
Rahul’s 
Topper’s Voice

- by -

WELL EXPERIENCED LECTURER

M.Sc.
(COMPUTER SCIENCE)

II Year III Sem
(Osmania University)

NETWORK SECURITY
 Study Manual

 Lab Programmes

 Solved Model Papers

LATEST EDITION
2018 - 2019

NEW

SYLLABUS

Price

 `. 199-00

 `. 149-00

Hyderabad. Ph : 66550071, 9391018098
Rahul Publications

TM

Sole Distributors :  : 66550071, Cell : 9391018098

VASU BOOK CENTRE
Shop No. 3, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

M.Sc.
II Year III Sem

NETWORK SECURITY

Price

 `. 199-00

 `. 149-00

 Study Manual

 Lab Programmes

 Solved Model Papers

C
O
N
T
E
N
T
S

Unit - I 1 - 38

Unit - II 39 - 78

Unit - III 79 - 102

Unit - IV 103 - 145

LAB PROGRAMMES 146 - 173

Model Paper - I 174 - 174

Model Paper - II 175 - 175

Model Paper - III 176 - 176

NETWORK SECURITY

SYLLABUS

UNIT – I

Overview of Network Security: Computer Security Concepts,the OSI Security
Architecture,Security Attacks,Security Services,Security Mechanisms,a Model for Network
Security.Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques,
Transposition Techniques,Rotor Machines, Steganography. Block Ciphers and the Data
Encryption Standard:Traditional Block Cipher Structure, the Data Encryption Standard (DES),
A DES Example, Strength of DES.Block Cipher Operation: Double DES, Triple DES, Electronic
Code Book, Cipher Block Chaining Mode, Cipher Feedback Mode, Output Feedback Mode,
Counter Mode.

UNIT – II

Advanced Encryption Standard (AES): The Origins AES, AES Structure, AES Round
Functions, AES Key Expansion, an AES Example AES Implementation.Pseudorandom Number
Generation and Stream Ciphers: Principles of Pseudorandom Number Generation,
Pseudorandom Number Generators,Pseudorandom Number Generation using BlockCipher,
StreamCiphers-RC4. Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems,
the RSA Algorithm.Key Management and Distribution: Symmetric Key Distribution Using
Symmetric Encryption and Asymmetric Encryption, Distribution of Public Keys, X.509
Certificates, Diffie-Hellman Key Exchange.

UNIT – III

Cryptographic Hash Functions: Applications of Cryptographic Hash Functions, Two Simple
Hash Functions, Secure Hash Algorithm (SHA) & MD5 Algorithm.Message Authentication
Codes: Message Authentication Requirements, Message Authentication Functions, Requirements
for Message Authentication Codes,Security of MACs,MACs Based on Hash
Functions:HMAC,MACs Based on Block Ciphers:DAA and CMAC.Digital Signatures: Digital
Signatures, NIST Digital Signatures Algorithm.

UNIT – IV

Transport-Level Security : Web Security Considerations, Secure Sockets Layer (SSL),
Transport Layer Security (TLS), HTTPS,Secure Shell (SSH), E-Mail Security: Pretty Good Privacy,
S/MIME. IP Security: IP Security Overview, IP Security Architecture, Encapsulating Security
Payload, Combining Security Associations,Internet Key Exchange.Intruders, Virus and Firewalls:
Intruders, Intrusion Detection, Password Management, Virus and Related Threats,
Countermeasures, Firewall Design Principles, Types of Firewalls.

I

Contents
Topic No. Page No.

UNIT - I

1.1 Overview of Network Security 1

1.1.1 Computer Security Concepts 1

1.1.2 The OSI Security Architecture 1

1.1.3 Security Attack 2

1.1.4 Security Services 5

1.1.5 Security Mechanisms 7

1.1.6 A Model For Network Security 7

1.2 Classical Encryption Techniques 9

1.2.1 Symmetric Cipher Model 9

1.2.2 Substitution Techniques 11

1.2.3 Transposition Techniques 14

1.2.4 Rotor MAchines 14

1.2.5 Steganography 15

1.3 Block Ciphers and the Data Encryption Standard 16

1.3.1 Traditional Block Cipher Structure 16

1.3.2 The Data Encryption Standard 17

1.3.3 A DES Example 25

1.3.4 The Strength of DES 27

1.4 Block Cipher Operation 28

1.4.1 Double DES 28

1.4.2 Triples DES 29

1.4.3 Electronic Code Book 30

1.4.4 Cipher Block Chaining Mode 32

1.4.5 Cipher Feedback Mode 33

1.4.6 Output Feedback Mode 35

1.4.7 Counter Mode 36

UNIT - II

2.1 Advanced Encryption Standard 39

2.1.1 The Origions of AES 39

2.1.2 AES Key Expansion 42

2.1.3 An AES Example 45

2.1.4 AES Implementation 50

II

Topic No. Page No.

2.2 PSEUDO Random Number Generation and Stream Ciphers 55

2.2.1 Principles of PSEUDO Random Number Generation 55

2.2.2 Pseudorandom Number Generators 58

2.2.3 Pseudorandom Number Generation using a Block Cipher 60

2.2.4 Stream Ciphers 64

2.2.5 RC4 64

2.3 Public Key Cryptography and RSA 66

2.3.1 Principles of Public Key Cryptosystems 66

2.3.2 RSA Algorithm 68

2.4 Key Management And Distribution 70

2.4.1 Symmetric Key Distribution Using Asymmetric Encryption 70

2.4.2 Distribution of Public Keys 72

2.4.3 X.509 Certificates 75

2.4.4 The Diffie-Hellman Algorithm 78

UNIT - III

3.1 Cryptographic Hash Functions 79

3.1.1 Applications of Cryptographic Hash Functions 79

3.2 Two Simple Hash Functions 81

3.3 Secure Hash Algorithm (Sha) 83

3.4 MD5 87

3.5 Message Authentication Codes 88

3.5.1 Message Authentication Requirements 88

3.5.2 Message Authentication Functions 88

3.5.3 Requirements For Message Authentication Codes 92

3.5.4 Security Of Macs 93

3.6 Macs Based On Hash Functions: Hmac 94

3.7 Macs Based On Block Ciphers: Daa And Cmac 96

3.7.1 Digital Signatures 99

3.7.2 Nist Digital Signatures Algorithm 101

UNIT - IV

4.1 Transport - Level Security 103

4.1.1 Web Security Considerations 103

4.1.2 Secure Socket Layer and Transport Layer Security 104

4.2 HTTPS 111

III

Topic No. Page No.

4.3 Secure Shell (SSH) 112

4.4 E-Mail Security 119

4.4.1 Pretty Good Privacy 119

4.5 S/MIME 124

4.6 IP Security 125

4.6.1 IP Security Overview 125

4.6.2 IP Security Architecture 129

4.6.3 Encapsulating Security Payload 129

4.6.5 Combining Security Associations 131

4.6.6 Internet Key Exchange 133

4.6.7 Industries 135

4.7 Virus and Firewalls 136

4.7.1 Intruders 136

4.7.2 Password Management 139

4.7.3 Viruses and Related Threats 140

4.7.4 Virus Counter Measures 142

4.7.5 Firewall Design Principles 143

4.7.6 Types of Firewalls 143

UNIT - I NETWORK SECURITY

1
Rahul Publications

UNIT
I

Overview of Network Security: Computer Security Concepts,the OSI Security
Architecture, Security Attacks,Security Services,Security Mechanisms,a Model
for Network Security.Classical Encryption Techniques: Symmetric Cipher Model,
Substitution Techniques, Transposition Techniques,Rotor Machines,
Steganography. Block Ciphers and the Data Encryption Standard:Traditional
Block Cipher Structure, the Data Encryption Standard (DES), A DES Example,
Strength of DES.Block Cipher Operation: Double DES, Triple DES, Electronic
Code Book, Cipher Block Chaining Mode, Cipher Feedback Mode, Output
Feedback Mode, Counter Mode.

1.1 OVERVIEW OF NETWORK SECURITY

1.1.1 Computer Security Concepts

Q1. What is Computer Security ?

Ans :
Computer security is refers to techniques for

ensuring that data stored in a computer cannot be
read or compromised by any individuals without
authorization.

 Most computer security measures involve
data encryption and passwords.

 The purpose of computer security is to
device ways to prevent the weaknesses
from being,

There are five important aspects of any
computer-related system such as confidentiality,
integrity, and availability, authenticity and
accountability.

Confidentiality
Data.....Privacy

Integrity
Data.....System

Computer Security
Concepts

Availability

Authenticity

Accountability

Confidentiality

 Data confidentiality: Assures that confidential
information is not disclosed to unauthorized
individuals

 Privacy: Assures that individual control or
influence what information may be collected
and stored

Integrity

 Data integrity: assures that information and
programs are changed only in a specified and
authorized manner

 System integrity: Assures that a system
performs its operations in unimpaired manner

Availability

Assure that systems works promptly and service
is not denied to authorized users

• Authenticity: the property of being genuine
and being able to be verified and trusted;
confident in the validity of a transmission, or a
message, or its originator

Accountability

Generates the requirement for actions of an
entity to be traced uniquely to that individual to
support nonrepudiation, deference, fault isolation,
etc.

1.1.2 The OSI Security Architecture

Q2. What is the OSI security architecture ?

Ans :
The OSI Security Architecture is a framework

that provides a systematic way of defining the
requirements for security and characterizing the
approaches to satisfying those requirements. The

M.Sc II Year III Semester

2
Rahul Publications

document defines security attacks, mechanisms, and
services, and the relationships among these
categories.

The OSI security architecture focuses on
security attacks, mechanisms, and services. These
can be defined briefly as follows:

 Security attack: Any action that compromises
the security of information owned by an
organization.

There are four general categories of attack which
are listed below.

 Interruption

 Interception

 Modification

 Fabrication

A useful categorization of these attacks is in terms
of

 Passive attacks

 Active attacks

Passive attack

Passive attacks are in the nature of
eavesdropping on, or monitoring of, transmissions.
The goal of the opponent is to obtain information
that is being transmitted.

Active attacks

These attacks involve some modification of the
data stream or the creation of a false stream.

 Security mechanism: A process (or a device
incorporating such a process) thatis designed
to detect, prevent, or recover from a security
attack.

Some of the mechanisms are:

 Encipherment

 Digital Signature

 Access Control

 Security service: A processing or communication
service that enhances thesecurity of the data
processing systems and the information transfers
of anorganization. The services are intended to
counter security attacks, and theymake use of
one or more security mechanisms to provide
the service.

The classification of security services are as
follows:

 Confidentiality

 Authentication

 Integrity

 Non repudiation

 Access control

 Availability

1.1.3 Security Attack

Q3. Explain about various security attacks in
network

Ans :
A useful means of classifying security attacks,is

in terms of passive attacks and active attacks. A
passive attack attempts to learn or make use of
information from the system but does not affect
system resources. An active attack attempts to alter
system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of
eavesdropping on, or monitoring of, transmissions.
The goal of the opponent is to obtain information
that is being transmitted.

Two types of passive attacks are the release of
message contents and traffic analysis.

The release of message contents is easily
understood (a). A telephone conversation, an
electronic mail message, and a transferred file may
contain sensitive or confidential information. We
would like to prevent an opponent from learning
the contents of these transmissions.

UNIT - I NETWORK SECURITY

3
Rahul Publications

A second type of passive attack, traffic analysis, is subtler (b). Suppose that we had a way of masking
the contents of messages or other information traffic so that opponents, even if they captured the message,
could not extract the information from the message. The common technique for masking contents is
encryption. If we had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity of communicating
hosts and could observe the frequency and length of messages being exchanged. This information might
be useful in guessing the nature of the communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any alteration of the data. Typically,
the message traffic is sent and received in an apparently normal fashion, and neither the sender nor
receiver is aware that a third party has read the messages or observed the traffic pattern. However, it is
feasible to pre-vent the success of these attacks, usually by means of encryption. Thus, the emphasis in
dealing with passive attacks is on prevention rather than detection.

M.Sc II Year III Semester

4
Rahul Publications

Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream and can
be subdivided into four categories:

A masquerade takes place when one entity pretends to be a different entity (a). A masquerade
attack usually includes one of the other forms of active attack. For example, authentication sequences can
be captured and replayed after a valid authentication sequence has taken place, thus enabling an authorized
entity with few privileges to obtain extra privileges by impersonating an entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retransmission to produce an
unauthorized effect (Figure 1.3b).

UNIT - I NETWORK SECURITY

5
Rahul Publications

Modification of messages simply means that some portion of a legitimate message is altered, or that
messages are delayed or reordered, to produce an unauthorized effect (c). For example, a message
meaning “Allow John Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to
read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of communications
facilities (Figure 1.3d). This attack may have a specific target; for example, an entity may suppress all
messages directed to a particular destination (e.g., the security audit service). Another form of service
denial is the disruption of an entire network, either by disabling the network or by overloading it with
messages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are difficult to
detect, measures are available to prevent their success.

On the other hand, it is quite difficult to prevent active attacks absolutely because of the wide variety
of potential physical, software, and network vulnerabilities. Instead, the goal is to detect active attacks and
to recover from any disruption or delays caused by them. If the detection has a deterrent effect, it may
also contribute to prevention.

1.1.4 Security Services

Q4. Explain about various Security Services in Network.

Ans :
It is a processing or communication service that is provided by a system to give a specific kind of

production to system resources. Security services implement security policies and are implemented by
security mechanisms.

M.Sc II Year III Semester

6
Rahul Publications

 Confidentiality

Confidentiality is the protection of transmitted
data from passive attacks. It is used to prevent
the disclosure of information to unauthorized
individuals or systems. It has been defined as
“ensuring that information is accessible only to
those authorized to have access” .The other
aspect of confidentiality is the protection of traffic
flow from analysis. Ex: A credit card number
has to be secured during online transaction.

 Authentication

This service assures that a communication is
authentic. For a single message transmission,
its function is to assure the recipient that the
message is from intended source. For an
ongoing interaction two aspects are involved.
First, during connection initiation the service
assures the authenticity of both parties. Second,
the connection between the two hosts is not
interfered allowing a third party to masquerade
as one of the two parties. Two specific
authentication services defines in X.800 are

 Peer entity authentication: Verifies the
identities of the peer entities involved in
communication. Provides use at time of
connection establishment and during data
transmission. Provides confidence against
a masquerade or a replay attack

 Data origin authentication: Assumes
the authenticity of source of data unit, but
does not provide protection against
duplication or modification of data units.
Supports applications like electronic mail,
where no prior interactions take place
between communicating entities.

 Integrity

Integrity means that data cannot be modified
without authorization. Like confidentiality, it
can be applied to a stream of messages, a single
message or selected fields within a message. Two
types of integrity services are available. They
are

 Connection-Oriented Integrity Service
This service deals with a stream of messages,
assures that messages are received as sent, with
no duplication, insertion, modification,
reordering or replays. Destruction of data is also
covered here. Hence, it attends to both message
stream modification and denial of service.

 Connectionless-Oriented Integrity
Service: It deals with individual messages
regardless of larger context, providing
protection against message modification only.

An integrity service can be applied with or
without recovery. Because it is related to active
attacks, major concern will be detection rather than
prevention. If a violation is detected and the service
reports it, either human intervention or automated
recovery machines are required to recover.

 Non-repudiation

Non-repudiation prevents either sender or
receiver from denying a transmitted message.
This capability is crucial to e-commerce. Without
it an individual or entity can deny that he, she
or it is responsible for a transaction, therefore
not financially liable.

 Access Control

This refers to the ability to control the level of
access that individuals or entities have to a
network or system and how much information
they can receive. It is the ability to limit and
control the access to host systems and
applications via communication links. For this,
each entity trying to gain access must first be
identified or authenticated, so that access rights
can be tailored to the individuals.

 Availability

It is defined to be the property of a system or a
system resource being accessible and usable
upon demand by an authorized system entity.
The availability can significantly be affected by
a variety of attacks, some amenable to
automated counter measures i.e authentication
and encryption and others need some sort of
physical action to prevent or recover from loss
of availability of elements of a distributed
system.

