X

Rahul’s v

Topper’s Voice

M.C.A

| Year | Sem
(Osmania University)

Latest 2024 Edition

COMPUTER
ARCHITECTURE

> Study Manual
[> FAQ’s and Important Questions
> Solved Model Papers

3> Solved Previous Question Papers

price
- by - - 209—00
WELL EXPERIENCED LECTURER)

F ; ™
(Q Rahul Publications
\.

Hyderabad. Cell : 9391018098, 9505799122

J

All disputes are subjects to Hyderabad Jurisdiction only

,—_-_—-_—-_-_—-_—-_-_—-_—-_-_—-_—_-\

M.C.A

| Year | Sem
(Osmania University)

COMPUTER
ARCHITECTURE

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

@ No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

Price ~. 209 -00

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE

Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

,-----------------------
\-_—_-_-_—-_—_—-_—_—-_—_—-_—_—-_—_—-_—_-_

COMPUTER
ARCHITECTURE

STUDY MANUAL |
: FAQ’s and Important Questions IV - VIl
i H unit-1 1-26
Eitescdiss Unit - 11 27 - 65
f;& Unit - 11 66 - 105
St Unit - IV 106 - 125
Unit - V 126 - 156
EF::——— SOLVED MODEL PAPERS I
- Model Paper - | 157 - 157
AN Model Paper - 11 158 - 158
B Model Paper - 111 159 - 160

SOLVED PREVIOUS QUESTION PAPERS I

T
TTTTTT

T

LT

August - 2021 161 - 161
April / May - 2023 162 - 167
October / November - 2023 168 - 168

N\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

' SYLLABUS'

UNIT - |

Data Representation: Data types, Complements, Fixed and Floating Point representations,
and Binary codes.

Overview of Computer Function and Interconnections: Computer components,
Interconnection structures, Bus interconnection, Bus structure, and Data transfer.

UNIT - I

Register Transfer Micro operations: Register Transfer Language, Register Transfer, Bus and
Memory Transfers, Arithmetic, Logic and Shift micro operations, Arithmetic Logic Shift Unit.

Basic Computer Organization and Design: Instruction Codes, Computer Registers, Computer
Instructions, Timing and Control, Instruction Cycle, Memory reference instruction, Input-Output
and Interrupt.

UNIT - 111

Micro programmed Control: Control memory, Address Sequencing, Micro program example,
Design of Control Unit.

Central Processing Unit: General Register Organization, Stack Organization, Instruction formats,
Addressing modes, Data Transfer and Manipulation, and Program control.

Computer Arithmetic: Addition and Subtraction, Multiplication, Division, and Floating Point
Arithmetic Operations.

UNIT - IV

Memory Organization: Memory Hierarchy, Main Memory, RAM and ROM, Auxiliary memory,
Associative memory, Cache memory, Virtual memory, Memory Management hardware.

UNIT -V

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data
transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), I/O Processor, Serial
Communication.

Pipeline Processing: Arithmetic, Instruction and RISC Pipelines.

Assessing and Understanding Performance: CPU performance and its factors, Evaluating
performance.

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Contents

Topic No.
UNIT -1

1.1 Data Representation

1.1.1 Data Types

1.1.2 Complements

1.1.3 Fixed and Floating Point Represen- tations

1.1.4 Binary Codes
1.2 Overview of Computer Function and Interconnections

1.2.1 Computer Components

1.2.2 Interconnection Structures

1.2.3 Bus Interconnection

1.2.4 Bus structure

1.2.5 Data Transfer

UNIT - 11

2.1 Register Transfer Micro Operations

2.1.1 Register Transfer Language

2.1.2 Register Transfer

2.1.3 Bus and Memory Transfers

2.1.4 Arithmetic

2.1.5 Logic and Shift micro operations

2.1.6 Arithmetic Logic Shift Unit.
2.2 Basic CompUTER ORGANIZATION AND DESIGN

2.2.1 Instruction Codes

2.2.2 Computer Registers

2.2.3 Computer Instructions

2.2.4 Timing and Control

2.2.5 Instruction Cycle

2.2.6 Memory reference instruction

2.2.7 Input-Output and Interrupt

10
13
17
17
19
20
22
24

| Topic No. Page No.
: UNIT - I
| 3.1 Micro Programmed Control 66
: 3.1.1 Control memory 66
| 3.1.2 Address Sequencing 68
: 3.1.3 Micro Program Example 69
3.1.4 Design of Control Unit 71
| g
: 3.2 Central Processing Unit 73
| 3.2.1 General Register Organization 74
: 3.2.2 Stack Organization 77
| 3.2.3 Instruction Formats 80
: 3.2.4 Addressing Modes 82
| 3.2.5 Data Transfer and Manipulation 89
I 3.2.6 Program Control 91
I g
3.3 Computer Arithmetic 94
| p
: 3.3.1 Addition and Subtraction 94
| 3.3.2 Multiplication 96
| 3.3.3 Division 99
| . : .
3.3.4 Floating Point Arithmetic Operations. 101
|
|
: UNIT - IV
| 41 Memory Organization 106
: 4.1.1 Memory Hierarchy 106
| 4.1.2 Main Memory 108
: 4.1.3 RAM and ROM 110
| 4.1.4 Auxiliary Memory 111
I 4.1.5 Associative Memory 113
|
| 4.1.6 Cache memory 115
: 4.1.7 Virtual Memory 119
| 4.1.8 Memory Management hardware. 123
|

Topic No.
UNIT -V

5.1 Input-Output Organization

5.1.1 Peripheral Devices

5.1.2 Input-Output Interface

5.1.3 Asynchronous Data Transfer

5.1.4 Modes of Transfer

5.1.5 Priority Interrupt

5.1.6 Direct Memory Access (DMA)

5.1.7 1/O Processor

5.1.8 Serial Communication

5.2 Pipeline Processing
5.2.1 Arithmetic
5.2.2 Instruction and RISC Pipelines

5.3 Assessing and Understanding Performance
5.3.1 CPU Performance and Its Factors

5.3.2 Evaluating performance

126
126
127
129
132
134
136
138
140

144
144
148
153
153
154

Frequently Asked & Important Questions

UNIT - |

1. Describe how data is stored in the digital computers.

Ans (Imp.)
Refer Unit-1, Page No. 1, Q.No. 1.

2. What is the complement number system? Explain the complement systems with
examples.

Ans : (Nov.-23, Aug.-21, Imp.)
Refer Unit-1, Page No. 8, Q.No. 4.

3. Explain about fixed and floating point representation of numbers.

Ans : (May-23, Imp.)
Refer Unit-1, Page No. 10, Q.No. 5.

4. Write about various types of binary codes.

Ans : (Nov.-23, Aug.-21, Imp.)
Refer Unit-1, Page No. 13, Q.No. 6.

5. What is digital computer? Explain the block diagram of it.

Ans : (Imp.)
Refer Unit-1, Page No. 17, Q.No. 7.

6. Whatis the use of bus interconnection? Explain the types of bus organization.

Ans : (May-23, Aug.-21, Imp.)
Refer Unit-1, Page No. 20, Q.No. 9.

7. Explain three modes of data transfer between I/O devices and a computer system.

Ans : (Nov.-23, Aug.-21, Imp.)
Refer Unit-l, Page No. 24, Q.No. 11.

UNIT - 1I
1. Explain the Register Transfer Language.
Ans : (Imp.)

Refer Unit-1l, Page No. 27, Q.No. 1.

Rahul Publications

|' 1\ ;

FAQ’S AND IMPORTANT QUESTIONS

COMPUTER ARCHITECTURE

2. Design and explain a common bus system for four register.

Ans : (Nov.-23, Imp.)
Refer Unit-1l, Page No. 29, Q.No. 3.

3. Write various Arithmetic Micro-operation.

Ans : (Imp.)
Refer Unit-1l, Page No. 34, Q.No. 7.

4. Explain briefly about Binary Incrementer

Ans : (Imp.)
Refer Unit-1l, Page No. 36, Q.No. 10.

5. Draw and explain Logic Micro-operations in detail.

Ans . (Imp.)
Refer Unit-1l, Page No. 39, Q.No. 12.

6. Draw and explain one stage of arithmetic logic shift unit.

Ans : (Imp.)
Refer Unit-1l, Page No. 45, Q.No. 15.

7. Explain Stored Program Organization in detail.

Ans . (Imp.)
Refer Unit-1l, Page No. 48, Q.No. 17.

8. Explain briefly about Registers of basic computer.

Ans . (Imp.)
Refer Unit-1l, Page No. 50, Q.No. 19.

9. Explain different types of Computer Instructions formats.

Ans : (Imp.)
Refer Unit-1l, Page No. 53, Q.No. 21.

10. Draw and explain input-output configuration of basic computer.

Ans . (Imp.)
Refer Unit-1l, Page No. 61, Q.No. 26.

11. List and explain memory reference instructions.

Ans : (Aug.-21, Imp.)

Refer Unit-1l, Page No. 58, Q.No. 25.

Y J

Rahul Publications

MCA | YEAR | SEMESTER

UNIT - 1l

1. Explain the steps of Address Sequencing in detail.
Ans : (Imp.)

Refer Unit-11l, Page No. 68, Q.No. 4.

2. Draw the diagram of Micro programmed sequencer for a control memory and explain it.
Ans : (Imp.)

Refer Unit-11l, Page No. 71, Q.No. 7.

3. What s central processing unit. Explain about it.
Ans : (May-23, Imp.)

Refer Unit-11l, Page No. 73, Q.No. 8.

4. What is stack? Give the organization of register stack with all necessary elements and
explain the working of push and pop operations.

Ans : (Nov.-23, May-23, Imp.)

Refer Unit-1ll, Page No. 77, Q.No. 10.

5. What are status register bits? Draw and explain the block diagram showing all status
registers.

Ans : (Imp.)

Refer Unit-1ll, Page No. 91, Q.No. 16.

6. Explain the procedure for Addition and Subtraction with signed-magnitude data with
the help of flowchart.

Ans : (Aug.-21, Imp.)

Refer Unit-1ll, Page No. 94, Q.No. 19.

UNIT - IV

1. How main memory is useful in computer system?
Ans : (Aug.-21, Imp.)

Refer Unit-1V, Page No. 108, Q.No. 2.

2. Explain the memory address map of RAM and ROM.
Ans : (Imp.)

Refer Unit-1V, Page No. 110, Q.No. 3.

— 'l VI ',
Rahul Publications

FAQ’S AND IMPORTANT QUESTIONS COMPUTER ARCHITECTURE

3. Explain briefly about Content Addressable Memory (CAM).

Ans : (Nov.-23, May-23, Imp.)
Refer Unit-1V, Page No. 113, Q.No. 5.

4. Define Cache memory. Discuss associative mapping in organization of cache memory.

Ans . (Imp.)
Refer Unit-1V, Page No. 115, Q.No. 6.

5. What is segment? What is logical address? Explain segmented page mapping.

Ans : (May-23, Aug.-21, Imp.)
Refer Unit-1V, Page No. 122, Q.No. 12.

6. Write about memory management hardware.

Ans . (Imp.)
Refer Unit-1V, Page No. 123, Q.No. 13.

UNIT -V

1. Define Peripherals. Explain I/O Bus and Interface Modules.

Ans : (Imp.)
Refer Unit-V, Page No. 126, Q.No. 1.

2. What do you mean by Asynchronous data transfer? Explain Strobe control in detail.

Ans : (Nov.-23, Aug.-21, Imp.)
Refer Unit-V, Page No. 129, Q.No. 3.

3. Whatis priority interrupt? Explain briefly about Daisy Chaining Priority.

Ans : (Imp.)
Refer Unit-V, Page No. 134, Q.No. 7.

4. Write a detailed note on Direct Memory Access (DMA).

Ans : (Nov.-23, May-23, Aug.-21, Imp.)
Refer Unit-V, Page No. 136, Q.No. 8.

5. What is Serial Communication?

Ans : (Imp.)

Refer Unit-V, Page No. 140, Q.No. 11.

]

VI

:

Rahul Publications

MCA | YEAR | SEMESTER

6. Explain Flynn’s classification for computers.
Ans : (Imp.)
Refer Unit-V, Page No. 144, Q.No. 12.

7. Draw and explain Arithmetic Pipeline.
Ans : (Nov.-23, Imp.)

Refer Unit-V, Page No. 147, Q.No. 14.

8. Explain the Instruction Pipelining with example.
Ans : (May-23, Aug.-21, Imp.)

Refer Unit-V, Page No. 148, Q.No. 15.

9. What are the factors affecting the performance of the CPU ?
Ans : (Aug.-21, Imp.)

Refer Unit-V, Page No. 153, Q.No. 17.

J

Vil

:

Rahul Publications

Data Representation:

codes.

structure, and Data transfer.

B
T T
ENEEEEEEEEEEEEEEE NN

.. S

Data types, Complements, Fixed and Floating Point representations, and Binary

Overview of Computer Function and Interconnections:

I Computer components, Interconnection structures, Bus interconnection, Bus

EEEEEEEEEEEEEEEEEEEEEEE N
IS EEEEEEEEEEEEEEEEEEE]

1.1 DATA REPRESENTATION I

1.1.1 Data Types
Q1.

Describe how data is stored in the
digital computers.

AnS : (Imp.)

> Binary information in digital computers is
stored in memory or processor registers.

> Registers contain either data or control
information.

> Control information is a bit or a group of bits
used to specify the sequence of command
signals needed for manipulation of the data
in other registers.

> Data-are numbers and other binary coded
information that are operated on to achieve
required.computational results.

> The data types found in the registers of
digital computers may be classified as one
of the following categories:

1. numbers used in arithmetic compu-
tations,

2. letters of the alphabet used in data
processing. and

3. other discrete symbols used for specific
purposes.

All types of data, except binary numbers, are
represented in computer registers in binary. This
is because registers are made up of flip-flops and
flip-flops are two-state devises that can store only
I'sand O’s.

Bits, bytes, nibble and word

> The terms bits, bytes, nibble and word are
used widely in reference to computer
memory and data size.

> Bits: can be defined as either a binary, which
can be 0, or 1.Itis the basic unit of data or
information in digital computers.

> Byte: a group of bits (8 bits) used to
represent a character. A byte is considered as
the basic unit of measuring memory size in
computer.

> A nibble: is half a byte, which is usually a
grouping of 4 bytes.

> Word: two or more bits make a word. The
term word length is used as the measure of
the number of bits in each word. For example,
a word can have a length of 16 bits, 32 bits,
64 bits etc.

What are the various number systems
used in Computer?

AnS :

Number systems are the technique to
represent numbers in the computer system
architecture, every value that you are saving or
getting into/from computer memory has a defined
number system.

Q2.

Computer architecture supports following
number systems.

» Binary number system

» Octal number system

» Decimal number system

» Hexadecimal (hex) number system

[1}
- J

Rahul Publications

MCA | YEAR | SEMESTER

1. Binary Number System

A Binary number system has only two digits that are 0 and 1. Every number (value) represents
with 0 and 1 in this number system. The base of binary number system is 2, because it has only two
digits.

2. Octal number system
Octal number system has only eight (8) digits from O to 7. Every number (value) represents with

0,1,2,3,4,5,6 and 7 in this number system. The base of octal number system is 8, because it has
only 8 digits.

3. Decimal number system

Decimal number system has only ten (10) digits from 0 to 9. Every number (value) represents with
0,1,2,3,4,5,6, 7,8 and 9 in this number system. The base of decimal number system is 10, because
it has only 10 digits.

» Decimal Number System to Other Base
[for example: Decimal Number System to Binary Number System]
» Other Base to Decimal Number System
[for example: Binary Number System to Decimal Number System]
» Other Base to Other Base
[for example: Binary Number System to Hexadecimal Number System]
Decimal Number System to Other Base

To convert Number system from Decimal Number System to Any Other Base is quite easy; you
have to follow just two steps:

(2)
Rahul Publications —J

UNIT - |

COMPUTER ARCHITECTURE

A)

B)

Divide the Number (Decimal Number) by the base of target base system (in which you want to
convert the number: Binary (2), octal (8) and Hexadecimal (16)).

Write the remainder from step 1 as a Least Signification Bit (LSB) to Step last as a Most Significant

Bit (MSB).

Decimal to Binary Conversion

Result

Decimal Number is : (12345),

12345

6172

3086

1543

771

385

152

96

48

24

12

NN IN NN IN NN NN NN (N

= OO OO |0 |O || O O |-

LSB

MSB

Binary Number is (11000000111001),

Decimal to Octal Conversion

Result

Decimal Number is : (12345),

Octal Number is

(30071),
8| 12345 1| LSB
8 1543 7
8 192 0
8 24 0
3 3 | MSB
' 3 |
= J Rahul Publications

MCA

| YEAR | SEMESTER

Decimal to Hexadecimal Conversion

Result

Example 1
Decimal Number is : (12345),

Hexadecimal Number is
(3039),,

16 | 12345 9 | LSB
16 Ffal 3

16 48 0

8 3 3| MSB
Example 2

Explanation regarding examples:

Below given exams contains the following rows:

A)
B)
<)
D)

E)

Row 1 contains the DIGITs of number (that is going to be converted).

Row 2

Row 3

Row 4

contains the POSITION of each digit in the number system.
contains the multiplication: DIGIT* BASE/™POSITION.

contains the calculated result of step C.

And then add each value of step D, resulted value is the Decimal Number.

Rahul Publications

UNIT - | COMPUTER ARCHITECTURE

Binary to Decimal Conversion

1 1 0 0 0 0 0 0 1 1 1 0 0 1
13 12 11 10 9 8 7 6 5 4 3 2 1 0
1x213 | 1x212 | 0x2'" | 0x2'° | 0x2° | Ox2® | Ox27 | Ox2° | 1x2° | 1x2* | 1x23 | Ox2? | Ox2' | 1x2°

8192 | 4096 0 0 0 0 0 0 32 16 8 0 0 1
=8192+4096+32+16+8+1
=12345
Octal to Decimal Conversion Result
3 0 0 7 1 = 12288+0+0+56+1
4 3 2 1l 0 = 12345
3*8' | 0*8% | 0*8” | 7*8 | 1*8° Decimal Number is: (12345)
12288 0 0 56 1

Hexadecimal to Decimal Conversion Result

Hexadecimal Number is : (2D5),

5 D (13) 5 = 512+208+5

2 1 0 =725
2*16% | 13*16" | 5*16° Decimal Number is: (725),,
512 208 5

Other Base System to Non-Decimal System
Steps

» Step 1: Convert the original number to a decimal number (base 10).

» Step 2: Convert the decimal number so obtained to the new base number.
Example

Octal Number - 25,

Calculating Binary Equivalent —

Step 1 - Convert to Decimal

Step Octal Number Decimal Number
Step 1 25, (2 < 8" + (5% 89),,
Step 2 25, (16 +5)
Step 3 25, 21,
[5)
—J Rahul Publications

MCA | YEAR | SEMESTER

Octal Number — 25, = Decimal Number — 21,
Step 2 - Convert Decimal to Binary

Step Operation Result Remainder
Step 1 21/2 10 1
Step 2 10/2 5 0
Step 3 512 2 1
Step 4 212 1 0
Step 5 1/2 0 1

Binary Number — 10101, = Octal Number — 25,
Shortcut Method - Octal to Binary

Steps

» Step 1 - Convert each octal digit to a 3 digit binary number (the octal digits may be treated
as decimal for this conversion).

» Step 2 - Combine all the resulting binary groups (of 3 digits each) into a single binary number.
Example
Octal Number - 25,

Calculating Binary Equivalent —

g

Rahul Publications

UNIT - | COMPUTER ARCHITECTURE

Step Octal Number Binary Number
Step 1 25, 2., 95,

Step 2 25, 010, 101,

Step 3 25, 010101,

Octal Number - 25, = Binary Number — 10101,
Shortcut Method - Binary to Hexadecimal
Steps
» Step 1 - Divide the binary digits into groups of four (starting from the right).
» Step 2 - Convert each group of four binary digits to one hexadecimal symbol.
Example
Binary Number — 10101,

Calculating hexadecimal Equivalent —

Step Binary Number Hexadecimal Number
Step 1 10101, 0001 0101

Step 2 10101, 1,5,

Step 3 10101, 15,

Binary Number — 10101, = Hexadecimal Number - 15,
Shortcut Method - Hexadecimal to Binary
Steps

» Step 1 - Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits
may be treated as decimal for this conversion).

» Step 2 - Combine all the resulting binary groups (of 4 digits each) into a single binary number.
Example
Hexadecimal Number — 15

Calculating Binary Equivalent —

Step Hexadecimal Number Binary Number
Step 1 15, 1,5,

Step 2 15 0001, 0101,
Step 3 15 00010101,

Hexadecimal Number “ 15 . = Binary Number “ 10101,

J Rahul Publications

MCA

| YEAR | SEMESTER

Q3. Write about other coding schemes in
number system.

Ans :

Symbolic representation using coding
schemes

> In computing, a single character such as a
letter, a number or a symbol is represented
by a group of bits. The number of bits per
character depends on the coding scheme
used.

> The most common coding schemes are:

can be represented as 110001, using
standard Binary Coded Decimal

Extended Binary Coded Decimal Interchange
code (EBCDIC)

> Extended Binary Coded Decimal Interchange
code (EBCDIC) is an 8-bit character-coding
scheme used primarily on IBM computers. A
total of 256 (28) characters can be coded
using this scheme. For example, the symbolic
representation of letter A using Extended
Binary Coded Decimal Interchange code is
11000001,.

American standard code for information
interchange (ASCII)

> American standard code for information
interchange (ASCII) is a 7-bit code, which
means that only 128 characters i.e. 27 can
be represented. However, manufactures
have added an eight bit to this coding scheme,
which can now provide for 256 characters.

> This 8-bit coding scheme is referred to as an
8-bit American standard code for information
interchange. The symbolic representation of
letter A using this scheme is 1000001,.

the number. Bitwise NOT is a unary operator
(operation on only one operand) that
performs logical negation on each bit. For
example the bitwise NOT of 1100, is0011_e.

> 0Os are negated to 1s while 1s are negated to
Os.

Twos compliment

> Twos compliment, equivalent to tens
compliment in decimal numbers, is the most
popular way of representing negative
numbers in computer systems. The
advantages of using this method are:

Rahul Publications

(8)
)

UNIT - |

COMPUTER ARCHITECTURE

(i) There are no two ways of representing
a zero as in the case with other two
methods.

(i) Effective addition and subtraction can
be done even with numbers that are
represented with a sign bit without a
need for circuitries to examine the sign
of an operand.

> The twos compliment of a number is obtained
by getting the ones compliment then adding
a 1. For example, to get the twos compliment
of a decimal number 45,

> First convert it to its binary equivalent then
find its ones compliment. Add a 1 to ones
compliment i.e

45 = 00101101,

Bitwise NOT (00101101) = 11010010

Two's compliment = 11010010,+1,

= 11010011,

Binary Addition

The five possible additions in binary are
1 0+0=0
2 0+1, =1
3. 1, +0=1
4
5

2

2

1, +1, = 10, (read as 0, carry 1)

1, +1, +1, =11, (read as 1, carry 1)
Example 1

Find the sum of 111, + 011,
Sol :

Arrange the bits vertically. 111

Working from the right to the left, we proceed
as follows: + 011

Step 1: 1,+1,=10,, (write down 0 and carry 1)
1010,
Step2: 1, +1, +1, =11, (add and carry

overdigittol + 1linordertogetl +1
+1. From the sum, write down digit one
the carry Forward)

Step3: 1, +1, + 0, = 10,, (add the carry
overdigittol +Oinordertogetl + 1
+ 0. since this is the last step, write down

10)
Therefore 111, + 0112 = 10102

This can be summarized in the table

1%t number 1 1 1

2" pnumber 0 1 1

Carry digit - 1 1

Sum 10 1 0
Example 2

Add the following binary number
10110,
1011,
+ 111,
Sol :

Add the first two numbers and then add the
sum to the third number a follows:

Stepl Step?2
10110, 100001,
+ 1011, + 111,
100001, 101000,
Binary Subtraction
Direct subtraction

The four possible subtractions in binary are:

1. 0-0=0

2. 1,-0=1,

3. 1,-1,=0

4. 10, -1, =1, (borrow 1 from the next most

significant digit to make 0 become 10,, hence
10,-1, = 1))
Subraction using ones compliment
The main purpose of using ones compliment
in computers is to perform binary subtraction. For

example to get the difference in 5 — 3, using the
ones compliment, we proceed as follows:

[o]
=

Rahul Publications

MCA

| YEAR | SEMESTER

1. Rewrite the problem as 5 + (-3) to show that
he computer binary subtraction by adding
the binary equivalent of 5 to ones compliment
of 3.

2. Convert the absolute value of 3 into 8-bits
equivalent i.e. 00000011,

3. Take the ones compliment of 00000011, e.
11111100, which is the binary represen-
tation of -3, .

4. Add the binary equivalent of 5 to ones
compliment of 3 i.e.

2’s compliment 11101111
31, = 00011111,
00011111 + 11101111 = (1)00001110,

1.1.3 Fixed and Floating Point Represen-
tations

Q5. Explain about fixed and floating point
representation of numbers.

Ans : (Imp.)

00000101
+ 11111001

(1) 00000010 Ignoring the overflow bit, the
resulting number is 00000010, which is directly read
as a binary equivalent of +2.

Example
Using twos compliment
31, -17,, in binary form.
Sol :
17, in binary 00010001
1’s compliment 11101110

Unsigned integer
Signed integer

Unsigned fixed point [Integer | Fraction |

Signed fixed point | Sign | Integer | Fraction |
Floating point | Sign |Exponent| Sign | Mantissa |

Variable length [Sign| Size | Digits |

Unsigned rational [Numerator| Denominator |

Signed rational [Sign | Numerator | Denominator |

Rahul Publications

: 10 i,

UNIT - | COMPUTER ARCHITECTURE

There are two major approaches to store real numbers (i.e., numbers with fractional component)
in modern computing. These are (i) Fixed Point Notation and (ii) Floating Point Notation. In fixed point
notation, there are a fixed number of digits after the decimal point, whereas floating point number allows
for a varying number of digits after the decimal point.

A) Fixed-Point Representation:

This representation has fixed number of bits for integer part and for fractional part. For example, if
given fixed-point representation is Illl.FFFF, then you can store minimum value is 0000.0001 and maximum
value is 9999.9999. There are three parts of a fixed-point number representation: the sign field, integer
field, and fractional field.

Unsigned fixed point | Integer | Fraction |

Signed fixed point | Sign| Integer | Fraction |

We can represent these numbers using:
> Signed representation: range from -(2&Y-1) to (2&V-1), for k bits.
> 1’s complement representation: range from -(2&%-1) to (2&4-1), for k bits.
» 2’s complementation representation: range from -(2&%) to (2%%-1), for k bits.

2’s complementation representation is preferred in computer system because of unambiguous
property and easier for arithmetic operations.

Example:

Assume number is using 32-bit format which reserve 1 bit for the sign, 15 bits for the integer part
and 16 bits for the fractional part.

Then, -43.625 is represented as following:

[1 | 000000000101011 | 1010000000000000 |

Sign Integer part Fractional part
bit
Where, 0 is used to represent + and 1 is used to represent. 000000000101011 is 15 bit binary
value for decimal 43 and 1010000000000000 is 16 bit binary value for fractional 0.625.

The advantage of using a fixed-point representation is performance and disadvantage is relatively
limited range of values that they can represent. So, it is usually inadequate for numerical analysis as it does
not allow enough numbers and accuracy. A number whose representation exceeds 32 bits would have to
be stored inexactly.

Smallest | 0 [000000000000000 | 0000000000000001 |

Sign Integer part Fractional part
bit

Largest [0 [111111111111111 [1111111111111111 |

Sign Integer part Fractional part
bit
|' 11 |' —
Rahul Publications

MCA | YEAR | SEMESTER

These are above smallest positive number and largest positive number which can be store in 32-bit
representation as given above format. Therefore, the smallest positive number is 2 H” 0.000015
approximate and the largest positive number is (2'5-1)+(1-21¢)=215(1-2%%) =32768, and gap between
these numbers is 216

We can move the radix point either left or right with the help of only integer field is 1.
B) Floating-Point Representation:

This representation does not reserve a specific number of bits for the integer part or the fractional
part. Instead it reserves a certain number of bits for the number (called the mantissa or significand) and a
certain number of bits to say where within that number the decimal place sits (called the exponent).

The floating number representation of a number has two part: the first part represents a signed

Mantissa

Biased form

number) and is referred to as a “hidden bit”.

Then -53.5 is normalized as -53.5=(-110101.1),=(-1.101011) x 2°, which is represented as
following below,

[1 [00000101 [10101100000000000000000 |
Sign Exponent part Mantissa part
bit

Where 00000101 is the 8-bit binary value of exponent value +5.
Note that 8-bit exponent Geld is used to store integer exponents -126 d” n d” 127.

