommitted Data

The phenomenon of uncommitted data occurs when two transactions, T1 and T2, are executed
concurrently and the first transaction (T1) is rolled back after the second transaction (T2) has already
accessed the uncommitted data—thus violating the isolation property of transactions.

To illustrate that possibility, let’s use the same transactions described during the lost updates discussion.
T1 has two atomic parts to it, one of which is the update of the inventory, the other possibly being the
update of the invoice total (not shown).

T1 is forced to roll back due to an error during the updating of the invoice’s total; hence, it rolls
back all the way, undoing the inventory update as well. This time, the T1 transaction is rolled back to
eliminate the addition of the 100 units. Because T2 subtracts 30 from the original 35 units, the correct
answer should be 5.

TransactionOperation

T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)

T2: Sell 30 units PROD_QOH = PROD_QOH – 30

The following Table shows how, under normal circumstances, the serial execution of those transactions
yields the correct answer.

B.Sc. II YEAR IV SEMESTER

182
Rahul Publications

Rahul Publications

Time Transaction Step Stored Value

1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 + 100

3 T1 Write PROD_QOH 135

4 T1 *****ROLLBACK***** 35

5 T2 Read PROD_QOH 35

6 T2 PROD_QOH = 35 – 30

7 T2 Write PROD_QOH 5

The following Table shows how the uncommitted data problem can arise when the ROLLBACK is
completed after T2 has begun its execution.

Time Transaction Step Stored Value

1 T1 Read PROD_QOH 35

2 T1 PROD_QOH = 35 + 100

3 T1 Write PROD_QOH z135

4 T2 Read PROD_QOH (Read uncommitted data) 135

5 T2 PROD_QOH = 135 - 30

6 T1 **** RPLLBACK**** 35

7 T2 Write PROD_QOH 5

Inconsistent Retrievals
Inconsistent retrievals occur when a transaction accesses data before and after another transaction(s)

finish working with such data. For example, an inconsistent retrieval would occur if transaction T1 calculated
some summary (aggregate) function over a set of data while another transaction (T2) was updating the
same data. The problem is that the transaction might read some data before they are changed and other
data after they are changed, thereby yielding inconsistent results.

To illustrate that problem, assume the following conditions :
 T1 calculates the total quantity on hand of the products stored in the PRODUCT table.
 At the same time, T2 updates the quantity on hand (PROD_QOH) for two of the PRODUCT

table’s products.
The two transactions are shown in the following Table :

TRANSACTION T1 TRANSACTION T2

SELECT SUM(PROD_QOH) UPDATE PRODUCT

FROM PRODUCT SET PROD_QOH = PROD_QOH + 10

WHERE PROD_CODE = ‘1546-QQ2’

UPDATE PRODUCT

SET PROD_QOH = PROD_QOH – 10

WHERE PROD_CODE = ‘1158-QW1’

COMMIT;

UNIT - IV DATABASE MANAGEMENT SYSTEMS

183
Rahul Publications

Rahul Publications

While T1 calculates the total quantity on hand (PROD_QOH) for all items, T2 represents the correction
of a typing error: the user added 10 units to product 1558-QW1’s PROD_QOH but meant to add the 10
units to product 1546-QQ2’s PROD_QOH. To correct the problem, the user adds 10 to product 1546-
QQ2’s PROD_QOH and subtracts 10 from product 1558-QW1’s PROD_QOH. The initial and final
PROD_QOH values are reflected in the following Table

The following table demonstrates that inconsistent retrievals are possible during the transaction
execution, making the result of T1’s execution incorrect. The “After” summation shown in Table reflects
the fact that the value of 25 for product 1546-QQ2 was read after the WRITE statement was completed.
Therefore, the “After” total is 40 + 25 = 65. The “Before” total reflects the fact that the value of 23 for
product 1558-QW1 was read before the next WRITE statement was completed to reflect the corrected
update of 13. Therefore, the “Before” total is 65 + 23 = 88.

The computed answer of 102 is obviously wrong because you know from the previous Table that
the correct answer is 92. Unless the DBMS exercises concurrency control, a multiuser database environment
can create havoc within the information system.

4.3 SERIALIZABILITY

Q6. Define Serializability. State the importance of Serializability?

Ans : (Imp.)

When multiple transactions are being executed by the operating system in a multiprogramming
environment, there are possibilities that instructions of one transactions are interleaved with some other
transaction.

B.Sc. II YEAR IV SEMESTER

184
Rahul Publications

Rahul Publications

 Schedule: A chronological execution sequence of a transaction is called a schedule. A schedule
can have many transactions in it, each comprising of a number of instructions/tasks.

 Serial Schedule: It is a schedule in which transactions are aligned in such a way that one transaction
is executed first. When the first transaction completes its cycle, then the next transaction is executed.
Transactions are ordered one after the other. This type of schedule is called a serial schedule, as
transactions are executed in a serial manner.

In a multi-transaction environment, serial schedules are considered as a benchmark. The execution
sequence of an instruction in a transaction cannot be changed, but two transactions can have their instructions
executed in a random fashion. This execution does no harm if two transactions are mutually independent
and working on different segments of data; but in case these two transactions are working on the same
data, then the results may vary. This ever-varying result may bring the database to an inconsistent state.

To resolve this problem, we allow parallel execution of a transaction schedule, if its transactions are
either Serializable or have some equivalence relation among them.

Equivalence Schedules

An equivalence schedule can be of the following types:

1. Result Equivalence: If two schedules produce the same result after execution, they are said to be
result equivalent. They may yield the same result for some value and different results for another
set of values. That’s why this equivalence is not generally considered significant.

2. View Equivalence: Two schedules would be view equivalence if the transactions in both the
schedules perform similar actions in a similar manner.

For example

 If T reads the initial data in S1, then it also reads the initial data in S2.

 If T reads the value written by J in S1, then it also reads the value written by J in S2.

 If T performs the final write on the data value in S1, then it also performs the final write on the data
value in S2.

Conflict Equivalence

Two schedules would be conflicting if they have the following properties -

 Both belong to separate transactions.

 Both accesses the same data item.

 At least one of them is “write” operation.

Two schedules having multiple transactions with conflicting operations are said to be conflict equivalent
if and only if

 Both the schedules contain the same set of Transactions.

 The order of conflicting pairs of operation is maintained in both the schedules.

Note: View equivalent schedules are view serializable and conflict equivalent schedules are conflict
serializable. All conflict serializable schedules are view serializable too.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

185
Rahul Publications

Rahul Publications

Q7. Explain about Conflict Serializability?

Ans :
As discussed in Concurrency control, serial schedules have less resource utilization and low

throughput. To improve it, two are more transactions are run concurrently. But concurrency of transactions
may lead to inconsistency in database. To avoid this, we need to check whether these concurrent schedules
are Serializable or not.

 Conflict Serializable: A schedule is called conflict serializable if it can be transformed into a serial
schedule by swapping non-conflicting operations.

 Conflicting operations: Two operations are said to be conflicting if all conditions satisfy:

 They belong to different transaction

 They operation on same data item

 At Least one of them is a write operation

Example :

 Conflicting operations pair (R1(A), W2(A)) because they belong to two different transactions on
same data item A and one of them is write operation.

 Similarly, (W1(A), W2(A)) and (W1(A), R2(A)) pairs are also conflicting.

 On the other hand, (R1(A), W2(B)) pair is non-conflicting because they operate on different data
item.

 Similarly, ((W1(A), W2(B)) pair is non-conflicting.

Consider the following schedule :

S1: R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

If Oi and Oj are two operations in a transaction and Oi<Oj (Oi is executed before Oj), same
order will follow in schedule as well. Using this property, we can get two transactions of schedule S1 as:

T1: R1(A), W1(A), R1(B), W1(B)

T2: R2(A), W2(A), R2(B), W2(B)

Possible Serial Schedules are: T1->T2 or T2->T1

 Swapping non-conflicting operations R2(A) and R1(B) in S1, the schedule becomes,

S11:R1(A), W1(A), R1(B),W2(A),R2(A),W1(B),R2(B), W2(B)

 Similarly, swapping non-conflicting operations W2(A) and W1(B) in S11, the schedule becomes,

S12:R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)

S12 is a serial schedule in which all operations of T1 are performed before starting any operation of
T2. Since S has been transformed into a serial schedule S12 by swapping non-conflicting operations of
S1, S1 is conflict serializable.

Let us take another Schedule

S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)

Two transactions will be

T1: R1(A), W1(A), R1(B), W1(B)

T2: R2(A), W2(A), R2(B), W2(B)

B.Sc. II YEAR IV SEMESTER

186
Rahul Publications

Rahul Publications

Possible Serial Schedules are : T1T2 or T2T1

Original Schedule is:

S2 : R2(A), W2(A),R1(A),W1(A), R1(B), W1(B),R2(B),W2(B)

Swapping non-conflicting operations R1(A) and R2(B) in S2, the schedule becomes,

S21:R2(A), W2(A), R2(B),W1(A),R1(B), W1(B), R1(A),W2(B)

Similarly, swapping non-conflicting operations W1(A) and W2(B) in S21, the schedule becomes,

S22 : R2(A), W2(A), R2(B), W2(B), R1(B), W1(B), R1(A), W1(A)

In schedule S22, all operations of T2 are performed first, but operations of T1 are not in order
(order should be R1(A), W1(A), R1(B), W1(B)). So S2 is not conflict Serializable.

Conflict Equivalent

Two schedules are said to be conflict equivalent when one can be transformed to another by
swapping non-conflicting operations. In the example discussed above, S11 is conflict equivalent to S1 (S1
can be converted to S11 by swapping non-conflicting operations). Similarly, S11 is conflict equivalent to
S12 and so on.

Note 1:

Although S2 is not conflict serializable, but still it is conflict equivalent to S21 and S21 because S2
can be converted to S21 and S22 by swapping non-conflicting operations.

Note 2:

The schedule which is conflict serializable is always conflict equivalent to one of the serial schedule.
S1 schedule discussed above (which is conflict serializable) is equivalent to serial schedule (T1T2).

We can’t interchange order within same transaction.
Therefore, No conflictR1(A); W1(A)

Not a Conflict Pairs because they are acting on two
different values, A and B.

R1(A);W2(B)
W1(A); R2(B)

Not a Conflict PairR1(A); R2(A)

Conflict PairsW1(A);R2(A)
W1(A); W2(A)

It is a conflict pair, Because T1 is reading initial value of
A and T2 writing a different value for A and if we
interchange their order then T1 will read the value of A
written by T2 , thus behavior will change.

R1(A);W2(A)

We can’t interchange order within same transaction.
Therefore, No conflictR1(A); W1(A)

Not a Conflict Pairs because they are acting on two
different values, A and B.

R1(A);W2(B)
W1(A); R2(B)

Not a Conflict PairR1(A); R2(A)

Conflict PairsW1(A);R2(A)
W1(A); W2(A)

It is a conflict pair, Because T1 is reading initial value of
A and T2 writing a different value for A and if we
interchange their order then T1 will read the value of A
written by T2 , thus behavior will change.

R1(A);W2(A)

Testing for Conflict Serializability

Method 1:

 First write the given schedule in a linear way.

 Find the conflict pairs (RW, WR, WW) on same variable by different transactions.

 Whenever conflict pairs are find, write the dependency relation like Ti  Tj, if conflict pair is from Ti
to Tj. For example, (W1(A), R2(A))  T1  T2

 Check to see if there is a cycle formed,

UNIT - IV DATABASE MANAGEMENT SYSTEMS

187
Rahul Publications

Rahul Publications

• If yes= not conflict serializable

• No= we get a sequence and hence are conflict serializable.

Method 2 :

To test the conflict serializability, we can draw a Graph G = (V,E) where

V = Vertices = number of transactions

E = Edges = for conflicting pair

1. Create node for each transaction.

2. Find the conflict pairs (RW, WR, WW) on same variable by different transactions.

3. Draw edge from the schedule for each conflict pair such that for example, W2(B), R1(A) isconflict
pair, draw edge from T2 to T1 i.e. T2 must be executed before T1.

4. Testing conditions for conflict serializability of schedule

a. If precedence graph is cyclic non conflict serializable schedule

b. If precedence graph is a acyclic conflict serializable schedule

4.4 RECOVERABILITY

Q8. Discuss in detail about the Recoverability of Schedules ?

Ans : (Imp.)

A transaction may not execute completely due to hardware failure, system crash or software issues.
In that case, we have to rollback the failed transaction. But some other transaction may also have used
values produced by failed transaction. So we have to rollback those transactions as well.

Above table shows a schedule with two transactions, T1 reads and writes A and that value is read
and written by T2. T2 commits. But later on, T1 fails. So we have to rollback T1. Since T2 has read the
value written by T1, it should also be rollbacked. But we have already committed that. So this schedule is
irrecoverable schedule.

Irrecoverable Schedule : When Tj is reading the value updated by Ti and Tj is committed before
commit of Ti, the schedule will be irrecoverable.

B.Sc. II YEAR IV SEMESTER

188
Rahul Publications

Rahul Publications
Table shows a schedule with two transactions, T1 reads and writes A and that value is read and

written by T2. But later on, T1 fails. So we have to rollback T1. Since T2 has read the value written by T1,
it should also be roll backed. As it has not committed, we can rollback T2 as well. So it is recoverable with
cascading rollback.