UNIT - I NETWORK SECURITY

7
Rahul Publications

1.1.5 Security Mechanisms

Q5. Explain about various Security Mechanisms
in Network.

Ans :
The security mechanisms are divided into those

implemented in a specific protocol layer and those
that are not specific to any particular protocol layer
or security service. Also differentiates reversible &
irreversible encipherment mechanisms. A reversible
encipherment mechanism is simply an encryption
algorithm that allows data to be encrypted and
subsequently decrypted, whereas irreversible
encipherment include hash algorithms and message
authentication codes used in digital signature and
message authentication applications.

 Specific Security Mechanisms

Incorporated into the appropriate protocol
layer in order to provide some of the OSI
security services,

 Encipherment: It refers to the process of
applying mathematical algorithms for
converting data into a form that is not
intelligible. This depends on algorithm used
and encryption keys.

 Digital Signature: The appended data
or a cryptographic transformation applied
to any data unit allowing to prove the
source and integrity of the data unit and
protect against forgery.

 Access Control: A variety of techniques
used for enforcing access permissions to
the system resources.

 Data Integrity: A variety of mechanisms
used to assure the integrity of a data unit
or stream of data units.

 Authentication Exchange: A mechan
ism intended to ensure the identity of an
entity by means of information exchange.

 Traffic Padding: The insertion of bits into
gaps in a data stream to frustrate traffic
analysis attempts.

 Routing Control: Enables selection of
particular physically secure routes for
certain data and allows routing changes
once a breach of security is suspected.

 Notarization: The use of a trusted third
party to assure certain properties of a data
exchange

 Pervasive Security Mechanisms

These are not specific to any particular OSI
security service or protocol layer.

 Trusted Functionality: That which is
perceived to b correct with respect to some
criteria

 Security Level: The marking bound to
a resource (which may be a data unit) that
names or designates the security attributes
of that resource.

 Event Detection: It is the process of
detecting all the events related to network
security.

 Security Audit Trail: Data collected and
potentially used to facilitate a security audit,
which is an independent review and
examination of system records and
activities.

 Security Recovery: It deals with requests
from mechanisms, such as event handling

and management functions, and takes

recovery actions.

1.1.6 A Model For Network Security

Q6. Explain about a Model for Network Security.

Ans :
A security-related transformation on the

information to be sent. Examples include the
encryption of the message, which scrambles the
message so that it is unreadable by the opponent,
and the addition of a code based on the contents
of the message, which can be used to verify the
identity of the sender.

M.Sc II Year III Semester

8
Rahul Publications

Fig. : Model for Network Security

Some secret information shared by the two principals and, it is hoped, unknown to the opponent. An
example is an encryption key used in conjunction with the transformation to scramble the message before
transmission and unscramble it on reception.

A trusted third party may be needed to achieve secure transmission. For example, a third party may
be responsible for distributing the secret information to the two principals while keeping it from any
opponent. Or a third party may be needed to arbitrate disputes between the two principals concerning
the authenticity of a message transmission.

This general model shows that there are four basic tasks in designing a particular security service:

1. Design an algorithm for performing the security-related transformation. The algorithm should be
such that an opponent cannot defeat its purpose.

2. Generate the secret information to be used with the algorithm.

3. Develop methods for the distribution and sharing of the secret information.

4. Specify a protocol to be used by the two principals that makes use of the security algorithm and the
secret information to achieve a particular security service.

(e.g., obtaining credit card numbers or performing illegal money transfers).

Fig. : Network Access Security Model

UNIT - I NETWORK SECURITY

9
Rahul Publications

Another type of unwanted access is the placement in a computer system of logic that exploits
vulnerabilities in the system and that can affect application pro-grams as well as utility programs, such as
editors and compilers. Programs can present two kinds of threats:
Information access threats

Intercept or modify data on behalf of users who should not have access to that data.
Service threats

Exploit service flaws in computers to inhibit use by legitimate users.
Viruses and worms are two examples of software attacks. Such attacks can be introduced into a

system by means of a disk that contains the unwanted logic concealed in otherwise useful software. They
can also be inserted into a system across a network; this latter mechanism is of more concern in network
security.

1.2 CLASSICAL ENCRYPTION TECHNIQUES

Q7. Write about the various terminologies used in classical Encryption Techniques.

Ans :
 Plaintext: original message

 Ciphertext: coded message

 Enciphering or encryption: the process of converting from plaintext to ciphertext

 Deciphering or decryption: the process of restoring the plaintext from the ciphertext

The many schemes used for encryption constitute the area of study known as cryptography. Such a
scheme is known as a cryptographic system (cryptosystem) or a cipher. Techniques used for deciphering
a message without any knowledge of the enciphering details fall into the area of cryptanalysis. Cryptanalysis
is what the layperson calls “breaking the code”. The areas of cryptography and cryptanalysis together are
called cryptology.

1.2.1 Symmetric Cipher Model

Q8. Write about the Symmetric Cipher Model.

Ans :
A symmetric encryption scheme has five ingredients (as shown in the following figure):

 Plaintext: This is the original intelligible message or data that is fed into the algorithm as input

 Encryption algorithm: The encryption algorithm performs various substitutions and transformations
on the plaintext.

 Secret key: The secret key is also input to the encryption algorithm. The key is a value independent
of the plaintext and of the algorithm. The algorithm will produce a different output depending on the
specific key being used at the time. The exact substitutions and transformations performed by the
algorithm depend on the key.

 Ciphertext: This is the scrambled (unintelligible) message produced as output.

 It depends on the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

 Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the ciphertext
and the secret key and produces the original plaintext.

M.Sc II Year III Semester

10
Rahul Publications

Plaintext
input

Plaintext
output

x

Encryption algorithm
(e.g., AES)

Decryption algorithm
(reverse of encryption

algorithm)

K K

Secret key shared by
sender and recipient

Transmitted
cipher text

Y = E(K, X) X = D(K,Y)

Secret key shared by
sender and recipient

Encryption Requirements

There are two requirements for secure use of conventional encryption:
1. The encryption algorithm must be strong.

At a minimum, an opponent who knows the algorithm and has access to one or more ciphertexts
would be unable to decipher the ciphertext or figure out the key.
In a stronger form, the opponent should be unable to decrypt ciphertexts or discover the key even
if he or she has a number of ciphertexts together with the plaintext for each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep
the key secure. If someone can discover the key and knows the algorithm, all communication using
this key is readable.

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus knowledge of
the encryption/decryption algorithm. This means we do not need to keep the algorithm secret; we need
to keep only the key secret. This feature of symmetric encryption makes low-cost chip implementations of
data encryption algorithms widely available and incorporated into a number of products. With the use of
symmetric encryption, the principal security problem is maintaining the secrecy of the key.

Model of Symmetric Cryptosystem

The essential elements of a symmetric encryption scheme is described in the following figure:

K̂

X̂Crypt
analyst

Message
source

X XEncryption
algorithm

Decryption
algorithm

Destination

Key
Source

Y = E(K, X)

Secure channel

K

UNIT - I NETWORK SECURITY

11
Rahul Publications

 A source produces a message in plaintext, X=[X1,X2,...,XM]

 A key of the form K=[K1,K2,...,KJ] is generated.

 If the key is generated at the message source, then it must also be provided to the destination
by means of some secure channel.

 Alternatively, a third party could generate the key and securely deliver it to both source and
destination.

 The ciphertext Y=[Y1,Y2,...,YN] is produced by the encryption algorithm with the
message X and the encryption key Kas input.

The encryption process is

Y=E(K,X)

This notation indicates that Y is produced by using encryption algorithm E as a function of the
plaintext X, with the specific function determined by the value of the key K.

The intended receiver with the key is able to invert the transformation:

X=D(K,Y)

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or
both. It is assumed that the opponent knows the encryption (E) and decryption (D) algorithms. The
opponent may do one of the following:

 Recover X by generating a plaintext estimate X^, if the opponent is interested in only this
particular message.

 Recover K by generating an estimate K^, if the opponent is interested in being able to read
future messages.

1.2.2 Substitution Techniques

Q9. Explain about various substitution techniques of encryption.

Ans :
There are two basic building blocks of all encryption techniques: substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced by other letters or by
numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves replacing
plaintext bit patterns with cipher text bit patterns.

 CAESAR CIPHER

The earliest known use of a substitution cipher and the simplest was by Julius Caesar. The Caesar
cipher involves replacing each letter of the alphabet with the letter standing 3 places further down the
alphabet. e.g., plain text : pay more money

Cipher text: SDB PRUH PRQHB

Note that the alphabet is wrapped around,

so that letter following „z is „a .

For each plaintext letter p, substitute the cipher text letter c

such that C = E(p) = (p+3) mod 26

M.Sc II Year III Semester

12
Rahul Publications

A shift may be any amount, so that general Caesar
algorithm is C = E (p) = (p+k) mod 26

Where k takes on a value in the range 1 to 25.

The decryption algorithm is simply P = D(C) = (C-
k) mod 26

 MONOALPHABETIC CIPHERS

Here, Plaintext characters are substituted by a
different alphabet stream of characters shifted to
the right or left by n positions. When compared to
the Caesar ciphers, these monoalphabetic ciphers
are more secure as each letter of the ciphertext can
be any permutation of the 26 alphabetic characters
leading to 26! or greater than 4 x 1026 possible
keys. But it is still vulnerable to cryptanalysis, when
a cryptanalyst is aware of the nature of the plaintext,
he can find the regularities of the language. To
overcome these attacks, multiple substitutions for a
single letter are used. For example, a letter can be
substituted by different numerical cipher symbols
such as 17, 54, 69….. etc. Even this method is not
completely secure as each letter in the plain text
affects on letter in the ciphertext.

Or, using a common key which substitutes every
letter of the plain text.

The key ABCDEFGHIIJ KLMNOPQRSTUVWXYZ

QWERTYUIIOPAS DFGHJ KLZXCV BNM

Would encrypt the message

II think therefore II am

into

OZIIOFAZIITKTYGKTOQD

But any attacker would simply break the cipher
by using frequency analysis by observing the
number of times each letter occurs in the cipher
text and then looking upon the English letter
frequency table. So, substitution cipher is completely
ruined by these attacks.

 PLAYFAIR CIPHERS

It is the best known multiple –letter encryption
cipher which treats digrams in the plaintext as single
units and translates these units into ciphertext
digrams. The Playfair Cipher is a digram substitution

cipher offering a relatively weak method of
encryption. It is based around a 5x5 matrix, a copy
of which is held by both communicating parties,
into which 25 of the 26 letters of the alphabet
(normally either j and i are represented by the same
letter or x is ignored) are placed in a random fashion.
For example, the plain text is Shi Sherry loves Heath
Ledger and the agreed key is sherry. The matrix
will be built according to the following rules.

 in pairs,

 without punctuation,

 All Js are replaced with Is.

SH IS HE RR YL OV ES HE AT HL ED GE R

 Double letters which occur in a pair must
be divided by an X or a Z.

E.g. LI TE RA LL YLI TE RA LX LY

 SH IS HE RX RY LO VE SH EA TH LE
DG ER The alphabet square is prepared
using, a 5*5 matrix, no repetition letters,
no Js and key is written first followed by
the remaining alphabets with no i and j.

S H E R Y

A B C D F

G I K L M

N O P Q T

U V W X Z

 For the generation of cipher text, there are
three rules to be followed by each pair of
letters.

 letters appear on the same rowÿreplace
them with the letters to their immediate
right respectively

 letters appear on the same columnÿreplace
them with the letters immediately below
respectively

 not on the same row or columnÿreplace
them with the letters on the same row
respectively but at the other pair of corners
of the rectangle defined by the original
pair.

UNIT - I NETWORK SECURITY

13
Rahul Publications

 Based on the above three rules, the cipher
text obtained for the given plain text is

HE GH ER DR YS IQ WH HE SC OY KR AL
RY

Another example which is simpler than the
above one can be given as:

Here, key word is playfair. Plaintext is Hellothere
hellothere becomes——-he lx lo th er ex . Applying
the rules again, for each pair, If they are in the same
row, replace each with the letter to its right (mod 5)

He == KG

If they are in the same column, replace each
with the letter below it (mod 5)

Lo==V

Otherwise, replace each with letter we’d get if
we swapped their column indices

lx = YV

So the cipher text for the given plain text is KG
YV RV QM GI KU

 
 
 
 
 
 
  

p l a y f

i r b c d

e g h k m
n o q s t

u v w x z

To decrypt the message, just reverse the process.
Shift up and left instead of down and right. Drop
extra x’s and locate any missing I’s that should be
j’s. The message will be back into the original
readable form.

 HILL CIPHER

It is also a multi letter encryption cipher. It
involves substitution of ‘m’ ciphertext letters for ‘m’
successive plaintext letters. For substitution purposes
using ‘m’ linear equations, each of the characters
are assigned a numerical values i.e. a=0, b=1, c=2,
d=3,…….z=25. For example if m=3, the system
can be defined as: c1 = (k11p1 + k12p2 +
k13p3) mod 26 c2 = (k21p1 + k22p2 +
k23p3) mod 26 c3 = (k31p1 + k32p2 +
k33p3) mod 26 If we represent in matrix form,

the above statements as matrices and column
vectors:

1

2

3

c
c
c

 
 
 
 
 

 =

11 12 13

21 22 23

31 32 33

k k k
k k k
k k k

 
 
 
 
 

1

2

3

p
p
p

 
 
 
 
 

mod 2/S

Thus, C = KP mod26, where C= Column
vectors of length 3 P = Column vectors of length 3
K = 3x3 encryption key matrix. For decryption
process, inverse of matrix K i.e. K-1 is required
which is defined by the equation KK-1 = K-1K = I,
where I is the identity matrix that contains only 0’s
and 1’s as its elements. Plaintext is recovered by
applying K-1 to the cipher text. It is expressed as C
= EK(P) = KP mod26 P = DK(C) = K-1C mod26.
= K-1KP = IP = P

Example: The plain text is I can’t do it and the size

of m is 3 and key K is chosen as following

I Can’t do it

8 2 0 13 19 3 14 8 19

9 18 10
16 21 1
5 12 23

 
 
 
 
 

The encryption process is carried aout as follows

 
4 9 18 10 8

14 16 21 1 2 mod 26
12 5 12 23 0

     
          
     
     

 
19 9 18 10 13
12 16 21 1 19 mod 26
14 5 12 23 3

     
          
     
     

 
8 9 18 10 14
21 16 21 1 8 mod 26
9 5 12 23 19

     
          
     
     

So, the encrypted text will be given as EOM

TMY SV1

M.Sc II Year III Semester

14
Rahul Publications

The main advantages of hill cipher are given
below:

 It perfectly hides single-letter frequencies.

 Use of 3x3 Hill ciphers can perfectly hide
both the single letter and two-letter
frequency information.

 Strong enough against the attacks made
only on the cipher text.

But, it still can be easily broken if the attack is
through a known plaintext.

1.2.3 Transposition Techniques

Q10. Write about various transposition
techniques.

Ans :
All the techniques examined so far involve the

substitution of a cipher text symbol for a plaintext
symbol. A very different kind of mapping is achieved
by performing some sort of permutation on the
plaintext letters. This technique is referred to as a
transposition cipher.

Rail fence is simplest of such cipher, in which
the plaintext is written down as a sequence of
diagonals and then read off as a sequence of rows.

Plaintext = meet at the school house

To encipher this message with a rail fence of
depth 2,

We write the message as follows :

meatecolosetthshhue.

The encrypted message is M E A T E C O L O
S E T T H S H O H U E

Row Transposition Ciphers - A more complex
scheme is to write the message in a rectangle, row
by row, and read the message off, column by
column, but permute the order of the columns. The
order of columns then becomes the key of the
algorithm.

e.g., plaintext = meet at the school house

Key = 4 3 1 2 5 6 7

PT = m e e t a t t h e s c h o o l h o u s e

CT = ESOTCUEEHMHLAHSTOETO

A pure transposition cipher is easily recognized
because it has the same letter frequencies as the
original plaintext. The transposition cipher can be
made significantly more secure by performing more
than one stage of transposition. The result is more
complex permutation that is not easily
reconstructed.