The smallest normalized positive number that ats into 32 bits is (1.00000000000000000000000),
X 2126=2-126H”1 18x10% | and largest normalized positive number that Gts into 32 bits is
(1.11111171211111111111111), X 2% = (2*-1) x 2'°* ~ 3.40 x 10%. These numbers are represented
as following below,

(12)
Rahul Publications —J

UNIT - | COMPUTER ARCHITECTURE

Smallest | 0 | 10000010 |00000000000000000000000 |
Sign Exponent part Mantissa part
bit

Largest | o [01111111 [11111111111111111111111 |
Sign Exponent part Mantissa part
bit

The precision of a floating-point format is the number of positions reserved for binary digits plus
one (for the hidden bit). In the examples considered here the precision is 23+1 = 24.

The gap between 1 and the next normalized floating-point number is known as machine epsilon.
the gap is (1+2%)-1 = 22 for above example, but this is same as the smallest positive floating-point
number because of non-uniform spacing unlike in the fixed-point scenario.

Note that non-terminating binary numbers can be represented in floating point representation,
e.g., 1/3 = (0.010101 ...), cannot be a Goating-point number as its binary representation is non-
terminating.

IEEE Floating point Number Representation:

IEEE (Institute of Electrical and Electronics Engineers) has standardized Floating-Point Representation
as following diagram.

n 0

Sign bit Exponent Mantissa

So, actual number is (-1)%(1+m)x2©B=) where s is the sign bit, m is the mantissa, e is the
exponent value, and Bias is the bias number. The sign bit is O for positive number and 1 for negative
number. Exponents are represented by or two's complement representation.

According to IEEE 754 standard, the floating-point number is represented in following ways:
» Half Precision (16 bit): 1 sign bit, 5 bit exponent, and 10 bit mantissa

» Single Precision (32 bit): 1 sign bit, 8 bit exponent, and 23 bit mantissa

» Double Precision (64 bit): 1 sign bit, 11 bit exponent, and 52 bit mantissa

» Quadruple Precision (128 bit): 1 sign bit, 15 bit exponent, and 112 bit mantissa

1.1.4 Binary Codes

Q6. Write about various types of binary codes.
Ans :

In the coding, when numbers, letters or words are represented by a specific group of symbols, it is
said that the number, letter or word is being encoded. The group of symbols is called as a code. The digital
data is represented, stored and transmitted as group of binary bits. This group is also called as binary
code. The binary code is represented by the number as well as alphanumeric letter.

' 13 |
—J Rahul Publications

MCA | YEAR | SEMESTER

Advantages of Binary Code
Following is the list of advantages that binary code offers.
» Binary codes are suitable for the computer applications.
> Binary codes are suitable for the digital communications.
» Binary codes make the analysis and designing of digital circuits if we use the binary codes.
» Since only 0 & 1 are being used, implementation becomes easy.
Classification of Binary Codes

The codes are broadly categorized into following four categories.

Decimal

Positional J'
weights —3» 8+4+2+1
Code

2) Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-weighted
codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal
numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2 or
(3)10 to each code word in 8421. The excess-3 codes are obtained as follows —

Add
Decimal Number =——— 8421 BCD =—— Excess-3
0011

— ' 14 }
Rahul Publications —J

UNIT - | COMPUTER ARCHITECTURE

Example
Decimal BCD Excess-3
1 8 4 2 1 BCD + 0011
1 0 0000 00 11
1 00 01 01 00
2 0010 01 0 1
3 0 0 11 01 10
4 01 00 01 1 1
5 01 0 1 1.0 0 0
6 0110 1 0 0 1
7 011 1 1 0 1 0
8 1000 10 1 1
9 1 00 1 1100

3) Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific weights
assigned to the bit position. It has a very special feature that, only one bit will change each time the
decimal number is incremented as shown in fig. As only one bit changes at a time, the gray code is called
as a unit distance code. The gray code is acyclic code. Gray code cannot be used for arithmetic operation.

Decimal BCD Gray
0 0 0 0O 0 0 0O
1 0 0 0 1 0 0 0 1
2 0 0 10 0 0 11
3 0 0 11 0010
4 0100 0110
5 010 1 0111
6 01 10 010 1
7 01 11 0100
8 10 00 1100
9 1001 1101

Application of Gray code
» Gray code is popularly used in the shaft position encoders.

» A shaft position encoder produces a code word which represents the angular position of the
shaft.

|l 15 l

Rahul Publications

MCA | YEAR | SEMESTER

4) Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way to express
each of the decimal digits with a binary code. In the BCD, with four bits we can represent sixteen numbers
(0000 to 1111). But in BCD code only first ten of these are used (0000 to 1001). The remaining six code
combinations i.e. 1010 to 1111 are invalid in BCD.

Decimal 0 1 2 3 4 5 6 7 8 9

BCD 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001

» American Standard Code for Information Interchange (ASCII).
» Extended Binary Coded Decimal Interchange Code (EBCDIC).
» Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly used
worldwide while EBCDIC is used primarily in large IBM computers.

6) Error Codes

There are binary code techniques available to detect and correct data during data transmission.

Error Code Description
Error Detection and Correction Error detection and correction code techniques
(16)
Rahul Publications —J

UNIT - | COMPUTER ARCHITECTURE

I 1.2 OvervieEw oF COMPUTER FUNCTION AND INTERCONNECTIONS

1.2.1 Computer Components
Q7. What is digital computer? Explain the block diagram of it.
(OR)
Explain the basic components of a computer.
Ans : (Imp.)

It is an electronic computer in which the input is discrete rather than continuous, consisting of
combinations of numbers, letters, and other characters written in an appropriate programming language
and represented internally in binary notation, i.e., using only the two digits O and 1. By counting,
comparing, and manipulating these digits or their combinations according to a set of instructions held in
its memory, a digital computer can perform such tasks as to control industrial processes and regulate the
operations of machines; analyze and organize vast amounts of business data; and simulate the behaviour
of dynamic systems.

Block Diagram of a Computer

All these major Operations of the computer are performed by using the five basic components of
the computer, which are interconnected each other, known as block diagram of the computer.

The following are the five major components of the block diagram of a computer.

Input Unit
» Output Unit
» Arithmetic and Logic Unit
» __Control Unit

Memory Unit

The following figure shows the block diagram of the computer with five major components.

CENTRAL PROCESSING UNIT

Memory Unit
Input Device p ALU S Output Device
Control Unit
[17] —
—J Rahul Publications

MCA | YEAR | SEMESTER

(@ Input Unit

The Input Unit accepts the instructions and data from outside world through input devices like
keyboard, mouse etc. Then it converts these instructions and data from user understandable form to
electronic signals, which are understood by the computer. Then it supplies these signals to the Central
Processing Unit for further processing.

(b) Central Processing unit

Once the data is accepted from the input unit, it fed to the CPU for further processing before the
output is generated. This is known as an electronic brain.

CPU carries out instructions and tells the rest of the computer system what to do. This is done by the
Control Unit of the CPU which sends command signals to the other components of the computer

Once the computations are done, the results are transferred to the storage unit by the control unit and
then it is send to the output unit for displaying results.

The ALU is again sub divided into two functional units

» Arithmetic Unit : The arithmetic unit executes arithmetic operations. Which includes addition,
subtraction, multiplication, division

» Logical Unit : The logic unit executes logical operations. Which includes comparisons like
greater than, less than, equals to etc. It also performs logical operations like AND, OR and
NOT.

(iii) Control Unit

» It controls all other units in the computer. The control unit must communicate with both the
arithmetic logic unit and main memory. The control unit instructs the arithmetic logic unit
which arithmetic operations or logical is to be performed.

(18)
Rahul Publications —J

UNIT - | COMPUTER ARCHITECTURE

» The control unit instructs the input unit, where to store the data after receiving it from the
user.It controls the flow of data and instructions from the storage unit to ALU.

» It also controls the flow of results from the ALU to the storage unit.
c) OutPutUnit

» It produces the results or the information after the computation to the outside world through
the output devices like monitor, printer etc.

It can also store the output to the secondary storage devices like floppy disks, hard disks, CD etc.
The control Unit instructs the output unit to produce the output when ever it is necessary to the user.

1.2.2 Interconnection Structures
Q8. Explain about the interconnection structure of the computer.

AnS :

> A computer consists of a set of components or modules of three basic types (processor, memory, I/
0) that communicate with each other.

> In effect, a computer is a network of basic modules. Thus, there must be paths for connecting the
modules.

> The collection of paths connecting the various modules is called the interconnection structure. The
design of this structure will depend on the exchanges that must be made among modules.

> Figure below suggests the types of exchanges that are needed by indicating the major forms of
input and output for each module type.

Read Memory

Write
N words

Address > l.b oM Data
Data b N-1[0O107Tm

. /O module —

Write data

Address

3

¢
¢
E

data
Internal
data Interrupt :
External signals
Address >

data

Instructions >

Data > CPU signals
Interrupt Data >
signals
Figure Computer Modules
' 19 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

> Memory: Typically, a memory module will consist of N words of equal length. Each word is assigned
a unique numerical address (0, 1, ..., N-1). Aword of data can be read from or written into the
memory.The nature of the operation is indicated by read and write control signals. The location for
the operation is specified by an address.

> 1/O module: From an internal (to the computer system) point of view, 1/O is functionally similar to
memory. There are two operations, read and write. Further, an I[/O module may control more
than one external device. We can refer to each of the interfaces to an external device as a port and
give each a unique address (e.g., O, 1,..., M - 1). In addition, there are external data paths for
the input and output of data with an external device. Finally, an [/O module may be able to send
interrupt signals to the processor.

> Processor: The processor reads in instructions and data, writes out data after processing, and

Thus, only one device at a time can successfully transmit.

> Typically, a bus consists of multiple communication pathways, or lines. Each line is capable of
transmitting signals representing binary 1 and binary 0. Over time, a sequence of binary digits can
be transmitted across a single line.

> Taken together, several lines of a bus can be used to transmit binary digits simultaneously (in
parallel).

> For example, an 8-bit unit of data can be transmitted over eight bus lines. Computer systems
contain a number of different buses that provide pathways between components at various levels
of the computer system hierarchy.

> Abus that connects major computer components (processor, memory, I[/O) is called a system bus.
The most common computer interconnection structures are based on the use of one or more
system buses.

{ 20)
Rahul Publications —J

UNIT - | COMPUTER ARCHITECTURE

System bus - This consists of data bus, address bus and control bus
Data bus - A bus which carries data to and from memory/IO is called as data bus

Address bus - This is used to carry the address of data in the memory and its width is equal to the
number of bits in the MAR of the memory.

For ex. If comp. memory of 64K has 32 bit words then the computer will have a data bus of 32 bits
wide and the address bus of 16 bits wide

Control Bus - Carries the control signals between the various units of the computer. Ex: Memory
Read/write, I/O Read/write

Two types of Bus organizations:
(i) Single Bus organization
(i) Two bus Organization

(i) Single Bus Architecture

MAB

A ? *

I I I

/0 Processor Memory
Units

Single - Bus Organization
Three units share the single bus. At any given point of time, information can be transferred between
any two units
> Here I/O units use the same memory address space (Memory mapped I/O)

» So no special instructions are required to address the 1/O, it can be accessed like a memory
location

» Since all the devices do not operate at the same speed, it is necessary to smooth out the
differences in timings among all the devices A common approach used is to include buffer
registers with the devices to hold the information during transfers

Ex: Communication between the processor and printer

(if) Two Bus Architecture

MAB

I/0 Units Processor Memory

DB

CcB CcB

Two Bus Organization

' 21 | -
= J Rahul Publications

MCA

| YEAR | SEMESTER

> Various units are connected through two independent buses.

> I/O units are connected to the processor though an 1/O bus and Memory is connected to the

processor through the memory bus.

> I/O bus consists of address, data and control bus Memory bus also consists of address, data and

control bus In this type of arrangements processor completely supervises the transfer of information

to and from I/O units. All the information is first taken to processor and from there to the memory.

Such kind of transfers are called as program controlled transfer.

Alternative Two Bus Architecture

Processor

DB
Memory
CcB
MAB UDB CB
Peripheral
—| Processing Unit

PCB (Peripheral control bus)

= E &)

I1/0 devices
Alternative Two-Bus Organization

> In this1/O units are directly connected to the memory and not to the processor.

The 1/O units are connected to special interface logic known as Direct Memory Access (DMA) or an

I/0 channel.

> This is also called as Peripheral Processor Unit (PPU)

In this the data from the 1/O device is directly sent to memory bypassing the processor.

1.2.4 Busstructure

Q10. Explain about the structure of typical bus.

AnS :

> A system bus consists, typically, of from about 50 to hundreds of separate lines. Each line is assigned

a particular meaning or function.

> Although there are many different bus designs, on any bus the lines can be classified into three

functional groups : data, address, and control lines.

Rahul Publications

= 22 ',

UNIT - | COMPUTER ARCHITECTURE

> In addition, there may be power distribution lines that supply power to the attached modules.

> The data lines provide a path for moving data among system modules. These lines, collectively, are
called the data bus.

> For example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts
the address of the desired word on the address lines. Clearly, the width of the address bus determines
the maximum possible memory capacity of the system.

Furthermore, the address lines are generally also used to address I/O ports.

Typically, the higher-order bits are used to select a particular module on the bus, and the lower-
order bits select a memory location or I/O port within the module.

> For example, on an 8-bit address bus, address 01111111 and below might reference locations in
a memory module (module 0) with 128 words of memory, and address 10000000 and above
refer to devices attached to an I/0O module (module 1).

[23]
—J Rahul Publications

MCA | YEAR | SEMESTER

Control Lines

> The control lines are used to control the access to and the use of the data and address lines.
Because the data and address lines are shared by all components, there must be a means of
controlling their use.

> Control signals transmit both command and timing information among system modules. Timing
signals indicate the validity of data and address information. Command signals specify operations
to be performed.

Typical control lines include:

0 Memory write: Causes data on the bus to be written into the addressed location.
Memory read: Causes data from the addressed location to be placed on the bus.
1/0 write: Causes data on the bus to be output to the addressed I/O port.

1/0 read: Causes data from the addressed 1/O port to be placed on the bus.
Transfer ACK: Indicates that data have been accepted from or placed on the bus.
Bus request: Indicates that a module needs to gain control of the bus.

Bus grant: Indicates that a requesting module has been granted control of the bus.
Interrupt request: Indicates that an interrupt is pending.

Interrupt ACK: Acknowledges that the pending. interrupt has been recognized.

V V.V V V V V V VY

Clock: Is used to synchronize operations.
» Reset: Initializes all modules

The operation of the busis as follows. If one module wishes to send data to another, it must do two
things:

(1) obtain the use of the bus, and

(2) transfer data via the bus.

If one module wishes to request data from another module, it must
(1) obtain the use of the bus, and

(2) transfer a request to the other module over the appropriate control and address lines. It must
then wait for that second module to send the data.

Physically, the system bus is actually a number of parallel electrical conductors. In the classic bus
arrangement, these conductors are metal lines etched in a card or board (printed circuit board).

The bus extends across all of the system components, each of which taps into some or all of the bus
lines.

1.2.5 Data Transfer
Q11. Explain three modes of data transfer between 1/O devices and a computer system.
Ans . (Imp.)

The three modes of data transfer or three possible techniques of I/O operations are as follows.

' 24 }
Rahul Publications)

UNIT - | COMPUTER ARCHITECTURE

1. Programmed I/O

2. Interrupt Driven 1/O

3. Direct Memory Access (DMA)
1. Programmed 1/O

It is a technique of organizing an I/O activity such that the process gives full access to a seperate unit
called 1/0 model to take charge of the entire 1/0 activity, which (I/O model) inturn does not take
any responsibility to intimate the processor about completion of it’s task.

In case of programmed I/O whenever a processor indulges itself in the program execution on, (say)
encountering an /O activity, it calls the described 1/0 module and authorize it. The I/O module after

and receives the data from the corresponding I/O unit meanwhile, the processor resumes to some
other task. As the 1/0O module completes its task, it intimates the processor about it’s status by
sending an interrupt through control signals and wait until it receives the response from the processor.
The processor responds back to the I/O module by sending the address of the memory(where the
required data has to be stored). The 1/0O module places it’s data to the lines and reverts back to the
same address.

Case 2:

Here the interrupt driven 1/O is analyzed from the processors view. Whenever the processor indulges
itself in executing the given program and encounter an I/O activity it temporarily sustain it’s activity
(by placing it’s status in the PC and stack pointer), transfer a read command to the 1/O module and
resumes back to its execution by popping the data from PC and SP registers. The 1/0O module on
receiving command collects the required data from the I/O devices, interrupts the processor, and
the entire activity goes on as it was observed in case 1.

[25]
—J Rahul Publications

MCA | YEAR | SEMESTER

3. Direct memory access (DMA)

This technique is more efficient than the programmed 1/O and interrupt driven techniques. DMA or
Direct Memory Access is granted to an independent block which resides either on the system bus or
near the 1/0O module. Whenever the processor analyzes the requirement of performing an 1/O
activity, it activates the given DMA module by transmitting special information consisting of data
such as, the address of the given 1/O devices, status of READ/WRITE operations, address of the
memory location, amount of data to be READ/WRITE etc. and the processor resume back to its
execution. The DMA module based on this information performs the given task and interrupts the
processor about it’s status. Hence, in this process, the processor is involved only at the beginning
and at the end. As the 1/O devices can now transmit their data or interact with the memory directly,
the process is called DMA.

g

Rahul Publications

Register Transfer Micro operations

Register Transfer Language, Register Transfer, Bus and Memory Transfers,
U N I T Arithmetic, Logic and Shift micro operations, Arithmetic Logic Shift Unit.

Basic Computer Organization and Design

B
T T
ENEEEEEEEEEEEEEEE NN
T
T T

I I Instruction Codes, Computer Registers, Computer Instructions, Timing and
Control, Instruction Cycle, Memory reference instruction, Input-Output and
L Interrupt. i

2.1 ReaciIsTER TRANSFER MicRO OPERATIONS I

2.1.1 Register Transfer Language

Q1. Explain the Register Transfer Language.

Ans : (Imp.)
Definition: The symbolic notation used to describe the microoperation transfers among registers

is called a register transfer language.

> The term “register transfer” implies the availability of hardware-logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or another register.

> The word “language” is borrowed from programmers, who apply this term to programming languages.

> A register transfer language is a system for expressing in symbolic form the microoperation sequences
among the registers of a digital module.

> It is a convenient tool for describing the internal organization of digital computers in concise and
precise mannetr.

> It can also be used to facilitate the design process of digital systems.

> Information transfer from one register to another is designated in symbolic form by means of a
replacement operator.

> The statement below denotes a transfer of the content of register R1 into register R2. R2 - R1

» Astatement that specifies a register transfer implies that circuits are available from the outputs of the
destination register has a parallel load capability.

> Every statement written in a register transfer notation implies a hardware construction for implementing
the transfer.

2.1.2 Register Transfer

Q2. Explain the Register Transfer in detail with block diagram and timing diagram.
Ans :

Definition: Information transfer from one register to another is designated in symbolic form by
means of a replacement operator is known as Register Transfer.

R2 — R1 Denotes a transfer of the content of register R1 into register R2.

' 27 | -
= J Rahul Publications

MCA | YEAR | SEMESTER

Computer registers are designated by capital letters (sometimes followed by numerals) to denote the
function of the register.

For example:
MAR Holds address of memory unit
PC Program Counter
IR Instruction Register
R1 Processor Register

Below figure (a) shows the representation of registers in block diagram form.

Register Showing individual bits

[R1 | Lz 6 5 4 3 2 1 0]
15 0 15 8 7 0
| R2] | PC(H) | PC(L) |

Numbering of bits Subfields

Figure (a) : Block diagram of register

operation be executed by the hardware only if P = 1.

» Every statement written in a register transfer notation implies a hardware construction for
implementing the transfer. Below figure shows the block diagram that depicts the transfer from
R1 to R2.

Control |P___ Load R2

Circuit Clack

1n
R1

Figure (b) Transfer from R1 to R2 when P =1

{ 28)
Rahul Publications —J

UNIT -1

COMPUTER ARCHITECTURE

t+1

t
gisan, = l==3 L= L L_

Load —/_;1

Transfer occurs here

Figure (c) : Timing diagram
The n outputs of register R1 are connected to the n inputs of register R2. The letter n will be used
to indicate any number of bits for the register.

In the timing diagram, P is activated in the control section by the rising edge of a clock pulse at
time t.

The next positive transition of the clock at time t + 1 finds the load input active and the data
inputs of R2 are then loaded into the register in parallel.

P may go back to O at time t + 1; otherwise, the transfer will occur with every clock pulse
transition while P remains active.

The basic symbols of the register transfer notation are listed in Table below:

Symbol Description Examples
Letters .

Denotes a register MAR, R2
(and numerals)
Parentheses () | Denotes a part of a register R 2(0-7), R2(L)
Arrow «— Denotes transfer of information R2«R1
Comma, Separates two micro operations R2«-R1, R1«R2

Table : Basic Symbols for Register Transfers

Registers‘are denoted by capital letters, and numerals may follow the letters.

>

>

Parentheses are used to denote a part of a register by specifying the range of bits or by giving a
symbol name to a portion of a register.

The arrow denotes a transfer of information and the direction of transfer.
A comma is used to separate two or more operations that are executed at the same time.

The statement below, denotes an operation that exchanges the contents of two registers during
one common clock pulse provided that T = 1.

T.R2-R1, R1-R2

This simultaneous operation is possible with registers that have edge-triggered flipflops.

2.1.3 Bus and Memory Transfers

Q3. Design and explain a common bus system for four register.

AnS :

» Atypical digital computer has many registers, and paths must be provided to transfer information
from one register to another.

' 29 |
=J Rahul Publications

MCA | YEAR | SEMESTER

> The number of wires will be excessive if separate lines are used between each register and all other
registers in the system.

> A more efficient scheme for transferring information between registers in a multiple register
configuration is a common bus system.

» Abus structure consists of a set of common lines, one for each bit of a register, through which binary
information is transferred one at a time.

Control signals determine which register is selected by the bus during each particular register transfer.
One way of constructing a common bus system is with multiplexers.

The multiplexers select the source register whose binary information is then placed on the bus.
The construction of a bus system for four registers is shown in figure below.

Each register has four bits, numbered 0 through 3.

vV V V V V VY

The bus consists of four 4 < 1 multiplexers each having four data inputs, O through-3; and two
selection inputs, S1 and SO.

> The diagram shows that the bits in the same significant position in each register are connected to the
data inputs of one multiplexer to form one line of the bus

» 4line
»common
» bus
55
| |
j
|
4x1 4x1 4x1 4x1
MUX 3 MUX 2 MUX MUX O
tTt1 FTtTt Tttt
N, Gz Ry A2 D & Br A Do Co Bz An
Lfnfno (:l'f(f B> By Bq Ay Ay Ao
32 10 32 10 J 2 10 3 2 10
Register D Register € Register B Register A

Figure: Bus system for four registers

The two selection lines S1 and SO are connected to the selection inputs of all four multiplexers.

» The selection lines choose the four bits of one register and transfer them into the fourline common
bus.

{ 30)
Rahul Publications —J

UNIT- I COMPUTER ARCHITECTURE

(ii)

(iii)

S1 So Register

selected
0 0 A
0 1 B
1 0 C
1 1 D

Table : Function Table for Bus

» When S1 SO = 00, the 0 data inputs of all four multiplexers are selected and applied to the
outputs that form the bus.

» This causes the bus lines to receive the content of register A since the outputs of this register are
connected to the 0 data inputs of the multiplexers.

Therefore 4 selection input lines should be there in each multiplexer.

What size of multiplexers is needed?

size of multiplexers= Total number of register X 1

=16X1

Multiplexer of 16 x 1 size is needed to design the above defined common bus.
How many multiplexers are there in a bus?

No. of multiplexers = bits of register

=32

32 multiplexers are needed in a bus.

{ 31]
—J Rahul Publications

MCA | YEAR | SEMESTER

Q5. Explain three-state bus buffer.
OR

Explain the operation of three state bus buffers and show its use in design of common
bus.

AnS :

» Abus system can be constructed with three-state gates instead of multiplexers.
» Athree-state gate is a digital circuit that exhibits three states.

o State 1: Signal equivalent to Logic 1

o State 2: Signal equivalent to Logic O

o State 3: High Impedance State (behaves as open circuit)

> The high-impedance state behaves like an open circuit, which means that the output is disconnected
and does not have logic significance.

> The most commonly used design of a bus system is the buffer gate.

> The graphic symbol of a three-state buffer gate is shown in figure below:
| Output Y=A if C=1
Normal Input A
| High Impedance if C=0
Control Input C

Figure : Graphic symbols for three - state buffer

> It is distinguished from a normal buffer by having-both a normal input and a control input.

> The control input determines the output state. When the control input C is equal to 1, the output is
enabled and the gate behaves like any conventional buffer, with the output equal to the normal
input.

> When the control input C is 0, the output is disabled and the gate goes to a high impedance state,
regardless of the value in the normal input.

> The high-impedance state of a three-state gate provides a special feature not available in other gates.

> Because of this feature, a large number of three-state gate outputs can be connected with wires to
form a common bus line without endangering loading effects.

> The construction of a bus system with three-state buffers is demonstrated in figure 1.6 below:

Bus line for bit 0
Ao r\
[
p—
Co
%
Do
] s1 0 —
Select{_ 1
S0 2x4 2
Enable — 3
Decoder
— = 32 ,'
Rahul Publications

UNIT- I COMPUTER ARCHITECTURE

> The outputs of four buffers are connected together to form a single bus line.

> The control inputs to the buffers determine which of the four normal inputs will communicate with
the bus line.

> No more than one buffer may be in the active state at any given time.

> The connected buffers must be controlled so that only one three-state buffer has access to the bus
line while all other buffers are maintained in a high impedance state.

> One way to ensure that no more than one control input is active at any given time is to use a decoder,
as shown in the figure: Bus line with three state-buffers.

> When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a high-
impedance state because all four buffers are disabled.

» Consider a memory unit that receives the address from a register, called the address register,
symbolized by AR.

» The data are transferred to another register, called the data register, symbolized by
» DR. The read operation can be stated as follows:
Read: DR — M[AR]

» This causes a transfer of information into DR from the memory word M selected by the address
in AR.

» The write operation transfers the content of a data register to a memory word M selected by the
address. Assume that the input data are in register R1 and the address is in AR.

» Write operation can be stated symbolically as follows:

[33]
—J Rahul Publications

MCA

| YEAR | SEMESTER

Write: M[AR] = R1

This causes a transfer of information from R1 into memory word M selected by address AR.

Read
AR F——— Memew
unit e——— Write
Data out Data in

2.1.4 Arithmetic

Q7. Write various Arithmetic Micro-operation.
Ans :
The basic arithmetic micro-operations are:
1. Addition
2. Subtraction
3. Increment
4. Decrement
5. Shift
The additional arithmetic micro operations are:
1. Add with carry
2. Subtract with borrow
3. Transfer/Load , etc.
Summary of Typical Arithmetic Micro-Operations:
Addition R3 <« R1+R2 Contents of R1 plus R2 transferred to R3
Subtraction R3 <« R1-R2 Contents of R1 minus R2 transferred to R3
Complement R2 <« R2' Complement the contents of R2
Add with carry R2 < R2'+1 2's complement the contents of R2 (negate)
Subtract with born R3« R1+R2'+1 Subtraction
Increment R1 <« R1+1 Increment
Decrement R1«< R1-1 Decrement
Transfer F=A Transfer A
Shift R, = ShIRt Shift R, one bit left
Q8. Explain Binary Adder in detail
Ans :

To implement the add micro operation with hardware, we need :

1. Registers : that hold the data

2. Digital component: that performs the arithmetic addition.

Rahul Publications

: 34 i,

UNIT- I COMPUTER ARCHITECTURE

Full-adder
The digital circuit that forms the arithmetic sum of two bits and a previous carry is called a full-adder.
Binary adder

The digital circuit that generates the arithmetic sum of two binary numbers of any lengths is called a
binary adder.

The binary adder is constructed with full-adder circuits connected in cascade, with the output carry
from one full-adder connected to the input carry of the next full-adder.

A3 B2 A2 B1 A1 BO A0

T T T U

FA 31 FA 21 FA U FA [« CO
I v v v v
ca s3 s2 s1 so

Figure : 4-bit binary adder

to A.

> The 2’s complement can be obtained by taking the I’'s complement and adding one to the least
significant pair of bits. The I's complement can be implemented with inverters and a one can be
added to the sum through the input carry.

> The addition and subtraction operations can be combined into one common circuit by including an
exclusive-OR gate with each full-adder.

> The mode input M controls the operation.
0o When M = 0 the circuit is an Adder

o0 When M = 1 the circuit becomes a Subtractor

[35 |
—J Rahul Publications

MCA | YEAR | SEMESTER

> Each exclusive-OR gate receives input M and one of the inputs of B.
o WhenM=0,
0 Wehave CO=0
o] B+0=B
> The full-adders receive the value of B, the input carry is 0, and the circuit performs A plus B.
o WhenM=1,
0o We have C0=1
o B+ 1=B'";Bcomplement

> The B inputs are all complemented and 1is added through the input carry. The circuit performs the
operation A plus the 2’s complement of B.