Recoverable with cascading rollback: If Tj is reading value updated by Ti and commit of Tj is delayed
till commit of Ti, the schedule is called recoverable with cascading rollback.

Tableshows a schedule with two transactions, T1 reads and writes A and commits and that value is
read by T2. But if T1 fails before commit, no other transaction has read its value, so there is no need to
rollback other transaction. So this is a cascadeless recoverable schedule.

4.5 LOCKING METHODS

Q9. What is Lock? Explain various type of Locks in DBMS.

Ans : (Imp.)

Transaction processing systems usually allow multiple transactions to run concurrently. By allowing
multiple transactions to run concurrently will improve the performance of the system in terms of increased
throughout or improved response time, but this allows causes several complications with consistency of
the data. Ensuring consistency in spite of concurrent execution of transaction require extra work, which is
performed by the concurrency controller system of DBMS.

A lock is a variable associated with a data item that describes the status of the item with respect to
possible operations that can be applied to it. Generally, there is one lock for each dataitem in the database.
Locks are used as a means of synchronizing the access by concurrent transactions to the database item.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

189
Rahul Publications

Rahul Publications

Types of Locks

Several types of locks are used in concurrency control. To introduce locking concepts gradually, we
first discuss binary locks, which are simple but restrictive and so are not used in practice. We then discuss
shared/exclusive locks, which provide more general locking capabilities and are used in practical database
locking schemes.

1. Binary Locks

A binary lock can have two states or values: locked and unlocked.

A distinct lock is associated with each database item A. If the value of the lock on A is 1,
item A cannot be accessed by a database operation that requests the item. If the value of the lock
on A is 0 then item can be accessed when requested. We refer to the current value of the lock associated
with item A as LOCK (A). There are two operations, lock item and unlock item are used with binary
locking A transaction requests access to an item A by first issuing a lockitem (A) operation. If LOCK (A)
= 1, the transaction is forced to wait. If LOCK (A) = 0 it is set to 1 (the transaction locks the item) and the
transaction is allowed to access item A. When the transaction is through using the item, it issues an
unlock item (A) operation, which sets LOCK (A) to 0 (unlocks the item) so that A may be accessed by
other transactions. Hence binary lock enforces mutual exclusiol1 on the data item.

Rules of Binary Locks

If the simple binary locking scheme described here is used, every transaction must obey the following
rules :

1. A transaction must issue the operation lock_item (A) before any read_item (A) or write, item operations
are performed in T.

2. A transaction T must issue the operation unlock_item (A) after all read_item (A) and

3. write_item (A) operations are completed in T.

4. A transaction T will not issue a lock_item (A) operation if it already holds the lock on Item A.

5. A transaction T will not issue an unlock_item (A) operation unless it already holds the lock on
item A.

6. The lock manager module of the DBMS can enforce these rules. Between the Lock_item (A) and
unlock_item (A) operations in transaction T, is said to hold the lock on item A. At most one
transaction can hold the lock on a particular item. Thus no two transactions can access the’ same
item concurrently.

Disadvantages of Binary Locks

i) Share/Exclusive (for Read/Write) Locks

We should allow several transactions to access the same item A if they all access A’ for reading
purposes only. However, if a transaction is to write an item A, it must have exclusive access to A. For this
purpose, a different type of lock called a multiple-mode lock is used. In this scheme there are shared/
exclusive or read/write locks are used.

ii) Locking Operations

There are three locking operations called read_lock(A), write_lock(A) and unlock(A) represented as
lock-S(A), lock-X(A), unlock(A) (Here, S indicates shared lock, X indicates exclusive lock)can be performed
on a data item. A lock associated with an item A, LOCK (A), now has three possible states: “read-locked”,
“write-locked,” or “unlocked.” A read-locked item is also called share-locked item because other transactions
are allowed to read the item, whereas a write-locked item is caused exclusive-locked, because a single
transaction exclusively holds the lock on the item.

B.Sc. II YEAR IV SEMESTER

190
Rahul Publications

Rahul Publications

2. Compatibility of Locks
Suppose that there are A and B two different locking modes. If a transaction T1 requests a lock of

mode on item Q on which transaction T2 currently hold a lock of mode B. If transaction can be granted
lock, in spite of the presence of the mode B lock, then we say mode A is compatible with mode B. Such
a function is shown in one matrix as shown below :

The graphs shows that if two transactions only read the same data object they do not conf1ict, but
if one transaction writes a data object and another either read or write the same data object, then they
conflict with each other. A transaction requests a shared lock on data item Q by executing the lock-S(Q)
instruction. Similarly, an exclusive lock is requested through the lock- X(Q) instruction. A data item Q can
be unlocked via the unlock(Q) instruction.

To access a data item, transaction 1’1 must first lock that item. If the data item is already locked by
another transaction in an incompatible mode, the concurrency control manager will not grant the lock
until all incompatible locks held by other transactions have been released. Thus, T1 is made to wait until
all incompatible locks held by other transactions have been released.

4.6 DEADLOCK PREVENTION AND DETECTION

Q10. Define deadlock. State the prevention and detection of deadlock?

Ans : (Imp.)

In a multi-process system, deadlock is an unwanted situation that arises in a shared resource
environment, where a process indefinitely waits for a resource that is held by another process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to complete its task.
Resource X is held by T1, and T1 is waiting for a resource Y, which is held by T2. T2 is waiting for resource
Z, which is held by T0. Thus, all the processes wait for each other to release resources. In this situation,
none of the processes can finish their task. This situation is known as a deadlock.

Deadlocks are not healthy for a system. In case a system is stuck in a deadlock, the transactions
involved in the deadlock are either rolled back or restarted.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

191
Rahul Publications

Rahul Publications

Deadlock detection

Resource scheduler is one that keeps the track of resources allocated to and requested by processes.
Thus, if there is a deadlock it is known to the resource scheduler. This is how a deadlock is detected.

Once a deadlock is detected it is being corrected by following methods :

 Terminating processes involved in deadlock : Terminating all the processes involved in deadlock
or terminating process one by one until deadlock is resolved can be the solutions but both of these
approaches are not good. Terminating all processes cost high and partial work done by processes
gets lost. Terminating one by one takes lot of time because each time a process is terminated, it
needs to check whether the deadlock is resolved or not. Thus, the best approach is considering
process age and priority while terminating them during a deadlock condition.

 Resource Preemption: Another approach can be the preemption of resources and allocation of
them to the other processes until the deadlock is resolved.

Deadlock Prevention

Deadlock Prevention ensures that the system never enters a deadlock state.

Following are the requirements to free the deadlock :

 No Mutual Exclusion : No Mutual Exclusion means removing all the resources that are sharable.

 No Hold and Wait : Removing hold and wait condition can be done if a process acquires all the
resources that are needed before starting out.

 Allow Preemption : Allowing preemption is as good as removing mutual exclusion. The only
need is to restore the state of the resource for the preempted process rather than letting it in at the
same time as the preemptor.

 Removing Circular Wait : The circular wait can be removed only if the resources are maintained
in a hierarchy and process can hold the resources in increasing the order of precedence.

Deadlock Avoidance

Aborting a transaction is not always a practical approach. Instead, deadlock avoidance mechanisms
can be used to detect any deadlock situation in advance. Methods like “wait-for graph” are available but
they are suitable for only those systems where transactions are lightweight having fewer instances of
resource. In a bulky system, deadlock prevention techniques may work well.

B.Sc. II YEAR IV SEMESTER

192
Rahul Publications

Rahul Publications

Younger process waitsYounger process diesYounger process needs a resource held
by older process

Younger process diesOlder process waitsOlder process needs a resource held by
younger process

Wound/WaitWait/Die

Younger process waitsYounger process diesYounger process needs a resource held
by older process

Younger process diesOlder process waitsOlder process needs a resource held by
younger process

Wound/WaitWait/Die

4.6.1 Timestamp Ordering, Optimistic Techniques, Granularity of Data Items

Q11. Explain the Timestamp Ordering protocol.

Ans :
Timestamp is a unique identifier created by the DBMS to identify the relative starting time of a

transaction. Typically, timestamp values are assigned in the order in which the transactions are submitted
to the system. So, a timestamp can be thought of as the transaction start time. Therefore, time stamping
is a method of concurrency control in which each transaction is assigned a transaction timestamp.
Timestamps must have two properties namely

1. Uniqueness : The uniqueness property assures that no equal timestamp values can exist.

2. monotonicity : Monotonicity assures that timestamp values always increase.

Timestamp are divided into further fields:

1. Granule Timestamps

2. Timestamp Ordering

3. Conflict Resolution in Timestamps

1. Granule Timestamps

Granule timestamp is a record of the timestamp of the last transaction to access it. Each granule
accessed by an active transaction must have a granule timestamp.

A separate record of last Read and Write accesses may be kept. Granule timestamp may
cause.Additional Write operations for Read accesses if they are stored with the granules.

The problem can be avoided by maintaining granule timestamps as an in-memory table. The table
may be of limited size, since conflicts may only occur between current transactions. An entry in a granule
timestamp table consists of the granule identifier and the transaction timestamp. The record containing
the largest (latest) granule timestamp removed from the table is also maintained. A search for a granule
timestamp, using the granule identifier, will either be successful or will use the largest removed timestamp.

2. Timestamp Ordering

Following are the three basic variants of timestamp-based methods of concurrency control:

 Total timestamp ordering: The total timestamp ordering algorithm depends on maintaining
access to granules in timestamp order by aborting one of the transactions involved in any conflicting
access. No distinction is made between Read and Write access, so only a single value is required
for each granule timestamp.

 Partial timestamp ordering: In a partial timestamp ordering, only non-permutable actions are
ordered to improve upon the total timestamp ordering. In this case, both Read and Write granule
timestamps are stored.The algorithm allows the granule to be read by any transaction younger than
the last transaction that updated the granule. A transaction is aborted if it tries to update a granule

UNIT - IV DATABASE MANAGEMENT SYSTEMS

193
Rahul Publications

Rahul Publications

that has previously been accessed by a
younger transaction. The partial timestamp
ordering algorithm aborts fewer transactions
than the total timestamp ordering algorithm,
at the cost of extra storage for granule
timestamps

 Multiversion Timestamp ordering: The
multiversion timestamp ordering algorithm
stores several versions of an updated granule,
allowing transactions to see a consistent set
of versions for all granules it accesses. So, it
reduces the conflicts that result in transaction
restarts to those where there is a Write-Write
conflict. Each update of a granule creates a
new version, with an associated granule
timestamp. A transaction that requires read
access to the granule sees the youngest
version that is older than the transaction.
That is, the version having a timestamp equal
to or immediately below the transaction’s
timestamp.

Conflict Resolution in Timestamps

To deal with conflicts in timestamp algorithms,
some transactions involved in conflicts are made to
wait and to abort others.Following are the main
strategies of conflict resolution in timestamps :

WAIT-DIE :

 The older transaction waits for the younger if
the younger has accessed the granule first.

 The younger transaction is aborted (dies) and
restarted if it tries to access a granule after an
older concurrent transaction.

WOUND-WAIT :

 The older transaction pre-empts the younger
by suspending (wounding) it if the younger
transaction tries to access a granule after an
older concurrent transaction.

 An older transaction will wait for a younger
one to commit if the younger has accessed a
granule that both want.

The handling of aborted transactions is an
important aspect of conflict resolution algorithm. In
the case that the aborted transaction is the one
requesting access, the transaction must be restarted
with a new (younger) timestamp. It is possible that

the transaction can be repeatedly aborted if there
are conflicts with other transactions.

An aborted transaction that had prior access
to granule where conflict occurred can be restarted
with the same timestamp. This will take priority by
eliminating the possibility of transaction being
continuously locked out.

Q12. Discuss in detail about multi version
timestamp ordering.

Ans : (Imp.)

Multi-version Timestamp Ordering

In this method for each object its temporary
versions are maintained along with its committed
versions. This maintenance avoid the need to reject
late arriving read operations. Beside this, both read
and write timestamps are maintained where a read
timestamp contain maximum timestamp of the
transaction which read the object.

Moreover, a read operation is directed to
maximum write timestamp which has less timestamp
than the transaction. When a transaction timestamp
is greater than the version’s read timestamp then
the transaction timestamp uses the read timestamp
of the version. In addition to this, a read operation
is never aborted though it may sometime, made to
wait to allow earlier transactions to complete their
operation. Late arriving read operations are also
permitted to read previous committed version in
this method. This ensure recoverability of the
execution. Furthermore, each transaction write its
own committed versions of the object that it accesses.
As a result of this, conflict occur among different
transaction’s write operations.

However, this method must follow a rule
which states that a current transaction must not write
objects, read by earlier transaction. In other words,
if an object for any version has greater timestamp
than current timestamp then this rule will be
violated.

Multi-version Timestamp Ordering Write Rule

When a conflicting read operation is directed
to the server, maximum write timestamp is checked
and below stated rule is followed.

B.Sc. II YEAR IV SEMESTER

194
Rahul Publications

Rahul Publications

if

(an object 0l’s earlier maximum read
timestamp is less than or equal to current
timestamp)

then

perform a write on 01 ’s temporary version
with current transaction’s write timestamp

else

abort current transaction

Example

Consider figure that shows sequence of
operations that are requested to perform on an
object.