1.2.4 Rotor MAchines

Q11. What are rotor machines? Explain.

Ans :
The basic principle of the rotor machine is

illustrated in Figure 2.8. The machine consists of a
set of independently rotating cylinders through
which electri-cal pulses can flow. Each cylinder has
26 input pins and 26 output pins, with internal wiring
that connects each input pin to a unique output
pin. For simplicity, only three of the internal
connections in each cylinder are shown.

If we associate each input and output pin with
a letter of the alphabet, then a single cylinder defines
a monoalphabetic substitution. For example, in
Figure 2.8, if an operator depresses the key for the
letter A, an electric signal is applied to the first pin of
the first cylinder and flows through the internal
connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After
each input key is depressed, the cylinder rotates one
position, so that the internal connections are shifted
accordingly. Thus, a different monoalphabetic
substitution cipher is defined. After 26 letters of
plaintext, the cylinder would be back to the initial
position. Thus, we have a poly-alphabetic
substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not
present a formidable cryptana-lytic task. The power
of the rotor machine is in the use of multiple
cylinders, in which the output pins of one cylinder
are connected to the input pins of the next. Figure
2.8 shows a three-cylinder system. The left half of
the figure shows a position in which the input from
the operator to the first pin (plaintext letter a) is
routed through the three cylinders to appear at the
output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the
operator input rotates one pin position with each

UNIT - I NETWORK SECURITY

15
Rahul Publications

keystroke. The right half of Figure 2.8 shows the system’s config-uration after a single keystroke. For
every complete rotation of the inner cylinder, the middle cylinder rotates one pin position. Finally, for
every complete rotation of the middle cylinder, the outer cylinder rotates one pin position. This is the
same type of operation seen with an odometer. The result is that there are 26 * 26 * 26 = 17,576
different substitution alphabets used before the system repeats. The addition of fourth and fifth rotors
results in periods of 456,976 and 11,881,376 letters, respectively. As David Kahn eloquently put it,
referring to a five-rotor machine [KAHN96,]:

Direction of motion Direction of motion

(a) Initial Setting

Fig. : Three-Rotor Machine with Wiring Represented by Numbered Contacts

(b) Setting after one keystroke

Fast rotor Fast rotorMedium rotor Medium rotorSlow rotor Slow rotor

A period of that length thwarts any practical possibility of a straightforward solution on the basis of
letter frequency. This general solution would need about 50 letters per cipher alphabet, meaning that all
five rotors would have to go through their com-bined cycle 50 times. The ciphertext would have to be as
long as all the speeches made on the floor of the Senate and the House of Representatives in three
successive sessions of Congress. No cryptanalyst is likely to bag that kind of trophy in his lifetime; even
diplomats, who can be as verbose as politicians, rarely scale those heights of loquacity.

1.2.5 Steganography

Q12. What is stenography? Write about it.

Ans :
A plaintext message may be hidden in any one of the two ways. The methods of steganography

conceal the existence of the message, whereas the methods of cryptography render the message
unintelligible to outsiders by various transformations of the text. A simple form of steganography, but one

M.Sc II Year III Semester

16
Rahul Publications

that is time consuming to construct is one in which
an arrangement of words or letters within an
apparently innocuous text spells out the real
message. e.g., (i) the sequence of first letters of each
word of the overall message spells out the real
(hidden) message. (ii) Subset of the words of the
overall message is used to convey the hidden
message. Various other techniques have been used
historically, some of them are

 Character marking – selected letters of
printed or typewritten text are overwritten
in pencil. The marks are ordinarily not
visible unless the paper is held to an angle
to bright light.

 Invisible ink – a number of substances
can be used for writing but leave no visible
trace until heat or some chemical is applied
to the paper.

 Pin punctures – small pin punctures on
selected letters are ordinarily not visible
unless the paper is held in front of the light.

 Typewritten correction ribbon – used
between the lines typed with a black
ribbon, the results of typing with the
correction tape are visible only under a
strong light.

Drawbacks of Steganography

 Requires a lot of overhead to hide a
relatively few bits of information.

 Once the system is discovered, it becomes
virtually worthless.

1.3 BLOCK CIPHERS AND THE DATA

ENCRYPTION STANDARD

Q13. What is block cipher ?

Ans :
A block cipher is a method of encrypting text

(to produce ciphertext) in which acrypto
graphic key and algorithm are applied to
a block of data (for example, 64 contiguous bits)
at once as a group rather than to one bit at a time.
The main alternative method, used much less
frequently, is called the stream cipher.

The basic scheme of a block cipher is depicted
as follows :

Encryption
Process

Encryption Key

Block of
plain text

Block of
cipher text

A block cipher takes a block of plaintext bits
and generates a block of ciphertext bits, generally
of same size. The size of block is fixed in the given
scheme. The choice of block size does not directly
affect to the strength of encryption scheme. The
strength of cipher depends up on the key length.

1.3.1 Traditional Block Cipher Structure

Q14. Explain about Traditional Block Cipher
Structure.

Ans :

Though any size of block is acceptable, following
aspects are borne in mind while selecting a size of a
block.

 Avoid very small block size – Say a
block size is m bits. Then the possible
plaintext bits combinations are then 2m. If
the attacker discovers the plain text blocks
corresponding to some previously sent
ciphertext blocks, then the attacker can
launch a type of ‘dictionary attack’ by
building up a dictionary of plaintext/
ciphertext pairs sent using that encryption
key. A larger block size makes attack harder
as the dictionary needs to be larger.

 Do not have very large block size –
With very large block size, the cipher
becomes inefficient to operate. Such
plaintexts will need to be padded before
being encrypted.

 Multiples of 8 bit – A preferred block
size is a multiple of 8 as it is easy for
implementation as most computer
processor handle data in multiple of 8 bits.

UNIT - I NETWORK SECURITY

17
Rahul Publications

Padding in Block Cipher

Block ciphers process blocks of fixed sizes (say 64 bits). The length of plaintexts is mostly not a
multiple of the block size. For example, a 150-bit plaintext provides two blocks of 64 bits each with third
block of balance 22 bits. The last block of bits needs to be padded up with redundant information so that
the length of the final block equal to block size of the scheme. In our example, the remaining 22 bits need
to have additional 42 redundant bits added to provide a complete block. The process of adding bits to the
last block is referred to as padding.

Too much padding makes the system inefficient. Also, padding may render the system insecure at
times, if the padding is done with same bits always.

Block Cipher Schemes

There is a vast number of block ciphers schemes that are in use. Many of them are publically known.
Most popular and prominent block ciphers are listed below.

 Digital Encryption Standard (DES) ” The popular block cipher of the 1990s. It is now
considered as a ‘broken’ block cipher, due primarily to its small key size.

 Triple DES – It is a variant scheme based on repeated DES applications. It is still a respected
block ciphers but inefficient compared to the new faster block ciphers available.

 Advanced Encryption Standard (AES) – It is a relatively new block cipher based on the
encryption algorithm Rijndael that won the AES design competition.

 IDEA – It is a sufficiently strong block cipher with a block size of 64 and a key size of 128 bits. A
number of applications use IDEA encryption, including early versions of Pretty Good Privacy
(PGP) protocol. The use of IDEA scheme has a restricted adoption due to patent issues.

 Twofish – This scheme of block cipher uses block size of 128 bits and a key of variable length. It
was one of the AES finalists. It is based on the earlier block cipher Blowfish with a block size of 64
bits.

 Serpent – A block cipher with a block size of 128 bits and key lengths of 128, 192, or 256 bits,
which was also an AES competition finalist. It is a slower but has more secure design than other
block cipher.

1.3.2 The Data Encryption Standard

Q15. Explain about DES algorithm.

Ans :
The most widely used encryption scheme is based on the Data Encryption Standard (DES). For DES,

data are encrypted in 64-bit blocks using a 56- bit key. The algorithmtransforms 64-bit input in a series
of steps into a 64-bit output. The same steps, with the same key, are used toreverse the encryption.

DES Encryption

The overall scheme for DES encryption is illustrated in figure 3.5. As with any encryption scheme,
thereare two inputs to the encryption function: the plaintext to be encrypted and the key. In this case, the
plaintextmust be 64 bits in length and the key is 56 bits in length.

M.Sc II Year III Semester

18
Rahul Publications

64-bit cipher text

64-bit plain text 64-bit key

Fig. : General Depiction of DES Encryption Algorithm

Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in
three phases. First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits
to produce the permuted input. This is followed by a phase consisting of sixteen rounds of the same
function, which involves both permutation and substitution functions. The output of the last (sixteenth)
round consists of 64 bits that are a function of the input plaintext and the key. The left andright halves of
the output areswapped to produce the preoutput. DES has the exact structure of a Feistel cipher, as
shown in Figure 3.3.

The right-hand portion of Figure 3.5 shows the way in which the 56-bit key is used. Initially, the key
is passed through a permutation function. Then, for each of the sixteen rounds, a subkey (Ki) is produced
by the combination of a left circular shift and a permutation. The permutation function is the same for
each round, but a different subkey is produced because of the repeated shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables 3.2a and 3.2b,
respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits numbered
from 1 to 64. The 64 entries in the permutation table contain a permutation of the numbers
from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the
output, which also consists of 64 bits.

UNIT - I NETWORK SECURITY

19
Rahul Publications

To see that these two permutation functions are indeed the inverse of each other, consider the following
64-bit input M :

715233139475563

513212937455361

311192735435159

19172533414957

816243240485664

614223038465462

412202836445260

210182634425058

715233139475563

513212937455361

311192735435159

19172533414957

816243240485664

614223038465462

412202836445260

210182634425058

(a) Initial Permutation (IP)

25571749941133

265818501042234

275919511143335

286020521244436

296121531345537

306222541446638

316323551547739

326424561648840

25571749941133

265818501042234

275919511143335

286020521244436

296121531345537

306222541446638

316323551547739

326424561648840

(b) Inverse Initial Permutation (IP)

13231302928

292827262524

252423222120

212019181716

171615141312

1312111098

987654

5432132

13231302928

292827262524

252423222120

212019181716

171615141312

1312111098

987654

5432132

(c) Expansion Permutation (E)

25411226301319

932732142482

10311852623151

172812292120716

25411226301319

932732142482

10311852623151

172812292120716

(d) Permutation Function (P)

M.Sc II Year III Semester

20
Rahul Publications

If we then take the inverse permutation Y = IP-1(X) = IP-1(IP(M)), it can be seen that the original

ordering of the bits is restored.

DETAILS OF SINGLE ROUND Figure 3.6 shows the internal structure of a single round. Again,

begin by focusing on the left-hand side of the diagram. The left and right halves of each 64-bit intermediate

value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel

cipher, the overall processing at each round can be summarized in the following formulas:

Li = Ri - 1

Li = Ri - 1

Ri = Li–1 + F(Ri–1, Ki)

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using a

table that defines a permutation plus an expansion that involves duplication of 16 of the R bits (Table

3.2c). The resulting 48 bits are XORed with Ki . This 48-bit result passes through a substitution function

that produces a 32-bit output, which is permuted as defined by Table 3.2d.

The role of the S-boxes in the function F is illustrated in Figure 3.7. The substitution consists of a set

of eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These transformations

UNIT - I NETWORK SECURITY

21
Rahul Publications

aredefined in Table 3.3, which isinterpreted as follows: The first and last bits of the input to box Si form a

2-bit binary number to select one offour substitutions defined by the four rows in the table for Si. The

middle four bits select one of the sixteencolumns. The decimal value in the cell selected by the row and

column is then converted to its 4-bitrepresentation to pro- duce the output. For example, in S1, for input

011001, the row is 01 (row 1) and thecolumn is 1100 (column 12). The value in row 1, column 12 is 9,

so the output is 1001.

Each row of an S-box defines a general reversible substitution. Figure 3.2 may be useful in understanding

themapping. The figure shows the substitution for row 0 of box S1.

32 bits 32 bits 28 bits 28 bits
Li-1 Ri-1 Ci-1 Di-1

Expansion/permutation
(E table)

Substitution/choice
(S-box)

Permutation
(P)

48

48

32

32

48
F XOR

Left shift(s) Left shift(s)

Permutation/contraction
(Permuted choice 2)Ki

Li Ri Ci Di

Fig. : Single Round of DES Algorithm

The operation of the S-boxes is worth further comment. Ignore for the momentthe contribution of

the key (Ki). If you examine the expansion table, you see that the 32 bits of input are splitinto groups of

4 bits and then become groups of 6 bits by taking the outer bits from the two adjacent groups. Forexample,

if part of the input word is

 ... efgh ijkl mnop ...

this becomes ... defghi hijklm lmnopq ...

M.Sc II Year III Semester

22
Rahul Publications

32 bits

48 bits K (48 bits)

R (32 bits)

P

+

E

S1 S2 S3 S4 S5 S6 S7 S8

Fig. : Single Round of DES AlgorithmC

The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then
a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits). The 32-bit
output fromthe eight S-boxes is then permuted, so that on the next round, the output from each S-box
immediately affects as many others as possible.

Key Generation

Returning to Figures 3.5 and 3.6, we see that a 64-bit key is used as input to the algorithm.The bits
of the key are numbered from 1 through 64; every eighth bit is ignored, as indicated by the lack ofshading
in Table 3.4a. The key is first subjected to a permutation governed by a table labelled Permuted Choice
One (Table 3.4b). The resulting 56-bit key is then treated as two 28-bit quantities, labelled C0 and D0.At
each round, Ci - 1 and Di - 1 are separately subjected to a circular left shift or (rotation) of 1 or 2 bits,
asgoverned by Table 3.4d. These shifted values serve as input to the next round. They also serve as input
to the part labelled Permuted Choice Two (Table 3.4c), which produces a 48-bit output that serves as
input to the function F(Ri - 1, Ki).

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application
of the subkeys is reversed.