0 A+ 2'scompliment of B

> A 4-bit adder-subtractor circuit is shown as follows:

B3 A3 B2 A2 B1 A1 B0 A0

z v v \4 v

A |€2] FA €2 FA &Y FA |£°
I v v il !
ca s3 s2 s1 =)

Figure : 4-bit Adder -Subtractor

3
| ’
F

> For unsigned numbers,
o] If A>=B, then A-B
o If A<B, then B-A
> For signed numbers,

0 Result is A-B, provided that there is no overflow.

Q10. Explain briefly about Binary Incrementer
Ans :

> The increment micro operation adds one to a number in a register.
> For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is incremented.
0110

+1

0111

g

Rahul Publications

UNIT -1 COMPUTER ARCHITECTURE

> The diagram of a 4-bit combinational circuit incrementer is shown above. One of the inputs to the
least significant half-adder (HA) is connected to logic-1 and the other input is connected to the least
significant bit of the number to be incremented.

> The output carry from one half-adder is connected to one of the inputs of the next higher- order half-
adder.

> The circuit receives the four bits from AO through A3, adds one to it, and generates the incremented
output in SO through S3.

> The output carry C4 will be 1 only after incrementing binary 1111. This also causes

i

As As Ay

x(—?

>
<
>
~
>
~<

HA HA HA HA

e

C. Ss 51

Figure : 4-bit-binary incrementer

Q11. Draw block diagram of 4-bit arithmetic circuit and explain it in detail.

Ans :

The arithmetic micro operations can be implemented in one composite arithmetic circuit.
The basic component of an arithmetic circuit is the parallel adder.

By controlling the data inputs to the adder, it is possible to obtain different types of arithmetic operations.

YV V V VY

Hardware implementation consists of:

1. 4 full-adder circuits that constitute the 4-bit adder and four multiplexers for choosing different
operations.

2. There are two 4-bit inputs A and B

The four inputs from A go directly to the X inputs of the binary adder. Each of the four inputs
from B is connected to the data inputs of the multiplexers. The multiplexer’s data inputs also
receive the complement of B.

3. The other two data inputs are connected to logic-0 and logic-1. Logic-0 is a fixed voltage value
(O volts for TTL integrated circuits) and the logic-1 signal can be generated through an inverter
whose input is O.

4. The four multiplexers are controlled by two selection inputs, S1 and SO.

' 37 |
—J Rahul Publications

MCA | YEAR | SEMESTER

5. The input carry Cin goes to the carry input of the FA in the least significant position. The other
carries are connected from one stage to the next.

6. 4-bit output DO...D3

The diagram of a 4-bit arithmetic circuit is shown below figure 1.10:

Cin
s1 |
80
AD Xo Co
—rl
A
80 %0 4x1
l—bC ; MUX yo ©1
3 |
X1 €
_r o
B1 0 41
I_bc 1 vi c2
2
3 |
————————— X2 2
ﬂt f— D2
82
ax1
o f o
MuX
s]
3
X3 3
= — D3
= T f: A vi ©4
[>C 1 MuX
s [
0 __Do_ 1

Figure : 4-bit arithmetic circuit
The output of binary adder is calculated from arithmetic sum.
D=A+Y +Cin

Select Inpu Output Microoperation
S1 So t D=A+Y+Cin
Cin Y
0 0 0 B D=A+B Add
0 0 1 B D=A+B+1 Add with Carry
0 1 0 B |D=A+P Subtract with Borrow
0 1 1 B |[D=A+B'+1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A-1 Decrement A
1 1 1 1 D=A Transfer A

Table : 4 — 4 Arithmetic Circuit Function Table

Rahul Publications

g

UNIT- I COMPUTER ARCHITECTURE

» WhenS1S0=00
o IfCin=0, D=A+B; Add
o If Cin=1, D=A+B+1; Add with carry
> WhenS1S0=01
o IfCin=0, D=A++B ; Subtract with borrow
o If Cin=1, D=A+B +1; A+2’s compliment of B i.e. A-B
> When S1S0=10
0 Input B is neglected and Y== logic ‘0’
o D=A+0+Cin
° If Cin=0, D=A, Transfer A
° If Cin=1, D=A+1;Increment A

+ 11 0 0 Content of R2

0110 Content of R1 afterP =1

> The logic micro-operations are seldom used in scientific computations, but they are very useful for
bit manipulation of binary data and for making logical decisions.

Notation:

> The symbol v will be used to denote an OR microoperation and the symbol “ to denote an AND
microoperation. The complement microoperation is the same as the 1’s complement and uses a bar
on top of the symbol that denotes the register name.

[39]
—J Rahul Publications

MCA | YEAR | SEMESTER

> Although the + symbol has two meanings, it will be possible to distinguish between them by noting
where the symbol occurs. When the symbol + occurs in a micro operation, it will denote an arithmetic
plus. When it occurs in a control (or Boolean) function, it will denote an OR operation.

P+ Q:R1—»R2+R3, R4—>R5VR6

> The + between P and Q is an OR operation between two binary variables of a control function. The
+ between R2 and R3 specifies an add microoperation. The OR micro operation is designated by
the symbol V between registers R5and R6.

List of Logic Micro Operations
> There are 16 different logic operations that can be performed with two binary variables.

> They can be determined from all possible truth tables obtained with two binary variables as shown in

table below.
X |Y [(Fo |F1 |F2 |F3 |Fa |Fs |Fe |F7 |Fs |[Fo (F1 [F1 [F1 |F1 |F1 |F1
0 1 2 3 4 5
o |o |0 |O |O (O OO |O O |1 |1 |2 |1 |1 |1 |1 |1
o |1 /0 |0 |O (O (21 (2 |12 |1 |O]JOJO]|O |1 |1 |1 |1
i1/0 (O (O (1 (2 (O |O |1 |12 |0 |O |21 |1 (O (O (1 (1
1 1/1 (O (12 (O (12 (O |1 |O |1 |0 |1 |O (|1 (O (1 (O |1
Table : Truth Tables for 16 Functions of Two Variables
Boolean Microoperation Name
function

Fo=0 Fe<0 Clear

F1 =Xy F—AAB AND

F2 = xy' FAAB

F3=x Fe<A Transfer A

Fa=X'y F—AAB

Fs=y F<B Transfer B

Fs = x@Dy F—APB Exclusive-OR

F7=X+Yy F<AVB OR

Fg = (x+vy)' F<AVB NOR

fo = (x@Py)' FA®DB Exclusive-NOR

Flo=Y' F<B Complement B

Fii=x + y' F<AVB

Fi2=x' FeA Complement A

Fi3=X +Yy FAVB

F1a = (xy)' FA A B NAND

Fis=1 Fealll's Settoalll's

Table : Sixteen Logic Microoperation

= 40 i,

Rahul Publications

UNIT -1 COMPUTER ARCHITECTURE

Hardware Implementation

>

>

YV V V V

A\

The hardware implementation of logic microoperation requires that logic gates be inserted for each
bit or pair of bits in the registers to perform the required logic function.

Although there are 16 logic microoperation, most computers use only four—AND, OR, XOR (exclusive-
OR), and complement from which all others can be derived.

Below figure shows one stage of a circuit that generates the four basic logic micro operations.

§ —

Sp —
axl

B

YUY

Figure 1.11 : One stage of logic circuit

S1 So Output Operation

0 0 E=AAB AND

0 1 E=AVB OR

1 0 E=ADB XOR

1 1 E=A Compliment

Table : Function table

Hardware implementation consists of four gates and a multiplexer.
Each of the four logic operations is generated through a gate that performs the required logic.
The outputs of the gates are applied to the data inputs of the multiplexer.

The two selection inputs S1 and SO choose one of the data inputs of the multiplexer and direct its
value to the output.

The diagram shows one typical stage with subscript i. For a logic circuit with n bits, the diagram must
be repeated ntimes fori =0, 1, 2, ...n - 1. The selection variables are applied to all stages.

Q13. Explain selective set, selective complement and selective clear.

AnS :

Selective-Set operation:

The selective-set operation sets to 1 the bits in register A where there are corresponding 1’s in register
B. It does not affect bit positions that have 0’s in B. The following numerical example clarifies this
operation:

' 41 | P
J Rahul Publications

MCA | YEAR | SEMESTER

1010 A before
1100 B (logical operand)
1110 A after
> The two leftmost bits of B are 1's, so the corresponding bits of A are set to 1.
> One of these two bits was already set and the other has been changed from 0 to 1.

> The two bits of A with corresponding 0’s in B remain unchanged. The example above serves as a
truth table since it has all four possible combinations of two binary variables.

> The OR micro operation can be used to selectively set bits of a register.
Selective-Complement operation:

> The selective-complement operation complements bits in A where there are corresponding 1's in B.

Q14. Explain shift micro operations and draw 4-bit combinational circuit shifter.

Ans :

There are 3 types of shift micro-operations:
1. Logical Shift:

» Alogical shift is one that transfers 0 through the serial input. We will adopt the symbols shl and
shr for logical shift-left and shift-right micro-operations.

» For example:
o R1 shl R1
0 R2 shr R2

g

Rahul Publications

UNIT -1

COMPUTER ARCHITECTURE

>

are two micro-operations that specify a 1-bit shift to the left of the content of register R1 and a
1-bit shift to the right of the content of register R2.

The register symbol must be the same on both sides of the arrow.

The bit transferred to the end position through the serial input is assumed to be 0 during a
logical shift.

Logical Shift left
nghorder. .l _] o« .) -l .4 Low Order
Bit Loss Input 0
Loglcal Shift right
e - o
Input 0

Bit Loss

2. Circular Shift:

>

>

>
>
>

The circular shift (also known as a rotate operation) circulates the bits of the register around the
two ends without loss of information.

This is accomplished by connecting the serial-output of the shift register to its serial input. We
will use the symbols cil and cir for the circular shift left and right, respectively.

o] R1 CilR1
o] R2 Cir R2

Circular shift left
High order Low order

to Low order |__ ol (18 T T '-—I from High order
Circular shift right
High order S I [I O I I N Low order
> —— —— —t— —
From Low order |— —I to High order

Arithmetic Shift:

An arithmetic shift is a micro-operation that shifts a signed binary number to the left or right.
An arithmetic shift-left multiplies a signed binary number by 2.
An arithmetic shift-right divides the number by 2.

Arithmetic shifts must leave the sign bit unchanged because the sign of the number remains the
same when it is multiplied or divided by 2.

The leftmost bit in a register holds the sign bit, and the remaining bits hold the number. The sign
bit is O for positive and 1 for negative.

Negative numbers are in 2’s complement form.

' 43 |
J Rahul Publications

MCA | YEAR | SEMESTER

Arithmetic shift-right

——{Rn-1fRn-2] I [R]|Ro]

Sign
bit

» Figure shows a typical register of n bits. Bit Rn-1 in the leftmost position holds the sign bit.

» Rn-2is the most significant bit of the number and RO is the least significant bit.

» The arithmetic shift-right leaves the sign bit unchanged and shifts the number (including the
sign bit) to the right.

» Thus Rn-1 remains the same; Rn-2 receives the bit from Rn-1, and so on for the other bits in the
register.

» The bitin RO is lost.

» The arithmetic shift-left inserts a 0 into RO, and shifts all other bits to the left.

» The initial bit of Rn-1 is lost and replaced by the bit from Rn-2.

» A sign reversal occurs if the bit in Rn-1 changes in value after the shift. This happens if the

multiplication by 2 causes an overflow.

Arithmetic shift left

High order Jd ol ol | Loworder
Bit Loss Input 0
Arithmetic shift right
High order i S IO [S I Low order
Input High order 1] Bit Loss

4-bit Combinational Circuit Shifter
A combinational circuit shifter can be constructed with multiplexers as shown in Figure below.

Select

. 0 for shift right (down)
Serial
input (/) 1 for shift left (up)
b—mv S
MUX —Ho
1
Ao
A — s
0 Mux —H,
Az 1
Ay ——
pb—vi S
o MUX Hy
1
— 5
0 MUX |—H;
1

Serial
input (Ip)

Figure : 4-bit combinational circuit shifter

— ' 44 }
Rahul Publications —J

UNIT- I COMPUTER ARCHITECTURE

The 4-bit shifter has four data inputs, AO through A3 and four data outputs, HO through H3.
There are two serial inputs, one for shift left (IL) and the other for shift right (IL).
When the selection input S = 0, the input data are shifted right (down in the diagram).

When S = 1, the input data are shifted left (up in the diagram).

vV VYV VYV V V

The function table in Figure shows which input goes to each output after the shift.

Function table

Select Output
) Ho H[Hz H3

0 Ik A A A

1 A A A I

The ALU is a combinational circuit so that the entire register transfer operation from the source
registers through the ALU and into the destination register can be performed during one dock pulse
period.

> The arithmetic, logic, and shift circuits introduced in previous sections can be combined into one
ALU with common selection variables.

> One stage of an arithmetic logic shift unit is shown in figure below:

' 45 | —
—J Rahul Publications

MCA

| YEAR | SEMESTER

S3
S2 Cj
$1 ‘
S0
Arithmetic |Dj
Circuit
Select
B
c 0 4x1 | —
i*1 1 MUX
2
| 3
Logic |Ei
By Circuit
Ai shr
A1 shi

Figure : One stage of arithmetic logic shift unit

> The subscript i designates a typical stage. Inputs Ai and Bi are applied to both the arithmetic and
logic units.

> A particular microoperation is selected with inputs S1 and SO.

> A 4 x 1 multiplexer at the output chooses between an arithmetic output in Di and a Logic output in
Ei.

> The data in the multiplexer are selected with inputs S3 and S2.

> The other two data inputs to the multiplexer receive inputs Ai-1 for the shift-right operation and Ai+1
for the shift-left operation.

> Note that the diagram shows just one typical stage. The circuit shown in figure must be repeated n
times.-for an n-bit ALU.

> The outputs carry Ci+1 of a given arithmetic stage must be connected to the input carry Cin of the
next stage in sequence.

> The input carry to the first stage is the input carry On, which provides a selection variable for the
arithmetic operations.

> The circuit whose one stage is specified in figure provides
o 8 arithmetic operation
0 4 logic operations
0 2 shift operations

> Each operation is selected with the five variables S3, S2, Si, SO, and Cin. The input carry Cin is used
for selecting an arithmetic operation only.

> Table below lists the 14 operations of the ALU.

— '| 46 ',
Rahul Publications

UNIT -1

COMPUTER ARCHITECTURE

Operalion Select
Operation Funrtian
S3 S2|S1]| So | G
0O O |O|O |O F-A Transfer A
o o|0C)|0C 1 F-A+1 Increment A
0O O|OC|1 |0 F=A+B Addition
0 o |01 1 F-A+B+1 | Addwith carry
0 0|10 |0 F-AsD Subtract with borrows
0 o|1]0 |1 F-A+B+1 | Subtractinn
0 0|11 0 F=A1 Dcerement A
0 o0 |11 1 F-A Transfer A\
O 1|00 X F-AAB AND
0O 1|01 X F=AVB OR
0o 1|1]|0 X F-AgEB XOR
o 1|11 X F-A Complemsant A
1T 0| X[X X 1=shrA Shift right A intn |
1 1 X | x X | =shlA shift left A intn |

Figure : Function Table for Arithmetic logic Shift Unit

» The first eight are arithmetic operations and are selected with S3S2 = 00.

» ~Thenext four are logic operations are selected with S3S2 = 01. The input carry has no effect
during the-logic operations and is marked with don’t-care X’s.

» The last two operations are shift operations and are selected with S3S2 = 10 and 11.

» The other three selection inputs have no effect on the shift.

I 2.2 Basic CoMmpUTER ORGANIZATION AND DESIGN I

2.2.1 Instruction Codes
Q16. Define the following:
Ans :
i) Instruction Codes
ii) Operation Codes
iii) Accumulator
i) Instruction Code

An instruction code is a group of bits that instruct the computer to perform a specific operation.

47)

Rahul Publications

MCA | YEAR | SEMESTER

ii) Operation Code

The operation code of an instruction is a group of bits that define such operations as add, subtract,
multiply, shift, and complement. an instruction depends on the total number of operations available in the
computer. The operation code must consist of at least n bits for a given 2n (or less) distinct operations.

iii) Accumulator (AC)

Computers that have a single-processor register usually assign to it the name accumulator (AC)
accumulator and label it AC. The operation is performed with the memory operand and the content of AC.

Q17. Explain Stored Program Organization in detail.
Ans :

> The simplest way to organize a computer is to have one processor register and an instruction code
format with two parts.

> The first part specifies the operation to be performed and the second specifies an address.
> The memory address tells the control where to find an operand in memory.

> This operand is read from memory and used as the data to be operated on together with the data
stored in the processor register.

> The following figure shows this type of organization.

Memory
4096 x 16

i ks 9 Instructions

| Opeode] Address | (Program)
Instruction format

15 0 Operands
(data)

| Binary Operand |

Processor register
(AC)

Figure : Stored Program Organization
> Instructions are stored in one section of memory and data in another.

> For a memory unit with 4096 words, we need 12 bits to specify an address since 212 = 4096.

> If we store each instruction code in one 16-bit memory word, we have available four bits for operation
code (abbreviated opcode) to specify one out of 16 possible operations, and 12 bits to specify the
address of an operand.

> The control reads a 16-bit instruction from the program portion of memory.

> It uses the 12-bit address part of the instruction to read a 16-bit operand from the data portion of
memory.

> It then executes the operation specified by the operation code.

> Computers that have a single-processor register usually assign to it the name accumulator and label
it AC.

{ 48 }
Rahul Publications —J

UNIT- I

COMPUTER ARCHITECTURE

> If an operation in an instruction code does not need an operand from memory, the rest of the bits in
the instruction can be used for other purposes.

> For example, operations such as clear AC, complement AC, and increment AC operate on data
stored in the AC register. They do not need an operand from memory. For these types of operations,
the second part of the instruction code (bits O through 11) is not needed for specifying a memory

address and can be used to specify other operations for the computer.

Q18. Explain Direct and Indirect addressing of basic computer.

Ans :

22

15 14 12 11

| 1 | Opcode

Address |

Memory

o| ADD | 457

Operand

35

1350

Memory

1|ADD| 300

1350

Operand

Figure (a) Direct Address Figure (b) Indirect Address

|| 49 l,

Rahul Publications

MCA

| YEAR | SEMESTER

Direct Address

Indirect Address

When the second part of an
instruction code specifies the address
of an operand, the instruction is said
to have a direct address.

When the second part of an instruction
code specifies the address of a memory
word in which the address of the operand,
the instruction is said to have a direct
address.

For instance the instruction MOV RO
00H. RO, when converted to machine
language is the physical address of
register RO. The instruction moves 0

For instance the instruction MOV @RO O0H,
when converted to machine language, @RO
becomes whatever is stored in RO, and that
is the address used to move 0 to. It can be
whatever is stored in RO.

to RO.
2.2.2 Computer Registers
Q19. Explain briefly about Registers of basic computer.
Ans :
>

from memory.

address.

It is necessary to provide a register in the control unit for storing therinstruction code after it is read
The computer needs processor registers for manipulating data and a register for holding a memory

These requirements dictate the register configuration shown in Figure 2.4.

b R LY
-

1 0

PC |

0
| AR |

FEEEEEES

FREEEEEEE

-
ey
Lo

— =~

The memory address register (AR) has 12

YV V V V V V

from memory after the current instruction

Memory
4096 x 16

sEEw

it..ttliit.lt..i-t.tt.t-.b.t..t--ott.ti {:Ptj

15 0
| DR |

15

EErssEEAEEEER RS

The data register (DR) holds the operand read from memory.
The accumulator (AC) register is a general purpose processing register.
The instruction read from memory is placed in the instruction register (IR).

The temporary register (TR) is used for holding temporary data during the processing.

bits.

The program counter (PC) also has 12 bits and it holds the address of the next instruction to be read

is executed.

Rahul Publications

: 50 ',

UNIT- I

COMPUTER ARCHITECTURE

Instruction words are read and executed in sequence unless a branch instruction is encountered. A

branch instruction calls for a transfer to a nonconsecutive instruction in the program.

Two registers are used for input and output. The input register (INPR) receives an 8-bit character
from an input device. The output register (OUTR) holds an 8-bit character for an output device.

Register | Bits Register Name Function

Symbol

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register | Holds instruction code

PC 12 Program counter Holds address of instruction
TR 16 Temporary register | Holds temporary data

INPR 8 Input register Holds input character
OUTR 8 Output register Holds output character

Table 2.1: List of Registers for Basic Computer

YV V V V

S1s0=111.
Four registers, DR, AC, IR, and TR have 16 bits each.
Two registers, AR and PC, have 12 bits each since they hold a memory address.

When the contents of AR or PC are applied to the 16-bit common bus, the four most
Significant bits are set to 0’s. When AR and PC receive information from the bus, only the 12 least

significant bits are transferred into the register.

|| 51 l,

Rahul Publications

MCA

| YEAR | SEMESTER

>

The input register INPR and the output register OUTR have 8 bits each and communicate with the
eight least significant bits in the bus. INPR is connected to provide information to the bus but OUTR
can only receive information from the bus.

° Ern

Memory unit
lnﬂgyls
T 1 Addiess
Write Read
o ar 1 B
LD INR CLR
v E— .
> 2
LD INR CLR
P | DR 1 2 3
LD NR CLR
C —
ALY — AC I .
[LD INR CLR

{_INPR_]
" D o= i

{ TR } * 6
LD INR CIR

e 16.bit common bus +——

Figure : Basic computer registers connected to a common bus
Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). Two registers
have only a LD input.

AR must always be used to specify a memory address; therefore memory address is connected to
AR.

The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs.
0 Set of 16-bit inputs come from the outputs of AC.

0 Set of 16-bits come from the data register DR.

0 Set of 8-bit inputs come from the input register INPR.

The result of an addition is transferred to AC and the end carry-out of the addition is transferred to
flip-flop E (extended AC bit).

The clock transition at the end of the cycle transfers the content of the bus into the designated
destination register and the output of the adder and logic circuit into AC.

Rahul Publications

= 52 ',

UNIT -1 COMPUTER ARCHITECTURE

2.2.3 Computer Instructions

Q21. Explain different types of Computer Instructions formats.

AnS :

Computer instructions are a set of machine language instructions that a particular processor understands
and executes. A computer performs tasks on the basis of the instruction provided.

An instruction comprises of groups called fields. These fields include:
0 The Operation code (Opcode) field which specifies the operation to be performed.
0 The Address field which contains the location of the operand, i.e., register or memory location.

0 The Mode field which specifies how the operand will be located.

{ Mode Opcode Operand/ address of Operand]

A basic computer has three instruction code formats which are:
1. Memory - Reference instruction

2. Register - Reference instruction

3. Input-Output instruction

1) Memory - Reference Instruction

15 14 2 1 3

{Opeode = 060 through 110}

In Memory-reference instruction, 12 bits of memory is used to specify an address and one bit to
specify the addressing mode ‘I'.

2) Register - Reference Instruction

15 2 Ui 4

{Cpeode =111,1=6}

The Register-reference instructions are represented by the Opcode 111 with a 0 in the leftmost bit
(bit 15) of the instruction.

Note: The Operation code (Opcode) of an instruction refers to a group of bits that define arithmetic
and logic operations such as add, subtract, multiply, shift, and compliment.

A Register-reference instruction specifies an operation on or a test of the AC (Accumulator) register.

3) Input-Output Instruction

15 12 71 ¢
{Opeode = 111,1=1}
' 53 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

Just like the Register-reference instruction, an Input-Output instruction does not need a reference to
memory and is recognized by the operation code 111 with a 1 in the leftmost bit of the instruction. The
remaining 12 bits are used to specify the type of the input-output operation or test performed.

Note :

» The three operation code bits in positions 12 through 14 should be equal to 111. Otherwise, the
instruction is a memory-reference type, and the bit in position 15 is taken as the addressing
mode I.

» When the three operation code bits are equal to 111, control unit inspects the bit in position 15.
If the bit is 0, the instruction is a register-reference type. Otherwise, the instruction is an input-
output type having bit 1 at position 15.

Instruction Set Completeness

A set of instructions is said to be complete if the computer includes a sufficient number of instructions
in each of the following categories:

The block diagram of the control unit is shown in figure
Components of Control unit are

1. Two decoders

2. Asequence counter

3. Control logic gates
>

An instruction read from memory is placed in the instruction register (IR). In control unit the IR
is divided into three parts: | bit, the operation code (12-14)bit, and bits O through 11.

» The operation code in bits 12 through 14 are decoded with a 3 X 8 decoder.

— ' 54 }
Rahul Publications —J

UNIT - [l COMPUTER ARCHITECTURE
Instruction register (IR)
15 14 13 12| 1-0 | Otherinputs
v v v l
3x8
decoder >
76543210
v D
0] ‘ ‘ * ¢ L ‘ | DD Combinational Baritrel
7 (:&;!i::o’ " signals
T15
T
t M
15 14 210
4x16
decoder
4-bit «+——— Increment (INR)
sequence +——— Clear (CLR)
(sC) _<}]e«—— Clock
Figure : Control unit of basic computer
Bit-15 of the instruction is transferred to a flip-flop designated by the symbol I.
The eight outputs of the decoder are designated by the symbols DO through D7. Bits O through
11 are applied to the control logic gates. The 4tbit sequence counter can count in binary from
0 through 15.The outputs of counter are decoded into 16 timing signals TO through T15.
The sequence counter SC can be incremented or cleared synchronously. Most of the
Time, the counter is incremented to provide the sequence of timing signals out of 4 X 16
decoder. Once in awhile, the counter is cleared to 0, causing the next timing signal to be TO.
» Asanexample, consider the case where SC is incremented to provide timing signals TO, T1, T2,
T3 and T4 in sequence. At time T4, SC is cleared to O if decoder output D3 is active.
» This is expressed symbolically by the statement D3T4: SC 10

Timing Diagram:

>

>
>
>

The timing diagram figure2.8 shows the time relationship of the control signals.
The sequence counter SC responds to the positive transition of the clock.
Initially, the CLR input of SC is active.

The first positive transition of the clock clears SC to 0, which in turn activates the timing TO out
of the decoder. TO is active during one clock cycle. The positive clock transition labelled TO in
the diagram will trigger only those registers whose control inputs are connected to timing signal
TO.

' 55 |
—J Rahul Publications

MCA

| YEAR | SEMESTER

>
>

SC is incremented with every positive clock transition, unless its CLR input is active.

This procedures the sequence of timing signals TO, T1, T2, T3 and T4, and so on. If SC is not
cleared, the timing signals will continue with T5, T6, up to T15 and back to TO.

TO T1 T2 T3 T4

o M ML L[L]

F 3 r F 3 f 3 F 3 r

TO — \ _

: [\
T3 \

:

T4

D3

CLRSC —

\ |

The last three waveforms shows how SC is cleared when D3T4 = 1. Output D3 from the
operation decoder becomes active at the end of timing signal T2. When timing signal T4 becomes
active, the output of the AND gate that implements the control function D3T4 becomes active.

This signal is applied to the CLR input of SC. On the next positive clock transition the counter
is cleared to 0. This causes the timing signal TO to become active instead of T5 that would have
been active if SC were incremented instead of cleared.

2.2.5 Instruction Cycle

Q23. Draw and explain the flowchart for instruction cycle.

AnS :

» Aprogram residing in the memory unit of the computer consists of a sequence of instructions. In the
basic computer each instruction cycle consists of the following phases:

1.

2
3.
4

Fetch an instruction from memory.
Decode the instruction.
Read the effective address from memory if the instruction has an indirect address.

Execute the instruction.

Rahul Publications

: 56 ',

UNIT- I COMPUTER ARCHITECTURE

> After step 4, the control goes back to step 1 to fetch, decode and execute the next instruction.
> This process continues unless a HALT instruction is encountered.

Stant

A
AR« PC] ™

T1
IR < MAR], PC«< PC+1 |
T2

Decode Opcode in IR(12-14),
AR « IR(0-11), |« IR(15)

drect)

L v T3 v T3
e esue Lm:lmau Imim_l
instruction reglnslruction

SCe 0 SC e 0 Execute T4
ference
i on
SC « 0
s L [

Figure : Flowchart for instruction cycle (initial configuration)

A'register-reference or input-output instruction can be executed with the click associatec iming
signal T3. After the instruction is executed, SC is cleared to 0 and control returns to the fetch phase
with TO =1. SC is either incremented or cleared to 0 with every positive clock transition.

' 57 | —
—J Rahul Publications

MCA

| YEAR | SEMESTER

Q24. List and explain register reference instruction.

AnS :

» When the register-reference instruction is decoded, D7 bit is set to 1.

> Each control function needs the Boolean relation D7 I’ T3

® There are 12 register-reference instructions listed below:

1 1L 11

|0 111 |Register Operation

= SC<«0 Clear SC
CLA rBii: | AC«0 Clear AC
CLE rBio: [E<« 0 Clear E
CMA rBa: AC « AC’ Complement AC
CME rBs: E«<F Complement E
CIR rBy: AC « shr AC, AC(15) «— E, E « AC(0) Circular Right
CIL rBs: AC « shl AC, AC(0) «— E, E « AC(15) Circular Left
INC rBs: AC+—AC+1 Increment AC
SPA rBa: if (AC(15) = 0) then (PC «— PC+1) Skip if positive
SNA rBs: if (AC(15) = 1) then (PC « PC+1 Skip if negative
SZA rBa: if (AC = 0) then (PC «— PC+1) Skip if AC is zero
SZE rBi: if (E = 0) then (PC «— PC+1) Skip if E is zero
HLT rBo: S« 0 (Sis a start-stop flip-flop) Halt computer

These 12 bits are available in'IR (0-11). They were also transferred to AR during time T2.
These instructions are executed at timing cycle T3.