Tr1, Tr2 and Tr3 are committed versions

Tr4 and Tr6 are temporary versions

Sequence = T4 read, T, write, T6 read, T5 write
Fig: A Late Write Operation Making a Read

Operation Invalid

In this figure, transaction4 (Tr4) needs to read
from the object and place read timestamp of Tr4 on
transactions’s version. After this, Tr4 performs a write
operation on the object and create a temporary
version with Tr4 write timestamp. Now, transaction6
(Tr6) performs a read operation on the same object
which has Tr4 write timestamp. Finally, transactions
(Trs) request to perform a write operation. This
request is denied because the object has read
timestamp of transaction6 which is greater than Trs.
In case, if this operation is allowed then the later
write timestamp will be transaction (Tr5) and this
will make transaction (Tr6)’s read operations invalid.

Furthermore, in this method of concurrency
control when a transaction is committed, its all
versions are stored whereas if a transaction is
aborted its all versions are deleted. It also offers
some advantages such as,

(i) It allow more concurrency

(ii) It is free from deadlock

(iii) It never derives read operation.

However, it need more storage to save many
versions.

4.7 DATABASE RECOVERY

Q13. What is Database Recovery ?

Ans :
Data recovery is the art of restoring lost or

damaged files. This damage can occur when
your computer crashes, a virus infects, you
accidentally reformat a disk that contains precious
data, or you experience some other catastrophe of
considerable dimension. And, at some point in your
life, you’re going to delete a file you really didn’t
mean to (believe me). The next time tragedy strikes,
try running one of the many data recovery
applications (powerful software written specifically
for data recovery purposes) to see if it can correct
the situation. Often these little jewels work magic
and save your day-and your files.

There are companies that specialize in
restoring lost data. These people generally work with
more serious situations, like when you lose the last
three years of your business’s financial records. Find
them in the yellow pages under “Computers:
Service and Repair.” Check the ads in the back
pages of computer magazines if you can’t find
someone local. It’s very common to have to ship
your hard disk or your computer off to a company
that can fix it.

4.7.1 The Need for Recovery

Q14. Why the need for recovery in databases
and what is the role of transactions in
database recovery ?

Ans :
A database is a very huge system with lots of

data and transaction. The transaction in the database
is executed at each seconds of time and is very
critical to the database. If there is any failure or crash
while executing the transaction, then it expected that
no data is lost. It is necessary to revert the changes
of transaction to previously committed point. There
are various techniques to recover the data
depending on the type of failure or crash.

1. Transaction Failure

This is the condition in the transaction where
a transaction cannot execute it further. This
type of failure affects only few tables or

UNIT - IV DATABASE MANAGEMENT SYSTEMS

195
Rahul Publications

Rahul Publications

processes. The failure can be because of
logical errors in the code or because of system
errors like deadlock or unavailability of system
resources to execute the transactions.

2. Crash Recovery

DBMS is a highly complex system with
hundreds of transactions being executed
every second. The durability and robustness
of a DBMS depends on its complex
architecture and its underlying hardware and
system software. If it fails or crashes amid
transactions, it is expected that the system
would follow some sort of algorithm or
techniques to recover lost data.

3. Failure Classification

To see where the problem has occurred, we
generalize a failure into various categories, as
follows

4. Transaction failure

A transaction has to abort when it fails to
execute or when it reaches a point from where
it can’t go any further. This is called transaction
failure where only a few transactions or
processes are hurt.Reasons for a transaction
failure could be -

 Logical errors - Where a transaction
cannot complete because it has some
code error or any internal error
condition.

 System errors - Where the database
system itself terminates an active
transaction because the DBMS is not able
to execute it, or it has to stop because
of some system condition. For example,
in case of deadlock or resource
unavailability, the system aborts an active
transaction.

5. System Crash

There are problems “ external to the system
“ that may cause the system to stop abruptly
and cause the system to crash. For example,
interruptions in power supply may cause the
failure of underlying hardware or software
failure.

6. Disk Failure

In early days of technology evolution, it was
a common problem where hard-disk drives
or storage drives used to fail frequently.Disk
failures include formation of bad sectors,
unreachability to the disk, disk head crash or
any other failure, which destroys all or a part
of disk storage.

Storage Structure

We have already described the storage
system. In brief, the storage structure can be divided
into two categories -

 Volatile storage: As the name suggests, a
volatile storage cannot survive system crashes.
Volatile storage devices are placed very close
to the CPU; normally they are embedded
onto the chipset itself. For example, main
memory and cache memory are examples
of volatile storage. They are fast but can store
only a small amount of information.

 Non-volatile storage: These memories are
made to survive system crashes. They are
huge in data storage capacity, but slower in
accessibility. Examples may include hard-
disks, magnetic tapes, flash memory, and
non-volatile (battery backed up) RAM.

Q15. Explain the working mechanism of
recovery.

Ans : (Imp.)

The data recovery process varies, depending
on the circumstances of the data loss, the data
recovery software used to create the backup and
the backup target media. For example,
many desktop and laptop backup software
platforms allow users to restore lost files themselves,
while restoration of a corrupted database from
a tape backup is a more complicated process that
requires IT intervention. Data recovery services can
also be used to retrieve files that were not backed
up and accidentally deleted from a computer’s file
system, but still remain on the hard disk in
fragments.

Data recovery is possible because a file and
the information about that file are stored in different
places. For example, the Windows operating

B.Sc. II YEAR IV SEMESTER

196
Rahul Publications

Rahul Publications

system uses a file allocation tableto track which files
are on the hard drive and where they are stored.
The allocation table is like a book’s table of contents,
while the actual files on the hard drive are like the
pages in the book.

When data needs to be recovered, it’s usually
only the file allocation table that’s not working
properly. The actual file to be recovered may still
be on the hard drive in flawless condition. If the file
still exists — and it is not damaged or encrypted —
it can be recovered. If the file is damaged, missing
or encrypted, there are other ways of recovering it.
If the file is physically damaged, it can still be
reconstructed. Many applications, such as Microsoft
Office, put uniform headers at the beginning of
files to designate that they belong to that application.
Some utilities can be used to reconstruct the file
headers manually, so at least some of the file can
be recovered.

Most data recovery processes combine
technologies, so organizations aren’t solely
recovering data by tape. Recovering core
applications and data from tape takes time, and you
may need to access your data immediately after a
disaster. There are also risks involved with
transporting tapes.

In addition, not all production data at a
remote location may be needed to resume
operations. Therefore, it’s wise to identify what can
be left behind and what data must be recovered.

4.7.2 Transactions and Recovery, Recovery
Facilities

Q16. Explain about Transactions Recovery.

Ans :
When a system fails, the database system is

started again to perform the recovery actions, which
are done in the following two phases,

(i) Redo Phase

In this phase, the scanning of the log is done
in a forward manner from the most recent
checkpoint so that, all the transaction updates
done by the system are replayed. The
replayed log records contain those records
that were used in transaction rollbacks (before
a failure occurred) and also those records that
were not committed when a failure occurred.
Generally, these records appear as <Ta, Xb,
V1, V2 > and <Ta, Xb, V2>. Here, V2 is assigned
to the data item Xb. The redo phase also finds
the transactions that are executed later or
those present in the transactions list available
in the checkpoint records. These transactions
contain no <Ta abort>or<Ta commit>
record in the log. They should perform a
rollback operation and their transaction
identifiers must be placed in an undo-list by
the system.

(ii) Undo Phase

In this phase, the rollback operation is
performed on all the transactions present in
the undo-list. Here, scanning is done in
backward manner i.e., from the end of the
log. If a log record of a transaction is found
in the undo-list then undo operations are
performed on those records that were
identified at the time of failed transaction
rollback. Hence, those log records that
appear after the operation-begin record and
before an operation-end record are skipped.
The scanning of the log is continued until <Ta
begin> record is found in the undo-list. Once
the <Ta begin> log record has been found,
the scanning is stopped and a <Ta abort>
log record is written to the log.

In the redo phase, all the update operations
that were executed by the transactions are replayed

UNIT - IV DATABASE MANAGEMENT SYSTEMS

197
Rahul Publications

Rahul Publications

from the last checkpoint. The update operations of
those records that reached a stable log are also
replayed. This include all those operations that were
performed to rollback the failed transactions and
also the operations that were executed to complete
the partially completed transactions. The operations
are repeated or replayed in similar manner in which
they were performed. Hence, this process is known
as a repeating history scheme. This scheme helps
greatly in simplifying the other recovery schemes.

If a system failure occur during the processing
of an undo operation then the physical log records
that were written inside the log were identified. With
the help of these records, partial undo operations
were undone. While the system recovery is in
progress, if the undo operation is completed, then
the operation-end record is identified and the undo
operation is performed again on the log records.

Q17. How Media Failures effect Database
Operation.

Ans :
Media failures can affect one or all types of

files necessary for the operation of an Oracle
database, including datafiles, online redo log files,
and control files.

Database operation after a media failure of
online redo log files or control files depends on
whether the online redo log or control file is
multiplexed, as recommended. A multiplexed online
redo log or control file means that a second copy of
the file is maintained. If a media failure damages a
single disk, and you have a multiplexed online redo
log, the database can usually continue to operate
without significant interruption. Damage to a non-
multiplexed online redo log causes database
operation to halt and may cause permanent loss of
data. Damage to any control file, whether it is
multiplexed or non-multiplexed, halts database
operation once Oracle attempts to read or write the
damaged control file, which happens frequently, for
example at every checkpoint and log switch.

Media failures that affect datafiles can be
divided into two categories: read errors and write
errors. In a read error, Oracle discovers it cannot
read a datafile and an operating system error is
returned to the application, along with an Oracle
error indicating that the file cannot be found, cannot

be opened, or cannot be read. Oracle continues
to run, but the error is returned each time an
unsuccessful read occurs. At the next checkpoint, a
write error will occur when Oracle attempts to write
the file header as part of the standard checkpoint
process.

If Oracle discovers that it cannot write to a
datafile and Oracle is in ARCHIVELOG mode, then
Oracle returns an error in the DBWn trace file and
takes the datafile offline automatically. Only the
datafile that cannot be written to is taken offline;
the tablespace containing that file remains online.

If the datafile that cannot be written to is in
the SYSTEM tablespace, then the file is not taken
offline. Instead, an error is returned and Oracle shuts
down the instance. The reason for this exception is
that all files in the SYSTEM tablespace must be
online in order for Oracle to operate properly. For
the same reason, the datafiles of a tablespace
containing active rollback segments must remain
online.

If Oracle discovers that it cannot write to a
datafile, and Oracle is not archiving the filled online
redo log files, then the DBWn background process
fails and the current instance fails. If the problem is
temporary (for example, the disk controller was
powered off), then crash or instance recovery usually
can be performed using the online redo log files, in
which case the instance can be restarted. However,
if a datafile is permanently damaged and archiving
is not used, then the entire database must be
restored using the most recent consistent backup.

Recovery of Read-Only Tablespaces

Recovery is not needed on read-only datafiles
during crash or instance recovery. Recovery during
startup verifies that each online read-only file does
not need any media recovery. That is, the file was
not restored from a backup taken before it was
made read-only. If you restore a read-only
tablespace from a backup taken before the
tablespace was made read-only, then you cannot
access the tablespace until you complete media
recovery.

B.Sc. II YEAR IV SEMESTER

198
Rahul Publications

Rahul Publications

Structures Used for Database Recovery

Several structures of an Oracle database
safeguard data against possible failures. This section
introduces each of these structures and its role in
database recovery.

Database Backups

A database backup consists of backups of the
physical files (all datafiles and a control file) that
constitute an Oracle database. To begin media
recovery after a media failure, Oracle uses file
backups to restore damaged datafiles or control files.
Replacing a current, possibly damaged, copy of a
data file, table space, or database with a backup
copy is called restoring that portion of the database.

Oracle offers several options in performing
database backups, including :

 Recovery Manager

 Operating system utilities

 Export utility

 Enterprise Backup Utility

4.7.3 Recovery Techniques

Q18. Explain different Recovery Techniques/
Approaches in DBMS ?

Ans : (Imp.)

Database systems, like any other computer
system, are subject to failures but the data stored in
it must be available as and when required. When a
database fails it must possess the facilities for fast
recovery. It must also have atomicity i.e. either
transactions are completed successfully and
committed (the effect is recorded permanently in
the database) or the transaction should have no
effect on the database.

There are both automatic and non-automatic
ways for both, backing up of data and recovery
from any failure situations. The techniques used to
recover the lost data due to system crash, transaction
errors, viruses, catastrophic failure, incorrect
commands execution etc. are database recovery
techniques. So to prevent data loss recovery
techniques based on deferred update and
immediate update or backing up data can be used.

Recovery techniques are heavily dependent
upon the existence of a special file known as
a system log. It contains information about the start
and end of each transaction and any updates which
occur in the transaction. The log keeps track of all
transaction operations that affect the values of
database items. This information is needed to
recover from transaction failure.

 The log is kept on disk start _ transaction
(T) : This log entry records that transaction T
starts the execution.

 read_item(T, X): This log entry records that
transaction T reads the value of database item
X.

 write_item(T, X, old_value, new_value):
This log entry records that transaction T
changes the value of the database item X from
old_value to new_value. The old value is
sometimes known as a before an image of X,
and the new value is known as an afterimage
of X.

 commit(T) : This log entry records that
transaction T has completed all accesses to
the database successfully and its effect can
be committed (recorded permanently) to the
database.

 abort(T) : This records that transaction T has
been aborted.

 checkpoint : Checkpoint is a mechanism
where all the previous logs are removed from
the system and stored permanently in a
storage disk. Checkpoint declares a point
before which the DBMS was in consistent
state, and all the transactions were committed.

