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UNIT
I

1.1  SETS

Q1. Define Set.

Ans :
Meaning

A set is determined only when we know
definitely what objects it contains. There must be
no ambiguity or doubt in this regard.

For example, the collection of all tall boys in
a college does not define a set; because there will
always be some doubt about as to which boys are
to be regarded as tall!. For this reason, the objects
of a set are required to be “well defined”. By this
we mean that, given an object, it must be possible
for us to decide whether the object belongs to the
collection (under consideration) or not. Thus, if we
speak of the collection of all boys in a college who
are above 170 cms then we are actually speaking
of a set; because without any ambiguity we can say
whether a given boy is in the set or not.

If the number of elements in a set is finite,
then we say that the set is a finite set. Sets having
infinitely mans elements are called infinite sets. A
set having only one element is called a singleton
set.

1.1.1 Size of a Set

Q2. Explain size of set.

Ans :
We can compute the size of a set by explicitly

counting its elements.

Sets, Relation and Function: Operations and Laws of Sets, Cartesian Products,
Binary Relation, Partial Ordering Relation, Equivalence Relation, Image of a Set,
Sum and Product of Functions, Bijective functions, Inverse and Composite Function,
Size of a Set, Finite and infinite Sets, Countable and uncountable Sets, Cantor’s
diagonal argument and The Power Set theorem, Schroeder-Bernstein theorem.

Principles of Mathematical Induction: The Well-Ordering Principle, Recursive
definition, The Division algorithm: Prime Numbers, The Greatest Common Divisor:
Euclidean Algorithm, The Fundamental Theorem of Arithmetic.

For example, | 0 | = 0, |{Larry, Moe, Curly}|
= 3, and |{x    | x < 100   x is prime}|
= |{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}| =
25. But sometimes it is easier to compute sizes by
doing arithmetic. We can do this because many
operations on sets correspond in a natural way to
arithmetic operations on their sizes.

Two sets A and B that have no elements in
common are said to be disjoint; in set-theoretic
notation, this means A   B = 0 . In this case we
have |A   B| = |A| + |B|. The operation of
disjoint union acts like addition for sets.

For example, the disjoint union of 2-element
set {0, 1} and the 3-element set {Wakko, Jakko,
Dot} is the 5-element set {0, 1,Wakko, Jakko, Dot}.

The size of a Cartesian product is obtained
by multiplication: |A × B| = |A|·|B|. An example
would be the product of the 2-element set {a, b}
with the 3-element set {0, 1, 2}: this gives the 6-
element set {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b,
2)}. Even though Cartesian product is not generally
commutative, swapping each pair (a, b) to (b, a) is
a bijection, so |A × B| = |B × A|.

For power set, it is not hard to show that
|P(S)| = 2|S|. This is a special case of the size of
AB, the set of all functions from B to A, which is
|A||B|; for the power set we can encode P(S) using
2S, where 2 is the special set {0, 1}, and a subset T
of S is encoded by the function that maps each x 
S to 0 if x2 T and 1 if x   T..
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1.1.2 Finite and Infinite Sets

Q3. Define Finite and Infinite Sets.

Ans :
Finite Set

A set is said to be a finite set if it is either void
set or the process of counting of elements surely
comes to an end is called a finite set.

In a finite set the element can be listed if it
has a limited i.e., countable by natural number 1,
2, 3, ..... and the process of listing terminates at a
certain natural number N.

The number of distinct elements counted in
a finite set S is denoted by n(S). The number of
elements of a finite set A is called the order or cardinal
number of a set A and is symbolically denoted by
n(A).

Thus, if the set A be that of the English
alphabets, then n(A) = 26; For, it contains 26
elements in it. Again if the set A be the vowels of
the English alphabets i.e., A = [a, e, i, o, u] then
n(A) = 5.

Note: The element does not occur more
than once in a set. A set which is not finite is called
an infinite set.

Examples of Finite Set

1. Let

A = {5, 10, 15, 20, 25, 30}

Then,

A is a finite set and n(P) = 6.

2. Let

B = {Natural numbers less than 25}

Then,

B is a finite set and n(P) = 24.

3. Let

C = {Whole numbers between 5
 and 45}

Then,

C is a finite set and n(R) = 38.

4. Let

D = {x : x " Z and x^2 – 81 = 0}

Then,

D = {–9, 9} is a finite set and n(S) = 2.

Infinite Set

A set is said to be an infinite set whose
elements cannot be listed if it has an unlimited (i.e.,
uncounted) by the natural number 1, 2, 3, 4, .........
n, for any natural number n is called a infinite set.

Examples of Infinite Set :

1. Set of all positive integers which is multiple of
3 is an infinite set.

2. Set of all points in a plane is an infinite set.

3. W = {0, 1, 2, 3, .....} i.e., set of all whole
numbers is an infinite set.

4. Set of all points in a line segment is an infinite
set.

Thus, from the above discussions we know
how to distinguish between the finite sets and infinite
sets with examples.

1.1.3 Countable and Uncountable Sets

Q4. Define Countable and uncountable Sets.

Ans :
Countable Sets

The sets N,  2, and N* all have the property
of being countable, which means that they can be
put into a bijection with N or one of its subsets.
Countability of N* means that anything you can
write down using finitely many symbols (even if they
are drawn from an infinite but countable alphabet)
is countable. This has a lot of applications in
computer science: one of them is that the set of all
computer programs in any particular programming
language is countable.

Uncountable Sets

Exponentiation is different. We can easily
show that 02  0 , or equivalently that there is
no bijection between P( ) and  . This is done
using Cantor’s diagonalization argument, which
appears in the proof of the following theorem.
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Q5. Explain basic terminology used in set
theory.

Ans :
(i) The Null Set

In many discussions, we require the use of
the set which contains no object (element) at
all. This set is called the empty set or the null
set, it is denoted by { }, , or .

For example, the set of all positive
integers less than 10 which are divisible by
11 is the null set. The set of all real numbers
whose squares are less than zero is also the
null set.

(ii) Equal Sets

Two sets A and B are said to be equal if they
have precisely the same elements. Then we
write A = B.

Thus, for example, if A = {1, 2, 3, 4}
and B = { x | x is a positive integer with
x2 < 20}, ten A = B.

(iii) Subsets

Given two sets A and B. we say that A is a
subset of B, or that A is contained in B if every
element of A is an element of B as well. If A
contains an element which is not in B, then A
is not a subset of B.

The statement “A is a subset of B” is
symbolically written as “A   B”. Here, the
symbol   stands for “is a subset of” or “is
contained in”.

Similarly, the statement “A is not a subset
of B” is symbolically written as A   B, the
symbol   denoting “is not a subset of” or
“not contained in”.

For example, let

A = {1, 2, 3}, B = {1, 2, 3, 4, 5) and C
= {2, 3, 5, 6}

We observe that every element of A is
in B, and A contains an element namely 1,
which is not in C. Therefore, A   B and
A   C.

In the above example, we also observe
that the set B, which contains A as a subset,
pos­sesses elements that are not in A (namely
the elements 4 and 5). In such a situation we
say that the set A is properly contained in or
is a proper subset of the set B.

Thus, a set A is a proper subset of a set
B if (i) A   B, and (ii) B possesses at least
one element that is not in A. In this situation
we write A   B. Here, the symbol   stands
for “is a proper subset of”.

(iv) Venn Diagram

                 (a)                        (b)

Relationships between sets (like the
relationship between a set A and a set B
containing A or not containing A) can be
depicted in diagrams called Venn diagrams§

for a clearer grasp of the situation. Figures
3.1 (a), (b) represent two such Venn
diagrams.

Some Consequences

The following consequences of the definition
of a subset of a set are of basic importance:

1. Every set is a subset of itself.

2. Two sets A and B are equal if and only if
A   B and B   A.

3. The null set  is a subset of every set A.

4. For any sets A , B and C, if A   B and
B   C, then A   C.

5. For any sets A, B, C, if A = B and B =
C, then A = C.

The statements (1), (2) and (5) are obviously
true.

(v) Universal Set

Suppose, in a discussion, all sets that we
consider are subsets of a certain set U. This
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set, U, is called the universal set or the
universe of discourse or the universe for that
discussion.

For example, in a study concerned with
integers the set of all integers is taken as the
uni­versal set, and in studies concerned with
defective parts of a machine the set of all parts
of the machine is taken as the universal set.

The universal set varies from one
discussion to the other, and the context
indicates the choice of the universal set. The
universal set is not unique.

(vi) Power Set

Given a set A, suppose we construct the set
consisting of all subsets of A. The set so
obtained (constructed) is called the power set
of A and is denoted by P(A).

For example, consider the set A = {a,
b}. We check that all possible subsets of A
are , {a}. {b}, A. Therefore,

P(A) = {, {a}, {b}, A).

As another example, if we consider the set A
= {1, 2, 3), the subsets of A are

, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, A.

Therefore,

P(A) = {, UK {1}, {2}, {3}, {1, 2},
{2, 3}, {1, 3}, A}.

We observe that, in the first Example, the set
A has two elements and the set P{A} has 4
= 22 elements, and in the second example,
the set A has 3 elements and the set P(A) has
8 = 23 elements. This fact illustrates the
following important result:

If a finite set A has n elements, then P(A),
the power set of A, has 2n elements.

1.2  OPERATIONS AND LAWS OF SETS

Q6. Explain the operations on set theory.

Ans : (Imp.)

Union of Sets

Consider two sets A and B. Then the set
consisting of all elements that belong to A or B is
called the union of A and B and is denoted by A 
B. Thus,

A   B = {x | x   A  or  x   B}

Here, “or” is an inclusive or; that is, the
statement “x   A or x   B” actually stands for “x
he ngs to A or B or both”.

The Venn-diagram for A   B is shown below..
Here,   is some universal set which contains A and
B as subsets.

Fig. : A   B (shaded)

It is obvious that A   A   B and B 
A   B.

Intersection of Sets

Given two sets A and B, the set consisting of
all elements that belong to both A and B is called
the intersection of A and B and is denoted by A 
B. Thus,

A   B = {x | x   A  and  x   B)

The Venn-diagram for A   B is shown below..

Fig. : A   B (shaded)

It is obvious that

A   B   A and A   B   B.

For example,

if A = {1, 2, 3, 4, 5, 6, 7} and B = {4, 5,
8, 9}, then

A   B = {1, 2, 3, 4, 5, 6, 7, 8, 9},

A  B = {4, 5},
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Two sets A and B are said to be disjoint whenever A   B = .

For example, A = {1, 2, 3} end B = {5 ,7} are disjoint sets.

Complement of a Set

Given a universal set   and a set A contained in  , the set of all elements that belong to   but not

to A is called the complement of A (in  ) and is denoted by A || .

Thus,

A  = {x | x     and x  A).

The Venn-diagram for A is shown below:

Fig.: A  (shaded)

For example, if the set of all integers is taken as the universal set and E is the set of all even integers,
then the complement of E (in the chosen universal set) is the set of all odd integers.

It is obvious that   = , =   =   and if A    , then A     , and A and A  are disjoint.

Relative Complement

Given two sets A and B, the set of all elements that belong to B but not to A is called the complement
of A relative to B (or relative complement of A in B) and is denoted by B – A; that is

B – A = {x | x   B  and  x  A)

The set A – B is defined similarly. Note that B – A is not the same as A – B. See Figures (a), (b)
below:

               

                                    (a) : B – A (Shaded)                                       (b) : A – B (Shaded)
Fig. : Relative Complements

For example, if A = {1, 2, 3, 4} and B = {3, 4, 7, 8}, then B – A = {7, 8} and A – B = {1, 2}.

The following results are obvious:

1. For any sets A and B, the sets A – B and B – A are disjoint.

2. If A and B are disjoint, then A – B = A and B – A = B.
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: 3. If   is the universal set and A    , then   – A = A .

4. A = (A   B) – (B – A), B = (A   B) – (A – B)

5. A = (A   B)   (A – B), B = (A   B)   (B – A)

Symmetric Difference

For two sets A and B, the relative complement of A   B in A   B is called the symmetric difference
of A and B and is denoted by AB **.

Thus,

A B = (A B) – (A B)

  = {x | x  A B and x  A   B)

The Venn diagram for A  B is shown below.

Fig. : A B (shaded)

For example, if A = {1, 2, 3, 4, 5} and B = {4, 5, 7, 8}, then A  B = (1, 2, 3, 7, 8)

Q7. Discuss briefly about law of set theory.

Ans :
The operations on sets satisfy certain laws. The following are a few of these laws wherein A, B, C are

subsets of a universal set  .

I. Commutative Laws

1. A B = B A

2. A B = B A

II. Associative Laws

3. A (B C) = (A B) C

4. A (B C) = (A B) C

III. Distributive Laws

5. A (B C) = (A B) (A C)

6. A (B C) = (A B) (A C)

IV. Idempotent Laws

7. A A = A

8. A A = A
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V. Identity Laws

9. A    = A

10. A U = A

VI. Law of Double Complement

11. A  = A

VII. Inverse Laws

12. A  A  = 

13. A  A  = 

VIII. DeMorgan Laws

14. A B  = A  B

15. A B  = A  B

IX. Domination Laws

16. A   = 

17. A = 

X. Absorption Laws

18. A (A B) = A

19. A (A B) = A

1.3  CARTESIAN PRODUCTS

Q8. Explain Cartesian Products of sets.

Ans : (Imp.)

Let A and B be two sets. Then the set of all ordered pairs (a, b), where a   A and b   B, is called
the Cartesian Product, or Cross Product or Product Set of A and B (in this order) and is denoted by A×B.

Thus,

A × B = {(a, b) | a   A and b   B}.

It is to be noted that the product set A × B is not the same as the product set B × A; that is,
A × B   B × A, in general. Because,

B × A = {(b, a) | b   B and a   A}

and (a, b)   (b, a) in general.

For example, if A = {1, 0, –1} and B = {2, 3).

Then

A × B = {1. 2), (1, 3), (0, 2), (0. 3), (–1, 2), (–1. 3)}

B × A = {(2, 1), (2, 0), (2, –1), (3, 1), (3, 0), (3, –1)}.
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Evidently, A × B + B × A. It should be noted that A × B can be defined even when B = A.

Thus. we can have the product of a set A with itself, and this product is defined by

A × A = {(a, b) | a   A and b   A}.

The product A × A is also denoted by A2.

For example, if A = {1, 0, –1}

We have

A2 = A × A = {(1, 1), (1, 0), (1, –1), (0, 1), (0, 0), (0, –1), (–1, 1), (–1, 0), (–1, –1)}

If a set A has m elements and a set B has n elements, then a can be chosen from A in m ways and
with every one of these choices (of a), b can be chosen from B in n ways. Accordingly, (a. b) can be
chosen in m × n ways; this means that A × B has exactly mn elements. Thus, we have the following result:

If A and B are finite sets, then

|A × B| = |A| |B|.

From this result, it follows that

|B × A| = |B| |A| = |A| |B| = |A × B| and |A × A| = |A|2.

For example, if A has 5 elements and B has 8 elements, then A × B and B × A will have 5 × 8 =
8 × 5 = 40 elements each, A × A will have 5 × 5 = 25 elements, and B × B will have 8 × 8 = 64
elements.

The idea of Cartesian product of sets can be extended to any finite number of sets. For any non-
empty sets A1, A2, ..., Ak, the k-foldproduct A1 × A2 × ... × Ak is defined as the set of all odered k-tuples
(a1, a2, ak), where ai  Ai, i = 1, 2, ....., k. That is,

A1 × A2 × ... × Ak = {(ai, a2, ..., ak) | ai,  Ai, i = 1, 2, ..., k}.

For example, if A = {1, 0}, B = {2, –2}, C = {0, –1}, then

A × B × C = {(1, 2, 0), (1, 2, –1), (1, –2, 0), (1, –2, –1), (0, 2, 0), (0, 2, –1),

(0, –2, 0), (0, –2, –1)}

As with the ordered pairs, if (a1, a2, ..., ak), (b1, b2, b3 ...  k) are k-tuples, then

(a1, a2, ..., ak) = (b1, b2, ..., bk) if and only if = bi for i = 1, 2, ..., k.

A little thinking will indicate that if A1 has n1 elements, A2 has n2 elements, ... Ak has nk elements, then
A1 × A2 × ... × Ak has n1n2n3 ... nk elements.

That is,

|A1 × A2 × ..... × Ak| = |A1| – |A2| ..... |Ak|.

PROBLEMS

9. Find x and y in each of the following cases:

(i) (2x, x + y) = (6, 1)

(ii) (y – 2, 2x + 1) = (x – 1, y + 2)

Sol :
(i) We note that (2x, x + y) = (6, 1) if and only if 2x = 6 and x + y = 1.

These yield x = 3  and  y = 1 – x = –2.
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(ii) (y – 2, 2x + 1) = (x – 1, y + 2) if and only if y – 2 = x – 1 and 2x + 1 = y + 2; that is,

x – y + 1 = 0  and  2x – y – 1 = 0.

These yield x = 2, y = 3.

10. Let A = {1, 3, 5), B = {2, 3}, and C = {4, 6}. Write down the following :

1. A × B 2. B × A

3. B × C 4. A × C

5. (A B) × C 6. A (B × C)

7. (A × B) C 8. A  (B × C)

9. (A × B) (B × C) 10. (A × B) (B × A)

11. (A × B) (B × C)

Sol :
By using the definition of the product of sets, we find that

1. A × B = {(1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3)},

2. B × A = {(2, 1), (2, 3), (2, 5), (3 ,1), (3, 3), (3, 5)},

3. B × C = {(2, 4), (2, 6), (3, 4), (3, 6)},

4. A × C = {(1, 4), (1, 6), (3. 4), (3, 6), (5, 4), (5, 6)},

5. (A B) × C = {1, 2, 3, 5,) × (4, 6)

  = {(1, 4), (1, 6), (2, 4), (2, 6), (3, 4), (3, 6), (5, 4), (5, 6)}

6. A (B × C) = {1, 3, 5}   {(2, 4), (2, 6), (3. 4), (3, 6)}

  = {1, 3, 5. (2, 4), (2, 6), (3, 4), (3, 6)}

7. (A × B) C = {(1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3), 4, 6}

8. A   (B × C) = .

9. (A × B)   (B × C) = {(1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3), (2, 4), (2, 6), (3, 4), (3, 6)},

10. (A × B) (B × A) = {(3, 3)}

11. (A × B) (B × C) = 

11. For any set A   U, prove that

A ×  =  × A = .

Sol :
Suppose A ×    .

Then, a ×  has at least one element (a, b) in it such that a   A and b   .

Now, b    means that  is not the null set. This is a contradiction. Therefore, A ×  = .

Similarly,  × A = .
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1.4 BINARY RELATION

Q12. Discuss briefly about Binary Relation.

Ans :
Let A and B be two sets. Then a subset of A × B is called a relation from A to B. Thus, if R is a

relation from A to B, then R is a (some) set of ordered pairs (a, b) where a   A and b   B, and conversely
if R is a set of ordered pairs (a, b) where a   A and b   B, then R is a relation from A to B. If (a, b)   R,
we say that “a is related to b by R”; this is denoted by aRb

If R is a relation from A to A, that is, if R is a subset of A × A, we say that R is a binary relation
on A.

For example, consider the sets A = {0, 1, 2}, B = {3, 4, 5}.

Let R = {(1, 3), (2, 4), (2, 5)}. Evidently, R is a subset of A × B. As such, R is a relation from A to
B. and 1R3, 2R4, 2R5. This relation can be depicted in a digram as shown below, called the arrow
diagram:

As another example, consider the sets A = {0, 1, –1} and B = {2, -2}.

Let

R1 = {(0, 2), (1, 2), (–1, 2)} and R2 = {(0, –2), (1, –2), (–1, –2)}.

Then R1 and R2 are subsets of A × B and are therefore relations from A to B. We observe that
R1 consists of elements (a, b)   A × B for which the relationship a < b holds. Hence, here, “aR1b” is read
as “a is less than b”, the symbol R1 standing for the phrase “is less than”. Further, R2 consists of elements
(a, b)   A × B for which the relationship a > b holds. Hence, here, “aR2b” is read as “a is greater than b”,
the symbol R2 standing for the phrase “is greater than”. The arrow diagrams of R1 and R2 are shown in
Figure (a) and (b) respectively.

Fig.
As yet another example, we note that if



UNIT - I DISCRETE MATHEMATICS

11
Rahul Publications

Rahul Publications

A = 
1 1 1 2 3

, , , ,
2 3 4 4 12

 
 
 

 then

R = 
1 2 1 3

, ,  ,
2 4 4 12

    
    
    

is a binary relation on A with aRb standing
for the statement “a is equal to b”.

Q13. Discuss the operations on relations.

Ans : (Imp.)

Since a relation is a subset of the Cartesian
product of two sets, the set-theoretic operations may
be used to construct new relations from given
relations.

1. Union and Intersection of Relations

Given the relations R1 and R2 from a set A to
a set B, the union of R1 and R2, denoted by
R1 

  R2, is defined as a relation from A to B
with the property that (a, b)   R1   R2 if
and only if (a, b)   R1 or (a, b)   R2.

Similarly, the intersection of R1 and R2,
denoted by R1    R2, is defined as a relation
from A to B with the property that (a, b) 
R1   R2 if and only if (a, b)   R1 and (a, b)
  R2.

Evidently, R1  R2 is the union of the
sets R1 and R2 and R1   R2 is the intersection
of the sets R1 and R2 in the universal set
A × B.

2. Complement of a Relation

Given a relation fi from a set A to a set B, the
complement of R. denoted by R, is defined
as a relation from A to fi with the property
that (a, b)   R  if and only if (a, b)  R. In
other words, R  is the complement of the set
R in the universal set A × B.

3. Converse of a Relation

Given a relation R from a set A to a set B, the
converse*** of R, denoted by RC, is defined
as a relation from B to A with the property
that (a, b)   RC if and only if (b, a)   R.

From the definition of RC the following
results are immediate:

(i) If MR is the matrix of R, then [MR)
T , the

transpose of MR, is the matrix of RC

(ii) (RC)C = R.

Q14. Explain the properties of relations.

Ans : (Imp.)

A relation R on a set A is said to be reflexive
(or said to have the reflexive property) if (a, a) 
R, for all a   A.

In other words, a relation R on a set A is
reflexive whenever every element a of A is related
to itself by R (i.e., aRa, for all a   A).

It follows that fi is not reflexive if there is some
a e A such that (a. a)  R.

For example, the relation “is less than or equal
to” is a reflexive relation on the set of all real numbers.
Because, a = a for every real number a.

It is obvious that the relations “is less than”
and “is greater than” are not reflexive on the set of
all real numbers.

As another example, we observe that if A =
{1, 2, 3, 4), then the relation R = {(1, 1), (2, 2),
(3, 3)} is not reflexive. Because, 4   A but (4, 4)
 R.

The following results are easy to see:

1. The matrix of a reflexive relation must
have 1’s on its main diagonal.

2. At every vertex of the digraph of a
reflexive relation there must be a cycle
of length 1.

3. On a set A, the relation  defined by

A = [(a, a) | a   A|

is reflexive.*** Furthermore, A is a subset of
every reflexive relation on A. The matrix of A

contains 1’s on the main diagonal and 0’s in all other
positions.

1. Irreflexive Relation

A relation on a set A is said to be irreflexive if
(a, a)  R for any a    A. That is, a relation R is
irreflexive if no element of A is related to itself by R.

For example, the relations “is less than” and
“is greater than”are irreflexive on the set of all real
numbers.
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It is to be noted that an irreflexive relation is
not the same as a non-reflexive relation. A relation
can be neither reflexive nor irreflexive. For example,
consider the relation R = {(1, 1), (1, 2)} defined
on the set A = {1, 2, 3}. This relation is not reflexive
because (2, 2)  R and (3, 3)  R. The relation is
not irreflexive because (1, 1)  R.

The following results are obvious:

1. The matrix of an irreflexive relation must
have 0’s on its main diagonal.

2. The digraph of an irreflexive relation has
no cycle of length 1 at any vertex.

2. Symmetric Relation

A relation R on a set is said to be symmetric
(or said to have the symmetric property) if (b, a) 
R whenever (a, b)   R for all a, b   A.

It follows that R is not symmetric if there exist
a, b     A such that (a, b)   R but (b, a)  R.

A relation which is not symmetric is called an
asymmetric relation.

For example, if A = {l, 2, 3} and R1 = {(1,
1), (1, 2), (2, 1)} and R2 = {(1, 2), (2, 1), (1, 3)}
are relations on A, then R1 is symmetric but R2 is
asymmetric; because (1, 3)   R2 but (3, 1)  R2.

It is evident that for the matrix MR = [mi, j] of
a symmetric relation the following property holds:

If mij = 1 then mij = 1, and if nij = 0 then
mji = 0.

This means that the matrix MR of a symmetric
relation R is such that the (i, j)th element of MR is
equal to the (j, i)th element of MR. In other words,
the matrix of a symmetric relation is a symmetric
matrix.

In the digraph of a symmetric relation, if there
is an edge from vertex a to a vertex b, then there is
an edge from b to a; this means that if two vertices
are connected by an edge, they must always be
connected in both directions. Because of this, in a
digraph of a symmetric relation, the edges are
shown without arrows — the arrows are understood
both ways. The digraph of a symmetric relation is
called the graph of the relation and an edge
connecting two vertices a and b is always a bi-

directed edge; it is denoted by {a, b}. Two vertices
a and fi of a graph which are connected by an edge
are called adjacent vertices.

For example, consider the relation

R = {(1, 2), (2, 1), (1, 3), (3, 1)}

on the set A = {1, 2, 3}. Evidently, this
relation is a symmetric relation, and its graph is as
shown below:

In the above graph, 1 and 2 are adjacent
vertices, 1 and 3 are adjacent vertices, but 2 and 3
are not adjacent vertices.

3. Antisymmetric Relation

A relation fi on a set A is said to be
antisymmetric (or said to have the antisymmetric
property) if whenever (a, b)   R and (b, a)   R
then a = b.

It follows that R is not antisymmetric if there
exist a, b   A such that (a, b)   R and (b, a)   R
but a   b.

For example, the relation “is less than or equal
to” on the set of all real numbers is an antisymmetric
relation (because if a   b and b   a, then a = b).

It should be emphasized that asymmetric (i.e.,
not symmetric) and antisymmetric relations are not
one and the same. A relation can be both symmetric
and antisymmetric. A relation can be neither
symmetric nor antisymmetric.

For example, let A = {1, 2, 3} and R1 = {(1,
1), (2, 2)} and R2 = {(1, 2), (2, 1), (2, 3)}. We
check that R1 is both symmetric and antisymmetric,
and R2 is neither symmetric nor antisym­metric.

The following results are obvious:

1. If MR = [m i j] is the matrix of an
antisymmetric relation, then, for i   j,
we have either mij = 0 or mji = 0.
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2. In the digraph of an antisymmetric relation, for two different vertices a and fi, there cannot be
a bidirectional edge between a and b.

4. Transitive Relation

A relation fi on a set A is said to be transitive (or said to have the transitive property) if whenever
(a, b)   R and (b, c)   R then (a, c)   R, for all a, b, c   A.

It follows that fi is not transitive if there exist a, b, c   A such that (a, b)   R and (b, c)   R but
(a, c)  R.

For example, the relations “is less than or equal to” and “is greater than or equal to” are transitive
relations on the set of all real numbers. Because, if a   b and b   c then a   c, and if a   b and b   c
then a   c, for all real numbers a, b, c.

As another example, if we consider the set A = {1, 2, 3) and the relations R1 = {(1, 1), (1, 2),
(2, 3), (1, 3), (3, 1), (3, 2)} and R2 = {(1, 2), (2, 3), (1, 3), (3, 1)} on A, then R1 is transitive but R2 is not
transitive.

The following results are easy to prove:

1. A relation fi on a set A is transitive if and only if its matrix MR = [mij;] has the following
property:

If mik = 1 and mij = 1. then mij = 1.

2. A relation R on set A is transitive if and only if Rn   R for all n   1.

PROBLEMS

15. Let A = {1, 2, 3}. Determine the nature of the following relations on A:

(i) R1 = {(1, 2), (2, 1), (1, 3), (3, 1)}

(ii) R2 = {(1. 1), (2, 2), (3, 3), (2, 3)}

(iii) R3 = {(1, 1), (2, 2), (3, 3)}

(iv) R4 = {(1, 1), (2, 2), (3, 3), (2, 3), (3,2)}

(v) R5 = {(1, 1), (2, 3), (3, 3)}

(vi) R6 = {(2, 3), (3, 4), (2, 4))

(vii) R7 = {(1, 3), (3, 2)}.

Sol :
By examining all ordered pairs present in the relations given, we find that:

R1 is symmetric and irreflexive, but neither reflexive nor transitive.

R2 is reflexive and transitive, but not symmetric.

R3 and R4 are both reflexive and symmetric; that is, they are compatibility relations.

R5 is neither reflexive nor symmetric.

R6 is transitive and irreflexive, but not symmetric.

R7 is irreflexive, but neither transitive nor symmetric.
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16. Let A = {1, 2, 3, 4}. Determine the nature of the following relations on 4

(i) R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)}

(ii) R2 = {(1, 2), (1, 3), (3, 1), (1, 1), (3, 3), (3, 2), (1, 4), (4, 2), (3, 4)}

(iii) R3 represented by the following digraph:

Sol :
By examining all ordered pairs present in R1 and R2, we find that:

(i) R1 is reflexive, symmetric and transitive, and

(ii) R2 is transitive.

By examining the edges in the digraph in Figure, we find that the relation R3 is both asymmetric and
antisymmetric.

17. Find the nature of the relations represented by the following matrices:

(a)  

 
 
 
 
 
 

0 1 1 0
1 1 0 0
1 0 1 1
0 0 1 1

  (b)  

 
 
 
 
 
 

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

(c)  

 
 
 
 
 
 

0 0 1 1
0 0 1 0
0 0 0 1
1 0 0 0

Sol :
(a) Here, the given matrix is symmetric (that is, aji = aij for i, j = 1, 2, 3). Therefore, the corresponding

relation is symmetric.

(b) Here, the given matrix has 1’s on its main diagonal and is symmetric. Therefore, the corresponding
relation is reflexive and symmetric (i.e., it is a compatibility relation).

(c) Here, the given matrix is not symmetric. Therefore, the corresponding relation is not symmetric.
Further, the presence of 1 in the (1, 4)th and (4, 1)th positions of the matrix indicates that the relation
is not antisymmetric.

18. Show that the relation R represented by the matrix

MR = 

 
 
 
  

1 1 1
0 0 1
0 0 1

is transitive.

Sol :
Let  A = {a, b, c} be the set on which R is defined. Then, by examining the given MR, we find that

R = {(a, a), (a, b), (a, c), (b, c), (c, c)}

By examining the elements of R, we find that R is transitive.
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19. Let A = {a, b, c, d, e}, and

R = {(a, d), (d, a), (c, b), (b, c), (c, e), (e, c), (b, e), (e, b), (e, e)}

be a symmetric relation on A. Draw the graph of R.

Sol :
By examining the elements in R, we find that the graph of R is as shown in Figure

20. Consider the set A ={ball, bed, dog, let, egg} and define the relation R on A by

R = {(x, y) | x, y   A and xRy if x and y contain some common letter}.

Verify that R is a compatibility relation which is not transitive. Draw the graph of R.

Sol :
From the definition of R, we readily note that xRx for all x   A, and yRx whenever xRy for all

x, y   A. Hence R is reflexive and symmetric; that is fi is a compatibility relation.

Let   x1, x2, x3, x4, x5 respectively denote the words ball, bed, dog, let, egg that belong to A.

Then, A = {x1, x2, x3, x4, x5 }

We note that (x1, x2)   R and (x2, x3)   R, but (x1, x3)  R (- because x1 and x3 do not have a
common letter). As such, R is not a transitive relation.

The graph of R is as shown in Figure. In this graph, loops are understood but not shown and all
edges are bidirectional.

21. On the set Z+, a relation R is defined by aRb if and only if a divides b (exactly). Prove
that R is reflexive, transitive and antisymmetric, but not symmetric.

Sol :
For any a   Z+, the statement “a divides a” is true. Thus, aRa for all a   Z+.

Hence R is reflexive.

Next, we note that, for any a, b   Z+, “a divides b” need not imply that “b divides a” (For instance,
3 divides 6 but 6 does not divide 3). Thus, aRb does not always imply bRa. Hence R is not symmetric.
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Further, “a divides b“ and “b divides a” imply
that a = b. Thus aRb and bRa imply a = b.
Therefore, R is antisymmetric.

Lastly, we note that for any a, b, c   Z+, “a
divides b” and “b divides c” imply that “a divides
c”. Thus aRb and bRc imply aRc. Hence R is
transitive.

22. Let S be a nonempty set. On ‘P(S), define
a relation R by (A, B)   R if and only if
A   R. Prove that R is reflexive,
antisymmetric and transitive, but not
symmetric.

Sol :
For any subset A of S (i.e., for any A   P(S)),

we have A   A. This means that (A, A)   R. Hence
R is reflexive on ‘P(S).

Next, we note that for any A, B   P(S), A 
B and B   A imply A = B. That is, (A, B)   R and
(B, A)   R imply A = B. Hence fi is antisymmetric
on P(S).

Further, for any A, B, C   P(S), if A   B and
B   C, we have A   C. That is, if (A, B)   R and
(B, C)   R, then (A, C)   R. Hence R is transitive
on P(S).

Finally, we note that for any A, B = P(S), A
  R does not necessarily imply that B   A. That is,
(A, B)   R does not always imply that (B, A)   R.
Therefore, R is not symmetric on P(S).

23. Let R be a relation on a set A. Prove the
following:

(i) R is reflexive if and only if R  is
irreflexive.

(ii) If R is reflexive, so is Rc.

(iii) If R is symmetric, so are Rc and R.

(iv) IfR is transitive, so is Rc.

Sol :
(i) Suppose R is reflexive. Then (a, a)   R for

every a   A. Consequently, (a, a)  R  for
any a   A. This means that R is irreflexive.
Reversing the steps, we find that if R is
irreflexive then fi is reflexive.

(ii) Suppose R is reflexive. Then (a, a)   R for all
a   R. Consequently, (a, a)   R as well.
Therefore, RC is reflexive.

(iii) Take any (a, b)   RC. Then (b, a)   R.
Consequently, (a, b)   R, because R is
symmetric. This implies (b, a)   RC . Thus,
RC is also symmetric.

Next take any (a, b)   R . Then (a, b)
 R. Consequently, (b, a)  R, because R is
symmetric. This implies (b, a)   R. Thus, R is
also symmetric.

(iv) Take any (a, b), (b, c)   RC. Then (b, a), (c,
b)   R. This implies that (c, a)   R. because
R is transitive. Therefore (a, c)   RC. Thus,
RC is transitive.

24. Let R and S be relations on a set A. Prove
the following:

(i) If R and S are reflexive, so are
R   S and R   S.

(ii) If R and S are symmetric, so are
R   S and R   S.

(iii) If R and S are antisymmetric, so is
R   S.

(iv) If R and S are transitive, so is
R   S.

Sol :
(i) Suppose R and S are reflexive. Then (a, a) 

R and (a, a)   S for all a   A. Consequently,,
(a, a)   R   S and (a, a)   R   S.
Therefore, R   S and R   S are reflexive.

(ii) Suppose R and S are symmetric. Take any
(a, b)   R   S. Then (a, b)   R and (a, b)
  S. Therefore, (b, a)   R and (b, a)   S.
Consequently, (b, a)   R   S. Hence R 
S is symmetric.

Next, take any (x, y)   R   S. Then
(x, y)   R or (x, y)    S. Therefore, (y, x) 
R or (y, x)   S. Consequently, (y, x)   R 
S. Hence R   S is symmetric.

(iii) Suppose R and S are antisymmetric. Take any
(a, b), (b, a)   R   S. Then (a, b), (b. a) 
R and (a, b), (b, a)   S. By the antisymmetry
of R (or S), it follows that b = a. Thus.
R   S is antisymmetric.
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(iv) Suppose R and S are transitive. Take (a, b),
(b, c)   R   S. Then (a, b)   R, (a, b)   S,
(b, c)   R, (b, c)   S. These yield (a, c)   R
and (a, c)   S, so that (a, c)   R   S.
Therefore, R   S is transitive.