The first seven register-reference instructions perform clear, complement, circular shift, and increment
microoperations on the AC or E registers.

The next four instructions cause a skip of the next instruction in sequence when condition is satisfied.
The skipping of the instruction is achieved by incrementing PC.

The condition control statements must be recognized as part of the control conditions.

The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The content of
AC is zero (AC = 0) if all the flip-flops of the register are zero.

The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from counting. To
restore the operation of the computer, the start-stop flip-flop must be set manually.

2.2.6 Memory reference instruction

Q25. List and explain memory reference instructions.

AnS :

When the memory-reference instruction is decoded, D7 bit is set to O.

Rahul Publications

: 58 ',

UNIT- I COMPUTER ARCHITECTURE

15 14 12 11 0
[1 |000~110 [Address

* The following table lists seven memory-reference instructions.

Symbol | Operation | Symbolic Description
Decoder
AND Do AC < AC A M[AR]
ADD D, AC < AC + M[AR], E < Cou
LDA D2 AC « M[AR]
STA Ds M[AR] « AC
BUN Da PC+« AR
BSA Ds M[AR] « PC,PC« AR+1
12 Ds M[AR] <~ M[AR] + 1, if M[AR] + 1 = O then PC «— PC+1

» This instruction transfers the memory word specified by the effective address to AC.
o D2T4:DR — M[AR]
0 D2T5: AC —» DR,SC —» 0
STA: Store AC

» Thisinstruction stores the content of AC into the memory word specified by the effective address.

o D3T4: M[AR] = AC, SC — 0

[59]
—J Rahul Publications

MCA | YEAR | SEMESTER

BUN: Branch Unconditionally
> This instruction transfers the program to instruction specified by the effective address.

> The BUN instruction allows the programmer to specify an instruction out of sequence and the program
branches (or jumps) unconditionally.

> D4T4: PC— AR,SC—> 0
BSA: Branch and Save Return Address

> This instruction is useful for branching to a portion of the program called a subroutine or procedure.
When executed, the BSA instruction stores the address of the next instruction in sequence (which is
available in PC) into a memory location specified by the effective address.

Memory, PC, AR attime T4 Memory, PC after execution
0 BSA 136 20 |0 BSA 136
Nextinstruction 21 | Nextinstruction

136

PC=136

o D5T4: M[AR] — PC, AR — AR + 1
o D5T5:PC— AR,SC—0
ISZ: Increment and Skip if Zero
> These instruction increments the word specified by the effective address, and if the

> incremented value is equal to 0, PC is incremented by 1. Since it is not possible to increment a word
inside the memory, it is necessary to read the word into DR, increment DR, and store the word back
into memory.

o D6T4: DR — M[AR]
o D6T5:DR—>DR+1
o D6T4: M[AR] — DR, if (DR = 0) then (PC— PC + 1), SC— 0

{ 60)
Rahul Publications —J

UNIT -1 COMPUTER ARCHITECTURE

Control Flowchart

Memory-rererence instrucuon

AND ADI DA STA
r DOyT4 v DiT4 v DoTy v DTy
M[AR] « AC
| oReMaR) | | DReMIAR) | [DReMiaR) | [MARIE
y DoTs v D1T5 v 02T5
AC«ACADR| |AC« AC+DR AC «DR
SC«0 E « Cout SC&«0
SC«0
BUN BSA 74
¥y D474 v DsTy v DgTy
PC« AR M[AR] « PC DR « M[AR)
SC«0 AR« AR + 1 \—
v DsTs v DBT5
PC « AR DR&«DR +1
SCe0 Lj
v DgTs
M[AR] < DR

If (DR =0)
then (PC < PC + 1)
SCe«0

Figure : Flowchart for memory-reference instructions

2.2.7 Input-Output and Interrupt

Q26. Draw and explain input-output configuration of basic computer.

Ans : (Imp.)
> A computer can serve no useful purpose unless it communicates with the external environment.

> To exhibit the most basic requirements for input and output communication, we will use a terminal
unit with a keyboard and printer.

Serial Computer
Input-output il p
- communication ;
terminal interface registers and

flip-flops

Recei
Printer | interface |+ OUTR
s
[ac]
r 3
Transmitter
Keyboard *| interface INPR

—» Serial Communications Path
= Parallel Communications Path

Figure : Input -output configuration

> The terminal sends and receives serial information and each quantity of information has eight bits of
an alphanumeric code.

> The serial information from the keyboard is shifted into the input register INPR.

|l 61 ',

Rahul Publications

MCA | YEAR | SEMESTER

> The serial information for the printer is stored in the output register OUTR.
> These two registers communicate with a communication interface serially and with the AC in parallel.

> The transmitter interface receives serial information from the keyboard and transmits it to INPR. The
receiver interface receives information from OUTR and sends it to the printer serially.

> The 1-bit input flag FGI is a control flip-flop. It is set to 1 when new information is available in the
input device and is cleared to 0 when the information is accepted by the computer.

> The flag is needed to synchronize the timing rate difference between the input device and the computer.
> The process of information transfer is as follows:
The process of input information transfer:

> Initially, the input flag FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit alphanumeric
code is shifted into INPR and the input flag FGlI is set to 1.

» Aslong as the flag is set, the information in INPR cannot be changed by striking another key. The
computer checks the flag bit; if it is 1, the information from INPR is transferred in parallel into AC and
FGl is cleared to 0.

> Once the flag is cleared, new information can be shifted into INPR by striking another key.
The process of outputting information:
> The output register OUTR works similarly but the direction of information flow is reversed.

> Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 1, the information
from AC is transferred in parallel to OUTR and FGO is cleared to 0. The output device accepts the
coded information, prints the corresponding character, and when the operation is completed, it sets
FGOto 1.

> The computer.does not load a new character into OUTR when FGO is 0 because this condition
indicates that the output device is in the process of printing the character.

Q27. Explain Input-Output instructions.

Ans :

> Input and output instructions are needed for transferring information to and from AC register, for
checking the flag bits, and for controlling the interrupt facility.

> Input-output instructions have an operation code 1111 and are recognized by the control when D7
=landl=1.

> The remaining bits of the instruction specify the particular operation.

> The control functions and microoperations for the input-output instructions are listed below.

INP AC(0-7) <~ INPR, FGl « 0 Input char. to AC
ouT OUTR « AC(0-7), FGO <« 0 Output char. from AC
SKI if(FGl = 1) then (PC« PC+1) Skip on input flag
SKO if(FGO = 1) then (PC« PC + 1) Skip on output flag
ION IEN <1 Interrupt enable on
I0F IEN <O Interrupt enable off

Table : Input Output Instructions

{ 62 |
Rahul Publications —J

UNIT- I COMPUTER ARCHITECTURE

> The INP instruction transfers the input information from INPR into the eight low-order bits of AC and
also clears the input flag to 0.

> The OUT instruction transfers the eight least significant bits of AC into the output register OUTR and
clears the output flag to 0.

> The next two instructions in Table check the status of the flags and cause a skip of the next instruction
if the flag is 1.

> The instruction that is skipped will normally be a branch instruction to return and check the flag
again.

> The branch instruction is not skipped if the flag is 0. If the flag is 1, the branch instruction is skipped
and an input or output instruction is executed.

Instruction cycle =0)R\=1 Interrupt cycle
. NS |

Fetch and decode Store return address
instructions in location 0
J M[0] «- PC

Execute
instructions

v

I Branch to location 1 I
PC 1

IEN «- 0
R« 0

Figure : Flowchart for interrupt cycle

[63]
—J Rahul Publications

MCA | YEAR | SEMESTER

Interrupt Cycle
> The interrupt cycle is a hardware implementation of a branch and save return address operation.

> The return address available in PC is stored in a specific location where it can be found later when
the program returns to the instruction at which it was interrupted. This location may be a processor
register, a memory stack, or a specific memory location.

> Here we choose the memory location at address O as the place for storing the return address.

> Control then inserts address 1 into PC and clears IEN and R so that no more interruptions can occur
until the interrupt request from the flag has been serviced.

» Anexample that shows what happens during the interrupt cycle is shown in Figure .

Before interrupt After interrupt cycle
0 0 256
1 |O BUN 1120 PC=1 |O BUN 1120
Main Main
255 Program 255 Program
256
1120 1120
1/0 1/0
Program Program
Jflilhi/In‘éﬂdﬁi{fl/f}lf!lii!/lfolldl lil#{flilBIG”leilffJ{IllfllldléllI(

Figure . Demonstration of the interrupt cycle

> Suppose that an interrupt occurs and R = 1, while the control is executing the instruction at address
255. At this time, the return address 256 is in PC.

> The programmer has previously placed an input-output service program in memory starting from
address 1120 and a BUN 1120 instruction at address 1.

> The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared to 0.

» Atthe beginning of the next instruction cycle, the instruction that is read from memory is in address
1 since this is the content of PC. The branch instruction at address 1 causes the program to transfer
to the input-output service program at address 1120.

> This program checks the flags, determines which flag is set, and then transfers the required input or
output information. Once this is done, the instruction ION is executed to set IEN to 1 (to enable
further interrupts), and the program returns to the location where it was interrupted.

> The instruction that returns the computer to the original place in the main program is a branch
indirect instruction with an address part of 0. This instruction is placed at the end of the 1/O service
program.

> The execution of the indirect BUN instruction results in placing into PC the return address from
location 0.

Register transfer statements for the interrupt cycle

> The flip-flop is set to 1 if IEN = 1 and either FGI or FGO are equal to 1. This can happen with any
clock transition except when timing signals TO, T1 or T2 are active.

(64 }
Rahul Publications —

UNIT -1 COMPUTER ARCHITECTURE

>
>

The condition for setting flip-flop R= 1 can be expressed with the following register
transfer statement:
0 T0O—> Tl1—> T2— IEN) (FGI + FGO):R— 1

The symbol + between FGI and FGO in the control function designates a logic OR operation. This
is AND with IEN and TO — T1 — T2.

The fetch and decode phases of the instruction cycle must be modified and Replace TO, T1, T2 with
R'TO,R'T1, R'T2

Therefore the interrupt cycle statements are :

o] RTO: AR— 0, TR — PC

0 RT1:M[AR] — TR,PC — 0

o RT22PC—PC+1,IEN—-0,R—>0,SC—0

During the first timing signal AR is cleared to 0, and the content of PC is transferred to the temporary
register TR.

With the second timing signal, the return address is stored in memory at location 0 and PC is cleared
to 0.

The third timing signal increments PC to 1, clears IEN and R, and control goes back to TO by clearing
SCto 0.

The beginning of the next instruction cycle has the condition RTO and the content of PC is equal
to 1. The control then goes through an instruction cycle that fetches and executes the BUN instruction
in location 1.

g

Rahul Publications

T T
ENEEEEEEEEEEEEEEE NN

U N I T Central Processing Unit: General Register Organization, Stack Organization,

Micro programmed Control: Control memory, Address Sequencing, Micro
program example, Design of Control Unit.

Instruction formats, Addressing modes, Data Transfer and Manipulation, and
I I I Program control. Computer Arithmetic: Addition and Subtraction,
Multiplication, Division, and Floating Point Arithmetic Operations.

EEEEEEEEEEEEEEEEEEEEEEE N
/IS EEEEEEEEEEEEEEEEEEE]

I 3.1 Micro PRoGrRaAMMED CONTROL I

3.1.1 Control memory

Q1.

AnS :

(@)

(b)

(©)

(d)

(e)

(®

Define the following.

a) Hardwired Control Unit

b) Micro programmed control unit
c) Dynamic microprogramming

d) Control Memory

e) Writeable Control Memory

f) Control Word

Hardwired Control Unit

When the control signals are generated by hardware using conventional logic design techniques, the
control unit is said to be hardwired.

Micro programmed control unit

A control unit whose binary control variables are stored in memory is called a micro programmed
control unit.

Dynamic microprogramming

A more advanced development known as dynamic microprogramming permits a micro-program to
be loaded initially from an auxiliary memory such as a magnetic disk. Control units that use dynamic
microprogramming employ a writable control memory. This type of memory can be used for writing.

Control Memory
Control Memory is the storage in the micro-programmed control unit to store the micro-program.
Writeable Control Memory

Control Storage whose contents can be modified, allow the change in microprogram and Instruction
set can be changed or modified is referred as Writeable Control Memory.

Control Word

The control variables at any given time can be represented by a control word string of 1 ‘s and 0’s
called a control word.

Rahul Publications

: 66 ',

UNIT -1l COMPUTER ARCHITECTURE

Q2.

Ans :

Describe the following terms: Micro-operation, Micro-instruction, Micro-program, Micro-
code.

Micro-operations:

In computer central processing units, micro-operations (also known as a microops or %o0ps) are
detailed low-level instructions used in some designs to implement complex machine instructions
(sometimes termed macro-instructions in this context).

> This sequence could be a subroutine that is called from within many other routines to execute the
effective address computation.

Q3. Draw and explain the organization of micro programmed control unit.

Ans :

> The general configuration of a micro-programmed control unit is demonstrated in the block diagram
of Figure .

> The control memory is assumed to be a ROM, within which all control information is permanently

stored.

External Pl Next-address Control Control Control |5 Control
input generator ™™ address [® memory [data unit
register (ROM) register

Next address information

Figure : Micro programmed control organization

|| 67 l,

Rahul Publications

MCA | YEAR | SEMESTER

> The control memory address register specifies the address of the microinstruction, and the control
data register holds the microinstruction read from memory.

> The microinstruction contains a control word that specifies one or more micro-operations for the
data processor. Once these operations are executed, the control must determine the next address.

> The location of the next microinstruction may be the one next in sequence, or it may be located
somewhere else in the control memory.

> While the microoperations are being executed, the next address is computed in the next address
generator circuit and then transferred into the control address register to read the next microinstruction.

> Thus a microinstruction contains bits for initiating microoperations in the data processor part and bits
that determine the address sequence for the control memory.

> The next address generator is sometimes called a micro-program sequencer, as it determines the
address sequence that is read from control memory.

> Typical functions of a micro-program sequencer are incrementing the control address register by one,
loading into the control address register an address from control memory, transferring an external
address, or loading an initial address to start the control operations.

> The control data register holds the present microinstruction while the next address is computed and
read from memory.

> The data register is sometimes called a pipeline register.

> It allows the execution of the microoperations specified by the control word simultaneously with the
generation of the next microinstruction.

> This configuration requires a two-phase clock, with one clock applied to the address register and the
other to the data register.

> The main advantage of the micro programmed control is the fact that once the hardware configuration
is established; there should be no need for further hardware or wiring changes.

> If we want to establish a different control sequence for the system, all we need to do is specify a
different set of microinstructions for control memory.

3.1.2 Address Sequencing

Q4. Explain the steps of Address Sequencing in detail.

Ans : (Imp.)
> Microinstructions are stored in control memory in groups, with each group specifying a routine.

> To appreciate the address sequencing in a micro-program control unit, let us specify the steps that the
control must undergo during the execution of a single computer instruction.

Step-1:
> An initial address is loaded into the control address register when power is turned on in the computer.

> This address is usually the address of the first microinstruction that activates the instruction fetch
routine.

> The fetch routine may be sequenced by incrementing the control address register through the rest of
its microinstructions.

: 68 ',

Rahul Publications

UNIT -1l COMPUTER ARCHITECTURE

> At the end of the fetch routine, the instruction is in the instruction register of the computer.
Step-2:

> The control memory next must go through the routine that determines the effective address of the
operand.

> A machine instruction may have bits that specify various addressing modes, such as indirect address
and index registers.

> The effective address computation routine in control memory can be reached through a branch
microinstruction, which is conditioned on the status of the mode bits of the instruction.

> When the effective address computation routine is completed, the address of the operand is available
in the memory address register.

In summary, the address sequencing capabilities required in a control memory are:

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.

3. A mapping process from the bits of the instruction to an address for control memory.
4

A facility for subroutine call and return.

3.1.3 Micro Program Example
Q5. Explain Microinstruction Format in detail.

Ans :

The microinstruction format for the control memory is shown in figure. The 20 bits of the
microinstruction are divided into four functional parts as follows:

[69 |
—J Rahul Publications

MCA | YEAR | SEMESTER

1. The three fields F1, F2, and F3 specify microoperations for the computer. The microoperations are
subdivided into three fields of three bits each. The three bits in each field are encoded to specify
seven distinct microoperations. This gives a total of 21 microoperations.

2. The CD field selects status bit conditions.
The BR field specifies the type of branch to be used.

4, The AD field contains a branch address. The address field is seven bits wide, since the control
memory has 128 = 27 words.

3 3 3 2 2 7
F1 F2 F3 CcD BR AD

F1, F2, F3: Microoperation fields
CD: Condition for branching
BR: Branch field
AD: Address field
Figure : Microinstruction Format

> As an example, a microinstruction can specify two simultaneous microoperations from
0 F2and F3 and none from F1.
0 DR - M[AR] with F2 = 100
0o PC->PC+ 1withF3=101

> The nine bits of the microoperation fields will then be 000 100 101.

> The CD (condition) field consists of two bits which are encoded to specify four status bit conditions
as listed in Table 4.1.

CcD Condition Symbol Comments

00 Always=1 U Unconditional branch
01 DR(15) | Indirect address bit
10 AC(15) 3 Sign bit of AC

11 AC=0 Z Zerovalue in AC

Figure : Condition Field

> The BR (branch) field consists of two bits. It is used, in conjunction with the address field AD, to
choose the address of the next microinstruction shown in Table .

BR Symbol Function

00 JMP CAR < AD if condition = 1
CAR < CAR + 1 if condition =0

01 CALL CAR < AD, SBR « CAR + 1 if condition = 1
CAR <« CAR + 1 if condition =0

10 RET CAR < SBR (Return from subroutine)

11 MAP CAR(2-5) <~ DR(11-14), CAR(0,1,6) < 0

Table : Branch Field

{ 70)
Rahul Publications —

UNIT -1l COMPUTER ARCHITECTURE

Q6.

AnS :

>
>

Explain briefly about Symbolic Microinstruction.

Each line of the assembly language microprogram defines a symbolic microinstruction.

Each symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, and AD.
The fields specify the following Table.

1. | Label The label field may be empty or it may specify a symbolic
address. A label is terminated with a colon (:).

2. | Microoperations | It consists of one, two, or three symbols, separated by
commas, from those defined in Table 5.3. There may be no
more than one symbol from each F field. The NOP symbol
is used when the microinstruction has no microoperations.
This will be translated by the assembler to nine zeros.

3.|CD The CD field has one of the letters U, |, S, or Z.
4. [BR The BR field contains one of the four symbols
5. | AD The AD field specifies a value for the address field of the

microinstruction in one of three possible ways:
i. With a symbolic address, this must also appear as a

label.

ii. With the symbol NEXT to designate the next
address in sequence.

iii. When the BR field contains a RET or MAP symbol,
the AD field is left empty and is converted to seven
zeros by the assembler.

Figure : Symbolic Microinstruction

3.1.4 Design of Control Unit

Q7.

AnS :

Draw the diagram of Micro programmed sequencer for a control memory and explain it.

(Imp.)

Micro-program Sequencer

>

The basic components of a micro-programmed control unit are the control memory and the circuits
that select the next address.

The address selection part is called a micro-program sequencer.
A micro-program sequencer can be constructed with digital functions to suit a particular application.

To guarantee a wide range of acceptability, an integrated circuit sequencer must provide an internal
organization that can be adapted to a wide range of applications.

The purpose of a microprogram sequencer is to present an address to the control memory so that a
microinstruction may be read and executed.

Commercial sequencers include within the unit an internal register stack used for temporary storage
of addresses during microprogram looping and subroutine calls.

' 71 | .
—J Rahul Publications

MCA | YEAR | SEMESTER

> Some sequencers provide an output register which can function as the address register for the control
memory.

> The block diagram of the microprogram sequencer is shown in figure 4.6.

> There are two multiplexers in the circuit.

#| lo Input 32 10

* /1 Logic S MUX 1
> T * s

™ | [|

Pa—
pa—
-—
]

Figure : Microprogram Sequencer for a control memory

(72)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

Input Logic : Truth Table

BR Input MUX 1 Load SBR
Iy lo T S1 So L

00 0 0 0 1] 0 0

00 0 0 1 0 1 0

01 0 1 0 0 0 0

01 0 1 1 0 o | 1

10 1 0 X 1 0 0

11 1 1 X 1 1 0

Table 4.4: Input Logic Truth Table for Microprogram Sequencer

Boolean Function:

S0=10
S1=1011+ 10T
L=1011T

» Typical sequencer operations are: increment, branch or jump, call and return from subroutine,
load an external address, push or pop the stack, and other address sequencing operations.

» With three inputs, the sequencer can provide up to eight address sequencing operations.

» Some commercial sequencers have three or four inputs‘in-addition to the T input and thus
provide a wider range of operations.

3.2 CeNTRAL ProcEssiING UNIT I

Q8. What is central processing unit. Explain about it.
Ans : (Imp.)

Register set

4

Control

A

ALU

» The CPU is made up of 3 major Components.

» The CPU performs a variety of functions dictated by the type of instructions that are incorporated
in the computer

» Inprogramming, memory locations are needed for storing pointers, counters, return addresses,
temporary result , etc. Memory access is most time consuming operation in a computer.

» Itis then more convenient and more efficient to store these intermediate values in processor
registers, which are connected through common bus system.

1. Accumulator based CPU
> Characteristics:
e Initially, computers had accumulator based CPUSs.

e ltisasimple CPU in which the accumulator contains an operand for the Instruction.

' 73 |
= J Rahul Publications

MCA | YEAR | SEMESTER

e The instruction leaves the result in the accumulator.

e These CPUs have zero address & single address instruction.
The Advantages :

e Short Instruction & less memory space.

e Instruction cycle takes less time because it saves time in Instruction fetching due to the absence
of operand fetch.

The Disadvantages :
e Program Size increases, memory size increases.

e Program execution time increases due to increase in program size.

64 registers or more.

1. One of the CPU registers is called as an accumulator AC or ‘A’ register. It is the main operand
register of the ALU.

2. The data register (DR) acts as a buffer between the CPU and main memory. It is used as an
input operand register with the accumulator.

The instruction register (IR) holds the opcode of the current instruction.
The address register (AR) holds the address of the memory in which the operand resides.

o &~ w

The program counter (PC) holds the address of the next instruction to be fetched for execution.

Additional addressable registers can be provided for storing operands and address. This can
be viewed as replacing the single accumulator by a set of registers. If the registers are used for
many purpose, the resulting computer is said to have general register organization. In the case
of processor registers, a registers is selected by the multiplexers that form the buses.

— ' 74 }
Rahul Publications —J

UNIT - 111

COMPUTER ARCHITECTURE

When a large number of registers are included in the CPU, it is most efficient to connect them
through a common bus system. The registers communicate with each other not only for direct
data transfers, but also while performing various micro-operations. Hence it is necessary to
provide a common unit that can perform all the arithmetic, logic and shift micro-operation in
the processor.

A Bus Organization for Seven CPU Registers

(l[nk gt
— R1
- R2
— R3
- R4
b+ R5
++ R6
_ R7
Loead _ —
== saa{ wmux MUX |- }san
3x8 Abusa @ bexa
decoder
Trtf
S —
SaD P Arithmetic legic unit
{:’, (ALU)
—
Curtpust
= Biock diagass
3 3 3 5
SELA | SELB | SELD OPR
D) Collondl wermed

The output of each register is connected to true multiplexer (mux) to form the two buses A & B.

>
>

The selection lines in each multiplexer select one register or the input data for the particular bus.

The A and B buses forms the input to a common ALU. The operation selected in the ALU
determines the arithmetic or logic micro-operation that is to be performed.

The result of the micro-operation is available for output and also goes into the inputs of the
registers.

The register that receives the information from the output bus is selected by a decoder.

The decoder activates one of the register load inputs, thus providing a transfer both between
the data in the output bus and the inputs of the selected destination register.

/5 J

Rahul Publications

MCA | YEAR | SEMESTER

OPERATION OF CONTROL UNIT

> The control unit that operates the CPU bus system directs the information flow through the registers
and ALU by selecting the various components in the systems.

R1 ®R2 + R3
(1) MUX A selection (SEC A): to place the content of R2 into bus A
(2) MUX B selection (sec B): to place the content of R3 into bus B
(3) ALU operation selection (OPR): to provide the arithmetic addition (A + B)
(4) Decoder destination selection (SEC D): to transfer the content of the output bus into R1

> These form the control selection variables are generated in the control unit and must be available at
the beginning of a clock cycle. The data from the two source registers propagate through the gatesin
the multiplexer and the ALU, to the output bus, and into the into of the destination registers, all
during the clock cycle intervals.

Example: R1 &= R2 + R3
[1] MUX A selector (SELA): BUS A= R2
[2] MUX B selector (SELB): BUS B &= R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1 iz Out Bus

3 3 3 5
ControlWord [seia | sete | seeo [opr |

Encoding of register selection fields

Binary

Code SELA SELB _SELD

000 Input Input None

001 R1 R1 R1

010 R2 R2 R2

011 R3 R3 R3

100 R4 R4 R4

101 RS R5 R5

110 R6 R6 R6

111 R7 R7 R7

ALU Control
Encoding of ALU operations OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 IncrementA INCA
00010 ADDA+B ADD

00101 SubtractA-B SuB
00110 DecrementA DECA
01000 ANDAandB AND
01010 ORAandB OR
01100 XORAandB XOR
01110 ComplementA COMA
10000 Shiftright A SHRA
11000 Shift left A SHLA

g

Rahul Publications

UNIT -1l COMPUTER ARCHITECTURE

Examples of ALU Microoperations

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

R1«< R2-R3 R2 R3 R1 sSuB 010 011 001 00101
R4« R4VvR5 R4 R5 R4 OR 100 101 100 01010
R6« R6+1 R6 - R6 INCA 110 000 110 00001
R7 « R1 R1 - R7 TSFA 001 000 111 00000
Output « R2 R2 - None TSFA 010 000 000 00000
Output« Input Input - None TSFA 000 000 000 00000
R4 « shl R4 R4 - R4 SHLA 100 000 100 11000
R5« 0 RS RS R5 XOR 101 101 101 01100

3.2.2 Stack Organization

Q10. What is stack? Give the organization of register stack with all necessary elements and

AnS :

explain the working of push and pop operations.

(Imp.)

Stack Organization:

>

>

>
>

A stack is a storage device that stores information in such a manner that the item stored last is the first
item retrieved.

The stack in digital computers is essentially a memory unit with an address register that can count
only. The register that holds the address for the stack is called a stack pointer

(SP) because its value always points-at the top item in the stack.

The physical registers of a stack are alwaysavailable for reading or writing. It is the content of the
word that is inserted or deleted.

Register Stack:

>

Register stack:

Address
[
[L]

[pac] [mav]
-
[———<
’ 2
A !
U]

Figure : Block diagram of a 64-word stack

A stack can be placed in a portion of a large memory or it can be organized as a collection of a finite
number of memory words or registers. Figure shows the organization of a 64-word register stack.

|l 77 ||

Rahul Publications

MCA | YEAR | SEMESTER

> The stack pointer register SP contains a binary number whose value is equal to the address of the
word that is currently on top of the stack. Three items are placed in thestack: A, B, and C, in that
order. Item C is on top of the stack so that the content of SP is now 3.

> To remove the top item, the stack is popped by reading the memory word at address 3 and
decrementing the content of SP. Item B is now on top of the stack since SP holds address 2.

A\

To insert a new item, the stack is pushed by incrementing SP and writing a word in the next-higher
location in the stack.

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64.

Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in binary).
When 63 are incremented by 1, the result is O since 111111 + 1 = 1000000 in binary, but
SP can accommodate only the six least significant bits.

YV V V V

push was in location 63 and, after incrementing SP, the last item is stored in location 0.

> Once an item is stored in location O, there are no more empty registers in the stack. If an item is
written in the stack, obviously the stack cannot be empty, so EMTY is cleared to O.

POP:

> A new item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop operation
consists of the following sequences of microoperations:

o DREE=m M [SP] Read item on top of the stack

0 SP &= SP -1 Decrement stack pointer

0o IF(SP =0)then (EMTY &&= 1) Check if stack is empty
0 FULL &= 0 Mark the stack not full

{ 78)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

The top item is read from the stack into DR. The stack pointer is then decremented. If its value
reaches zero, the stack is empty, so EMTY is set to 1.

This condition is reached if the item read was in location 1.

Once this item is read out, SP is decremented and reaches the value 0, which is the initial value of SP.
If a pop operation reads the item from location 0 and then SP is decremented, SP is changes to
111111, which is equivalent to decimal 63.

In this configuration, the word in address O receives the last item in the stack. Note also that an
erroneous operation will result if the stack is pushed when FULL = 1 or popped when EMTY = 1.
10. Explain Memory Stack.

Q11. Explain briefly about Memory Stack.

AnS :

1000

Program
(Il'lSlrl'?JgClIDnS)

Data
(operands)

IEH

Sp 3000

3997
3998
3999
4000
4001

Stack grows
In this direction

ter memeory with program, data, and stack segments

The implementation of a stack in the CPU is done by assigning a portion of memory to a stack
operation and using a processor register as a stack pointer.