A transaction T reaches its commit point
when all its operations that access the database have
been executed successfully i.e. the transaction has
reached the point at which it will not abort
(terminate without completing). Once committed,
the transaction is permanently recorded in the
database. Commitment always involves writing a
commit entry to the log and writing the log to disk.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

199
Rahul Publications

Rahul Publications

At the time of a system crash, item is searched back
in the log for all transactions T that have written a
start_transaction(T) entry into the log but have not
written a commit(T) entry yet; these transactions
may have to be rolled back to undo their effect on
the database during the recovery process

 Undoing: If a transaction crashes, then the
recovery manager may undo transactions i.e.
reverse the operations of a transaction. This
involves examining a transaction for the log
entry write_item(T, x, old_value, new_value)
and setting the value of item x in the database
to old-value.There are two major techniques
for recovery from non-catastrophic
transaction failures: deferred updates and
immediate updates.

 Deferred update: This technique does not
physically update the database on disk until
a transaction has reached its commit point.
Before reaching commit, all transaction
updates are recorded in the local transaction
workspace. If a transaction fails before
reaching its commit point, it will not have
changed the database in any way so UNDO
is not needed. It may be necessary to REDO
the effect of the operations that are recorded
in the local transaction workspace, because
their effect may not yet have been written in
the database. Hence, a deferred update is
also known as the No-undo/redo algorithm

 Immediate update: In the immediate
update, the database may be updated by
some operations of a transaction before the
transaction reaches its commit point.
However, these operations are recorded in a
log on disk before they are applied to the
database, making recovery still possible. If a
transaction reaches its commit point, the effect
of its operation must be undone i.e. the
transaction must be rolled back hence we
require both undo and redo. This technique
is known as undo/redo algorithm.

 Caching/Buffering: In this one or more disk
pages that include data items to be updated

are cached into main memory buffers and
then updated in memory before being
written back to disk. A collection of in-
memory buffers called the DBMS cache is
kept under control of DBMS for holding these
buffers. A directory is used to keep track of
which database items are in the buffer. A dirty
bit is associated with each buffer, which is 0 if
the buffer is not modified else 1 if modified.

 Shadow paging: It provides atomicity and
durability. A directory with n entries is
constructed, where the ith entry points to the
ith database page on the link. When a
transaction began executing the current
directory is copied into a shadow directory.
When a page is to be modified, a shadow
page is allocated in which changes are made
and when it is ready to become durable, all
pages that refer to original are updated to
refer new replacement page.

Some of the backup techniques are as follows :

 Full database backup: In this full database
including data and database, Meta
information needed to restore the whole
database, including full-text catalogs are
backed up in a predefined time series.

 Differential backup: It stores only the data
changes that have occurred since last full
database backup. When same data has
changed many times since last full database
backup, a differential backup stores the most
recent version of changed data. For this first,
we need to restore a full database backup.

 Transaction log backup: In this, all events
that have occurred in the database, like a
record of every single statement executed is
backed up. It is the backup of transaction log
entries and contains all transaction that had
happened to the database. Through this, the
database can be recovered to a specific point
in time. It is even possible to perform a backup
from a transaction log if the data files are
destroyed and not even a single committed
transaction is lost.

B.Sc. II YEAR IV SEMESTER

200
Rahul Publications

Rahul Publications
4.7.4 Nested Transaction Model

Q19. Explain about Nested Transaction Model.

Ans :
Nested Transaction Model

A nested transaction refers to a transaction which contains sub-transactions. There by forming a
tree structure. In this tree structure, the transactions residing at the higher levels act as parent transactions
of their lower level transactions. According to Moss proposal, only leaf nodes i.e., the nodes at the lowest
level can perform operations.

Example

begin_tl

begin_t2

orderabook;

commit t2;

begin_t3

begin_t4

searchforabook;

commit t4;

commit t3;

begin_t5 cancelanorder;

commit t5;

commit tl;

In the above example, the leaf transactions i.e., t2, t4 and t5 performs various operations. The
transaction about at lower level does not necessarily affect the transactions at higher levels. In case of a
sub­transaction failure, parent transaction can perform any of the following operations.

 Restart the transaction.

 Simply ignore the failure.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

201
Rahul Publications

Rahul Publications

 Start a different transaction in place of the
failed transaction.

 Terminate the transaction.

The modification performed on the database
by various sub-transactions are reflected only within
their parent region. Therefore, modifications
performed by t4 can only be visible to t3. With such
an approach, the higher-level transactions can
achieve ACID properties.

To provide concurrency control in this model,
strict-two phase locking mechanism can be used.
Using this mechanism, sub-transactions are executed
as individual transactions while carrying a lock. This
lock is inherited by its parent whenever the
transaction is completed successfully.

Advantages of Nested Transaction Model

 It provides modularity by allowing nested
transactions.

 It provides finer level of granularity by
allowing concurrency control and recovery
to be performed at sub-transaction level.

 It offers infra-transaction recovery with which
transactions can be rolled back or terminated
without effecting others.

 It provides concurrent execution of
subtransactions.

4.8 DATABASE SECURITY

Q20. Explain the Concepts behind the Data
Security?

Ans :
Threats and risks to databases have increased

and therefore, the need for securing databases has
also increased. Let’s learn about the basic facets of
database security, including assurance, integrity,
availability, and confidentiality.

The majority of the companies store sensitive
data in databases. However, database security is
sometimes not given as much thought and effort as
other areas of computer security. Hackers have been
able to target large databases in recent years to
obtain sensitive information like credit card numbers

and other personal information. It is important to
protect databases against these risks, and this is
where database security comes into place.

Database security can be defined as a system
or process by which the “Confidentiality, Integrity,
and Availability,” or CIA, of the database can be
protected. Unauthorized entry or access to a
database server signifies a loss of confidentiality;
unauthorized alteration to the available data signifies
loss of integrity; and lack of access to database
services signifies loss of availability. Loss of one or
more of these basic facets will have a significant
impact on the security of the database.

For an illustration of this concept, imagine that
the website of a company contains information like
who they are, what they do, and what prospective
customers have to do to contact them for their
queries. In this case, the availability of the database
services is more important when compared with
other factors like the confidentiality or integrity of
the database security.

For a company that sells products or goods
online, however, confidentiality and integrity are
more important as customers use their credit cards
to buy goods online only when the site is available.

Another factor needs to be addressed when
examining database security and that is “Assurance.”

What is database assurance? Take for
example, a web application that acts as a frontend
to a database server. If the web application that is
selling online goods is vulnerable to cross-site-
scripting, the chances of people not trusting the
website becomes greater. When customers lose trust
or assurance in the company, this may consequently
lead to loss in the business.

Databases are susceptible to other
vulnerabilities like poor password management,
SQL injection, leakage of data, and improper error
handling apart from cross site scripting. Hackers try
to attack databases that are configured poorly.
Hackers take advantage of these database
weaknesses to exploit the database vulnerabilities.

The risks involved with the database are not
the same for every database present in the
organization; therefore, security controls or measures

B.Sc. II YEAR IV SEMESTER

202
Rahul Publications

Rahul Publications

to these databases differ. As there are various
databases like Oracle, SQL and Access, different
types of database security solutions are also available
in the market. One needs to assess the risk for the
database involved and mitigate the risk by designing
and implementing appropriate database security
solutions. If security is the key driver for database
configuration, the data will remain safe and secure

Concepts of Database Security

When it comes to securing a database, lots of
things have to be taken care of. This article provides
details about core database security concepts
including confidentiality, integrity, and availability.

In the first article in this series, we saw what
database security is and introduced the core
concepts of database security. In this part, we’ll
continue our look, in somewhat greater detail, at
the core concepts that play a vital role in database
security.

Confidentiality

In database security concepts, Confidentiality
comes first. Confidentiality can be enforced by
encrypting the data stored in the database.
Encryption is a technique or process by which data
is encoded in such a way only authorized users be
able to read the data. In other words, encryption
means rendering sensitive data unreadable to
unauthorized users. Encryption can be done at two
different levels: data-in-transit and data-at-rest.

 Data-in-transit : This refers to data that is
moving within the network. Sensitive data,
for example, that is sent through network
layers or through the Internet. A hacker can
gain access to this sensitive data by
eavesdropping. When this happens, the
confidentiality of the data is compromised.

Encrypting data-in-transit avoids such
compromises.

 Data-at-rest : It is possible for a hacker to
hack the data that is stored in the database.
Encrypting data-at-rest prevents such data
leakages.

Different encryption algorithms are available,
which includes Data Encryption Standards (DES),
Triple DES or 3DES, and Advanced Encryption
Standards (AES).

Integrity

Integrity can be enforced by setting User
Access Controls (UAC) that define which users have
to be given what permissions in the database. For
example, data related to employee information is
stored in a database. An employee may have
permission for viewing the records and altering only
part of information like his contact details, whereas
a person in the human resources department will
have more privileges.

What are the steps that have to be taken to
ensure integrity of the database ?

 Once the database is installed, the password
has to be changed. Similarly, periodic checks
have to be conducted to ensure the password
is not compromised.

 User accounts that are not in use have to be
locked. If one is sure that these user accounts
will never be used again, then the best step is
to remove such user accounts.

4.8.1 Threats to Database Security

Q21. Explain different Database Security
Threats and How to Mitigate them?

Ans : (Imp.)

With the increase in usage of databases, the
frequency of attacks against those databases has also
increased. Here we look at some of the threats that
database administrators actually can do something
about.

Database attacks are an increasing trend these
days. What is the reason behind database attacks?

UNIT - IV DATABASE MANAGEMENT SYSTEMS

203
Rahul Publications

Rahul Publications

One reason is the increase in access to data stored
in databases. When the data is been accessed by
many people, the chances of data theft increases.
In the past, database attacks were prevalent, but
were less in number as hackers hacked the network
more to show it was possible to hack and not to sell
proprietary information. Another reason for
database attacks is to gain money selling sensitive
information, which includes credit card numbers,
Social Security Numbers, etc. We previously defined
database security and talked about common
database security concepts. Now let’s look at the
various types of threats that affect database security.

Types

1. Privilege abuse

When database users are provided with
privileges that exceeds their day-to-day job
requirement, these privileges may be abused
intentionally or unintentionally.

Take, for instance, a database administrator
in a financial institution. What will happen if he turns
off audit trails or create bogus accounts? He will be
able to transfer money from one account to another
thereby abusing the excessive privilege intentionally.

Having seen how privilege can be abused
intentionally, let us see how privilege can be abused
unintentionally. A company is providing a “work
from home” option to its employees and the
employee takes a backup of sensitive data to work
on from his home. This not only violates the security
policies of the organization, but also may result in
data security breach if the system at home is
compromised.

2. Operating System vulnerabilities

Vulnerabilities in underlying operating systems
like Windows, UNIX, Linux, etc., and the services

that are related to the databases could lead to
unauthorized access. This may lead to a Denial of
Service (DoS) attack. This could be prevented by
updating the operating system related security
patches as and when they become available.

3. Database Rootkits

A database rootkit is a program or a procedure
that is hidden inside the database and that provides
administrator-level privileges to gain access to the
data in the database. These rootkits may even turn
off alerts triggered by Intrusion Prevention Systems
(IPS). It is possible to install a rootkit only after
compromising the underlying operating system.
This can be avoided by periodical audit trails, else
the presence of the database rootkit may go
undetected.

4. Weak authentication

Weak authentication models allow attackers
to employ strategies such as social engineering and
brute force to obtain database login credentials and
assume the identity of legitimate database users.

5. Weak audit trails

A weak audit logging mechanism in a
database server represents a critical risk to an
organization especially in retail, financial, healthcare,
and other industries with stringent regulatory
compliance. Regulations such as PCI, SOX, and
HIPAA demand extensive logging of actions to
reproduce an event at a later point of time in case
of an incident. Logging of sensitive or unusual
transactions happening in a database must be done
in an automated manner for resolving incidents.
Audit trails act as the last line of database defense.
Audit trails can detect the existence of a violation
that could help trace back the violation to a particular
point of time and a particular user.

B.Sc. II YEAR IV SEMESTER

204
Rahul Publications

Rahul Publications

4.8.2 Computer Based Controls

Q22. Explain various Computer Based
Controls for a multi user environment

Ans : (Imp.)

Various computer-based security controls for
a multi-user environment are,

1. Access control

2. View control

3. Backup and recovery

4. Authentication/authorization

5. Integrity

6. Encryption

7. RAID.

1. Access Control

Access control is a way of prohibiting
unauthorized users from data access. The two most
common access control mechanisms are,

(i) Discretionary Access Control (DAC)

(ii) Mandatory Access Control (MAC).

(i) Discretionary Access Control (DAC)

DAC specifies that the users must not just
protect their own files but also allow or deny
access rights to other users or group of users.
In additional to this, it also specify access
mode.