1.5  PARTIAL ORDERING RELATION

Q25. Discuss about Partial Ordering Relation.

Ans : (Imp.)

A relation R on set A is said to be a partial
ordering relation or a partial order on A if

(i) R is reflexive,

(ii) R is antisymmetric, and

(iii) R is transitive, on A.

A set A with a partial order R defined on it is
called a partially ordered set or an ordered set or a
poset, and is denoted by the pair (A, R).

The most familiar partial order is the relation
“less than or equal to”, denoted by  , on the set Z
of all integers. (Because, this relation is reflexive,
antisymmetric and transitive). Thus, (Z,  ) is a poset.

The relation “is greater than or equal to”,
denoted by  , is also a partial order on Z; that is,
(Z,  ) is also a poset.

The “divisibility relation” on the set Z+ defined
by a divides b (denoted by a/b) for all a. b   Z+ is
a partial order on Z+.

The “subset relation”   defined on the power
set of a set S is a partial order on S;

Thus, for any set 5, P(S)  ) is a poset.

The relations “is less than” and “is greater
than” are not partial orders on Z; because, these
are not reflexive.

The relation “congruent modulo n” defined
on the set of all integers Z is also not a partial order;
because this relation is not antisymmetric.

Total Order

Let R be a partial order on a set A. Then R is
called a total order (or a linear order) on A if for all
x, y   A, either xRy or yRx. In this case, the poset
(A, R) is called a totally ordered set (or a linearly
ordered set) or a chain.

For example, the partial order relation “less
than or equal to” is a total order on the set R.
Because, for any x,y   R, we have x   y or y   x.
Thus, (R,  ) is a totally ordered set.

If we consider the divisibility relation on the
set A = {1, 2, 4, 8}, this relation is a total order on
A. The same relation is not a total order on the set
A = {1, 2, 4, 6, 8} although it is a partial order on
A. (Observe that neither 4 divides 6 nor 6
divides 4).

The subset relation is also not a total order
on the power set of an arbitrary set S although it is
a partial order; because for any two subsets S1 and
S2 of S, neither S1   S2 nor S2   S1 can be true.
(For example, if S = {1, 2, 3}, S1 = {1, 2} and
S2 = {1, 3}, then S1   S2 and S2   S but S1   S2

and S2   S1).

From the definition of a total order and the
examples given above it is clear that every total order
is a partial order, but not every partial order is a
total order.

Hasse Diagram

Since a partial order is a relation on a set, we
can think of the digraph of a partial order if the set
is finite. Since a partial order is reflexive, at every
vertex in the digraph of a partial order there would
be a loop. In view of this, while drawing the digraph
of a partial order, we need not exhibit such loops
explicitly; they will be automatically understood (by
convention).

If, in the digraph of a partial order, there is
an edge from a vertex a to a vertex b and there is
an edge from the vertex b to a vertex c, then there
should be an edge from a to c (because of
transitivity). As such, we need not exhibit an edge
from a to c explicitly; it will be automatically
understood (by convention).

To simplify the format of the digraph of a
partial order, we represent the vertices by dots
(bullets) and draw the digraph in such a way that
all edges point upward. With this convention, we
need not put arrows in the edges.

The digraph of a partial order drawn by
adopting the conventions indicated in the above
paragraphs is called a poset diagram or the Hasse
diagram for the partial order.
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PROBLEMS

26. Let A = {1, 2, 3, 4}, and R = {(1, 1), (1,
2), (2, 2), (2, 4), (1, 3), (3, 3),(3, 4), (1,4),
(4,4)} Verify that R is a partial order on
A. Also, write down the Hasse diagram
for R.

Sol :
We observe that the given relation R is

reflexive and transitive. Further, R does not contain
ordered pairs of the form (a, b) and (b, a) with b 
a. Therefore, R is antisymmetric. As such, fi is a partial
order on A.

The Hasse diagram for R must exhibit the
relationships between the elements of A as defined
by R; if (a, b)  R, there must be an upward edge
from a to R.

By examining the ordered pairs contained in
R, we find that the Hasse diagram of R is as shown
below:

27. A partial order R on the set A = {1, 2, 3,
4} is represented by the following
digraph. Draw the Hasse diagram for R.

Sol :
By observing the given digraph, we note that

R = {(1, 2), (1, 3), (1, 4), (2, 4)}.

The Hasse diagram for this R is as shown
below:

28. The diagram for a relation on set A =
{1, 2, 3, 4} is as shown below :

Verify that (A, R) is a poset and find its
Hasse diagram.

Sol :
By examining the given digraph, we find that

R = {(1, 1), (1, 4), (2, 2), (3, 3), (3, 1),
(3, 2), (3, 4), (4,4)}

We check that R is reflexive, transitive and
antisymmetric. Therefore, R is a partial order on A.
The Hasse diagram of R is as shown below.

29. If R is a relation on the set A = {1, 2,
3, 4} defined by xRy if x | y, prove that
(A, R) is a poset. Draw its Hasse
diagram.

Sol :
From the definition of R, we have

R = {(x, y) | x, y   A and x divides y}

  = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2),
(2, 4), (3, 3), (4, 4)}

We observe that (a, a)   R for all a   A.
Hence R is reflexive on A.

We verify that the elements of R are such that
if (a, b)   R and a   b, then (b, a)  R. Therefore,
R is antisymmetric on A.

Further, we check that the elements of R are
such that if (a, b)   R and (b, c)   R then (a, c) 
R. Therefore, A is transitive on A.

Thus, R is reflexive, antisymmetric and
transitive. Hence R is a partial order on A; that is,
(A, R) is a poset.
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The Hasse diagram for R is as shown below.

30. Let A = {1 ,2, 3, 4, 6, 12}. On A, define the relation R by aRb if and only if a divides b.
Prove that R is a partial order on A. Draw the Hasse digram for this relation.

Sol :
From the definition of R, we note that

R = {(a, b) | a, b   A and a divides b}

  = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 12), (2, 2), (2, 4), (2, 6)

(2, 12), (3, 3), (3, 6), (3, 12), (4, 4), (4, 12), (6, 6), (6, 12), (12, 12)}

Evidently, (a, a)   R for all a   A. Therefore, R is reflexive.

We check that the elements of R are such that if (a, b)   R and (b, c)   R then (a, c)   R.
Therefore, R is transitive. Further, for all a, b   A, if a divides b and b divides a, then a = b. Hence R is
antisymmetric.

Therefore, R is a partial order on A. The Hasse diagram for R is shown in Figure

31. Draw the Hasse diagram representing the positive divisors of 36.

Sol :
The set of all positive divisors of 36 is

D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36} (*)

The relation R of divisibility (aRb if and only if a divides b) is a partial order on this set. The Hasse
diagram for this partial order is required here. We note that, under R,

1  is related to all elements of D36 9 is related to 9, 18, 36;

2 is related to 2, 4, 6, 12, 18, 36; 12 is related to 12 and 36;

3 is related to 3, 6, 9, 12, 18, 36; 18 is related to 18 and 36;

4 is related to 4, 12, 36; 36 is related to 36.

6 is related to 6, 12, 18, 36;
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The Hasse diagram for R must exhibit all of the above facts. The diagram is as shown below:

32. Show that the set of all positive integers is not totally ordered by the relation of divisibility.

Sol :
For a set A to be totally ordered by a partial order R, we should have aRb or bRa, for every

a. b   A.

If R is the divisibility relation on Z+, aRb or bRa need not hold for every a, b   Z+. For example, if
we take a = 2 and b = 3, then a does not divide b and b does not divide a.

Therefore, Z+ is not totally ordered by the relation of divisibility.

33. In the following cases, consider the partial order of divisibility on the set A. Draw the
Hasse diagram for the poset and determine whether the poset is totally ordered or not.

(i) A = {1, 2, 3, 5, 6, 10, 15, 30}

(ii) A = {2, 4, 8, 16, 32}

Sol :
The Hasse diagram for the two cases are as shown below:

By examining the above Hasse diagrams, we find that the given relation is totally ordered in case
(ii), but is not totally ordered in case (i).

34. The Hasse diagram of a partial order R on the set A = {1, 2, 3, 4, 5, 6} is as given below.
Write down R as a subset of A × A. Construct its digraph.
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Sol :
By examining the given Hasse diagram, we note the following:

1R4, 1R6, 2R5, 2R6, 3R5, 3R6, 4R6, 5R6.

Also, by the convention used in Hasse diagrams,

1R1, 2R2, 3R3, 4R4, 5R5, 6R6.

Therefore,

R = {(1, 1), (1, 4), (1, 6), (2, 2), (2, 5), (2, 6), (3, 3), (3. 5), (3, 6), (4, 4),

(4, 6), (5, 5), (5, 6), (6, 6))

The digraph of this relation is as shown below.

1.6  EQUIVALENCE RELATION

Q35. Define about Equivalence Relation.

Ans :
A relation R on a set A is said to be an equivalence relation on A if (i) R is reflexive, (ii) R is

symmetric, and (iii) R is transitive, on A.

A trivial example of an equivalence relation is the relation “is equal to” on the set of all real numbers.
R. An example of a relation which is not an equivalence relation is the relation “is less than “ on R.

PROBLEMS

36. Let A = {1, 2, 3, 4) and R = {(1, 1), (1, 2), (2.1), (2, 2), (3, 4), (4. 3), (3, 3), (4. 4)} be a
relation on A. Verify that R is an equivalence relation.

Sol :
We have to show that R is reflexive, symmetric and transitive.

First, we note that all of (1, 1), (2, 2), (3, 3), (4, 4) belong to R. That is, (a, a)   R for all a   A.
Therefore, R is a reflexive relation.
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Next, we note the following:

(1, 2), (2, 1)   R and (3, 4), (4, 3)   R.

That is, if whenever (a, b)   R then (b, a) 
R for a, b   A. Therefore, R is a symmetric relation.
Lastly, we note that

(1, 2), (2, 1), (1, 1)   R, (2, 1), (1, 2),

(2, 2)   R,

(4, 3), (3, 4), (4, 4)   R.

That is, if whenever (a, b)   R and (b, c)   R
then (a, c)   R, for a, b, c   A. Therefore, R is a
transitive relation.

Accordingly, R is an equivalence relation.

37. Let A = {1, 2, 3, 4}, and R = {(1, 1), (1,
2), (2, 1), (2, 2), (3, 1), (3, 3), (1, 3), (4,
1), (4, 4)} be a relation on A. Is R an
equivalence relation?

Sol :
Here, we have to check whether or not R is

reflexive, symmetric and transitive.

By examining the elements of R, we note the
following:

(i) (a, a)   R for every of a   R, Therefore
R is reflexive.

(ii) (4, 1)   R, but (1, 4)   R. Therefore, R
is not symmetric.

Since R is not symmetric, R is not an
equivalence relation. (We need not check fi for
transitivity).

38. If A = A1   A2   A3, where A1 = {1, 2},
A2 = {2, 3, 4} and A3 = {5}, define the
relation R on A by xRy if any only if x
and y are in the same set Ai, i = 1, 2, 3.
Is R an equivalence relation ?

Sol :
We note that xRx for every x in A, because x

and x belong to the same Ai.

Therefore, R is reflexive.

Further, if x, y   Ai then y, x   A; for all x, y
in A. Therefore, R is symmetric.

Lastly, we observe that (1, 2)   R (because 1
and 2 are in the same set, A1) and (2, 3)   R
(because 2 and 3 are in the same set, A2) but (1, 3)
  R (because 1 and 3 are not in the same set).
Hence R is not transitive.

Accordingly, R is not an equivalence relation.
It is just a compatibility relation.

39. A relation R on a set A = {a, b, c} is
represented by the following matrix:

MR = 

 
 
 
  

1 0 1
0 1 0
0 0 1

Determine whether R is an equivalence
relation.

Sol :
By examining the elements of MR, we find

that R = {(a, a), (a, c), (b, b), (c, c)}.

We note that (a, c)   R but (c, a)   R.
Therefore, R is not symmetric. Accordingly, R is not
an equivalence relation.

(That R is not symmetric can also be seen by
the fact that the matrix MR is not symmetric.)

40. The digraph of a relation R on the set
A = {1, 2, 3} is as given below.
Determine whether R is an equivalence
relation.

Sol :
By examining the digraph, we note that the

given relation is symmetric and transitive but not
reflexive; observe that (3, 3)  R. Therefore, R is
not an equivalence relation.

41. Let S be the set of all non-zero integers,
and A = S × S. On A, define the relation
R by (a, b)R(c, d) if and only if ad = bc.
Show that R is an equivalence relation.
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Sol :
First, we note that (a, a)R(a, a), because aa

= aa for any a   S. Therefore, R is reflexive on A.

Next, suppose (a, b)R(c, d). Then ad = bc
and therefore cb = da. Hence (c, d)R(a, b).
Accordingly, R is symmetric on A.

Lastly, suppose that (a,b)R(c,d) and (c,d)R(e,
f). Then ad = bc and cf = de, which yield af = be.
Hence (a,b)R(e, f). Accordingly, R is transitive
on A.

This proves the required result.

1.7  FUNCTIONS

Q42. Discuss about functions.

Ans :
Let A and B be two non-empty sets. Then a

function (or mapping) f from A to B is a relation
from A to B such that for each a in A there is a
unique b in B such that (a, b)   f. Then we write b
= f(a). Here, b is called the image of a, and a is
called a preimage of b, under f. The element a is
also called an argument of the function f, and b =
f(a) is then called the value of the function f for the
argument a.

A function f from A to B is denoted by f : A
  B. The pictorial representation of f is as shown
below.

It has to be emphasized that every function is
a relation, but a relation need not be a function.
Because, if R is a relation from A to B then an
element of A can be related to two different
elements of B, under R. This is not the case in respect
of a function from A to B; under a function an
element of A can be related to only one element
of B.

For the function f : A   B, A is called the
domain of f and B is called the co-domain of f.

The subset of B consisting of the images of all
elements of A under f is called the range of f and is
denoted by f(A).

The following observations are immediate
consequences of the definition of a function f : A
  B and other associated definitions given above.

(i) Every a in A belongs to some pair (a, b)   f,
and if (a, b1)   f and (a, b2)   f, then b1 =
b2. This means that every element of A has
an image in B (under f) and if an element a
of A has two images in B, then the two images
cannot be different.

(ii) An element b   B need not have a preimage
in A, under f.

(iii) If an element b   B has a preimage a   A
under f, the preimage need not be unique.
In other words, two different elements of A
can have the same image in B, under f.

(iv) The statements (a, b)   f, afb and b = f(a)
are equivalent (in the sense that they all carry
the same meaning).

(v) If g is a function from A to B (denoted by g :
A   B), then f = g if and only if f(a) = g(a)
for every a   A.

(vi) It is not necessary that B   A. That is, one
can have a function from A to itself. A function
from A to A is called a unary (or monary)
operation on A.

For example, if R+ denotes the set of all
positive real numbers, the function f : R+ 

R+ defined by f(a) = 
1
a

 is a unary operation

on R+.

(vii) The range of f : A   B is given by

f(A) = {f(x) | x   A}

and f(A) is a subset of B.



MCA I YEAR  I SEMESTER

24
Rahul Publications

Rahul Publications

(viii) For f : A   B, if A1   A and f(A1) is defined by

f(A1) = {f(x) | x   A1},

then f(A1)   f(A). (Here, f(A1) is called the image of A1 under f).

(ix) For f : A   B, if b   B and f–1{b) is defined by

f–1(b) = {x   A \ f(x) = b},

then f–1(b)   A. (Here, f–1(b) is called the preimage set of b under f)

(x) For f : A   B, if B1   B and f–1(B1) is defined by

f–1(B1) = {x   A | f(x)   B1},

then f–1(B1)   A. (Here, f–1(B1) is called the preimage of B1 under f).
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1.7.1 Types of Functions

1.7.1.1  Sum and Product of Functions, Bijective functions, Inverse and Composite Function

Q43. Discuss various types of functions.

Ans : (Imp.)

1. Sum and Product of Functions

The Rule of Sum and Rule of Product are used to decompose difficult counting problems into
simple problems.

Sum Rule Principle

Assume some event E can occur in m ways and a second event F can occur in n ways, and suppose
both events cannot occur simultaneously. Then E or F can occur in m + n ways. In general, if there are n
events and no two events occurs in same time then the event can occur in n2 + n2 n ways.

Product Rule Principle

Suppose there is an event E which can occur in m ways and, independent of this event, there is a
second event F which can occur in n ways. Then combinations of E and F can occur in mn ways. In
general, if there are n events occurring independently then all events can occur in the order indicated as
n1 × n2 × n3 n ways.

2. Bijection

From the definitions of onto and one-to-one functions, we note that a function f : A   B is both
one-to-one and onto if every element of A has a unique image in B and every element of B has a unique
preimage in A. A function which is both one-to-one and onto is called a bijective function (or bijection).

A bijective function is also called a one-to-one correspondence.

Fig. : One-to-one correspondence.

3. Inverse and Composite Function

Definition: Let f be a bijection from set A to set B. The inverse function of f is the function that
assigns to an element b from B the unique element a in A such that f(a) = b. The inverse function of f is
denoted by f-1. Hence, f-1 (b) = a, when f(a) = b. If the inverse function of f exists, f is called invertible.
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Composition of Functions

Two functions f: AB and g: BC can be composed to give a composition g o f. This is a function
from A to C defined by (gof)(x) = g(f(x))

PROBLEMS

44. Find the nature of the following functions defined on the set A = (1, 2, 3).

(i) f = {(1, 1), (2, 2), (3, 3)}

(ii) g = {(1, 2), (2, 2), (3, 2))

(iii) h = {(1, 2), (2, 2), (3, 1)}

(iv) p = {(1, 2), (2, 3), (3, 1)}

Sol :
(i) We note that for every a   A, (a, a)   f; that is, a = f(a). Therefore, f is the identity function on A.

(ii) We note that every a   A has 2 as its image; that is, g(1) = 2, g(2) = 2 and g(3) = 2. Therefore,
g is a constant function.

(iii) We note that h is neither the identity function nor a constant function. The range of h is {2,1}   A:
the element 3 has no preimage under h. Therefore, h is not onto. We further note that both of 1
and 2 have the same image 2 under h. Therefore, h is not one-to-one.

(iv) We note that every element of A has a unique image and every element of A has a unique preimage,
under p. Therefore, p is both one-to-one and onto; it is a bijection. That is, p is a one-to-one
correspondence.

45. The functions f : R   R and g : R   R are defined by f(x) = 3x + 7 for all x   R, and
g(x) = x(x3 – 1) for all x   R. Verify that f is one-to-one but g is not.

Sol :
For any x1, x2   R, we have

f(x1) = 3x1 + 7, f(x2) = 3x2 + 7.

Evidently, if f(x1) = f(x2) we have 3x1 + 7 = 3x2 + 7 so that x1 = x2. Therefore, f is an one-to-one
function.

Next, we note that g(0) = 0 and g(1) = 0. Thus, for x1 = 0 and x2 = 1 We have g(x1) = g(x2) but
x1   x2. Therefore, g is not a one-to-one function.

46. The function f : (Z × Z)   Z is defined by f(x, y) = 2x + 3y. Verify that f is onto but not
one-to-one.

Sol :
Take any n   Z. We note that

n = An – 3n = 2(2n) + 3(–n) = f(2n, –n)
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Thus, every n   Z has a preimage (2n, –n)   Z × Z under f. Therefore, f is an onto function.

Next, we check that f(0, 2) = 2 × 0 + 3 × 2 = 6 and f(3, 0) = 2 × 3 + 3 × 0 = 6. Thus, f(0, 2)
= f(3, 0), but (0, 2)   (3, 0). Therefore, f is not one-to-one.

47. Let f : Z   Z be defined by f(a) = a + 1 for a   Z. Find whether f is one-to-one or onto (or
both or neither).

Sol :

Take any a1, a2   Z with a1   a2. Then  f(a1) = a1 + 1 and f(a2) = a2 + 1. Since a1   a2 it is evident
that f(a1)   f(a2). Thus, different elements of Z have different images under f. Therefore, f is one-to-one.

Take any b   Z. We check that b has b – 1 as its preimage under f; because f(b – 1) = (b – 1) + 1
= b. Thus, every element of Z has a preimage. Therefore, f is onto.

Thus, f is both one-to-one and onto; that is, f is a one-to-one correspondence.

48. Let A = R and B - {x | x is real and x   0}. Is the function f : A   B defined by f(a) = a2

an onto function? a one-to-one function?

Sol :

Take any b   B. Then b is a non-negative real number. Therefore, its square roots ± b  exist and

are real numbers; that is ± b    A. By the definition of f, we note that

f( b ) = ( b )2 = b  and  f(– b ) = (– b )2 = b.

Thus, ± b  are preimages of b under f. Since b is an arbitrary element f B. it follows that every
element in B has a (at least one) preimage in A. Hence f is an onto function. Since b   B has two

preimages ± b    A under f, it follows that f is not one-to-one.

Q49. Prove that g : RR, where g(x) = 2x – 1. What is the inverse function g–1 ?

Ans :
Let g : RR,  where g(x) = 2x – 1

Approach to determine the inverse:

y = 2x – 1   y + 1 = 2x

  (y + 1)/2 = x

Define g–1(y) = x= (y+1)/2

Test the correctness of inverse:

g(3) = 2*3 – 1 = 5

g–1 (5) = (5+1)/2 = 3

g(10) = 2*10 – 1 = 19

g–1 (19) = (19+1)/2 = 10.
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1.8  CANTOR’S DIAGONAL ARGUMENT

Q50. Explain briefly about Cantor’s Diagonal
Argument.

Ans :
In set theory, Cantor's diagonal argument,

also called the diagonalisation argument, the
diagonal slash argument, the anti-diagonal
argument, the diagonal method, and Cantor's
diagonalization proof, was published in 1891 by
Georg Cantor as a mathematical proof that there
are infinite sets which cannot be put into one-to-
one correspondence with the infinite set of natural
numbers. Such sets are now known as uncountable
sets, and the size of infinite sets is now treated by
the theory of cardinal numbers which Cantor began.

The diagonal argument was not Cantor's first
proof of the uncountability of the real numbers,
which appeared in 1874. However, it demonstrates
a general technique that has since been used in a
wide range of proofs, including the first of Gödel's
incompleteness theorems and Turing's answer to the
Entscheidungsproblem. Diagonalization arguments
are often also the source of contradictions like Russell's
paradox and Richard's paradox.

Uncountable Set

Cantor considered the set T of all infinite
sequences of binary digits (i.e. each digit is zero or
one). He begins with a constructive proof of the
following lemma:

If s1, s2, ... , sn, ... is any enumeration of
elements from T, then an element s of T can be
constructed that doesn't correspond to any sn in
the enumeration.

The proof starts with an enumeration of
elements from T, for example

s1 = (0, 0, 0, 0, 0, 0, 0, ...)

s2 = (1, 1, 1, 1, 1, 1, 1, ...)

s3 = (0, 1, 0, 1, 0, 1, 0, ...)

s4 = (1, 0, 1, 0, 1, 0, 1, ...)

s5 = (1, 1, 0, 1, 0, 1, 1, ...)

s6 = (0, 0, 1, 1, 0, 1, 1, ...)

s7 = (1, 0, 0, 0, 1, 0, 0, ...)

...

Next, a sequence s is constructed by choosing
the 1st digit as complementary to the 1st digit of s1
(swapping 0s for 1s and vice versa), the 2nd digit as
complementary to the 2nd digit of s2, the 3rd digit
as complementary to the 3rd digit of s3, and
generally for every n, the nth digit as complementary
to the nth digit of sn. For the example above, this
yields

s1 = (0, 0, 0, 0, 0, 0, 0, ...)

s2 = (1, 1, 1, 1, 1, 1, 1, ...)

s3 = (0, 1, 0, 1, 0, 1, 0, ...)

s4 = (1, 0, 1, 0, 1, 0, 1, ...)

s5 = (1, 1, 0, 1, 0, 1, 1, ...)

s6 = (0, 0, 1, 1, 0, 1, 1, ...)

s7 = (1, 0, 0, 0, 1, 0, 0, ...)

...

s = (1, 0, 1, 1, 1, 0, 1, ...)

By construction, s is a member of T that differs
from each sn, since their nth digits differ (highlighted
in the example). Hence, s cannot occur in the
enumeration.

Based on this lemma, Cantor then uses a
proof by contradiction to show that:

The set T is uncountable.

The proof starts by assuming that T is
countable. Then all its elements can be written in
an enumeration s1, s2, ... , sn, ... . Applying the
previous lemma to this enumeration produces a
sequence s that is a member of T, but is not in the
enumeration. However, if T is enumerated, then
every member of T, including this s, is in the
enumeration. This contradiction implies that the
original assumption is false. Therefore, T is
uncountable.

Real numbers

The uncountability of the real numbers was
already established by Cantor's first uncountability
proof, but it also follows from the above result. To
prove this, an injection will be constructed from the
set T of infinite binary strings to the set R of real
numbers. Since T is uncountable, the image of this
function, which is a subset of R, is uncountable.
Therefore, R is uncountable. Also, by using a
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method of construction devised by Cantor, a
bijection will be constructed between T and R.
Therefore, T and R have the same cardinality, which
is called the "cardinality of the continuum" and is
usually denoted by c or 2.

An injection from T to R is given by mapping
binary strings in T to decimal fractions, such as
mapping t = 0111... to the decimal 0.0111.... This
function, defined by f(t) = 0.t, is an injection
because it maps different strings to different
numbers.

Constructing a bijection between T and R is
slightly more complicated. Instead of mapping
0111... to the decimal 0.0111..., it can be mapped
to the base b number: 0.0111...b. This leads to the
family of functions: fb(t) = 0.tb. The functions fb(t)
are injections, except for f2(t).

This function will be modified to produce a
bijection between T and R.

1.9  THE POWER SET THEOREM

Q51. Explain briefly about Power Set
Theorem.

Ans :
A power set includes all the subsets of a given

set including the empty set. The power set is denoted
by the notation P(S) and the number of elements
of the power set is given by 2n. A power set can be
imagined as a place holder of all the subsets of a
given set, or, in other words, the subsets of a set are
the members or elements of a power set.

A power set is defined as the set or group of
all subsets for any given set, including the empty
set, which is denoted by {}, or, . A set that has 'n'
elements has 2n subsets in all. For example, let Set
A = {1, 2, 3}, therefore, the total number of
elements in the set is 3. Therefore, there are 23

elements in the power set. Let us find the power set
of set A.

Set A = {1, 2, 3}

Subsets of set A = {}, {1}, {2}, {3}, {1,2},
{2,3}, {1,3}, {1,2,3}

Power set P(A) = { {}, {1}, {2}, {3}, {1,2},
{2,3}, {1,3}, {1,2,3} }

Power Set

Set A = {1,2} { }, {1}, {2}, {1, 2}

Subset

Power Set

Set A = {1,2} { }, {1}, {2}, {1, 2}

Subset

Power Set

Cardinality of a Power Set

The cardinality of a set is the total number of
elements in the set. A power set contains the list of
all the subsets of a set. The total number of subsets
for a set of 'n' elements is given by 2n.

Power Set Properties

A power set is a set that has a list of all the
subsets of a given set. The power set which is
denoted by P(A) with 'n' elements has the following
properties:

 The total number of elements of a set is 2n.

 An empty set is a definite element of a power
set.

 The power set of an empty set has only one
element.

 The power set of a set with a finite number of
elements is finite. For example, if set X = {b,
c, d}, the power sets are countable.

 The power set of an infinite set has infinite
number of subsets. For example, if Set X has
all the multiples of 5 starting from 5, then we
can say that Set X has an infinite number of
elements. Though there is an infinite number
of elements, a power set still exists for set X,
in this case, it has infinite number of subsets.

 These the power set exists for both finite and
infinite sets.

Power Set Proof

Let us see how a set containing 'n' elements
has a power set that has 2n elements. In other words,
the cardinality of a finite set A with 'n' elements is
|P(A)| = 2n.
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The proof of the power set follows the pattern
of mathematical induction. To start with, let us
consider the case of a set with no elements or an
empty set.

Case 1:

A set with no elements. Let A = {}.

Here, the power set of A, which is denoted
by P(A) = { } and the cardinality of the power set
of A = |P(A)| = 1, since there is only one element,
which is the empty set. Also, by the formula of the
cardinality of a power set, there will be 2n power
sets, which are equal to 20 or 1.

Case 2:

This is an inductive step. It is to be proved
that P(n)   P(n + 1). This means, if a set that has
'n' elements has 2n subsets, then a set that has 'n+1'
elements will have 2n + 1 subsets.

To prove this, let us assume two sets 'X' and
'Y' with the following elements.

X = {a1,  a2,  a3, a4,  an} and

Y = {a1, a2, a3, a4, an, an+1}

The cardinality of the two sets 'X' and 'Y' are,

|X| = n , which means there are 2n subsets
for the set 'X'.

|Y| = n + 1

We can write that Y = X U {an + 1}, this
means, every subset of set 'X' is also a subset of set
'Y'.

A subset of set Y may or may not contain the
element  an + 1.

If an element of set 'Y' does not contain the
element  an+1, then it is clear that it is an element of
set 'X'.

Also, if the subset of 'Y' has the element an+1,
this means that the element an+1 is included in any
of the 2n subsets of the set 'X'. So we can conclude
that, set 'Y' has 2n subsets with the element an+1.
Therefore, set Y has 2n subsets with element an+1

and 2n subsets without the element an+1. An
example of this proof is as follows.

Example:

Let X = {1, 2}

Let Y = {1, 2, 3}

Here, the |X| = 2, so there will be 22 subsets
for set X.

and |Y| = 3. We will prove that set Y has 23
subsets.

Subsets of X are = {}, {1}, {2}, {1, 2}

Subsets of Y are = {}, {1}, {2}, {3},
{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}

Here, '3' is the extra element in set Y that is
not in set X. Also, set Y includes 4 subsets that do
not include element 3 and 4 other subsets that have
element 3. So, in all, for set Y there are 4 subsets
without the element '3' and 4 subsets with the
element '3'.

1.10  SCHROEDER - BERNSTEIN THEOREM

Q52. Explain about Schroeder - Bernstein
Theorem.

Ans : (Imp.)

Shows that ‘ ’, as applied to infinite cardinal
numbers, has some familiar properties, that is, some
properties of ‘ ’ in more familiar settings, like the
integers. Another property that we rely on when
dealing with Z or Q or R is anti-symmetry: if x  y
and y x then x = y. It is far from obvious that the
ordering of the infinite cardinals obeys this rule, but
it does.

Theorem

(Schroeder - Bernstein Theorem) If A  B

and B  A  then A  – B  \thmrdef{thm:sb}

Proof :

We may assume that A and B are disjoint sets.
Suppose f : A   B and g : B   A are both
injections; we need to find a bijection h : A   B.
Observe that if a is in A, there is at most one b1 in B
such that g(b1) = a. There is, in turn, at most one a1
in A such that f(a1) = b1. Continuing in this way, we
can find a string of "ancestors'' of a:

a = a0, b1, a1, b2, a2, b3, a3, ...
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such that g(bn) = an–1 and f(an) = bn. Call this the
lineage of a. Of course, any b  B also has a lineage.
Note that the lineage of a   A consists of just itself if
a is not in the image of g; likewise, an element b?B
might have no ancestors other than itself.

The lineage may take three forms: it may be
infinite; it may end at some term ak or bk, if ak is not
in the image of g or bk is not in the image of f; or it
may "wrap around'' to the beginning, if ak = a for
some k > 0. If a lineage ends with a term ak, k   0,
we say it ends in A. Let AA and BA be the subsets of
A and B, respectively, consisting of those elements
whose lineage ends in A.

Claim 1

If f(a) = b, then a   AA iff b   BA. To see this,
observe that the lineage of b is

b, a, b1, a1, b2, a2, b3, a3, ...

i.e., to get the lineage of b, just add it to the lineage
of a. Now it is clear that if the lineage of a ends in A,
so does the lineage of b. Suppose that the lineage
of b ends in A. The lineage of b must then include
a, and so the lineage of a ends in A also.

Now f̂  : AA   BA by f̂ (a) = f(a) (i.e., f̂ (a) is
f restricted to AA, and with a different codomain).

Claim 2

f̂  is a bijection. Since f is an injection, it fillows

easily that f̂  is an injection. To show f̂  is surjective,
suppose b  BA. Since the lineage of b ends in A, b
must be in the image of f. So there is an a   A such
that f(a) = b. Since b  BA. by claim 1, a  AA.

Therefore, f̂ (a) = b for some a in AA, and f̂  is
surjective.

We outline a parallel construction and leave

the details for the exercises. CA
A  (the complement

of AA in A) and CA
B  consist of those elements whose

lineage does not end in A.

Claim 1'

If g(b) = a, then b  CA
B  iff  a  CA

A

Claim 1' allows us to define ĝ  : CA
B   CA

A ,

where ĝ (b) = g(b) for any b  CA
B .

Claim 2'

ĝ  is a bijection

The theorem follows from claoms 2 and 2' :
define h : A   B by the formula,

h(a) = 
C

A,
1

A

f̂(a)     ;     if a  A
ĝ (a)  ;     if a  A

 




It is straightforward to verify that h is a bijection

It is sometimes tempting to react to a result
like this with, "Of course! How could it be otherwise?''
This may be due in part to the use of the familiar
symbol ‘ ’ – but of course, just using the symbol
hardly guarantees that it acts like ‘  ’ in more
familiar contexts. Even paying attention to the new
meaning, this theorem may seem "obvious.'' Perhaps
the best way to see that it might not be so obvious
is to look at a special case, one in which the injections
f and g are easy to find, but there does not seem to
be any "obvious'' bijection.

1.11  PRINCIPLES OF MATHEMATICAL

INDUCTION

Q53. Explain about Principles of Mathe-
matical Induction.

Ans : (Imp.)

Mathematical induction is one of the
techniques, which can be used to prove a variety of
mathematical statements which are formulated in
terms of n, where n is a positive integer.

Let P(n) be given statement involving the
natural number n such that

(i) The statement is true for n = 1, i.e. P(1)
is true.

(ii) If the statement is true for n = k (where
k is a particular but arbitrary natural
number), then the statement is also true
for n = k + 1 i.e. truth of P(k) implies
that the truth of P(k + 1). Then, P(n) is
true for all natural numbers.
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1.11.1  The Well – Ordering Principle

Q54. Write about Well – Ordering Principle.

Ans : (Imp.)

Statement of the Principle

The well-ordering principle says that the
positive integers are well-ordered. An ordered
set is said to be well-ordered if each and every
nonempty subset has a smallest or least element.
So the well-ordering principle is the following
statement:

Every nonempty subset SS of the positive
integers has a least element.

Note that this property is not true for subsets
of the integers (in which there are arbitrarily small
negative numbers) or the positive real numbers (in
which there are elements arbitrarily close to zero).

An equivalent statement to the well-ordering
principle is as follows:

The set of positive integers does not contain
any infinite strictly decreasing sequences.

Uses in Proofs

Here are several examples of properties of
the integers which can be proved using the well-
ordering principle. Note that it is usually used in
a proof by contradiction; that is, construct a set S,S,
suppose SS is nonempty, obtain a contradiction
from the well-ordering principle, and conclude
that SS must be empty.

There are no positive integers strictly between
0 and 1.

Let S be the set of integers xx such that
0 < x < 1. Suppose SS is nonempty; let nbe its
smallest element. Multiplying both sides of 
n < 1 by nn gives n^2 < n. The square of a
positive integer is a positive integer, so n^2n2 is
an integer such that 0 < n^2 < n < 1. This is a
contradiction of the minimality of n. Hence S is
empty.

Well-ordering proof

For every positive integer n, the number
n^2 + n + 1 is even.

Proof:

Let Sbe the subset of positive integers n for
which n^2 + n + 1 is odd. Assume S is
nonempty.

Let m be its smallest element.

Then m – 1 / S, so (m – 1)^2 +
(m – 1) + 1 is even.

But (m – 1)^2 + (m – 1) + 1 = m^2 –
m + 1 = (m^2 + m + 1) – 2m, equals ((m –1) ^
2 + (m – 1) + 1 + 2m, which is a sum of two
even numbers, which is even.