7

11

1

8

1

2

13

11

9

6

2

15

4

13

14

2

2

8

4

1

8

14

7

13

12

1

15

4

15

4

0

14

136010143115

05103791215

83591112610

7095126103

7

11

1

8

1

2

13

11

9

6

2

15

4

13

14

2

2

8

4

1

8

14

7

13

12

1

15

4

15

4

0

14

136010143115

05103791215

83591112610

7095126103

S1

UNIT - I NETWORK SECURITY

23
Rahul Publications

2

1

14

4

4

13

8

3

15

4

2

11

3

10

15

6

1

11

7

14

10

7

4

8

8

14

13

1

13

0

3

15

91450127611

1523961285

51196101012

10501213279

2

1

14

4

4

13

8

3

15

4

2

11

3

10

15

6

1

11

7

14

10

7

4

8

8

14

13

1

13

0

3

15

91450127611

1523961285

51196101012

10501213279

S2

7

0

10

5

8

3

6

15

9

15

4

3

6

8

3

6

0

9

9

14

13

4

0

9

10

6

7

0

1

13

13

10

122511314154

714105122111

115111214582

82411712131

7

0

10

5

8

3

6

15

9

15

4

3

6

8

3

6

0

9

9

14

13

4

0

9

10

6

7

0

1

13

13

10

122511314154

714105122111

115111214582

82411712131

S3

8

13

3

10

13

7

0

9

1

11

15

6

10

12

6

0

6

0

5

3

0

9

11

14

15

6

8

13

3

10

13

7

14271211549

4825143115

91410112274

15412115821

8

13

3

10

13

7

0

9

1

11

15

6

10

12

6

0

6

0

5

3

0

9

11

14

15

6

8

13

3

10

13

7

14271211549

4825143115

91410112274

15412115821

S4

13

8

1

6

2

7

13

11

14

13

7

10

1

10

4

7

7

11

12

1

12

1

2

4

8

2

11

12

11

4

14

2

3541090156

14036512915

6893101505

91401315358

13

8

1

6

2

7

13

11

14

13

7

10

1

10

4

7

7

11

12

1

12

1

2

4

8

2

11

12

11

4

14

2

3541090156

14036512915

6893101505

91401315358

S5

10

3

5

8

15

12

9

6

5

8

12

2

9

2

7

9

12

5

2

15

2

15

4

10

3

14

15

1

4

9

10

12

13806711411

61113110407

83110141316

11571443130

10

3

5

8

15

12

9

6

5

8

12

2

9

2

7

9

12

5

2

15

2

15

4

10

3

14

15

1

4

9

10

12

13806711411

61113110407

83110141316

11571443130

S6

7

14

10

13

10

7

1

8

4

3

9

0

1

12

4

15

8

13

7

14

13

11

11

2

11

4

0

11

6

1

13

4

12321415059

2950861510

68152125314

1610579123

7

14

10

13

10

7

1

8

4

3

9

0

1

12

4

15

8

13

7

14

13

11

11

2

11

4

0

11

6

1

13

4

12321415059

2950861510

68152125314

1610579123

S7

13

2

4

1

8

14

7

11

10

12

3

15

4

9

10

6

7

1

8

4

14

4

13

8

1

11

15

2

2

7

1

13

11653091215

85013131060

29140116512

71205143910

13

2

4

1

8

14

7

11

10

12

3

15

4

9

10

6

7

1

8

4

14

4

13

8

1

11

15

2

2

7

1

13

11653091215

85013131060

29140116512

71205143910

S8

M.Sc II Year III Semester

24
Rahul Publications

6463626160595857

5655545352515049

4847464544434241

4039383736353433

3231302928272625

2423222120191817

161514131211109

87654321

6463626160595857

5655545352515049

4847464544434241

4039383736353433

3231302928272625

2423222120191817

161514131211109

87654321

(a) Input Key

412202851321

2937455361614

2230384654627

15233139475563

3644526031119

2735435159210

1826344250581

9172533414957

412202851321

2937455361614

2230384654627

15233139475563

3644526031119

2735435159210

1826344250581

9172533414957

(b) Permited Choice One (PC-I)

5229365042465334

5639494448334551

4030554737315241

2132027716826

41219231021615

2835124111714

5229365042465334

5639494448334551

4030554737315241

2132027716826

41219231021615

2835124111714

(c) Permuted Choice Two (PC-2)

2

15

2

7

2

8

2

6

2

5

2

4

2

3

1

2

1

1

1222221Bits Rotated

1614131211109Round Number

2

15

2

7

2

8

2

6

2

5

2

4

2

3

1

2

1

1

1222221Bits Rotated

1614131211109Round Number

(d) Schedule of Left Shits

Table : DES Key Schedule Calculation

UNIT - I NETWORK SECURITY

25
Rahul Publications

1.3.3 A DES Example

Q16. Illustrate DES with an example.

Ans :

We now work through an example and consider some of its implications. Although you are not

expected to duplicate the example by hand, you will find it informative to study the hex patterns that

occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key, and resulting ciphertext

are asfollows:

Plaintext : 0 2 4 6 8 a c e e c a 8 6 4 2 0

Key : 0 f 1 5 7 1 c 9 4 7 d 9 e 8 5 9

Ciphertext : d a 0 2 c e 3 a 8 9 e c a c 3 b

Results

Table 3.5 shows the progression of the algorithm. The first row shows the 32-bit values of the left

and right halves of data after the initial permutation. The next 16 rows show the results after each round.

Also shown is the value of the 48-bit subkey generated for each round. Note that Li = Ri - 1.

The final row shows the left- and right-hand values after the inverse initial permutation. These two

values com- bined form the ciphertext.

The Avalanche Effect

A desirable property of any encryption algorithm is that a small change in either the plaintext or the

keyshould produce a significant change in the ciphertext. In particular, a change in one bit of the plaintext

or one bit of the key should produce a change in many bits of the ciphertext. This is referred to as the

avalanche effect. If the change were small, this might provide a way to reduce the size of the plaintext or

key space to be searched.

Using the example from Table 3.5, Table 3.6 shows the result when the fourth bit of the plaintext is

changed,so that the plaintext is 12468aceeca86420. The second column of the table shows the intermediate

64-bitvalues at the end of each round for the two plaintexts. The third column shows the number of bits

that differ between the two intermediate values. The table shows that, after just three rounds, 18 bits differ

between thetwo blocks. On completion, the two ciphertexts differ in 32 bit positions.

M.Sc II Year III Semester

26
Rahul Publications

Table :DES Example

Table : Avalanche Effect in DES : Change in Plaintext

UNIT - I NETWORK SECURITY

27
Rahul Publications

Table shows a similar test using the original plaintext of with two keys that differ in only the fourth bit
position: the original key, 0f1571c947d9e859, and the altered key, 1f1571c947d9e859. Again, the results
show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after
just a fewrounds.

Table : Avalanche Effect in DES: Change in Key

1.3.4 The Strength of DES

Q17. Explain the strength of DES.

Ans :
Since its adoption as a federal standard, there have been lingering concerns about the level of security

provided by DES. These concerns, by and large, fall into two areas: key size and the nature of the
algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 * 1016 keys.
Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average, half the key
space has tobe searched, a single machine performing one DES encryption per microsecond would take
more than athousand years to break the cipher.

It is important to note that there is more to a key-search attack than simply running through all
possible keys. Unless known plaintext is provided, the analyst must be able to recognize plaintext as
plaintext. If the message is just plain text in English, then the result pops out easily, although the task of
recognizing English would have to beautomated. If the text message has been compressed before encryption,
then recognition is more difficult.And if the message is some more general type of data, such as a numerical
file, and this has been compressed, the problem becomes even more difficult to automate. Thus, to

M.Sc II Year III Semester

28
Rahul Publications

supplement the brute-force approach, some degree
of knowledge about the expected plaintext is
needed, and some means of automatically
distinguishing plaintext from garble is also needed.

The EFF approach addresses this issue as well
and introduces some automated techniques that
would be effective in many contexts.

1.4 BLOCK CIPHER OPERATION

1.4.1 Double DES

Q18. Expalin about Double DES and attack on
DES

Ans :
A method of data encryption, namely the use

of DES twice in a row. Be P the plaintext message,
k1 and k2 two DES keys, then the result of double
DES is the ciphertext C = DES(DES(P,k1),k2).

As everybody proficient in cryptography knows,
DES is not safe due to its fixed keylength of 56 bit,
which is nowadays too little to be resilent against
brute forceattacks. Unfortunately, double DES does
not alleviate this problem - it’s not much safer than
a hypothetical DES with 57 bit keys, which is entirely
too little. The reason why it doesn’t offer the
equivalent of 112 bit encryption that one might
naively expect is its vulnerability to a so-called meet-
in-the-middle attack.It works like this:

1. For every possible DES key k i,
compute M i = DES(C,k i) and store
the tuple (Mi, ki).

2. Loop again through all possible DES
keys kj and compute Nj = DES-1(C,kj).
Check whether Nj is the same as one of
your stored Mi. If you find a match, it’s
pretty likely likely that you’ve just found
the two keys you’re looking after!

Since the comparison in step two can be done in
more or less constant time using hashing, you
basically only have to go through all possible DES
keys twice, resulting in the effective key lenght of
57 bit.

Attack on double DES:

i. The simplest form of multiple encryption has
two encryption stages and two keys.

ii. Given a plaintext P and two encryption keys
K1 and K2, cipher text C is generated as:

C = E (K2, E (K1, P))

Decryption requires that the keys be applied in
reverse order

P = D (K1, D (K2, C))

iii. For DES, this scheme apparently involves a key
length of 56x2 = 112 bits of resulting in a
dramatic increase in cryptographic strength. But
we need to examine the algorithm more
closely.

iv. Meet in the middle attack: The algorithm known
as a meet in the middle attack was first described
in [DIFF 77]. It is based on the observation
that if we have

C = E (K2, E (K1, P)) then X = E (K1, P) = D
(K2, C)

E

D

E

D

K1

K2

K2

P

C

X

X

C

P

v. Given a known pair (P, C) the attack proceeds
as follows.

vi. First, encrypt P for all 256256 possible values
of K1 store these results in a table and then
sort the table by the values of X.

vii. Next, decrypt C using all the 256256 possible
values of K2. As each decryption is produced
check the result against the table for a match.

viii. If a match occurs, then test the 2 resulting keys
against a new known plain text – cipher text
pair. If the 2 keys produce the correct cipher
text, accept them as the correct keys.

UNIT - I NETWORK SECURITY

29
Rahul Publications

1.4.2 Triples DES

Q19. Explain triple DES with two keys.

Ans :
Before using 3TDES, user first generate and distribute a 3TDES key K, which consists of three different

DES keys K1, K2 and K3. This means that the actual 3TDES key has length 3×56 = 168 bits.

The encryption scheme is illustrated as follows.

P

C C

P64-bit plaintext

64-bit cipher text 64-bit cipher text

DES
cipher

DES
cipher

DES
cipher

DES
reverse cipher

DES
reverse cipher

DES
reverse cipher

64-bit plaintext

K1

K2

K3

The encryption-decryption process is as follows :

 Encrypt the plaintext blocks using single DES with key K1.

 Now decrypt the output of step 1 using single DES with key K2.

 Finally, encrypt the output of step 2 using single DES with key K3.

 The output of step 3 is the ciphertext.

 Decryption of a ciphertext is a reverse process. User first decrypt using K3, then encrypt with K2, and
finally decrypt with K1.

Due to this design of Triple DES as an encrypt–decrypt–encrypt process, it is possible to use a 3TDES
(hardware) implementation for single DES by setting K1, K2, and K3 to be the same value. This provides
backwards compatibility with DES.

Second variant of Triple DES (2TDES) is identical to 3TDES except that K3is replaced by K1. In other
words, user encrypt plaintext blocks with key K1, then decrypt with key K2, and finally encrypt with
K1 again. Therefore, 2TDES has a key length of 112 bits.

Triple DES systems are significantly more secure than single DES, but these are clearly a much slower
process than encryption using single DES.

M.Sc II Year III Semester

30
Rahul Publications

1.4.3 Electronic Code Book

Q20. What is Electronic code Book ? Write a note on it.

Ans :
A block cipher takes a fixed-length block of text of length b bits and a key as input and produces a b-

bitblock of ciphertext. If the amount of plaintext to be encrypted is greater than b bits, then the block
cipher canstill be used by breaking the plaintext up into b-bit blocks. When multiple blocks of plaintext are
encryptedusing the same key, a number of security issues arise. To apply a block cipher in a variety of
applications, fivemodes of operation have been defined by NIST (SP 800-38A).

The five modes are intended to cover awide variety of applications of encryption for which a block
cipher could be used. These modes are intendedfor use with any symmetric block cipher, including triple
DES and AES. The modes are summarized inTable 6.1 and described in this and the following sections.

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one block
at a time and each block of plaintext is encrypted using the same key (Figure 6.3). The term codebook is
usedbecause, for a given key, there is a unique ciphertext for every b-bit block of plaintext. Therefore, we
can imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern
showingits corresponding ciphertext.

For a message longer than b bits, the procedure is simply to break the message into b-bit blocks,padding
the last block if necessary. Decryption is performed one block at a time, always using the samekey. In
Figure 6.3, the plaintext (padded as necessary) consists of a sequence of b-bit blocks, P1, P2, Á ,PN; the

 Mode Description Typical Application

Electronic Codebook (ECB) Each block of 64 plaintext bits is encoded Secure transmission of single values
independently using the same key. (e.g., an encryption key)

Cipher Block Chaining (CBC) The input to the encryption algorithm is the General-purpose block oriented
XOR of the next 64 bits of plaintext and the transmission.
preceding 64 bits of ciphertext Authentication

Cipher Feedback (CFB) Input is processed s bits at the time. General-purpose stream-oriented
Preceding ciphertext is used as input transmission.
to the encryption algorithm to produce Authentication
pseudorandom output, which is XORed
with plaintext to produce next unit of
ciphertext.

Output Feedback (OFB) Similar to CFB, except that the input to the Stream-oriented transmission
encryption algorithm is the preceding over noisy channel (e.g., satellite
encryption output, and full blocks are used. communication)

Counter (CTR) Each block of plaintext is XORed with an General-purpose block-
encrypted courier. The counter is oriented transmission.
incremented for cash subsequent block. Useful for high-speed requirements.

Table : Block Cipher Modes of Operation

UNIT - I NETWORK SECURITY

31
Rahul Publications

Encrypt

C1

P1

C2

P2

CN

PN

Encrypt

(a) Encryption

Encrypt

K K K

Decrypt

P1

C1

P2

C2

PN

PN

Decrypt

(b) Decryption

Decrypt

K K K

Fig. : Electronic Codebook (ECB) Mode

corresponding sequence of ciphertext blocks is C1, C2, , CN. We can define ECB mode as
follows.

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you want to

transmita DES or AES key securely, ECB is the appropriate mode to use.

The most significant characteristic of ECB is that if the same b-bit block of plaintext appears more

than once in the message, it always produces the same ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly structured, it may

be possiblefor a cryptanalyst to exploit these regularities. For exam- ple, if it is known that the message

always starts outwith certain predefined fields, then the cryptanalyst may have a number of known plaintext–

ciphertext pairs towork with. If the message has repetitive elements with a period of repetition a multiple

of b bits, then theseelements can be identified by the analyst. This may help in the analysis or may provide

an opportunity forsubstituting or rearranging blocks.

M.Sc II Year III Semester

32
Rahul Publications

1.4.4 Cipher Block Chaining Mode
Q21. What is cipher block chaining mode? Explain.

Ans :
To overcome the security deficiencies of ECB, we would like a technique in which the same plaintext

block,if repeated, produces different ciphertext blocks. A simple way to satisfy this requirement is the
cipher blockchaining (CBC) mode (Figure 6.4). In this scheme, the input to the encryption algorithm is
the XOR of thecurrent plain- text block and the preceding ciphertext block; the same key is used for each
block. In effect, wehave chained together the processing of the sequence of plaintext blocks. The input to
the encryption functionfor each plaintext block bears no fixed relation- ship to the plaintext block. Therefore,
repeating patterns of bbits are not exposed. As with the ECB mode, the CBC mode requires that the last
block be padded to a full bbits if it is a partial block.

For decryption, each cipher block is passed through the decryption algorithm. The result is XORed
with the preceding ciphertext block to produce the plaintext block. To see that this works, we can
writeCj = E(K, [Cj - 1 Í$ Pj])

Then

D(K,Cj) = D (K, E(K, [Cj - 1  Pj]))

D(K,Cj) = Cj - 1  Cj - 1  Pj = Pj

Cj - 1  D(K,Cj) = Cj - 1  Cj - 1  Pj = Pj

P1

C1

P2

C2

PN

CN

IV

K

Encyrpt Encyrpt Encyrpt

K K

CN=1

(a) Encryption

C1

P1

C2

P2

CN

PN

K

IV
CN=1

Decrypt Decrypt Decrypt

K K

(b) Decryption

To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of
plaintext. On decryption, the IV is XORed with the output of the decryption algorithm to recover the first

UNIT - I NETWORK SECURITY

33
Rahul Publications

block of plaintext. The IV is a data block that is that same size as the cipher block. We can define CBC
mode as

The IV must be known to both the sender and receiver but be unpredictable by a third party. In
particular, forany given plaintext, it must not be possible to predict the IV that will be associated to the
plaintext in advance of the generation of the IV. To see this, consider

C1 = E(K, [IV  P1])

P1 = IV  D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

P1[i] = IV[i]  D(K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]’ = IV[i]’  D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an opponent can
predictablychange bits in IV, the corresponding bits of the received value of P1 can be changed.

1.4.5 Cipher Feedback Mode

Q22. Explain about Cipher Feedback Mode.

Ans :
A stream cipher eliminates the need to pad amessage to be an integral number of blocks. It also can

operate in real time. Thus, if a character stream isbeing transmitted, each character can be encrypted and
transmitted immediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same length as the plaintext.
Thus, if8-bit characters are being transmitted, each character should be encrypted to produce a ciphertext
output of 8bits. If more than 8 bits are produced, transmission capacity is wasted.