(ii) Mandatory Access Control (MAC)

MAC specifies that, users or group of users
can perform both read and write operations
on files. The functioning of MAC is done
according to the security labels which are
allocated to both users and files. These
security labels are nothing but hierarchical
classification level and set of non-hierarchical
categories. They together states the privileges
of user and shows how critical the file
information is? In particular, users in MAC
can read the files from same classification or
also from lower classification. Similarly, it can
write on files from same classification or from
higher classification.

2. View Control

View is another way of ensuring data security.
It puts restriction on the users such that they are
not allowed to view the entire data rather allows
them to view only the part of data for which they
have been authorized.

Generally, views are represented using
relational operators such as selections projections
and joins. Using views, restrictions are provided on
all existing relations or executing joins on certain
relations thereby ensuring data security.

Views are created for different classes of users
due to which it is possible to automatically attain
access controls. Moreover relational-level-security
and view-level-security can be integrated for
achieving high level of access control such that the
sers are allowed to access only required data.

3. Backup and Recovery

Backup and recovery control is important in
database system for operations to be performed
efficiently. This control is useful to restore the
database during system crash.

Backups

There are three different levels of database
backup. They are,

(i) Full Backup

In this level, all the contents of the database
are copied to a permanent storage device.
For example disks, tapes etc.

(ii) Differential Backup

In this level, only those contents of the
database that have been modified, as
compared to previous backup copy, are
copied to a permanent secondary storage.

(iii) Transaction Log Backup

In this level, only those transaction log
operations that have been modified, as
compared to the previous backup copy, are
copied to a permanent secondary storage.

Recovery

In database recovery process, database
backups play a major role. The database recovery
process chooses to utilize any one of the levels of

UNIT - IV DATABASE MANAGEMENT SYSTEMS

205
Rahul Publications

Rahul Publications

backup, depending on the type and extent of
recovery that is to be performed. If a whole database
is to be recovered, then the recovery process
involves loading of the recent backup copy of the
database, when it was in a consistent state. Then,
the transaction log information is used to roll forward
the backup copy in order to restore all the remaining
transactions carried out after database has moved
from the consistent state. If these transactions have
been committed and are still usable, then the
recovery process can use the transaction log
information and perform just an ‘undo’ operation
on all those transactions that were not committed.

4. Authentication/Authorization

Authentication is a mean of verifying user’s
identity. This is done by using any of the following
mechanisms,

(i) Username and password

(ii) Plastic ID card

(iii) Physical representation like finger recognition
(or) voice recognition techniques.

Among these methods, password is one of
the cheaper source to provide security. But, when
intruder knows the password length and the
characters available, it is possible to hack the
password. So, DBA must design excellent password
schemes to avoid hacking.

One of the typical authorization scheme is to
create a password which is easy for the users to
remember and at the same time difficult for the
intruders to guess. This scheme is capable of
protecting the data from being accessed by
unauthorized users.

Apart from this, the other schemes for
ensuring authentication are as follows,

(a) Usage of password parameters

(b) Question-and-answer scheme

(c) Usage of pre-arranged algorithm

(d) Usage of access control mechanism.

5. Integrity

Integrity constraint is defined as the rule that
set various restrictions on certain records of the
database.

6. Encryption

It is the process of encoding information in
such a way that only authorized users (who knows
the method of encryption) have ability to read the
information. Intruders cannot read the encrypted
data until the encryption method is known.

There are two encryption methods used for
encrypting the data. They are,

(a) Simple substitution method

(b) Poly-alphabetic substitution method

(a) Simple Substitution Method

It is a method in which each character is
substituted by another character.

(b) Poly-alphabetic substitution method

Polyalphabetic ciphers are the improved form
of mono-alphabetic ciphers, that uses
different mono-alphabetic ciphers for
different letters in the plaintext.

The common features of this technique are,

1. Using a related set of mono-alphabetic
substitution rules.

2. For a given transformation, the specific
rule to be used is determined by the key.

The simplest algorithm that contains the
above features is a vigenere cipher. Here, the set of
monoalphabetic rules that are related to each other
are the 26 Caesar ciphers that have the shifts from
0 through 25. Each of the 26 ciphers are placed
horizontally with their key letter to its left. The
normal plaintext letters are placed on the top. The
process proceeds as follows,

If ‘r’ is a key letter and ‘h’ is a plaintext letter,
then the intersection of row r and column h is ‘y’
and is the I corresponding ciphertext letter.

Encryption of a message requires a key, that
is of the length of the message. The strength of
encryption depends on the type of the key used.

7. RAID

RAID stands for Redundant Array of
Inexpensive Disks. The idea here is to use multiple
disks and keep redundant data or copies of data so
as to improve performance and reliability. The

B.Sc. II YEAR IV SEMESTER

206
Rahul Publications

Rahul Publications

simplest RAID is to copy a whole disk to another
disk. Thus, if the original disk fails, its duplicate can
be used to restore the data. Hence, reliability is
increased.

Here both the original and duplicate disks can
be used concurrently to access data. Consider an
example, that we want to read 16-blocks of data
from a disk and it requires 16 milliseconds. If we
read first eight blocks from one disk and remaining
eight from another simultaneously, then the time
required will be only 8 milliseconds i.e., half of the
traditional approach. Hence, performance is
improved.

4.9 AUTHORIZATION

Q23. Explain the concept of Authorization.

Ans :
Authorization is a security mechanism used

to determine user/client privileges or access levels
related to system resources, including computer
programs, files, services, data and application
features. Authorization is normally preceded by
authentication for user identity verification. System
administrators (SA) are typically assigned permission
levels covering all system and user resources.

During authorization, a system verifies an
authenticated user’s access rules and either grants
or refuses resource access.

Modern and multiuser operating systems
depend on effectively designed authorization
processes to facilitate application deployment and
management. Key factors include user type,
number, and credentials requiring verification and
related actions and roles. For example, role-based
authorization may be designated by user groups
requiring specific user resource tracking privileges.
Additionally, authorization may be based on an
enterprise authentication mechanism, like Active
Directory (AD), for seamless security policy
integration.

For example, ASP.NET works with Internet
Information Server (IIS) and Microsoft Windows to
provide authentication and authorization services
for Web-based .NET applications. Windows uses
New Technology File System (NTFS) to maintain
Access Control Lists (ACL) for all resources. The

ACL serves as the ultimate authority on resource
access.

The .NET Framework provides an alternate
role-based security approach for authorization
support. Role-based security is a flexible method
that suits server applications and is similar to code
access security checks, where authorized application
users are determined according to roles.

 Authorization is finding out if the person, once
identified, is permitted to have the resource.

 Authorization explains that what you can do
and is handled through the DBMS unless
external security procedures are available.

 Database management system allows DBA to
give different access rights to the users as per
their requirements.

 Basic Authorization we can use any one form
or combination of the following basic forms
of authorizations.

1. Resource authorization: Authori-
zation to access any system resource.
e.g. sharing of database, printer etc.

2. Alternation Authorization: Authori-
zation to add attributes or delete
attributes from relations

3. Drop Authorization: Authorization to
drop a relation.

Granting of Privileges

i. A system privilege is the right to perform a
particular action,or to perform an action on any
schema objects of a particular type.

ii. An authorized user may pass on this
authorization to other users.This process is called
as ganting of privileges.

Syntax :

GRANT <privilege list> ON<relation name
or view name> TO<user/role list>

Example:

The following grant statement grants user
U1,U2 and U3 the select privilege on Emp_Salary
relation:

GRANT select ON Emp_Salary TO U1,U2
and U3.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

207
Rahul Publications

Rahul Publications

Revoking of Privileges

We can reject the privileges given to particular user with help of revoke statement.

 To revoke an authorization, we use the revoke statement.

Syntax:

REVOKE <privilege list> ON<relation name or view name> FROM <user/role list> [restrict/
cascade]

Example :

The revocation of privileges from user or role may cause other user or roles also have to loose that
privileges.This behavior is called cascading of the revoke.

Revoke select ON Emp_Salary FROM U1,U2,U3.

Some Other Types of Privileges

1. Reference privileges : SQL permits a user to declare foreign keys while creating relations.

Example: Allow user U1 to create relation that references key ‘Eid’ of Emp_Salary relation.

GRANT REFERENCES(Eid) ON Emp_Salary TO U1

Execute Privileges

This privilege authorizes a user to execute a function or procedure. Thus,only user who has execute
privilege on a function Create_Acc() can call function.

GRANT EXECUTE ON Create_Acc TO U1.

Using authentication, authorization, and encryption.

Authentication, authorization, and encryption are used in everyday life. One example in which
authorization, authentication, and encryption are all used is booking and taking an airplane flight.

 Encryption is used when a person buys their ticket online at one of the many sites that advertises
cheap ticket. Upon finding the perfect flight at an ideal price, a person goes to buy the ticket.
Encryption is used to protect a person’s credit card and personal information when it is sent over
the Internet to the airline. The company encrypts the customer’s data so that it will be safer from
interception in transit.

 Authentication is used when a traveler shows his or her ticket and driver’s license at the airport so he
or she can check his or her bags and receive a boarding pass. Airports need to authenticate that the
person is who he or she says she is and has purchased a ticket, before giving him or her a boarding
pass.

 Authorization is used when a person shows his or her boarding pass to the flight attendant so he or
she can board the specific plane he or she is supposed to be flying on. A flight attendant must
authorize a person so that person can then see the inside of the plane and use the resources the
plane has to fly from one place to the next.

 Here are a few examples of where encryption, authentication, and authorization are used by
computers:

 Encryption should be used whenever people are giving out personal information to register for
something or buy a product. Doing so ensures the person’s privacy during the communication.
Encryption is also often used when the data returned by the server to the client should be protected,
such as a financial statement or test results.

B.Sc. II YEAR IV SEMESTER

208
Rahul Publications

Rahul Publications

 Authentication should be used whenever you want to know exactly who is using or viewing your
site. Weblog in is Boston University’s primary method of authentication. Other commercial websites
such as Amazon.com require people to login before buying products so they know exactly who
their purchasers are.

 Authorization should be used whenever you want to control viewer access of certain pages. For
example, Boston University students are not authorized to view certain web pages dedicated to
professors and administration. The authorization requirements for a site are typically defined in a
website’s .htaccess file.

 Authentication and Authorization are often used together. For example, students at Boston University
are required to authenticate before accessing the Student Link. The authentication they provide
determines what data they are authorized to see. The authorization step prevents students from
seeing data of other students.

Q24. Explain managing and controlling the Data in DBMS using Roles ?

Ans :

Managing and controlling privileges is made easier by using roles, which are named groups of
related privileges that you grant as a group to users or other roles. Within a database, each role name
must be unique, different from all user names and all other role names. Unlike schema objects, roles are
not contained in any schema. Therefore, a user who creates a role can be dropped with no effect on the
role.

Roles are designed to ease the administration of an end-user system and schema object privileges
and are often maintained in Oracle Internet Directory. However, roles are not meant to be used by
application developers, because the privileges to access schema objects within stored programmatic constructs
need to be granted directly.

The effective management of roles is discussed in the following subsections :

Secure Application RolesHow Secure Application Roles Are Created and Used

Roles in a Distributed EnvironmentHow Roles Work in a Remote Session

Operating System and RolesHow Can Operating Systems Aid Roles

Predefined RolesWhat Roles are Predefined in Oracle

DDL Statements and RolesHow Roles Aid or Restrict DDL Usage

PL/SQL Blocks and RolesHow Roles Work in PL/SQL Blocks

Security Domains of Roles and UsersHow Roles Affect The Scope of a User's Privileges

Granting and Revoking RolesHow Users Get Roles (or Role Restrictions

Common Uses of RolesHow Roles are Typically Used

Properties of RolesWhy Roles Are Advantageous

Links to Relevant Subsection
Authentication Considerations in These Topical

Areas

Secure Application RolesHow Secure Application Roles Are Created and Used

Roles in a Distributed EnvironmentHow Roles Work in a Remote Session

Operating System and RolesHow Can Operating Systems Aid Roles

Predefined RolesWhat Roles are Predefined in Oracle

DDL Statements and RolesHow Roles Aid or Restrict DDL Usage

PL/SQL Blocks and RolesHow Roles Work in PL/SQL Blocks

Security Domains of Roles and UsersHow Roles Affect The Scope of a User's Privileges

Granting and Revoking RolesHow Users Get Roles (or Role Restrictions

Common Uses of RolesHow Roles are Typically Used

Properties of RolesWhy Roles Are Advantageous

Links to Relevant Subsection
Authentication Considerations in These Topical

Areas

UNIT - IV DATABASE MANAGEMENT SYSTEMS

209
Rahul Publications

Rahul Publications

Properties of Roles

You can protect role use with a password. Applications can be created
specifically to enable a role when supplied the correct password. Users
cannot enable the role if they do not know the password.

Application-specific
security

The data dictionary records which roles exist, so you can design applications
to query the dictionary and automatically enable (or disable) selective roles
when a user attempts to execute the application by way of a given user
name.

Application
awareness

You can selectively enable or disable the roles granted to a user. This allows
specific control of a user's privileges in any given situation.

Selective availability
of privileges

If the privileges of a group must change, then only the privileges of the role
need to be modified. The security domains of all users granted the group's
role automatically reflect the changes made to the role.

Dynamic privilege
Management

Rather than granting the same set of privileges explicitly to several users,
you can grant the privileges for a group of related users to a role, and then
only the role needs to be granted to each member of the group.