So mS; which is a contradiction.
Therefore, S is empty, and the result follows.

Ans: m – 1 is not necessarily a positive integer,
so the third paragraph is wrong

1.11.2  Recursive Definitiions

Q55. What is recursive definition? How it can
be used.

Ans :
In mathematics and computer science,

a recursive definition, or inductive definition, is
used to define the elements in a set in terms of
other elements in the set.

An inductive definition of a set describes the
elements in a set in terms of other elements in the
set. For example, one definition of the set N of
natural numbers is:

1. 1 is in N.

2. If an element n is in N then n + 1
is in N.

3. N is the intersection of all sets satisfying
(1) and (2).

There are many sets that satisfy (1) and (2) -
for example, the set {1, 1.649, 2, 2.649, 3, 3.649,
...} satisfies the definition. However, condition (3)
specifies the set of natural numbers by removing
the sets with extraneous members. Note that
definition assumes that N is contained in a larger
set (such as the set of real numbers) in which the
operation + is defined.
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Properties of recursively defined functions and
sets can often be proved by an induction principle
that follows the recursive definition. For example,
the definition of the natural numbers presented here
directly implies the principle of mathematical
induction for natural numbers: if a property holds
of the natural number 0, and the property holds
of n + 1 whenever it holds of n, then the property
holds of all natural numbers.

Principle of Recursive Definition

Let A be a set and let a0 be an element of A.
If  is a function which assigns to each function f
mapping a nonempty section of the positive integers
into A, an element of A, then there exists a unique
function h : Z+   A such that

h(1) = a0

h(i) = (h|{1,2, ...,  i – 1}) for i > 1.

Examples of Recursive Definitions

Elementary Functions

Addition is defined recursively based on
counting as

0 + a = a

(1 + n) + a = 1 + (n + 1)

Multiplication is defined recursively as

aa = 0,

(1 + n) a = a + na

Exponentiation is defined recursively as

a0 = 1

an+1 = a an

Binomial coefficients can be defined
recursively as

a
0
 
 
 

 = 1,

1 a
1 n
 

  
 = 

0
(1 a) 

n
1 n

 
  

 


1.11.3  Division Algorithms, Prime Numbers

Q56. Explain division algorithm for prime
numbers with an example.

Ans :
The division algorithm is an algorithm in

which given 2 integers N and D, it computes their
quotient Q and remainder R, where 0 R<<|D|.
There are many different algorithms that could be
implemented, and we will focus on division by
repeated subtraction. This is very similar to thinking
of multiplication as repeated addition.

Let’s say we have to divide N (dividend)
by D (divisor). We will take the following steps:

Step 1: Subtract D from N repeatedly,
i.e. N – D – D – D – ... until we get a result that lies
between 0 (inclusive) and D (exclusive) and is the
smallest non-negative number obtained by repeated
subtraction.

Step 2: The resulting number is known as
the remainder R, and the number of times
that D is subtracted is called the quotient Q.

Let’s experiment with the following examples
to be familiar with this process:

Example:

Describe the distribution of 7 slices of pizza
among 3 people using the concept of repeated
subtraction.

We have 7 slices of pizza to be distributed
among 3 people. We initially give each person one
slice, so we give out 3 slices leaving 7 –  3 = 4. We
then give each person another slice, so we give out
another 3 slices leaving 4 – 3 = 1. We are now
unable to give each person a slice. So, each person
has received 2 slices, and there is 1 slice left.

Example:

Divide 21 by 5 and find the remainder and
quotient by repeated subtraction.

Subtracting 5 from 21 repeatedly till we get a
result between 0 and 5. This gives us

21 – 5 = 16

16 – 5 = 11

11 – 5 = 6

6 – 5 = 1
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At this point, we cannot subtract 5 again. Hence 4 is the quotient (we subtracted 5 from 21 four
times) and 1 is the remainder. We say that

21 = 5 × 4 + 1.

Example:

Since x has a remainder of 80 when divided by 99, there exists k”Z such that x=99k+80x. Thus,
we have:

x2 + 5 = (99k + 80)2 + 5

= 992k2 + 2 × 99 × 80k + 802 + 5

= 99(99k2 + 2 × 80k) + 802 + 5

= 99(99k2 + 2 × 80k) + 6405

= 99(99k2 + 2 × 80k) + 64 × 100 + 5

= 99(99k2 + 2 × 80k) + 64 (99 + 1) + 5

= 99(99k2 + 2 × 80k) + 64 × 99 + 64 + 5

= 99(99k2 + 2 × 80k + 64) + 64 + 5

= 99(99k2 + 2 × 80k) + 69

Then, since 99k2 + 2 × 80k is an integer, and since 0   69 < 99, we see that 69 is the unique
remainder (as dictated by the Division Algorithm) for x2+5  when divided by 99.

This solution just uses the starting point of the division algorithm, which is what you used by writing 
x = 99k + 80 for some k. Then, you just take this, and manipulate it into an expression for x2 + 5. The
key part is to group everything that has a 99 (i.e. factor 99 out of everything that you can after expanding
the brackets and such).

1.11.4  The Greatest Common Divisor, Euclidean Algorithm

Q57, Explain about Euclidean Algorithm for the Greatest Common Divisor.

Ans : (Imp.)

Greatest common divisor of given integers and we consider the Euclidean algorithm, which is one
of the oldest mathematical algorithms.

Algorithm l : Division Algorithm

Given two integers a and b such that b > 0. There exist unique integers q and r for which

a = qb + r, 0 < r < b.

Here q is called quotient and r is called remainder. There is a special case, when the Division
algorithm yields r = 0.1. In such a situation a = qb for some q.

Definition 1

We say that b divides a (b is a divisor of a or a is a multiple of b) if there exists q such that a = qb.

Notation: b | a.
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Definition 2

Let a, b   Z. A positive integer d is called a common divisor of a and b. if d divides a and d
divides b. The largest possible such integer is called the greatest common divisor of a and b.

Notation : gcd(a, b).

Algorithm 2

The Euclidean algorithm. Now we study a method to determine gcd(a, b) of given positive integers
a and b. The method also provides solution of the linear Diophantine equation.

ax + by = gcd(a, b).

If we apply the Division algorithm to a, b, a > b,

Then we have

a = qb + r, 0   r < b.

If d is a common divisor of a and b, then d divides r = a – qb as well. That is the basic idea of the
algorithm. The Euclidean algorithm works as follows. First we apply the Division algorithm for a and b to
obtain a quotient q1 and a remainder r1. Then we apply the Division algorithm for b and r1 to get a new
quotient q2 and a new remainder r2. We continue, we divide ra by r2 to obtain q3 and r3. We stop if we
obtain a zero remainder. Since the procedure producess a decreasing sequence of non-negative integers
so must eventually terminate by descent. The last non-zero remainder in the greatest common divisor of
a and b.

1.11.5  Fundamental Theorem of Arithmetic

Q58. Write about fundamental theorem of arithmetic.

Ans :

The fundamental theorem of arithmetic (FTA), also called the unique factorization theorem or
the unique-prime-factorization theorem, states that every integer greater than 1 either is prime itself or
is the product of a unique combination of prime numbers.

Definition

For every integer ne”2, it can be expressed as a product of prime numbers:

n = 1 2 ia a a
1 2 ip  p  ... p

Existence of a Factorization

The following proof shows that every integer greater than 1 is prime itself or is the product of
prime numbers.

Base case: This is clearly true for n = 2.

Inductive step: Suppose the statement is true for n = 2, 3, 4, …, k.

If (k + 1) is prime, then we are done. Otherwise, (k + 1) has a smallest prime factor, which we
denote by p. Let k + 1 = p × N. Since N < k, by our inductive hypothesis, N can be written as the
product of prime numbers. That means k + 1 = p × N can also be written as a product of primes. We’re
done! 
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Examples

Given the polynomial

f(x) = xn + a1x
n–1 + a2x

n–2 + ... + an–1x
 + an

with integer confficients a1, a2, a3, ..., an and given that there exist four distinct integers a, b, c and d
such that

f(a) = f(b) = f(c) = f(d) = 5,

show that there is no integer k for which f(k) = 8

Let  g(x) – f(x) – 5. Then we must have

g(x) – k(z – a) (z – b) (z – c) (z – d) h(x)

for some h(x)  z[x],  Let k be such that f(k) = 9. Then g(k) = 3 and we get

3 = h(x – a) (x – b) (x – c) (x – d) h(x).

By the fundamental theorem of arithmetic, we can express 3 as a product of at most three
different integers (–1, –3, 1). Since, (x – a), (x – b), (x – c) and (x – d) are all distinct, this is an obvious
contradiction.
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UNIT
II

Basic counting techniques-inclusion and exclusion, pigeon-hole principle,
permutation and combination.

2.1  BASIC COUNTING TECHNIQUES

Q1. Discuss briefly about Basic Counting Techniques with an examples.

Ans :
In many situations of computational work, we employ two basic rules of counting, called the Sum

Rule and the Product Rule.

(i) The Sum Rule

Suppose two tasks T1 and Tj are to be performed. If the task T1 can be preformed in m afferent ways
and the task T2 can be performed in n different ways and if these two tasks cannot be performed
simultaneously, then one of the two tasks (T1 or T2) can be performed in m + n ways.

More generally, if T1, T2, T3, ... Tk are k tasks such that no two of these tasks can be performed at the
same time and if the task T1 can be performed in ni different ways, then one of the k tasks (namely T1 or
T2 or T3. .., or Tk) can be performed in n1 + n2 + ... + nk ways.

Example 1

Suppose there are 16 boys and 18 girls in a class and we wish to select one of these students (either
a boy or a girl) as the class representative. The number of ways of selecting a boy is 16 and the number
of ways of selecting a girl is 18. Therefore, the number of ways of selecting a student (boy or girl) is
16 + 18 = 34.

Example 2

Suppose a library has 12 books on Mathematics, 10 books on Physics, 16 books on Computer
Science and 11 books on Electronics. Suppose a student wishes to choose one of these books for study.
The number of ways in which he can choose a book is 12 + 10 + 16 + 11 = 49.

Example 3

Suppose T1 is the task of selecting a prime number less than 10 and T2 is the task of selecting an
even number less than 10. Then T1 can be performed in 4 ways (– by selecting 2 or 3 or 5 or 7), and T2

can be performed in 4 ways (– by selecting 2 or 4 or 6 or 8). But, since 2 is both a prime and an even
number less than 10, the task T1 or T2 can be performed in 4 + 4 – 1 = 7 ways.

(ii) The Product Rule

Suppose that two tasks T1 and T2 are to be performed one after the other. If T1 can be performed in
N1 different ways, and for each of these ways T2 can be performed in n2 different ways, then both of the
tasks can be performed in n1n2 different ways.
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More generally, suppose that k tasks T1, T2, T3, ..., Tk are to be performed in a sequence. If T1 can be
performed in n1 different ways and for each of these ways T2 can be performed in n2 different ways, and
for each of n1n2 different ways of performing T1 and T2 in that order. T3 can be performed in n3 different
ways, and so on, then the sequence of tasks T1, T2, T3, ..., Tk can be performed in n1 n2 n3, ..., nk different
ways.

Example 1

Suppose a person has 3 shirts and 5 ties. Then he has 3 × 5 = 15 different ways of choosing a shirt
and a tie.

Example 2

Suppose we wish to construct sequences of four symbols in which the first 2 are English letters and
the next 2 are single digit numbers. If no letter or digit can be repeated, then the number of different
sequences that we can construct is 26 × 25 × 10 × 9 = 58500. If repetition of letters and digits is allowed
then the number of different sequences that we can construct is 26 × 26 × 10 × 10 = 67600.

Example 3

Suppose a restaurant sells 6 South Indian dishes, 4 North Indian dishes, 3 hot beverages and 2 cold
beverages. For breakfast, a student wishes to buy 1 South Indian dish and 1 hot beverage, or 1 North
Indian dish and 1 cold beverage. Then he can have the first choice in 6 × 3 = 18 ways and he can have
the second choice in 4 × 2 = 8 ways. The total number of ways he can buy his breakfast items is 18 + 8
= 26.

PROBLEMS

2. There are four bus routes between the places A and B and three bus routes between the
places B and C. Find the number of ways a person can make a round trip from A to A via
B if he does not use a route more than once.

Sol :
The person can travel from A to B in four ways and from B to C in three ways, but only in two ways

from C to B and only in three ways from B to A if he does not use a route more than once. Therefore, the
number of ways he can make the round trip under the given condition is 4 × 3 × 2 × 3 = 72.

3. Let A be a set with n elements. How many different sequences, each of length r, can be
formed using the elements from A if the elements in the sequence may be repeated?

Sol :
Since repetition is allowed, each place in the sequence can be filled in n different ways. Thus, in a

sequence of length r, there are nr ways of filling the r places in the sequence. This means that there are nr

possible sequences (of the required type).

4. (a) Find the number of binary sequences of length n.

(b) Find the number of binary sequences of length n that contain an even number of 1’s.

Sol :
(a) A binary sequence of length n contains n positions. Each of these positions can be filled in two ways

(with 0 or 1). Therefore, the number of ways of filling n positions is 2". This is precisely the number
of binary sequences of length n.
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(b) If a binary sequence of length n – 1 has an even number of 1’s, we append the digit 0 to it to obtain
a binary sequence of length n which contains an even number of l’s. If a binary sequence of length
n – 1 contains an odd number of 1’s, we append the digit 1 to it to obtain a sequence of length n
which contains an even number of l’s. As such, the number of binary sequences of length n with an
even number of 1’s is equal to the number of binary sequences of length n – 1, which is 2n–1.

5. A bit is either 0 or 1. A byte is a sequence of 8 bits. Find

(i) the number of bytes

(ii) the number of bytes that begin with 11 and end with 11

(iii) the number of bytes that begin with 11 and do not end with 11

(iv) the number of bytes that begin with 11 or end with 11.

Sol :
(i) Since each byte contains 8 bits and each bit is a 0 or 1 (two choices), the number of bytes is

28 = 256.

(ii) In a byte beginning and ending with 11, there occur 4 open positions. These can be filled in 24 = 16
ways. Therefore, there are 16 bytes which begin and end with 11.

(iii) There occur six open positions in a byte beginning with 11. These positions can be filled in 26 = 64
ways. Thus, there are 64 bytes that begin with 11. Since there are 16 bytes that begin and end with
11, the number of bytes that begin with 11 but do not end with 11 is 64 – 16 = 48.

(iv) As in (iii), the number of bytes that end with 11 is 64. Also the number of bytes that begin and end
with 11 is 16. Therefore, the number of bytes that begin or end with 11 is 64 + 64 – 16 = 112.

6. A telegraph can transmit two different signals : a dot and a dash. What length of these
symbols is needed to encode 26 letters of the English alphabet and the ten digits
0, 1, 2, ..., 9?

Sol :
Since there are two choices for each signal, the number of different sequences of length k of these

signals is 2k. Therefore, the number of nontrivial sequences of length n or less is

2 + 22 + 23 + ..... + 2n = 2n+1 – 2.

To encode 26 letters and 10 digits, we require at least 26+10=36 sequences of the above type:
that is,

2n+1 – 2   36

The least value of n (positive integer) for which this inequality holds is n = 5. Hence, the length of
the symbols needed to encode 26 alphabets and 10 digits is at least 5.

7. Find the number of 3-digit even numbers with no repeated digits.

Sol :
Here we consider numbers of the form xyz, where each of x, y, z represents a digit under the given

restrictions. Since x y z has to be even, z has to be 0, 2, 4, 6, or 8. If z is 0, then x has 9 choices and if z is
2, 4, 6 or 8 (4 choices) then x has 8 choices. (Note that x cannot be zero). Therefore, z and x can be
chosen in (1 × 9) + (4 × 8) = 41 ways. For each of these ways, y can be chosen in 8 ways. Hence, the
desired number is 41 × 8 = 328.
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8. How many among the first 1,00,000 positive integers contain exactly one 3, one 4 and
one 5 in their decimal representation ?

Sol :
The number 1,00,000 does not contain 3 or 4 or 5. Therefore, we have to consider all possible

positive integers with 5 places that meet the given conditions. In a 5-place integer the digit 3 can be in any
one of the 5 places. Subsequently, the digit 4 can be in any one of the 4 remaining places. Then the digit
5 can be in any one of the 3 remaining places. There are 2 places left and either of these may be filled by
7 digits, (-digits from 0 to 9 other than 3, 4, 5). Thus, there are 5 × 4 × 3 × 7 × 7 = 2940 integers of
the required type.

9. Find the number of proper divisors of 441000.

Sol :
441000 = 23 × 32 × 53 × 72. Therefore, every divisor of 441000 must be of the form d = 2p × 3q

× 3r × 7s where 0   p   3, 0   q   2, 0   r   3, 0   s   2. Thus, for a divisor d, p can be chosen in
4 ways, q in 3 ways, r in 4 ways and s in 3 ways. Accordingly, the number of possible d’s is 4 × 3 × 4 ×
3 = 144. Of these, two are not proper divisors. Therefore, the number of proper divisors is 144 – 2 =
142.

2.2  PERMUTATION AND COMBINATION

Q10. Explain the concept of Permutations.

Ans : (Imp.)

Suppose that we are given n distinct objects and wish to arrange r of these objects in a line. Since
there are n ways of choosing the first object, and, after this is done, n – 1 ways of choosing the second
object, ..., and finally n – r + 1 ways of choosing the rth object, it follows by the product rule of counting
(stated in the preceding section) that the number of different arrangements, or permutations (as they are
commonly called) is n(n – 1 )(n – 2) ... (n – r + 1). We denote this number by P(n, r)1 and is referred to
as the number of permutations of size r of n objects. Thus (by definition),

P(n, r) = n(n – 1 )(n – 2) ... (n – r + 1).

Using the factorial notation defined by

k! =k(k – 1) (k – 2) ... 2 – 1,

for any positive integer k, and 0! = 1, we find that

P(n, r) = n(n – 1)(n – 2) ... (n – r + 1)

  = 
n(n 1)(n 2)...(n r 1)(n r)(n r 1) ... 2 . 1

(n r)(n r 1) ... 2 . 1
      

  

  = 
n!

(n r)!

As a particular case of this, we get

P(n, n) = n!.

That is, the number of different arrangements (permutations) of n distinct objects, taken all at a
time, is n!. This is simply called the number of permutations of n distinct objects.
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In the above analysis, we have considered the situation where all the objects that are to be arranged
are distinct.

Suppose it is required to find the number of permutatuions that can be formed from a collection of
n objects of which n1 are of one type, n2 are of a second type, ..., nk are of kth type, with n1 + n2 + ... +
nk = n. Then, the number of permutations of the n objects is

2 k

n!
n! n ! ... n !

Proof:

There are n! permutations when all the n objects are different. We must therefore divide n! by n1! to
account for the fact that the n\ objects which are alike will identify n1! of these permutations (for any given
set of positions of the n1 objects in the permutation). Similarly, we must divide n1 by n2!, n3!, ..., nk! which
are the numbers of permutations of the corresponding alike objects. Thus, n! divided by all of n1!, n2!, ...,
nk! gives the required number of permutations.

PROBLEMS

11. How many different strings (sequences) of length 4 can be formed using the letters of
the word FLOWER?

Sol :
The given word has 6 letters all of which are distinct. Therefore, the required number of strings is

P(6, 4) = 
6!

(6 4)!  = 
6!
2!

 = 
6 5 4 3 2 1

2 1
    


 = 360.

12. Find the number of permutations of the letters of the word SUCCESS.

Sol :
The given word has 7 letters, of which 3 are S; 2 are C and 1 each are U and E. Therefore, the

required number of permutations is

7!
3! . 2!  . 1!  . 1!

 = 
7 6 5 4 3 2 1
(3 2) (2 1) 1 1
     
      = 420.

13. How many 9 letter “words” can be formed by using the letters of the word DIFFICULT?

Sol :
The given word contains 9 letters of which there are 2 F’s, 2 I’s, and 1 each of D, C, U, L, T. The

number of permutations of these letters is the required number of “words”. This number is

9!
2! 2! 1! 1! 1! 1! 1!

 = 90720.

14. Find the number of permutations of the letters of the word MASSASAUGA. In how many
of these, all four A’s are together? How many of them begin with S ?

Sol :
The given word has 10 letters of which 4 are A, 3 are S and 1 each are M, U and G. Therefore, the

required number of permutations is
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10!
4! 3! 1! 1! 1!

 = 25,200.

If, in a permutation, all A’s are to be together, we treat all of A’s as one single letter. Then the letters
to be permuted read (AAAA), S, S, S, M, U, G and the number of permutations is

7!
1! 3! 1! 1! 1!

 = 840.

For permutations beginning with S, there occur nine open positions to fill, where two are S, four are
A, and one each are M, U, G. The number of such permutations is

9!
2! 4! 1! 1! 1!

 = 7560.

15. How many positive integers n can we form using the digits 3, 4, 4, 5, 5, 6, 7 if we want n
to exceed 5,000,000?

Sol :
Here n must be of the form

n = x1 x2 x3 x4 x5 x6 x7

where x1, x2, ..., x7 are the given digits with x1 = 5, 6 or 7. Suppose we take x1 = 5. Then x2 x3 x4 x5 x6 x7

is an arrangement of the remaining 6 digits which contains two 4’s and one each of 3, 5, 6, 7. The
number of such arrangements is

6!
2! 1! 1! 1! 1!

 = 360.

Next, suppose we take x1 = 6. Then, x2 x3 x4 x5 x6 x7  is an arrangement of 6 digits which contains
two each of 4 and 5 and one each of 3 and 7. The number of such arrangements is

6!
1! 2! 2! 1!

 = 180.

Similarly, if we take x1 = 7, the number of arrangements is

6!
1! 2! 2! 1!

 = 180.

Accordingly, by the Sum Rule, the number of n’s of the desired type is

360 + 180 + 180 = 720.

16. In how many ways can 6 men and 6 women be seated in a row (i) if any person may sit
next to any other? (ii) if men and women must occupy alternate seats?

Sol :
(i) If any person may sit next to any other, no distinction need be made between men and women in

their seating. Accordingly, since there are 12 persons in all, the number of ways they can be seated
is

12! = 479,001,600.
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(ii) When men and women are to occupy alternate seats, the six men can be seated in 6! ways in odd
places and the six women can be seated in 6! ways in even places, and corresponding to each
arrangement of the men there is an arrangement of the women. Therefore, the number of ways in
which the men occupy the odd places and the women the even places is

6! × 6! = 720 × 720 = 518400.

Similarly, the number of ways in which the women occupy the odd places and the men the even
places is 518400. Accordingly, the total number of ways is

518400 + 518400 = 1,036,800.

17. Four different mathematics books, five different computer science books and two different
control theory books are to be arranged in a shelf. How many different arrangements
are possible if

(a) the books in each particular subject must all be together?

(b) only the mathematics books must be together?

Sol :
(a) The mathematics books can be arranged among themselves in 4! different ways, the computer

science books in 5! ways, the control theory books in 2! ways, and the three groups in 3! ways.
Therefore the number of possible arrangements is

4! × 5! × 2! × 3! = 24 × 120 × 2 × 6 = 34,560.

(b) Consider the four mathematics books as one single book. Then we have 8 books which can be
arranged in 8! ways. In all of these ways the mathematics books are together. But the mathematics
books can be arranged among themselves in 4! ways. Hence, the number of arrangements is

8! × 4! = 40320 × 24 = 967,680.

Q18. Explain the concept of combinations.

Ans : (Imp.)

Suppose we are interested in selecting (choosing) a set of r objects from a set of n   r objects
without regard to order. The set of r objects being selected is traditionally called a combination of r objects.

The total number of combinations of r different objects that can be selected from n different objects
can be obtained by proceeding in the following way. Suppose this number is equal to C, say; that is,
suppose there is a total of C number of combinations of r different objects chosen from n different objects.
Take any one of these combinations. The r objects in this combination can be arranged in r! different
ways. Since there are C combinations, the total number of permutations is (C . r!). But this is equal to
P(n, r). Thus,

C . r! = P(n, r), or C = 
P(n,  r)

n!

Thus, the total number of combinations of r different objects that can be selected from n different

objects is equal to P(n, r)/r!. This number is denoted by C(n, r) or 
n

r
 
 
 

. Thus,

C(n, r) = 
n

r
 
 
 

 = 
n

r
 
 
 

 = 
n!

(n r)! r !   for  0   r   n.
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Replacing r by n – r in this expression, we get

C(n, n – r) = 
n!

r !(n r)!  = C(n, r)    for    0   r   n.

Consequently, we have

C(n, n) = C(n, 0) = 1     and     C(n, 1) = C(n, n – 1) = n.

For r > n, C(n, r) is defined to be equal to zero.

PROBLEMS

19. How many committees of five with a given chairperson can be selected from 12 persons?

Sol :
The chairperson can be chosen in 12 ways, and, following this, the other four on the com­mittee

can be chosen in C(11, 4) ways. Therefore, the possible number of such committees is

12 × C(11, 4) = 12 × 
111
4! 7!

 = 12 × 330 = 3960.

20. Find the number of committees of 5 that can be selected from 7 men and 5 women if the
committee is to consist of at least 1 man and at least 1 woman.

Sol :
From the given 12 persons the number of committees of 5 that can be formed is C(12, 5). Among

these possible committees, there are C(7, 5) committees consisting of 5 men and 1 = C(5, 5) committee
consisting of 5 women. Accordingly, the number of committees containing at least one man and one
woman is

C(12, 5) – C(7, 5) – 1 = 
12!

7! 5!
 – 

7!
5! 2!

 – 1

   =  792 – 21 – 1 = 770.

21. At a certain college, the housing office has decided to appoint, for each fldor, one male
and one female residential advisor. How many different pairs of advisors can be selected
for a seven-floor building from 12 male and 15 female candidates?

Sol :
From 12 male candidates, 7 candidates can be selected in C(12, 7) ways. From 15 female candidates,

7 candidates can be selected in C(15, 7) ways. Therefore, the total number of possible pairs of advisors of
the required type is

C(12, 7) × C(15, 7) = 
12!

7! 5!
 × 

15!
7! 8!

 = 792 × 6435 = 5,096,520.

22. A certain question paper contains two parts A and B each containing 4 questions. How
many different ways a student can answer 5 questions by selecting at least 2 questions
from each part?

Sol :
The different ways a student can select his 5 questions are
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(I) 3 questions from Part A and 2 questions from Part B. This can be done in C(4,3) × C(4,2) =
4 × 6 = 24 ways.

(II) 2 questions from Part A and 3 questions from Part B. This can be done in C(4, 2) × C(4, 3) =
24 ways.

Therefore, the total number of ways a student can answer 5 questions under the given restrictions
is 24 + 24 = 48.

23. A certain question paper contains three parts A, B, C with four questions in part A, five
questions in part B and six questions in part C. It is required to answer seven questions
selecting at least two questions from each part. In how many different ways can a student
select his seven questions for answering?

Sol :
The different possible ways in which a student can make a selection are

(I) 2 questions from Part A, 2 from Part B and 3 from Part C.

(II) 2 questions from Part A, 3 from Part B and 2 from Part C.

(III) 3 questions from Part A, 2 from Part B and 2 from Part C.

Now, selection (I) can be made in

C(4, 2) × C(5, 2) × C(6, 3) = 6 × 10 × 20 = 1200 ways,

the selection (II) can be made in

C(4, 2) × C(5, 3) × C(6, 2) = 6 × 10 × 15 = 900 ways,

and the selection (III) can be made in

C(4, 3) × C(5, 2) × C(6, 2) = 4 × 10 × 15 = 600 ways.

Consequently, the total number of possible selections is

1200 + 900 + 600 = 2700.

24. A woman has 11 close relatives and she wishes to invite 5 of them to dinner. In how
many ways can she invite them in the following situations:

(i) There is no restriction on the choice.

(ii) Two particular persons will not attend separately.

(iii) Two particular persons will not attend together.

Sol : (Imp.)

(i) Since there is no restriction on the choice of invitees, five out of 11 can be invited in

C(11, 5) = 
11!
6! 5!

 = 462 ways.

(ii) Since two particular persons will not attend separately, they should both be invited or not invited. If
both of them are invited, then three more invitees are to be selected from the remaining 9 relatives.
This can be done in

C(9, 3) = 
9!

6! 3!
 = 84 ways.
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If both of them are not invited, then five invitees are to be selected from 9 relatives. This can be
done in

C(9, 5) = 
9!

5! 4!
 = 126 ways.

Therefore, the total number of ways in which the invitees can be selected in this case is

84 + 126 = 210.

(iii) Since two particular persons (say A and B) will not attend together, only one of them can be invited
or none of them can be invited. The number of ways of choosing the invitees with A invited is

C(9, 4) = 
9!

5! 4!
 = 126

Similarly the number of ways of choosing the invitees with B invited is 126.

If both A and B are not invited, the number of ways of choosing the iavitees is

C(9, 5) = 126.

Thus, the total number of ways in which the invitees can be selected in this case is

126 + 126 + 126 = 378.

25. Find the number of 5-digit positive integers such that in each of them every digit is
greater than the digit to the right.

Sol :
A set of 5 distinct digits can be selected in C(10, 5) ways. Once these digits are chosen, there is only

one way of arranging them in a decreasing order from left to right. So, the number of 5-digit positive
integers of the required type is 1 × C(10, 5) = C(10, 5).

26. From seven consonants and five vowels, how many sets consisting of four different
consonants and three different vowels can be formed?

Sol :
The four different consonants can be selected in C(7, 4) different ways and three different vowels

can be selected in C(5, 3) ways, and the resulting seven different letters (four consonants and three
vowels) can then be arranged among themselves in 7! ways. Therefore, the number of possible sets is

C(7, 4) × C(5, 3) × 7! = 
7!

4 ! 3!
 × 

5!
3! 2!

 × 7! = 35 × 10 × 5040 = 1,764,000.

27. Find the number of arrangements of the letters in TALLAHASSEE which have no adjacent
A’s.

Sol :
Here the number of letters is 11 of which 3 are A’s, 2 each are L’s, S’s, E’s, and 1 each are T and H.

First, let us disregard the A’s. The remaining 8 letters can be arranged in

8!
2!2!2!1!1!

 = 5040 ways.
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In each of these arrangements, there are 9 possible locations for the three A’s. These locations can
be chosen in C(9, 3) ways. Therefore, by the product rule, the required number of arrangements is

5040 × C(9, 3) = 5040 × 
9!

3! 6!
 = 5040 × 84 = 423,360.

28. Find the number of ways of seating r out of n persons around a circular table, and the
others around another circular table.

Sol :
First, choose a set of r persons for the first table – this can be done in C(n, r) ways. These r persons

can be seated around the first table in (r – 1)! ways. The remaining (n – r) persons can be seated around
the second table in (n – r – 1)! ways. So, the required number is

C(n, r) × (r – 1)! × (n – r – 1)!.

29. A party is attended by n persons. If each person in the party shakes hands with all the
others in the party, find the number of handshakes.

Sol :
Each handshake is determined by exactly two persons. Therefore, if each person shakes hands with

all the other persons, the total number of handshakes is equal to the number of combinations of two
persons that can be selected from the n persons. This number is

C(n, 2) = 
n!

(n 2)!2!  = 
1
2

 n(n – 1)

30. There are n married couples attending a party. Each person shakes hands with every
person other than his or her spouse. Find the total number of handshakes.

Sol :
The number of persons at the party is 2n. These 2n persons fall into C(2n, 2) pairs out of which n

pairs are married couples. Thus, the number of pairs who are not married couples is

C(2n, 2) – n = 
(2n!)

(2n 2)!2!  – n = 
1
2

 . 2n(2n – 1) – n = 2n(n – 1)

This number is identical with the number of handshakes.

31. (a) How many diagonals are there in a regular polygon with n sides?

(b) Which regular polygon has the same number of diagonals as sides?

Sol :
(a) A regular polygon of n sides has n vertices. Any two vertices determine either a side or a diagonal.

Thus, the number of sides plus the number of diagonals is C(n, 2). Consequently, the number of
diagonals is

C(n, 2) – n = 
(2n!)

(2n 2)!2!  – n = 
1
2

 n(n – 1) – n = 
1
2

 n(n – 3)
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(b) If the number of diagonals is the same as the number of sides, weshould have

1
2

 n(n – 3) = n,  or  n2 – 5n = 0,  or  n(n – 5) = 0.

Since n > 0, we should have n = 5. Thus, the regular polygon which has the same number of
diagonals as sides must have 5 sides; that is, it must be a pentagon.

32. A string of length n is a sequence of the form x1x2x3 ... xn, where each xi is a digit. The
sum x1 + x2 + x3 ... + xn is called the weight of the string. If each xi can be one of 0, 1, or
2, find the number of strings of length n = 10. Of these, find the number of strings whose
weight is an even number.

Sol :
There are 10 positions in a string of length 10, and each of these positions can be filled in 3 ways

(with 0, 1, 2). Therefore, the number of ways of filling the 10 positions of a string of length 10 is 310. This
means that there are 310 number of strings of length 10 (with 0, 1 or 2 as its digits).

Since each digit in the strings being considered here is 0, 1, or 2, the weight of a string is even only
when it contains an even number of 1’s. Thus, strings of even weight have zero, two, four, six, eight or ten
number of 1’s.

If a string has no 1’s, then all its places are filled by 0’s and 2’s. The number of such strings is 210. If
a string has two 1’s, it can have two 1’s in C(10, 2) number of locations. For each of these locations, the
remaining eight locations are filled by 0’s and 2’s. Therefore, the number of strings having two 1’s is
C(10, 2) × 28.

Similarly, the numbers of strings having four 1’s, six 1’s and eight 1’s are C(10, 4) × 26, C(10, 6) ×
24 and C(10, 8) × 22 respectively. Lastly, the number of strings having ten 1’s is evidently only one.
Accordingly, the number of strings that have even weight is

210 + C(10, 2) × 28 + C(10, 4) × 26 + C(10, 6) × 24 + C(10, 8) × 22 + 1.

33. Prove the following identities:

(i) C(n + 1, r) = C(n, r – 1) + C(n, r)

(ii) C(m + n, 2) – C(m, 2) – C(n, 2) = mn.

Sol :
We have

(i) C(n, r – 1) + C(n. r) = 
n!

(r 1)!(n r 1)!    + 
n!

r !(n r)!

      [6pt] = !

n!
(r 1)!(n r)   

1 1
n r 1 r

    

      = 
n!

(r 1)!(n r)!   . 
n 1

r(n r 1)

 

      = 
(n 1)1

r(n r 1)!

   = C(n + 1, r).
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(ii) C(n, 2) + C(n 2) + mn = 
n!

(m 2)! 2   + 
n!

(n 2)! 2   + mn

      = 
1
2

 {m(m – 1) + n(n – 1)} + mn

      =  
1
2

 {m + n) (m + n – 1) = 
(m n)!

2(m n 2)!

 

      =  C(m + n, 2)

2.3  INCLUSION AND EXCLUSION

Q34. Describe the basic principles of Inclusion and Exclusion.

Ans : (Imp.)

Consider a finite set S containing p number of elements. Here, the number p is called the order, size
or the cardinality of the set S and is denoted by o(S), or n(S), or |S|.

For example, if A = {1, 2, 6} and B = {a, b, c, d}, then o(A) = |A| = 3 and o(B) = |B| = 4.

It is obvious that || = 0, and |S|   1 for every non-empty finite set S. Further, for any two finite
sets A and B, if A   B then |A|   |B| and if A   B then |A| < |B|.

If A is a subset of a finite universal set  , then the number of elements in the complement A  (of A
in  ) is given by

| A | = | | – |A|, ..... (1)

Suppose we consider the union of two finite sets A and B and wish to determine the number of
elements in A   B. Since the elements of A   B consist of all elements which are in A or B or both A and
B, the number of elements in A   B is equal to the number of elements in A plus the number of elements
in B minus the number of elements (if any) that are common to A and B. That is,

|A   B| = |A| + |B| – |A   B|. ..... (2)

A more explicit (visual) way of obtaining this result is through the use of a Venn diagram.