Figure shows a portion of computer memory partitioned into three segments: program, data, and
stack.

The program counter PC points at the address of the next instruction in the program which is used
during the fetch phase to read an instruction.

The address registers AR points at an array of data which is used during the execute phase to read an
operand.

The stack pointer SP points at the top of the stack which is used to push or pop items into or from the
stack.

The three registers are connected to a common address bus, and either one can provide an address
for memory.

As shown in Figure 5.2, the initial value of SP is 4001 and the stack grows with decreasing addresses.
Thus the first item stored in the stack is at address 4000, the second item is stored at address 3999,
and the last address that can be used for the stack is 3000.

We assume that the items in the stack communicate with a data register DR.

' 79 |
J Rahul Publications

MCA | YEAR | SEMESTER

PUSH
> A new item is inserted with the push operation as follows:

o SPERSP-1

o M[SP]=DR
> The stack pointer is decremented so that it points at the address of the next word.
> A memory write operation inserts the word from DR into the top of the stack.
POP

> A new item is deleted with a pop operation as follows:
o DRERM[SP]

processor register or a memory operand.
(C + D) is shown below.

ADDR1, A, BR1 M [A] + M [B]
ADD R2, C, D R2 M[C] + M [D]
MUL X, R1, R2 M[X] R1*R2

» The advantage of three-address format is that it results in short programs when evaluating
arithmetic expressions.

e program in assembly language that evaluates

» The disadvantage is that the binary-coded instructions require too many bits to specify three
addresses.

» An example of a commercial computer that uses three-address instruction is the Cyber 170.

{ 80)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

Two Address Instructions:

Two address instructions are the most common in commercial computers. Here again each address

field can specify either a processor register or a memory word. The program to evaluate X = (A + B) * (C
+ D) is as follows:

MOV R1, ARL —> M [A]
ADDR1, BR1 —> R1 + M [B]
MOV R2, C R2 — M [C]
ADD R2, D R2 — R2 + M [D]
MUL R1, R2 R1 —> R1* R2
MOV X, R1 M [X] = R1

» The MOV instruction moves or transfers the operands to and from memory and processor
registers. The first symbol listed in an instruction is assumed to be both a source and the destination
where the result of the operation is transferred.

One Address Instructions:

» One address instructions use an implied accumulator (AC) register for all data manipulation.
For multiplication and division these is a need for a second register.

» However, here we will neglect the second register and assume that the AC contains the result of
all operations. The program to evaluate X = (A +B) * (C + D) is

LOAD A AC — M [A]

ADD B AC — AC + M [B]
STORE T M [T] —> AC
LOAD C AC —> M [C]
ADD D AC — AC + M [D]
MUL TAC — AC * M [T]
STORE X M [X] = AC

All the operations are done between the AC register and a memory operand. T is the address of the

temporary memory location required for storing the intermediate result.

Zero Address Instructions:

>

A stack-organized computer does not use an address field for the instructions ADD and MUL. The
PUSH and POP instructions, however, need an address field to specify the operand that communicates
with the stack.

The program to evaluate X = (A + B) * (C + D) will be written for a stack-organized computer.
PUSHATOS — A

PUSH B TOS — B
ADD TOS —> A + B)
PUSH C TOS — B
PUSH D TOS — D

g

Rahul Publications

MCA | YEAR | SEMESTER

ADD TOS —> C + D)
MUL TOS — C + D) * (A + B)
POP X M [X] = TOS

> To evaluate arithmetic expressions in a stack computer, it is necessary to convert the expression into
reverse polish notation.

RISC Instructions:

> All other instructions are executed within the registers of the CPU without referring to memory. A
program for a RISC type CPU consists of LOAD and STORE instructions that have one memory and
one register address, and computational-type instructions that have three addresses with all three
specifying processor registers.

> The following is a program to evaluate X = (A + B) * (C + D).

Immediate addressing mode

Direct addressing mode

Indirect addressing mode

Register addressing mode

Register Indirect addressing mode

Autoincrement or Autodecrement addressing mode
Relative addressing mode

Indexed addressing mode

VvV V.V V V V V V VY

Base register addressing mode

g

Rahul Publications

UNIT -1l COMPUTER ARCHITECTURE

> Implied addressing mode

In this mode the operands are specified implicitly in the definition of the instruction. For example the
‘complement accumulator’ instruction is an implied mode instruction because the operand in the accumulator
register is implied in the definition of the instruction itself. All register reference instructions that use an
accumulator are implied mode instructions. Zero address instructions in a stack organized computer are
implied mode instructions since the operands are implied to be on the top of the stack.

Opcode

> Immediate Addressing Mode

In this mode the operand is specified in the instruction itself. In other words, an immediate mode
instruction has a operand field rather than an address field. The operand field contains the actual operand
to be used in conjunction with the operation specified in the instruction. Immediate mode instructions are
useful for initializing registers to a constant value.

Example ADD 5
» _Add 5 to contents of accumulator
» 5is operand

Advantages and Disadvantages
» No memory reference to fetch data
> Fast
» Limited range

Opcode Operand

:‘ ADD‘ 5 ’:

g

Rahul Publications

MCA | YEAR | SEMESTER

> Direct Addressing Mode

In this mode the effective address is equal to the address part of the instruction. The operand resides
in memory and its address is given directly by the address field of instruction. In a branch type instruction
the address field specifies the actual branch address.

Effective address (EA) = address field (A)

e.g. LDAA

» Look in memory at address A for operand which is to be loaded in the accumulator.
» Load contents of cell A to accumulator

> Advantages and Disadvantages

For example
ADD @M
» Add contents of memory location pointed to by contents of M to accumulator

Address M

Rahul Publications

UNIT -1l COMPUTER ARCHITECTURE

> Register Addressing Mode
In this mode the operands are in the registers that reside within the CPU.
EA=R
Example ADD B
Advantages and Disadvantages
» No memory access. So very fast execution.
» Very small address field needed.
- Shorter instructions
- Faster instruction fetch
» Limited number of registers.
» Multiple registers helps performance.

- Requires good assembly programming or compiler writing

Opcode| Register Address R

> Register Indirect Addressing Mode

In this mode the instruction specifies a register in the CPU whose contents give the address of the
operand in the memory. In other words, the selected register contains the address of the operand rather
than the operand itself. Before using a register indirect mode instruction, the programmer must ensure that
the memory address of the operand is placed in the processor register with a previous instruction. The
advantage of a register indirect mode instruction is that the address field of the instruction uses fewer bits to
select a register than would have been required to specify a memory address directly.

Therefore EA = the address stored in the register R
» Operand is in memory cell pointed to by contents of register R
» Example LDAX B
Advantage
» Less number of bits are required to specify the register.

» One fewer memory access than indirect addressing.

[g5 |
—J Rahul Publications

MCA | YEAR | SEMESTER

> Autoincrement or Autodecrement Addressing Mode

This is similar to the register indirect mode except that the register is incremented or decremented
after or before its value is used to access memory. When the address stored in the register refers to a table

Rahul Publications

UNIT -1l COMPUTER ARCHITECTURE

> Relative addressing mode

In this mode the content of the program counter is added to the address part of the instruction in
order to obtain the effective address. Effective address is defined as the memory address obtained from the
computation dictated by the given addressing mode. The address part of the instruction is usually a signed
number (in 2’s complement representation) which can be either positive or negative. When this number is
added to the content of the program counter, the result produces an effective address whose position in
memory is relative to the address of the next instruction. Relative addressing is often used with branch type
instructions when the branch address is in the area surrounding the instruction word itself. It results in a
shorter address field in the instruction format since the relative address can be specified with a smaller
number of bits compared to the bits required to designate the entire memory address.

EA = A + contents of PC
Example: PC contains 825 and address part of instruction contains 24.

After the instruction is read from location 825, the PC is incremented to 826. So EA=826+24=850.
The operand will be found at location 850 i.e. 24 memory locations forward from the address of the next
instruction.

o
nstruction

Address A

%Opcod%

viemory

Program counter

> Indexed Addressing Mode

In this mode the content of an index register is added to the address part of the instruction to obtain
the effective address. The index register is a special CPU register that contains an index value. The address
field of the instruction defines the beginning address of a data array in memory. Each operand in the array
is store din memory relative to the beginning address. The distance between the beginning address and the
address of the operand is the index value stored in the index register. Any operand in the array can be
accessed with the same instruction provided that the index register contains the correct index value. The
index register can be incremented to facilitate access to consecutive operands. Note that if an index type
instruction does not include an address field in its format, then the instruction converts to the register
indirect mode of operation.

» Therefore
EA=A+IR
» Example MOV AL, DS: disp [SI]
Advantage

» Good for accessing arrays.

4

Rahul Publications

MCA | YEAR | SEMESTER

“ Address A]

> Base Register Addressing Mode

cpeou]_on | Aides

Value of BR

(88)
Rahul Publications —J

UNIT - 111

COMPUTER ARCHITECTURE

3.2.5 Data Transfer and Manipulation

Q14. Explain Data Transfer Instructions.

AnS :

Typical data transfer instructions are as follows:

>

Name Mnemonic
Load LD
Store ST
Move MOV

Exchange XCH
Input IN

Output ouT

Push PUSH
Pop POP

Data transfer instructions move data from one place in the computer to another without changing
the data content.

The most common transfers are between memory and processor registers, between processor
registers and input or output, and between the processor registers themselves.

The load instruction has been used mostly to designate a transfer from memory to a processor
register, usually an accumulator.

The store instruction designates a transfer from a processor register into memory.

The move instruction has been used in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers between CPU
registers and memory or between two memory words.

The exchange instruction swaps information between two registers or a register and a memory
word.

The input and output instructions transfer data among processor registers and input or output
terminals.

The push and pop instructions transfer data between processor registers and a memory stack.

Q15. Explain about data manipulation instructions.
Ans :

Data Manipulation Instruction

It performs operations on data and provides the computational capabilities for the computer. The
data manipulation instructions in a typical computer are usually divided into three basic types.

(@) Arithmetic Instruction

(b) Logical bit manipulation Instruction

(c) Shift Instruction.

|l 89 ',

Rahul Publications

MCA

| YEAR | SEMESTER

(@) Arithmetic Instruction

Name Mnemonic
Increment INC
Decrement DEC

Add Add
Subtract Sub
Multiply MUL
Divide DIV

Add with Carry ADDC
Subtract with Basses SUBB
Negate (2’'s Complement) NEG

Name Mnemonic
Logical Shift right SHR
Logical Shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate mgmt through carry RORC
Rotate left through carry ROLC
— (90)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

3.2.6 Program Control

Q16. What are status register bits? Draw and explain the block diagram showing all status
registers.

Ans : (Imp.)

> It is sometimes convenient to supplement the ALU circuit in the CPU with a status register where
status bit conditions be stored for further analysis. Status bits are also called condition-code bits or
flag bits.

> Figure shows the block diagram of an 8-bit ALU with a 4-bit status register. The four status bits are
symbolized by C, S, Z, and V. The bits are set or cleared as a result of an operation performed in the

ALU.
A B
8
C; T

il 8-bitALU
c
! ’ Fy-Fo
v
V |Z|S|C
i i
Checkfor 48
Zero output
F’

Figure 5.3: Status Register Bits

1. Bit C (carry) is set to 1 if the end carry C8is 1. It is cleared to O if the carry is 0.
2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if set to O if the bit is O.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. it is cleared to O otherwise. In other
words, Z = 1 if the output is zero and Z = 0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusives-OR of the last two carries is equal to 1, and cleared to 0
otherwise. This is the condition for an overflow when negative numbers are in 2’s complement. For
the 8-bit ALU, V = 1 if the output is greater than + 127 or less than -128.

» The status bits can be checked after an ALU operation to determine certain relationships that
exist between the vales of A and B.

» If bit V is set after the addition of two signed numbers, it indicates an overflow condition.
» If Zis set after an exclusive-OR operation, it indicates that A = B.

» Asingle bitin A can be checked to determine if it is 0 or 1 by masking all bits except the bit in
question and then checking the Z status bit.

' 91 |
—J Rahul Publications

MCA | YEAR | SEMESTER

Q17. What is program interrupt? What happens when it Comes? What are the tasks to be
performed by service routine?

OR

Explain Program Interrupts. Explain clearly, discussing the role of stack, PSW and
return from interrupt instruction, how interrupts are implemented on computers.

Ans :

> The concept of program interrupt is used to handle a variety of problems that arise out of normal
program sequence.

is then performed; this initiates a service routine for the input or output transfer.

The service routine can be stored in location 1.

The service routine must have instructions to perform the following tasks:
Save contents of processor registers.
Check which flag is set.
Service the device whose flag is set.

1
2
3
4. Restore contents of processor registers.
5. Turn the interrupt facility on.

6

Return to the running program.

{ 92)
Rahul Publications —J

UNIT - 111

COMPUTER ARCHITECTURE

Memory Memory
1] 0 256
1|0 BUN 1120 PC=1]|0 BUN 1120
258 255 .
PC = 256 - 256 S
program program
1120 1120
o o
program program
i BUN o 1 BUN 0
(a) Before interrupt (b) After interrupt cycle

Q18. Explain various types of interrupts.

AnS :

There are three major types of interrupts that cause a break in the normal execution of a program.
They can be classified as:

1.
2.
3.

External interrupts
Internal interrupts

Software interrupts

1. External interrupts

» External interrupts come from input-output (I/0) devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source.

» Examples that cause external interrupts are 1/0 device requesting transfer of data, I/o device
finished transfer of data, elapsed time of an event, or power failure. Timeout interrupt may
result from a program that is in an endless loop and thus exceeded its time allocation.

» Power failure interrupt may have as its service routine a program that transfers the

» Complete state of the CPU into a nondestructive memory in the few milliseconds before power
ceases.

» External interrupts are asynchronous. External interrupts depend on external conditions that
are independent of the program being executed at the time.

2. Internal Interrupts

» Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal interrupts
are also called traps.

» Examples of interrupts caused by internal error conditions are register overflow, attempt to
divide by zero, an invalid operation code, stack overflow, and protection violation. These error
conditions usually occur as a result of a premature termination of the instruction execution. The
service program that processes the internal interrupt determines the corrective measure to be
taken.

» Internal interrupts are synchronous with the program. . If the program is rerun, the internal

interrupts will occur in the same place each time.

|l 93 ',

Rahul Publications

MCA

| YEAR | SEMESTER

3. Software Interrupts

>

A\

A software interrupt is a special call instruction that behaves like an interrupt rather than a
subroutine call. It can be used by the programmer to initiate an interrupt procedure at any
desired point in the program.

The most common use of software interrupt is associated with a supervisor call instruction.
This instruction provides means for switching from a CPU user mode to the supervisor mode.

Certain operations in the computer may be assigned to the supervisor mode only, as for example,
a complex input or output transfer procedure. A program written by a user must run in the user
mode.

When an input or output transfer is required, the supervisor mode is requested by means of a
supervisor call instruction. This instruction causes a software interrupt that stores the old CPU
state and brings in a new PSW that belongs to the supervisor mode.

The calling program must pass information to the operating system in order to specify the
particular task requested.

> 1in E indicates that A >= B and the number in A is the correct result. If this numbs is zero, the sign
A must be made positive to avoid a negative zero.

> 0in E indicates that A < B. For this case it is necessary to take the 2’s complement of the value in A.
The operation can be done with one microoperation A A +1.

> However, we assume that the A register has circuits for microoperations complement and increment,
so the 2’s complement is obtained from these two microoperations.

> In other paths of the flowchart, the sign of the result is the same as the sign of A. so no change in A
is required. However, when A < B, the sign of the result is the complement of the original sign of A.
It is then necessary to complement A, to obtain the correct sign.

Rahul Publications

: 94 i,

UNIT - 111

COMPUTER ARCHITECTURE

> The final result is found in register A and its sign in As. The value in AVF provides an overflow
indication. The final value of E is immaterial.

> Figure 7.2 shows a block diagram of the hardware for implementing the addition and subtraction

operations.

> It consists of registers A and B and sign flip-flops As and Bs.

> Subtraction is done by adding A to the 2’s complement of B.

> The output carry is transferred to flip-flop E , where it can be checked to determine the relative

magnitudes of two numbers.

> The add-overflow flip-flop AVF holds the overflow bit when A and B are added.
> The A register provides other microoperations that may be needed when we specify the sequence of

steps in the algorithm.

Subtract Operation

Addition Operation

Augendin A

o

AN

END

).7

Figure. Flowchart for add and subtract operations

[t]

o/pCarry

M{mode contral)

AS

A-register

r————————
Load Sum

Figure. Hardware for signed -magnitude addition and subtraction

|l 95 ',

Rahul Publications

MCA | YEAR | SEMESTER

3.3.2 Multiplication
Q20. Explain the Booth’s algorithm with the help of flowchart.

AnS :

> Booth algorithm gives a procedure for multiplying binary integers in signed - 2’s complement
representation.

> It operates on the fact that strings of 0’s in the multiplier require no addition but just shifting, and a
string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 — 2m.

> For example, the binary number 001110 (+14) has a string 1’s from 23 to 21 (k=3, m=1).

> The number can be represented as 2k+1-2m. = 24 -21 = 16 — 2 = 14. Therefore, the multiplication
M X 14, where M is the multiplicand and 14 the multiplier, can be done as M X 24 - M X 21.

> Thus the product can be obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left once.

Multiply
A 4

Multiplicand in BR
Multiplier in QR

AC—0

Qns1+0

=10 =01

A ¥
AC <« AC+BR' +1 | =00 | AC < AC + BR

ashr (AC & QR)

‘o /i\ "

SC

A
4

Fig. Booth algorithm for multiplication of signed-2's complement numbers

» Asinall multiplication schemes, booth algorithm requires examination of the multiplier bits and
shifting of partial product.

Q21. Explain with proper block diagram the Multiplication Operation on two floating point

numbers.

Ans :

> The multiplication of two floating-point numbers requires that we multiply the mantissas and add the
exponents.

{ 96 }
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

> No comparison of exponents or alignment of mantissas is necessary.
> The multiplication of the mantissas is performed in the same way as in fixed-point to provide a

Multiplicand in BR
Multiplierin QR

(product is in AC))

—J Rahul Publications

MCA | YEAR | SEMESTER

Q22. Multiply the (-9) with (-13) using Booth’s algorithm. Give each step.
Ans :

A numerical example of booth algorithm is shown for n=5. It shows the step-by-step multiplication
of (-9) X (-13) = +117.

9: 01001 13: 01101
1’s complement of 9: 10110 1’s complement of 13: 10010
+ 1 + 1
2’s complement of 9: 10111 (-9) 2’'s complement of 13: 10011 (-13)
AC QR(-13) | Qn.1 | M(BR)(-9) | SC Comments
00000 | 10011 0 10111 S5 Initial value
01001 | 10011 0 10111 Subtraction: AC=AC+BR’+1
00100 | 11001 1 10111 4 Arithmetic Shift Right
00010 | 01100 1 10111 3 Arithmetic Shift Right
11001 | 01100 1 10111) Subtraction: AC=AC+BR’+1
11100 | 10110 0 10111 Arithmetic Shift Right
11110 | 01011 0 10111 1 Arithmetic Shift Right
00111 | 01011 0 10111 Subtraction: AC=AC+BR’+1
00011 | 10101 1 10111 o Arithmetic Shift Right

Answer: -9 X-13 =117 => 001110101

Q23. Multiply the (7) with (3) using Booth’s algorithm. Give each step.
Ans :

7: 0111 | 3: 0011

AC QR(3) | Qnaa | M(BR)(7) | SC Comments
0000 0011 0 0111 4 Initial value
1001 0011 0 0111 3 Subtraction: AC=AC+BR’+1
1100 1001 1 0111 Arithmetic Shift Right
1110 | o100 | 1 0111 2 | Arithmetic Shift Right
0101 0100 1 0111 Addition: AC=AC+BR
0010 1010 0 0111 1 Arithmetic Shift Right
0001 0101 0 0111 0 Arithmetic Shift Right

Answer: 7 X3 =21 == 00010101
Q24. Multiply the (15) with (13) using Booth’s algorithm. Give each step.

AnS :

15: 01111 | 13: 01101
15X13=195
AC QR(15) [Qns1 | M(BR)(13) [SC Comments

00000 | 01111 0 01101 5 Initial value
10011 | 01111 0 01101 4 Subtraction: AC=AC+BR'+1
11001 | 10111 1 01101 Arithmetic Shift Right
11100 | 11011 b § 01101 3 Arithmetic Shift Right
11110 | 01101 | 01101 y) Arithmetic Shift Right
11111 | 00110 1 01101 1 Arithmetic Shift Right
01100 | 00110 1 01101 0 Addition: AC=AC+BR
00110 | 00011 1 01101 Arithmetic Shift Right

Answer: 15X13=195 => 0011000011

{ 98)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

Q25. Multiply the (+15) with (-13) using Booth’s algorithm. Give each step.
Ans :

15: 01111 13: 01101
1’s complement of 13: 10010
+ 1

2’s complement of 13: 10011 (-13)

AC | QR(-13) | Qui | M(BR)(+15) | SC Comments
00000 | 10011 0 01111 5 | Initial value
10001 | 10011 0 01111 4 Subtraction: AC=AC+BR'+1
11000 | 11001 1 01111 Arithmetic Shift Right
11100 | 01100 1 01111 3 | Arithmetic Shift Right
01011 | 01100 1 01111 Addition: AC=AC+BR
00101 | 10110 0 01111 4 Arithmetic Shift Right
00010 | 11011 0 01111 1 | Arithmetic Shift Right
10011 | 11011 0 01111 0 Subtraction: AC=AC+BR’'+1
11001 | 11101 1 01111 Arithmetic Shift Right

Answer: (+15) X (-13) = -195 => 1100111101

To verify 0011000010
+ 1

+195=> 0011000011

3.3.3 Division
Q26. Explain about division algorithm.

AnS :

Division Algorithm
Position the divisor appropriately with respect to the dividend and performs a subtraction.

» Iftheiremainder is zero or positive, a quotient bit of 1 is determined, the remainder is extended
by another bit of the dividend, the divisor is repositioned, and another subtraction is performed.

» Ifthe remainder is negative, a quotient bit of O is determined, the dividend is restored by adding
back the divisor, and the divisor is repositioned for another subtraction.

Circuit Arrangement

Shift left

-~ s
(o [we [—{00d] o= [%]

| A gl
setting
///ﬁ\
L1 | n+1-bit Add/Subtract /'/ \\
L — adder { \
‘ Control)
\ S |
\ /
\ /
(o[= [m) __/
f

g

Rahul Publications

MCA | YEAR | SEMESTER

Restoring Division

> Shift A and Q left one binary position

A Q
0000 g111 Initial value
0000 1110 Shift
1101 Use twos complement of 0011 for subtraction
1101 Subtract
0000 1110 Restore, set Qg = 0
0001 1100 Shift
1101
1110 Subtract
0001 1100 Restore, set Q= 0
0011 1000 Shift
1101
0000 1001 Subtract, set Qg = 1
0001 0010 Shift
1101
1110 Subtract
0001 0010 Restore, set Qp = 0

{ 100)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

START

A0

M « Divisor
Q « Dividend
Count < n

Shift left
AQ

A«<A-M

Wyt AcA+M

Count « Count — 1

Quotient in Q
Remainder in A

3.3.4 Floating Point Arithmetic Operations.

Q27. Write about the representation of floating point numbers
Ans :

Floating-Point Representation (Scientific Notation)

A floating-point number (or real number) can represent a very large (1.23>10-88) or a very small
(1.23%<10™-88) value. It could also represent very large negative number (-1.23>%<10/°88) and very small
negative number (-1.23>1088), as well as zero, as illustrated:

-1.23x10°%8 <, »1.23x10°%8
-1 2:::1988 (very close to 0) / (very close to 0) 1. 22::19“
= -—t H —-- — 4
=1 %] +1
(=-1x10°) (=1x10%)

Floating-point Numbers (Decimal)

' 101 |
—J Rahul Publications

MCA | YEAR | SEMESTER

> A floating-point number is typically expressed in the scientific notation, with a fraction (F), and
an exponent (E) of a certain radix (r), in the form of Fxr”™ E. Decimal numbers use radix of 10
(F><10 E); while binary numbers use radix of 2 (F<2\E).

> Representation of floating point number is not unique. For example, the number 55.66 can be
represented as 5.566x107™ 1, 0.5566x10" 2, 0.05566x10" 3, and so on. The fractional part
can be normalized. In the normalized form, there is only a single non-zero digit before the radix
point. For example, decimal number 123.4567 can be normalized as 1.234567x10" 2; binary
number 1010.1011B can be normalized as 1.0101011Bx2 " 3.

> It is important to note that floating-point numbers suffer from loss of precision when represented

31 30 23 22 (%]
S | Exponent (E) Fraction (F)

D> € >
1 8 23

32-bit Single-Precision Floating-point Number

Q28. Explain, how to do floating point arithmetic addition and subtraction

Ans :

Floating-Point Arithmetic Addition/Subtraction

> The difficulty in adding two FP numbers stems from the fact that they may have different exponents.

> Therefore, before adding two FP numbers, their exponents must be equalized, that is, the mantissa of
the number that has smaller magnitude of exponent must be aligned.

{102)
Rahul Publications —J

UNIT -1l COMPUTER ARCHITECTURE

+0.111%21 E> 0 10000001 11100000000000000000000

+0.0111%22 E> 0 l 10000010 \ 01110000000000000000000

+0.000000000000000000001 112! * 0 [10010101| 00000000000000000000111

Different representation of an FP number

Steps Required to Add/Subtract Two Floating-Point Numbers

1. Compare the magnitude of the two exponents and make suitable alignment to the number with the
smaller magnitude of exponent.

2. Perform the addition/subtraction.

3. Perform normalization by shifting the resulting mantissa and adjusting the resulting exponent.
Example Consider adding the two FP numbers 1.1100 * 2* and.1.1000 * 22,
1. Alignment: 1.1000 * 22 has to be aligned to 0.0110 * 2*
2. Addition: Add the two numbers to get 10.0010 * 2°.

3. Normalization: The final normalized resultis 0.1000 * 28 (assuming 4 bits are allowed after
the radix point).

Addition/subtraction of two FP numbers can be illustrated using the schematic shown in Figure.

Q29. Explain, floating point multiplication and division.
Ans :

Multiplication Multiplication of a pair of FP numbers X = mx* 2*and Y = m_* 2° is represented as
X*Y = (mx* my)* 23>

A general algorithm for multiplication of FP numbers consists of three basic steps. These are:
1. Compute the exponent of the product by adding the exponents together.
2. Multiply the two mantissas.
3. Normalize and round the final product.
Example Consider multiplying the two FP numbers X %4 1.000 * 2-2 and
Y =-1.010 * 2--
1. Add exponents: -2 + (-1) =-3.
2. Multiply mantissas: 1.000 * — 1.010 = -1.010000.
The product is —1.0100 * 23,

' 103 |
—J Rahul Publications

MCA

| YEAR | SEMESTER

’ Exponent E2 | | Exponent E1 l | Mantissa M2 | | Mantissa M1 |
v v v v
Exponent Comparison Logic —» Align the proper mantissa
v v
Add/Subtract
v

Result normalization and round logic

Result Exponent ¢

¢ Result Mantissa

Addition/subtraction of FP numbers

Exponent E2 Exponent E1 Mantissa M2 Mantissa M1

h 4

Add

Multiply

A

Result normalization and round logic

i

Result Exponent

|

Result Mantissa

FP multiplication

Multiplication of two FP.numbers can be illustrated using the schematic shown in Figure

Division of a pair of FP numbers X = mx * 22and Y = my * 2° is represented as X/Y = (mx /my)*

2a_b.

A general algorithm for division of FP numbers consists of three basic steps:

1. Compute the exponent of the result by subtracting the exponents.

2. Divide the mantissa and determine the sign of the result.

3. Normalize and round the resulting value, if necessary.

Example Consider the division of the two FP numbers X = 1.0000 * 2 and

Y =-1.0100 * 2.

1. Subtract exponents: -2 - (-1) = -1.

2. Divide the mantissas: 1.0000 /-1.0100 = - 0.1101.

3. Theresultis-0.1101* 2 1,

Division of two FP numbers can be illustrated using the schematic shown in Figure

Rahul Publications

= 104 ',

UNIT - 111

COMPUTER ARCHITECTURE

Exponent E2 ‘ | Exponent E1 ‘ | Mantissa M2 ‘ I Mantissa M1 ‘

! !

l

Subtract Divide

A 4

Result normalization and round logic |

l i

Result Exponent Result Mantissa

FP division

4

Rahul Publications

i S

Memory Organization

U N IT Memory Hierarchy, Main Memory, RAM and ROM, Auxiliary memory,
Associative memory, Cache memory, Virtual memory, Memory Management
I V hardware.

T T
HEEEEEEEEEEEEEEEEEEE NN
EEEEEEEEEEEEEEEEEEEEEEEE |
T T T T T T]

I 4.1 MEemoRY ORGANIZATION

4.1.1 Memory Hierarchy
Q1. Explain briefly about memory hierarchy.
Ans :
» Memory hierarchy is the hierarchy of memory and storage devices found in a computer system.