Figure 6.5 depicts the CFB scheme. In the figure, it is assumed that the unit of transmission is s bits;
acommon value is s = 8. As with CBC, the units of plaintext are chained together, so that the ciphertext
of any plaintext unit is a function of all the preceding plaintext. In this case, rather than blocks of b bits, the
plaintext is divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift register that is initially
set tosome initialization vector (IV). The leftmost (most significant) s bits of the output of the encryption
function are XORed with the first segment of plaintext P1 to produce the first unit of ciphertext C1,
whichis then transmitted. In addition, the contents of the shift register are shifted left by s bits, and C1 is
placed in the rightmost (least significant) s bits of the shift register. This process continues until all plaintext
unitshave been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the
output of the encryption function to produce the plaintext unit. Note that it is the encryption function that
is used, not the decryption function. This is easily explained. Let MSBs(X) be defined as the most significant
s bits of X. Then

M.Sc II Year III Semester

34
Rahul Publications

C1 = P1 Í$ MSBs[E(K, IV)]

Therefore, by rearranging terms:

P1 = C1 Í$ MSBs[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

We can define CFB mode as follows.

UNIT - I NETWORK SECURITY

35
Rahul Publications

Although CFB can be viewed as a stream cipher, it does not conform to the typical construction of a

streamcipher. In a typical stream cipher, the cipher takes as input some initial value and a key and generates

astream of bits, which is then XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the

stream ofbits that is XORed with the plaintext also depends on the plaintext.

1.4.6 Output Feedback Mode

Q23. What is Output Feedback Mode? Explain.

Ans :

The output feedback (OFB) mode is similar in structure to that of CFB. As can be seen in Figure 6.6,

it isthe output of the encryption function that is fed back to the shift register in OFB, whereas in CFB,

theciphertext unit is fed back to the shift register. The other difference is that the OFB mode operates on

fullblocks of plaintext and ciphertext, not on an s-bit subset. Encryption can be expressed as

Cj = Pj E(K, [Cj - 1 Pj - 1])

By rearranging terms, we can demonstrate that decryption works.

Pj = Cj E(K, [Cj - 1 Pj - 1])

Nonce

K K K

Encrypt Encrypt Encrypt

P1 P2 PN

(a) Encryption

M.Sc II Year III Semester

36
Rahul Publications

Nonce

Decrypt Decrypt Decrypt

C1 C2 CN

(b) Decryption

Fig. : Cipher Block chaining (CFB) Mode

Let the size of a block be b. If the last block of plaintext contains u bits, with u 6 b, themost significant

u bits of the last output block ON are used for the XOR operation; the remaining b -u bits ofthe last output

block are discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In the case of OFB, the IV

must be anonce; that is, the IV must be unique to each execution of the encryption operation. The reason

for this isthat the sequence of encryption output blocks, Oi, depends only on the key and the IV and does

not dependon the plaintext. Therefore, for a given key and IV, the stream of output bits used to XOR with

the stream of plaintext bits is fixed. If two different messages had an identical block of plaintext in the

identical position,then an attacker would be able to determine that portion of the Oi stream.

One advantage of the OFB method is that bit errors in transmission do not propagate.

OFB has the structure of a typical stream cipher, because the cipher generates a stream of bits as a

functionof an initial value and a key, and that stream of bits is XORed with the plaintext bits (see Figure

3.1). Thegenerated stream that is XORed with the plaintext is itself independent of the plaintext.

1.4.7 Counter Mode

Q24. What is counter Mode ? Explain.

Ans :

Figure depicts the CTR mode. A counter equal to the plaintext block size is used. The only requirement

stated is that the counter value must be

UNIT - I NETWORK SECURITY

37
Rahul Publications

Counter 1 Counter 2 Counter N

K K K

Encrypt Encrypt Encrypt

P1 P2 PN

(a) Encryption

Counter 1 Counter 2 Counter N

K K K

Encrypt Encrypt Encrypt

P1 P2 PN

(b) Decryption

different for each plaintext block that is encrypted. Typically, the counter is initialized to some value and
thenincremented by 1 for each subsequent block (modulo 2b, where b is the block size). For encryption,
the counteris encrypted and then XORed with the plaintext block to produce the ciphertext block; there
is no chaining. Fordencryption, the same sequence of counter values is used, with each encrypted counter
XORed with a ciphertextblock to recover the corresponding plaintext block. Thus, the initial counter value
must be made available fordecryption. Given a sequence of counters T1, T2,,TN, we can define
CTR mode as follows.

For the last plaintext block, which may be a partial block of u bits, the most significant u bits of the last
outputblock are used for the XOR operation; the remaining b -u bits are discarded. Unlike the ECB, CBC,
and CFBmodes, we do not need to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T1 must be different for all
of themessages encrypted using the same key. Further, all Ti values across all messages must be unique. If,

M.Sc II Year III Semester

38
Rahul Publications

contraryto this requirement, a counter value is used multiple times, then the confidentiality of all of the
plaintext blocks corresponding to that counter value may be compromised. In particular, if any plain- text
block that isencrypted using a given counter value is known, then the output of the encryption function
can be determined easily from the associated ciphertext block. This output allows any other plaintext
blocks that are encrypted using the same counter value to be easily recovered from their associated
ciphertext blocks.

One way to ensure the uniqueness of counter values is to continue to increment the counter value by
1 across messages. That is, the first counter value of the each message is one more than the last counter
valueof the preceding message.

Advantages of CTR mode.

1. Hardware efficiency

For the chaining modes, the algorithm must complete the computation on one block before beginning
on the next block. This limits the maximum throughput of the algorithm to the reciprocal of the time
for one execution of block encryption ordecryption. In CTR mode, the throughput is only limited by
the amount of parallelism that is achieved.

2. Software efficiency

Similarly, because of the opportunities for parallel execution in CTR mode,processors that support
parallel features, such as aggressive pipelining, multiple instruction dispatch per clockcycle, a large
number of registers, and SIMD instructions, can be effectively utilized.

3. Preprocessing

The execution of the underlying encryption algorithm does not depend on input ofthe plaintext or
ciphertext. Therefore, if sufficient memory is available and security is maintained, preprocessing can
be used to prepare the output of the encryption boxes.

4. Random access: The ith block of plaintext or ciphertext can be processed in random-access fashion.
With the chaining modes, block Ci cannot be comuted until the i – 1 prior block are computed.

5. Provable security: It can be shown that CTR is at least as secure as the other modes discussed in this
section.

6 Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of
theencryption algorithm and not the decryption algorithm. This matters most when the decryption
algorithm differs substantially from the encryption algorithm, as it does for AES.

UNIT - II NETWORK SECURITY

39
Rahul Publications

UNIT
II

Advanced Encryption Standard (AES): The Origins AES, AES Structure,
AES Round Functions, AES Key Expansion, an AES Example AES
Implementation.Pseudorandom Number Generation and Stream Ciphers:
Principles of Pseudorandom Number Generation, Pseudorandom Number
Generators,Pseudorandom Number Generation using BlockCipher, StreamCiphers-
RC4. Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems,
the RSA Algorithm.Key Management and Distribution: Symmetric Key Distribution
Using Symmetric Encryption and Asymmetric Encryption, Distribution of Public
Keys, X.509 Certificates, Diffie- Hellman Key Exchange.

2.1 ADVANCED ENCRYPTION STANDARD

2.1.1 The Origions of AES

Q1. Explain about the features of AES.

Ans :
In 1997, National Institute of Standards and

Technology NIST issued a call for proposals for a
new Advanced Encryption Standard (AES), which
should have security strength equal to or better than
3DES, and significantly improved efficiency. In
addition, NIST also specified that AES must be a
symmetric block cipher with a block length of 128
bits and support for key lengths of 128, 192, and
256 bits.

AES Features

The selection process for this new symmetric
key algorithm was fully open to public scrutiny and
comment; this ensured a thorough, transparent
analysis of the designs submitted.

NIST specified the new advanced encryption
standard algorithm must be a block cipher capable
of handling 128 bit blocks, using keys sized at 128,
192, and 256 bits; other criteria for being chosen
as the next advanced encryption standard algorithm
included:

 Security: Competing algorithms were to be
judged on their ability to resist attack, as
compared to other submitted ciphers, though
security strength was to be considered the most
important factor in the competition.

 Cost: Intended to be released under a global,
non exclusive and royalty-free basis, the
candidate algorithms were to be evaluated on
computational and memory efficiency.

 Implementation: Algorithm and imple-
mentation characteristics to be evaluated
included the flexibility of the algorithm;
suitability of the algorithm to be implemented
in hardware or software; and overall, relative
simplicity of implementation.

AES Structure

Q2. Explain about the structure of AES.

Ans :
Figure 5.3 shows the AES cipher in more detail,

indicating the sequence of transfor- mations in each
round and showing the corresponding decryption
function.

1. One note worthy feature of this structure is that
it is not a Feistel structure. AES instead
processes the entire data block as a single matrix
during each round using substitutions and
permutation.

2. The key that is provided as input is expanded
into an array of forty-four 32-bit words, w[i].
Four distinctwords (128 bits) serve as a round
key for each round; these are indicated in
Figure 5.3.

3. Four different stages are used, one of
permutation and three of substitution:

 Substitute bytes: Uses an S-box to perform
a byte-by-byte substitution of the block

 Shift Rows: A simple permutation

 Mix Columns: A substitution that makes
use of arithmetic over GF(28)

 AddRoundKey: A simple bitwise XOR of
the current block with a portion of the
expanded key

M.Sc II Year III Semester

40
Rahul Publications

4. The structure is quite simple. For both encryption and decryption, the cipher begins with an
AddRoundKey stage, followed by nine rounds that each includes all four stages, followed by a tenth
round ofthree stages. Figure 5.4 depicts the structure of a full encryption round.

5. Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends with
an AddRoundKey stage. Any other stage, applied at the beginning or end, is reversible without
knowledge of thekey and so would add no security.

6. The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be formidable.
The other three stages together provide confusion, diffusion, and non linearity.

7. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, aninverse
function is used in the decryption algorithm. For the AddRoundKey stage, the inverse is achieved by
XO Ring the same round key to the block, using the result that A  B  B = A.

8. As with most block ciphers, the decryption algorithm makes use of the expanded key in reverse
order. However, the decryption algorithm is not identical to the encryption algorithm. This is a
consequence of the particular structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify that decryption does recover
the plaintext.

10. The final round of both encryption and decryption consists of only three stages. Again, this is a
consequence of the particular structure of AES and is required to make the cipher reversible.

Figure : AES Encryption and Decryption

UNIT - II NETWORK SECURITY

41
Rahul Publications

Q3. Explain AES Round function.

Ans :
Round Keys

The cipher key used for encryption is 128 bits long. The cipher key is already the result of many
hashing and cryptographic transformations and, by the time it arrives at the AES block encryption, it is far
removed from the secret master key held by the authentication server. Now, finally, it is used to generate
a set of eleven 128-bit round keys that will be combined with the data during encryption.

Although there are ten rounds, eleven keys are needed because one extra key is added to the initial
state array before the rounds start. The best way to view these keys is an array of eleven 16-byte values,
each made up of four 32-bit words, as shown in Table A.6.

To start with, the first round key Rkey0 is simply initialized to the value of the cipher key (that is the
secret key delivered through the key hierarchy). Each of the remaining ten keys is derived from this as
follows.

 32 bits 32 bits 32 bits

Rkey0 W0 W1 W2

Rkey1 W0 W1 W2

Rkey2 W0 W1 W2

Rkey3 W0 W1 W2

Rkey4 W0 W1 W2

Rkey5 W0 W1 W2

Rkey6 W0 W1 W2

Rkey7 W0 W1 W2

Rkey8 W0 W1 W2

Rkey9 W0 W1 W2

Rkey10 W0 W1 W2

Table : Round Key Array

For each of the round keys Rkey1 to Rkey10, words W1, W2, W3 are computed as the sum[1] of the
corresponding word in the previous round key and the preceding word in the current round key. For
example, using XOR for addition:

[1] Using finite field arithmetic.

Rkey5: W1 = Rkey4:W1 XOR Rkey5:W0,

Rkey8: W3 = Rkey7:W3 XOR Rkey8:W2 and so on.

The rule for the value of W0 is a little more complicated to describe, although still simple to compute.
For each round key Rkey1 to Rkey10, the value of W0 is the sum of three 32-bit values:

M.Sc II Year III Semester

42
Rahul Publications

 The value of W0 from the previous round key

 The value of W3 from the previous round key, rotated right by 8 bits
 A special value from a table called Rcon
Thus, we write:

Rkeyi: W0 = Rkey(i-1):W0 XOR (Rkey(i-1):W3 >>> 8) XOR Rcon[i]

State

State

State

State

State

AddRoundKey

MixColumns

ShiftRows

SubBytes

Fig. : AES Encryption Round

2.1.2 AES Key Expansion

Q4. Explain AES Key Expansion Algorithm.

Ans :
Key Expansion Algorithm

The AES key expansion algorithm takes as input a four-word (16-byte) key and produces a linear
array of 44words (176 bytes). This is sufficient to provide a four-word round key for the initial AddRoundKey
stage andeach of the 10 rounds of the cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remain- der of the expanded key
isfilled in four words at a time. Each added word w[i] depends on the immediately preceding word, w[i -
1], and the word four positions back, w[i - 4]. In three out of four cases, a simple XOR is used. For a
wordwhose position in the w array is a multiple of 4, a more complex function is used. Figure 5.9 illustrates
thegeneration of the expanded key, using the symbol g to represent that complex function. The function
consists of the following subfunctions.

UNIT - II NETWORK SECURITY

43
Rahul Publications

Fig. : AES Key Expansion

M.Sc II Year III Semester

44
Rahul Publications

1. RotWord performs a one-byte circular left shift on a word. This means that an input word [B0, B1,

B2, B3] is transformed into [B1, B2, B3, B0].

2. SubWord performs a byte substitution on each byte of its input word, using the S-box (Table 5.2a).

3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

The round constant is a word in which the three rightmost bytes are always 0. Thus, the effect of an

XOR of aword with Rcon is to only perform an XOR on the left- most byte of the word. The round

constant is different foreach round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] =

2 RC[j -1] and with multiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

40

7

80

8

20

6

10

5

08

4

04

3

02

2

01

1

361BRC[j]

109J

40

7

80

8

20

6

10

5

08

4

04

3

02

2

01

1

361BRC[j]

109J

For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

AC7766F3

W[i] = temp
W[o-4]

EAD27321

W[i-4]

46A515D2

After XOR
With Rcon

1B000000

Rcon (9)

5DA515D2

After
SubWord

SD292F7F

After
RotWord

7FSD292F

Temp

36

I(decimal)

AC7766F3

W[i] = temp
W[o-4]

EAD27321

W[i-4]

46A515D2

After XOR
With Rcon

1B000000

Rcon (9)

5DA515D2

After
SubWord

SD292F7F

After
RotWord

7FSD292F

Temp

36

I(decimal)


Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic

attacks. The inclusion of a round-dependent round constant eliminates the symmetry, or similarity, between

the ways in which round keys are generated in different rounds. The specific criteria that were used

are[DAEM99]

 Knowledge of a part of the cipher key or round key does not enable calculation of many otherround-

key bits.

 An invertible transformation [i.e., knowledge of any Nk consecutive words of the expanded key

enables regeneration the entire expanded key (Nk = key size in words)].

 Speed on a wide range of processors.

 Usage of round constants to eliminate symmetries.

 Diffusion of cipher key differences into the round keys; that is, each key bit affects many round

keybits.

UNIT - II NETWORK SECURITY

45
Rahul Publications

 Enough nonlinearity to prohibit the full determination of round key differences from cipher
keydifferences only.

 Simplicity of description

2.1.3 An AES Example

Q5. Illustrate AES with an example.