Consider the Venn diagram shown above. In this diagram, the set A is made up of two parts P1 and
P2, and the set B is made up of two parts P2 and P3, where P2 = A   B, and A   B is made up of parts
P1, P2 and P3. Therefore,

|A| = Number of elements in P1 + Number of elements in P2 = |P1| + |P2|
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Similarly,

|B| = |P2| + |P3|, |A   B| = |P2| and |A   B| = |P1| + |P2| + |P3|.

From these, we get

|A   B| = |P1| + |P2| + |P3| = (|P1l + |P2|) + (|P2| + |P3|) – |P3|

       = |A| + |B| – |A   B|.

Thus, for determining the number of elements in A   B, we first include all elements in A and all
elements in B, and then exclude all elements that are common to A and B.

If   is a finite universal set of which A and B are subsets, then, by virtue of a De’Morgan law and
the expression (1) above, we have

| A  B | = [ A B  = | | – |A B|

With the use of formula (2) above, this becomes

| A  B | = | | – {|A| + |B| – |A B|}

= | | – |A| – |B| + |A B| ..... (3)

Expressions (2) and (3) are equivalent to one another. Either of these is referred to as the Addition
Principle (Rule) or the Principle of inclusion-exclusion for two sets.

In the particular case where A and B are disjoint sets so that A   B = , the addition rule (2)
becomes

|A   B| = |A| + |B| – || = |A| + |B| ..... (4)

This is known as the Principle of disjunctive counting for two sets.

PROBLEMS

35. A computer company requires 30 programmers to handle systems programming jobs
and 40 programmers for applications programming. If the company appoints 55
programmers to carry out these jobs, how many of these perform jobs of both types?
How many handle only system programming jobs? How many handle only applications
programming?

Sol :
Let A denote the set of programmers who handle systems programming job and B the set of

programmers who handle applications programming. Then A   B is the set of programmers appointed
to carry out these jobs. By what is given, we have

|A| = 30, |B| = 40, |A   B| = 55.

Therefore, the addition rule |A U B| = |A| + |B| – |A   B| gives

|A   B| = |A| + |B| – |A   B| = 30 + 40 – 55 = 15.

This means that 15 programmers perform both types of jobs.

Next, we note that the set of programmers who handle only systems programming is A – B. By
examining Figure (b), we observe that |A – B| = |A| – |A   B|. Accordingly, the number of programmers
who handle only systems programming jobs is
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|A – B| = |A| – |A   B| = 30 – 15 = 15

Similarly, the number of programmers who handle only applications programming is

|B – A| = |B| – |A   B| = 40 – 15 = 25.

These results are illustrated in the following Venn diagram:

36. In a class of 52 students, 30 are studying C++, 28 are studying Pascal and 13 are
studying both languages. How many in this class are studying at least one of these
languages? How many are studying neither of these languages?

Sol : (Imp.)

Let   denote the set of all students in the class, A denote the set of students in the class who are

studying C++, and B is the set of students in the class who are studying Pascal.

Then, the set of students in the class who are studying both languages is A   B, the set of students

who are studying at least one of the two languages is A   B and the set of students who are studying
neither of these languages is ( A B ).

From what is given, we have

| | = 52, |A| = 30, |B| = 28, |A  B| = 13.

Therefore, by the addition principle,

|A   B| = |A| + |B| – |A   B| = 30 + 28 – 13 = 45.

Also,

|( A B )| = | | - |A   B| = 52 – 45 = 7

Thus, 45 students of the class study at least one of the two languages indicated and 7 students of the
class study neither of these languages.
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Q37. Explain the process of Inclusion and Exclusion for n sets.

Ans : (Imp.)

Statement

The principle of inclusion-exclusion as given by expression (2) can be extended to n sets, n > 2.

Let   be a finite universal set and A1, A2, ..., An be subsets of  . Then the Principle of Inclusion-
Exclusion for A1, A2, ..., An states that

|A1   A2   A3   ...   An| = |Ai| – |Ai   Aj| + |Ai   Aj   Ak| +

... + (–1)n–1 |A1   A2   ...   An|

Proof:

Take any x   A1   A2   .....   An.

Then x is in m of the sets A1, A2 ,..., An

Where

1   m   n. Without loss of generality, let us assume that x   A, for 1  i   m and x   Ai for
i > m. Then x will be counted once in each of the terms |Ai|, i = 1, 2, ..., m. Thus, x will be counted m
times in |Ai|

We note that there are C(m, 2) pairs of sets Ai Aj where x is in both Ai and Aj. As such, x will be
counted C(m, 2) times in |Ai   Aj|.

Similarly, x will be counted C(m, 3) times in |Ai   Aj   Ak|, and so on.

Continuing in this way, we see that, in the right hand side of expression (5), x is counted

m – C(m, 2) + C(m, 3) + ... + (–1)m–1 C(m, m)

number of times. (Bear in mind that C(m, n) = 0 for n > m).

We note that

m – C(m, 2) + C(m, 3) + ... (–1)m–1 C(m, m)

= 1 – (1 – m + C(m, 2) – C(m, 3) + ... + (–1)m C(m, m)}

= 1 – (1 + (–1))m, by binomial theorem

= 1.

Thus, on the right hand side of expression (5) every element x of A1   A2   ...   An is counted
exactly once. This means that the number of elements in A1   A2   ...   An is equal to the right hand
side of expression (5). This completes the proof of expression (5).

Corollary :

By virtue of a De’Morgan law, we have

1 2 3 n(A A A ... A )    = 
1A 

2A 
nA

Since | A | = | | – |A| for any subset A of  , this yields
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|
1A 

2A 
3A   ... 

nA | = |(
1 2 3 nA A A ...A   )|

        = | | – |(A1   A2   ...   An)|

Using expression (5), this becomes

|
1A 

2A 
3A   ... 

nA | = | | – |Ai| + |Ai   Aj| – |Ai   Aj 
  Ak| + ...

+ (–1) |A1   A2 
  ...   An| ... (6)

This is an equivalent version of the Principle of inclusion-exclusion, given by (5). Note that, for
n = 2, expressions (5) and (6) reduce to expressions (2) and (3) respectively,

PROBLEMS

38. If A, B, C are finite sets, prove that

|A – B – C| = |A| - |A   B| – |A   C| + |A   B   C|

Sol :
We first note that A – B – C is the set of elements that belong to A, but not to B or C.

Fig. : A - B - C (shaded)

Therefore,

|A – B – C| = |A   B   C| – |B   Cl;

  =  (| A|  +  | B|  +  | C|  – | A   B| – |A   C| – |B   C| + |A   B   C|)

– (|B| + |C| – |B   C|), on using addition principle

  = |A| – |A   B| – |A   C| + |A   B   C|

39. A survey of 500 television viewers of a sports channel produced the following information:
285 watch cricket, 195 watch hockey, 115 watch football, 45 watch cricket and football,
70 watch cricket and hockey, 50 watch hockey and football and 50 do not watch any of
the three kinds of games.

(a) How many viewers in the survey watch all three kinds of games?

(b) How many viewers watch exactly one of the sports?

Sol : (Imp.)

Let   denote the set of all viewers included in the survey, A denote the set of viewers who watch
cricket, B denote the set of viewers who watch hockey, and C denote the set of viewers who watch
football. Then, from what is given, we have
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| | = 500,  |A| – 285,  |B| = 195,  |C| = 115,

|A   C| = 45,  |A   B| = 70,  |B   C| = 50.

| A B C  | = 50,  |A   B   C| = 500 – 50 = 450.

Using the addition principle for 3 sets, namely,

IA   B   C | = |A| + |B| + |C| – |A   B| – |A   C| – |B   C| + |A   B   C|

We find that

|A   B   C| = |A   B   C| – |A| – |B| – |C| + |A   B| + |A   C| + |A   C|

      = 450 – 285 – 195 – 115 + 70 + 50 + 45 = 20.

Thus, the number of viewers who watch all three kinds of games is 20.

Let A1 denote the set of viewers who watch only cricket, B1 denote the set of viewers who watch
only hockey and C1 denote the set of viewers who watch only football.

Then, A1 = A – B – C, and by virtue of the result proved in Example 3, we have

|A1| = |A| – |A   B| – |A   C| + |A   B   C|

Accordingly, the number of viewers who watch only cricket is

|A1| = 285 – 70 – 45 + 20 = 190.

Similarly, the number of viewers who watch only hockey is

|B1| = |B| – |B   A| – |B   C| + |B   C   A|

       = 195 – 70 – 50 + 20 = 95,

and the number of viewers who watch only football is

|C1| = |C| – |C   A| – |C   B| + |C   A   B|

       = 115 – 45 – 50 + 20 = 40.

From these, we find that the number of viewers who watch exactly one of the sports is

|A1| + |B1| + |C1| = 190 + 95 + 40 = 325.

Venn Diagram

40. Thirty cars are assembled in a factory. The options available are a music system, an air
conditioner and power windows. It is known that 15 of the cars have music systems, 8
have air conditioners and 6 have power windows. Further, 3 have all options. Determine
at least how many cars do not have any option at all.
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Sol :

Let   denote the set of all cars being considered, and A, B, C respectively denote the sets of cars
having music system, air conditioner and power windows respectively. Then, from what is given, we have

| | = 30,  |A| = 15,  |B| = 8,  |C| = 6,  |A   B   C| = 3 ..... (i)

We note that, A   B   C denotes the set of cars that have at least one of the options, so that

A B C   is the set of cars that do not have any option.

By the addition rule, we have

|A   B   C| = |A| + |B| + |C| – |A   B| – |B   C| – |C   A| + |A   B   C|

..... (ii)

Since A   B   C is a subset of A   B,  B   C  and  C   A, we have

|A   B|   |A   B   C|, |B   C|   |A   B   C|, |C   A|   |A   B   C|.

Using these in (ii), we get

|A   B   C|   |A| + |B| + |C| – |A B  C| – |A B C| – |A  B C|

+ |A   B   C|

= |A| + |B| + |C| – 2|A   B   C| = 15 + 8 + 6 – 6 = 23.

Consequently,

|( A B C  )| = | | – |A   B   C|   30 – 23 = 7.

This shows that at least 7 cars do not have any of the options.

41. A student visits a sports club every day from Monday to Friday after school hours and
plays one of the three games: Cricket, Tennis, Football. In how many ways can he play
each of the three games at least once during a week (from Monday to Friday) ?

Sol :
On each day, the student has three choices of games. Therefore, the total number of choices of

games in a 5-day period is 35. Thus, if   is the set of all choice of games in a 5-day period, we have

| | = 35.

Let A denote the set of all choices of games which excludes cricket. Then, the number of choices of
games in a 5-day period which excludes cricket is |A| = 25. Similarly, if B is the set of all choices of games
which excludes Tennis in a 5-day period and C is the set of all choices of games which excludes Football in
a 5-day period, we have |B| = 25 and |C| = 25.

Consequently, A   B is the set of all choices of games in a 5-day period which excludes cricket and
tennis, and |A    B\ = 15. Similarly, |B   C| = 15, |A   C| = 15. Also, A   B   C is the set of all
choices of games which excludes all of the three games in the 5-day period, and this set is the null set.
Therefore, |A   B   C| = 0.

Further, A   B   C is the set of all choices of games which excludes at least one of the three games
in the 5-day period, and |A   B   C| is given by
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|A   B   C| = |A| + |B| + |C| – |A   B| – |A   C| – |B   C| + |A   B   C|

      = 25 + 25 + 25 – 15 – 15 – 15 + 0 = 3 × 25 – 3 = 93.

Therefore, the number of choices of games in the 5-day period which does not exclude any
game is

|( A B C  )| = | | –|A   B   C| = 35 – 93 = 243 – 93 = 150.

Thus, there are 150 ways for the student to select his daily games so that he plays every iime at least
once during a week (from Monday to Friday).

42. Out of 30 students in a hostel 15 study History, 8 study Economics, and 6 study Geography.
It is known that 3 students study all these subjects. Show that 7 or more students study
none of these subjects.

Sol : (Imp.)

Let   denote the set of all students in the hostel, and A1, A2, A3 denote the sets of students who
study History, Economics and Geography, respectively. Then, from what is given, we have

S1 = |Ai| = 15 + 8 + 6 = 29,  and  S3 = |A1   A2   A3| = 3.

The number of students who do not study any of the three subjects is |
1A 

2A 
3A |

|
1A 

2A 
3A | = | | – |Ai|+ |A1   Aj| – |A1   A2   A3|

   = I I – S1 + S2 – S3

   = 30 – 29 + S2 – 3 = S2 – 2 ..... (i)

where  S2 = |Ai   Aj|.

We note that (A1   A2   A3) is a subset of (Ai   Aj) for i, j = 1, 2, 3. Therefore, each of |Ai
 Aj|,

which are 3 in number, is greater than or equal to |A1   A2   A3|. Hence

S2 = |Ai   Aj|   3|A1   A2   A3| = 9.

Using this in (i), we find that

|
1A 

2A 
3A |   9 – 2 = 7.

This proves the required result

43. Find the number of nonnegative integer solutions of the equation

x1 + x2 + x3 + x4 = 18

under the condition x1   7 for i = 1, 2, 3,4.

Sol :
Let S denote the set of all nonnegative integer solutions of the given equation. The number of such

solutions is C(4 + 18 – 1, 18) = C(21, 18), so that

|S| = C(21, 18).

Let A1 be the subset of S that contains the nonnegative integer solutions of the given equation
under the conditions x1   7,  x2   0,  x3   0,  x4   0. That is,
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A1 = (x1 + x2 + x3 + x4)   S|x1 > 7|

Similarly, let

A2 = {(x1 + x2 + x3 + x4)   S|x2 > 7}

A3 = {(x1 + x2 + x3 + x4)   S|x3 > 7}

A4 = {(x1 + x2 + x3 + x4)   S|x4 > 7}

Then the required number of solutions would be |
1A 

2A 
3A 

4A |.

Let us set y1 = x1 – 8. Then x1 > 1 (i.e., x1   8) corresponds to y1   0. When written in terms of y1,
the given equation reads

y1 + x2 + x3 + x4 = 10.

The number of nonnegative integer solutions of this equation is C(4 +10 – 1, 10) = C(13, 10).
This is precisely |A1|. Thus, |A1| = C(13, 10).

Similarly, by symmetry,

|A2| = |A3| = |A4| = C(13, 10).

Let us take y1 = x1 – 8, y2 = x2 – 8. Then x1 > 7 and x2 > 7 correspond to y1  0 and y2 > 0. When
written in terms of y1 and y2, the given equation reads

y1 + y2 + x3 + x4 = 2

The number of nonnegative integer solutions of this equation is C(4 + 2 – 1, 2) = C(5, 2). This is
precisely |A1   A2|. Thus, |A1   A2| = C(5, 2).

Similarly, by symmetry,

|A1   A3| = |A1   A4| = |A2   A3| = |A2   A4| = |A3   A4| = C(5, 2).

In the given equation, more than two x,’s cannot be greater than 7 simultaneously. Hence

|A1   A2   A3| = |A1   A2   A4| = |A1   A3   A4| = |A2   A3   A4| = 0,

and  |A1   A2   A3   A4| = 0.

Accordingly, we find that (using the principle of inclusion-exclusion as given by equation (4))

|
1A 

2A 
3A 

4A | = |Ai| + |Ai   Aj| – |Ai   Aj   Ak| + |A1
 A2

 A3
 A4|

       = C(21, 8) – 
4
1
 
 
 

 × C(13, 15) + 
4
2

 
 
 

 × C(5, 2) – 0 + 0

       = 1330 – (4 × 286) + (6 × 30) = 366.

This is the required number of solutions.

2.4  PIGEON-HOLE PRINCIPLE

Q44. Explain about Pigeon-Hole Principle.

Ans : (Imp.)

In m pigeons occupy npigeonholes and if m > n, then two or more pigeons occupy the same
pigeonhole.
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This is often restated as follows:

If m pigeons occupy n pigeonholes, where m > n, then at least one pigeonhole must contain two
or more pigeons in it.

This statement is known as the Pigeonhole principle. This is one of the simplest and yet fundamental
among the principles used in counting.

Fig. : The Pigeonhole Principle

A simple illustration of the above principle is that if 6 pigeons occupy 4 pigeonholes, then atleast
one pigeonhole must contain two or more pigeons in it.

As a simple application of the principle, we may note that if 8 children are born in the same week,
then two or more children are born on the same day of the week.

Generalization

The following is an extension/generalization of the pigeonhole principle.

If m pigeons occupy n pigeonholes, then at least one pigeonhole must contain (p + 1) or more
pigeons, where p — [{m – 1)/n]

Proof:

We prove this principle by the method of contradiction.

Assume that the conclusion part of the principle is not true. Then, no pigeonhole contains (p + 1)
or more pigeons. This means that every pigeonhole contains p or less number of pigeons. Then:

Total number of pigeons   np = n × [(m – 1)/n]   n 
m 1

n
 

 
 

 = (m – 1).

This is a contradiction, because the total number of pigeons is m. Hence our assumption is wrong,
and the principle is true.

PROBLEMS

45. ABC is an equilateral triangle whose sides are of length 1 cm each. If we select 5 points
inside the triangle, prove that at least two of these points are such that the distance
between them is less than 1/2 cm.

Sol :
Consider the triangle DEF formed by the mid-points of the sides BC, CA and AB of the given

triangle ABC. Then the triangle ABC is partitioned into four small equilateral triangles (portions), each of
which has sides equal to 1/2 cm. Treating each of these four portions as a pigeonhole and five points
chosen inside the triangle as pigeons, we find by using the pigeonhole principle that at least one portion
must contain two or more points. Evidently, the distance between such points is less than 1/2 cm.
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46. How many persons must be chosen in order that at least five of them will have birth days
in the same calendar month?

Sol :
Let n be the required number of persons. Since the number of months over which the birthdays

are distributed is 12, the least number of persons who have their birthdays in the same month is, by the

generalized pigeonhole principle, equal to 
(n 1)

12
 

  
 + 1. This number is 5,

(n 1)
12
 

  
 + 1 = 5,  or  n = 49.

Thus, the number of persons is 49 (at the least).

47. Find the least number of ways of choosing three different numbers from 1 to 10 so that
all choices have the same sum.

Sol :
From the numbers from 1 to 10, we can choose three different numbers in C(10, 3) = 120 ways.

The smallest possible sum that we get from a choice is 1 + 2 + 3 = 6 and the largest sum is
8 + 9 + 10 = 27. Thus, the sums vary from 6 to 27 (both inclusive), and these sums are 22 in number.

Accordingly, here, there are 120 choices (pigeons) and 22 sums (pigeonholes). Therefore, the least
number of choices assigned to the same sum is, by the generalized pigeonhole principle,

120 1
22


 + 1 = [6, 4]   6.

48. Prove the statement: If m = kn + 1 pigeons (where k   1) occupy n pigeonholes then at
least one pigeonhole must contain k + 1 or more pigeons.

Sol :
Assume that the conclusion part of the given statement is false. Then every pigeonhole contains k or

less number of pigeons. Then, the total number of pigeons would be nk. This is a contradiction. Hence,
the assumption made is wrong, and the given statement is true.

49. A bag contains many red marbles, many white marbles, and many blue marbles. What
is the least number of marbles one should take out to be sure of getting at least six
marbles of the same color?
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Sol :
Let us treat the marbles as pigeons and colors as pigeonholes. Then, the number of pigeon­holes is

n = 3. Therefore, if m = 3k + 1 pigeons, where k   1, occupy 3 pigeonholes then at least one pigeonhole
must contain k + 1 or more pigeons. We note that k + 1 = 6 corresponds to m = 16. Therefore, the
presence of 16 or more pigeons in 3 pigeonholes will ensure that there are 6 or more pigeons in a hole.
Thus, 16 is the least number of marbles to be taken out.

50. Suppose m = (p1 + p2+ ... + pn – n + 1) pigeons occupy n pigeonholes H1, H2, ..., Hn.
Prove that some pigeonhole Hj contains pj or more pigeons.

Sol :
Assume that the conclusion part of the given statement is false. Then every hole Hj contains Pj – 1

or less number of pigeons, j = 1, 2, ... n. Then the total number of pigeons would be less than or equal
to

(p1 – 1) + (p2 – 1) + ... + (pn – 1) = {p1 + p2 + ... + pn – n} = m – 1.

This is a contradiction, because the number of pigeons is equal to m. Hence the assumption made
is wrong, and the given statement is true.
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UNIT
III

3.1 PROPOSITIONAL LOGIC

Q1. What is propositional Logic ? Define it with an example.

Ans :
Propositional Logic

The rules of mathematical logic specify methods of reasoning mathematical statements. Greek
philosopher, Aristotle, was the pioneer of logical reasoning. Logical reasoning provides the theoretical
base for many areas of mathematics and consequently computer science. It has many practical applications
in computer science like design of computing machines, artificial intelligence, definition of data structures
for programming languages etc.

Definition

A proposition is a collection of declarative statements that has either a truth value “true” or a truth
value “false”. A proposition consists of propositional variables and connectives. We denote the propositional
variables by capital letters (A, B, etc). The connectives (    ) connect the propositional variables.

Some examples of Propositions are given below-

 “Man is Mortal”, it returns truth value “TRUE”

 “12 + 9 = 3 “ 2”, it returns truth value “FALSE”

The following is not a Proposition:

“A is less than 2”. It is because unless we give a specific value of A, we cannot say whether the
statement is true or false.

3.1.1 Syntax, Semantics, Validity and Satisfiability

Q2. Explain briefly about Syntax, Semantics, Validity and Satisfiability.

Ans :
1. Syntax

To define this logic, we will assume a (countably infinite) set of propositions Prop = { Pi |i   N}.
The formulas of prepositional logic will be strings over the alphabet Prop U{(,), , }; here is called
implication, and  is called false.

Definition

The set of well formed formulas (wff) in proportional logic is the smallest set satisfying flic following
properties.

Propositional Logic: Syntax, Semantics, Validity and Satisfiability, Basic
Connectives and Truth Tables, Logical Equivalence: The Laws of Logic, Logical
Implication, Rules of Inference, The use of Quantifiers.

Proof Techniques: Some Terminology, Proof Methods and Strategies,
Forward Proof, Proof by Contradiction, Proof by Contraposition, Proof of
Necessity and Sufficiency.
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  is a wff.

 Any proposition pi (by itself) is a wff.

 If  and  are wffs then () is a wff.

(i) Semantics

The semantics of formulas in a logic, are typically defined with respect to a model, which identifies
a “world” in which certain facts are true, hi the case of propositional logic, this world or model is a
truth valuation or assignment that assigns a truth value (true/false) to every proposition. The truth
value truth will be denoted by 1. and the truth value falsity will be denoted by 0.

(ii) Validity and Satisfiability

Two formulas that are syntactically different, could however, be “semantically equivalent”. Intuitively,
this is when the truth value of each formula in every valuation is the same.

Definition - (Logical Equivalence).

A wff  is said to be logically equivalent to  iff any of the following equivalent conditions hold.

 for every valuation v, v |=  iff v|=

 for every valuation v, v[] = v[],

 [] = []

We denote this  = 

3.2 BASIC CONNECTIVES AND TRUTH TABLES

Q3. What are the called as statements in mathematical logic? Explain various types of
statements with its notations.

Ans : (Imp.)

Statements (Propositions)

Statements are sentences that claim certain things. Can be either true or false, but not both.

The propositional statements are of the following types:

1. Negation

2. Conjunction

3. Disjunction

4. Conditional

5. Bi conditional

1. Negation (NOT, ~, ¬)

Indicates the opposite, usually employing the word not. The symbol to indicate negation is : ~

Truth table for negation

P ~P ~P is true if and only

T F if P is false

F T



UNIT - III DISCRETE MATHEMATICS

63
Rahul Publications

Rahul Publications

Example 1

Original Statement Negation of statement

Today is Monday. Today is not Monday.

That was fun. That was not fun.

Example 2

   a: The product of two negative numbers is a positive number. True

~a: The product of two negative numbers is not a positive number. False

We can construct a truth table to determine all possible truth values of a statement and its negation.

2. Conjunction (AND, )

In logic, a conjunction is a compound sentence formed by using the word and to join two simple
sentences. The symbol for this is  . (whenever you see   read ‘and’) When two simple sentences,
p and q, are joined in a conjunction statement, the conjunction is expressed symbolically as p q.

Truth table for Conjunction

P Q PQ

T T T

T F F

F T F

F F F

Example 1:

Simple Sentences Conjunction Compound Sentence

p: Joe eats fries,

q: Maria drinks soda, p q : Joe eats fries, and maria

drinks soda.

Example 2:

Given: a:  A square is a quadrilateral.

b:  Harrison Ford is an American actor.

Problem: Construct a truth table for the conjunction “a and b.”

Sol :

a b a b
T T T
T F F
F T F
F F F


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Example 3:

Construct a truth table for each conjunction below:

1. x and y

2. ~x and y

3. ~y and x

Sol :

FFF

FTF

FFT

TTT

x  yyx 

FFF

FTF

FFT

TTT

x  yyx 

        

FTFF

TTTF

FFFT

FFTT

~x  y~xyx

FTFF

TTTF

FFFT

FFTT

~x  y~xyx

        

FTFF

FFTF

TTFT

FFTT

~y  x~yyx

FTFF

FFTF

TTFT

FFTT

~y  x~yyx

3. Disjunction (inclusive or) (OR, V)

A disjunction is a compound statement formed by joining two statements with the connector
OR. The disjunction “p or q” is symbolized by p q. A disjunction is false if and only if both statements
are false; otherwise it is true. The truth values of p q are listed in the truth table below..

Truth table for Disjunction

P Q P Q
T T T
T F T
F T T
F F F



P V Q is true iff P is true or Q is true or both are true

P V Q is false iff both P and Q are false

Example 1:

Given: A. A square is a quadrilateral

B. Harrison Fords is an American actor

Problem: Contract a truth table for the disjunction “a or b”

Sol :
A B a b
T T T
T F T
F T T
F F F


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Example 2:

Complete a truth table for each disjunction below.

1.  a or b

2.  a or not b

3.  not a or b

Sol :

        

FFF

TTF

TFT

TTT

a     bba 

FFF

TTF

TFT

TTT

a     bba 

   

TTFF

FFTF

TTFT

TFTT

a      ~b~bba 

TTFF

FFTF

TTFT

TFTT

a      ~b~bba 

  

TTFF

TTTF

FFFT

TFTT

~a     ~b~aba 

TTFF

TTTF

FFFT

TFTT

~a     ~b~aba 

4. The Conditional  Statement (known also as implication ( )

A conditional statement, symbolized by pq, is an if-then statement in which p is a hypothesis and
q is a conclusion. The logical connector in a conditional statement is denoted by the symbol . The
conditional is defined to be true unless a true hypothesis leads to a false conclusion. A truth table for
pq is shown below.

Truth Table,

P Q P Q
T T T
T F F
F T T
F F T



The implication PQ is false if P is true however Q is false

In all other cases the implication is true

Example 1:

Write a  b as a sentence. Then construct a truth table for this conditional.Problem:

b: 3 is a prime number.

a: The sun is made of gas.Given:

Write a  b as a sentence. Then construct a truth table for this conditional.Problem:

b: 3 is a prime number.

a: The sun is made of gas.Given:

Sol :
The conditional a   b represents “If the sun is made of gas, then 3 is a prime number.”
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TFF

TTF

FFT

TTT

a  bba

TFF

TTF

FFT

TTT

a  bba

In the following examples, we are given the truth values of the hypothesis and the conclusion and
asked to determine the truth value of the conditional.

Example 2:

What is the truth value of r  s ?Problem:

trues: 9 is composite.

falser: 8 is an odd number.Given:

What is the truth value of r  s ?Problem:

trues: 9 is composite.

falser: 8 is an odd number.Given:

Sol :
Since hypothesis r is false and conclusion s is true, the conditional r s is true.

Example 3:

What is the truth value of s  r ?Problem:

trues: 9 is composite.

falser: 8 is an odd number.Given:

What is the truth value of s  r ?Problem:

trues: 9 is composite.

falser: 8 is an odd number.Given:

Sol :
Since hypothesis s is true and conclusion r is false, the conditional s r is false.

5. Bi conditional Statement ( )

A biconditional statement is defined to be true whenever both parts have the same truth value. The
biconditional operator is denoted by a double-headed arrow  . The biconditional p q represents
“p if and only if q,” where p is a hypothesis and q is a conclusion. The following is a truth table for
biconditional p q.

Truth Table

P Q P Q
T T T
T F F
F T F
F F T



PQ is true iff P and Q have same valume - both are true or both are false

If P and Q have different values, the biconditional is false.
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Example 1:

Write a  b as a sentence. Then determine its truth values a  bProblem:

b:  x = 5

a:  x + 2 = 7Given:

Write a  b as a sentence. Then determine its truth values a  bProblem:

b:  x = 5

a:  x + 2 = 7Given:

Sol :

The biconditional a   b represents the sentence: “x + 2 = 7 if and only if x = 5.” When x = 5,
both a and b are true. When x = 5, both a and b are false. A biconditional statement is defined to
be true whenever both parts have the same truth value. Accordingly, the truth values of ab are
listed in the table below.

A b a b
T T T
T F F
F T F
F F T



Q4. Construct the truth table for ~(p q).

Ans :

Whenever we encounter a complex formula like this, we work from the inside out, just as we might

do if we had to evaluate an algebraic expression, like - (a + b). Thus, we start with the p and q columns,

then construct the pq column, and finally, the ~(pq) column:

TFFF

TFTF

TFFT

FTTT

~(p     q)p      qqp  

TFFF

TFTF

TFFT

FTTT

~(p     q)p      qqp  

Notice how we get the ~(pq) column from the pq column: we reverse all its the truth values,
since that is what negation means.

Q5. Construct the truth table for p (pq).

Ans :

Since there are two variables, p and q, we again start with the p and q columns. Working from
inside the parentheses, we then evaluate pq, and finally take the disjunction of the result with p:
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P Q p q p (p q)
T T T T
T F F T
F T F F
F F F F

  

Q6. Construct the truth table for ~(p q)(~r).

Sol :
Here there are three variables: p, q and r. Thus we start with three initial columns showing all eight

possibilities:

FFF

TFF

FTF

TTF

FFT

TFT

FTT

TTT

rQP

FFF

TFF

FTF

TTF

FFT

TFT

FTT

TTT

rQP

We now add columns for p q, ~(p q) and ~r, and finally ~(p  q) (~r) according to the

instructions for these logical operators. Here is how the table grows as you construct it:

FFFF

FTFF

FFTF

FTTF

FFFT

FTFT

TFTT

TTTT

p     qRQP 

FFFF

FTFF

FFTF

FTTF

FFFT

FTFT

TFTT

TTTT

p     qRQP 
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and finally,

TTFFFF

FTFTFF

TTFFTF

FTFTTF

TTFFFT

FTFTFT

TFTFTT

FFTTTT

~(p  q)   (~r)~rp    qrqp   

TTFFFF

FTFTFF

TTFFTF

FTFTTF

TTFFFT

FTFTFT

TFTFTT

FFTTTT

~(p  q)   (~r)~rp    qrqp   

Q7. Construct the truth tables of the following compound propositions :

(i) (pq)  r (ii)  p (q  r)

Sol : (Imp.)

Each of the two given combined propositions contains three primitive propositions p, q, r. Each of

these three primitive propositions has two possible  truth values. Therefore, there exist 23 = 8 sets of

possible  truth values of p, q, r, and each such set gives a truth value of the compound proposition
containing p, q, r. The required truth tables are shown below in a combined form.

The required truth tables are shown below in a combined form.

p q r pq (pq)  r q  r p (q  r)

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 0

0 1 1 1 1 1 1

1 0 0 1 0 0 1

1 0 1 1 1 0 1

1 1 0 1 0 0 1

1 1 1 1 1 1 1

Observe that the truth values of (p q) r and p (q  r) are not identical.
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Q8. Construct the truth tables of the following compound propositions :
(i) (p q) ( r) (ii)  q  (( r)p)

Sol :
The required truth tables are shown below in a combined form.

p q r  r (pq) (p q) ( r) ( r)p q  (( r)p)

0 0 0 1 0 1 0 0

0 0 1 0 0 1 1 0

0 1 0 1 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 0

1 1 0 1 1 1 1 1

1 1 1 0 1 0 1 1

Q9. Define the following terms :

1. Tautology

2. Contradiction

Ans :

1. Tautology

A compound proposition which is true for all possible  truth values of its components is called a
tautology (or a logical truth or a universally valid statement) A tautology is generally denoted  by To

2. Contradiction

A compound proposition which is false for all possible truth values of its components is called a
contradiction or an absurdity. A contradiction is generally denoted by F0.

A compound proposition that can be true or false (depending upon the truth values of its components)
is called a contingency. In other words, a contringency is a compound proposition which is neither
a tautology nor a contradiction.

Q10. Show that the truth values of the following  compound propositions are independent of
the truth values of their components:

(i) {p  (pq)}q (ii)  (pq) ( pq)

Sol :

Let us first prepare the truth tables for the given compound propositions. These are as shown
below.
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(i) p q pq r = p  (pq) rq

0 0 1 0 1

0 1 1 0 1

1 0 0 0 1

1 1 1 1 1

(ii) p q u=pq  p v=( p)q uv

0 0 1 1 1 1

0 1 1 1 1 1

1 0 0 0 0 1

1 1 1 0 1 1

The last columns in both of the above tables show that the truth value of each of the given compound
propositions is  1 irrespective of what is the truth values of its components are. This is what we had to
show. Furthermore, we have proved that the given compound propositions are tautologies.

Q11. Prove that, for any propositions  p and q, the compound proposition

[( q)  (pq)]  p is a tautology.

Sol : (Imp.)

Let us prepare the following truth table :

p q pq r = [( q)  (pq)] r  p

0 0 1 1 1

0 1 1 0 1

1 0 0 0 1

1 1 1 0 1

We observe that the proposition r  p, where r = [( q) (p q)], is always true. Therefore,e,
this proposition is a tautology.

Q12. Prove that, for any propositions p,q,r, the compound proposition

[(pq)  (q r)] (p r) is a tautology..

Sol :

The following truth table proves the required result:
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p q r pq q r (pq) p r [(pq)  (q r)]

(q r) (p r)

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 0 1 0 0 1 1

0 1 1 1 1 1 1 1

1 0 0 0 1 0 0 1

1 0 1 0 1 0 1 1

1 1 0 1 0 0 0 1

1 1 1 1 1 1 1 1

Q13. Prove that, for any propositions p, q, r, the compound proposition

{p (q r)} {(pq) (p r)} is a tautology..

Sol :

The following truth table proves the required result.

p q r p q q r p r p (q r) (p q) {p (q r)}

(p r) {(p q) (p r)}

0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 1

0 1 1 1 1 1 1 1 1

1 0 0 0 1 0 1 1 1

1 0 1 0 1 1 1 1 1

1 1 0 1 0 0 0 0 1

1 1 1 1 1 1 1 1 1

Q14. Examine whether

[(pq) r] [ r  (pq)] is a tautology..

Sol :

Let us prepare the following truth table :
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p q r pq (pq) r  r  (pq)  r  (pq)

0 0 0 0 1 1 1 1

0 0 1 0 1 0 1 1

0 1 0 1 0 1 0 0

0 1 1 1 1 0 0 1

1 0 0 1 0 1 0 0

1 0 1 1 1 0 0 1

1 1 0 1 0 1 0 0

1 1 1 1 1 0 0 1

We observe that (p q) r and  r  (p q) have the same truth values in all possible  situations.
Therefore,

[(p q) r] [ r  (p q)]

has the truth value 1in all possible situations; it is therefore a tautology.

3.3 LOGICAL EQUIVALENCE

Q15. What is logical equivalence?

Ans : (Imp.)

Logical equivalence is a type of relationship between two statements or sentences in propositional

logic or Boolean algebra. The relation translates verbally into “if and only if” and is symbolized by a

double-lined, double arrow pointing to the left and right ( ). If A and B represent statements, then AB
means “A if and only if B.”

The statement AB is exactly the same as

(AB) * (BA)

where the asterisk (*) represents the logical AND operation, and the right-pointing, double-lined

arrow ( ) represents logical implication.

Logical equivalence works both ways. Thus,

(AB)   (BA)

Definition:

Two propositional expressions P and Q are logically equivalent, if they have same truth tables. We
write P   Q.