Reduced privilege
Administration

DescriptionProperty

You can protect role use with a password. Applications can be created
specifically to enable a role when supplied the correct password. Users
cannot enable the role if they do not know the password.

Application-specific
security

The data dictionary records which roles exist, so you can design applications
to query the dictionary and automatically enable (or disable) selective roles
when a user attempts to execute the application by way of a given user
name.

Application
awareness

You can selectively enable or disable the roles granted to a user. This allows
specific control of a user's privileges in any given situation.

Selective availability
of privileges

If the privileges of a group must change, then only the privileges of the role
need to be modified. The security domains of all users granted the group's
role automatically reflect the changes made to the role.

Dynamic privilege
Management

Rather than granting the same set of privileges explicitly to several users,
you can grant the privileges for a group of related users to a role, and then
only the role needs to be granted to each member of the group.

Reduced privilege
Administration

DescriptionProperty

Database administrators often create roles for a database application. The DBA grants a secure
application role all privileges necessary to run the application. The DBA then grants the secure application
role to other roles or users. An application can have several different roles, each granted a different set of
privileges that allow for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the privileges granted to
the role. Typically, an application is designed so that when it starts, it enables the proper role.As a result, an
application user does not need to know the password for an application role.

Common Uses of Roles

In general, you create a role to serve one of two purposes :

 To manage the privileges for a database application (Application Roles)

 To manage the privileges for a user group (User Roles)

B.Sc. II YEAR IV SEMESTER

210
Rahul Publications

Rahul Publications

Application Roles

You grant an application role all privileges
necessary to run a given database application. Then,
you grant the secure application role to other roles
or to specific users. An application can have several
different roles, with each role assigned a different
set of privileges that allow for more or less data
access while using the application.

User Roles

You create a user role for a group of database
users with common privilege requirements. You
manage user privileges by granting secure
application roles and privileges to the user role and
then granting the user role to appropriate users.

Granting and Revoking Roles

System or schema object privileges can be
granted to a role, and any role can be granted to
any database user or to another role (but not to
itself). However, a role cannot be granted circularly,
that is, a role X cannot be granted to role Y if
role Y has previously been granted to role X.

To provide selective availability of privileges,
Oracle Database allows applications and users to
enable and disable roles. Each role granted to a
user is, at any given time, either enabled or disabled.
The security domain of a user includes the privileges
of all roles currently enabled for the user and
excludes the privileges of any roles currently disabled
for the user.

A role granted to a role is called an indirectly
granted role. It can be explicitly enabled or disabled
for a user. However, whenever you enable a role
that contains other roles, you implicitly enable all
indirectly granted roles of the directly granted role.

You grant roles to (or revoke roles from) users
or other roles by using either of the following
methods :

 Oracle Enterprise Manager 10g Database
Control

 The SQL statements, GRANT and REVOKE

Privileges are granted to and revoked from
roles using the same options. Roles can also be
granted to and revoked from users using the
operating system that runs Oracle, or through
network services.

4.10 ACCESS CONTROL MECHANISMS

Q25. What are the types of Access Control
Mechanisms ?

Ans : (Imp.)

Many of us have come across the terms like
MAC, DAC, RBAC, ACLs while reading various e-
security related articles. However not all of us (except
the CISSPs) know the meanings of these terms and
the differences between these Access Control
mechanisms.

Before proceeding to Access Control
mechanisms, let’s see what Access Control is.

Access Control is a set of controls to restrict
access to certain resources. If we think about it,
access controls are everywhere around us. A door
to your room, the guards allowing you to enter the
office building on seeing your access card, swiping
your card and scanning your fingers on the
biometric system, a queue for food at the canteen
or entering your credentials to access FB, all are
examples of various types of access control. Here
we focus only on the logical Access Control
mechanisms.

Access Control Mechanisms

 Discretionary Access Control (DAC): As
the name suggests, this access control model
is based on a user’s discretion. i.e, the owner
of the resource can give access rights on that
resource to other users based on his
discretion. Access Control Lists (ACLs) are a
typical example of DAC. Specifying the “rwx”
permissions on a unix file owned by you is
another example of DAC Most of the
operating systems including windows,
flavours of unix are based on DAC Model.

 Mandatory Access Control (MAC): In this
Model, users/owners do not enjoy the
privilege of deciding who can access their files.
Here the operating system is the decision
maker overriding the user’s wishes. In this
model every Subject (users) and Object
(resources) are classified and assigned with a
security label. The security labels of the subject
and the object along with the security policy
determine if the subject can access the object.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

211
Rahul Publications

Rahul Publications

The rules for how subjects access objects are
made by the security officer, configured by
the administrator, enforced by the operating
system, and supported by security
technologies. This is a stricter and rather static
Access Control model as compared to DAC
and is mostly suited for military organizations
where data classification and confidentiality
is of prime importance. Special types of the
Unix operating systems are based on MAC
model.

 Role Based Access Control (RBAC):
RBAC is the buzzword across enterprises
today. In this model the access to a resource
is governed based on the role that the subject
holds within an organization. RBAC is also
known as non-discretionary Access Control
because the user inherits privileges that are
tied to his role. The user does not have a
control over the role that he will be assigned.
Each of the above Access Models has its own
advantages and disadvantages. The selection
of the appropriate Access Model by an
organization should be done by considering
various factors such as type of business, no
of users, organization’s security policy etc.

Case for RBAC

For implementing any access control, the two
driving factors are :

i. Least privilege principle i.e, the user should
only have the minimum privileges to perform
the tasks that he is supposed to do.

ii. Segregation of duties i.e, having more than
one user to perform a critical task so as to
reduce the risk of internal frauds.

As the no of users and the resources grow in
an organization, it becomes extremely difficult to
manage user’s access rights through ACLs. It not
only increases the cost of administration but also
results in granting of excess privileges to users thus
violating the least privilege principle and hence
exposing the organization to risks. Moreover, the
complexity involved with this approach makes it too
hard for any organization to comply with the
regulatory compliances.

So in organizations where the no of users and
the employee turnover is large, RBAC is the
optimum solution for Access Control. By having
privileges tied to roles, and users being assigned to
these roles, makes it much simpler for an
organization to manage the access to its resources.
RBAC also fastens the employee on-boarding & de-
boarding process by tying the provisioning/de-
provisioning to the roles.

Moreover, RBAC also makes the implemen-
tation of Least privilege principle and SOD easier,
hence helping the organizations in complying to the
strict regulatory standards.

RBAC but the roles itself are vaguely defined?
Or if proper consideration is not given to the
privileges being assigned to Roles. The whole
purpose of adopting RBAC stands defeated in this
case. This is where Role Engineering comes into
play. I thought before heading to role engineering
it’s important that the reader is aware of a few basic
concepts related to access control.

4.11 VIEWS

Q26. What is a view in DBMS ?

Ans :
A view is a virtual or logical table that allows

to view or manipulate parts of the tables. To reduce
REDUNDANT DATA to the minimum possible,
Oracle allows the creation of an object called a
VIEW.

A View is mapped, to a SELECT sentence.
The table on which the view is based is described in
the FROM clause of the SELECT statement.

Some Views are used only for looking at table
data. Other Views can be used to Insert, Update
and Delete table data as well as View data. If a View
is used to only look at table data and nothing else
the View is called a Read-Only View. A View that is
used to look at table data as well as Insert, Update
and Delete table data is called an Updateable View.

The reasons why views are created are :

 When Data security is required .

 When Data redundancy is to be kept to the
minimum while maintaining data security.

B.Sc. II YEAR IV SEMESTER

212
Rahul Publications

Rahul Publications

Types of Views

(i) Read-only View : Allows only SELECT operations.

(ii) Updateable View : Allows SELECT as well as INSERT, UPDATE and DELETE operations.

Creating a View

The ORDER BY clause cannot be used while creating a view. The columns of the table are related
to the view using a one-to-one relationship.

Syntax :

CREATE<ORREPLACE>VIEW<ViewName> ASSELECT<ColumnName1>,<Column Name2>
FROM<TableName>WHERE<Column

Name > = < Expression List > < WITHREADONLY>;

This statements creates a view based on query specified in SELECT statement.

OR REPLACE option recreates the view if it is already existingmaintaning the privileges granted to
view viewname.

Updateable Views

Views can also be used for data manipulation. Views on which data manipulation can be done are
called Updateable Views.

When an updateable view name is given in an Insert Update, or Delete SQL statement, modifications
to data in the view will be immediately passed to the underlying table.

For a view to be updateable, it should meet the following criteria :

 Views defined from Single table

 If the user wants to INSERT records with the help of a view, then the PRIMARY KEY column(s) and
all the NOT NULL columns must be included in the view.

 The user can UPDATE, DELETE records with the help of a view even if the PRIMARY KEY column
and NOT NULL column(s) are excluded from the view definition.

Q27. Explain different types of Views ?

Ans :
1. Horizontal view

A horizontal view cuts the source tables horizontally to create the view. It creates a horizontal view of
the source tables. It is used when different names have to be displayed in a view.

For Example :

CREATE VIEW NORTHCOM AS SELECT * FROM COMPANIES WHERE REGION = ‘Northern’

The above query creates a view having companies in northern region.

2. Vertical view

A horizontal view cuts the source tables vertically to create the view.

For Example:

CREATE VIEW EMPLINFO AS SELECT NAME, EMPL_NUM, EMPL_OFFICE FROM EMPLOYEES

The above query creates a view EMPLINFO having name, employee number and office.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

213
Rahul Publications

Rahul Publications

3. Row and column views

A row and column view uses both rows and columns to create the view.

For Example:

CREATE VIEW SPEMPL AS SELECT COMPANY, ORDER_NUM FROM ORDERS WHERE EMPL
_ NUM = 665

The above query returns all order numbers and company information for employee number 665.

4. Grouped by view

In a grouped by view, a GROUP BY clause is used. A grouped by view always includes a column list.

For Example:

CREATE VIEW SALPERKS (WHO, PERKS_LIST, AVG_SALARY) AS SELECT NAME, PERKS,
AVG(SALARY) FROM EMPLOYEES GROUP BY NAME where, (WHO, PERKS_LIST, AVG _
SALARY) is the column list in view;

5. Joined view

A joined view is used to create a multi table query for a view. The source of this type of view can be
two or more tables.

For Example:

CREATE VIEW ORDERIN (ORDER_NUM, COMPANY, EMPL_NAME, PRICE) AS SELECT
ORDER_NUM, COMPANY, NAME, PRICE FROM ORDERS, CLIENTS, EMPLOYEES WHERE
CLIENT = CLIENT_NUM AND EMPL = EMPL_NUM;

4.11.1Backup and Recovery, Integrity

Q28. Explain briefly about Backup and Recovery and Integrity

Ans : (Imp.)

Backup and Recovery

Backup and recovery control is important in database system for operations to be performed
efficiently. This control is useful to restore the database during system crash.

Backups

There are three different levels of database backup. They are,

(i) Full Backup

In this level, all the contents of the database are copied to a permanent storage device. For example
disks, tapes etc.

(ii) Differential Backup

In this level, only those contents of the database that have been modified, as compared to previous
backup copy, are copied to a permanent secondary storage.

(iii) Transaction Log Backup

In this level, only those transaction log operations that have been modified, as compared to the
previous backup copy, are copied to a permanent secondary storage.

B.Sc. II YEAR IV SEMESTER

214
Rahul Publications

Rahul Publications

Recovery

In database recovery process, database backups play a major role. The database recovery process
chooses to utilize any one of the levels of backup, depending on the type and extent of recovery that is to
be performed. If a whole database is to be recovered, then the recovery process involves loading of the
recent backup copy of the database, when it was in a consistent state. Then, the transaction log information
is used to roll forward the backup copy in order to restore all the remaining transactions carried out after
database has moved from the consistent state. If these transactions have been committed and are still
usable, then the recovery process can use the transaction log information and perform just an ‘undo’
operation on all those transactions that were not committed.

5. Integrity

Integrity constraint is defined as the rule that set various restrictions on certain records of the database.

4.12 DATABASE ENCRYPTION AND DECRYPTION

Q29. Explain the concept of Database Encryption and Decryption.

Ans : (Imp.)

Database encryption is the process of converting data, within a database, in plain text format into a
meaningless cipher text by means of a suitable algorithm.

Database decryption is converting the meaningless cipher text into the original information using
keys generated by the encryption algorithms.

Database encryption can be provided at the file or column level.

Encryption of a database is costly and requires more storage space than the original data. The steps
in encrypting a database are :

1. Determine the criticality of the need for encryption

2. Determine what data needs to be encrypted

3. Determine which algorithms best suit the encryption standard

4. Determine how the keys will be managed.

Numerous algorithms are used for encryption. These algorithms generate keys related to the encrypted
data. These keys set a link between the encryption and decryption procedures. The encrypted data can
be decrypted only by using these keys.

Different databases, such as SQL, Oracle, Access and DB2, have unique encryption and decryption
methods.

Techniques used for Encryption

There are following techniques used for encryption process :

1. Substitution Ciphers

In a substitution cipher each letter or group of letters is replaced by another letter or group of letters
to mask them For example: a is replaced with D, b with E, c with F and z with C. In this way attack
becomes DWWDFN. The substitution ciphers are not much secure because intruder can easily guess
the substitution characters.