» It ranges from the slowest but high capacity auxiliary memory to the fastest but low capacity
cache memory.

Need
There is a trade-off among the three key characteristics of memory namely-
» Cost
» - Capacity
> Access time
Memory hierarchy is employed to balance this trade-off.

Memory Hierarchy Diagram-

ro |
Ll |

Registers

Level 1 / Cache memory '\
Level2/ Mainmemory \
Level 3 / Disk cache N\
Levels / Magnetic disk \,
Levei 5/ Optical disk / Magnetic tapes N\

Increase in cost
per bit

and access time

I+ jncreased in capacity

{ 106)
Rahul Publications —)

UNIT - IV COMPUTER ARCHITECTURE
Level-0
> Atlevel-0, registers are present which are contained inside the CPU.
» Since they are present inside the CPU, they have least access time.
» They are most expensive and therefore smallest in size (in KB).
» Registers are implemented using Flip-Flops.
Level-1
» Atlevel-1, Cache Memory is present.
» It stores the segments of program that are frequently accessed by the processor.
» Itis expensive and therefore smaller in size (in MB).
» Cache memory is implemented using static RAM.

YV V V V

Cost / bit decreases

Frequency of access decreases
Capacity increases

Access time increases

Goals of Memory Hierarchy

The goals of memory hierarchy are-

>
>

To obtain the highest possible average access speed

To minimize the total cost of the entire memory system

' 107 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

4.1.2 Main Memory
Q2. How main memory is useful in computer system?
Ans : (Imp.)

» A memory is just like a human brain. It is used to store data and instruction. Computer memory is
the storage space in computer where data is to be processed and instructions required for processing
are stored.

> The memory is divided into large number of small parts. Each part is called a cell. Each location or
cell has a unique address which varies from zero to memory size minus one.

> For example if computer has 64k words, then this memory unit has 64 * 1024 = 65536 memory
location. The address of these locations varies from 0 to 65535.

Memory is primarily of two types
» Internal Memory — cache memory and primary/main memory

» External Memory — magnetic disk / optical disk etc.

l CPU Registers i
' Internal
Cache Memory Memory
Speed
I o Main Memory J
ncreases
As we move up
[Magnetic Disk J
. i External
Optical Disk Memory
[Magnetic Tape]

Characteristics of Memory Hierarchy are following when we go from top to bottom.
» Capacity in terms of storage increases.

» Cost per bit of storage decreases.

» Frequency of access of the memory by the CPU decreases.

» Access time by the CPU increases.

1. RAM

> A RAM constitutes the internal memory of the CPU for storing data, program and program result. It
is read/write memory. It is called random access memory (RAM).

{ 108)
Rahul Publications —

UNIT - IV COMPUTER ARCHITECTURE

> Since access time in RAM is independent of the address to the word that is, each storage location
inside the memory is as easy to reach as other location & takes the same amount of time. We can
reach into the memory at random & extremely fast but can also be quite expensive.

> RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if there is a power
failure. Hence, a backup uninterruptible power system (UPS) is often used with computers. RAM is
small, both in terms of its physical size and in the amount of data it can hold.

> RAM is of two types
e Static RAM (SRAM)

e Dynamic RAM (DRAM)

> A ROM, stores such instruction as are required to start computer when electricity is first turned on,
this operation is referred to as bootstrap. ROM chip are not only used in the computer but also in
other electronic items like washing machine and microwave oven.

> Following are the various types of ROM —
i) MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-programmed set of data or
instructions. These kind of ROMs are known as masked ROMs. It is inexpensive ROM.

i) PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The user buys a blank PROM
and enters the desired contents using a PROM programmer. Inside the PROM chip there are small fuses
which are burnt open during programming. It can be programmed only once and is not erasable.

{ 109 |
—J Rahul Publications

MCA | YEAR | SEMESTER

iii) EPROM (Erasable and Programmable Read Only Memory)

The EPROM can be erased by exposing it to ultra-violet light for a duration of upto 40 minutes.
Usually, an EPROM eraser achieves this function. During programming an electrical charge is trapped in
an insulated gate region. The charge is retained for more than ten years because the charge has no leakage
path. For erasing this charge, ultra-violet light is passed through a quartz crystal window (lid). This exposure
to ultra-violet light dissipates the charge. During normal use the quartz lid is sealed with a sticker.

iv) EEPROM (Electrically Erasable and Programmable Read Only Memory)

The EEPROM is programmed and erased electrically. It can be erased and reprogrammed about
ten thousand times. Both erasing and programming take about 4 to 10 ms (millisecond). In EEPROM,
any location can be selectively erased and programmed. EEPROMs can be erased one byte at a time,
rather than erasing the entire chip. Hence, the process of re-programming is flexible but slow.

v) Serial Access Memory

Sequential access means the system must search the storage device from the beginning of the
memory address until it finds the required piece of data. Memory device which supports such access is
called a Sequential Access Memory or Serial Access Memory. Magnetic tape is an example of serial access
memory.

vi) Direct Access Memory

Direct access memory or Random Access Memory, refers to.conditions-in which a system can go
directly to the information that the user wants. Memory device which supports such access is called a
Direct Access Memory. Magnetic disks, optical disks are. examplesof direct access memory.

4.1.3 RAM and ROM
Q3. Explain the memory address map of RAM and ROM.

Ans : (Imp.)
Memory address map of RAM and ROM

Typical RAM chip: Typical ROM chip:

Chip select 1
Chip select 1
Chip select 2
Chip select 2
Read

Write

7-bit address

8-bit data bus 8-bit data bus

9-bit address

> The designer of a computer system must calculate the amount of memory required for the particular
application and assign it to either RAM or ROM.

> The interconnection between memory and processor is then established from knowledge of the size
of memory needed and the type of RAM and ROM chips available.

> The addressing of memory can be established by means of a table that specifies the memory address
assigned to each chip.

> The table, called a memory address map, is a pictorial representation of assigned address space
for each chip in the system, shown in table.

' 110 }
Rahul Publications —

UNIT - IV COMPUTER ARCHITECTURE

> To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM
and 512 bytes of ROM.

> The RAM and ROM chips to be used are specified in figure 9.1

Hexa Address bus
Komprsant address 109 8765 4321
RAM 1 0000 - 007F 00 0 x x x x x x x
RAM 2 0080 - 00FF 00 1 xxXx X X X X
RAM 3 0100 - 017F 01 0xxXx XXX X
RAM 4 0180 - O1FF 01 1xxx XXXX
ROM 0200 - 03FF 1 x XX XX XXX X

Table Memory Address Map for Micro-procomputer

line 10 for this purpose.

> When line 10 is 0, the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

4.1.4 Auxiliary Memory

Q4. Explain briefly about Auxiliary memory.
Ans :

> Auxiliary memory is much larger in size than main memory but is slower. It normally stores system
programs, instruction and data files.

> Itis also known as secondary memory. It can also be used as an overflow/virtual memory in case the
main memory capacity has been exceeded.

' 111 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

> Secondary memories cannot be accessed directly by a processor. First the data/information of auxiliary
memory is transferred to the main memory and then that information can be accessed by the CPU.
Characteristics of Auxiliary Memory are following -

O Non-volatile memory - Data is not lost when power is cut off.

0 Reusable - The data stays in the secondary storage on permanent basis until it is not overwritten
or deleted by the user.

0 Reliable - Data in secondary storage is safe because of high physical stability of secondary
storage device.

0 Convenience - With the help of a computer software, authorised people can locate and
access the data quickly.

0 Capacity - Secondary storage can store large volumes of data in sets of multiple disks.
0 Cost - Itis much lesser expensive to store data on a tape or disk than primary memory.
Fixed and Removable Storage
i) Fixed Storage

A Fixed storage is an internal media device that is used by a computer system to store data, and
usually these are referred to as the Fixed Disks drives or the Hard Drives.

> Fixed storage devices are literally not fixed, obviously these.can-be removed from the system for
repairing work, maintenance purpose, and also for upgrade etc.

> But in general, this can't be done without a proper toolkit to open up the computer system to
provide physical access, and that needs to be done by an engineer.

> Technically, almost all of the datai.e..being processed on a computer system is stored on some type
of a built-in fixed storage device.

Types of fixed storage
» _Internal flash memory (rare)
» SSD (solid-state disk) units
» Hard disk drives (HDD)

iil) Removable Storage

> A Removable storage is an external media device that is used by a computer system to store data,
and usually these are referred to as the Removable Disks drives or the External Drives.

> Removable storage is any type of storage device that can be removed/ejected from a computer
system while the system is running. Examples of external devices include CDs, DVDs and Blu-Ray
disk drives, as well as diskettes and USB drives.

> Removable storage makes it easier for a user to transfer data from one computer system to another.

> In a storage factors, the main benefit of removable disks is that they can provide the fast data
transfer rates associated with storage area networks (SANS)

Types of Removable Storage:
» Optical discs (CDs, DVDs, Blu-ray discs)

» Memory cards

Rahul Publications —J

UNIT - IV COMPUTER ARCHITECTURE

Floppy disks

Magnetic tapes

YV V V

Disk packs

» Paper storage (punched tapes , punched cards)
Secondary Storage Media

There are the following main types of storage media:

1. Magnetic storage media:

Magnetic media is coated with a magnetic layer which is magnetized in clockwise or anticlockwise
directions. When the disk moves, the head interprets the data stored at a specific location in binary
1s and Os at reading.

Explain Associative memory.
Ans : (Imp.)

» The time required to find an item stored in memory can be reduced considerably if stored data
can be identified for access by the content of the data itself rather than by an address.

» A memory unit accessed by content is called an associative memory or content addressable
memory (CAM).

» This type of memory is accessed simultaneously and in parallel on the basis of data content
rather than by specific address or location.

» The block diagram of an associative memory is shown in figure.

' 113 | —
—J Rahul Publications

MCA

| YEAR | SEMESTER

vV V ¥V V V V

[Argument register(A) |

l

[Key register (K) |
Match
register
Input = Asociative memory

array and logic

Read —p m words
Write == n bits per word

Figure. Block diagram of associative memory

It consists of a memory array and logic form words with n bits per word.

The argument register A and key register K each have n bits, one for each bit of a-word.

The match register M has m bits, one for each memory word.

Each word in memory is compared in parallel with the content of the argument register.

The words that match the bits of the argument register set a corresponding bit in the match register.

After the matching process, those bits in the match register that have been set indicate the fact that
their corresponding words have been matched.

Reading is accomplished by a sequential access to memory for those words whose corresponding
bits in the match register have been set.

Hardware Organization

> The key register provides a mask for choosing a particular field or key in the argument word.

> The entire argument is compared with each memory word if the key register contains all 1’s.

> Otherwise, only those bits in the argument that have 1st in their corresponding position of the key
register are compared.

> Thus the key provides a mask or identifying piece of information which specifies how the reference
to memory is made.

> To illustrate with a numerical example, suppose that the argument register A and the key register K
have the bit configuration shown below.

> Only the three leftmost bits of A are compared with memory words because K has 1’s in these
position.
A 101 111100
K 111 000000
Word1 100 111100 no match
Word2 101 000001 match

— (114}
Rahul Publications

UNIT - IV COMPUTER ARCHITECTURE

Word 2 matches the unmasked argument field because the three leftmost bits of the argument and
the word are equal.

Aq

[[Hft

Word 1 1 1j _'E
woas | [:]
Word m

2 =
|3 @ B}E-H
A B B3

Fig. Associative memory of m word, n cells per word

be accessed.
> The basic operation of the cache is, when the CPU needs to access memory, the cache is examined.

> If the word is found in the cache, it is read from the fast memory. If the word addressed by the CPU
is not found in the cache, the main memory is accessed to read the word.

> The transformation of data from main memory to cache memory is referred to as a mapping process.
Associative Mapping

> Consider the main memory can store 32K words of 12 bits each.

> The cache is capable of storing 512 of these words at any given time.

' 115 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

> For every word stored in cache, there is a duplicate copy in main memory.
The CPU communicates with both memories.

It first sends a 15-bit address to cache. If there is a hit, the CPU accepts the 12-bit data from cache,
if there is miss, the CPU reads the word from main memory and the word is then transferred to
cache.

address (15 bits)

| Argument register |

I'l— Address bld Data DI

01000 3450
02777 6710
22235 1234

Fig. Associative mapping cache (all numbers in octal)

The associative memory stores both the address and content (data) of the memory word.
This permits any location in cache to store any word from main memory.

The figure shows three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12-bit word is shown as a four-digit octal number.

> A CPU address of 15 bits is placed in the argument register and the associative memory is searched
for a matching address.

If the address is found the corresponding 12-bit data is read and sent to CPU.
If no match occurs, the main memory is accessed for the word.

The address data pairs then transferred to the associative cache memory.

YV V V V

If the cache is full, an address data pair must be displaced to make room for a pair that is needed
and not presently in the cache.

> This constitutes a first-in first-one (FIFO) replacement policy.

Q7. Discuss direct mapping in organization of cache memory.
Ans :
The CPU address of 15 bits is divided into two fields.

The nine least significant bits constitute the index field and the remaining six bits from the tag
field.

» The figure (a) shows that main memory needs an address that includes both the tag and the
index.

' 116 }
Rahul Publications —

UNIT - IV COMPUTER ARCHITECTURE

Tag(6] | Index(d]] Addressing Relationships
} |
00 000
32Kx 12
_ — 512x 12
Main memory Cache memory
Address =15 bits Address =9 bits
Data =12 bits 777 Data = 12 bits

77 777

Fig(a) : Addressing relationships between main and cache memories

» The number of bits in the index field is equal to the number of address bits required to access
the cache memory.

» The internal organization of the words in the cache memory is as shown in figure .

Cache memory

Index
address Tag Data

ooo oo T 1220

» The word at address zero is presently stored in the cache (index = 000, tag = 00, data =
1220).

Suppose that the CPU now wants to access the word at address 02000.

» The index address is 000, so it is used to access the cache. The two tags are then compared.
The cache tag is 00 but the address tag is 02, which does not produce a match.

Therefore, the main memory is accessed and the data word 5670 is transferred to the CPU.

The cache word at index address 000 is then replaced with a tag of 02 and data of 5670.

vV V V V

The disadvantage of direct mapping is that two words with the same index in their address but
with different tag values cannot reside in cache memory at the same time.

' 117 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

Q8. Discuss set-associative mapping in organization of cache memory.
Ans :

> A third type of cache organization, called set associative mapping in that each word of cache can
store two or more words of memory under the same index address.

> Each data word is stored together with its tag and the number of tag-data items in one word of
cache is said to form a set.

> An example one set-associative cache organization for a set size of two is shown in figure.

Index Tag Data Tag Data
000 01 3450 02 5670
777 02 6710 00 2340

Fig. Two-way set-associative mapping cache

> Each index address refers to two data words and their.associated terms.

> Each tag required six bits and each data word has 12 bits, so the word length is 2 (6+12) = 36 bits.

> An index address of nine bits can accommodate 512 words.

> Thus the size of cache memory is 512 > 36. It can accommodate 1024 words or main memory
since each word of cache contains two data words.

> In generation-a set-associative cache of set size k will accommodate K word of main memory in

each word of cache.
> The octal numbers listed in figure 9.8 are with reference to the main memory contents.

> The words stored at addresses 01000 and 02000 of main memory are stored in cache memory at
index address 000.

Similarly, the words at addresses 02777 and 00777 are stored in cache at index address 777.

When the CPU generates a memory request, the index value of the address is used to access the
cache.

> The tag field of the CPU address is then compared with both tags in the cache to determine if a
match occurs.

> The comparison logic is done by an associative search of the tags in the set similar to an associative
memory search: thus the name “set-associative”.

> When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of the
tag-data items with a new value.

> The most common replacement algorithms used are: random replacement, first-in firstout (FIFO),
and least recently used (LRU).

' 118 }
Rahul Publications —

UNIT - IV COMPUTER ARCHITECTURE

Q9. Explain Write-through and Write-back cache write method.

Ans :
Write Through

> The simplest and most commonly used procedure is to update main memory with every memory
write operation.

> The cache memory being updated in parallel if it contains the word at the specified address. This is
called the write-through method.

> This method has the advantage that main memory always contains the same data as the cache.

> This characteristic is important in systems with direct memory access transfers.

> It ensures that the data residing in main memory are valid at all times so that an I/O device

> Virtual memory is used to give programmers the illusion that they have a very large memory at their
disposal, even though the computer actually has a relatively small main memory.

> A virtual memory system provides a mechanism for translating program-generated addresses into
correct main memory locations.

Address space

> An address used by a programmer will be called a virtual address, and the set of such addresses is
known as address space.

Memory space

> An address in main memory is called a location or physical address. The set of such locations is
called the memory space.

' 119 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

Auxiliary Memory Main Memory 32k=2

Program 1
Data 1,1 \
Program 1

Data 1,2

Program 2
Data 2,1

b Datal,1

Address space 1024k=21°

Fig. Relation between address and memory space in a virtual memory system

» As anillustration, consider a computer with a main-memory capacity of 32K words (K = 1024).
Fifteen bits are needed to specify a physical address in memory since 32K = 215.

> Suppose that the computer has available auxiliary memory for storing 220 = 1024K words.

> Thus auxiliary memory has a capacity for storing information equivalent to the capacity of 32 main
memories.

> Denoting the address space by N and the memory space by M, we then have for this example N =
1024K and M = 32K.

> In a multiprogramming computer system, programs and data are transferred to and from auxiliary
memory and main memory based on demands imposed by the CPU.

> Suppose that program 1 is currently being executed in the CPU. Program 1 and a portion of its
associated data are moved from auxiliary memory into main memory as shown in figure.

> Portions of programs and data need not be-in contiguous locations in memory since information is
being moved in and out,.and empty spaces may be available in scattered locations in memory.

> In our example, the address field of an instruction code will consist of 20 bits but physical memory
addresses must be specified with only 15 bits.

> Thus CPU will reference instructions and data with a 20-bit address, but the information at this
address must be taken from physical memory because access to auxiliary storage for individual
words will be too long.

Q11. Explain address mapping using pages.
Ans :

> The table implementation of the address mapping is simplified if the information in the address
space and the memory space are each divided into groups of fixed size.

> The physical memory is broken down into groups of equal size called blocks, which may range from
64 to 4096 words each.

The term page refers to groups of address space of the same size.
Consider a computer with an address space of 8K and a memory space of 4K.

If we split each into groups of 1K words we obtain eight pages and four blocks as shown in figure

YV V V VY

At any given time, up to four pages of address space may reside in main memory in any one of the
four blocks.

{ 120 |
Rahul Publications —

UNIT - IV COMPUTER ARCHITECTURE

Pegeo
Page 1
Page 2
l':d:irsli(ss_ séplgce Page 3 Memory space
A Fr— M =4K =212
Page 5
Page 6
_Page /7
Fig. Address and Memory space split into group of 1K words
Page no. Line number
[io: Joioi1o010011] Virtual address
Table Pnesenoe
address ‘ * bit
000 0 j Main memory
001 11 1 Block 0
010 00 1 * Block 1
011 0 01) 0101010011 Block 2
0 . Main memory e
01 o1 11 address register
110 10 1 -
111 0 . MBR
l address register
[01 |

> The line number from the virtual address is transferred into the 10 low-order bits of the memory
address register.

' 121 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

> A read signal to main memory transfers the content of the word to the main memory buffer register
ready to be used by the CPU.

> If the presence bit in the word read from the page table is 0, it signifies that the content of the word
referenced by the virtual address does not reside in main memory.

Q12. What is segment? What is logical address? Explain segmented page mapping.
Ans :
Segment
A segment is a set of logically related instructions or data elements associated with a given name.
Logical address
The address generated by segmented program is called a logical address.
Segmented page mapping

The length of each segment is allowed to grow and contract according to the needs of the program
being executed. Consider logical address shown in figure 9.12.

Logical address

Segment | Page I Word I
Segment table Page table
—
v
L
L —
1 L

I Block I Word I

Physical address
Fig. Logical to physical address mapping
> The logical address is partitioned into three fields.

> The segment field specifies a segment number.

A\

The page field specifies the page within the segment and word field gives specific word within the
page.

A page field of k bits can specify up to 2k pages.

A segment number may be associated with just one page or with as many as 2k pages.

Thus the length of a segment would vary according to the number of pages that are assigned to it.

vV V V V

The mapping of the logical address into a physical address is done by means of two tables, as shown
in figure.

' 122 }
Rahul Publications —J

UNIT - IV COMPUTER ARCHITECTURE

The segment number of the logical address specifies the address for the segment table.

The entry in the segment table is a pointer address for a page table base.

The page table base is added to the page number given in the logical address.

The sum produces a pointer address to an entry in the page table.

The concatenation of the block field with the word field produces the final physical mapped address.
The two mapping tables may be stored in two separate small memories or in main memory.

In either case, memory reference from the CPU will require three accesses to memory:

one from the segment table, one from the page table and the third from main memory.

YV V V ¥V ¥V ¥V ¥V VY V

This would slow the system significantly when compared to a conventional system that requires only
one reference to memory.

4.1.8 Memory Management hardware.

Q13. Write about memory management hardware.

Ans : (Imp.)
Memory Hierarchy

Computers have several different types of memory. This memory is often viewed as a hierarchy as
shown below.

§ CPU Registers
L1 Cache Memory
| L2 Cache Memory A
| /\

Rotating Magnetic Memory

\’?SC ! I)
LA . |

c

Q

Q

L

N

Faster access

Optical Memory

c l I

Sequentially Accessed Memory

7
{

Our main concern here will be the computer’s main or RAM memory. The cache memory is important
because it boost’s the speed of accessing memory, but it is managed entirely by the hardware. The rotating
magnetic memory or disk memory is used by the Virtual Memory Management.

{123]
—J Rahul Publications

MCA | YEAR | SEMESTER

The Memory Management Unit (MMU) performs translations.

The MMU contains the following:

» The table walk unit, which contains logic that reads the translation tables from memory.
» Translation Lookaside Buffers (TLBs), which cache recently used translations.

All memory addresses that are issued by software are virtual. These memory addresses are passed to
the MMU, which checks the TLBs for a recently used cached translation. If the MMU does not find a
recently cached translation, the table walk unit reads the appropriate table entry, or entries, from memory,
as shown here:

A virtual address must be translated to a physical address before a memory access can take place
(because we must know which physical memory location we are accessing). This need for translation also
applies to cached data, because on Armv6 and later processors, the data caches store data using the
physical address (addresses that are physically tagged). Therefore, the address must be translated before a
cache lookup can complete.

OCK and are not changed by the translation.

Multilevel Translation

In a single-level lookup, the virtual address space is split into equal-sized blocks. In practice, a hierarchy
of tables is used.

The first table (Level 1 table) divides the virtual address space into large blocks. Each entry in this
table can point to an equal-sized block of physical memory or it can point to another table which subdivides
the block into smaller blocks. We call this type of table a ‘multilevel table’. Here we can see an example of
a multilevel table that has three levels:

' 124 }
Rahul Publications —J

UNIT - IV COMPUTER ARCHITECTURE

In Armv8-A, the maximum number of levels is four, and the levels are numbered 0 to 3. This multilevel
approach allows both larger blocks and smaller blocks to be described. The characteristics of large and
small blocks are as follows:

» Large blocks require fewer levels of reads to translate than small blocks. Plus, large blocks are
more efficient to cache in the TLBs.

» Small blocks give software fine-grain control over memory allocation. However, small blocks
are less efficient to cache in the TLBs. Caching is less efficient because small blocks require
multiple reads through the levels to translate.

To manage this trade-off, an OS must balance the efficiency of using large mappings against the
flexibility of using smaller mappings for optimum performance.

Note: The processor does not know the size of the translation when it starts the table lookup. The
processor works out the size of the block that is being translated by performing the table walk.

g

Rahul Publications

I A
T T
ENEEEEEEEEEEEEEEE NN

Input-Output Organization

Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes
U N I T of Transfer, Priority Interrupt, Direct Memory Access (DMA), I/O Processor,
Serial Communication.

V Pipeline Processing

Arithmetic, Instruction and RISC Pipelines. Assessing and Understanding
Performance: CPU performance and its factors, Evaluating performance.

EEEEEEEEEEEEEEEEEEEEEEE N
/IS EEEEEEEEEEEEEEEEEEE]

]
I 5.1 INPUT-OuTPUT ORGANIZATION
5.1.1 Peripheral Devices
Q1. Define Peripherals. Explain I/O Bus and Interface Modules.
Ans : (Imp.)

Peripherals:

YV V V V V

A\

Input-output device attached to the computer are also called peripherals.

1/0 bus
Data
Processor Address
Control
Interface I |Interface | Ilnterface | |Interface
Keyboard . .
and Printer Magnetic Magnetic
display disk tape
terminal

Fig. Connection of I/O bus to input-output device
A typical communication link between the processor and several peripherals is shown in figure.
The 1/O bus consists of data lines, address lines, and control lines.
The magnetic disk, printer, and terminal are employed in practically any general purpose computer.
Each peripheral device has associated with it an interface unit.

Each interface decodes the address and control received from the 1/O bus, interprets them for the
peripheral, and provides signals for the peripheral controller.

It also synchronizes the data flow and supervises the transfer between peripheral and processor.
Each peripheral has its own controller that operates the particular electromechanical device.

For example, the printer controller controls the paper motion, the print timing, and the selection of
printing characters.

The 1/0O bus from the processor is attached to all peripheral interfaces.

= 126 :

Rahul Publications

UNIT -V COMPUTER ARCHITECTURE

> To communicate with a particular device, the processor places a device address on the address lines.
> Each interface attached to the 1/0 bus contains an address decoder that monitors the address lines.

> When the interface detects its own address, it activates the path between the bus lines and the device
that it controls.

> All peripherals whose address does not correspond to the address in the bus are disabled by their
interface selected responds to the function code and proceeds to execute it.

> The function code is referred to as an I/O command.

> There are four types of commands that an interface may receive. They are classified as control,
status, data output, and data input.

> A control command is issued to activate the peripheral and to inform it what to do.

> In this case the interface receives an item of data from the peripheral and places it in its buffer register.

> The processor checks if data are available by means of a status command and then issues a data
input command.

> The interface places the data on the data lines, where they are accepted by the processor.

5.1.2 Input-Output Interface
Q2. Explain I/O interface with example.

Ans :

> It consists of two data registers called ports, a control register, a status register, bus buffers, and timing
and control circuit.

' 127 | —
—J Rahul Publications

MCA

| YEAR | SEMESTER

YV V V V VYV V

The interface communicates with the CPU through the data bus.

The chip select and register select inputs determine the address assigned to the interface.
The 1/O read and writes are two control lines that specify an input or output, respectively.
The four registers communicate directly with the 1/0 device attached to the interface.
The 1/O data to and from the device can be transferred into either port A or port B.

If the interface is connected to a printer, it will only output data, and if it services a character reader,
it will only input data.

» A magnetic disk unit transfers data in both directions but not at the same time, so the interface can

use bidirectional lines.

> A command is passed to the I/O device by sending a word to the appropriate interface register.

> The control register receives control information from the CPU. By loading appropriate bits into the
control register, the interface and the I/0 device attached to it can be placed in a variety of operating

modes.

CPU

...

.................

1/O Device

PortA | ilQdata
: [~ register .
Bidirectional : Bus - :
atabus : buffers - " :
: PortB «-Qdata
: = register :
: 3
Chip select : cs a
. o H
Register select @ < R Control Eontrol .
ESELESC—— RSl fiing g register :
Register select RSO and - H
- Control
1/0 read H
»| RD L Status . Status
1/0 write »| wr ke register
cs RS1 RSO | Register Selected
0 X X None: data bus in high impedance
1 0 0 Port A register
1 0 1 Port B register
1 n | 0 Control register
1 1 1 Status register

Figure : Example of I/O interface unit

> For example, port A may be defined as an input port and port B as an output port.

> A magnetic tape unit may be instructed to rewind the tape or to start the tape moving in the forward

direction.

> The bits in the status register are used for status conditions and for recording errors that may occur
during the data transfer.

> For example, a status bit may indicate that port A has received a new data item from the 1/O device.

= 128 ',

Rahul Publications

UNIT -V COMPUTER ARCHITECTURE

YV V V V

Another bit in the status register may indicate that a parity error has occurred during the transfer.
The interface registers communicate with the CPU through the bidirectional data bus.
The address bus selects the interface unit through the chip select and the two register select inputs.

A circuit must be provided externally (usually, a decoder) to detect the address assigned to the
interface registers.

This circuit enables the chip select (CS) input when the interface is selected by the address bus.

The two register select inputs RS1 and RSO are usually connected to the two least significant lines of
the address bus.

These two inputs select one of the four registers in the interface as specified in the table accompanying
the diagram.

initiated transfer.
The data bus carries the binary information from source unit to the destination unit.

The strobe is a single line that informs the destination unit when a valid data word is available in the
bus.

The source unit first places the data on the data bus.
After a delay to ensure that the data settle to a steady value, the source activates the strobe pulse.

The information on the data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data.

The source removes the data from the bus a brief period after it disables its strobe pulse.