MCA I YEAR  I SEMESTER

74
Rahul Publications

Rahul Publications

Q16. Show that PQ and ~PQ are logically equivalent.

Sol:

  P    Q    P Q    ~ P    ~ P Q  
T T T F T
T F F F F
F T T T T
F F T T T

 

Q17. For any two propositions p, q, prove that (p q)  ( p) q.

Sol :
We first prepare the following truth table :

p q pq  p ( p)q

0 0 1 1 1

0 1 1 1 1
1 0 0 0 0

1 1 1 0 1

We observe that p q and ( p) q have identical truth values for all possible truth values of p and
q. Therefore, (p q)  ( p q).

Q18. Prove that, for any propositions p and q, the compound propositions pq and (p   q) 
( p  q) are logically equivalent.

Sol : (Imp.)

Let us prepare the following truth table.

p q pq pq  p  q  p  q (pq)  ( p   q)

0 0 0 0 1 1 1 0

0 1 1 1 1 0  1  1

1 0  1 1 0 1 1 1

1 1 1 0  0 0 0 0

From columns 4 and 8 of the above truth table, we find that p q and (p q)  ( p   q) have
identical truth values for all possible truth values of p and q. Therefore,

(p q) {(p q)  ( p  q)}

Q19. Prove that, for any three propositions p, q, r.

[p (q  r)] [(pq)  (p r)]

Sol :

Let us prepare the following truth table.
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p q r (q  r) p (p  r) pq p r (pq)  (p r)

0 0 0 0 1 1 1 1

0 0 1 0 1 1 1 1

0 1 0 0 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0

1 1 0 0 0 1 0 0

1 1 1 1 1 1 1 1

Columns 5 and 8 of the above table show that [p (q  r)] and [(p q)] (q r) have identical
truth values in all possible situations. Therefore,

[p (q  r)]   [(p q)] (p r)]

3.3.1 The Laws of Logic

Q20. Explain about various Laws of Logic.

Ans :
The following results, known as the laws of logic, follow from the definition f logical equivalence. In

these laws, T0 denotes a tautology and F0 denotes a contradiction.

1. Law of Double Negation

For any proposition p, (  p)  p

2. Idempotent Laws

For any proposition p,

(a) (pp)  p (b) (pp)  p

3. Identity Laws

For any proposition p,

(a) (pF0)  p (b) (pT0)  p

4. Inverse Laws

For any proposition p,

(a) (p  p)  T0 (b) (p  p)  F0

5. Domination Laws

For any proposition p,

(a) (pT0)  T0 (b) (pF0)  F0

6. Commutative Laws

For any two propositions p and q,

(a) (p q)  (p q) (b) (pq)  (qp)
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7. Absorption Laws

For any two propositions p and q,

(a) [p (p  q)] p (b) [p  (p q)] p

8. DeMorgan Laws

For any two propositions p and q,

(a)  (p q)]  p  q (b)  (p  q)]  p  q

9. Associative Laws

For any three propositions p, q, r,

(a) p (q r) (p q) r (b) p (q  r) (p q)  r

10. Distributive Laws

For any three propositions p, q, r,

(a) p (q  r) (p q)  (p r) (b) p (q  r) (p  q) (p  r)

Q21. Prove the following logical equivalences without using truth tables:

(i) p [p (pq)]p

(ii) [pq ( p  q r)] (pq r)

(iii) [( p  q) (p q r)]pq

Sol :
(i) We have

p [p  (p q)]   pp, by an Absorption Law

  p, by an Idempotent Law

(ii) We have

      p  p r   ( p  q) r, by Associative Lawaw

  ( p q) r, by DeMorgan Lawaw

Therefore,

p q ( p  q  r)   (p q) [ (p q)  r]

  [(p q)  (p q)] [(p q) r], by Distributive Law

  T  (p q r), by inverse Law and Associative Law

  p q r, by commutative and Identity Laws.

(iii) We have

( p  q) (pq  r)  ( p  q) (p q  r), because (u v)   ( u v)

  (pq) (pq)] r], by DeMorgan Law and Associative Law

  pq, by Absorption Law..
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Q22. Prove the following logical equivalences:

(i) [(pq) (p  q)]qpq

(ii) (pq) [ p  (r  q)]  (qp)

Sol : (Imp.)

(i) We have

    (p q) (p  q)   p (q  q), by Distributive Law

  p F0. because (q   q) is a contradiction

  p, by an Identity Law

Therefore,

[(p q)  (p  q)] q  p q

(ii) We have

(p q) [ q (r  q)]   (p q) [ q ( q r)]. by commutative law

  (p q)  q, by an absorption law

   [(p q) q], because  (u v) (u  v)

   [ (p  q) q], because (u v) ( u v)

   [(p  q) q]

   [p (p  q)], by commutative law

   [(qp) (q  q)], by distributive law

   [(q p)T0], because q  q is a tautology

   (qp), by an identity law..

Q23. Prove the following

(i) p (q r) (p q) r

(ii) [ p ( q  r)] (q  r) (p  r) r..

Sol : (Imp.)

(i) We have

p (q r)  p ( q r)

 ( p  q) r

  (p  q) r

 (p q) r

(ii) We have

[ p ( q  r)]  ( p  q)  r

 ( (p q)]  r  r  [ (p q)]

and     (q  r) (p r)  (r q) (r  p)

 r  (p q)

 r  (p q)
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Therefore,

 [ p ( q r)] (q  r) (p  r)  {r  [ (p q)]}  {r  (p q)}

 r  {[ (p q)]}  (p q)}

 rT0

 r..

3.4 LOGICAL IMPLICATION

Q24. What is logical implication?

Ans :
Logical implication is a type of relationship between two statements or sentences. The relation

translates verbally into “logically implies” or “if/then” and is symbolized by a double-lined arrow pointing
toward the right ( ). If A and B represent statements, then A B means “A implies B” or “If A, then B.”
The word “implies” is used in the strongest possible sense.

As an example of logical implication, suppose the sentences A and B are assigned as follows:
A = The sky is overcast.
B = The sun is not visible.

In this instance, A ðB is a true statement (assuming we are at the surface of the earth, below the
cloud layer.) However, the statement B ðA is not necessarily true; it might be a clear night. Logical
implication does not work both ways. However, the sense of logical implication is reversed if both statements
are negated. That is,

(A B) (–B –A)
Using the above sentences as examples, we can say that if the sun is visible, then the sky is not

overcast. This is always true. In fact, the two statements A B and –B –A are logically equivalent.
Q25. Prove the following:

(i) [p  (Pq)]  r]  [(p q )  r]
(ii) ([p (q r)]    q)  p r

Sol : (Imp.)

(i) Let us prepare the following truth table.

p q r pq pq (pq) r

0 0 0 1 0 1

0 0 1 1 0 1

0 1 0 1 1 0

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1
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From the Table, we observe that if p, P q and r are all true , then (p q)  r is true (see the last
row). This proves that

[p  (p q)  r]  [(p q) r]

(ii) Let us prepare the following truth table.

p q r p (q r)  q [p (q r)]  q p r

0 0 0 0 1 0 0

0 0 1 1 1 1 1

0 1 0 1 0 0 0

0 1 1 1 0 0 1

1 0 0 1 1 1 1

1 0 1 1 1 1 1

1 1 0 1 0 0 1

1 1 1 1 0 0 1

From rows 2, 5 and 6 of the table we observe that if [p (q r)]  q  is true, then, is not false. This
proves that

{[p (q  r)]  q} p r

is a tautology, or equivalently that

{[p (q r)   q} p r

Q26. Prove that the following are logical implications:

(i) [(Pq)  (r s)  (p r)] (q s)

(ii) [(Pq)  (r s)  ( p  s)] ( p  s)

Sol :
(i) Suppose q s is false. Then q is false and s is false. Thus, both of q and s have the truth value 0. With

these truth values of q and s, let us prepare the following truth table (for all possible truth values of
p and r).

q s p r p q r s p r

0 0 0 0 1 1 0

0 0 0 1 1 0 1

0 0 1 0 0 1 1

0 0 1 1 0 0 1

From the Table, we find that there is no situation where all of p q, r  s and p r are true. Thus,
when q s is false, (p q) (r s) (p r) cannot be true. This means that the conditional

[{p q)  (r s)  (p r)] (q  s)

is always true; in other words, the conditional is a logical implication.
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(ii) Suppose ( p  r) is false. Then  p is false and  r is false; that is p is true and r is true. Thus
both p and r have the truth value 1. With these truth values of p and r, let us prepare the following
truth table for all possible truth values of q and s.

p r q s p q r s  q  s

1 1 0 0 0 0 1

1 1 0 1 0 1 1

1 1 1 0 1 0 1

1 1 1 1 1 1 0

From the table, we find that there is no situation where all of p q, r  s and  q  s are true.
Thus, when ( p  r) is false, (p q) (r s) ( q  s) cannot be true. This means that the
conditional

[(p q)  (r s)  ( q  s)] ( p  r)

is always true ; in other words, this conditionalisalogical implication.

3.5 RULES OF INFERENCE

Q27. State various Rules of Inference.

Ans : (Imp.)

Consider a set of propositions p1, p2,...pn and a proposition c. Then a compound proposition of the
form

(p1 p2 p3  ....pn)   c
is called a conclusion of the argument. Here p1, p2,...pn are called the premises of the argument and

c is called a conclusion of the argument.
Some of these rules are listed below :

1. Rule of Conjunctive Simplification
This rule states, for any two propositions p and q, if p q is true, then p is true.
i.e., (p  q) p
This rule follows from the definition of conjunction.

2. Rule of Disjunctive Amplication
This rule that, for any two proposiotions p and q, if p is true, then p q is true;
i,e., p  p q
This rule follows from the definition of disjunction.

3. Rule of Syllogism
this rule states that, for any three propostions p,q,r, if p q is true and q r is true, then p r is
true. i.e.,

{(p q)  (q r)}  (p r)
This rule follows from the tautology {(p q) {q r)} (p  r) and is expressed in the following
tabular form:



p q
q r
p r




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4. Modus Pones*** (Rule of Detachment)

This rule states that if p is true and p q is true, then q is true; i.e.,

{p  (p q)) q

For a proof of this rule, see Example 2 of Section 1.2.4. In tabular form, the rule reads thus:



       p
p q

q


5. Modus Tollens

This rule states that if p   q is true and q is false, then p is false; i.e.,

{(P q)   q}  p.

The rule is expressed in the following tabular form:



p q
    q
    p





6. Rule of Disjunctive Syllogism

This rule states that if p q is true and p is false, then q is true; i.e.,

{(p q) } q

The rule is expressed in the following tabular form :



p q
   p
    q




3.6 THE USE OF QUANTIFIERS

Q28. What are the various types of qualifiers used in predicate logic? Define them with an
example.

Ans : (Imp.)

Quantifiers

The variable of predicates is quantified by quantifiers. There are three types of quantifier in predicate
logic – Universal Quantifier, Existential Quantifier and Nested Quantifier.

 Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of the specific
variable. It is denoted by the symbol  .

  x P(x) is read as for every value of x, P(x) is true.

Example: “Man is mortal” can be transformed into the propositional form  x P(x) where P(x) is
the predicate which denotes x is mortal and the universe of discourse is all men.
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 Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of the
specific variable. It is denoted by the symbol  .

  x P(x) is read as for some values of x, P(x) is true.

Example: “Some people are dishonest” can be transformed into the propositional form x P(x)
where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some
people.

 Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested quantifier.

Example

  a b P (x, y) where P (a, b) denotes a + b = 0

  a  b  c   P(a, b, c) where P (a, b) denotes a + (b + c) = (a + b) + c

Note:  – a b P (x, y)   a  b P(x, y)

Q29. Use Logical Equivalences to prove that [(p  (¬(¬p) q))  (p   q)]   p is a tautology..

Ans :

Proof:

[(p   ¬(¬p q))   (p   q)]   p   [(p  (¬(¬p)q))  (p   q)]   p DeMorgan’s law’s law

  [(p (p¬q)) (pq)]   p Double Negation law

  [((pp)¬q) (pq)]   p Associative law

  [(p¬q) (pq)]   p Idempotent law

  [p (¬q q)]   p Distributive law

  [p (q   ¬ q)]   p Commutative law

  [p   T]   p Negation law

  p   p Identity law

  ¬p   p Equivalence of Implication

  p   ¬p Commutative law

  T Negation law
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Q30. Use Logical Equivalences to prove that [(p ¬(¬pq)) (p q)]p[(p ¬(¬p  q)) 
(p q)]   p is a tautology..

Ans :

implication law... ¬[(p ¬(¬p q)) (p q)] p¬[(p¬(¬p q)) (p q)] p

demorgans [¬(p ¬(¬p q)) ¬(p  q)] p[¬(p ¬(¬p q)) ¬(p q)] p

demorgans [¬(p ¬(¬p q))  (¬p ¬q)] p[¬(p ¬(¬p q))  (¬p ¬q)] p

demorgans [(¬p  (¬p q))  (¬p ¬q)] p[(¬p (¬p q))  (¬p ¬q)] p

distribution... [(¬p q)  (¬p¬q)]p[(¬p q)  (¬p¬q)] p

distribution... [(¬p  (q ¬q)] p[(¬p (q ¬q)] p

negation... [¬p F] p[¬p F] p

associativity (p¬p) f(p¬p) f

domination T FTF

T

3.7 PROOF TECHNIQUES

3.7.1 Proof Methods and Strategies

Q31. Explain about Proof Methods and Strategies

Ans :
The propositions that commonly appear in mathematical discussions are conditionals of the form

k p   q, where p and q are simple or compound propositions which may involve quantifiers as well.
Given such a conditional, the process of establishing that the conditional is true by using the rules / laws of
logic and other known facts constitutes a proof of the conditional. The process of establishing that a
proposition is false constitutes a disproof.

3.7.1.1  Forward Proof

Q32. Discuss about Forward Proof (or) Direct Proof.

Ans :
A direct proof shows that a conditional statement p   q is true by showing that p is true, then q

must also be true, so that the combination p true and q false never occurs. In a direct proof, we assume
that p is true and use axioms, definitions, and previously proven theorems, together with rules of inference,
to show that q must also be true.

Definition

The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an
integer k such that n – 2k + 1. (Note that every integer is either even or odd, and no integer is both even
and odd.) Two integers have the same parity when both are even or both are odd, they have opposite
parity when one is even and the other is odd.
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The direct method of proving a conditional p   q has the following lines of argument:

1. Hypothesis: First assume that p is true.

2. Analysis: Starting with the hypothesis and employing the rules / laws of logic and other
known facts, inter that q is true.

3. Conclusion: p   q is true.

Q33. Give a direct proof of the statement :

“The square of an odd integer is an odd integer”

Sol :
Here, the conditional to be proved is :

“If n is an odd integer, then n2 is an odd integer”.

Assume that n is an odd integer (hypothesis).

Then, n = 2k + 1 for some integer k. Consequently.

n2 = (2k + 1)2 = 4k2 + 4k + 1.

We observe that the right hand side is not divisible by 2. Therefore, n2 is not divisible by 2. This
means that n2 is an odd integer (conclusion).

The given statement is thus proved by a direct proof.

Q34. Let m and n be integers. Prove that a2 = m2 if and only if m = n  or  m = –n.

Sol :
Consider the propositions

p : n2 = m2,  q : m = n,  r = m = –n.

We have to prove that p   (p   r) is true. First, assume that q   r is true. Then m = n  or
m = –n, so that m2 = n2, that is, p is true. Thus (q   r)   p is true.

Next assume that  (q   r) is true: that is, ( q)   ( r) is true. Then q is false that r is false: that
is, m   n and m   –n. Then, m2   n2;  that is,  p is true. This proves that  (q   r)    p is true.
Accordingly, the statement p   (q   r) is true.

Thus, we have proved that both of (q   r)   p and p   (q   r) are true. Hence p   (q   r)
is true.

3.7.2 Proof by Contradiction

Q35. Discuss about Proof by Contradiction.

Ans : (Imp.)

The indirect method of proof is equivalent to what is known as the Proof by Contradiction. The
lines of argument in this method of proof of the statement p   q are as follows:

1. Hypothesis: Assume that p   q is false. That is, assume that p is true and q is false.

2. Analysis: Starting with the hypothesis that q is false and employing the rules of logic and
other known facts, infer that p is false. This contradicts the assumption that p is true.

3. Conclusion: Because of the contradiction arrived in the analysis, we infer that p   q is true.
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Suppose we want to prove that a statement p is true. Furthermore, suppose that we can find a
contradiction q such that  p  q is true. Because q is false, but  p  q is true, we can conclude that
 p is false, which means that p is true. How can we find a contradiction q that might help us prove that
p is true in this way? Because the statement r    r is a contradiction whenever r is a proposition, we can
prove that p is true if we can show that  p   (r    r ) is true for some proposition r. Proofs of this type
are called proofs by contradiction.

Q36. Provide a proof by contradiction of the following statement:

For every integer n, if n2 is odd, then n is odd.

Sol :

Let n be any integer. Then the given statement reads p q, wheree

p : n2 is odd and q : n is odd.

Assume that p q is false; that is, assume that p is true and q is false. Now, q is false means: n is
even, so that n = 2k for some integer k. This yields n2 = (2k)2 = 4k2 from which it is evident that n2 is
even; that is, p is false. This contradicts the assumption that p is true. In view of this contradiction, we infer
that the given conditional p q is true (for any integer n).

Q37. Prove the statement:

“The square of an even integer is an even integer” by the method of contradiction.

Sol :

Here, the statement to be proved can be put in the form p q, where

p : n is an even integer, and q : n2 is an even integer.

Assume that p q is false; that is assume that p is true and q is false. Since q is false,  q is true; that
is, n2 is not an even integer. Therefore, n2 = n × n is not divisible by 2. This implies that n is not divisible
by 2. That is, n is not an even integer. This means that p is false, which contradicts the assumption that p
is true.

In view of this contradiction, we infer that the given proposition p q is true.

Q38. Prove that if m is an even integer, then m + 1 is an odd integer.

Sol :

Here, the given statement is p q, where

p : in is even, q : m + 7 is odd.

Assume that p q is false; that is, assume that p is true and q is false. Since q is false, m + 1 is even.
Hence, m + 7 = 2k for some integer k. This yields

m = 2k – 7 = (2k – 8) + 1 = 2(k – 4) + 1

which shows that m is odd. This means that p is false, which contradicts the assumption that p is true. In
view of this contradiction, we infer that the given statement p q is true.
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Q39. Prove that, for all real numbers x and y, if x + y 100, then x 50 or y 50.

Sol :
Take any two real numbers x and y. Then the statement to be proved reads p (q r) wheree

p  p(x,y) : x + y 100, q  q(x) : x 50, r  r(y) : y 50.

Assume that p is true and q r is false. Since q r is false, q is false and r is false. This means that
x<50 and y<50. This yields x+y<100. Thus, p is false. This contradicts the assumption that p is true.

Hence, we infer that the given statement p q is true.

3.7.3 Proof by Contraposition

Q40. Discuss about Proof by Contraposition.

Ans :
Proofs by contraposition make use of the fact that the conditional statement p   q is equivalent to

its contrapositive,  q    p. This means that the conditional statement p   q can be proved by
showing that its contrapositive,  q    p, is true. In a proof by contraposition of p   p, we take  q
as a premise, and using axioms, definitions, and previously proven theorems, together with rules of
inference, we show that  p must follow the proof by contraposition can succeed when we cannot easily
find a direct proof.

3.7.4 Proof of Necessity, Sufficiency

Q41. Discuss about Proof of Necessity. and Sufficiency.

Ans : (Imp.)

(i) Proof of Necessity and sufficiecy

In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or
implicational relationship between two statements. For example, in the conditional statement: “If P
then Q”, Q is necessary for P, because the truth of Q is guaranteed by the truth of P (equivalently,
it is impossible to have P without Q). Similarly, P is sufficient for Q, because P being true always
implies that Q is true, but P not being true does not always imply that Q is not true.

(ii) Necessity

The assertion that Q is necessary for P is colloquially equivalent to “P cannot be true unless Q is
true” or “if Q is false, then P is false”. By contraposition, this is the same thing as “whenever
P is true, so is Q”.

The logical relation between P and Q is expressed as “if P, then Q” and denoted “PQ” (P implies
Q). It may also be expressed as any of “P only if Q”, “Q, if P”, “Q whenever P”, and “Q when P”.
One often finds, in mathematical prose for instance, several necessary conditions that, taken together,
constitute a sufficient condition, i.e., individually necessary and jointly sufficient.

(iii) Sufficiency

If P is sufficient for Q, then knowing P to be true is adequate grounds to conclude that Q is true;
however, knowing P to be false does not meet a minimal need to conclude that Q is false.

The logical relation is, as before, expressed as “if P, then Q” or “PQ”. This can also be expressed
as “P only if Q”, “P implies Q” or several other variants. It may be the case that several sufficient
conditions, when taken together, constitute a single necessary condition (i.e., individually sufficient
and jointly necessary).
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UNIT
IV

4.1  ALGEBRAIC STRUCTURES

Q1. Define Algebraic Structures.

Ans :
Let S be a nonempty set on which one or

more n-ary operations are defined. Then a system
consisting of S and some n-ary operations on S is
called an algebraic system or simply an algebra. That
is: if *1, *2. *3 ....., *k are some n-ary operations on
S, then the system < S, *1, *2, ....., *k > is called an
algebraic system (or an algebra).

Since n-ary operations define a structure on
the elements of a set S upon which the opera­tions
are defined, an algebraic system is called an
algebraic structure.

For example, since +, × are binary operations
on Z, the system < Z, +, × > is an algebraic
structure. Similarly, < P(S),  ,   > is an algebraic
structure. Here, the symbols have their usual
meanings.

Identity

In S, suppose there is an element e1 such that
e1 * x = x for every x in S. Then e1 is called a left
identity in S with respect to *. Similarly, if there is
an element er in S such that x * er = x for every x in
S, then er is called a right identity in S with respect
to *.

Remark: If * is commutative, then a left
identity (if any) w.r.t. * is a right identity as well.
Even if * is not commutative, left and right identities
(if such exist) are identical and unique. (For a proof,

Algebraic Structures and Morphism: Algebraic Structures with one Binary
Operation, Semi Groups, Monoids, Groups, Congruence Relation and Quotient
Structures, Free and Cyclic Monoids and Groups, Permutation Groups,
Substructures, Normal Subgroups, Algebraic Structures with two Binary
Operation, Rings, Integral Domain and Fields. Boolean Algebra and Boolean
Ring, Identities of Boolean Algebra, Duality, Representation of Boolean Function,
Disjunctive and Conjunctive Normal Form

see Theorem 1 below). This unique element is called
the identity element in S w.r.t. * and is denoted
by e.

Inverse

In S, suppose there is the identity element e
w.r.t. *. An element a in S is said to be left invertible
if there exists an element xi in S such that x1 * a =
e. In such a situation, x1 is called a left inverse of the
element a. Similarly, a is said to be right invertible if
there exists an element xr in S such that a * xr = e
and xy is called a right inverse of a. If an element a
is both left invertible and right invertible, then we
say that a is invertible.

4.1.1 Algebraic Structures with one Binary
Operation

Q2. Explain Algebraic Structures with one
Binary Operation.

Ans :
Algebric Structures with one Binary Operation

A non-empty set G equipped with one or
more binary operations is said to be an algebraic
structure. Suppose * is a binary operation on G.
Then (G, *) is an algebraic structure. (N,*), (1, +),
(1, -) are all the algebraic structure. Here, (R, +,.)
is an algebraic structure equipped with two
operations.

Binary Operation on A Set

Suppose G is a non-empty set. The G X G =
{(a,b): a E G, b E G)}. If f: G X G   G then f is
called a binary operation on a set G. The image of
the ordered pair (a,b) under the function f is denoted
by afb.
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A binary operation on asset G is sometimes
also said to be the binary composition in the set G.
If * is a binary composition in G then, a * b E G, a,
b E G. Therefore g is closed with respect to the
composition denoted by *.

4.2  SEMI GROUPS AND MONOIDS

Q3. Define the following terms :

(i) Semi Groups

(ii) Monoids

Ans :
(i) Semi Groups

An algebraic system < S, *> consisting of a
non-empty set S and an associative binary
operation * defined on S is called a
semigroup under that operation.

If the binary operation is commutative
as well (in addition to being associative), the
semi­group is called a commutative
semigroup or an abelian semigroup.

When there is no ambiguity or when the
operation * is understood, the semigroup <
5, * > is denoted by just S.

(ii) Monoids

Let < 5, * > be a semigroup. This semigroup
is called a monoid if S contains the identity
element e w.r.t. *.

Evidently, every monoid is a semigroup, but
a semigroup need not be a monoid.

4.3  GROUPS

Q4. Define Groups. Explain properties of
Groups.

(OR)

Give examples of groups and non-
groups.

Ans : (Imp.)

(i) The set of integers Z, with ‘+’ as binary
operation forms a group

(ii) The set of rational numbers Q, and real
number R are groups under ordinary
addition, with identity ‘0’ and the inverse of
a is ‘– a’ for a   Q.

(iii) The set of integers Z under subtraction is not
a group since ‘–’is not associative, i.e., a –
(b – c)   (a – b) – c, for a, b,  Z.

(iv) The set of integers Z under multiplication is
not a group since inverse does not exist for
the integers other than 1 and - 1.

(v) The set Q* of non zero rational numbers is a
group under ordinary multiplication, with 1
being multiplicative identity and inverse of a

is 
1
a  for a   Q*.

(vi) The set S of positive irrational numbers, under
multiplication is not a group since,

2 . 2 = 2 which is not an irrational
number.

(vii) The set of all 2 × 2 matrices of the form R

=
a b

a, b,c,d R
c d

  
  

  
 with usual

addition of matrices forms a group, since
addition of matrices is associative. The identity

is 
0 0
0 0
 
 
 

and inverse of = 
a b
c d
 
 
 

 =

a b
c d

  
   

.

(viii) The set of all 2 × 2 matrices with real entries,
is not a group under the matrix multipli-
cation, since inverse of A does not exists
if |A| = 0.

Q5. State and prove uniqueness or the
identity tneorem in a group.
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Ans :
Stement

In a group G, there is only one identity element.

Proof :

Let, e and e’ are identities in a group G, then,

ae = ea = a   a   G

e’a= ae’ = a   a   G

Substituting a = e’ in equation (1),

 e’.e = e.e’ = e’

Substituting a = e in equation (2),

 e’.e = e.e’ = e

Comparing equations (3) and (4),

e = e’

Therefore, there exists a unique identity element in a group.

Q6. State and prove cancellation laws.

Ans :
Statement

Let a, b, c be the elements of a group G and * be a binary operation on G then,

(i) ba = ca   b = c (Right cancellation law)

(ii) ab = ac   b = c (Left cancellation law)

Proof:

(i) Right cancellation law (ba = ca   b=c)

Let a’ be an inverse of a,

 (ba)a’ = (ca)a’

 b(aa’) = c(aa’) [   Associativity in G]

 b(e) = c(e) [   ad` = a’a = e]

 b = c [   e is the identity in G]

(ii) Left cancellation law (ab = ac   b = c)

Let a’ be the inverse of a,

 a’(ab) = a’(ac)

 (a’a)b = (a’a)c [   Associativity in G]

 eb = ec [ aa’ = a’a = e]

b = c [   e is the identity in G]
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Q7. Prove that the set of all positive rational
numbers of the form 3m.6n, where m,
n   Z is a group under multiplication.

Ans :

Let, a, b, c   G

a = 3p 6q, b = 3r 6s, c = 3t 6u

Where p, q, r, s, t, u   Z

(i) Closure

   ab = (3p 6q) (3r 6s)

= 3P(6q 3r) (6s)

[   Associativity in Q+ ]

= 3P(3r 6q) (6s)

[   Commutativity in Q+]

= (3P 3r)(6q 6s)

= (3P+r 6q+s)     [  p + q, q + s   Z]

  ab G

(ii)  Associativity

a(bc) = (3p 6q) [(3r 6s) (3t 6u)]

 = (3P+r .6q+s) (3r .6s)

 = (a.b) (c) [  p +r,q + s   Z]

 a(bc) = (ab) (c)   a, b, c   G

(iii)  Identity

 e = 3° 6°   G [ 0   Z]

ae = 3p 6q 3° 6° = 3p 6q = a

ea = 3° 6° 3p 6q = 3p 6q=a

 ae = ea = a

  e = 3°6° is the identity element in G.

(iv)  Inverse

P, q   Z,

 –p,–q   Z

a = 3p 6q   G

 b = 3–p 6–q   G

 ab = (3p 6q) (3–p 6–q)

= (3p–p.6q–q)

= (3° 6°)

        = e

ba = (3–p  6–q) (3p 6q)

= (3p-p 6q–q)

= (3° 6°)

= e

  ab = ba = e

 G is a group under multiplication.

Q8. Prove that if G is a group with the
property that, square of every element
is the identity, then G is abelian.

Ans :

Let, aG

The square of every element is the identity.

i.e., a2 = e, where e is the identity in G.

 a.a = e

 a–1 = a  a G

Similarly,

Let, b G

 b2 = e

 b. b = e

 b–1 = b bG

Consider,

ab = (ab)–1 = b–1 a–1 = ba   a,b G

 ab = ba

Commutative property is satisfied.

 G is abelian

Q9. Find the inverse of A = 
 
 
 

2 6
3 5  in the

general linear group : GL(2, Z11).

Ans :
Given,
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A = 
2 6
3 5
 
 
 

The general linear group can be represented as,

GL(2, Z11) = 11

a b
a, b,c,d Z and ad bc 0(mod11)

c d
  

    
  

Inverse of a matrix ‘A’ is given by,

A–1 = 
1
A  adj A

= 
1

ad bc
d b
c a

 
  

A =  ad – bc

A = ad-bc

= 2 × 5 – 6 × 3 mod 11
= – 8 mod 11
= 3 mod 11 [– 8 = – 8 + 11 = 3 in Z11]

1
A  is the multiplicative inverse of A

   
1
A  = Multiplicative inverse of 3 mod 11


1
A  = 4 mod 11 [   3 x 4= 1 mod 11]

Consider,

Adj A  = 
d b
c a

 
  

   =
5 6
3 2

 
  

 mod 11

   = 
5 5
8 2
 
 
 

 mod 11 [–6 = –6 + 11 =5 mod 11, –3 = – 3 + 11 = 8 mod 11]

  A–1 = 4
5 5
8 2
 
 
 

 mod 11
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    = 
20 20

32 8
 
  

 mod 11

 A–1 = 
9 9

10 8
 
 
 

Q10. If a group contains elements a and b
such that |a| = 4, |b| = 2 and a3b = ba.
Find |ab|.

Ans :
Let, G be the group

a, b   G

a  = 4   a4 = e ; |b| = 2 => b2 = e

a3b = ba ... (1)

Consider,

(ab)2 = (ab) (ab)

= a(ba)b

= a(a3b)b [   From equation (1)]

= a4b2

= ee

= e

 (ab)2 = e

 |ab| = 2.

Q11. If R be the set of all real numbers except
0.Define * on R by a * b = |a|b. Is (R,*)
a group. Justify your answer.

Ans :
Given that,

* is the operation defined on R such that,

a * b = a  b   a,b R

Where,

R is the set of all real numbers except ‘0’.

(i) Closure:

For a, bR

  a * b = a  b   R

 (R, *) is closed under *.

(ii) Associativity:

For  a, b, c   R

(a * b) *  c = ( a b) * c

 = ||a|b|c

 = |ab|c

a * (b * c)  = a * (|b|c)

 = a  |b| c = \ab\c

(a * b) * c  = a * (b * c)

Therefore, * is associative.

(iii) Identity:

For a   R

a * e = a [   e is an identity element]

  a e = a

If a > 0, then = a  a

 a e = a

 a e = a

 e = 1

If a < 0 then |a|  = –a

 |a| e = a

 –ae = a

 e = –1

But, identity element (e) always has unique
value in a group.

 (R, *) is not a group

4.4  CONGRUENCE RELATION AND QUOTIENT

STRUCTURES

Q12. Discuss about Congruence Relation and
Quotient Structures.

Ans : (Imp.)
Congruence Relation and Quotient Structures

Let S be a semi group and let ~be an
equivalence relation on S. Recall that the equivalence
relations ~ induces a partition of S into equivalence
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classes. Also, [a] denotes the equivalence class
containing the element a " S, and that the collection
of equivalence classes is denoted by

S/ ~. Suppose that the equivalence relation
~ on S has the following property :

If a ~ a'  and  b ~ b', then ab ~ a'b'.

Then ~ is called a congruence relation on S.
Furthermore, we can now define an operation on
the equivalence classes by

[a] * [b] = [a * b] or,  simply, [a] [b] = [ab]

Furthermore, this operation on S/ ~ is
associative; hence S/ ~ is a semigroup. We state
this result formally.

4.5 FREE AND CYCLIC MONOIDS AND GROUPS

Q13. Discuss about free and cyclic groups.

Ans :
Free and Cyclic

A group is called a free group if no relation
exists between its group generators other than the
relationship between an element and its inverse
required as one of the defining properties of a
group.

For example, the additive group of integers
is free with a single generator, namely 1 and its
inverse, –1. An example of an element of the free
group on two generators is ab2 a–1, which is not equal
to b2. The fundamental group of the figure eight
serves as another good example of a free group
with two generators, since either loop can be
traversed, but the two paths do not commute.
Moreover, no (nontrivial) path involving more than
one loop will ever be homotopic to the identity.

Cyclic Group

A cyclic group is a group that can be
generated by a single element. Every element of a
cyclic group is a power of some specific element
which is called a generator. A cyclic group can be
generated by a generator g’, such that every other
element of the group can be written as a power of
the generator ‘g’.

4.6  PERMUTATION GROUPS

Q14. Define Permutation.

An :
A permutation of a set A is defined as a

function f : A   A which is both one-to-one and
onto.

Q15. Prove that every permutation of a finite
set can be expressed as a cycle or as a
product of disjoint cycles.

Ans : (Imp.)

Let A be a set given as

A = { 1,2,3,4,...... n}

Let,  be a permutation on set A.

Let, a1 be an element of A

i.e., a1   A

The element a2 is obtained as,

a2 = (a1)

 ik ik 1a a
Here,ik 1 ik 1 2

  
     


....(1)

Similarly,

   3 = [a2]

= [ (a1)]

= 2a1 [ From equation (1)]

4 = 3a1

The obtained sequence will be of the form,

a1, (a1), 2(a1), 3(a1), .....

The above sequence is a finite sequence as
the set A is a finite set.

 a = m(a1) for some m n. Consider
the following cases.

Case 1

If m = n, then there is no repetition

a1 = °(a1)
         = a1



MCA I YEAR  I SEMESTER

94
Rahul Publications

Rahul Publications

a2 = ()1(a1) = a1

a3 = ()2(a1) = a1

 a = (a1, a2 , a3, ..........an) ....(2)

Equation (2) represents a single cycle.

Hence, a permutation of a finite set can be expressed as a cycle.

Case 2

If m < n, then there must be a repetition

i.e., If i(a1) = j(a1) for some i < j

Then a1 = m(a1)

Where,

m = j – i

a1 = °, a1 a2 =  a1, a3 = 2a1,.... am = ana1

The sequence obtained is,

1 = (a,, a2, a3, ......... am) ....(3)

Equation (3) represents a cycle.

Let b, be an element of a which is not present in first cycle i.e., 1

b2 = (b1) [ From equation (1)]

b3 = 2(b2)

The sequence obtained i.e.,

b1, b2, b3, ...... is a finite sequence

 b1 = ak(b1) for some k.

The second cycle and first cycle does not contain common elements as they are disjoint cycles.

If i(a1) = j(b1) for some i and j

i

j




a1 = b1.

 i-J a1 = b1

 a1 = b1 is a contradiction

The second cycle is,

2 = (b1, b2, b3, .....bk) ....(4)

Similarly, the third cycle will be of the form,

3 = (c1, c2, c3, ...... cs) ....(5)

The process is continued till the elements of A get exhausted.