2. Transposition Ciphers

Substitution ciphers preserve the order of the plaintext symbols but mask them-;-The transposition
cipher in contrast reorders the letters but do not mask them. For this process a key is used. For

UNIT - IV DATABASE MANAGEMENT SYSTEMS

215
Rahul Publications

Rahul Publications

example: iliveinqadianmay be coded as divienaniqnli. The transposition ciphers are more secure as
compared to substitution ciphers.

Algorithms for Encryption Process

There are commonly used algorithms for encryption process. These are:

Data Encryption Standard (DES)

It uses both a substitution of characters and a rearrangement of their order on the basis of an
encryption key. The main weakness of this approach is that authorized users must be told the encryption
key, and the mechanism for communicating this information is vulnerable to clever intruders.

Public Key Encryption

Another approach to encryption, called public-key encryption, has become increasingly popular in
recent years. The encryption scheme proposed by Rivest, Shamir, and Adheman, called RSA, is a well-
knm.vn example of public-key encryption. Each authorized user has a public encryption key, known to
everyone and a private decryption key (used by the decryption algorithm), chosen by the user and
known only to him or her. The encryption and decryption algorithms themselves are assumed to be
publicly known.

Consider user called Suneet. Anyone can send Suneet a secret message by encrypting the message
using Sunset’s publicly known encryption key. Only Suneet can decrypt this secret message because the
decryption algorithm required Suneet’s decryption key, known only to Suneet. Since users choose their
own decryption keys, the weakness 0f DES is avoided.

The main issue for public-key encryption is how encryption and decryption keys are chosen.
Technically, public-key encryption algorithms rely on the existence of one-way functions, which are functions
whose inverse is computationally very hard to determine.

The RSA algorithm, for example is based on the observation that although checking whether a
given number of prime is easy, determining the prime factors of a nonprime number is extremely hard.
(Determining the prime factors of a number with over 100 digits can take years of CPU-time on the fastest
available computers today.)

We now sketch the intuition behind the RSA algorithm, assuming that the data to be encrypted is an
integer 1. To choose an encryption key and a decryption key, our friend Suneet— create a public key by
computing the product of two large prime numbers: PI and P2. The private key consists of the pair (PI,
P2) and decryption algorithms cannot be used if the product of PI and P2 is known. So we publish the
product PI *P2, but an unauthorized user would need to be able to factor PIP2 to steal data. By choosing
PI and P2 to be sufficiently large (over 100 digits), we can make it very difficult (or nearly impossible) for
an intruder to factorize it.

Although this technique is secure, but it is also computationally expensive. A hybrid scheme used
for secure communication is to use DES keys exchanged via a public-key encryption scheme and DES
encryption is used on the data transmitted subsequently.

B.Sc. II YEAR IV SEMESTER

216
Rahul Publications

Rahul Publications

4.13 REDUNDANT ARRAY OF INDEPENDENT DISKS (RAID)

Q30. Explain the concept of RAID.

Ans : (Imp.)

RAID or Redundant Array of Independent Disks, is a technology to connect multiple secondary
storage devices and use them as a single storage media. RAID consists of an array of disks in which
multiple disks are connected together to achieve different goals. RAID levels define the use of disk arrays.

RAID 0

In this level, a striped array of disks is implemented. The data is broken down into blocks and the
blocks are distributed among disks. Each disk receives a block of data to write/read in parallel. It enhances
the speed and performance of the storage device. There is no parity and backup in Level 0.

RAID 1

RAID 1 uses mirroring techniques. When data is sent to a RAID controller, it sends a copy of data to
all the disks in the array. RAID level 1 is also calledmirroring and provides 100% redundancy in case of a
failure.

RAID 2

RAID 2 records Error Correction Code using Hamming distance for its data, striped on different
disks. Like level 0, each data bit in a word is recorded on a separate disk and ECC codes of the data words
are stored on a different set disks. Due to its complex structure and high cost, RAID 2 is not commercially
available.

RAID 3

RAID 3 stripes the data onto multiple disks. The parity bit generated for data word is stored on a
different disk. This technique makes it to overcome single disk failures.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

217
Rahul Publications

Rahul Publications

RAID 4

In this level, an entire block of data is written onto data disks and then the parity is generated and
stored on a different disk. Note that level 3 uses byte-level striping, whereas level 4 uses block-level
striping. Both level 3 and level 4 require at least three disks to implement RAID.

RAID 5

RAID 5 writes whole data blocks onto different disks, but the parity bits generated for data block
stripe are distributed among all the data disks rather than storing them on a different dedicated disk.

RAID 6

RAID 6 is an extension of level 5. In this level, two independent parities are generated and stored in
distributed fashion among multiple disks. Two parities provide additional fault tolerance. This level requires
at least four disk drives to implement RAID.

B.Sc. II YEAR IV SEMESTER

218
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is Transaction in DBMS?

Ans :
A transaction is a set of changes that must all

be made together. It is a program unit whose
execution mayor may not change the contents of a
database. Transaction is executed as a single unit. If
the database was in consistent state before a
transaction, then after execution of the transaction
also, the database must be in a consistate. For
example, a transfer of money from one bank
account to another requires two changes to the
database both must succeed or fail together.

You are working on a system for a bank. A
customer goes to the ATM and instructs it to transfer
Rs. 1000 from savings to a checking account. This
simple transaction requires two steps:

 Subtracting the money from the savings
account balance.

 Adding the money to the checking account
balance.

2. Concurrency control

Ans :
i) Transaction management (TM) handles all

transactions properly in DBMS. Database
transactions are the events or activities such as
series of data read/write operations on data
object(s) stored in database system.

ii) Concurrency control (CC) is a process to
ensure that data is updated correctly and
appropriately when multiple transactions are
concurrently executed in DBMS.

3. Why do we need Concurrency control

Ans :
In general, concurrency control is an essential

part of TM. It is a mechanism for correctness when
two or more database transactions that access the
same data or data set are executed concurrently
with time overlap. According to Wikipedia.org, if
multiple transactions are executed serially or

sequentially, data is consistent in a database.
However, if concurrent transactions with interleaving
operations are executed, some unexpected data and
inconsistent result may occur. Data interference is
usually caused by a write operation among
transactions on the same set of data in DBMS.

There are two main kinds of concurrency
control mechanisms :

 Pessimistic (conservative) concurrency
control: The pessimistic concurrency control
delays the transactions if they conflict with
other transactions at some time in the future
by locking or a time-stamping technique.

 Optimistic concurrency control:
According to Kung and Robinson (1981), the
optimistic concurrency control, that assumes
that the conflict is rare, allows concurrent
transactions to proceed without imposing
delays to ensure serializability then check
conflict only at the end, when a transaction
commits. Notice that there is another
mechanism, semi-optimistic technique, which
uses lock operations in some situations (if they
may violate some rules), and does not lock
in other circumstances.

 The pros and cons of the pessimistic and
optimistic concurrency control
mechanisms: Both pessimistic and
optimistic concurrency control mechanisms
provide different performance, e.g., the
different average transaction completion rates
or throughput, depending on transaction
types mix, computing level of parallelism, and
other events.

4. Define Serializability. State the
importance of Serializability?

Ans :
When multiple transactions are being

executed by the operating system in a
multiprogramming environment, there are
possibilities that instructions of one transactions are
interleaved with some other transaction.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

219
Rahul Publications

Rahul Publications

 Schedule: A chronological execution
sequence of a transaction is called a schedule.
A schedule can have many transactions in it,
each comprising of a number of instructions/
tasks.

 Serial Schedule: It is a schedule in which
transactions are aligned in such a way that
one transaction is executed first. When the
first transaction completes its cycle, then the
next transaction is executed. Transactions are
ordered one after the other. This type of
schedule is called a serial schedule, as
transactions are executed in a serial manner.

In a multi-transaction environment, serial
schedules are considered as a benchmark. The
execution sequence of an instruction in a transaction
cannot be changed, but two transactions can have
their instructions executed in a random fashion. This
execution does no harm if two transactions are
mutually independent and working on different
segments of data; but in case these two transactions
are working on the same data, then the results may
vary. This ever-varying result may bring the database
to an inconsistent state.

To resolve this problem, we allow parallel
execution of a transaction schedule, if its transactions
are either Serializable or have some equivalence
relation among them.

5. Recoverability

Ans :
A transaction may not execute completely due

to hardware failure, system crash or software issues.
In that case, we have to rollback the failed
transaction. But some other transaction may also
have used values produced by failed transaction.
So we have to rollback those transactions as well.

6. What is Lock.

Ans :
Transaction processing systems usually allow

multiple transactions to run concurrently. By allowing
multiple transactions to run concurrently will improve
the performance of the system in terms of increased
throughout or improved response time, but this
allows causes several complications with consistency
of the data. Ensuring consistency in spite of

concurrent execution of transaction require extra
work, which is performed by the concurrency
controller system of DBMS.

A lock is a variable associated with a data item
that describes the status of the item with respect to
possible operations that can be applied to it.
Generally, there is one lock for each dataitem in
the database. Locks are used as a means of
synchronizing the access by concurrent transactions
to the database item.

7. Types of Locks

Ans :
1. Binary Locks

A binary lock can have two states or values:
locked and unlocked.

A distinct lock is associated with each database
item A. If the value of the lock on A is 1,
item A cannot be accessed by a database operation
that requests the item. If the value of the lock on A is
0 then item can be accessed when requested. We
refer to the current value of the lock associated with
item A as LOCK (A). There are two operations,
lock item and unlock item are used with binary
locking A transaction requests access to an
item A by first issuing a lockitem (A) operation. If
LOCK (A) = 1, the transaction is forced to wait. If
LOCK (A) = 0 it is set to 1 (the transaction locks
the item) and the transaction is allowed to access
item A. When the transaction is through using the
item, it issues an unlock item (A) operation, which
sets LOCK (A) to 0 (unlocks the item) so
that A may be accessed by other transactions.
Hence binary lock enforces mutual exclusiol1 on
the data item.

Rules of Binary Locks

If the simple binary locking scheme described
here is used, every transaction must obey the
following rules :

1. A transaction must issue the operation
lock_item (A) before any read_item (A) or
write, item operations are performed in T.

2. A transaction T must issue the operation
unlock_item (A) after all read_item (A) and

3. write_item (A) operations are completed in
T.

B.Sc. II YEAR IV SEMESTER

220
Rahul Publications

Rahul Publications

4. A transaction T will not issue a lock_item (A) operation if it already holds the lock on Item A.

5. A transaction T will not issue an unlock_item (A) operation unless it already holds the lock on
item A.

6. The lock manager module of the DBMS can enforce these rules. Between the Lock_item (A) and
unlock_item (A) operations in transaction T, is said to hold the lock on item A. At most one
transaction can hold the lock on a particular item. Thus no two transactions can access the’ same
item concurrently.

Disadvantages of Binary Locks

i) Share/Exclusive (for Read/Write) Locks

We should allow several transactions to access the same item A if they all access A’ for reading
purposes only. However, if a transaction is to write an item A, it must have exclusive access to A. For
this purpose, a different type of lock called a multiple-mode lock is used. In this scheme there are
shared/exclusive or read/write locks are used.

ii) Locking Operations

There are three locking operations called read_lock(A), write_lock(A) and unlock(A) represented as
lock-S(A), lock-X(A), unlock(A) (Here, S indicates shared lock, X indicates exclusive lock)can be
performed on a data item. A lock associated with an item A, LOCK (A), now has three possible
states: “read-locked”, “write-locked,” or “unlocked.” A read-locked item is also called share-locked
item because other transactions are allowed to read the item, whereas a write-locked item is caused
exclusive-locked, because a single transaction exclusively holds the lock on the item.

2. Compatibility of Locks

Suppose that there are A and B two different locking modes. If a transaction T1 requests a lock of
mode on item Q on which transaction T2 currently hold a lock of mode B. If transaction can be
granted lock, in spite of the presence of the mode B lock, then we say mode A is compatible with
mode B. Such a function is shown in one matrix as shown below :

The graphs shows that if two transactions only read the same data object they do not conf1ict, but
if one transaction writes a data object and another either read or write the same data object, then
they conflict with each other. A transaction requests a shared lock on data item Q by executing the
lock-S(Q) instruction. Similarly, an exclusive lock is requested through the lock- X(Q) instruction. A
data item Q can be unlocked via the unlock(Q) instruction.

To access a data item, transaction 1’1 must first lock that item. If the data item is already locked by
another transaction in an incompatible mode, the concurrency control manager will not grant the
lock until all incompatible locks held by other transactions have been released. Thus, T1 is made to
wait until all incompatible locks held by other transactions have been released.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

221
Rahul Publications

Rahul Publications

8. Define deadlock.

Ans :
In a multi-process system, deadlock is an unwanted situation that arises in a shared resource

environment, where a process indefinitely waits for a resource that is held by another process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to complete its
task. Resource X is held by T1, and T1 is waiting for a resource Y, which is held by T2. T2 is waiting for
resource Z, which is held by T0. Thus, all the processes wait for each other to release resources. In this
situation, none of the processes can finish their task. This situation is known as a deadlock.

9. Deadlock Prevention

Ans :
Deadlock Prevention ensures that the system never enters a deadlock state.

Following are the requirements to free the deadlock :

 No Mutual Exclusion : No Mutual Exclusion means removing all the resources that are sharable.

 No Hold and Wait : Removing hold and wait condition can be done if a process acquires all the
resources that are needed before starting out.