Ans :

For this example, the plaintext is a hexadecimal palindrome. The plaintext, key, and resulting

ciphertext are

Plaintext : 0123456789abcdeffedcba9876543210

Key : 0f1571c947d9e8590cb7add6af7f6798

Ciphertext : ff0b844a0853bf7c6934ab4364148fb9

Results

Table 5.3 shows the expansion of the 16-byte key into 10 round keys. As previously explained, this

process is performed word by word, with each four-byte word occupying one column of the word round-

key matrix. The left-hand column shows the four round-key words generated for each round. The

right-hand column shows the steps

Table : Key Expansion for AES Example

M.Sc II Year III Semester

46
Rahul Publications

used to generate the auxiliary word used in key expansion. We begin, of course, with the key itself serving
as the round key for round 0.

Next, Table 5.4 shows the progression of State through the AES encryption process.

The first column showsthe value of State at the start of a round. For the first row, State is just the
matrix arrangement of theplaintext.

The second, third, and fourth columns show the value of State for that round after the
SubBytes,ShiftRows, and MixColumns transformations, respectively. The fifth column shows the round
key. You canverify that these round keys equate with those shown in Table 5.3. The first column shows the
value of Stateresulting from the bitwise XOR of State after the preceding MixColumns with the round key
for the precedinground.

UNIT - II NETWORK SECURITY

47
Rahul Publications

Avalanche Effect

If a small change in the key or plaintext were to produce a corresponding small change in the ciphertext,

this might be used to effectively reduce the size of the

Table 5.4 AES Example

plaintext (or key) space to be searched. What is desired is the avalanche effect, in which a small change in

plaintext or key produces a large change in the ciphertext.

Using the example from Table 5.4, Table 5.5 shows the result when the eighth bit of the plaintext is

changed. The second column of the table shows the value of the State matrix at the end of each round for

the twoplaintexts. Note that after just one round, 20 bits of the State vector differ. After two rounds, close

to half thebits differ. This magnitude of difference propagates through the remaining rounds. A bit difference

inapproximately half the positions in the most desirable outcome.

M.Sc II Year III Semester

48
Rahul Publications

Clearly, if almost all the bits are changed, this would be logically equivalent to almost none of the bits

being changed. Put another way, if we selecttwo plaintexts at random, we would expect the two plaintexts

to differ in about half of the bit positions andthe two ciphertexts to also differ in about half the positions.

Table 5.6 shows the change in State matrix values when the same plaintext is used and the two keys

differ in the eighth bit. That is, for the second case, the key is 0e1571c947d9e8590cb7add6af7f6798.

UNIT - II NETWORK SECURITY

49
Rahul Publications

Again, one round produces a significant change, and the magnitude of change after all subsequent
rounds is roughly half the bits. Thus, based on this example, AES exhibits a very strong avalanche effect.

Table : Avalanche Effect in AES: Change in Plaintext

585c7bb49a672349b05a2317ff46dd1294
fe2ae569f7ee8bb8c1f5a2bb37ef53d5

2

20657470750fc7ff3fc0e8e8ca4dd02a9c
c4a9ad090fc7ff3fc0e8e8ca4dd02a9c

1

10e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

0

1

Number of Bits
that Differ

0123456789abcdeddedcba9876543210
0023456789abcdeffedcba9876543210

Round

585c7bb49a672349b05a2317ff46dd1294
fe2ae569f7ee8bb8c1f5a2bb37ef53d5

2

20657470750fc7ff3fc0e8e8ca4dd02a9c
c4a9ad090fc7ff3fc0e8e8ca4dd02a9c

1

10e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

0

1

Number of Bits
that Differ

0123456789abcdeddedcba9876543210
0023456789abcdeffedcba9876543210

Round

58ff0b844a0853bf7c6934ab4364148fb9
612b89398d0600cde116227ce72433f0

10

61cca104a13e678500ff59025f3bafaa34
b56a0341b2290ba7dfdfbddcd8578205

9

65f91b4fbfe934c9bf8f2f85812b084989
20264e1126b219aef7feb3f9b2d6de40

8

67db18aeffa16d30d5f88b08d777ba4eaa
9fb8b5452023c70280e5c4bb9e555a4b

7

640ad9d85689f9f77bc1c5f71185e5fb14
3bc2d8b6798d8ac4fe36a1d891ac181a

6

68721eb200ba06206dcbd4bce704fa654e
7b28a5d5ed643287e006c099bb375302

5

61f867aee8b437a5210c24c1974cffeabc
43efdb697244df808e8d9364ee0ae6f5

4

59

Number of Bits
that Differ

7115262448dc747e5cdac7227da9bd9c
ec093dfb7c45343d689017507d485e62

3

Round

58ff0b844a0853bf7c6934ab4364148fb9
612b89398d0600cde116227ce72433f0

10

61cca104a13e678500ff59025f3bafaa34
b56a0341b2290ba7dfdfbddcd8578205

9

65f91b4fbfe934c9bf8f2f85812b084989
20264e1126b219aef7feb3f9b2d6de40

8

67db18aeffa16d30d5f88b08d777ba4eaa
9fb8b5452023c70280e5c4bb9e555a4b

7

640ad9d85689f9f77bc1c5f71185e5fb14
3bc2d8b6798d8ac4fe36a1d891ac181a

6

68721eb200ba06206dcbd4bce704fa654e
7b28a5d5ed643287e006c099bb375302

5

61f867aee8b437a5210c24c1974cffeabc
43efdb697244df808e8d9364ee0ae6f5

4

59

Number of Bits
that Differ

7115262448dc747e5cdac7227da9bd9c
ec093dfb7c45343d689017507d485e62

3

Round

M.Sc II Year III Semester

50
Rahul Publications

Table : Avalanche Effect in AES: Change in Key

3ff0b844a0853bfc6934ab4364148fb9
fc8923ee501a7d207ab670686839996b

10

59cca104a13e678500ff59025f3bafaa34
0ccb4c66bbfd912f4b511d72996345e0

9

67f91b4fbfe934c9bf8f2f85812b084989
da7dad581d1725c5b72fa0f9d9d1366a

8

74db18a8ffa16d30d5f88b08d777ba4eaa
fe8343b8f88bef66cab7e977d005a03c

7

700ad9d85689f9f77bc1c5f71185e5fb14
dc60a24d137662181e45b8d3726b2920

6

81721eb200ba06206dcbd4bce704fa654e
5955c91b4e769f3cb4a94768e98d5267

5

63f867aee8b437a5210c24c1974cffeabc
f81015f993c978a876ae017cb49e7eec

4

677115262448dc747e5cdac7227da9bd9c
18aeb7aa794b3b66629448d575c7cebf

3

585c7bb49a6b72349b05a2317ff46d1294
90905fa9563356d15f3760f3b8259985

2

22657470750fc7ff3fc0e8e8ca4dd02a9c
c5a9ad090ec7ff3fc1e8e8ca4cd02a9c

1

10e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

0

0

Number of Bits
that Differ

0123456789abcdeffedcba9876543210
0123456789abcdeffedcba9876543210

Round

3ff0b844a0853bfc6934ab4364148fb9
fc8923ee501a7d207ab670686839996b

10

59cca104a13e678500ff59025f3bafaa34
0ccb4c66bbfd912f4b511d72996345e0

9

67f91b4fbfe934c9bf8f2f85812b084989
da7dad581d1725c5b72fa0f9d9d1366a

8

74db18a8ffa16d30d5f88b08d777ba4eaa
fe8343b8f88bef66cab7e977d005a03c

7

700ad9d85689f9f77bc1c5f71185e5fb14
dc60a24d137662181e45b8d3726b2920

6

81721eb200ba06206dcbd4bce704fa654e
5955c91b4e769f3cb4a94768e98d5267

5

63f867aee8b437a5210c24c1974cffeabc
f81015f993c978a876ae017cb49e7eec

4

677115262448dc747e5cdac7227da9bd9c
18aeb7aa794b3b66629448d575c7cebf

3

585c7bb49a6b72349b05a2317ff46d1294
90905fa9563356d15f3760f3b8259985

2

22657470750fc7ff3fc0e8e8ca4dd02a9c
c5a9ad090ec7ff3fc1e8e8ca4cd02a9c

1

10e3634aece7225b6f26b174ed92b5588
0f3634aece7225b6f26b174ed92b5588

0

0

Number of Bits
that Differ

0123456789abcdeffedcba9876543210
0123456789abcdeffedcba9876543210

Round

2.1.4 AES Implementation

Q6. Explain about the applications of AES.

Ans :
Equivalent Inverse Cipher

That is, the sequence of transformations for decryption differs from that for encryption, although the
form of the keysschedules for encryption and decryption is the same. This has the disadvantage that two
separate softwareor firmware modules are needed for applications that require both encryption and
decryption. There is,however, an equivalent version of the decryption algorithm that has the same structure
as the encryptionalgorithm.

UNIT - II NETWORK SECURITY

51
Rahul Publications

Two separate changes are needed to bring the decryption structure in line with the encryption structure.

The standard decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey,

InvMixColumns. Thus, the first two stages of the decryption round need to be interchanged, and the

second two stages of the decryption round need to be interchanged.

Interchanging Invshiftrows and Invsubbytes : InvShiftRows affects the sequence of bytes in State

butdoes not alter byte contents and does not depend on byte contents to perform its transformation.

InvSubBytes affects the contents of bytes in State but does not alter byte sequence and does not depend

on byte sequence to perform its transformation. Thus, these two operations commute and can be

interchanged.For a given State Si,

InvShiftRows [InvSubBytes (Si)] = InvSubBytes [InvShiftRows (Si)]

Interchanging Addroundkey and Invmixcolumns : The transformations Add- RoundKey and

InvMixColumns do not alter the sequence of bytes in State. If we view the key as a sequence of words,

thenboth AddRoundKey and InvMixColumns operate on State one column at a time. These two operations

arelinear with respect to the column input. That is, for a given State Si and a given round key wj,

InvMixColumns (Si Í$ wj) = [InvMixColumns (Si)] Í$ [InvMixColumns (wj)]

To see this, suppose that the first column of State Si is the sequence is the sequence (y0, y1, y2,

y3) and the first column of the round key wj is (k0, k1, k2, k3). Then we need to show

0 0

1 1

2 2

3 3

y k0E 0B 0D 09
y k09 0E 0B 0D
y k0D 09 0E 0B
y k0B 0D 09 0E

  
     
   
  

   

=

0

1

2

3

y0E 0B 0D 09
y09 0E 0B 0D
y0D 09 0E 0B
y0B 0D 09 0E

  
  
  
  
  

   

 +

0

1

2

3

k0E 0B 0D 09
k09 0E 0B 0D
k0D 09 0E 0B
k0B 0D 09 0E

  
  
  
  
  

   

Let us demonstrate that for the first column entry. We need to show

               0 0 1 1 2 1 3 30E y k 0B y k 0D y k 09 y k                        

       0 1 2 30E y 0B y 0D y 09 y                      

       0 1 2 30E y 0B y 0D y 09 y                     

This equation is valid by inspection.Thus, we can interchange AddRoundKey and InvMixColumns,

provided that we first apply InvMixColumns to the round key. Note that we do not need to apply

InvMixColumns to theround key for the input to the first AddRoundKey transformation nor to the
lastAddRoundKey transformation.This is because these two AddRoundKey transformations are

notinterchanged with InvMixColumns to produce the equivalent decryption algorithm.

M.Sc II Year III Semester

52
Rahul Publications

Fig. : illustrates the equivalent decryption algorithm

8-Bit Processor

AES can be implemented very efficiently on an 8-bit processor. AddRoundKey is a bytewise XOR
operation. ShiftRows is a simple byte-shifting operation. SubBytes operates at the byte leveland only
requires a table of 256 bytes. The transformation MixColumns requires matrix multiplication in thefield
GF(28), which means that all operations are carried out on bytes.

The transformation MixColumns requires matrix multiplication in the field GF(28), which means that
alloperations are carried out on bytes. MixColumns only requires multiplication by {02} and {03}, which,
as wehave seen, involved simple shifts, conditional XORs, and XORs. This can be implemented in a
moreefficient way that eliminates the shifts and conditional XORs. Equation set (5.4) shows the equations
for the MixColumns transformation on a single column. Using the identity {03} x = ({02} x)  x, we
can rewrite Equation set [5.4] as follows :

UNIT - II NETWORK SECURITY

53
Rahul Publications

The multiplication by {02} involves a shift and a conditional XOR. Such an implementation may be
vulnerable to a timing attack of the sort described in Section 3.4. To counter this attack and to increase
processing efficiency at the cost of some storage, the multiplication can be replaced by a table lookup.
Define the 256-byte table X2, such that X2[i] = {02} • i. Then Equation set (5,9) can be rewritten as

32-BIT PROCESSOR . Fora 32-bit processor, a more efficient implementation can be
achieved if operations are defined on 32-bit words.To show this, we first define the four
transformations of a round in algebraic form. Suppose we begin with a State matrix consisting of elements
ai,j and a round-key matrix consisting of elements ki, j. Then the transformations can be expressed
as follows.

AddRoundKey

Mix Columns

Shift Rows

Sub Bytes

AddRoundKey

Mix Columns

Shift Rows

Sub Bytes
i. j i. jb S a   

0.j 0. j

1.j 1.j 1

2.j 2. j 2

3.j 3.j 3

c b

c b
c b

c b







   
   
      
   
      

0.j 0.j

1.j 1. j

2.j 2.j

3.j 3. j

d c02 03 01 01
d c01 02 03 01
d c01 01 02 03
d c03 01 01 02

    
    
        
    
       

0. j 0.j 0.j

1.j 1. j 1.j

2.j 2.j 2.j

3.j 3.j 3.j

e d k
e d k

e d k
e d k

     
     
      
     
     
          

M.Sc II Year III Semester

54
Rahul Publications

In the ShiftRows equation, the column indices are taken mod 4. We can combine all of these
expressions into a single equation :

0.j
0.j 0.j

1.j 11.j 1.j

2. j 2.j2.j 2

3.j 3.j
3. j 3

S ae k02 03 01 01
S ae k01 02 03 01

e k01 01 02 03 S a
e k03 01 01 02 S a







         
               
              
           

0.j 1. j 1 2. j 2

02 03 03
01 02 02

S a S a S a
01 01 01

03 01 01

 

          
          
                                   
                         

0.j

1. j
3.j 3

2.j

3. j

k01
k01

S a
k03
k02



    
    
             
           

In the second equation, we are expression the matrix multiplication as a linear combination of vectors.
Wedefine four 256-word (1024-byte) tables as follows

               0 1 2 3

02 03 01 01
01 02 03 01

T x S x T x S x T x S x T x S x
01 01 02 03
03 01 01 02

              
              
                               
                                   

               0 1 2 3

02 03 01 01
01 02 03 01

T x S x T x S x T x S x T x S x
01 01 02 03
03 01 01 02

              
              
                               
                                   

Thus, each table takes as input a byte value and produces a column vector (a 32-bit word)
that is a function of the S-box entry for that byte value. These tables can be calculated in advance.

We can define a round function operating on a column in the following fashion.

'
0.j 0.j
'
1.j 1.j

0 0.j 1 1.j 1 2 2.j 2 3 3.j 3'
2.j2.j

' 3.j
3.j

S k
S k

T S T S T S T S
kS
kS

  

                                        

As a result, an implementation based on the preceding equation requires only four table lookups and
fourXORs per column per round, plus 4 Kbytes to store the table. The developers of Rijndeal believe that
this compact, efficient implementation was probably one of the most important factors in the selction of
Rijndaelfor AES.

UNIT - II NETWORK SECURITY

55
Rahul Publications

2.2 PSEUDO RANDOM NUMBER GENERATION AND STREAM CIPHERS

2.2.1 Principles of PSEUDO Random Number Generation

Q7. Explain the principles of pseudo random number generation.

Ans :

1. The Use of Random Numbers

A number of network security algorithms and protocols based on cryptography make use of random
binary numbers. For example,

 Theuse of random numbers for the nonces frustrates an opponent’s efforts to deter- mine or guess
the nonce.

 Session key generation. We will see a number of protocols in this book where a secret key forsymmetric
encryption is generated for use for a short period of time. This key is generally called a session key.