Multiplying equations (3), (4) and (5),

1, 2, 3 = (a1, a2, a3, ...... am) (b1, b2, b3, ........ bk) (c1, c2, c3, ...... cs )
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If 1, 2, 3 =  then,

 = (a1, a2, a3, ....... am) (b1, b2, b3, ........bk) (c1, c2, c3, ...... cs )

              (Cycle-1)             (Cycle-2)      (Cycle-3)

  = (a1, a2, a3, .......  am) (b1, b2, b3, ...... bk) (c1, c2, c3, ...... cs)

It can be seen from equation (6) that the permutation of A is a product of disjoint cycles.

If there are ‘n’ number of disjoint cycles then,

 = (a1, a2, a3, .......  am) (b1, b2, b3, ...... bk) (c1, c2, c3, ...... cs) ...... (d1, d2,d3, ..... dn)

Hence, every permutation of a finite set can be expressed as a product of disjoint cycles.

Q16. Let = 
1 2 3 4 5 6
2 1 3 5 4 6
 
 
 

 and  = 
1 2 3 4 5 6
6 1 2 4 3 5
 
 
 

 then compute – and .

Ans :
Given permutations are,

= 
1 2 3 4 5 6
2 1 3 5 4 6
 
 
 

 = 
1 2 3 4 5 6
6 1 2 4 3 5
 
 
 

The value of –1 can be obtained as,

–1 = 
1 2 3 4 5 6
2 1 3 5 4 6
 
 
 

The value of  a can be obtained as,

= 
1 2 3 4 5 6
6 1 2 4 3 5
 
 
 

      = 
1 2 3 4 5 6
2 1 3 5 4 6
 
 
 

 = 
1 2 3 4 5 6
1 6 2 3 4 5
 
 
 

Q17. If = 
1 2 3 4 5 6
3 1 4 5 6 2
 
 
 

 and = 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

are two permutations in S6. Then

compute 2 and –.

Ans :
Given permutations are,
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= 
1 2 3 4 5 6
3 1 4 5 6 2
 
 
 

,  = 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

The value of 2 can be obtained as,

2 = .

= 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

  
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

=
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

[  (l) = (l)) = (2) = 4]

2 =
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

2  =2

      = 
1 2 3 4 5 6
3 1 4 5 6 2
 
 
 

   
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

      = 
1 2 3 4 5 6
5 4 1 3 6 2
 
 
 

 2 = 
1 2 3 4 5 6
5 4 1 3 6 2
 
 
 

The value of –1 can be obtained as,

–1 = 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

   
1 2 3 4 5 6
2 6 1 3 4 5
 
 
 

=
1 2 3 4 5 6
4 5 2 1 3 6
 
 
 

 –1 = 
1 2 3 4 5 6
4 5 2 1 3 6
 
 
 

–1 = 
1 2 3 4 5 6
3 1 4 5 6 2
 
 
 

1 2 3 4 5 6
4 5 2 1 3 6
 
 
 

= 
1 2 3 4 5 6
5 6 1 3 4 2
 
 
 

 –1 = 
1 2 3 4 5 6
5 6 1 3 4 2
 
 
 
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Q18. If  S6 and = 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

 then find .

Ans :
Given permutation is,

= 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

The value of  can be obtained as,
= 

     = 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

  
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

     = 
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

[ (1) === 4]

= 
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

=.

     = 
1 2 3 4 5 6
4 3 2 1 5 6
 
 
 

 
1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

= 
1 2 3 4 5 6
3 1 4 2 6 5
 
 
 

 = 
1 2 3 4 5 6
3 1 4 2 6 5
 
 
 

 =.

     =  
1 2 3 4 5 6
3 1 4 2 6 5
 
 
 

1 2 3 4 5 6
2 4 1 3 6 5
 
 
 

     =  
1 2 3 4 5 6
1 2 3 4 5 6
 
 
 

     =  

  =  
= ()503

     = ()503

     = 
1 2 3 4 5 6
1 2 3 4 5 6
 
 
 

= 
1 2 3 4 5 6
1 2 3 4 5 6
 
 
 
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4.7  SUBSTRUCTURES

Q19. Explain briefly about Substructures.

Ans :
Sub Structures

Let H be a subset of a group G. Then H is
called a subgroup of G if H itself is a group under
the operation of G. Simple criteria to determine
subgroups follow.

Proposition: A subset H of a group G is a subgroup
of G if:

(i) The identity element eH,

(ii) H is closed under the operation of G, i.e. if a,
bH, then abH.

(iii) H is closed under inverses, that is, if aH,
then a–1 H.

Every group G has the subgroups {e} and G
itself. Any other subgroup of G is called a nontrivial
subgroup.

4.8  NORMAL SUBGROUPS

Q20. Define normal subgroup. Prove that
every subgroup of an abelian group is
normal.

Ans : (Imp.)

Normal Subgroup

A subgroup ‘H’ of a group ‘G’ is said to be a
normal subgroup of ‘G’, if for all elements h   H
and for all elements of g   G, the element ghg–1 
H.

Every Subgroup of an Abelian Group is
Normal

‘G’ is an abelian group.

Let H, be subgroup of G

i.e., H   G

Then,

  g   G,   h   H,

ghg–1 = gg–1h [   ‘G’ is abelian]

 ghg–1 = eh

Where

‘e’ is the identity in G

 ghg–1 = h

 ghg–1   H   g   G

 H is normal subgroup of ‘G’.

Q21. A Subgroup H of G is normal in G if and
only if × H x–1 = H   x   H.

(OR)

Define normal subgroup. Prove that a sub
group H of group G is normal in G if and
only if x H x–1   H   x   G.

Ans : (Imp.)

Let G be a group and H be the subgroup
of G.

Let an element x belongs to G.

 x   G

From the definition of normal subgroup, i.e.,
xhx–1   H for all x   G and x   H

Consider,

xHx–1 = {xhx–1 : x   G, h   H)   H

Consider,

x–1Hx = {x–1hx : x   G, h   H)   H

Hence,

x–1Hx   H

 xx–1 Hx   xH

 (xx–1) Hx   xH

 (e) Hx   xH [   xx–1 = e]

 Hx   xH [   e = 1]

 Hxx–1   xHx–1

 H(xx–1)   xHr–1

 He   xHx–1

 H   xHx–1 ... (2)

Comparing equations (1) and (2),
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xHx–1 = H

Hence, a subgroup H of a group G is a
normal subgroup of G if xHx–1 = H for every x e G.

Q22. Show that intersection of two normal
sub-groups is again a normal subgroup.

Ans :
The intersection of two subgroups is again a

subgroup,

H   K   G

Where, H, K are two normal subgroups of G

 H  G  and  K  G

Let,

h  H   K and g  G

Since

h   H   K

h   H and h   K

 ghg–1  H

[   H   G, h   H, g   G]

 ghg–1  K

[   k   G, h   K, g   G]

 ghg–1  H   K

 H   K  G

 H   K is a normal subgroup of G.

Therefore, intersection of two normal
subgroups is again a normal subgroup.

Q23. If M and N are two sub-groups of group
G and N is normal in G, then prove that
M  N is normal in M.

Ans :
Given that,

M,N are subgroups of G

N is normal in G

Since,

M, N are subgrous of G

 M N is also a subgroups of M

Let,

a  M

 a  G

Let,

b M N

 b  M and b  N

Since,

a  G,b  N

 aba–1  N [  N G]

.....(1)

And, bM, a M

 a–1M

 aba–1  M .....(2)

From equations (1) and (2),

aba–1  M N

 M N is a normal subgroup of M.

Q24. If H and K are normal subgroups of a
group G such that H K = {e}, then
prove that hk = kh for all h  H and
k  k.

Ans :
Given that,

H and K are normal sub groups of a
group G.

H K = e

Let, k  K

 k–1  K

k is normal in G and h G

 hk–1 h–1  K

From closure property,

khK–1 h–1  K [ k K]

.....(1)

H is normal in G

 khK–1  H
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From closure property

khK–1h–1 H [ h–1 H]

.... (2)

From equations (1) and (2)

khK–1 h–1 H   K

 khK–1 h–1 = e [ H K = e]

 khK–1  = eh

 eh = h

 hk = kh

 hk = kh  h H and kK

Q25. Prove that a subgroups H of a group G is
a normal subgroup if and only if every
left coset of H in G is a right coset of H
in G.

Ans :
(i) Let, G be a group and H be the

subgroup of G,

Let, x be an element in G

 x   G

From the property of normal subgroup i.e.,
H is a normal subgroup of G if and only if,

xHx–1 = H for every x   G .... (1)

Multiplying on both sides by x,

(xHx–1) x = (H)x

 xHx–1 x= Hx

 xH(x–1 x)= Hx

 xH(e)= Hx [  x–1 x = e]

 xH = Hx for some x   G

... (2)

Here, xH is the left coset and Hx is the right
coset of H in G.

It can be seen from equation (1) that a left
coset of H in G is equal to right coset of H
in G.

 H is a normal subgroup of G.

(ii) Let, G be a group and H be its subgroup

Let the elements x, y belongs to group G

  x, y   G

Let x H be the left coset and Hy be the right
coset of H in G.

Let us assume that every left coset of H in G
is a right coset of H in G.

 xH = Hy for some x,y G

 x   xH = Hy

 x    Hy

From the property of cosets i.e., aH = bH if
and only if a   bH. Here, a = x, b = y

 Hx = Hy

 xH = Hx for all x  G

Multiplying on both sides by x–1.

 (xH)x–1 = (Hx)x–1.

 xHx–1 = H(xx–1)

 xHx–1 = He

 xHx–1 = H

 H G [  From equation (1)]

i.e., H is a normal subgroup of G when the
left coset of H in G is a right coset of H in G.

Hence, a subgroup of H of a group G is a
normal subgroup if and only if every left coset of H
in G is a right coset of H in G.

4.9  ALGEBRAIC STRUCTURES WITH TWO

BINARY OPERATION, RINGS, INTEGRAL

DOMAIN AND FIELDS

Q26. Define a ring.

Ans :
A ring (R,+ ,.) is a set ‘R’ combined with two

binary operations ‘addition’ and ‘multiplication’
which are defined on R such that it satisfies the
following conditions.

* (R, +) is an abelian group

* (R, .) is semigroup

* It satisfies both left right distributive laws.
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i.e., a.(b + c) = (a.b) + (a.c)

(a + b) .c = (a.c) + (b.c)  a, b, c  R.

Q27. Give any four examples of a ring.

Ans :
(i) The set R = {0} is a ring. It is also called as Zero ring or the null ring.

(ii) The ser of real numbers R is a commutative ring with unity with respect to addition and multiplica-
tion of real numbers.

(iii) The set of intgers Z is a commutative ring with unity with respect to addition and multuplication of
real numbers.

(iv) The set 2Z if even integers is a commutative ring without unity (1 2Z) with respect to addition and
multiplication of real numbers.

Q28. Define units of a ring and find all the units of Z14.

Ans :
Units of a Ring

In a ring R with unity, an element u  R is said to be unit of R if it has multiplicative inverse.

Units of Z14

Z14 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

In Z14, the unity element ‘1’ is also a unit.

Since, 14 is an even, the even number in Z14 cannot be a unit.

3.5 = 5.3 = 15 = 1 mod 14

9.11 = 11.9 = 99 = 1 mod 14

13.13 = 169 = 1 mod 14

 The units of  Z14 are 3, 5, 9, 11, 13.

Q29. In a ring R, the elements a, b, c R then , prove that,

(i) a. 0 =0. a = 0

(ii) a(–b) = –(ab) = (–a)b

(iii) (–a)(–b) = ab

(iv) a(b – c) = ab – ac

(v)  (b – c)a = ba – ca

Ans :
Given,

R is a ring

a, b, c  R

(i) a.0 = 0. a = 0

Consider,

a.0 = a.(0 + 0)

= a.0 + a.0 [  0 + 0 = 0]
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 0 + a.0 = a.0 + a.0 [  From left distributive law]

Applying right cancellation law, [  R is a group]

 0 = a.0 .....(1)

Similarly,

0.a = (0 + 0) .a [  0 + 0 = 0]

= 0.a + 0.a [  From right distributive law]

 0.a + 0 = 0.a + 0.a

Applying left cancellation  law,

 0 = 0.a .....(2)

From equations (1) and (2),

a.0 = 0.a = 0

(ii) a(–b) = –(ab) = (–a)b

Consider,

b + (-b) = 0

Multiplying with ‘a’ on both sides,

 a.(b +(–b)) = a.0 [  a.0 = 0]

 a.b + a(–b) = 0 [  From left distributive law]

 a(–b) = –(ab) [  a + b = 0   a = –b] .....(1)

Consider, (–a) + a = 0

Multiplying with ‘b’ on both sides,

 ((–a)+ a).b = 0.b

 (–a)b + ab = 0 [  From right distributive law]

 (–a)b = –(ab)

From equations (1) and (2),

a(–b) = – (ab) = (–a) b

(iii) (–a)(–b) = ab

(–a)(–b) =–[a(–b)]

= –[–(ab)] = ab

(iv) a(b – c) = ab – ac

a(b – c) = a(b+(–c))

= ab + a(–c) [  From left distributive law]

= ab – ac

 a(b – c) = ab – ac
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(v) (b – c)a = ba – ca

(b – c)a = (b+(–c))a

= ba + (– c)a [From right distributive law]

= ba – ca

 (b – c) a = ba – ca.

Q30.  If a, b are any two elements of a ring R prove that,

(i) –(–a) = a

(ii) –(a + b) = – a – b

(iii) –(a – b) = – a – b.

Ans : (Imp.)

Given,

R is a ring

a,b R

(i) –(–a) = a

[  R is a group with respect to addition]

–(–a) = a

(ii) –(a + b) = – a – b

–(a + b) = (–b) + (–a)

[  R is a group with respect to addition]

But, addition in R is commutative

 (–b) + (–a) = (–a) + (–b)

= – a – b

 – (a + b) = – a – b

(iii) –(a – b) = – a + b

–(a – b) = –[ a + (– b)]

= – a + [–(–b)]

= – a + b

 –(a – b) = – a + b.

Q31. If R is a ring such that a2 = a  a R then prove that,

(i) a + a = 0   a  R

(ii) a  + b = 0   a = b

(iii) R is a commutative ring i.e., ab = ba  a, b R.
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Ans :
Given,

R is a ring

a  R

a2 = a  a R

(i) a + a = 0  a R

aR

 (a + a) R

 (a + a)2 = (a + a) [  a2 = a]

 (a + a)(a + a) = (a + a)

 a(a + a) + a(a + a) = (a + a)

 (a2 + a2)(a2 + a2) = a + a

 [(a) +(a))] + ((a) + (a))] =(a + a) [  a2 = a]

 (a + a)(a + a) = (a + a) + 0

 a + a = 0

 a + a = 0  a R

(ii) a + b = 0   a = b

a + b = 0

 a + b = a  + a [  a + a = 0]

 b = a

 a = b

 a + b = 0    a = b

(iii) R is a commutative ring i.e., ab = ba  a, b  R

a2 = a

a + a = 0

a + b = 0

(a = b)2 = a + b

 (a + b)(a + b) = a + b

 (a + b) a +(a + b) b = a + b

 a2 + ba + ab + b2 = a + b

 (a) + ba + ab + (b) = a + b

 (ba + ab) + (a + b) = (a + b) + 0

 ba + ab = 0 [  a + b = 0  b = 0]

ba + ab

 R is a commutative ring.
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Q32. If R is ring with unity (1), then show that
(–1)a = –a  = a (–1)   a   R and (–1)(–
1) = 1.

Ans :
Given,

R is a ring with unity

Let a be an element of R i.e., a R

Then, a .1 = 1.a = a

Consider,

0.a = 0

 ((–1) + 1). a = 0

 (–1)a + (1)a = 0

 (–1)a + a = 0

 (–1)a= –a

Consider,

a.0 = 0

 a((–1) + (1)) = 0

 a(–1) + a(1) = 0

 a(–1) + a = 0

 a(–1) = – a

 From equations (1) and (2),

 (–1)a = a(–1) = – a

For, a  = –1

 (–1)(–1) = – (–1) = 1

Q33. Define an integral domain. Prove that
every field ia an integral domain.

(OR)

Define integral domain and field. Prove
that every field is an intergral domain.

(OR)

Define an integral domain. Prove that
every field is an integral domain. Give
an example to show that converse need
not be true.

Ans : (Imp.)

Integral Domain

A commutative ring R with unity containing
atleast two elements and having no zero divisors is
called an integral domain.

Field

A field can be defined as a non -  zero
commutative ring that has a multiplicative inverse
for every  non Zero element.

Every Field is an Integral Domain

Let F be a field

 F is a commutative ring with unity

F is an integral domain if it has no zero divisors.

Let, a, b F, where a  0, ab = 0

 a–1 exists [  a  0]

Since, a  F, there exists a–1  F such that,

a–1 (a.b) = a–1 0 = 0

 (a–1. a)b = 0

 1.b = 0

 b = 0

Similarly, if a,b  F, b   0 ,ab = 0

 b–1 exists.

Since,

b  F, there exists b–1  F such that,

(a. b) b–1 =0.b–1 = 0

 a.(b b–1) = 0

 a. 1 = 0

 a = 0

 If a,b   F and a. b = 0, then either a =
0 or b = 0

 F has no zero divisors.

 F is an integral domain.

Every Integral Domain is Not a Field

The ring of integers is an integral domain but
not a filed because only 1 and –1 have inverses.
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Q34. Show that every finite integral domain
is a field.

(OR)

Prove that every finite integral domain
is a field.

(OR)

Prove that every finite integral domain
is a field

(OR)

Show that every finite integral domain
is a field.

Ans :
Every Finite Integral Domain is a Field

Let, R be a finite integral domain,

 R = {a1, a2 , .......an}

Let,

a   0  R

 aR= {a a1, a a2, ....,a an}

The elements of aR are distinct.

Let, aai = aaj for i   j

 a(ai - aj) = 0

Since,

a   0 and R is without divisors

 ai– aj= 0

 ai = aj

This is a contradiction.

 Every element of R must be identical
with exactly one element of aR

i.e., {a a1, a a2, ...., aan}

  a = ak a for some k

If R is commutative, then

a = ak a = a ak

Now,

Let, z  B, then,

z .ak = (aj a) ak

=aj (a.  ak)

   = aj .a

= z
 ak = 1

 R has multiplicative identity.
Now,

For 1  R there exists a1  R such that,

1= a1 a = a a1

 ai = a–1

 Every non-zero element in R has
multiplicative inverse.

 R is a field.
Q35. Show that the characteristic of an

integral domain is zero or a prime.

(OR)

Prove that the characteristic of an
integral domain in either zero or prime.

(OR)

Show that characteristic of an integral
domain is zero (or) prime number.

(OR)
Show that the characteristic of an
integral domain is either zero or a prime.

(OR)

Define characteristic of an integral
domain. Show that characteristic of an
integral domain is either zero or prime.

(OR)

Define characteristic of a ring ; and
prove that “the characteristic of an
integral domain is 0 or prime”.

(OR)

Define characteristics of a ring R with
unity. Show that the characteristics of
an integral domain is either zero or a
prime.

Ans : (Imp.)

Characteristics of a Ring R with Unity

The characteristic of a ring R is defined as the
smallest positive integer ‘n’ such that na = 0 
a  R.
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Characteristics of an Integral Domain

Let (R, +,.) be an integral domain and ‘a’ be an element of ring R. The characteristic of an integral
domain (R, +,.) is defined as the order of element ‘a’.

Characteristic of an Integral Domain is Either Zero or a Prime

The integral domain (R, +,.) with characteristic of R = n where n   0 and also ‘n’’ is a non-prime.

  n = s.t

Where,

l<s, t<n ...(1)

  a   0 in R   a.a = a2   R and a2   0 [   R is an integral domain]

 n . a2 = 0

  n.a2 = 0

 (st).a2 = 0 [  From equation (1)]

 (st). (a.a) = 0

  (sa) (ta) = 0

sa = 0 or ta = 0

If sa = 0 then for any x  R,

(sa)x = 0   (as) x = 0

  (as) x = 0

  a(sx) = 0

 sx = 0 [  a # 0]

 This is a contradition for 1 < s< n.

If the characteristic of R = n,

For an integral domain R then ‘n’ has no factor ‘s’ with 1 < s < n.

Therefore, ‘n’ is a prime.

Q36. If D is an integral domain, then prove that D[x] is an integral domain.

Ans : (Imp.)

Given that,

D is an integral domain.

From definition of integral domain,

It should have a commutative ring with unity and has no zero divisors.

Since D[x] is a ring

If D is commutative

  D[x] is also commutative.
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If D has unit element 1

  f(x) = 1 is the unity element of D[x]

We prove D[x] has no zero divisors.

Let f(x), g(x) be non-zero polynomials in D[x],

Where,

f(x) = an x
n + an_1 x

n-1 + ... + a0, an   0

g(x) = bm x
m + bm–1 x

m-1 +..... +b0, bm  0

Since D is an integral domain,

  an bm   0.

  f(x)  0, g(x)  0

  f(x) g(x)   0.

Thus, D[x] has no zero divisors.

 If D is an integral domain

  D[x] is also an integral domain.

Q37. Let ‘D’ be an integral domain. Then show that there exists a field ‘F’ that contains a
subring 1 isomorphic to D.

Ans :
Given,

D is an integral domain

Let S= {(a, b)\a,b  D,b  d}

Defined by (a, b) = (c, d) if ad = bc

Let F = {(a, b) ~{c,d) \ ad = bc, a, b,c,d S} is a set of equivalence classes of S under the
relation  .

Let (x, y) = x/y define addition of multiplication operation on F

a
b

+
c
d

 = 
(ad bc)

(bd)


 and 
a
b

+
c
d

 = 
(ac)
(bd)

Well Defined

Let 
a
b

 = 
a '
b '

 and 
c
d

 = 
c '
d '

  ab' = a'b and cd' = c'd ...(1)

Consider,

(ad + bc)b'd' = adb'd' + beb'd'

= (ab')dd'+ (cd')bb'

= (a'b)dd' + (c'd)bb' [   From equation (1)]

= (a'd')bd + (c'b')bd

= (a'd'+b'cr)bd

 (ad + bc)b'd' = (a'd' + b'c)bd
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Then from definition,

(ad bc)
(bd)


 = 
(a 'd ' b'c ')

(b 'd)


 Addition is well-defined.

Consider,

acb’d' = (ab')(cd')

= (a'b)(c'd) [From equation (1)]

= (a'c')(bd)

 acb'd' = (a'c)(bd)

Then from definition,

(ac)
(bd)  =

(a 'c ')
(b'd ')

 i.e.,
a
b

 
 
 

c
d

 
 
 

= 
a '
b '

 
 
 

c '
d '

 
 
 

 Multiplication is well-defined.

To Prove F is Field

Let 1 be the unity of D.


0
1

 is additive identity of F

The additive inverse of 
a
b

 = – 
a
b

 and multiplication inverse of 
a
b

 = 
b
a

Addition is Associative

Let a, b, c, d, e,f  F

Consider,

[(a,b)+(c, d)+(e,f)]

= 
a c
b d

  
 

 + 
e
f

 
 
 

 = 
(ad bc)

(bd)


 +
e
f

 
 
 

= 
(ad bc)f (bd)(e)

(bd)f
  

 
 

 = [adf + bcf + bce, bdf]

 [(a, b) + (c, d)] + (e,f) = [adf+ bcf+ bde, bdf]

Consider,

(a, b) + [(c, d) + (e, f)] = 
a
b

 
 
 

 + 
c e
d f

  
 

 = 
a
b

 
 
 

+
(cf ed)

(df)

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      = 
adf b(cf ed)

b(df)
 

      = (adf + bcf + bed, bdf)

 (a, b) + [(c, d) + (e, f)] = (adf + bcf + bed, bdf)

 [(a, b) + (c, d)] + (e, f) = (a, b) + [(c, d) + (e, f)]

 Associativity of addition is satisfied.
Addition is Commutative

Let a,b,c,dF
Consider,

(a, b)+ (c, d) = 
a c
b d

  
 

= 
 ad bc

(bd)



= (ad + be, bd)

= (bc + ad, db)

= 
 ad bc

(bd)


 = 

c
d

 
 
 

+
a
b

 
 
 

 (a, b)+ (c, d)= (c, d) + (a, b)

 Addition under commutative.
Additive Identity

Let (0, 1) be the additive identity.

Consider,

(a, b) + (0,1)= 
a
b

 
 
 

+
0
1

 
 
 

= 
 a.1 b.0

b



= (a + 0, b)
= (a, b)

 (a, b) + (0, 1)= (a, b)

 Additive identity exists.

Inverse

Consider,

[a, b] + [–a, b] = 
a
b

 
 
 

+
a

b
 

 
 

 = 
 

2

ab ad

b



= (0, b2)
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Since 0.1 = b2.0

= 0.1

 [a,b] + [–a, b] = [0, 1]

Inverse exists.

Similarly  multiplication properties can be proved.

To Prove   : D F is Ring Homomorphism

Let x   
x
1

Then for any y  F

 y   
y
1

 
(x y)

1


 = 
x
1

 + 
y
1

Also,

xy
1

 = 
x
1

 
 
 

y
1

 
 
 

     : D  F is a ring homomorphism.

Hence, it is a ring isomorphism from D to (D)

4.10 BOOLEAN ALGEBRA AND BOOLEAN RING

Q38. Define Boolean Algebra. Explain the operations of Boolean Algebra.

Ans : (Imp.)

Introduction

 The binary operations performed by any digital circuit with the set of elements 0 and 1, are  called
logical operations or logic functions. The algebra used to symbolically represent the logic function is
called Boolean algebra. It is a two state algebra invented by George Boole in 1854.

 Thus, a Boolean algebra is a system of mathematics logic for the analysis and designing of digital
systems.

 A variable or function of variables in Boolean algebra can assume only two values, either a ‘O’ o’ a
‘1’. Hence, (unlike another algebra) there are no fractions, no negative numbers, no square roots
cube roots, no logarithms etc.

Logic Operations

 In Boolean algebra, all the algebraic functions performed is logical. These actually repres  logical
operations. The AND, OR and NOT are the basic operations that are performed in Boolean algebra.

 In addition to these operations, there are some derived operation such asNAND. NOR, EX- OR
EX-NOR that are also performed in Boolean algebra.
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4.10.1  Identities of Boolean Algebra

Q39. Explain various Identities of Boolean Algebra.

Ans : (Imp.)

The Boolean algebra is governed by certain well developed rules and laws.

1. Commutative Laws

The commutative law allows change in position of AND or OR variables. There are two commutative
laws.

(i) A + B = B + A

Thus, the order in which the variables are ORed is immaterial.

(ii) A – B = B . A

Thus, the order in which the variables are ANDed is immaterial.

This law can be extended to any number of variables.

2. Associative Laws

The associative law allows grouping of variables. There are two associative laws

(i) (A + B) + C = A + (B + C)

Thus, the way the variables are grouped and ORed is immaterial.

(ii) (A . B) . C = A . (B . C)

Thus, the way the variables are grouped and ANDed is immaterial.

This law can be extended to any number of variables.

3. Distributive Laws

The distributive law allows factoring or multiplying out of expressions. There are two distributive
laws.

(i) A(B + C) = AB + AC

(ii) A + BC = (A + B) (A + C)

This law is applicable for single variable as well as a combination of variables.

4. Idempotence Laws

Idempotence means the same value. There are two Idempotence laws

(i) A . A = A

i.e. ANDing of a variable with itself is equal to that variable only.

(ii) A + A = A

i.e. ORing of a variable with itself is equal to that variable only.

5. Absorption Laws

There are two absorption laws

(i) A + AB = A(1 + B) = A

(ii) A(A + B) = A
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6. Involutionary Law

This law states that, for any variable ‘A’

A  = (A')' = A

4.10.2  Theorems

4.10.2.1  Duality

Q40. Explain Duality Theorem.

Ans :
It is one of the elegant theorems proved in advance mathematics.

“Dual expression” is equivalent to write a negative logic of the given Boolean relation. For this we
have to

(i) Change each OR sign by an AND sign and vice-versa.

(ii) Complement any ‘0’ or ‘1 ’ appearing in expression.

(iii) Keep literals/variables as it is.

4.10.3  Representation of Boolean Function

Q41. Describe the Representation of Boolean Function.

Ans : (Imp.)

A function of 'n' Boolean variables denoted by f(A1, A2, ..., An) is another variable of algebra and
takes one of the two possible values either 0      or 1. The various ways of representing a given function are
discussed below:

The term 'literal' means a binary variable either in complementary or in uncomplimentary for.

1. Minterms and Maxterms

 n-binary variables have 2n possible combinations.

 Minterm is a product term, it contains all the variables either complementary or
uncomplimentary form for that combination the function output must be ‘1 ’.

 Maxterm is a sum term, it contains all the variables either complementary or uncomplimentary
form for that combination the function output must be ‘0’.

2. Sum of Product (SOP) Form

 The SOP expression usually takes the form of two or more variables ANDed together. Each
product term may be minterm or implicant.
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Y = A BC + A B  + AC

Y = A B  + B C

 This form is also called the “disjunctive normal form”.

 The SOP expression is used most often because it tends itself nicely to the development of
truth tables and timing diagrams.

 SOP circuits can also be constructed easily by using a special combinational logic gates called
the “AND-OR-INVERTER” gate.

 SOP forms are used to write logical expression for the output becoming Logic T.

 Notation of SOP expression is,

f(A, B, C) = m(3, 5, 6, 7)

 Y = m3 + m5 + m6 + m7

Also,  Y = A BC + A B C + AB C  + ABC

3. Product of Sum (POS) Form

 The POS expression usually takes the form of two or more order variables within
parentheses, ANDed with two or more such terms.

Y = (A + B  + C) . (B C  + D)

 This form is also called the “Conjunctive normal form”.

 Each individual term in standard POS form is called Maxterm.

 POS forms are used to write logical expression for output be coming Logic ‘O’.

From the above truth table, we get

F(A, B, C) = W(0, 1, 2, 4)

      Y = M0 × M1 × M2 × M4

Also,             Y = (A + B + C) (A + B + C ) (A + B  + C) ( A  + B + C)

 We also conclude that From the above truth table, and from above equations
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If,    Y = m(3, 5, 6, 7)

Then,    Y = m (0, 1, 2, 4)

4. Standard Sum of Product Form

 In this form the function is the sum of number of product terms where each product term
contains all the variables of the function, either in complemented or uncomplemented form.

 It is also called canonical SOP form or expanded SOP form.

 The function [Y = A + B C ] can be represented in canonical form as:

Y = A + B C  = A(B + B ) (C + C ) + B C  (A + A )

            = ABC + AB C  + A B C + A B C  + AB C  + A B C

Y  = ABC + A B C + A B C  + AB C  + A B C

5. Standard Product of Sum Form

 This form is also called canonical POS form or expanded POS form.

Y = (B + C ) . (A + B )

 Then, the canonical form of the given function

Y = (B + C+ A A ) (A + B  + C C ) = (B + C  + A) (B + C  + A )

(A + B  + C) (A + B  + C )

6. Truth Table Form

A truth table is a tabular form representation of all possible combinations of given function.

Y = A B + B C

Then
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7. Dual Form

 Dual form is used to convert positive logic to the negative logic and vice-versa.

 In positive logic system, higher voltage is taken as logic T and in negative logic system, higher
voltage is taken as logic ‘0’. For example.

(i) For (positive) logic

Logic ‘1’ = 0 V; Logic ‘0’ = –5 V

(ii) For (negative) logic

Logic ‘1’ = –0.8 V; Logic ‘0’ = –1.7 V

8. Venn Diagram Form

 A Boolean algebra can be represented by a Venn diagram in which each variable is considered
as a set.

 The AND operation is considered as an intersection and the OR operation is considered as a
union.

4.10.4  Conjunctive Normal Form

Q42. What is conjunctive normal form? Explain its construction.

Ans : (Imp.)

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is
a conjunction of clauses, where a clause is a disjunction of literals; otherwise put, it is an AND of ORs.
As a normal form, it is useful in automated theorem proving. It is similar to the product of sums form used
in circuit theory.

All conjunctions of literals and all disjunctions of literals are in CNF, as they can be seen as conjunctions
of one-literal clauses and conjunctions of a single clause, respectively. As in the disjunctive normal
form (DNF), the only propositional connectives a formula in CNF can contain are and, or, and not.
The not operator can only be used as part of a literal, which means that it can only precede a propositional
variable or a predicate symbol.

Example 1:

The conjunctive normal form of 

Examples

(A B)  (A C)  (B C D)(A B)  (A C) (B C D)

(PQ)) (Q R)(P Q)) (Q R)
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Q43. Explain the process of conversion into CNF.

Ans :
Conversion into CNF

Every propositional formula can be converted into an equivalent formula that is in CNF. This
transformation is based on rules about logical equivalences: the double negative law, De Morgan’s laws,
and the distributive law.

Since all logical formulae can be converted into an equivalent formula in conjunctive normal form,
proofs are often based on the assumption that all formulae are CNF. However, in some cases this conversion
to CNF can lead to an exponential explosion of the formula. For example, translating the following non-
CNF formula into CNF produces a formula with 2n clauses.

(X1   Y1)  (X2   Y2)   ...   (Xn
 Yn).

In particular, the generated formula is:

(X1
 X2

 ... Xn) + (Y1 X2
 ...  Xn) (X1 Y2

 ... Xn)  (Y1 Y2
 ... Xn)

Step 1 : Eliminate

Using the rule

A    B =  A   B

We may eliminate all  occurrences of 

Example :

p   ((q   r)    s)   p    (( q   r)    s)

       p  (( q   r)    s)

Step 2 : Puch Negations Down

Using DeMorgan’s Laws and the double negation rule

 (A   B)    A    B

 (A   B)    A    B

  A   A

We puch negations down towards the atoms until we obtain a formula.

That is formed from literals using only   and  .

 (  p   (q    (r   s)))

    p    (q    (r   s)))

  p   ( q     (r   s))

  p   ( q   (r   s))

Step 3:  Use distribution to convert to CNF

Using the distribution rules

A   (B1   ...   Bn)   (A   B1)   ...   (A   Bn)

(B1   ...   Bn)   A   (B1   A)   ...   (Bn   A)

We obtain a CNF formula,
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Example :

(p   q)   (p    q)

  ((p   q)   p)   ((p   q)    q)

  ((p   q)   (q   p))   ((p    q)   (q    q))

Example

((p  q) (r  s)) ( q  (p t))

  ((p  q) r)  ((p  q) s)) ( q (p t))

  ((p r)  (q r)  (p s)  (q s)) ( q  (p t))

  ((p r) ( q  (p t)) 

    ((q r) ( q (p t))

    ((p s) ( q (p t))

    ((q s) ( q (p t))

  (p r  q)   (p rp t) 

    (q r  q)   (q rp t) 

    (p s)  q)   (p sp t) 

    (q s  q)   (q sp t)

Q44. Convert the following normal form into CNF

¬((¬p¬q)’”¬r

Ans :
For example, converting to conjunctive normal form:

¬((¬p¬q)  ¬r ¬((¬¬p( ¬q)  ¬r)

¬((p( ¬q)  ¬r)

¬(p ¬q) ¬¬r

¬(p ¬q) r

 (¬p  ¬¬q) r

 (¬p  q) r

 (¬p r)  (q r)

Q45. Convert the following formulas into CNF using truth tables.

(a) (p q) ( p r)   

(b) (p q) r 

(c) p q

Ans :

Formula : (p q) r( p r)   
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Truth Table

Convert the following formulas into CNF using equivalent transformations method

(a) (p q) (p r)  

(b) (p q) (p r)  

(c) (p q) r 

(d) p   q

Sol :

Formula : (p q) (p r)  

Transformations

((p q) (p r)) ((p r) (p q))      

( (p q) (p r)) ( (p r) (p q))        

((p q) ( p r)) ((p r) ( p q))        

((p q) ( q p)) r) ((p p) ( r p)) q)          

(( q p r) ( r p q)      

4.10.5  Disjunctive Normal Form

Q46. What is Disjunctive normal form. Explain with an example.

Ans : (Imp.)