 Allow Preemption : Allowing preemption is as good as removing mutual exclusion. The only
need is to restore the state of the resource for the preempted process rather than letting it in at the
same time as the preemptor.

 Removing Circular Wait : The circular wait can be removed only if the resources are maintained
in a hierarchy and process can hold the resources in increasing the order of precedence.

10. What is Database Recovery ?

Ans :
Data recovery is the art of restoring lost or damaged files. This damage can occur when

your computer crashes, a virus infects, you accidentally reformat a disk that contains precious data, or
you experience some other catastrophe of considerable dimension. And, at some point in your life,
you’re going to delete a file you really didn’t mean to (believe me). The next time tragedy strikes, try
running one of the many data recovery applications (powerful software written specifically for data recovery
purposes) to see if it can correct the situation. Often these little jewels work magic and save your day-and
your files.

There are companies that specialize in restoring lost data. These people generally work with more
serious situations, like when you lose the last three years of your business’s financial records. Find them in
the yellow pages under “Computers: Service and Repair.” Check the ads in the back pages of computer
magazines if you can’t find someone local. It’s very common to have to ship your hard disk or your
computer off to a company that can fix it.

11. Data Security?

Ans :
Threats and risks to databases have increased and therefore, the need for securing databases has

also increased. Let’s learn about the basic facets of database security, including assurance, integrity,
availability, and confidentiality.

B.Sc. II YEAR IV SEMESTER

222
Rahul Publications

Rahul Publications

The majority of the companies store sensitive data in databases. However, database security is
sometimes not given as much thought and effort as other areas of computer security. Hackers have been
able to target large databases in recent years to obtain sensitive information like credit card numbers and
other personal information. It is important to protect databases against these risks, and this is where
database security comes into place.

Database security can be defined as a system or process by which the “Confidentiality, Integrity, and
Availability,” or CIA, of the database can be protected. Unauthorized entry or access to a database server
signifies a loss of confidentiality; unauthorized alteration to the available data signifies loss of integrity; and
lack of access to database services signifies loss of availability. Loss of one or more of these basic facets will
have a significant impact on the security of the database.

For an illustration of this concept, imagine that the website of a company contains information like
who they are, what they do, and what prospective customers have to do to contact them for their queries.
In this case, the availability of the database services is more important when compared with other factors
like the confidentiality or integrity of the database security.

12. Authorization.

Ans :
Authorization is a security mechanism used to determine user/client privileges or access levels related

to system resources, including computer programs, files, services, data and application features.
Authorization is normally preceded by authentication for user identity verification. System administrators
(SA) are typically assigned permission levels covering all system and user resources.

During authorization, a system verifies an authenticated user’s access rules and either grants or
refuses resource access.

Modern and multiuser operating systems depend on effectively designed authorization processes to
facilitate application deployment and management. Key factors include user type, number, and credentials
requiring verification and related actions and roles. For example, role-based authorization may be designated
by user groups requiring specific user resource tracking privileges. Additionally, authorization may be
based on an enterprise authentication mechanism, like Active Directory (AD), for seamless security policy
integration.

13. Explain the concept of Database Encryption and Decryption.

Ans :
Database encryption is the process of converting data, within a database, in plain text format into a

meaningless cipher text by means of a suitable algorithm.

Database decryption is converting the meaningless cipher text into the original information using
keys generated by the encryption algorithms.

Database encryption can be provided at the file or column level.

Encryption of a database is costly and requires more storage space than the original data. The steps
in encrypting a database are :

UNIT - IV DATABASE MANAGEMENT SYSTEMS

223
Rahul Publications

Rahul Publications

1. Determine the criticality of the need for encryption

2. Determine what data needs to be encrypted

3. Determine which algorithms best suit the encryption standard

4. Determine how the keys will be managed.

Numerous algorithms are used for encryption. These algorithms generate keys related to the encrypted
data. These keys set a link between the encryption and decryption procedures. The encrypted data can
be decrypted only by using these keys.

14. RAID

Ans :

RAID or Redundant Array of Independent Disks, is a technology to connect multiple secondary
storage devices and use them as a single storage media. RAID consists of an array of disks in which
multiple disks are connected together to achieve different goals. RAID levels define the use of disk arrays.

RAID 0

In this level, a striped array of disks is implemented. The data is broken down into blocks and the
blocks are distributed among disks. Each disk receives a block of data to write/read in parallel. It enhances
the speed and performance of the storage device. There is no parity and backup in Level 0.

RAID 1

RAID 1 uses mirroring techniques. When data is sent to a RAID controller, it sends a copy of data to
all the disks in the array. RAID level 1 is also calledmirroring and provides 100% redundancy in case of a
failure.

RAID 2

RAID 2 records Error Correction Code using Hamming distance for its data, striped on different
disks. Like level 0, each data bit in a word is recorded on a separate disk and ECC codes of the data words
are stored on a different set disks. Due to its complex structure and high cost, RAID 2 is not commercially
available.

B.Sc. II YEAR IV SEMESTER

224
Rahul Publications

Rahul Publications

RAID 3

RAID 3 stripes the data onto multiple disks. The parity bit generated for data word is stored on a
different disk. This technique makes it to overcome single disk failures.

RAID 4

In this level, an entire block of data is written onto data disks and then the parity is generated and
stored on a different disk. Note that level 3 uses byte-level striping, whereas level 4 uses block-level
striping. Both level 3 and level 4 require at least three disks to implement RAID.

UNIT - IV DATABASE MANAGEMENT SYSTEMS

225
Rahul Publications

Rahul Publications

1. Identify the characteristics of transactions. [d]

(a) Atomicity (b) Durability

(c) Isolation (d) All

2. RDBMS uses statement to declare a new transaction to start and its properties [b]

(a) Begin (b) Set transaction

(c) Begin transaction (d) commit

3. Detecting system failure a restoring database is known as [a]

(a) failure recovery (b) failure identification

(c) failure response (d) failure management

4. Which of the following are introduced to reduce the overhead causes by the log based recovery is
[d]

(a) checkpoints (b) indices

(c) dead locks (d) locks

5. Which of the following protocol ensures conflicts serialisability in deadlocks is [b]

(a) two phase locking protocol (b) time stamp ordering protocol

(c) graph based protocol (d) none

6. is used for database security [d]

(a) data encryption (b) a view

(c) finger print (d) All

7. Prevention of access to the database by unauthorised user is [c]

(a) integrity (b) productivity

(c) security (d) reliability

8. Authentication refers to [d]

(a) Restricting user (b) Controlling access to database

(c) controlling operations (d) All

9. What are the common security threats [b]

(a) File shredding (b) File sharing permissions

(c) File corruption (d) File integrity

10. Which level of RAID refers to disk mirroring with block striping. [a]

(a) RAID level 1 (b) RAID level 2

(c) RAID level 0 (d) RAID level 3

Choose the Correct Answers

B.Sc. II YEAR IV SEMESTER

226
Rahul Publications

Rahul Publications

1. is a set of changes that must be made together..

2. Concurrency control is a process to and when multiple transactions occur..

3. A transaction database system must maintain

4. A concurrency control program is called

5. A is a condition in which 2 or more conditions are waiting.

6. A dead lock is called as condition

7. is a record of last transaction accessed using time stamp

8. is a phenomenon of uncommitted data occuring when 2 transactions exists

9. is known as executing multiple transactions

10. Two schedules are said to be when one transaction transforms into other..

11. A is a variable associated with data item and its status.

12. ensure that DBMS never enter into dead lock state.

13. is a process of removing the transactions.

14. is a process of restoring lost or damaged files.

15. Recovery techniques are heavily dependent upon the special file known as

ANSWERS

1. Transaction

2. Update correctly, appropriate

3. ACID Properties

4. Granularity

5. Dead lock

6. Circular waiting

7. Granual Time Stamp

8. Isolation property

9. Serializability

10. Conflict equivalent

11. Lock

12. Dead lock prevention

13. Termination

14. Data recover

15. System log

Fill in the Blanks

227
Rahul Publications

SOLVED MODEL PAPERS DATABASE MANAGEMENT SYSTEMS

FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - I
DATABASE MANAGEMENT SYSTEMS

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. What is the purpose of DBMS? (Unit-I, SQA-3)

2. Who is database administrator. (Unit-I, SQA-12)

3. Data Manipulation Language (DML). (Unit-I, SQA-5)

4. What is Data Redundancy? (Unit-II, SQA-3)

5. Normalization (Unit-II, SQA-9)

6. List out the benefits of ER Diagrams. (Unit-II, SQA-5)

7. What is the use of Null values? (Unit-III, SQA-4)

8. What are the advantages of SQL? (Unit-III, SQA-2)

9. What is PL/SQL Trigger ? (Unit-III, SQA-14)

10. Concurrency control (Unit-IV, SQA-2)

11. Define deadlock. (Unit-IV, SQA-8)

12. Authorization (Unit-IV, SQA-12)

SECTION - B (4 × 12 = 48 M)

[Essay Answer Type]
Note : Answer all the following questions

13. (a) List out various applications of database. (Unit-I, Q.No. 5)
(OR)

(b) Explain the major functional components of database. (Unit-I, Q.No. 20)

14. (a) What is relational integrity constraints in DBMS ? (Unit-II, Q.No. 8)

(OR)

(b) Explain in detail 1NF, 2NF, 3NF (Unit-II, Q.No. 34, 38, 39)

15. (a) What is mean by view in SQL? Explain the process of creating, (Unit-III, Q.No. 29)
updating and dropping a view ?

(OR)

(b) Describe in detail about DDL commands in SQL ? (Unit-III, Q.No. 7)

16. (a) What is Lock? Explain various type of Locks in DBMS. (Unit-IV, Q.No. 9)
(OR)

(b) Explain the working mechanism of recovery. (Unit-IV, Q.No. 15)

228
Rahul Publications

B.Sc. II YEAR IV SEMESTER

FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - II
DATABASE MANAGEMENT SYSTEMS

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. Define the term transaction. (Unit-I, SQA-10)

2. What is relational model ? (Unit-I, SQA-13)

3. What is Database? (Unit-I, SQA-1)

4. Explain the concept of Generalization. (Unit-II, SQA-6)

5. What is database design? (Unit-II, SQA-1)

6. Advantages of Normalization. (Unit-II, SQA-17)

7. What are the differences between grant and revoke. (Unit-III, SQA-3)

8. What is Right Join? (Unit-III, SQA-8)

9. What is function ? Write the syntax to declare functions in SQL. (Unit-III, SQA-12)

10. Why do we need Concurrency control. (Unit-IV, SQA-3)

11. Types of Locks (Unit-IV, SQA-7)

12. Data Security? (Unit-IV, SQA-11)

SECTION - B (4 × 12 = 48 M)
[Essay Answer Type]

Note : Answer all the following questions

13. (a) Explain ACID Properties and how they are useful to transactions? (Unit-I, Q.No. 22)
(OR)

(b) Explain in detail various types of integrity constrains? (Unit-I, Q.No. 31)

14. (a) Explain the process of creating ER Diagram into table with an example. (Unit-II, Q.No. 18)

(OR)

(b) Explain database designing process ? (Unit-II, Q.No. 4)

15. (a) List out various types of SQL Commands. (Unit-III, Q.No. 6)
(OR)

(b) What is Join? List out various types of joins supported by SQL? (Unit-III, Q.No. 23)

16. (a) State the architecture of transaction management. (Unit-IV, Q.No. 3)
(OR)

(b) Explain different Recovery Techniques/Approaches in DBMS ? (Unit-IV, Q.No. 18)

229
Rahul Publications

SOLVED MODEL PAPERS DATABASE MANAGEMENT SYSTEMS

FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - III
DATABASE MANAGEMENT SYSTEMS

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. Define DBMS. (Unit-I, SQA-2)

2. Data Control Language (Unit-I, SQA-6)

3. List out various types of Keys. (Unit-I, SQA-14)

4. Define Decomposition ? (Unit-II, SQA-13)

5. What is Functional Dependency ? (Unit-II, SQA-12)

6. What is ER Model ? (Unit-II, SQA-2)

7. What is SQL ? (Unit-III, SQA-1)

8. What is transaction? Explain the properties of transaction ? (Unit-III, SQA-10)

9. Nested subquery (Unit-III, SQA-5)

10. Authorization. (Unit-IV, SQA-12)

11. Deadlock Prevention (Unit-IV, SQA-9)

12. What is Lock. (Unit-IV, SQA-6)

SECTION - B (4 × 12 = 48 M)
[Essay Answer Type]

Note : Answer all the following questions

13. (a) What is relational algebra? List and explain various types of (Unit-I, Q.No. 43)
relational operations.

(OR)

(b) Explain various techniques used to view data in database. (Unit-I, Q.No. 11)

14. (a) List out advantages and disadvantages of date redundancy. (Unit-II, Q.No. 11)
(OR)

(b) What is mean by Normalization ? (Unit-II, Q.No. 31)

15. (a) Explain the use of as clause in SQL. (Unit-III, Q.No. 15)
(OR)

(b) List and explain basic data types supported by SQL ? (Unit-III, Q.No. 4)

16. (a) Discuss in detail about the Recoverability of Schedules ? (Unit-IV, Q.No. 8)
(OR)

(b) Explain the Concepts behind the Data Security? (Unit-IV, Q.No. 20)