{129]
—J Rahul Publications

MCA

| YEAR | SEMESTER

Source-Initiated Strobe
for Data Transfer

Block Diagram

Databus >
Source Destination

unit Strobe unit
&

Valid data
Data
Strobe I |

Fig. Source-initiated strobe for data transfer

Destination-initiated strobe for data transfer

>

vV V V VY

It shows a data transfer initiated by the destination unit. In this case the destination unit activates the
strobe pulse, informing the source to provide the data.

The source unit responds by placing the requested binary information on the data bus.
The data must be valid and remain in the bus long enough for the destination unit to accept it.
The falling edge of the strobe pulse can be used again to trigger a destination register.

The destination unit then disables the strobe. The source removes the data from the bus after a
predetermined time interval.

The transfer of data between the CPU and an interface unit is similar to the strobe transfer just
described.

Destination-Initiated Strobe
for Data Transfer

Block Diagram

Databus

\ 4

Source Destination
unit unit
P Strobe
<

Timing Diagram

Valid data
Data
Strobe I |

Figure. Destination-initiated strobe for data transfer

Disadvantage of Strobe method

>

>

The disadvantage of the strobe method is that the source unit that initiates the transfer has no way of
knowing whether the destination unit has actually received the data item that was placed in the bus

Similarly, a destination unit that initiates the transfer has no way of knowing whether the source unit
has actually placed the data on the bus.

: 130 ',

Rahul

Publications

UNIT -V COMPUTER ARCHITECTURE

Q4. Explain Asynchronous data transfer with Handshaking method.

AnS :

The handshake method solves the problem of Strobe method by introducing a second control signal

that provides a reply to the unit that initiates the transfer.

Source-initiated transfer using handshaking

YV V V V VY

A\

vV V V V

> One control line is in the same direction as the data flow in the bus from the source to the

destination.
» ltis used by the source unit to inform the destination unit whether there are valid data in the
bus.
Data bus
Block Diagram S = g:tt:::lcigpt — Dy,

Valid data —L

Timing Diagram Dtirbes

Data valid

Data accepted

Sequence of Events Source unit Destination unit

Place data on bus.
Enable data valid.

Accept data from bus.
Enable data accepted

Disable data valid.
Invalidate data on bus.

Disable data accepted.
Ready to accept data
(initial state).

Fig. Source-initiated transfer using handshaking
The other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept data.
The sequence of control during the transfer depends on the unit that initiates the transfer.
Figure (a) shows the data transfer procedure initiated by the source.

The two handshaking lines the data valid, which is generated by the source unit, and data accepted,
generated by the destination unit, the timing diagram shows the exchange of signals between the two
units.

The sequence of events listed in figure (a) shows the four possible states that the system can be at any
given time.

The source unit initiates the transfer by placing the data on the bus and enabling its data valid signal.
The data accepted signal is activated by the destination unit after it accepts the data from the bus.
The source unit then disables its data valid signal, which invalidates the data on the bus.

The destination unit then disables its data accepted signal and the system goes into its initial state.

|l 131 ',

Rahul Publications

MCA | YEAR | SEMESTER

> The source does not send the next data item until after the destination unit shows its readiness to
accept new data by disabling its data accepted signal.

> This scheme allows arbitrary delays from one state to the next and permits each unit to respond at its
own data transfer rate.

Destination-initiated transfer using handshaking
> The destination-initiated transfer using handshaking lines is shown in figure (b)

> Note that the name of the signal generated by the destination unit has been changed to ready for
data to reflect its new meaning.

> The source unit in this case does not place data on the bus until after it receives the ready for data
signal from the destination unit.

> From there on, the handshaking procedure follows the same pattern as in the source initiated case.

> Note that the sequence of events in both cases would be identical if we consider the ready for data
signal as the complement of data accepted.

> In fact, the only difference between the source-initiated and the destination-initiated transfer is in
their choice of initial state.

Data bus

. Source Data valid : Destination
Block Diagram unit Ready for data unit
i
y . . Ready for data

Timing Diagram

Data valid

Valid data
Data bus
Source unit Destination unit

Sequence of Events

Ready to accept data. |
ey
| Place data on bus. |.—__—4 Enable ready for data.

Enable data valid.
Accept data from bus.
Disable data valid. Disable ready for data.

Invalidate data on bus
(initial state).

Fig (b). Destination-initiated transfer using handshaking

5.1.4 Modes of Transfer
Q5. Explain Programmed 1/O with example.

Ans :
_ Data bus | Interface _ 1/Obus ~
hdmbs ' '
> Data register _ Datavalid 1/0
CPU 1/0 read N Pt b device
1/0 write N Status E Data accepted _
h register =

Fig (a): Data transfer from 1/O device to CPU

= 132 =

Rahul Publications

UNIT -V COMPUTER ARCHITECTURE

In the programmed I/O method, the 1/O device does not have direct access to memory.

An example of data transfer from an 1/O device through an interface into the CPU is shown in figure (a)
When a byte of data is available, the device places it in the I/O bus and enables its data valid line.
The interface accepts the byte into its data register and enables the data accepted line.

The interface sets a bit in the status register that we will refer to as an F or “flag” bit.

vV V V VYV VY V

The device can now disables the data valid line, but it will not transfer another byte until the data

i Read status register I g

I

I Check flag bit I

I Read data register I

!

| Transfer data to memory I

I Continue with program I

Fig (b). Flowchart for CPU program to input data

{133]
—J Rahul Publications

MCA | YEAR | SEMESTER

Q6. Write a note on Interrupt Initiated 1/O
Ans :

> In programmed initiated, CPU stays in a program loop until the I/O unit indicates that it is ready for
data transfer.

This is a time consuming process since it keeps the processor busy needlessly.

It can be avoided by using an interrupt facility and a special command to inform the interface to issue
an interrupt request signal when data are available from the device.

> In the meantime CPU can proceed to execute another program.
> The interface meanwhile keeps monitoring the device.

> When the interface determines that the device is ready for data transfer, it generates an interrupt
request to the computer.

» While the CPU is running a program, it does not check the flag. However, when the flag is set, the
computer is momentarily interrupted from proceeding with the current program and is informed of
the fact that the flag has been set.

> The CPU deviates from what it is doing to take care of the input or output transfer.

> After the transfer is completed, the computer returns to the previous program to continue what it was
doing before the interrupt.

> The CPU responds to the interrupt signal by storing the return address from the program counter into
a memory stack and then-control branches to a service routine that processes the required 1/0
transfer.

> The way that the processor chooses the branch address of the service routine varies from one unit to

another.

> In non-vectored interrupt, branch address is assigned to a fixed location in memory.

> In a vectored interrupt, the source that interrupts supplies the branch information to the computer.
The information is called vector interrupt.

> In some computers the interrupt vector is the first address of the 1/0 service routine.

> In other computers the interrupt vector is an address that points to a location in memory where the

beginning address of the 1/O service routine is stored.

5.1.5 Priority Interrupt

Q7. What is priority interrupt? Explain briefly about Daisy Chaining Priority.

Ans : (Imp.)
> Determines which interrupt is to be served first when two or more requests are made simultaneously

> Also determines which interrupts are permitted to interrupt the computer while another is being
serviced

> Higher priority interrupts can make requests while servicing a lower priority interrupt.

' 134 }
Rahul Publications —J

UNIT -V COMPUTER ARCHITECTURE

Daisy Chaining Priority

Processor data bus

[vaD 1 |VAD 2 | vaAD 3
Device 1 Device 2 Device 3
> P PO Pl PO Pl PO js-T0 NEXt
device |
Interrupt fequest INT
CcPU
Interrupt acknowledge INTACK

Fig. Daisy-chain priority interrupt

> The daisy-chaining method of establishing priority consists of a serial connection of all devices that
request an interrupt.

> A device that is requesting an interrupt and has a 1 in its Pl input will intercept the acknowledge signal
by placing a 0 in its PO output.

> If the device does not have pending interrupts, it transmits the acknowledge signal to the next device
by placing a 1 in its PO output.

> Thus the device with Pl = 1 and PO = 0 is the one with the highest priority that is requesting an
interrupt, and this device places its VAD on the data bus.

> The daisy chain arrangement gives the highest priority to the device that receives the interrupt
acknowledge signal from the CPU.

> The farther the device is from the first position; the lower is its priority.

' 135 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

5.1.6 Direct Memory Access (DMA)

Q8. Write a detailed note on Direct Memory Access (DMA).
Ans :

Direct Memory Access

>
>

>

>
>

Transfer of data under programmed 1/O is between CPU and peripheral.

In direct memory access (DMA), Interface transfers data into and out of memory through the memory
bus.

The CPU initiates the transfer by supplying the interface with the starting address and the number of
words needed to be transferred and then proceeds to execute other tasks.

When the transfer is made, the DMA requests memory cycles through the memory bus.

When the request is granted by the memory controller, DMA transfers the data directly into memory.

DMA Controller

>

>

DMA controller - Interface which allows 1/O transfer directly between Memory and Device, freeing
CPU for other tasks

CPU initializes DMA Controller by sending memory address and the block size (humber of words).

ABUS [= Addressbus High-impedence
Bus request =—p| BR - DBUS |<€—% Databus (disabled)
Busgranted =BG RD = Read when BG is
WR ey Write enabled

Fig. CPU bus signals for DMA transfer

Address bus e I
Databus «——a| Databus —— Address bus
buffers buffers
w
IR setect S Q@ |@——t] Addressregister |
Register select —a| RS e
Read -——=|RD E @] Word count register |
Write | WR C‘I’;‘gt"c"'
Busrequest -e=—{BR " | _controlregister |
Busgrant -1 BG
Interrupt =g Interrupt DMA request

tolf/Odevice

DMA acknowledge ‘

Fig. Block diagram of DMA controller

The DMA controller needs the usual circuits of an interface to communicate with the CPU and 1/O
device.

In addition, it needs an address register, a word count register, and a set of address lines.

Rahul Publications

: 136 ',

UNIT -V COMPUTER ARCHITECTURE

vV V ¥V VYV ¥V V V VY

The address register and address lines are used for direct communication with the memory.

The word count register specifies the number of words that must be transferred.

The data transfer may be done directly between the device and memory under control of the DMA.
Figure shows the block diagram of a typical DMA controller.

The unit communicates with the CPU via the data bus and control lines.

The register in the DMA are selected by the CPU through the address bus by enabling the

DS (DMA select) and RS (register select) inputs.

The RD (read) and WR (write) inputs are bidirectional.

The DMA is first initialized by the CPU.

After that, the DMA starts and continues to transfer data between memory and peripheral unit until
an entire block is transferred.

The CPU initializes the DMA by sending the following information through the data bus

The staring address of the memory block where data are available (for read) or where data are to be
stored (for write)

The word count, which is the number of words in the memory block.
Control to specify the mode of transfer such as read or write.

The starting address is stored in the address register.

' 137 | —
—J Rahul Publications

MCA | YEAR | SEMESTER
5.1.7 1/0 Processor
Q9. Explain Input- Output Processor (IOP)

AnS :

YV V V V

Central
processing
7 Unit
2. Peripheral devices
Memory |5
= Tl ® @ @ @
=
Input-output
4¢— processor o
(10P) /O bus

Fig. Block diagram of a computer with I/O processor
IOP is similar to a CPU except that it is designed to handle the details of I1/O processing:

Unlike the DMA controller that must be setup entirely by the CPU, the IOP can fetch and.execute its
own instruction.

IOP instructions are specifically designed to facilitate I/O transfers.

In addition, IOP can perform other processing tasks, such as arithmetic, logic branching, and code
translation.

The block diagram of a computer with two processors is shown in figure 8.12.

The memory unit occupies central position and can communicate with each processor by means of
direct memory access.

The CPU is responsible for processing data needed in the solution of computational tasks.
The IOP provides a path of for transfer of data between various peripheral devices and memory unit.
The CPU is usually assigned the task of initiating the 1/0O program.

From then, IOP operates independent of the CPU and continues to transfer data from external
devices and memory.

The data formats of peripheral devices differ from memory and CPU data formats. The IOP must
structure data words from many different sources.

For example, it may be necessary to take four bytes from an input device and pack them into one 32-
bit word before the transfer to memory.

Data are gathered in the IOP at the device rate and bit capacity while the CPU is executing its own
program.

After the input data are assembled into a memory word, they are transferred from IOP directly into
memory by “stealing” one memory cycle from the CPU.

similarly, an output word transferred from memory to the IOP is directed from the IOP to the output
word transferred from memory to the IOP.

Rahul

' 138 }
Publications)

UNIT -V COMPUTER ARCHITECTURE

In most computer systems, the CPU is the master while the IOP is a slave processor.
The CPU is assigned the task of initiating all operations, but I/O instructions are executed in the IOP.

CPU instructions provide operations to start an 1/O transfer and also to test I/O status conditions
needed for making decisions on various I/O activities.

The IOP, in turn, typically asks for CPU attention by means of an interrupt.

Instructions that are read from memory by an IOP are sometimes called commands, to distinguish
them from instructions that are read by the CPU.

Q10. Explain CPU-IOP Communication.
Ans :

The CPU responds to the interrupt by Issuing an instruction to read the status from the IOP.
The IOP responds by placing the contents of its status report into a specified memory location.

The status word indicates whether the transfer has been completed or if any errors occurred during
the transfer.

From inspection of the bits in the status word, the CPU determines if the I/O operation was completed
satisfactorily without errors.

The IOP takes care of all data transfers between several 1/0 units and the memory while the CPU is
processing another program.

The I0P and CPU are competing for the use of memory, so the number of devices that can be in
operation is limited by the access time of the memory.

{ 139]
—J Rahul Publications

MCA

| YEAR | SEMESTER

CPU operations

IOP operations

I Request IOP status

Send instruction
to test IOP.path \’
Transfer status word
to memory
If status OK, then send /
start |/O instruction
o IOP. \ Access memory
J for IOP program
CPU continues with ‘
another program Conduct I/0 transfers
using DMA;
Prepare status report.
« 1/0 transfer completed;
Interrupt CPU

—_

Check status word
for correct transfer.

Transfer status word

‘-—________._—

to memory location

’

Continue

Fig. CPU-IOP communication

5.1.8 Serial Communication

Q11. What is Serial communication?

AnS :

(Imp.)

> In serial communication, data is in the form of binary pulses. In other words, we can say Binary One

represents a logic HIGH or 5 Volts, and zero represents a logic LOW or 0 Volts.

> Serial communication can take many forms depending on the type of transmission mode and data

transfer.

> The transmission modes are classified as Simplex, Half Duplex, and Full Duplex. There will be a
source (also-known as a sender) and destination (also called a receiver) for each transmission

mode.

Transmission Modes in Serial Communication

Network Half Duplex
E _—
Sender Receiver
Simplex Full Duplex
Sender > >1 Receiver Sender Receiver

Codrey Electronics

Rahul Publications

= 140 i,

UNIT -V COMPUTER ARCHITECTURE

Transmission Modes — Serial Communication

>

The Simplex method is a one-way communication technique. Only one client (either the sender
or receiver is active at a time). If a sender transmits, the receiver can only accept. Radio and Television
transmission are the examples of simplex mode.

In Half Duplex mode, both sender and receiver are active but not at a time, i.e. if a sender
transmits, the receiver can accept but cannot send and vice versa. A good example is an internet. If
a client (laptop) sends a request for a web page, the web server processes the application and sends
back the information.

The Full Duplex mode iswidely used communication in the world. Here both sender and receiver
can transmit and receive at the same time. An example is your smartphone. Beyond the transmission
modes, we have to consider the endianness and protocol design of the host computer (sender or
receiver). Endianness is the way of storing the data at a particular memory address. Depending
on the data alignment endian is classified as

o Little Endian and
0 Big Endian.

Take this example to understand the concept of endianness. Suppose, we have a 32-bit hexadecimal

data ABCDS87E2. How is this data stored in memory? To have a clearidea, | have explained the difference
between Little Endian and Big Endian.

Little Endian VS Big Endian

What's the difference?

Endianness specifies which byte (MSB or LSB)
is stored at which end of memory.

How ABCDB87E2 is represented in memory?

In Little Endian format, LSB is stored at the lowest memory address,
and MSB is stored at the highest memory address.

Little Endian

Address | 100 | 101 | 102 | 103
Value E2 [E87 8| R CDEIEAR

LSB MSB
Least Significant Byte Most Significant Byte

Big Endian

Address | 100 | 101 | 102 [103

Value AB | CD| 87 E2

MSB
Most Significant Byte Least Significant Byte

In Big Endian format, LSB is stored at the highest memory address,
and MSB is stored at lowest memory address.

Codrey Electronics

Little Endian Vs Big Endian

' 141 | .
—J Rahul Publications

MCA | YEAR | SEMESTER

> Data transfer can happen in two ways. They are serial communication and parallel communication.
Serial communication is a technique used to send data bit by bit using a two-wires i.e. transmitter
(sender) and receiver.

> For example, | want to send an 8-bit binary data 11001110 from the transmitter to the receiver.
But, which bit goes out first? Most Significant Bit—MSB (7™ bit) or Least Significant Bit- LSB (0" Bit).
We cannot say. Here | am considering LSB is moving first (for little Endian).

Serial Communication

MSB Data LSB
1 10 0 1 1 1 0

JUuuvuuuuue

CLK

JuUuuuUuyuuuuUte

Codrey Electronics

Serial Communication

From the above diagram, for every clock pulse; the transmitter-sends a single bit of data to the
receiver.

Parallel communication moves 8,16, or 32 bits of data at a time. Printers and Xerox machines use
parallel communication for faster data transfer.

Parallel Communication

Bit 7 (MSB

Codrey Electronics

RS232 Parallel Communication
Difference between Serial and Parallel communication

> Serial communication sends only one bit at a time. so, these require fewer I/O (input-output) lines.
Hence, occupying less space and more resistant to cross-talk.

> The main advantage of serial communication is, the cost of the entire embedded system becomes
cheap and transmits the information over a long distance.

> Serial transfer is used in DCE (Data communication Equipment) devices like a modem.

' 142 }
Rahul Publications —J

UNIT -V COMPUTER ARCHITECTURE

> In parallel communication, a chunk of data (8,16 or 32 bit) is sent at a time. So, each bit of data
requires a separate physical I/O line.

> The advantage of parallel communication is it is fast but its drawback is it use more number of I1/O
(input-output) lines.

> Parallel transfer is used in PC (personal computer) for interconnecting CPU (central processing unit),
RAM (random access memory), modems, audio, video and network hardware.

Serial Communication Parallel Communication

Sends data bit by bit at one clock pulse Transfers a chunk of data at a time

Requires one wire to transmit the data Requires ‘n” number of lines for transmitting ‘n’ bits
Communication speed is slow Communication speed is fast

Installation cost is low Installation cost is high

Preferred for long distance communication Used for short distance communication

Example: Computer to Computer Computer to multi function printer

applications. Examples of asynchronous protocols are RS-232, RS-422, and RS-485.
How Serial communication Works?

Advanced CPU such as microcontroller and Microprocessor make use of serial communication to
communicate with the external world as well as on the chip peripherals. To get familiar, let us take a simple
example. For suppose, you want to send a file present in your laptop to smartphone. How would you send?
Probably using Bluetooth or WiFi protocol, Right.

So, here are the steps to establish the serial communication

' 143 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

1. Add the connection

In the first step, your laptop will search for devices nearby 100m and will list out the devices found.
This process is often called roaming.

2. Select the device you want to communicate

To connect to your mobile, the pairing has to be done. The default configuration is already presentin
the software. So no need to configure the baud rate manually. Beyond this, there are four unknown
rules. They are baud rate, data bit selection (framing), start-stop bit, and parity.

[g

No.of bits transmitted per second from sender to receiver.

LML

7 bit data sent from sender to receiver.

LS8 Mss 1

]
Rule 3: Synchronization “'Z”Lrl—l—‘—,—l—l_l—rl_

Stattit 1 0 1 0 1 0 1 Stop bit
(High to Low) (Low fo High)

Start bit - Indicated by ZERO Stop bit - Indicated by ONE

Rule 1: Baud Rate

Rule 2: Data length selection

' Parity bitis '1' for even number of binary ones and ‘0*
Rule 4: Error Checking for odd number of binary ones. According to rule 3 it is set to 1.

Codrey Electronics

I 5.2 PIPELINE PROCESSING I

5.2.1 Arithmetic
Q12. Explain Flynn’'s classification for computers.
Ans : (Imp.)
Flynn’'s Classification
Itis based on the multiplicity of Instruction Streams and Data Streams.
Instruction Stream
Sequence of Instructions read from memory.
Data Stream

Operations performed on the data in the processor.

Number of Data Streams
Single Multiple
Number of Single SISD SIMD
Instruction
Streams Multiple MISD MIMD

Fig. Flynn’s Classification

= 144 i,

Rahul Publications

UNIT -V COMPUTER ARCHITECTURE

SISD:
> Single instruction stream, single data stream.
> SISD represents the organization of a single computer containing a control unit, a processor unit,
and a memory unit.
> Instructions are executed sequentially and the system may or may not have internal parallel processing
capabilities.
i [Control Processor i _ Datastream Memory
i unit | = unit i
Instruction stream
Fig. SISD Organization
SIMD:
> SIMD represents an organization that includes many processing units under the
> supervision of a common control unit.
» All processors receive the same instruction from the control unit but operate on different items of
data.
Data bus
I Instruction stream
cee Processor units
Data stream
I Alignment network |
[M] @ ese E Memory modules
Fig. SIMD Organization
MISD:
> There is no computer at present that can be classified as MISD.
> MISD structure is only of theoretical interest since no practical system has been constructed using this
organization.
MIMD:
> MIMD organization refers to a computer system capable of processing several programs at the same
time.
> Most multiprocessor and multicomputer systems can be classified in this category.
> Contains multiple processing units.

|l 145 ||

Rahul Publications

MCA | YEAR | SEMESTER

> Execution of multiple instructions on multiple data.

IPIMI IPIMI see m
b

y

Interconnection Network

3
Shared Memory

Fig. MIMD Organization

Q13. Explain pipelining technique. Draw the general structure of four segment pipeline.

Ans :

different sets of data.

> The general structure of a four-segment pipeline is illustrated in Figure 6.5.

Clock

Input — S1 R1 So R2[—" S3 *R3[—*| Sa Ra—

Fig. General Structure of Four-Segment Pipeline

' 146 }
Rahul Publications —J

UNIT -V COMPUTER ARCHITECTURE

The operands pass through all four segments in a fixed sequence.

Each segment consists of a combinational circuit S, which performs a sub operation over the data
stream flowing through the pipe.

The segments are separated by registers R, which hold the intermediate results between the stages.

Information flows between adjacent stages under the control of a common clock applied to all the
registers simultaneously.

» We define a task as the total operation performed going through all the segments in the pipeline.

Q14. Draw and explain Arithmetic Pipeline.

Ans :
The inputs to the floating-point adder pipeline are two normalized floating-point binary numbers.
X=AX2a
Y=Bx2b
Exponents Mantissas
1 lb Ii JB
1
Compare Difference
Segment1: exponents
by subtraction
v v
segment2: [Chooseexponent | || Align mantissa |
v
Segment 3: Add or subtract
) mantissas
\
Segment4: Adjust < Normalize
exponent result

Fig. Pipeline for floating-point addition and subtraction

147

Rahul Publications

MCA | YEAR | SEMESTER

> A and B are two fractions that represent the mantissas and a and b are the exponents.

> The floating-point addition and subtraction can be performed in four segments, as shown in
Figure

> The registers labeled R are placed between the segments to store intermediate results.
> The sub-operations that are performed in the four segments are:

1. Compare the exponents

2. Align the mantissas

3. Add or subtract the mantissas

4. Normalize the result

The following numerical example may clarify the sub-operations performed in each segment.

For simplicity, we use decimal numbers, although Figure 6.6 refers to binary numbers.

Discuss four-segment instruction pipeline with diagram(s).
Ans :

> Pipeline processing can occur in data stream as well as in instruction stream.

> An instruction pipeline reads consecutive instructions from memory while previous instructions are
being executed in other segments.

This causes the instruction fetch and executes phases to overlap and perform simultaneous operations.

One possible digression associated with such a scheme is that an instruction may cause a branch out
of sequence.

' 148 }
Rahul Publications —J

UNIT -V COMPUTER ARCHITECTURE

>

>
>

In that case the pipeline must be emptied and all the instructions that have been read from memory
after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction execution unit designed to
provide a two-segment pipeline.

The instruction fetch segment can be implemented by means of a first-in, first-out (FIFO) buffer.

The buffer acts as a queue from which control then extracts the instructions for the execution unit.

Instruction Cycle

>
>

The fetch and execute to process an instruction completely.

In the most general case, the computer needs to process each instruction with the following sequence
of steps

1. Fetch the instruction from memory.
2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.
5. Execute the instruction.

6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline from operating at its maximum
rate.

Different segments may take different times to operate on the incoming information.
Some segments are skipped for certain operations.

The design of an instruction pipeline will be most efficient if the instruction cycle is divided into
segments of equal duration.

The time that each step takes to fulfill its function depends on the instruction and the way it is
executed.

Example: Four-Segment Instruction Pipeline

>

Assume that the decoding of the instruction can be combined with the calculation of the effective
address into one segment.

Assume further that most of the instructions place the result into a processor registers so that the
instruction execution and storing of the result can be combined into one segment.

This reduces the instruction pipeline into four segments.

1. Fl: Fetch an instruction from memory

2. DA: Decode the instruction and calculate the effective address of the operand
3. FO: Fetch the operand
4

EX: Execute the operation

' 149 |
—J Rahul Publications

MCA

| YEAR | SEMESTER

Figure (a) shows, how the instruction cycle in the CPU can be processed with a four segment pipeline.

While an instruction is being executed in segment 4, the next instruction in sequence is busy fetching
an operand from memory in segment 3.

> The effective address may be calculated in a separate arithmetic circuit for the third instruction, and
whenever the memory is available, the fourth and all subsequent instructions can be fetched and
placed in an instruction FIFO.

> Thus up to four sub operations in the instruction cycle can overlap and up to four different instructions
can be in progress of being processed at the same time.

Fetch instruction

Segmient]: from memory
v
Decod; inftrnIJction
Segment2: and calculate
E effective address
Branch?
yes
no
. Fetch operand
Segments: from memory
Segment4: | Execute instruction
handling

Update PC

no

v ¢

Fig (a). Four-segment CPU pipeline

Figure (b) shows the operation of the instruction pipeline. The time in the horizontal axis is divided
into steps of equal duration. The four segments are represented in the diagram with an abbreviated symbol.

Instruction 1 |FI

(Branch)

Step: 1121314151617 1819 110 111 312 §13
DA | FO | EX
2 FI JDA] FO | EX
3 FI |DA]JFO | EX
4 FI =]~ |Fl)DA]FO JEX
5 =] =]~ |H |DA]JFO |EX
6 FI |DA]FO | EX
7 FIl |DAJFO JEX

Fig. Timing of Instruction Pipeline

= 150 :

Rahul Publications

UNIT -V COMPUTER ARCHITECTURE

>

It is assumed that the processor has separate instruction and data memories so that the operation in
Fl and FO can proceed at the same time.

Thus, in step 4, instruction 1 is being executed in segment EX; the operand for instruction 2 is being
fetched in segment FO; instruction 3 is being decoded in segment

DA; and instruction 4 is being fetched from memory in segment FI.
Assume now that instruction 3 is a branch instruction.

As soon as this instruction is decoded in segment DA in step 4, the transfer from Fl to DA of the other
instructions is halted until the branch instruction is executed in step 6.

If the branch is taken, a new instruction is fetched in step 7. If the branch is not taken, the instruction
fetched previously in step 4 can be used.

The pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store the result of the operation
in the data memory while the FO segment needs to fetch an operand.

In that case, segment FO must wait until segment EX has finished its operation.

Hardware Interlocks
>

>

An interlock is a circuit that detects instructions whose source operands are destinations of instructions
farther up in the pipeline.

Detection of this situation causes the instruction whose source is not available to be delayed by
enough clock cycles to resolve the conflict.

This approach maintains the program sequence by using hardware to insert the required delays.

' 151 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

Operand Forwarding

> It uses special hardware to detect a conflict and then avoid it by routing the data through special
paths between pipeline segments.

> This method requires additional hardware paths through multiplexers as well as the circuit that detects
the conflict.

Delayed Load
> Sometimes compiler has the responsibility for solving data conflicts problems.

> The compiler for such computers is designed to detect a data conflict and reorder the instructions as
necessary to delay the loading of the conflicting data by inserting no operation instruction, this
method is called delayed load.

Handling of Branch Instructions
> One of the major problems in operating an instruction pipeline is the occurrence of branch instructions.
» A branch instruction can be conditional or unconditional.

> The branch instruction breaks the normal sequence of the instruction stream, causing difficulties in
the operation of the instruction pipeline.

> Various hardware techniques are available to minimize the performance degradation caused by
instruction branching.

Pre-fetch Target

> One way of handling a conditional branch is to prefetch the target instruction in addition to the
instruction following the branch.

> If the branch condition is successful, the pipeline continues from the branch target instruction.

> An extension of this procedure is to continue fetching instructions from both places until the branch
decision is made.

Branch Target Buffer
> Another possibility is the use of a branch target buffer or BTB.
> The BTB is an associative memory included in the fetch segment of the pipeline.