Disjunctive Normal Forms

A logical formula is considered to be in DNF if and only if it is a disjunction of one or
more conjunctions of one or more literals. A DNF formula is in full disjunctive normal form if each of
its variables appears exactly once in every clause. As in conjunctive normal form (CNF), the only
propositional operators in DNF are and, or, and not. The not operator can only be used as part of a
literal, which means that it can only precede a propositional variable.
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The following is a formal grammar for DNF:

1. disjunction   (conjunction disjunction)

2. disjunction  conjunction

3. conjunction   (literal  conjunction)

4. conjunction  literal

5. literal   ¬variable

6. literal  variable

Where variable is any variable.

Example:

The disjunctive normal form of 

(A   B)   (A   C)   (B   C   D) (A   B)   (A   C)   (B   C   D)

(P   Q)   (Q   R) (P   Q)   (Q   R)

Method to construct DNF

 Construct a truth table for the proposition.

 Use the rows of the truth table where the proposition is True to construct minterms

 If the variable is true, use the propositional variable in the minterm

 If a variable is false, use the negation of the  variable in the minterm

 Connect the mintermswith 's.

Conversion to DNF

Converting a formula to DNF involves using logical equivalences, such as the double negative
elimination, De Morgan’s laws, and the distributive law.

All logical formulas can be converted into an equivalent disjunctive normal form. However, in some
cases conversion to DNF can lead to an exponential explosion of the formula. For example, the DNF of a
logical formula of the following form has 2n terms

1 1 2 2 n n(X Y ) (X Y ) ... (X Y )     

Q47. Show DNF of pq is (pq)(pq)

Ans :
Truth table

FFFF

TTTF

TTFT

FFTT

(pq)  (pq)pqQP

FFFF

TTTF

TTFT

FFTT

(pq)  (pq)pqQP
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48. Construct the DNF of (p q)r

Ans :

TTFFFF

TFFTFF 

TTTFTF

FFTTTF

TTTFFT

FFTTFT

TTTFTT

FFTTTT

(p V q)~ r~r(Pv q)r       QP

TTFFFF

TFFTFF 

TTTFTF

FFTTTF

TTTFFT

FFTTFT

TTTFTT

FFTTTT

(p V q)~ r~r(Pv q)r       QP

There are fives sets of inptu that make the statement true. Therefor there are five mintersm.

TTFFFF

TFFTFF

TTTFTF

FFTTTF

TTTFFT

FFTTFT

TTTFTT

FFTTTT

(P v q) ~ r~ r(p V q)r Qp

TTFFFF

TFFTFF

TTTFTF

FFTTTF

TTTFFT

FFTTFT

TTTFTT

FFTTTT

(P v q) ~ r~ r(p V q)r Qp

From the truth table we can set up the DNF

(p q)~r  (p q  r)   (pqr)  (pqr)  (pqr)  (pqr)
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Q49. Convert   ((p  q) r) (¬(p q) r)((p q) r) (¬(p q) r) to DNF..

Ans :

((p  q) r)  (¬(p  q) r)((p  q) r)  (¬(p  q) r)

(¬(p  q)( r)  ((p  q)( r)(¬(p  q)( r)  ((p  q)( r)

((¬p( ¬q)( r)  ((p  q)( r)((¬p( ¬q)( r)  ((p  q)( r)

Q50. Construct DNF p  q is  (pq)  (p q)  (pq)

Ans :
The DNF of  p  q is  (pq)  (p  q)  (pq).

Then, applying DeMorgan’s Law, we get that this is equivalent to

[(pq) (pq) (pq)].

Now can we write an equivalent statement to p  q that uses only disjunctions and negations?

p  q

 [(pq) (pq) (pq)] From Before

 [(pq)  (pq)  (p q)] DeMorgan

 [(pq)  (pq)  (pq)] Doub. Neg.

[(pq) (pq) (pq)] DeMorgan
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UNIT
V

Graphs and Trees: Graphs and their properties, Degree, Connectivity, Path,
Cycle, Sub Graph, Isomorphism, Eulerian and Hamiltonian Walks, Graph
Colouring, Colouring maps and Planar Graphs, Colouring Vertices, Colouring
Edges, List Colouring, Perfect Graph, definition properties and Example,
rooted trees, trees and soring, weighted trees and prefix codes, Bi-connected
component and Articulation Points, Shortest distances.

5.1 GRAPHS

Q1. What is a Graph ?

Ans :

A graph is a pictorial representation of a set of

objects where some pairs of objects are connected
by links. The interconnected objects are represented

by points termed as vertices, and the links that

connect the vertices are called edges.

Formally, a graph is a pair of sets (V,
E), where V is the set of vertices and E is the
set of edges, connecting the pairs of vertices. Take

a look at the following graph –

•

•

•

•

•

a b

c
d e

In the above graph,

V = {a, b, c, d, e}

E = {ab, ac, bd, cd, de}

Q2. Define the following terms

a) Even and Odd Vertex

b) Degree of Vertex

c) degree of graph

d) undirected graph

Ans :
Graph Terminology

(a) Even and Odd Vertex ” If the degree of a
vertex is even, the vertex is called an even
vertex and if the degree of a vertex is odd,
the vertex is called an odd vertex.

(b) Degree of a Vertex ” The degree of a vertex
V of a graph G (denoted by deg (V)) is the
number of edges incident with the vertex V.

Vertex Degree Even / Odd

A 2 Even

B 2 Even

C 3 Odd

D 1 Odd

(c) Degree of a Graph ”The degree of a graph
is the largest vertex degree of that graph. For
the above graph the degree of the graph is
3.

(d) Undirected Graphs -  Two vertices u, v in
V are adjacent or neighbours if there is an
edge e between u and v. The edge e connects
u and v. The vertices u and v are endpoints
of e.

Q3. Prove that a graph has an even number
of vertices of odd degree.

Ans :
Theorem: A graph has an even number of

vertices of odd degree.
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Proof :

Let V1 = vertices of odd degree

V2= vertices of even degree

The sum must be even. But

 odd times odd = odd

 odd times even = even

 even times even = even

 even plus odd = odd

It doesn’t matter whether V2 has odd or even
cardinality.

V1 cannot have odd cardinality.

Q4. What is directed graph ?

Ans :
Directed Graphs

Let <u, v>be an edge in G. Then u is an
initial vertex and is adjacent to v and v is a terminal
vertex and is adjacent from u.

Definition

The in degree of a vertex v, denoted deg-(v)
is the number of edges which terminate at v.
Similarly, the out degree of v, denoted deg+(v), is
the number of edges which initiate at v.

Theorem

v V v V
E deg (v) deg (v) 

 
  

Q5. Define the following terms

(a) complete graphs

(b) cycle

(c) wheel

Ans :
 Complete graphs - Kn: the simple graph

with - n vertices exactly one edge between
every pair of distinct vertices.

Maximum redundancy in local area networks
and processor connection in parallel
machines.

Examples :

  

 Cycles - Cn is an n vertex graph which is a
cycle. Local area networks are sometimes
configured this way called Ring networks.

 Wheels: Add one additional vertex to the
cycle Cn and add an edge from each vertex
to the new vertex to produce Wn. Provides
redundancy in local area networks.

Q6. Discuss about various types of graphs.

Ans :
Types of Graphs

There are different types of graphs, which we
will learn in the following section

1. Null Graph

A null graph has no edges. The null graph of
n vertices is denoted by Nn

a c

b
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2. Simple Graph

A graph is called simple graph/strict graph if the graph is undirected and does not contain any loops
or multiple edges.

a c

b

3. Multi-Graph
If in a graph multiple edges between the same set of vertices are allowed, it is called Multigraph.

a c

b

4. Directed and Undirected Graph
A graph G = (V, E) is called a directed graph if the edge set is made of ordered vertex pair and a

graph is called undirected if the edge set is made of unordered vertex pair.

a c

b

    

a c

b

5. Connected and Disconnected Graph

A graph is connected if any two vertices of the graph are connected by a path and a graph is
disconnected if at least two vertices of the graph are not connected by a path. If a graph G is unconnected,
then every maximal connected subgraph of G is called a connected component of the graph G.

a c

b d

  

a c

b d
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6. Regular Graph

A graph is regular if all the vertices of the graph
have the same degree. In a regular graph G of
degree r, the degree of each vertex of G is r.

a
c

b

d

7. Complete Graph

A graph is called complete graph if every two
vertices pair are joined by exactly one edge. The
complete graph with n vertices is denoted by Kn

a c

b

8. Cycle Graph

If a graph consists of a single cycle, it is called
cycle graph. The cycle graph with n vertices is
denoted by Cn

a c

b

9. Bipartite Graph

If the vertex-set of a graph G can be split into
two sets in such a way that each edge of the graph
joins a vertex in first set to a vertex in second set,

then the graph G is called a bipartite graph. A
graph G is bipartite if and only if all closed walks in
G are of even length or all cycles in G are of even
length.

••

• •
a

b d

c

10. Complete Bipartite Graph

A complete bipartite graph is a bipartite graph
in which each vertex in the first set is joined to every
single vertex in the second set. The complete
bipartite graph is denoted by Kr, s where the graph
G contains x vertices in the first set and y vertices in
the second set.

••

• •
a

b d

c

5.1.1 Properties

Q7. Explain the basic properties of graph
theory.

Ans :

1. Distance between Two Vertices

Distance is basically the number of edges in a
shortest path between vertex X and vertex Y.
If there are many paths connecting two
vertices, then the shortest path is considered
as the distance between the two vertices.
Distance between two vertices is denoted by
d(X, Y).
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2. Eccentricity of a Vertex

Eccentricity of a vertex is the maximum distance between a vertex to all other vertices. It is denoted
by e(V). To count the eccentricity of vertex, we have to find the distance from a vertex to all other
vertices and the highest distance is the eccentricity of that particular vertex.

3. Radius of connected Graph

The radius of a connected graph is the minimum eccentricity from all the vertices. In other words,
the minimum among all the distances between a vertex to all other vertices is called as the radius of
the graph. It is denoted by r(G).

4. Diameter of a Graph

Diameter of a graph is the maximum eccentricity from all the vertices. In other words, the maximum
among all the distances between a vertex to all other vertices is considered as the diameter of the
graph G. It is denoted by d(G).

5. Central Point

If the eccentricity of the graph is equal to its radius, then it is known as central point of the graph.

Or

If r(V) = e(V), then V is the central point of the graph G.

6. Centre

The set of all the central point of the graph is known as centre of the graph.

7. Circumference

The total number of edges in the longest cycle of graph G is known as the circumference of G.

8. Girth

The total number of edges in the shortest cycle of graph G is known as girth. It is denoted by g(G).

5.1.2 Degree, Connectivity, Path, Cycle, Sub Graph

Q8. Explain briefly about degrees and connectivity.

Ans :
When a vertex vi is an end vertex of some edge ej, vi and ej are said to be incident with each other.

Two non parallel edges are said to be adjacent if they are incident on a common vertex. The number of
edges incident on a vertex vi, with self-loops counted twice, is called the degree (also called valency), d(vi),
of the vertex vi. A graph in which all vertices are of equal degree is called regular graph.

•
•

••
• e1

v3 v4 v5

v1 v2

e6

e5

e3

e4
e2

e7

The edges e2, e6 and e7 are incident with vertex v4.

The edges e2 and e7 are adjacent.

The edges e2 and e4 are not adjacent.



MCA I YEAR  I SEMESTER

128
Rahul Publications

Rahul Publications

The vertices v4 and v5 are adjacent.

The vertices v1 and v5 are not adjacent.

d(v1) = d(v3) = d(v4) = 3. d(v2) = 4. d(v5) = 1.

Total degree = d(v1) + d(v2) + d(v3) + d(v4) + d(v5)

   = 3 + 4 + 3 + 3 + 1 = 14 = Twice the number of edges.

Connectivity is a basic concept of graph theory. It defines whether a graph is connected or
disconnected. Without connectivity, it is not possible to traverse a graph from one vertex to another
vertex. A graph is said to be connected graph if there is a path between every pair of vertex. From every
vertex to any other vertex there must be some path to traverse. This is called the connectivity of a graph.
A graph is said to be disconnected, if there exists multiple disconnected vertices and edges. Graph connectivity
theories are essential in network applications, routing transportation networks, network tolerance etc.

Q9. State and prove “the number of vertices of odd degree in a graph is always even.

Ans :
Theorem

The number of vertices of odd degree in a graph is always even.

Proof:

Let us now consider a graph G with e edges and n vertices v1, v2, ..., vn. Since each edge contributes
two degrees, the sum of the degrees of all vertices in G is twice the number of edges in G. That is,

n

i 1
  d(vi) = 2e

If we consider the vertices with odd and even degrees separately, the quantity in the left side of the
above equation can be expressed as the sum of two sums, each taken over vertices of even and odd
degrees, respectively, as follows:

n

i 1
  d(vi) 

even
  d(vj) + 

odd
  + d(vk)

Since the left-hand side in the above equation is even, and the first expression on the right-hand
side is even (being a sum of even numbers), the second expression must also be even:

odd
  + d(vk) = an even number

Because in the above equation each d(vk) is odd, the total number of terms in the sum must be
even to make the sum an even number. Hence the theorem.

Q10. Discuss about path and cycle in graph theory.

Ans : (Imp.)

A trail in which no vertex appears more than once is called a path.

A circuit in which the terminal vertex does not appear as an internal vertex (also) and no internal
vertex is repeated is called a cycle.
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(a) : path (b) : Not a path

(c) : cycle    (d) : Not a cycle

For example, in Figure., the trail v1e1v2e3v5e5v3e7v4 (shown separately in Figure (a) is a path whereas
the trail v1e4v5e3 v2e2v3e5v5e6v4 (shown separately in Figure(b)) not a path (because in this trail, v5 appears
twice). Also, in the same Figure, the circuit v2e2v3e5v5e3v2 (shown separately in Figure(c) is a cycle whereas
the circuit v2e1v1e4v5e5v3e7v4e6v5e3v2 (shown separately in Figure(d) is not a cycle (because, in this circuit, v5

appears twice).

The following facts are to be emphasized.

1. A walk can be open or closed. In a walk (closed or open), a vertex and/or an edge can appear more
than once.

2. A trail is an open walk in which a vertex can appear more than once but an edge cannot appear
more than once.

3. A circuit is a closed walk in which a vertex can appear more than once but an edge cannot appear
more than once.

4. A path is an open walk in which neither a vertex nor an edge can appear more than once. Every
path is a trail; but a trail need not be a path.

5. A cycle is a closed walk in which neither a vertex nor an edge can appear more than once. Every
cycle is a circuit; but, a circuit need not be a cycle.

6. If a cycle contains only one edge, it has to be a loop.

7. Two parallel edges (when they occur) form a cycle.

8. In a simple graph, a cycle must have at least three edges. (A cycle formed by three edges is called a
triangle.

Q11. Explain about sub group.

Ans :
A graph G' is said to be a subgraph of a graph G, if all the vertices and all the edges of G' are in G,

and each edge of G' has the same end vertices in G' as in G.
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Graph G:

Subgraph G' of G:

A subgraph can be thought of as being contained in (or a part of) another graph. The symbol from
set theory, g   G, is used in stating “g is a subgraph of G”.

The following observations can be made immediately:

1. Every graph is its own subgraph.

2. A subgraph of a subgraph of G is a subgraph of G.

3. A single vertex in a graph C is a subgraph of G.

4. A single edge in G, together with its end vertices, is also a subgraph of G.

Edge-Disjoint Subgraphs

Two (or more) subgraphs g1, and g2 of a graph G are said to be edge disjoint if g1, and g2 do not
have any edges in common.

For example, the following two graphs are edge-disjoint sub-graphs of the graph G.

B BR R

W WG G

14

2

3
• •

• •

•

• •

•
• •

• •

4

3

1 2

3

2

22

W G
4

3 11

4

3

1

RB

4

Note that although edge-disjoint graphs do not have any edge in common, they may have vertices
in common. Sub-graphs that do not even have vertices in common are said to be vertex disjoint. (Obviously,
graphs that have no vertices in common cannot possibly have edges in common.)

PROBLEMS

12. If G is a simple graph in which  every vertex has degree at least k, prove that G contains
a path of length at least k.

Sol :
Consider a path p in G which has a maximum number of vertices. Let u be an end vertex of P. Then
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every neighbor of u belongs to p. Since u has at least k neighbors (because its degree is at least k by what
is given) and since G is simple, p must therefore have at least k vertices other than u. Thus, p is a path of
length at least k.

13. Find all the cycles in the graph shown belows:

Sol :

There are no cycles beginning and ending with the vertices A, C and R. The cycles beginning and
ending with the vertices B, P, Q are

Be3Pe6Qe4B,     Pe6Qe4Be3P,      Qe4Be3Pe6Q.

But all of these represent one and the same cycle. Thus, there is only one cycle in the grap.

14. Prove the following:

(1)  A path with n vertices is of length n – 1.

(2)  If a cycle has n vertices, it has n edges.

(3)  The degree of every vertex in a cycle is two.

Sol :

(1) In a path, every vertex except the last vertex is followed by precisely one edge. Therefore, if a path
has n vertices, it must have n – 1 edges. Its length is therefore n – 1.

(2) In a cycle, every vertex is followed by precisely one edge. Therefore, if a cycle has n vertices, it must
have n edges.

(3) In a cycle, exactly two edges are incident on every vertex (– one edge through which we enter the
vertex and one edge through which we leave the vertex). Therefore, the degree of every vertex in
a cycle is two.

15. Show that, for all positive integers k  2, there exists a simple cubic graph of order 2k.

Sol :

Consider the cycle v1, v2,..., v2k,v1. To this cycle let us add the edges

{v1 , vk+1}, {v2,vk+2}, {v2, vk+2}, ......., {vk, v2k}.

Then the resulting graph is of order 2k and the degree of each vertex in this graph is 3. This proves
the existence of a graph of the desired type.
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16. Let G be a cycle on n vertices. Prove that G is self-complementary if and only if n = 5.

Sol :

Let G be a cycle of order n = 5 with edges {a,b}, {b, c}, {c, d}, {d,e}, {e,a}. Then G  is  the  cycle

with edges {a, c}, {c,e}, {e,b}, {b,d}, {d, a}. It is easy to check that G and G  are isomorphic.
Therefore, G is self-complementary.

Conversely, suppose G is a cycle on n vertices and G is self-complementary. Then n(n–1) =4. This
yields n = 5.

5.2 ISOMORPHISM

Q17. Explain about Isomorphism.

Ans :  (Imp.)

Consider two graphs G = (V, E) and G’ = (V', E'). Suppose there exists a function f : VV' such
that

(i) f is one-to-one and onto, and

(ii) for all vertices A, B of G, the edge {A, B}  E if and only if the edge {f(A), f(B)}E'. Then f is
called an isomorphism between G and G'. and we say that G and G' are isomorphic graphs.

In other words, two graphs G and G' are said to be isomorphic (to each other) it their is a one-to-
one correspondence between their vertices and between their edges such that the f adjacency of vertices
is preserved. Such graphs will have the same structure, differing only in the way their vertices and edges
are labeled or only in the way they ate represented geometrically. For many purposes, we regard them as
essentially the same.

When G and G’ are isomorphic, we write G  G'.

When a vertex A of G corresponds to the vertex A' = f(A) of G' under an one-to-one correspondence
f : GG', we write AA'. Similarly, we write {A, B} {A'. B’} to mean that the edge AB of G and the
edge A'B' of G' correspond to each other.

For example, look at the graphs shown below:

   

•

••

•A B

D C

•

••

•P Q

S R

(a)  (b)

Fig.:

Consider the following one-to-one correspondence between the vertices of these two graphs

A P,   BQ,   CR,   D S.

Under this correspondence, the edges in the two graphs correspond with each other: as indicated
below:
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{A,B) {P, Q}, {A, C}  {P, R}, {A, D} {P, S},

{B, C} {Q, R}, {B, D} {Q, S}, {C, D} {R, S}

We check that the above-indicated one-to-one correspondence between the vertices/edges of the
two graphs preserves the adjacency of the vertices. The existence of this correspondence proves that the
two graphs are isomorphic. (Note that both the graphs represent the complete graph K4.)

Next, consider the graphs shown in Figures.

•

• •
     

• •

•

     (a) (b)

Fig.:

We observe that the two graphs have the same number of vertices but different number of edges.
Therefore, although there can exist one-to-one correspondence between the vertices, there cannot be a
one-to-one correspondence between the edges. The two graphs are therefore not isomorphic.

From the definition of isomorphism of graphs, it follows that if two graphs are isomorphic, then they
must have:

1. The same number of vertices.

2. The same number of edges.

3. An equal number of vertices with a given degree.

These conditions are necessary but not sufficient. This means that two graphs for which these
conditions hold need not be isomorphic.

In particular, two graphs of the same order and the same size need not be isomorphic. To see this,
consider the graphs shown in Figures.

   
••

• •

•

•

•

•

           (a)      (b)

Fig.:

We note that both graphs are of order 4 and size 3. But the two graphs are not isomorphic. Observe
that there are two pendant vertices in the first graph whereas there are three pendant vertices in the
second graph. As such, under any one-to-one correspondence between the vertices and the edges of the
two graphs, the adjacency of vertices is not preserved.

It is not hard to realize that every two complete graphs with the same number of vertices, n, are
isomorphic. For this reason, we speak of the complete graph of n vertices, and all complete graphs with n
vertices are denoted by Kn.

Similarly, any two complete bipartite graphs with bipartites containing r and .v vertices are isomorphic.
For this reason, all complete bipartite graphs with bipartites containing r and s vertices are denoted by Kr,s.
Given two graphs G and G', there is no set procedure for proving or disproving that they are isomorphic.
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It is only by carefully examining the nature of vertices and edges of both G and G' that one can find
whether or not they are isomorphic. If G and G' are not isomorphic, it is relatively easy to find it out. If G
and G’ are isomorphic, the work involved in proving it is quite hard — it gets harder as the orders and
sizes of G and G’ get larger.

PROBLEMS

18. Prove that the two graphs shown below are isomorphic.

 

•

••

•u1 u2

u3 u4

1

3 4

2•

•

•

•

(a)         (b)

Fig.:

Sol :
We first observe that both graphs have four vertices and four edges. Consider the following one-to-

one correspondence between the vertices of the graphs:

u1  v1, u2  v4, u3  v3, u4  v2,

This correspondence gives the following correspondence between the edges:

{u1  u2} {v1, v4}, {u1  u3} {v1, v3}, {u2  u4} {v4, v2}, {u3  u4} {v3, v2}

These represent one-to-one correspondence between the edges of the two graphs under which the
adjacent vertices in the first graph correspond to adjacent vertices in the second graph and vice-versa.

Accordingly, the two graphs are isomorphic.

19. Verify that the two graphs shown in figure are isomorphic.

•
•

•

•

•

•

• •

A B

D C

P Q

RS

•

• ••

•

•

••

A'

B'D'

S' C'

R'

Q'

P'

(a) (b)

Sol :
Let us consider the one-to-one correspondence between the vertices of the two graphs under

which the vertices A, B, C, D, P, Q, R, S of the first graph correspond to the vertices A', B', C', D', P', Q', R',
S' respectively, and vice-versa. In this correspondence, the edges determined by the corresponding vertices
correspond so that the adjacency of vertices is retained. As such, the two graphs are isomorphic.

We note that the first graph is the graph Q3 . The second graph is just another drawing of Q3.
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20. Show that the following two graphs are isomorphic:

        

• ••

• ••
u1 u2 u3

u6u5u4

      

•
••

•
•

•
•

4

2

1

3

5

6

    (a)                  (b)

Sol :
We first note that both the graphs have six vertices each of degree three, and nine edges.

Bearing the edges in the two graphs in mind, consider the correspondence between the edges as
shown below:

{u1, u4}  {v1, v2), {u1, u5}  {v1, v3}, {u1, u6}  {v1, v6}

{u2, u5}  {v4, v3), {u2, u4}  {v4, v2}, {u2, u6}  {v4, v6}

{u3, u6}  {v5, v6), {u3, u4}  {v5, v2}, {u3, u5}  {v5, v3}

These yield the following correspondence between the vertices:

u1  v1 , u2  v4 , u3 v5

u4  v2 , u5  v3 , u6 v6

We observe that the above correspondences between the edges and the vertices are one-to-one
correspondences and that these preserve the adjacency of vertices. In view of the existence of these
correspondences, we infer that the two graphs are isomorphic.

We note that the first graph is the complete bipartite graph K3.3 . The second graph is just another
drawing of K3.3 .

21. Show that the following two graphs are isomorphic.

2

8

6

7105

4
3

9

1

•

•
•

•

•

•

•

••

•

        

6

7

9

10

4

3

2

1

5

8
••

•

••
•

•

• •

•

(a) (b)
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Sol :

We first note that each of the two graphs is 3-regular (cubic) and has 10 vertices. Consider the
correspondence between the vertices as shown below:

vi  ui , for i = 1, 2, 3,....,10

This correspondence has been arrived at after closely examining the structures of the two graphs.

We check that the above mentioned correspondence yields one-to-one correspondence between
die edges in the two graphs with the property that adjacent vertices in the first graph correspond to the
adjacent vertices in the second graph and vice-versa. The two graphs are therefore isomorphic.

We note that the first graph is the Petersen graph: see Figure. The second graph is just another
drawing of the Petersen graph.

22. Show that the following graphs are not isomorphic.

•

••

•

A B

CD

 

•

••

•

P Q

RS

(a)   (b)

Sol :

We observe that the first graph has 4 vertices and 6 edges and the second graph has 4 vertices and
7 edges. As such, one-to-one correspondence between the edges is not possible. Hence the two graphs
are not isomorphic.

23. Show that the following graphs are not isomorphic.

•

••

•

••

 

•

• •

•

•

(a) (b)

Sol :

We note that each of the two graphs has 6 vertices and 9 edges. But, the first graph has 2 vertices
of degree 4 whereas the second graph has 3 vertices of degree 4. Therefore, there can­not be any one-
to-one correspondence between the vertices and between the edges of the two graphs which preserves
the adjacency of vertices. As such, the two graphs are not isomorphic.
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5.3 EULERIAN CIRCUIT

Q24. Discuss about Eulerian Circuit.

Ans : (Imp.)

Consider a connected graph G. If there is a circuit in G that contains all the edges of G, then that
circuit is called an Euler circuit (or Eulerian line, or Euler tour) in G. If there is a trail in G that contains all
the edges of G, then that trail is called an Euler trail (or unicursal line) in G.

In a trail and a circuit no edge can appear more than once but a vertex can appear more than once.
This property is carried to Euler trails and Euler circuits also.

Since Euler circuits and Euler trails include all the edges, they automatically should include all
vertices as well.

A connected graph that contains an Euler circuit is called an Euler graph or Eulerian graph. A
connected graph that contains an Euler trail is called a semi-Euler graph (or a semi- Eulerian graph or
unicursal graph).

For example, in the graph shown in Figure., the closed walk

Pe1 Qe2 Re3 Pe4 Se5 Re6 Te7P

is an Euler circuit. Therefore, this graph is an Euler graph.

SP

Q
R

T

e4

e4
e3

e2 e6

e7

e5

•

•• •

•

Fig.:

Consider the graph shown in Figure 9.113. We observe that, in this graph, every sequence of edges
which starts and ends with the same vertex and which includes all edges will contain at least one repeated
edge. Thus, the graph has no Euler circuits. Hence this graph is not an Euler graph.

•

• • •

A

B
D

C

e1

e3

e4

e5

e2

Fig.:

It may be seen that the trail Ae1Be2De3Ce4Ae5D in the graph in Figure. is an Euler trail. This graph is
therefore a semi-Euler graph.
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25. A connected graph G has an Euler circuit (that is, G is an Euler graph) if and only if all
vertices of G are of even degree.

Proof :

First, suppose that G has an Euler circuit. While tracing this circuit we observe that every time the
circuit meets a vertex v it goes through two edges incident on v (— with the one through which we enter
v and the other through which we depart from v). This is true for all vertices that belong to the circuit.
Since the circuit contains all edges, it meets all the vertices at least once. Therefore, the degree of every
vertex is a multiple, of two (i.e., every vertex is of even degree).

Conversely, suppose that all the vertices of G are of even degree. Now, we construct a circuit
starting at an arbitrary vertex v and going through the edges of G such that no-edge is traced more than
once. Since every vertex is of even degree, we can depart from every vertex we enter, and the tracing
cannot stop at any vertex other than v. In this way, we obtain a circuit q having v as the initial and final
vertex. If this circuit contains all the edges in G, then the circuit is an Euler circuit. If not, let us consider the
subgraph H obtained by removing from G all edges that belong to q. The degrees of vertices in this
subgraph are also even. Since G is connected, the circuit q and the subgraph H must have at least one
vertex, say v', in common. Starting from v', we can construct a circuit q' in H as was done in G. The two
circuits q and q' together constitute a circuit which starts and ends at the vertex v and has more edges than
q. If this circuit contains all the edges in G, then the circuit is an Euler circuit. Otherwise, we repeat the
process until we get a circuit that starts from v and ends at v and which contains all edges in G. In this way,
we obtain an Euler circuit in G.

This completes the proof of the theorem.

26. A connected graph G has an Euler circuit (that is, G is an Euler graph) if and only if G
can be decomposed into edge-disjoint cycles.

Proof :

First, suppose that G can be decomposed (partitioned) into edge-disjoint cycles. Since the degree
of every vertex in a cycle is two, it follows that every vertex in G is of even degree. Therefore, by Theorem
1, G has an Euler circuit.

Conversely, suppose G has an Euler circuit Then, by Theorem 1, every vertex in G is of even
degree. Now, consider a vertex v1 in G. Since v1 is of even degree, there are at least two edges incident on
v1. Choose one of these edges, and let v2 be the other end vertex of this (chosen) edge.

Then is also of even degree, and therefore there must be at least one other edge incident on v2.
Choose one of such edges, and let v3 be the other end vertex of the edge. Proceeding like this, we
eventually arrive at a vertex that has previously been traversed, thus forming a cycle C1. Let us remove C1

from G. All vertices in the resulting graph must also be of even degree, and in this graph we can construct
a cycle C1 as was done in G. Remove this cycle C2 and proceed as above. The process ends when no
edges are left, in this way we get a sequence of cycles whose union is G and whose intersection is a null
graph. Thus, G has been decomposed into edge-disjoint cycles.

5.4 HAMILTONIAN WALKS

Q27. Write about Hamiltonian Walks.

Ans : (Imp.)

Hamilton cycles and Hamilton paths

Let G be a connected graph. If there is a cycle in G that contains all the vertices of G, then that cycle
is called a Hamilton cycle in G.
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A Hamilton cycle (when it exists) in a graph of n vertices consists of exactly n edges. Because, a cycle
with n vertices has n edges.

By definition, a Hamilton cycle (when it exists) in a graph G must include all vertices in This does not
mean that it should include all edges of G.

A graph that contains a Hamilton cycle is called a Hamilton graph (or Haniiln graph).

For example, in the graph shown in Figure, the cycle shown in thick lines is a Hamilton cycle.
(Observe that this cycle does not include the edge BD). The graph is therefore a Hamilton graph.

                                     

A B

D C

It is easy to see that in the hyper-cube Q3 shown in Figure, the cycle ABCDS RQPA is a Hamilton
cycle. (Observe that this cycle does not include all the edges). Therefore, a Hamilton graph.

A path (if any) in a connected graph which includes every vertex (but not necessarily edge) of the
graph is called a Hamilton/Hamiltonian path in the graph.

For example, in the graph shown in Figure, the path shown in thick lines is a Hamilton path.

A B

D C

In the graph shown in Figure 9.122, the path ABCFEDGHI is a Hamilton path. We check feat this
graph does not contain a Hamilton cycle.

G

A

D

B

E

H

C

F

I

Since a Hamilton path in a graph G meets every vertex of G, the length of a Hamilton path (if any)
in a connected graph of n vertices is n – 1. (Recall that a path with n vertices has n – 1 edges).
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PROBLEMS

28. Prove that the complete graph Kn, n 3, is a Hamilton graph.

Sol :

In Kn, the degree of every vertex is n –1.  If n 3 , we have n – 2 > 0, or 2n – 2 > n, or (n – 1)>
n/2.

Thus, in Kn, where n 3, the degree of every vertex is greater than n/2.

29. Show that every simple k-regular graph with 2k – 1 vertices is Hamiltonian.

Sol :

In a k-regular graph, the degree of every vertex is k, and

k > k – 
1
2

= 
1
2

(2k – 1) = 
1
2

Where n = 2k – 1 is the number of vertices.

30. Let G be a simple graph with n vertices and m edges where m is at least 3. If

  
1

m n -1 n - 2 +2
2

, prove that G is Hamiltonian. Is the converse true?

Sol :
Let u and v be any two non-adjacent vertices in G. Let x and y be their respective degrees. If we

delete u, v from G, we get a subgraph with n – 2 vertices. If this subgraph has q edges, then

  1
q n 2 n 3

2
   .

Since u and v are nonadjacent, m = q + x + y. Thus,

  1 1
x y m q (n 1)(n 2) 2 n 2 n 3

2 2
               
   

            = n

5.5 GRAPH COLOURING

Q31. Discuss about Graph Colouring.

Ans : (Imp.)

Graph Coloring

Given a planar or non-planar graph G, if we assign colors (colours) to its vertices in such a way that
no two adjacent vertices have (receive) the same color, then we say that the graph G  is properly colored.
In other words, proper coloring of a graph means assigning colors to  its vertices such that adjacent
vertices have different colors.



UNIT - V DISCRETE MATHEMATICS

141
Rahul Publications

Rahul Publications

     

Red Blue Red

Green Blue Blue

Blue Green RedRed Red Red

Green Yellow Green

In Figure, the first two graphs are properly colored whereas the third graph is not poperly colored.

By examining the first two graphs in Figure 10.23 which are properly colored, we note the following:

1. A graph can have more than one proper coloring.

2. Two non-adjacent vertices in a properly colored graph can have the same color.

Chromatic number

A graph G is said to be k-colorable if we can properly color it with k (number of) colors.

A graph G which is k-colorable but not (k – 1) - colorable is called a k-chromatic graph.

In other words, a k - chromatic graph is a graph that can be properly colored with k colors but not
with less than k colors.

If a graph G is k-chromatic, then k is called the chromatic number of G.

Thus, the chromatic number of a graph is the minimum number of colors with which the graph can
be properly colored.

The chromatic number of a graph G is usually denoted by X(G).

Some Results

The following results are direct consequences of the definition of the chromatic number.

1.  A graph consisting of only isolated vertices (i.e. Null graph) is 1-chromatic. (Because no two vertices
of such a graph are adjacent and therefore we can assign the same color to all vertices).

2. A graph with one or more edges is at least 2-chromatic. (Because, such a graph has at least one pair
of adjacent vertices which should have different colors).

3. If a graph G contains a graph G1 as a subgraph, then 1X(G) X(G )

4. If G is a graph of n vertices, then x(G) n.

5. X(Kn) = n for all n 1. (Because, in Kn, every two vertices are adjacent, and as such all the n vertices
should have different colors).

6. If a graph G contains Kn as a subgraph, then X(G)   n.
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PROBLEMS

32. Find the chromatic number of each of the following graphs.

Sol :
(i) For the graph (a), let us assign a color a to the vertex v1. Then, for a proper coloring, we have to

assign a different color to its neighbors v2, v4, v6. Since v2, v4, v6 are mutually, nonadjacent vertices,
they can have the same color, say  (which is different from  ). Since v3,v5 are not adjacent to v1,
these can have the same color as v1, namely  .

Thus, the graph can be property colored with at least two colors, with the vertices v1,v3, v5 having
one color  , and v2, v4, v6 having a different color  . Hence, the chromatic number of the graph
is 2.

(ii) For the graph (b), let us assign the color  to the vertex v1. Then, for a proper coloring, its neighbors
v2,v3 and v4 cannot have the color  , but v5 can have the color  . Furthermore, v2, v3, v4 must
have different colors, say , ,    Thus, at least four colors are required for a proper coloring of the
graph. Hence the chromatic number of the graph is 4.

(iii)  For the graph (c), we can assign the same color, say , to the non-adjacent vertices v1, v3, v5. Then
the vertices v2, v4, v6 can be assigned the same color other than  . Suppose we assign a color,,  to
v2, v4, v6. Consequently v7 and v8 can be assigned the same color which is different from both a and
 . Thus, a minimum of three colors are needed for a proper coloring of the graph. Hence its
chromatic number is 3.