 Generation of keys for the RSA public-key encryption algorithm

 Generation of a bit stream for symmetric stream .

These applications give rise to two distinct and not necessarily compatible requirements for a sequence
ofrandom numbers: randomness and unpredictability.

2. Randomness

Traditionally, the concern in the generation of a sequence of allegedly random numbers has been
that the sequence of numbers be random in some well- defined statistical sense. The following twocriteria
are used to validate that a sequence of numbers is random:

 Uniform distribution: The distribution of bits in the sequence should be uniform; that is, thefrequency
of occurrence of ones and zeros should be approximately equal.

 Independence: No one subsequence in the sequence can be inferred from the others.

3. Unpredictability

In applications such as reciprocal authentication, session key generation, and stream ciphers, the
requirement is not just that the sequence of numbers be statistically random but that the successive
members of the sequence are unpredictable. With “true” random sequences, each number isstatistically
independent of other numbers in the sequence and therefore unpredictable.

4. TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for random number
generation.These algorithms are deterministic and therefore produce sequences of numbers that are not
statisticallyrandom. However, if the algorithm is good, the resulting sequences will pass many reasonable
tests ofrandomness. Such numbers are referred to as pseudorandom numbers.

Figure contrasts a true random number generator (TRNG) with two forms of pseudorandom
numbergenerators.

M.Sc II Year III Semester

56
Rahul Publications

A TRNG takes as input a source that is effectively random; the source is often referred to as anentropy
source. The source, orcombination of sources, serve as input to an algorithm that produces random
binary output. The TRNG maysimply involve conversion of an analog source to a binary output. The
TRNG may involve additionalprocessing to overcome any bias in the source;

In contrast, a PRNG takes as input a fixed value, called the seed, and produces a sequence of output
bits using a deterministic algorithm. Typically, as shown, there is some feedback path by which some of the
results of the algorithm are fed back as input as additional output bits are produced. The important thing
to note is that the output bit stream isdetermined solely by the input value or values, so that an adver- sary
who knows the algorithm and the seedcan reproduce the entire bit stream.

Fig. : Random and Pseudorandom Number Generators

 Pseudorandom number generator: An algorithm that is used to produce an open-ended sequenceof
bits is referred to as a PRNG. A common application for an open-ended sequence of bits is as input
to asymmetric stream cipher,

 Pseudorandom function (PRF): A PRF is used to produced a pseudorandom string of bits of some
fixed length. Examples are symmetric encryption keys and nonces. Typically, the PRF takes as input a
seedplus some context specific values, such as a user ID or an application ID.

5. Seed Requirements

For cryptographic applications, the seed that serves as input to the PRNG must be secure. Because
the PRNG is a deterministic algorithm, if the adversary can deduce the seed, then the output can also be
determined. Therefore, the seed must be unpredictable. In fact, the seed itself must be arandom or
pseudorandom number.

UNIT - II NETWORK SECURITY

57
Rahul Publications

Typically, the seed is generated by a TRNG, as shown in Figure 7.2. if a TRNG is available, why it is
necessary to use a PRNG. If theapplication is a stream cipher, then a TRNG is not practical. The sender
would need to generate akeystream of bits as long as the plaintext and then transmit the keystream and
the ciphertext securely to the receiver. If a PRNG is used, the sender need only find a way to deliver the
stream cipher key, which istypically 54 or 128 bits, to the receiver in a secure fashion.

Even in the case of a PRF application, in which only a limited number of bits is generated, it is
generally desirable to use a TRNG to provide the seed to the PRF and use the PRF output rather then use
the TRNG directly.

Finally, the mechanism used to generate true random numbers may not be able to generate bits at a
rate sufficient to keep up with the application requiring the random bits.

Fig. : Generation of Seed Input to PRNG

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years, and a wide variety of
algorithms have been developed. These fall roughly into two categories.

 Purpose-built algorithms: These are algorithms designed specifically and solely for the purpose
ofgenerating pseudorandom bit streams. Some of these algorithms are used for a variety of PRNG
applications.

 Algorithms based on existing cryptographic algorithms: Cryptographic algorithms have the effect of
randomizing input. Indeed, this is a requirement of such algorithms. For example, if a symmetricblock
cipher produced ciphertext that had certain regular patterns in it, it would aid in the process
ofcryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs. Three broad categories
ofcryptographic algorithms are commonly used to create PRNGs:

M.Sc II Year III Semester

58
Rahul Publications

— Symmetric block ciphers

— Asymmetric ciphers

— Hash functions

Any of these approaches can yield a cryptographically strong PRNG. A purpose-built algorithm may
be provided by an operating system for general use. For applications that already use certain
cryptographicalgorithms for encryption or authentication, it makes sense to reuse the same code for the
PRNG. Thus, all of these approaches are in common use.

2.2.2 Pseudorandom Number Generators

Q8. Explain about various pseudo random generators.

Ans :

Linear Congruential Generators

A widely used technique for pseudorandom number, which is known as the linear congruential

method. The algorithm is parameterized with fournumbrs, as follows :

0 ≤ X0 < mThe starting value, or seedX0

0 ≤ c < mThe incrementc

0 < a < m

M > 0

The multiplier

The modulus

a

m

0 ≤ X0 < mThe starting value, or seedX0

0 ≤ c < mThe incrementc

0 < a < m

M > 0

The multiplier

The modulus

a

m

The sequence of random numbers {Xn} is obtained via the following iterative equation:

Xn + 1 = (aXn + c)mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence of integers with each
integer in the range 0 … Xn 6 m.

The selection of values for a, c, and m is critical in developing a good random number generator. For
example, consider a = c = 1. The sequence produced is obviously not satisfactory. Now consider
the values a = 7, c = 0, m = 32, and X0 = 1. This generates the sequence 57, 17, 23, 1, 7, etc.6,
which is also clearly unsatisfactory. Of the 32 possible values, only four are used; thus, the sequence is
said to have a period of 4. If, instead, we change the value of a to 5, then the sequence is 55, 25, 29, 17,
21, 9, 13, 1, 5, etc.6, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing a long series of distinct
random numbers. A common criterion is that m be nearly equal to the maximum representable
nonnegative integer for a given computer. Thus, a value of m near to or equal to 231 is typically chosen.

Three tests to be used in evaluating a random number generator:

T1: The function should be a full-period generating function. That is, the function should generate all the
numbers between 0 and m before repeating.

T2: The generated sequence should appear random.

UNIT - II NETWORK SECURITY

59
Rahul Publications

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With respect to T1, it can be
shownthat if m is prime and c = 0, then for certain values of a the period of the generating function is m
- 1, withonly the value 0 missing. For 32- bit arithmetic, a convenient prime value of m is 231 - 1. Thus,
the generatingfunction becomes

Xn + 1 = (aXn) mod (231 - 1)

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly
chosen, the resulting sequence of numbers will be statistically indistinguishable from a sequence drawn at
random from the set 1, 2, Á , m - 1. But there is nothing random at all about the algorithm, apart from
the choice of the initial value X0. Once that value is chosen, the remain- ing numbers in the sequence
follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are
known(e.g., a = 75, c = 0, m = 231 - 1), then once a single number is discovered, all subsequent
numbers are known. Even if the opponent knows only that a linear congruential algorithm is being used,
knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm.
Suppose that the opponent is able to determine values for X0, X1, X2, and X3. Then

X1 = (aX0 + c) mod m

X2 = (aX1 + c) mod m

X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom numbers is known as the Blum, Blum,
Shub (BBS) generator. It has perhaps the strongest public proof of its cryptographicstrength of any purpose-
built algorithm. The procedure is as follows. First, choose two large prime numbers, pand q, that both
have a remainder of 3 when divided by 4. That is,

p K q K 3(mod 4)

simply means that (p mod 4) = (q mod 4) = 3.

For example, the prime numbers 7 and 11 satisfy 7 K 11 K 3(mod 4).

Let n = p * q. Next, choose a random number s, such that s is relatively prime to n; this is equivalent to
saying that neither p nor q is a factor of s.

Then the BBS generator produces a sequence of bits Bi according to the following algorithm:

X0 = s2 mod n

for i = 1 to q

 Xi = (Xi - 1)2 mod n

Bi = Xi mod 2

Thus, the least significant bit is taken at each iteratin. Table 7.1, shows an example of BBS operation.
Here, n = 192649 = 383 * 503, and the seed s = 101355

M.Sc II Year III Semester

60
Rahul Publications

The BBS is referred to as a cryptographically secure pseudorandom bit generator (CSPRBG). A
pseudorandom bit generator is said to pass the next-bit test if there is not a polynomial-time
algorithm2that, on.

Input of the first k bits of an output sequence, can predict the [k + 1)st bit with probability significcant
grerater than 1/2. In other words, given the first k bits of the sequence, there is not a practical algorithm
that can even allow you to state that the next bit will be 1 [or 0] with probability greater than 1/2 Table 7.1
Example operation of BBS Generator

017704610

01868949

0694428

1456637

1806496

11740515

0899924

0970483

11776712

11431351

Bi

20749

Xi

0

I

017704610

01868949

0694428

1456637

1806496

11740515

0899924

0970483

11776712

11431351

Bi

20749

Xi

0

I

04806020

113717119

04587018

110606517

113301516

11486315

011438614

0863013

112317512

0

Bi

137922

Xi

11

I

04806020

113717119

04587018

110606517

113301516

11486315

011438614

0863013

112317512

0

Bi

137922

Xi

11

I

2.2.3 Pseudorandom Number Generation using a Block Cipher

Q9. Explain, how to generate a Pseudo Random number using a Block Cipher ?

Ans :

A popular approach to PRNG construction is to use a symmetric block cipher as the

heart of the PRNGmechanism. For any block of plaintext, a symmetric block cipher
produces an output block that is apparentlyrandom. That is, there are no patterns or regularities

in the ciphertext that provide information that can be used to deduce the plaintext. Thus, a symmetric

block cipher is a good candidate for building a pseudorandom number generator.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG: the CTRmode and the OFB mode.

Figure 7.3 illustrates the two methods. In each case, the seed consists of two parts: the encryption key

value and a value V that will be updated after each block of pseudorandom numbers is generated. Thus,

for AES-128, the seed consists of a 128-bit key and a 128-bit V value. In the CTR case, the value of V is
incremented by 1 after each encryption. In the case of OFB, the value of V is updated to equal the value

ofthe preceding PRNG block. In both cases, pseudorandom bits are produced one block at a time (e.g.,

forAES, PRNG bits are generated 128 bits at a time).

UNIT - II NETWORK SECURITY

61
Rahul Publications

Fig. : PRNG Mechanisms Based on Block Ciphers

The CTR algorithm for PRNG can be summarized as follows.

While (len (temp) < requested_number_of_bits) do

V = (V + 1) mod 2128.

output_block = E(Key, V) temp = temp || ouput_block

The OFB algorithm can be summarized as follows.

While (len (temp) < requested_number_of_bits) do

V = E(Key, V)

temp = temp || V

To get some idea of the performance of these two PRNGs, consider the fol- lowing short experiment.
Arandom bit sequence of 256 bits was obtained from random.org, which uses three radios tuned
betweenstations to pick up atmospheric noise. These 256 bits form the seed, allocated as

Key : cfb0ef3108d49cc4562d5810b0a9af60

 V : 4c89af496176b728ed1e2ea8ba27f5a4

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48, which is reassuringly
close to the ideal of 0.5.

For the OFB PRNG, Table 7.2 shows the first eight output blocks (1024 bits) with two rough measures
ofsecurity. The second column shows the fraction of one bits in each 128-bit block. This corresponds to
one ofthe NIST tests. The results indi- cate that the output is split roughly equally between zero and one
bits. The third column shows the fraction of bits that match between adjacent blocks. If this number
differssubstantially from 0.5, that suggests a correlation between blocks, which could be a security weakness.
Theresults suggest no correlation.

M.Sc II Year III Semester

62
Rahul Publications

Table : Example Results for PRNG Using OFB

0.450.55f7e97badf359d128f00d9b4ae323db64

0.480.576aeca972e5a3ef17bd1a1b775fc8b929

0.520.4914fdf5ec99469598ae0379472803accd

0.480.47fe7bae0e23019542962e2c52d215a2e3

0.440.50c8e545198a758ef5dd86b41946389bd5

0.540.47fd18284ac82251dfb3aa62c326cd46cc

0.520.515e17b22b14677a4d66890f87565eae64

-

Fraction of Bits that
Match with Proceeding

Block

0.57

Fraction of
One Bits

1786f4c7ff6e291dbdfdd90ec3453176

Output Block

0.450.55f7e97badf359d128f00d9b4ae323db64

0.480.576aeca972e5a3ef17bd1a1b775fc8b929

0.520.4914fdf5ec99469598ae0379472803accd

0.480.47fe7bae0e23019542962e2c52d215a2e3

0.440.50c8e545198a758ef5dd86b41946389bd5

0.540.47fd18284ac82251dfb3aa62c326cd46cc

0.520.515e17b22b14677a4d66890f87565eae64

-

Fraction of Bits that
Match with Proceeding

Block

0.57

Fraction of
One Bits

1786f4c7ff6e291dbdfdd90ec3453176

Output Block

s

0.450.471151fc48f90eabac658a3911515c3c66

0.480.51F4be2d179b0f2548fd748c8fc7c81990

0.470.500125856fdf4a17f747c7833695c52235

0.520.5390e63ed27bb07868c753545bdd57ee28

0.520.595f8fcfc5deca18ea246785d7fadc76f8

0.450.59d4e6e170b46b0573eedf88ee39bff33d

0.410.4160809669a3e092a01b463472fdcae420

-0.571786f4c7ff6e291dbdfdd90ec3453176

0.450.471151fc48f90eabac658a3911515c3c66

0.480.51F4be2d179b0f2548fd748c8fc7c81990

0.470.500125856fdf4a17f747c7833695c52235

0.520.5390e63ed27bb07868c753545bdd57ee28

0.520.595f8fcfc5deca18ea246785d7fadc76f8

0.450.59d4e6e170b46b0573eedf88ee39bff33d

0.410.4160809669a3e092a01b463472fdcae420

-0.571786f4c7ff6e291dbdfdd90ec3453176

Table : shows the results using the same key and V values for CTR mode.

2.2.4 Stream Ciphers

Q9. What are stream ciphers ? Explain about it.

Ans :

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be

designed tooperate on one bit at a time or on units larger than a byte at a time. Figure 7.5 is a

representative diagram of stream cipher structure. In this structure, a key is input to a pseudorandom bit

generator that produces a stream of 8-bit numbers that are apparently random. The output of the

generator, called a keystream, is combined one byte at a time with the plaintext stream using the bit-

wise exclusive-OR (XOR) operation. For example, if the next byte generated by the generator is

01101100 and the next plaintext byte is 11001100, then the resulting ciphertext byte is

UNIT - II NETWORK SECURITY

63
Rahul Publications

Figure : Stream Cipher Diagram

Descryption requires the use of the same pseudorandom sequence.

The stream cipher is similar to the one-time pad . The difference is that a one-timepad uses a genuine

random number stream, whereas a stream cipher uses a pseudorandom number stream.

lists the following important design considerations for a stream cipher.

1. The encryption sequence should have a large period. A pseudorandom number generator uses a

functionthat produces a deterministic stream of bits that eventually repeats. The longer the period of

repeat the moredifficult it will be to do cryptanalysis.

2. The keystream should approximate the properties of a true random number stream as close as

possible. Forexample, there should be an approximately equal number of 1s and 0s. If the keystream

is treated as a stream ofbytes, then all of the 256 possible byte values should appear approximately

equally often. The more random-appearing the keystream is, the more randomized the ciphertext is,

making cryptanalysis more difficult.

M.Sc II Year III Semester

64
Rahul Publications

3. Note from Figure 7.5 that the output of the
pseudorandom number generator is
conditioned on the valueof the input key. To
guard against brute-force attacks, the key needs
to be sufficiently long. The same considerations
that apply to block ciphers are valid here. Thus,
with current technology, a key length of atleast
128 bits is desirable.