> Each entry in the BTB consists of the address of a previously executed branch instruction and the
target instruction for that branch.

> It also stores the next few instructions after the branch target instruction.

> The advantage of this scheme is that branch instructions that have occurred previously are readily
available in the pipeline without interruption.

Loop Buffer

> A variation of the BTB is the loop buffer. This is a small very high speed register file maintained by the
instruction fetch segment of the pipeline.

> When a program loop is detected in the program, it is stored in the loop buffer in its entirety, including
all branches.

' 152 }
Rahul Publications —J

UNIT -V COMPUTER ARCHITECTURE

Branch Prediction

> A pipeline with branch prediction uses some additional logic to guess the outcome of a conditional
branch instruction before it is executed.

> The pipeline then begins pre-fetching the instruction stream from the predicted path.
> A correct prediction eliminates the wasted time caused by branch penalties.
Delayed Branch

> A procedure employed in most RISC processors is the delayed branch.

> In this procedure, the compiler detects the branch instructions and rearranges the machine
language code sequence by inserting useful instructions that keep the pipeline operating without
interruptions.

5.3 AssessING AND UNDERSTANDING PERFORMANCE I

processors. A quad core CPU has four processors. Two brains (or four brains) are better than one!
Each brain can be working on different parts of a program at the same time and so this speeds up the
overall CPU’s performance.

4, Cache

Although CPUs fetch instructions from RAM, there is another place in can get instructions from,
called ‘cache’. Cache is just like RAM but much faster to read from and write to compared to RAM.
The computer cleverly puts data into cache that it needs again and again. It is a lot quicker for the
CPU to get data from cache than RAM. The more cache a computer has, the better the CPU will
perform.

' 153 | —
—J Rahul Publications

MCA | YEAR | SEMESTER

5. Word size

An important characteristic of a processor is its word size. This is the number of bits that the CPU can
work with in any one clock cycle. The more bits it can work with in one clock cycle, the faster the
computer will go. The early commercial computers like the Spectrum ZX were 8-bit computers (in
another words, the processor could work on 8 bits of data at a time). Things have moved on since
the early 1980s and you are likely to be using either a 32-bit computer or a 64-bit computer now. No
doubt we will all be buying 128-bit computers in the near future.

5.3.2 Evaluating performance.
Q18. How, CPU performance can be evaluated. Explain
Ans :
Cycles Per Instruction (CPI)
> Most computers run synchronously utilizing a CPU clock running at a constant clock rate:
Or clock frequency: f where: Clock rate = 1/ clock cycle
f=1/C

4 Clock cycle»
r Y r 3 a '

4
4 cvclel P4 cvclel] Pt ycled —»

> The CPU clock rate depends on the specific CPU organization (design) and hardware implementation
technology (VLSI) used.

» A computer machine (ISA) instruction is comprised of a number of elementary or micro operations
which vary in number and complexity depending on the the instruction and the exact CPU organization
(Design).

> A micro operation is an elementary hardware operation that can be performed during one CPU
clock cycle.

> This corresponds to one micro-instruction in microprogrammed CPUs.

A\

Examples: register operations: shift, load, clear, increment, ALU operations: add , subtract, etc.

> Thus: A single machine instruction may take one or more CPU cycles to complete termed as the
Cycles Per Instruction (CPI).

Instructions Per Cycle = IPC = 1/CPI

» Average (or effective) CPI of a program: The average CPI of all instructions executed in the program
on a given CPU design.

Cycles/sec = Hertz = Hz
MHz = 106 Hz GHz = 109 Hz
Program Execution Time
For a specific program compiled to run on a specific machine (CPU) “A”, has the following parameters:

> The total executed instruction count of the program — |

' 154 }
Rahul Publications —

UNIT -V COMPUTER ARCHITECTURE

The average number of cycles per instruction (average CPl) — CPI
> Clock cycle of machine “A” — C
< How can one measure the performance of this machine (CPU) running this program?

> Intuitively the machine (or CPU) is said to be faster or has better performance running this program
if the total execution time is shorter.

> Thus the inverse of the total measured program execution time is a possible performance measure or
metric:

—— Seconds/program

Programs/second ——_ performance, = 1 / Execution Time,

Comparing Computer Performance Using Execution Time

Performance, Execution Timey
Performancey Execution Time,

Speedup=n =

NOLE

language (HLL)
CPU Execution Time: The CPU Equation

A program is comprised of a number of instructions executed —> |
> Measured in: instructions/program

= The average instruction executed takes a number of cycles per instruction (CPI) to be completed.
> Measured in: cycles/instruction, CPI

Or Instructions Per Cycle (IPC):

IPC = 1/CPI

g

Rahul Publications

MCA | YEAR | SEMESTER

e CPU has a fixed clock cycle time C = 1/clock rate
> Measured in: seconds/cycle
C=1/f

= CPU execution time is the product of the above three parameters as follows:

CPUtime = Seconds = Instructions x Cycles X Seconds
Program Program Instruction Cycle
— Al - Al
T = I x CPI x C
execution Time Number of Average CPI for program CPU Clock Cycle
per program in seconds instructions executed

This equation is commonly known as the CPU performance equation
CPU Average CPI/Execution Time

For a given program executed on a given machine (CPU):

CPI= Total program execution cycles / Instructions count

(i.e average or effective CPI) Executed
— CPU clock cycles = Instruction count x CPI
(emw@)

CPU execution time =

= CPU clock cycles "x Clock cycle
= Instruction count x CPI x Clock cycle
T = I xCPI x C

_ Average
execution Time Number of or effective CPU Clock Cycle
per program in seconds instructions executed CPI for

CPU Execution Time: Example
A Programis running on a specific machine (CPU) with the following parameters:
» Total executed instruction count: 10,000,000 instructions —> |
» Average CPI for the program: 2.5 cycles/ instruction.
» CPU clock rate: 200 MHz. (clock cycle = C =5 = 10 — 9 seconds)

< What is the execution time for this program:

CPUtime = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Instruction count < CPI =< Clock cycle
T=I1xCPIxC

= 10,000,000 % 2.5 < 1/ clock rate

= 10,000,000 < 2.5 x 5% 10-9

= 0.125 seconds

g

Rahul Publications

FACULTY OF INFORMATICS
M.C.A. | Year | Semester Examination
Model Paper - |
COMPUTER ARCHITECTURE

Time : 3 Hours]

Max. Marks : 70

Answer all the question according to the internal choice

1. (a) What are the various number systems used in Computer?
(b) Explain about the structure of typical bus.
(OR)
2. (a) Explain about fixed and floating point representation of numbers.
(b) What is the complement number system ? Explain the complement
systems with examples.
3. () Design and explain a common bus system for four register.

(b) A digital computer has a common bus system for 16 registers of 32 bits
each. (i) How many selection input are there in each multiplexer? (ii)
What size of multiplexers is needed? (iii) How many multiplexers
are there in a bus?

(OR)
Draw block diagram of 4-bit arithmetic circuit and explain it in detail.
(b) List and explain register reference instruction. and memory reference
instructions.

What is stack? Give the organization of register stack with all necessary
elements and explain the working of push and pop operations.

(b) Draw the diagram of Micro programmed sequencer for a control memory

and explain it.

(OR)
6 () Explain four types of instruction formats.
(b) (i) Explain the procedure for Addition and Subtraction with signed-
magnitude data with the help of flowchart.
(i) Multiply the (-9) with (-13) using Booth’s algorithm. Give each step.
7 (a) How main memory is useful in computer system?

(b) Discuss set-associative mapping in organization of cache memory.
(OR)
Explain briefly about auxiliary memory.
(b) What is segment? What is logical address? Explain segmented page
mapping.
Define Peripherals. Explain 1/0O Bus and Interface Modules.
(b) What is pipeline conflict? Explain data dependency and handling of
branch instruction in detail.
(OR)
What do you mean by Asynchronous data transfer? Explain Strobe
control in detail.

(b) Explain Input- Output Processor (IOP).

10. (d)

|l 157 ||

(5 x 14 = 70)
ANSWERS

(Unit-1, Q.No. 2)
(Unit-I, Q.No. 10)

(Unit-l, Q.No. 5)

(Unit-1, Q.No. 4)
(Unit-Il, Q.No. 3)

(Unit-Il, Q.No. 4)

(Unit-Il, Q.No. 11)

(Unit-Il, Q.No. 24, 25)

(Unit-Ill, Q.No. 10)

(Unit-1ll, Q.No. 7)

(Unit-1Il, Q.No. 12)

(Unit-IIl, Q.No. 19)

(Unit-Ill, Q.No. 22)
(Unit-1V, Q.No. 2)
(Unit-1V, Q.No. 8)

(Unit-IV, Q.No. 4)

(Unit-1V, Q.No. 12)
(Unit-V, Q.No. 1)

(Unit-V, Q.No. 16)

(Unit-V, Q.No. 3)
(Unit-V, Q.No. 9)

Rahul Publications

MCA

| YEAR | SEMESTER

FACULTY OF INFORMATICS

M.C.A. | Year | Semester Examination

Model Paper - 11
COMPUTER ARCHITECTURE

Time 3 Hrs]

[Max Marks : 70

Answer all the question according to the internal choice

1 (@) Describe how data is stored in the digital computers.
(b) Explain about the interconnection structure of the computer.
(OR)
2. () Write about various types of binary codes.
(b) Explain the basic components of a computer.
3. (a) Explain the Register Transfer Language.

(b) Explain shift micro operations and draw 4-bit combinational circuit shifter.

(OR)
4. (a) Explain Direct and Indirect addressing of basic computer.
(b) Explain Instruction Format with its types.
5. () Explain Registers of basic computer.

(b) Explain the Booth’s algorithm with the help of flowchart. Multiply the

(7) with (3) using Booth’s algorithm. Give each step.
(OR)
6. () Write about the representation of floating point numbers.

(b) Explain Program Interrupts. Explain clearly, discussing the role of
stack, PSW and return from interrupt instruction, how interrupts are

implemented on computers.
7. (a) Explain the memory address map of RAM and ROM.
(b) Discuss direct mapping in organization of cache memory.
(OR)
8. (a) Explain Content Addressable Memory (CAM).
(b) Explain Write-through and Write-back cache write method.
9. (a) Draw and explain Arithmetic Pipeline.

(514 =70)
ANSWERS
(Unit-1, Q.No. 1)
(Unit-1,Q.No. 8)

(Unit-1,Q.No. 6)
(Unit-1,Q.No. 7)
(Unit-Il, Q.No. 1)
(Unit-Il, Q.No. 14)

(Unit-Il, Q.No. 18)
(Unit-Il, Q.No. 21)
(Unit-IIl, Q.No. 19)

(Unit-1ll, Q.No. 20, 23)
(Unit-1ll, Q.No. 27)
(Unit-IIl,Q.No. 17)

(Unit-IV, Q.No. 3)
(Unit-IV, Q.No. 7)
(Unit-1IV, Q.No. 5)

(Unit-IV, Q.No.9)
(Unit-V, Q.No. 13)

(b) Explain pipelining technique. Draw the general structure of four segment

pipeline.
(OR)
10. (a) Explain I/O interface with example.
(b) What are the factors affecting the performance of the CPU.

l 158 i,

(Unit-V, Q.No. 13)

(Unit-V, Q.No. 2)
(Unit-V, Q.No. 17)

Rahul Publications

SOLVED MODEL PAPERS COMPUTER ARCHITECTURE

FACULTY OF INFORMATICS
M.C.A. | Year | Semester Examination
Model Paper - 111
COMPUTER ARCHITECTURE

Time 3 Hrs] [Max Marks : 70
Answer all the question according to the internal choice (514 =70)
ANSWERS
1. (a) Write about other coding schemes in number system. (Unit-1, Q.No. 3)
(b) Explain three modes of data transfer between I/O devices and a computer

system. (Unit-1, Q.No. 11)
(OR)
2. (2) What are the various number systems used in Computer? (Unit-1, Q.No. 2)
(b) What is the use of bus interconnection? Explain the types of bus
organization. (Unit-1,Q.No. 9)
3. () Explain Registers of basic computer. (Unit-1Il, Q.No. 19)
(b) Draw and explain the flowchart for instruction cycle. (Unit-II, Q.No. 23)
(OR)
4. (a) Explain the basic working principle of the Control Unit with timing
diagram. (Unit-1l, Q.No. 22)
(b) What is an Interrupt Cycle? Draw and explain flow chart of it. (Unit-II, Q.No. 28)
5. () Explain Microinstruction Format in detail. Explain Symbolic Microinstruction.
(Unit-lll, Q.No. 5,6)
(b) (i) Explain with proper block diagram the Multiplication Operation
on two floating point numbers. (Unit-lil, Q.No. 21)
(i) Multiply the (15) with (13) using Booth’s algorithm. Give each step. (Unit-1ll, Q.No. 24)
(OR)
6. (2) What are status register bits? Draw and explain the block diagram
showing all status registers. (Unit-lil, Q.No. 16)
(b) Explain about general register organization. (Unit-1ll, Q.No. 9)
7. (a) Define Cache memory. Discuss associative mapping in organization of
cache memory. (Unit-1V, Q.No. 6)
(b) Write about memory management hardware. (Unit-1V, Q.No. 13)
(OR)
(159)

—J Rahul Publications

MCA | YEAR | SEMESTER
8 () Explain address mapping using pages. (Unit-IV, Q.No. 11)
(b) What do you mean by address space and memory space in virtual
memory? Also explain the relation between address space and memory
space in virtual memory. (Unit-1V, Q.No. 10)
9 () Write a detailed note on Direct Memory Access (DMA). (Unit-V, Q.No. 8)
(b) Write a note on Interrupt Initiated I/O. (Unit-V, Q.No. 6)
(OR)
10. (a) Whatis priority interrupt? Explain Daisy Chaining. (Unit-V, Q.No. 7)
(b) Explain Flynn's classification for computers. (Unit-V, Q.No. 12)

Rahul Publications

g

FACULTY OF INFORMATICS
M.C.A (CBCS) | - Semester Examination
August - 2021
COMPUTER ARCHITECTURE

Time: 2 Hours]

[Max. Marks : 70

PART - A - (4 x 17Y2 = 70 Marks)

Note : Answer any four Questions.

1. (a) Explain the procedure for subtractionof unsigned numbers with
an example of binary and decimal numbers.

(b) Elaborate on interrupts and its cycle.
2. (a) Explain the gray code.
(b) Explain about bus interconnection and its types.
3. () Construct a bus line with three state buffers.
(b) With an example, explain BSA instruction execution.
4. (a) Construct 4-bit combinational circuit shifter and explain its function table
(b) Demonstrate the illustration of direct — indirect address.
5. () Explain about the symbolic microprogram.

(b) What are the three types of CPU organizations ? Explain each with
an example.

ANSWERS

(Unit-1,Q.No. 4)

(Unit-1,Q.No. 11)
(Unit-I, Q.No. 6)
(Unit-1,Q.No. 9)

(Unit-Il, Q.No. 5)
(Unit-Il, Q.No. 25)
(Unit-II, Q.No. 14)
(Unit-Il, Q.No. 18)

(Unit-1ll, Q.No. 6)

(Unit-l, Q.No. 8)

6. (2) Write and explain the flowchart for the selection of address for (April/May-2023, Q.No. 5(b))

control memory.

(b) Explain the flowchart for add-subtract operation done in
hardware.

7. (@) [Ilustrate memory connection to CPU.
(b) Explain memory table for mapping an initial address.

8. (a) lllustrate direct mapping with an example.
(b) Describe segmented - page mapping with a figure.

9. (a) Explain Strore control method of asynchronous data transfer
(b) llustrate the use of DMA

10. (a) Elaborate on the steps for instruction pipeline.

(b) Explain the factors of CPU performance.

g

(Unit-ll, Q.No. 19)

(Unit-IV, Q.No. 2)
(Unit-IV, Q.No. 11)
(Unit-IV, Q.No. 7)
(Unit-1IV, Q.No. 12)
(Unit-V, Q.No. 3)
(Unit-V, Q.No. 8)
(Unit-V, Q.No. 15)
(Unit-V, Q.No. 17)

Rahul Publications

MCA | YEAR | SEMESTER

FACULTY OF INFORMATICS

MCA |- Semester (CBCS) (Main & Backlog) Examinations
April / May - 2023

COMPUTER ARCHITECTURE

Time: 3Hours] [Max. Marks : 70

Note : I. Answer one questions from each unit. All questions carry equal marks.

Il. Missing data, if any, may be suitably assumed.

ANSWERS
Unit- 1|
1. a) lllustrate the procedures with examples for conversion of Binary to Octal, (Unit-1,Q.No. 2)

Decimal and Hexa Decimal.

b) Explain about the instruction cycle with a program execution illustration.
Ans:

A program consisting of the memory unit of the computer includes a series of instructions. The
program is implemented on the computer by going through a cycle for each instruction.

In the basic computer, each instruction cycle includes the following procedures -
i) It can fetch instruction from memory.
ii) It is used to decode the instruction.
iii) It can read the effective address from memory if the instruction has an indirect address.
iv) It can execute the instruction.

The control switches back to the first step and repeats the similar process for the next instruction.
Therefore, the cycle continues until a Halt condition is met. The figure shows the phases contained in the
instruction cycle.

Instruction Cycle

Fetch Cycle Execute Cycle
Y
y . [Fetch Next Execute
[Stan }_ Instruction Instruction Halt

As display in the figure, the halt condition appears when the device receive turned off, on the circumstance
of unrecoverable errors, etc.

Fetch Cycle

The address instruction to be implemented is held at the program counter. The processor fetches the instruction
from the memory that is pointed by the PC.

Next, the PC is incremented to display the address of the next instruction. This instruction is loaded onto the
instruction register. The processor reads the instruction and executes the important procedures.

= 162 =

Rahul Publications

SOLVED PREVIOUS QUESTION PAPERS COMPUTER ARCHITECTURE

Execute Cycle

i)
i)

iii)

The data transfer for implementation takes place in two methods are as follows -
Processor-memory - The data sent from the processor to memory or from memory to processor.

Processor-Input/Output - The data can be transferred to or from a peripheral device by the transfer
between a processor and an 1/O device.

In the execute cycle, the processor implements the important operations on the information, and consistently
the control calls for the modification in the sequence of data implementation. These two methods associate
and complete the execute cycle.

State Diagram for Instruction Cycle

The figure provides a large aspect of the instruction cycle of a basic computer, which is in the design of a

state diagram. For an instruction cycle, various states can be null, while others can be visited more than once.

Instruction Cycle State Diagram

Store
Operand

Fetch
Instruction

Fetch
Operand

Multiple
Results

Multiple
Operands

nstruction
Address

nstruction
Qperating
Decoding

Operand
Address
Calculation

Operation

Calculation

Calculation

Instruction complete, fetch next
instruction

Return for string or vector data

)] Instruction Address Calculation: The address of the next instruction is computed. A permanent
number is inserted to the address of the earlier instruction.
ii) Instruction Fetch: The instruction is read from its specific memory location to the processor.
iii) Instruction Operation Decoding: The instruction is interpreted and the type of operation to be
implemented and the operand(s) to be used are decided.
iv) Operand Address Calculation: The address of the operand is evaluated if it has a reference to
an operand in memory or is applicable through the Input/Output.
v) Operand Fetch: The operand is read from the memory or the I/O.
vi) Data Operation: The actual operation that the instruction contains is executed.
vii) Store Operands: It can store the result acquired in the memory or transfer it to the I/O.
(OR)
2. a) Discuss about floating point representation with illustrations (Unit-1,Q.No. 5)
b) Explain about bus interconnection and its types. (Unit-1,Q.No. 9)
Unit- 11
3. a) Write notes on how Register transfer takes place, (Unit-II, Q.No. 2)
b) Describe three instruction code formats. (Unit-1l, Q.No. 5)
(OR)
4, a) Construct a 4-bit adder - subtractor. (Unit-Il, Q.No. 9)
b) Explain the flowchart for the fetch phase. (Unit-Il, Q.No. 23)
(163)
—J Rahul Publications

MCA | YEAR | SEMESTER
Unit- I
5. a) What are the three types of CPU organizations? Explain each with an example. (Unit-lll, Q.No. 8)
b) Write and explain the flowchart for the selection of address for control memory.
Ans:

The control memory is used to store the microinstructions in groups. Here each group is used to specify a

routine. The control memory of each computer has the instructions which contain their micro-programs routine.
These micro-programs are used to generate the micro-operations that will be used to execute the instructions.
Suppose the address sequencing of control memory is controlled by the hardware. In that case, that hardware must
be capable to branch from one routine to another routine and also able to apply sequencing of microinstructions
within a routine. When we try to execute a single instruction of computer, the control must undergo the following

steps:

)

ii)

iv)

v)
Vi)
vii)

viii)

When the power of a computer is turned on, we have to first load an initial address into the CAR (control
address register). This address can be described as the first microinstruction address. With the help of this
address, we are able to activate the instruction fetch routine.

Then, the control memory will go through the routine, which will be used to find out the effective address of
operand.

In the next step, a micro-operation will be generated, which will be used to execute the instruction fetched
from memory.

We are able to transform the bits of instruction code into an address with the help of control memory where
routine is located. This process can be called the mapping process. The control memory required the capabilities
of address sequencing, which is described as follows

On the basis of the status bit conditions, the address sequencing selects the conditional branch or unconditional
branch.

Addressing sequence is able to increment the CAR (Control address register).
It provides the facility for subroutine calls and returns.

A mappings process is provided by the addressing sequence from the instructions bits to a control memory
address.

Instruction code

Mapping Logic

Status Branch
bits Logic
A

Multiplexers

Cantrol address register
Clock (CAR)

Select a status bit

Microoperations

Branch address

Selection of Address for Control Memory

Rahul Publications

= 164 ',

SOLVED PREVIOUS QUESTION PAPERS COMPUTER ARCHITECTURE

In the above diagram, we can see a block diagram of a control memory and associative hardware, which is
required for selecting the address of next microinstruction. The microinstruction is used to contain a set of bits in the
control memory. With the help of some bits, we are able to start the micro-operations in a computer register. The
remaining bits of microinstruction are used to specify the method by which we are able to obtain the next address.

(OR)

6. a) Evaluate the arithmetic statement X = (A+B) * (C+D) using Three-address instruction, Two- address
instruction, One-address instruction, Zero-address instruction, RISC instruction.

AnS:
Based on the number of addresses, instructions are classified as:
i) Zero Address Instructions

These instructions do not specify any operands or addresses. Instead, they operate on data stored
in registers or memory locations implicitly defined by the instruction. For example, a zero-address instruction
might simply add the contents of two registers together without specifying the register names.

A*B
B
A le——— STACK A*B
PUSH A
PUSH B

A stack-based computer does not use the address field in the instruction. To evaluate an expression
first it is converted to reverse Polish Notation i.e. Postfix Notation.

Expression: X = (A+B)*(C+D)

Postfixed : X = AB+CD+*

TOP means top of stack

M[X] is any memory location

PUSH A TOP=A

PUSH B TOP =B

ADD TOP = A+B

PUSH C TOoP=C

PUSH D TOP=D

ADD TOP =C+D

MUL TOP = (C+D)*(A+B)

POP X M[X]=TOP
ii) One Address Instructions

These instructions specify one operand or address, which typically refers to a memory location or
register. The instruction operates on the contents of that operand, and the result may be stored in the
same or a different location. For example, a one-address instruction might load the contents of a memory
location into a register.

' 165 |
—J Rahul Publications

MCA

| YEAR | SEMESTER

This uses an implied ACCUMULATOR register for data manipulation. One operand is in the
accumulator and the other is in the register or memory location. Implied means that the CPU already
knows that one operand is in the accumulator so there is no need to specify it.

Expression: X =

Operand/address of

Opcod

peode operand mode
Fig.: One Address Instruction

(A+B)*(C+D)

AC is accumulator

M[] is any memory location

M[T] is temporary location

LOAD A
ADDB
STORE T
LOAD C
ADDD
MULT
STORE X

AC = M[A]

AC = AC + M[B]
M[T] = AC

AC = M[C]

AC = AC + M[D]
AC = AC* M[T]
M[X] = AC

ili) Two Address Instructions

These instructions specify two operands or addresses, which may be memory locations or registers.
The instruction operates on the contents of both operands, and the result may be stored in the same or a
different location. For example, a two-address instruction might add the contents of two registers together
and store the result in one of the registers.

This is common in commercial computers. Here two addresses can be specified in the instruction.
Unlike earlier in one address instruction, the result was stored in the accumulator, here the result can be
stored at different locations rather than just accumulators, but require more number of bit to represent

the address.

Opcode Destination address Source address

mode

Here destination
Expression: X =

Fig. Two Address Instruction
address can also contain an operand.
(A+B)*(C+D)

R1, R2 are registers

M[] is any memory location

MOV R1, A
ADD R1, B

R1 = M[A]
R1 = R1 + M[B]

MOV ~ R2,C R2 = M[C]
ADD R2,D R2=R2+ M[D]

MUL R1, R
MOV X, R1

2 R1=RL1*R2
M[X] = R1

Rahul Publications

g

SOLVED PREVIOUS QUESTION PAPERS COMPUTER ARCHITECTURE

iv) Three Address Instructions

These instructions specify three operands or addresses, which may be memory locations or registers.
The instruction operates on the contents of all three operands, and the result may be stored in the same
or a different location. For example, a three-address instruction might multiply the contents of two registers
together and add the contents of a third register, storing the result in a fourth register.

This has three address fields to specify a register or a memory location. Programs created are much
short in size but number of bits per instruction increases. These instructions make the creation of the
program much easier but it does not mean that program will run much faster because now instructions
only contain more information but each micro-operation (changing the content of the register, loading
address in the address bus etc.) will be performed in one cycle only.

Opcode Destination address Source address Source address mode

Fig. Three Address Instruction
Expression: X = (A+B)*(C+D)
R1, R2 are registers

M[] is any memory location

ADD R1,A, B R1=M[A]+ M[B]
ADD R2,C,D R2=MI[C]+ M[D]
MUL X,R1,R2 M[X]=R1*R2
b) Describe the block diagram of a 64-word stack. (Unit-1ll, Q.No. 10)
Unit- IV
7. a) Demonstrate associative memory with example. (Unit-IV, Q.No. 5)
b) [llustrate set-associative mapping with an example. (Unit-1V, Q.No. 8)
(OR)
8. a) lllustrate direct mapping with an example. (Unit-1V, Q.No. 7)
b) Explain segmentation with a numerical example. (Unit-1V, Q.No. 12)
Unit-V
9. a) Discuss source and destination initiated asynchronous transfer using handshaking. (Unit-V, Q.No. 4)
b) Withafigure, explain DMA transfer. (Unit-V, Q.No. 8)
(OR)
10. a) Explain programmed I/O with an example. (Unit-V,Q.No. 9)
b) Write notes on RISC pipeline. (Unit-V, Q.No. 15)
(167)
) Rahul Publications

MCA

| YEAR | SEMESTER

FACULTY OF INFORMATICS

MCA |- Semester (CBCS) (Main & Backlog) Examinations

October / November - 2023
COMPUTER ARCHITECTURE

Time : 3Hours]

[Max. Marks : 70

Note : I.
1.
1 a)
b)
2 a)
b)
3 a)
b)
4 a)
b)
5 a)
b)
6 a)
b)
7 a)
b)
8 a)
b)
9 a)
b)
10. a)
b)

Answer one questions from each unit. All questions carry equal marks.

Missing data, if any, may be suitably assumed.

Unit- 1|
Explain the procedure to perform subtraction of unsigned numbers.
[llustrate the steps to obtain 1’s and 2’s complement.
(OR)
Describe the process through which data is transferred.
Write the sequence of gray codes.
Unit-11
Construct a binary adder for 4 bits.
lllustrate direct and indirect addresses.
(OR)
Draw and explain the circuit for 4 registers bus system.
Explain the steps of instruction cycle.
unit-111
Write about the various addressing modes.
Explain stack organization in memory.
(OR)
Discuss about microprogramed control organization.
Elaborate the format of microinstruction.
Unit-1\vV
Describe the hierarchy of memory.
Explain about the auxiliary memory.
(OR)
Discuss the working of associative memory.
Explain the process of mapping addresses using pages.
Unit-V

Differentiate between source and destination initiated strobe for data transfer.

Explain the steps of DMA.

(OR)
With the help of an example, describe arithmetic pipeline.
Discuss the steps of interrupt initiated I/O mode of transfer.

ANSWERS

(Unit-1,Q.No. 4)
(Unit-1,Q.No. 4)

(Unit-1,Q.No. 11)
(Unit-1, Q.No. 6)

(Unit-Il, Q.No. 8)
(Unit-Il, Q.No. 18)

(Unit-Il, Q.No. 3)
(Unit-Il, Q.No. 23)

(Unit-ll, Q.No. 13)
(Unit-lll, Q.No. 10)

(Unit-1ll, Q.No. 3)
(Unit-1ll, Q.No. 5)

(Unit-IV, Q.No. 1)
(Unit-IV, Q.No. 4)

(Unit-IV, Q.No.5)
(Unit-1IV, Q.No. 11)

(Unit-V, Q.No. 3)
(Unit-V, Q.No. 8)

(Unit-V, Q.No. 14)
(Unit-V, Q.No. 2)

Rahul Publications

= 168 ',