33. Find the chromatic numbers of the following graphs :

Sol :
i) We note that the graph (a) is the Petersen graph. By observing the graph, we note that the vertices

v1, v3, v6 and v7 can be assigned the same color, say  . Then the vertices v2, v4, v8 and v10 can be
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assigned the same color,   (other than  ). Now, the vertices v5 and v9 have to be assigned colors

other than   and ;  they can have the same color  . Thus, a minimum of three colors are
required for a proper coloring this graph. Hence, the chromatic number of this graph is 3.

ii) By observing the graph (b) (– this graph is called the Herschel graph), we note that the vertices v1,
v3, v5, v6 and v11 can be assigned the same color   and all the remaining vertices: v2 , v4, v7, v8, v9

and v10 can be assigned the same color   (other than  ). Thus, two colors are sufficient (-one color
is not sufficient) for proper coloring of the graph. Hence its chromatic number is 2.

34. Prove that a graph of order n( 2) consisting of a single cycle is 2-chromatic if n is even,
and 3-chromatic if n is odd.

Sol :
Obviously, the graph cannot be properly colored with a single color. Assign two colors alternatively

to the vertices, starting with v1. That is, the odd vertices, v1, v3, v5 etc., will have a color  and the even
vertices, v2, v4, v6 etc., will have a different color  .

Suppose n is even. Then the vertex vn is an even vertex and therefore will have the color , and the
graph gets properly colored. Therefore. the graph is 2-chromatic.

Suppose n is odd. Then the vertex vn is an odd vertex and therefore will have the color  , and the
graph is not properly colored. To make it properly colored, it is enough if vn is assigned a third color  .
Thus, in this case, the graph is 3-chromatic.

5.6 COLOURING MAPS AND PLANAR GRAPHS

Q35. Discuss about map colouring.

Ans :
A plane representation (drawing) of a planar graph divides a plane into a number of parts called

regions (or faces) of which only one is exterior. We say that . these regions are properly colored if no two
adjacent regions have the same color. By adjacent regions we mean regions which have a common edge
between them. Two regions having one or more common vertices are not regarded as adjacent regions.
A proper coloring of regions is called map coloring in view of the fact that an atlas is always colored in such
a way that countries with common boundaries have different colors.

The following Figure illustrates a proper coloring of regions of a planar graph.
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From the way the dual of a planar graph is defined (constructed), it follows that a proper coloring
of the regions of a planar graph G is equivalent to a proper coloring of the vertices of its dual G*, and vice-
versa. Thus, the problem of map coloring reduces to the problem of vertex coloring of planar graphs.

Q36. Analyze the proof of five colour theorem.

Ans :
Statement

The vertices of every connected simple planar graph can he properly colored with five colors.

Proof:

Let n be the number of vertices in a connected, simple planar graph. If n 5. then the theorem is
trivially true. Assume that the theorem is true for all graphs with n k. Consider a graph G with k + 1
vertices. Then, by virtue of Euler’s theorem, G contains a vertex v of degree at most 5§§. If we consider the
graph H = G – v, obtained by deleting v from G. then H has k vertices. Therefore, by the assumption
made, H is 5-colorable.

Since the degree of v is at most 5, v has at most 5 neighbors in G. Suppose v has 4 or less number
of neighbors. Then the neighbors can be colored with at most four different colors and v can be colored
with the fifth color, all drawn from the colors used in H. Thus, a proper coloring of G can be done by using
the five colors with which H can be colored. Thus, G is 5-colorable.

Next, suppose that v has 5 neighbors, say v1, v2, v3, v4, v5. Let us arrange them around v in anti-
clockwise order as in Figure. If the vertices v1, v2, v3 ...., v5 are all mutually adjacent, then they constitute
which is non-planar. This is not possible, because, being a planar graph. G cannot contain a non-planar
graph as a subgraph. Therefore, at least two of vi, v2,..., V5, say v1 and v3, are non-adjacent.

•

•

•

•

••
2



5

4

1

3

Now, construct a graph G’ by merging the edges v3 v and vv1. The graph G’ will have 1+1) – 2 =
k – 1 vertices (with V3, VV1 as the merged vertex). This graph is, therefore, S-colorable. Let us assign a color
1 to the merged vertex v3 vv1, a color 2 to 4, a color 5 to 4 and a color 5 to v5. With this scheme of
coloring of v1, v2, v3, v4, v5 and with the use of just one more color 3 assigned to other appropriate
vertices, the graph G’ gets properly colored, low, unravel the merged vertex v3 vv1 and assign the color a
to both v3 and v1 and the color v3 to v, without disturbing the colors of other vertices. This will produce a
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proper coloring of with colors 1, 2, 3, 4, 5. Thus, G is 5-colorable in this case also (where the degree
of is 5).

We have proved that a graph with n = k + 1 vertices is 5-colorable if a graph with n k Vertices is
5-colorable. Hence, by induction, it follows that a graph with n vertices, where n is my positive integer, is
5-colorable.

This completes the proof of the theorem.

5.7 COLOURING VERTICES, COLOURING EDGES

Q37. Define the following terms :

(a) Colouring Vertices

(b) Colouring Edges

Ans :
(a) Colouring Vertices

In general, given any graph G , a coloring of the vertices is called (not surprisingly) a vertex coloring.
If the vertex coloring has the property that adjacent vertices are colored differently, then the coloring
is called proper. Every graph has a proper vertex coloring. For example, you could color every
vertex with a different color. But often you can do better. The smallest number of colors needed to
get a proper vertex coloring is called the chromatic number of the graph, written x(G).

(b) Colouring Edges

The chromatic number of a graph tells us about coloring vertices, but we could also ask about
colouring edges. Just like with vertex coloring, we might insist that edges that are adjacent must be
coloured differently. Here we are thinking of two edges as being adjacent if they are incident to the
same vertex. The least number of colours required to properly colour the edges of a graph G is
called the Chromatic Index of G, written x'(G).

5.7.1 Perfect Graph

Q38. Define about perfect graph.

Ans :
To define perfect graphs first we need to review several graph parameters. Given a graph G =

(V, E), X(G) denotes the minimum number of colors required to properly color all vertices of G and (G)
denotes the size of the largest clique in G.Since each vertex of a clique should get a distinct color, X(G)(G).
In this lecture we consider a family of graphs in which the inequality is tight.

5.8 TREES

5.8.1 Definition, Properties, Examples

Q39. Define tree. Discuss various properties of trees.

Ans :
A graph G is called a tree if it is connected and has no cycles.

It immediately follows that a tree has tc be a simple graph; because loops and parallel edges form
cycles.
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The graphs shown in Figure are all trees. We observe that each of these trees possesses at least two
pendant vertices.

A pendant vertex of a tree is also called a leaf.

••        •

•

•
             

•

••

•••
• •

(a) (b) (c)

Fig.:

•
•

•

•
• •

   

•

•

•

•

• •

•

(a) (b)

     Fig.:

The graphs shown in Figure are no, trees. Observe ,ha, ,he firs, of these contains a cycle whereas
the second is not connected. However, each component of the second (disconnected) graph is a tree.
Such a graph is called a forest.

A graph which is a tree is usually denoted by T (instead of G) to emphasize the structure.

The following theorems contain some basic properties of trees.

40. In a tree, there is one and only one path between every pair of vertices.

Proof:

Let T be a tree. Then T is a connected simple graph. Since T is connected, there must be at least one
path between every two vertices. If there are two paths between a pair of vertices of T, the union of the
paths will become a cycle, and T cannot be a tree. Thus, between every pair of vertices in a tree there
must exist one and only one path.

41. If in a graph G there is one and only one path between every pair of vertices, then G is a
tree.

Proof:

Since there is a path between every pair of vertices in G, it is obvious that G is connected. Since
there is only one path between every pair of vertices, G cannot have a cycle. Because, if there is a cycle,
then there exist two paths between two vertices on the cycle. Thus, G is a connected graph containing no
cycles. This means that G is a tree.

The above two theorems may be combined together and put in the following form:

A graph G is a tree if and only if there is one and only one path between every pair of vertices in G.
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42. A tree with n vertices has n – 1 edges

Proof:

We prove the theorem by induction on n.

The theorem is obvious for n =1, n = 2 and n – 3; see the first three trees in Figure. Assume that
the theorem holds for all trees with fewer than k vertices, where k is a specified positive integer.

Consider a tree T with k vertices. In T, let e be an edge with end vertices u and v. Since T is a tree,
there exists no other edge or path between u and v. Therefore, deletion of e from T will disconnect the
graph and T – e consists of exactly two components, say T2 and T3. Since T does not contain any cycle, the
components T2 and T3 too do not contain any cycles. Hence, T1 and T2 are trees in their own right. Both
of these trees have fewer than k vertices each, and therefore, according to the assumption made, the
theorem holds for these trees; that is, each of T1 and T2 contains one less edge than the number of vertices
in it. Therefore, since the total number of vertices in T1 and T3 (taken together) is k, the total number of
edges in T1 and T2. (taken together) is k – 2. But T1 and T2 taken together is T – e. Thus, T – e consists of
k – 2 edges. Consequently, T has exactly k – 1 edges.

Thus, if the theorem is true for a tree with n < k vertices, it is true for a tree with n = k vertices.
Hence, by induction, the theorem is time for all positive integers n.

43. Any connected graph with n vertices and n – J edges is a tree.

• •

• •

• •
e

C

Fig.:

Proof:

Let G be a connected graph with n vertices and n – 1 edges. Assume that G is not a tree. Then G
contains a cycle, say C. Let e be an edge in C. The graph G will not become disconnected if e is deleted.
Thus, G – e is a connected graph. But, on the other hand, G – e has n vertices and n – 2 edges; therefore,
it cannot be connected. This is a contradiction. Hence, G must not have a cycle; this means that G must
be a tree.

This completes the proof of the theorem.

Remark:

A graph with n vertices and n – 1 edges need not be a tree: see the graph shown below (which is
disconnected and has 4 vertices and 3 edges).

••

•

A graph with n vertices is a tree if and only if it is connected and has n – 1 edges.
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44. A connected graph G is a tree if and only if adding an edge between any two vertices in
G creates exactly one cycle in G.

Proof:

Suppose a connected graph G is a tree. Then G has no cycles and there is exactly one path between
any two vertices, u, v. If we add an edge between u and v, then an additional path is created between u
and v and the two paths constitute a cycle. Since G had no cycles earlier, this is the only cycle which G now
possesses.

Conversely, suppose G is connected and adding an edge between any two vertices u and v in G
creates exactly one cycle in G. This implies that, before adding this edge, exactly one path was there
between u and v. This implies that G is a tree.

45. A connected graph is a tree if and only if it is minimally connected.

Proof:

Suppose G is a connected graph which is not a tree. Then G contains a cycle C. The I removal of
any one edge e from this cycle will not make the graph disconnected. Therefore. G is not minimally
connected. Thus, if a connected graph is not a tree then it is not minimally connected. This is equivalent
to saying that if a connected graph is minimally connected then it is a tree (contrapositive).

Conversely, suppose G is a connected graph which is not minimally connected. Then there exists an
edge e in G such that G – e is connected. Therefore, e must be in some cycle in G. This implies that G is
not a tree. Thus, if a connected graph is not minimally connected then it is not a tree. This is equivalent to
saying that if a connected graph is a tree, then it is minimally connected (contrapositive).

PROBLEMS

46. (a) Show that the complete graph, Kn is not a tree when n > 2.

(b) Show that the complete bipartite graph Kr, s is not a tree when r   2.

Sol :

(a) If v1, v2, v3 are any three vertices of Kn, n > 2, then the closed walk v1 v2 v3 v1 is a cycle in Kn.
Since Kn has a cycle, it cannot be a tree.

(b) Let v1 and v2 be any two vertices in the first bipartite and v'1, v'2 be any two vertices in the other
bipartite of Kr, s, s   r > 1. Then, the closed walk v1 v'1 v2 v'2 v1 is a cycle in Kr, s. Since Kr, s has a
cycle, it cannot be a tree.

47. Prove that a graph with a vertices, n – 1 edges and no cycles is connected.

Sol :

Consider a graph G which has n vertices, n – 1 edges and no cycles. Suppose G is not connected.
Let the components of G be Hi, i = 1, 2, ... k. If Hi has ni vertices, we have n1 + n2 + ... + nk = n. Since
G has no cycles, His also do not have cycles. Further, they are all connected graphs. Therefore, they are
trees. Consequently, each Hi must have ni – 1 edges. Therefore, the total number of edges in these His is

(n1 – 1) + (n2 – 1) + ... + (nk – 1) = n – k.

This must be equal to the total number of edges in G; that is n – k = n – 1. This is not possible, since
k > 1. Therefore, G must be connected.
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48. Let F be a forest with k components (trees). If n is the number of vertices and m is the
number of edges in F, prove that n = m + k.

Sol :

Let  H1, H2, ..., Hk be the components of F. Since each of these is a tree, if ni is the number of vertices
in Hi and mi is the number of edges in Hi, we have

mi = ni – 1,    or    i = 1, 2, ..l., k.

This gives

m1 + m2 + ... + mk = (n1 – 1) + (n2 + 1) + ... + (nk – 1) = n1 + n2 + ... + nk – k.

But

m1 + m2 + ... + mk = m    and    n1 + n2 + ... + nk = n.

Therefore,

m = n – k,  or  n = m + k.

49. Prove that, in a tree with two or more vertices, there are at least two leaves (pendant
vertices).

Sol :

Consider a tree T with n vertices, n   2. Then it has n – 1 edges. Therefore, the sum of the degrees
of the n vertices must be equal to 2(n – 1). Thus, if d1, d2, ..., dn are the degrees of vertices of T, we have

d1 + d2 + ... + dn = 2(n – 1) = 2n – 2.

If each of d1, d2, ..., dn is   2, then their sum must be at least 2n. Since this is not true, at least once
of the d’s is less than 2. Thus, there is a d which is equal to 1. (Since T is connected, no d can be zero).
Without loss of generality, let us take this to be d1. Then

d2 + d3 + ... + dn = (2n – 2) – 1 = 2n – 3.

This is possible only if at least one of d2, d3, ..., dn is equal to 1. So, there is at least one more d which
is equal to 1. Thus, in T, there are at least two vertices with degree 1; that is, there are at least two pendant
vertices (leaves).

50. Show that if a tree has exactly two pendant vertices, the degree of every other vertex is
two.

Sol :

Let n be the number of vertices in a trees T. Suppose it has exactly two pendant vertices (so that
their degrees are 1 each). Let d1, d2, ..., dn–2 be the degrees of the other vertices. Then, since T has exactly
n – 1 edges, we have

1 + 1 + d1 + d2 + ... + dn–2 = 2(n – 1)

d1 + d2 + ... + dn–2 = 2n – 4 = 2(n – 2)

The left hand side of this condition has n – 2 terms, and none of these is one or zero. Therefore, this
condition holds only if each of the dis is equal to two.
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51. Show that, in a tree, if the degree of every non-pendant vertex is 3, the number of vertices
in the tree is even.

Sol :
Let n be the number of vertices in a tree T. Of these, let ke be the number of pendant vertices.

Then, if each non-pendant vertex is of degree 3, the sum of the degree of vertices is k + 3(n – k). This
must be equal to 2(n – 1). Thus,

k + 3(n – k) = 2(n – 1),    or    n = 2(k – 1).

This shows that n is even.

52. Suppose that a tree T has two vertices of degree 2, four vertices of degree 3 and three
vertices of degree 4. Find the number of pendant vertices in T.

Sol :
Let N be the number of pendant vertices in T. It is given that T has two vertices of degree 2, four

vertices of degree 3 and three vertices of degree 4. Therefore,

Total number of vertices = N + 2 + 4 + 3 = N + 9.

Sum of the degrees of vertices = N + (2 × 2) + (4 × 3) + (3 × 4) = N + 28.

Since T has N + 9 vertices, it has N + 9 – 1 = N + 8 edges. Therefore, by handshaking property,
we have N + 28 = 2(N + 8) which gives N = 12. Thus, the given tree has 12 pendant vertices.

53. Suppose that a tree T has N1 vertices of degree 1. N2 vertices of degree 2, N3 vertices of
degree 3, ..., Nk vertices of degree k. Prove that

N1 = 2 + N3 + 2N4 + 3N5 + ... + (k – 2) Nk.

Sol :
From what is given, we note that, in T,

Total number of vertices = N1 + N2 + ... + Nk, and

Sum of the degrees of vertices = N1 + 2N2 + 3N3 + ... + kNk.

Therefore, the total number of edges in T is N1 + N2 + ... + Nk – 1, and the handshaking property
gives.

N1 + 2N2 + 3N3 + 4N4 + 5N5 + ... + kNk = 2(N1 + N2 + ... + Nk – 1)

Rearranging terms, this gives

N3 + 2N4 + 3N5 + ... + (k – 2) Nk = N1 – 2.

This is the required result.

5.9 ROOTED TREES

Q54. Explain briefly about Rooted Trees.

Ans :
Let D be a directed graph and G be its underlying graph. We say that D is a directed tree whenever

G is a tree. Thus, a directed tree is a directed graph whose underlying graph is a tree.
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A directed tree T is called a rooted tree if (i) T contains a unique vertex, called the root, whose in-
degree is equal to 0, and (ii) the in-degrees of all other vertices of Tare equal to 1.

Figures 10(a) and 7(b) depict two directed trees. The first of these is not a rooted tree whereas the
second is a rooted tree.

Figure

In a rooted tree, we denote the root by r and draw the (diagram of the) tree downward from an
upper level to a lower level, so that the arrows can be dropped. Then the root r will be at the uppermost
level and all other vertices will be at lower levels.

A vertex v of a rooted tree is said to be at the k-th level or has level number k if the path from r to
v is of length k. If v1 and v2 are two vertices such that v1 has a lower level number than v2 and there is a
path from v1 to v2, then we say that v\ is an ancestor of v2, or that v2 is a descendant of v1. In particular, if
v1 and v2 are such that v1 has a lower level number than v2 and there is an edge (- directed edge, actually)
from v1 to v2, then v1 is called the parent of v2, or v2 is called the child of v1. Two vertices with a common
parent are referred to as siblings. A vertex whose out-degree is 0 is called a leaf. A vertex which is not a leaf
is called an internal vertex.

For example, suppose we redraw the directed tree of Figure 7(a) as shown below without arrows (-
which are understood) and with vertices labeled.

Figure

In this rooted tree,

1. v1 and v2 are at the first level, v3, v4 are at the second level, v5, v6, v7 are at the third level. and
v8 and v9 are at the fourth level.
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2. vi is the ancestor of v3, v5, v6 (or v3, v5, v6 are the descendants of v1), and v2 is the ancestor of
v4, v7, v8, v9 (or v4, v7, v8, v9 are the descendants of v2).

3. v1 is the parent of v3 (or v3 is a child of v1).

4. v5 and v6 are siblings, and v8 and v9 are siblings.

5. v5, v6, v8, v9 are leaves, and all other vertices are internal vertices.

5.10 TREES AND SORTING

Q55. Define binary tree.

Ans :
A rooted tree T is called a binary rooted tree, or just a binary tree if every internal vertex of T is of

out-degree 1 or 2; that is if every vertex has at most two children.

A rooted tree T is called a complete binary tree if every internal vertex of T is of out-degree 2; that
is if every internal vertex has two children.

The rooted tree shown in Figure is a binary tree; it is not a complete binary tree. The rooted tree
shown in Figure is a complete binary tree.

Figure

Balanced Tree

If T is a rooted tree and h is the largest level number achieved by a leaf of T, then T is said to have
height h. A rooted tree of height h is said to be balanced if the level number of every leaf is h or h – 1.

The tree is of height 4 and is balanced too.

Full Binary Tree

Let T be a complete binary tree of height h. Then T is called a full binary tree if all the leaves in T are
at level h.
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Q56. What is tree sort? Explain algorithm of tree sort.

Ans :
Tree sort is a sorting algorithm that is based on Binary Search Tree data structure. It first creates a

binary search tree from the elements of the input list or array and then performs an in-order traversal on
the created binary search tree to get the elements in sorted order.

Algorithm:

Step 1: Take the elements input in an array.

Step 2: Create a Binary search tree by inserting data items from the array into the binary search
tree.

Step 3: Perform in-order traversal on the tree to get the elements in sorted order.

5.11 WEIGHTED TREES AND PREFIX CODES

Q57. Write about Prefix Codes.

Ans :
Weighted Graph

If the weight is assigned to each edge of the graph then it is called as Weighted or Labeled graph.

The definition of a graph may be generalized by permitting the following:

Multiple edges: Distinct edges e and e' are called multiple edges if they connect the same end
points, that is, if e = [u, v] and e' = [u, v].

Loops: An edge e is called a loop if it has identical endpoints, that is, if e = [u, u].

Finite Graph: A multi graph M is said to be finite if it has a finite number of nodes and a finite
number of edges.

          

Prefix codes

A prefix code tree is a rooted tree such that:

• Each edge is labeled by a bit

• Each leaf denoted by a character.

• The codeword for the character is based on the labels on root-to-leaf path.

A 0, B 1, C  00, D 01, E 010

Suppose the encoded text is : 0101

We cannot tell if the original is
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ABAB or ABD or DAB or DD or EB The problem comes from

one codeword is a prefix of another

• To avoid the problem, we generally want that each codeword is NOT a prefb

• Such an encoding scheme is called a prefix code, or prefix-free code

• For a text encoded by a prefix code, we can easily decode it in the following

Prefix Code Tree

Naturally, a prefix code scheme corresponds to a prefix code tree

• The tree is a rooted, with

1. each edge is labeled by a bit;

2. each leaf   a character;

3. labels on root-to-leaf path   codword for the character..

E.g., A 0, B 100, C 101, D  110, E 111

5.12 BI-CONNECTED COMPONENT AND ARTICULATION POINTS, SHORTEST DISTANCES

Q58. Explain about Bi-connected Component and Articulation Points.

Ans : (Imp.)

The operations that we have implemented thus far are simple extensions of depth first and breadth
first search. The next operation we implement is more complex and requires the introduction of additional
terminology. We begin by assuming that G is an undirected connected graph.

An articulation point is a vertex v of G such that the deletion of v, together with all edges incident on
v, produces a graph, G', that has at least two connected components. For example, the connected graph
of Figure 1.1 has four articulation points, vertices 1,3,5, and 7.
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A biconnected graph is a connected graph that has no articulation points. In many graph applications,
articulation points are undesirable. For instance, suppose that the graph of Figure 1.1(a) represents a
communication network. In such graphs, the vertices represent communication stations and the edges
represent communication links. Now suppose that one of the stations that is an articulation point fails. The
result is a loss of communication not just to and from that single station, but also between certain other
pairs of stations.

A biconnected component of a connected undirected graph is a maximal biconnected subgraph,
H, of G. By maximal, we mean that G contains no other subgraph that is both biconnected and properly
contains H. For example, the graph of Figure 1.1(a) contains the six biconnected components shown in
Figure 1.1(b). The biconnected graph however, contains just one biconnected component: the whole
graph. It is easy to verify that two biconnected components of the same graph have no more than one
vertex in common. This means that no edge can be in two or more biconnected components of a graph.
Hence, the biconnected components of G partition the edges of G.

We can find the biconnected components of a connected undirected graph, G, by using any depth
first spanning tree of G. For example, the function call dfs (3) applied to the graph of Figure 1.1(a)
produces the spanning tree of Figure 1.2(a). We have redrawn the tree in Figure 1.2(b) to better reveal
its tree structure. The numbers outside the vertices in either figure give the sequence in which the vertices
are visited during the depth first search. We call this number the depth first number, or dfn, of the vertex.
For example, dfn (3) = 0, dfn (0) = 4, and dfn (9) = 8. Notice that vertex 3, which is an ancestor of both
vertices 0 and 9, has a lower dfn than either of these vertices. Generally, if u and v are two vertices, and
u is an ancestor of v in the depth first spanning tree, then dfn (u) < dfn (v).

The broken lines in Figure 1.2(b) represent nontree edges. A nontree edge (u, v) is a back edge iff
either u is an ancestor of v or v is an ancestor of u. From the definition of depth first search, it follows that
all nontree edges are back edges. This means that the root of a depth first spanning tree is an articulation

point iff it has at least two children. In addition, any other vertex u is an articulation point iff it has at least

one child w such

0

1

2 3 5

6

7

8 9

4

                 (a) Connected graph
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0

1

8

7

7

5

6

7

9

2 3 3 5

4

1

               (b) Biconnected component

Fig 1.1 : A connected graph and its biconnected components that we cannot reach an ancestor of
u using a path that consists of only w, descendants of w, and a single back edge. These observations lead
us to define a value, low, for each vertex of G such that low (u) is the lowest depth first number that we
can reach from u using a path of descendants followed by at most one back edge:

low (u) = min {dfn (u), min {low (w)|w is a child of u},

min {dfn (w) | (u, w) is a back edge} }

Therefore, we can say that u is an articulation point iff u is either the root of the spanning tree and
has two or more children, or u is not the root and u has a child w such that low (w)   dftz (u). Figure 1.3
shows the dftz and low values for each vertex of the spanning tree of Figure 1.2(b). From this table we can
conclude that vertex 1 is an

(a) depth first spanning tree

4 6

61

4 9 8 89

7 7

0 5

53

3

2

0

1

2

    

3

4 5

5

66

77

9

9

(b)

8

8

1

22

1 

3 

0 4 

0

Fig.1.2 Depth first spanning free of Figure 1.1 (a)
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articulation point since it has a child 0 such that low (0) = 4   dfn (1)=3. Vertex 7 is also an
articulation point since low (8) = 9 dfn (7) = 7, as is vertex 5 since (6) = 5   dfn(5) = 5. Finally,,
we note that the root, vertex 3, is an articulation point because it has more than one child.

Vertex 0 1 2 3 4 5 6 7 8 9

dfn 4 3 2 0 1 5 6 7 9 8

low 4 3 0 0 0 5 5 7 9 8

Q59. Explain about  Calculation of Shortest Distances Points.

Ans : (Imp.)

This algorithm maintains a set of vertices whose shortest paths from source is already known. The
graph is represented by its cost adjacency matrix, where cost is the weight of the edge. In the cost adjacency
matrix of the graph, all the diagonal values are zero. If there is no path from source vertex Vs to any other
vertex Vi then it is represented by +8.In this algorithm, we have assumed all weights are positive.

1. Initially, there is no vertex in sets.

2. Include the source vertex Vs in S.Determine all the paths from Vs to all other vertices without going
through any other vertex.

3. Now, include that vertex in S which is nearest to Vs and find the shortest paths to all the vertices
through this vertex and update the values.

4. Repeat the step until n-1 vertices are not included in S if there are n vertices in the graph.

After completion of the process, we got the shortest paths to all the vertices from the source vertex.

Example:

Find the shortest paths between K and L in the graph shown in fig using Dijkstra's Algorithm.
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Sol :
Step1: Include the vertex K is S and determine all the direct paths from K to all other vertices

without going through any other vertex.

 
S K a b c d L
K 0 4(K) 2(K) 20(K) 

Step2: Include the vertex in S which is nearest to K and determine shortest paths to all vertices
through this vertex and update the values. The closest vertex is c.

S K a b c d L
K 0 3(K,c) 7(K,c) 2(K) 8(K,c) 18(K,c)

Step3: The vertex which is 2nd nearest to K is 9, included in S.

S K a b c d L
K 0 3(K,c) 7(K,c) 2(K) 7(K,c,a) 18(K,c)

Step 4: The vertex which is 3rd nearest to K is b, included in S.

S K a b c d L
K 0 3(K,c) 7(K,c) 2(K) 7(K,c,a) 8(K,c,b)

Step 5: The vertex which is next nearest to K is d, is included in S.

S K a b c d L

K(c, a, b, d) 0 3(K,c) 7(K,c) 2(K) 7(K, c, a) 8(K, c, b)

Since, n-1 vertices included in S. Hence we have found the shortest distance from K to all other
vertices. Thus, the shortest distance between K and L is 8 and the shortest path is K, c, b, L.
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FACULTY OF INFORMATICS
M.C.A. I Year I Semester Examination

Model Paper - I

DISCRETE MATHEMATICS
Time : 3 Hours] Max. Marks : 70

Answer all the questions according to the internal choice

Max. Marks (5 × 14 = 70)

ANSWERS

1. (a) Explain the operations on set theory. (Unit-I, Q.No.6)

(b)  Let A = {1, 3, 5), B = {2, 3}, and C = {4, 6}. Write down the following :

1. A × B 2. B × A

3. B × C 4. A × C

5. (A B) × C 6. A (B × C)

7. (A × B) C 8. A  (B × C)

9. (A × B) (B × C) 10. (A × B) (B × A)

11. (A × B) (B × C)                 (Unit-I, Q.No.10)

OR

2. (a) Define about Equivalence Relation. (Unit-I, Q.No.35)

(b) Explain about Schroeder - Bernstein Theorem. (Unit-I, Q.No.52)

OR

3. (a) A telegraph can transmit two different signals : a dot and a dash. What length

of these symbols is needed to encode 26 letters of the English alphabet and the

ten digits 0, 1, 2, ..., 9? (Unit-II, Q.No.6)

(b) Find the number of permutations of the letters of the word SUCCESS. (Unit-II, Q.No.12)

OR

4. (a) Explain the concept of Permutations. (Unit-II, Q.No.10)

(b) Describe the basic principles of Inclusion and Exclusion. (Unit-II, Q.No.34)

OR

5. (a) What are the called as statements in mathematical logic? Explain various types

of statements with its notations. (Unit-III, Q.No.3)

(b)  Prove that, for any propositions p, q, r, the compound proposition

{p (q r)} {(p q) (p r)} is a tautology.. (Unit-III, Q.No.13)
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OR

6. (a) Construct the truth tables of the following compound propositions :

(i) (p q)  r (ii)  p (q  r) (Unit-III, Q.No.7)

(b) What is logical equivalence? (Unit-III, Q.No.15)

OR

7. (a) Define Algebraic Structures. (Unit-IV, Q.No.1)

(b) Explain various Identities of Boolean Algebra. (Unit-IV, Q.No.39)

OR

8. (a)  If a, b are any two elements of a ring R prove that,

(i) –(–a) = a

(ii) –(a + b) = – a – b

(iii) –(a – b) = – a – b               (Unit-IV, Q.No.30)

(b) Discuss about free and cyclic groups. (Unit-IV, Q.No.13)

OR

9. (a) Show that the following two graphs are isomorphic: (Unit-V, Q.No.20)

(b) Discuss about Eulerian Circuit. (Unit-V, Q.No.24)

OR

10. (a) Explain about  Calculation of Shortest Distances Points. (Unit-V, Q.No.59)

(b) Explain about Isomorphism. (Unit-V, Q.No.17)
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FACULTY OF INFORMATICS
M.C.A. I Year I Semester Examination

Model Paper - II

DISCRETE MATHEMATICS
Time : 3 Hours] Max. Marks : 70

Answer all the questions according to the internal choice

Max. Marks (5 × 14 = 70)

ANSWERS

1. (a) Discuss the operations on relations. (Unit-I, Q.No.13)

(b) For any set A   U, prove that

A ×  =  × A = . (Unit-I, Q.No.11)

OR

2. (a)  Discuss about Partial Ordering Relation. (Unit-I, Q.No.25)

(b) Explain briefly about Cantor’s Diagonal Argument. (Unit-I, Q.No.50)

OR

3. (a) Prove the following identities:

(i) C(n + 1, r) = C(n, r – 1) + C(n, r)

(ii) C(m + n, 2) – C(m, 2) – C(n, 2) = mn. (Unit-II, Q.No.33)

(b) Explain about Pigeon-Hole Principle. (Unit-II, Q.No.44)

OR

4. (a) A telegraph can transmit two different signals : a dot and a dash. What length

of these symbols is needed to encode 26 letters of the English alphabet

and the ten digits 0, 1, 2, ..., 9? (Unit-II, Q.No.6)

(b) A student visits a sports club every day from Monday to Friday after school
hours and plays one of the three games: Cricket, Tennis, Football. In how
many ways can he play each of the three games at least once during a

week (from Monday to Friday) ? (Unit-II, Q.No.41)

OR

5. (a) Construct the truth table for ~(p q). (Unit-III, Q.No.4)

(b) Construct the truth tables of the following compound propositions :

(i) (p  q) ( r) (ii)  q (( r) p) (Unit-III, Q.No.8)

OR

6. (a) Prove that, for any propositions p and q, the compound propositions

p q and (p   q)   ( p  q) are logically equivalent. (Unit-III, Q.No.18)
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(b) Discuss about Proof of Necessity. and Sufficiency. (Unit-III, Q.No.41)

OR

7. (a) Define Groups. Explain properties of Groups. (Unit-IV, Q.No.4)

(b) Prove that a subgroups H of a group G is a normal subgroup if and only if every

left coset of H in G is a right coset of H in G. (Unit-IV, Q.No.25)

OR

8. (a) Define normal subgroup. Prove that every subgroup of an abelian group

is normal. (Unit-IV, Q.No.20)

(b) Show DNF of pq is (pq)(pq) (Unit-IV, Q.No.47)

OR

9. (a) Write about Hamiltonian Walks. (Unit-V, Q.No.27)

(b) Find the chromatic number of each of the following graphs.

              (Unit-V, Q.No.32)

OR

10. (a) A connected graph G has an Euler circuit (that is, G is an Euler graph) if

and only if G can be decomposed into edge-disjoint cycles. (Unit-V, Q.No.26)

(b) Write about Prefix Codes. (Unit-V, Q.No.57)
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FACULTY OF INFORMATICS
M.C.A. I Year I Semester Examination

Model Paper - III

DISCRETE MATHEMATICS
Time : 3 Hours] Max. Marks : 70

Answer all the questions according to the internal choice

Max. Marks (5 × 14 = 70)

ANSWERS

1. (a) Explain the properties of relations. (Unit-I, Q.No.14)

(b) Discuss various types of functions.  (Unit-I, Q.No.43)

OR

2. (a) Discuss briefly about Binary Relation. (Unit-I, Q.No.12)

(b) Explain about Principles of Mathe-matical Induction. (Unit-I, Q.No.53)

OR

3. (a) Explain the concept of combinations. (Unit-II, Q.No.18)

(b) Explain the process of Inclusion and Exclusion for n sets. (Unit-II, Q.No.37)

OR

4. (a) How many positive integers n can we form using the digits 3, 4, 4, 5, 5,

6, 7 if we want n to exceed 5,000,000? (Unit-II, Q.No.15)

(b) A bag contains many red marbles, many white marbles, and many blue
marbles. What is the least number of marbles one should take out to be
sure of getting at least six marbles of the same color? (Unit-II, Q.No.49)

OR

5. (a) Construct the truth table for p (p q). (Unit-III, Q.No.5)

(b)  What is logical implication? (Unit-III, Q.No.24)

OR

6. (a) Show that the truth values of the following  compound propositions are

independent of the truth values of their components:

(i) {p  (p q)} q (ii)  (p q) ( p q) (Unit-III, Q.No.10)

(b) Provide a proof by contradiction of the following statement:

For every integer n, if n2 is odd, then n is odd. (Unit-III, Q.No.36)

OR

7. (a) Discuss about Congruence Relation and Quotient Structures. (Unit-IV, Q.No.12)

(b) Give any four examples of a ring. (Unit-IV, Q.No.27)
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OR

8. (a) Explain briefly about Substructures. (Unit-IV, Q.No.19)

(b) Convert the following formulas into CNF using truth tables.

(a) (p q) ( p r)   

(b) (p q) r 

(c) p q (Unit-IV, Q.No.45)

OR

9. (a) Analyze the proof of five colour theorem. (Unit-V, Q.No.36)

(b) (a) Show that the complete graph, Kn is not a tree when n > 2.

(b) Show that the complete bipartite graph Kr, s is not a tree when r   2.

              (Unit-V, Q.No.46)

OR

10. (a) Explain about  Calculation of Shortest Distances Points. (Unit-V, Q.No.59)

(b) Define tree. Discuss various properties of trees. (Unit-V, Q.No.39)