45VariableRC4

0.9VariableRC2

31683DES

9

Speed (Mbps)

56

Key Length

DES

Cipher

45VariableRC4

0.9VariableRC2

31683DES

9

Speed (Mbps)

56

Key Length

DES

Cipher

With a properly designed pseudorandom
number generator, a stream cipher can be as secure
as a blockcipher of comparable key length. A
potential advantage of a stream cipher is that stream
ciphers that do notuse block ciphers as a building
block are typically faster and use far less code than
do block ciphers.

One advantage of a block cipher is that you
can reuse keys. In contrast, if two plaintexts are
encrypted with the same key using a stream cipher,
then cryptanalysis is often quite simple. If the two
ciphertext streams areXORed together, the result is
the XOR of the original plaintexts. If the plaintexts
are text strings, credit card numbers, or other byte
streams with known properties, then cryptanalysis
may be successful.

2.2.5 RC4

Q10. Explain about RC4 stream Cipher.

Ans :
RC4 is a stream cipher designed for RSA

Security. It is a variable key size streamcipher with
byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysisshows
that the period of the cipher is overwhelmingly likely
to be greater than 10100 . Eight tosixteen machine
operations are required per output byte, and the
cipher can be expected to run very quickly in
software.

RC4 is used in the Secure Sockets Layer/
Transport Layer Security (SSL/TLS) standards that
have been defined for communication between
Web browsers and servers. It is also used in the
WiredEquivalent Privacy (WEP) protocol and the
newer WiFi Protected Access (WPA) protocol that
are part ofthe IEEE wireless LAN standard.

The RC4 algorithm is remarkably simple and
quite easy to explain. A variable-length key of from
1 to 256bytes (8 to 2048 bits) is used to initialize a
256-byte state vector S, with elements S[0], S[1],
Á , S[255].

Initialization of S

To begin, the entries of S are set equal to the
values from 0 through 255 in ascending order; that
is, S[0] = 0, S[1]= 1, Á , S[255] = 255 . A
temporary vector, T, is also created. If the length of
the key K is 256 bytes, then T istransferred to T.
Otherwise, for a key of length keylen bytes, the first
keylen elements of T are copied from K, and then
K is repeated as many times as necessary to fill out
T. These preliminary operations can besummarized
as

//* Initialization */ for i = 0 to 255 do S[i]
= i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation
of S. This involves starting with S[0] and going
through to S[255], and for each S[i], swapping S[i]
with another byte in S according to a scheme
dictated by T[i]:

/* Initial Permutation of S */ j = 0;

for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);

Because the only operation on S is a swap, the
only effect is a permutation.

S still contains all the numbers from 0 through
255.

Stream Generation

Once the S vector is initialized, the input key is
no longer used. Stream generation involves cycling

UNIT - II NETWORK SECURITY

65
Rahul Publications

through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S according to a
scheme dictated by the current configuration of S. After S[255] is reached, the process continues, starting
over again at S[0] :

/* Stream Generation */ i, j = 0;

while (true)

i = (i + 1) mod 256;

j = (j + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256; k = S[t];

To encrypt, XOR the value k with the next byte of plain text. to decrypt, XOR the value k with the
next byte of ciphertext.

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 (e.g.,
[KNUD98],[MIST98], [FLUH00], [MANT01]). None of these approaches is practical against RC4 with a
reasonable keylength, such as 128 bits.

Figure : RC4

This problem points out the difficulty in designing a secure system that involves both cryptographic
functions and protocols that make use of them.

M.Sc II Year III Semester

66
Rahul Publications

2.3 PUBLIC KEY CRYPTOGRAPHY AND RSA

2.3.1 Principles of Public Key Cryptosystems

Q11. Explain various principles of public key cryptosystems.

Ans :
The concept of public key cryptography evolved from an attempt to attack two of themost difficult

problems associated with symmetric encryption.

Key distribution under symmetric key encryption requires either (1) that two communicants already
share a key, which someone has been distributed to them or (2) the use of a key distribution center.

 Digital signatures.

1. Public key cryptosystems

Public key algorithms rely on one key for encryption and a different but related key for decryption.

These algorithms have the following important characteristics:

 It is computationally infeasible to determine the decryption key given only the knowledge of the
cryptographic algorithm and the encryption key.

In addition, some algorithms, such as RSA, also exhibit the following characteristic:

 Either of the two related keys can be used for encryption, with the other used for decryption.

The essential steps are the following:

 Each user generates a pair of keys to be used for encryption and decryption of messages.

 Each user places one of the two keys in a public register or other accessible file. This is the public key.
The companion key is kept private.

 If A wishes to send a confidential message to B, A encrypts the message using B s public key.

 When B receives the message, it decrypts using its private key. No other recipient can decrypt the
message because only B knows B s private key.

With this approach, all participants have access to public keys and private keys are generated locally
by each participant and therefore, need not be distributed. As long as a system controls its private key, its
incoming communication is secure.

Let the plaintext be X=[X1, X2, X3, …,Xm] where m is the number of letters in some finite alphabets.
Suppose A wishes to send a message to B. B generates a pair of keys: a public key KUb and a private key
KRb. KRb is known only to B, whereas KUb is publicly available and therefore accessible by A.

With the message X and encryption key KUb as input, A forms the cipher text

 Y=[Y1, Y2, Y3, … Yn]., i.e., Y=E KUb(X)

The receiver can decrypt it using the private key KRb. i.e., X=D KRb(). The encrypted message serves
as adigital signature.

It is important to emphasize that the encryption process just described does not provide confidentiality.
There is no protection of confidentiality because any observer can decrypt the message by using the
sender s public key.

UNIT - II NETWORK SECURITY

67
Rahul Publications

It is however, possible to provide both the authentication and confidentiality by a double use of the
public scheme.

Source A Destination B

XMessage
Source

Encryption
Algorithm

Encryption
Algorithm

Decryption
Algorithm

Decryption
Algorithm

Message
Dest.

Y Z Y X

KUb

KUa

KRb

KRa

Key Pair
Source

Key Pair
Source

Fig. : Public Key Cryptosystem

Chipertext Z = EKUb [EKRa (X)]

 Plaintext X = EKUa [EKRb (Y)]

Initially, the message is encrypted using the sender s private key. This provides the digital signature.
Next, we encrypt again, using the receiver s public key. The final ciphertext can be decrypted only by the
intended receiver, who alone has the matching private key. Thus confidentiality is provided.

2. Requirements for public key cryptography

 It is computationally easy for a party B to generate a pair [KUb, KRb].

 It is computationally easy for a sender A, knowing the public key and the message to be encrypted
M, to generate the corresponding ciphertext: C=EKUb(M).

 It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private
key to recover the original message: M = DKRb (C) = DKRb [EKUb (M)]

 It is computationally infeasible for an opponent, knowing the public key KUb, to determine the
private key KRb.

 It is computationally infeasible for an opponent, knowing the public key KUb, and a ciphertext C,
to recover the original message M.

 The encryption and decryption functions can be applied in either order: ? M = EKUb [DKRb (M)
= DKUb[EKRb (M)]

Public key cryptanalysis

Public key encryption scheme is vulnerable to a brute force attack. The counter measure is to use
large keys.

M.Sc II Year III Semester

68
Rahul Publications

2.3.2 RSA Algorithm

Q12. Explain briefly RSA Algorithm.

Ans :
It was developed by Rivest, Shamir and Adleman. This algorithm makes use of an expression with

exponentials. Plaintext is encrypted in blocks, with each block having a binary value less than some
number n. That is, the block size must be less than or equal to log2 (n); in practice, the block size is k-bits,
where 2k< n < 2k+1

. Encryption and decryption are of the following form, for some plaintext block M
and ciphertext block C:

C = Me mod n

= Cd mod n = (Me mod n) mod n

(Me) d mod n= Med mod n

Both the sender and receiver know the value of n. the sender knows the value of e and only the
receiver knows the value of d. thus, this is a public key encryption algorithm with a public key of KU = {e,
n} and a private key of KR = {d, n}. For this algorithm to be satisfactory for public key encryption, the
following requirements must be met:

 It is possible to find values of e, d, n such that Med = M mod n for all M<n.

 It is relatively easy to calculate Me and Cd for all values of M<n.

 It is infeasible to determine d given e and n.

Let us focus on the first requirement. We need to find the relationship of the form:

Med = M mod n

A corollary to Euler s theorem fits t0068e bill: Given two prime numbers p and q and two integers, n
and m, such that n=pq and 0<m<n, and arbitrary integer k, the following relationship holds

mk (n) + 1 = mk(p-1) (q-1) + 1 = m mod n

 where  (n) – Euler totient function, which is the number of positive integers less than n and relatively
prime to n. we can achieve the desired relationship, if ed=k (n)+1

 This is equivalent to saying:

 ed a  1 mod  (n) d = e-1 mod  (n)

 That is, e and d are multiplicative inverses mod Ô(n). According to the rule of modular arithmetic, this is
true only if d (and therefore e) is relatively prime to Ô(n). Equivalently,

 gcd( (n), d) = 1.

 The steps involved in RSA algorithm for generating the key are

 Select two prime numbers, p = 17 and q = 11.

 Calculate n = p*q = 17*11 = 187

 Calculate Ô(n) = (p-1)(q-1) = 16*10 = 160.

 Select e such that e is relatively prime to Ô(n) = 160 and less than Ô(n); we choose e = 7

 Determine d such that ed a” 1 mod Ô(n) and d<160. the correct value is d = 23, because

23*7 = 161 = 1 mod 160

UNIT - II NETWORK SECURITY

69
Rahul Publications

1. Key Generation

2. Security of RSA

There are three approaches to attack the RSA:

• brute force key search (infeasible given size of numbers)

• mathematical attacks (based on difficulty of computing (N), by factoring modulus

• timing attacks (on running time of decryption)

Factoring Problem

Mathematical approach takes 3 forms:

 Factor n = p*q, hence find (n) and then d.

 Determine (n)directly without determining p and q and find d.

 Find d directly, without first determination (n).

M.Sc II Year III Semester

70
Rahul Publications

3. Timing attacks

It has been proved that the opponent can determine a private key by keeping track of how long a
computer takes to decipher messages. Although the timing attack is a serious threat, there are simple
countermeasures that can be used:

 Constant exponentiation time – ensures that all exponentiations take the same amount of time before
returning a result.

 Random delay – better performance could be achieved by adding a random delay to the exponentiation
algorithm to confuse the timing attack.

 Blinding – multiply the ciphertext by a random number before performing exponentiation.

2.4 KEY MANAGEMENT AND DISTRIBUTION

2.4.1 Symmetric Key Distribution Using Asymmetric Encryption

Q13. Explain about Symmetric Key distribution using Asymmetric Encryption.

Ans :
Because of the inefficiency of public key cryptosystems, they are almost never used for the direct

encryption of sizable block of data, but are limited to relatively small blocks. One of the most important
uses of a public-key cryptosystem is to encrypt secret keys for distribution.

Simple Secret Key Distribution

If A wishes to communicate with B, the following procedure is employed :

1. A generates a public/private key pair {PUa, PRa} and transmits a message to B

2. B generates a secret key, Ks, and transmits it to A, which is encrypted with A’s public key.

3. A computes D (PRa, E(PUa, Ks)) to recover the secret key. Because only A can decrypt the message,
only A and B will know the identity of Ks.

4. A discards PUa and PRa and B discards PUa.

A and B can now securely communicate using conventional encryption and the session key Ks. At
the completion of the exchange, both A and B discard Ks.

Despite its simplicity, this is an attractive protocol. No keys exist before the start of the communication
and none exist after the completion of communication. Thus, the risk of compromise of the keys is
minimal. At the same time, the communication is secure from eaves dropping.

The protocol depicted in Figure is insecure against an adversary who can intercept messages and then
either relay the intercepted message or substitute another message . Such an attack is knownas a man-in-
the-middle attack. In this case, if an adversary, E, has control of the intervening communication channel,
then E can compromise the communication in the following fashion without beingdetected.

UNIT - II NETWORK SECURITY

71
Rahul Publications

1. A generates a public/private key pair {PUa, PRa} and transmits a message intended for Bconsisting of
PUa and an identifier of A, IDA.

2. E intercepts the message, creates its own public/private key pair {PUe, PRe} and transmits PUe ||IDA
to B.

3. B generates a secret key, Ks, and transmits E(PUe, Ks) .

4. E intercepts the message and learns Ks by computing D(PRe, E(PUe, Ks)).

5. E transmits E(PUa, Ks) to A.

The result is that both A and B know Ks and are unaware that Ks has also been revealed to E. A and
B can now exchange messages using Ks. E no longer actively interferes with the communications channel
butsimply eavesdrops. Knowing Ks, E can decrypt all messages, and both A and B are unaware of
theproblem. Thus, this simple protocol is only useful in an environment where the only threat is
eavesdropping.

Secret Key Distribution with Confidentiality and Authentication

Figure 14.8, provides protection against both active and passive attacks. We begin at a point when it
is assumed that

A and B have exchanged public keys by one of the schemes described subsequently in this chapter.
then the following steps occurs.

1. A uses B’s public key to encrypt a message to B containing an identifier of A(IDA) and a nonce (N1),
which is used to identify this transaction uniquely.

B sends a message to A encrypted with PUa and containing A’s nonce (N1) as ell as a new nonce
generated by B (N2). Because only B could have (N2). Because only B could have decrypted
message (1), the presence of N1 in message (2) assures A that the correspondent is B.

2. A returns N2, encrypted using B’s public key, to assure B that its correspondent is A.

A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message with B’s
publickey ensures that only B can read it; encryptionwith A’s private key ensures that only A could
have sent it.

3. B computes D(PUa, D(PRb, M)) to recover the secret key.

4. The result is that this scheme ensures both confidentiality and authentication in the exchange of a
secret key.

M.Sc II Year III Semester

72
Rahul Publications

2.4.2 Distribution of Public Keys

Q14. Explain about several techniques for distribution of public keys.

Ans :
Several techniques have been proposed for the distribution of public keys. Virtually all these

proposals can begrouped into the following general schemes :

• Public announcement

• Publicly available directory

• Public-key authority

• Public-key certificates

Public Announcement of Public Keys

The point of public-key encryption is that the public key is public. Thus, if there is somebroadly
accepted public-key algorithm, such as RSA, any participant can send his or her public key to anyother
participant or broadcast the key to the community at large

Although this approach is convenient, it has a major weakness. Anyone can forger such a public
announcement. That is, some user could pretend to be user A and send a public key to another participant
or broadcast such a public key. Until such time as user A discovers the forgery and alerts other participants,
theforger is able to read all encrypted messages intended for A and can use the forged keys for
authentication.

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available dynamic directory of
public keys. Maintenance and distribution of the public directory would have to be the responsibility of
some trusted entity or organization (Figure 14.10). Such a scheme would include the following elements:

1. The authority maintains a directory with a {name, public key} entry for each participant.

2. Each participant registers a public key with the directory authority. Registration would have to be in
person or by some form of secure authenti- cated communication.

3. A participant may replace the existing key with a new one at any time, either because of the desire to
replace a public key that has already been used for a large amount of data, or because the
corresponding private key has been compromised in some way.

4. Participants could also access the directory electronically. For this purpose, secure, authenticated
communication from the authority to the participant is mandatory.

UNIT - II NETWORK SECURITY

73
Rahul Publications

This scheme is clearly more secure than individual public announcements but still has vulnerabilities.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter control over
thedistribution of public keys from the directory. As before, the scenario assumes that a central authority
maintains a dynamic directory of public keys of all participants. In addition, each participant reliably
knows a public key for the authority, with only the authority knowing the corresponding private key. The
following steps occur.

1. A sends a timestamped message to the public-key authority containing a request for thecurrent public
key of B.

2. The authority responds with a message that is encrypted using the authority’s private key,PRauth.Thus,A
is able to decrypt the message using the authority’s public key.Therefore,A is assured that themessage
originated with the authority.The message includes the following :

 B’s public key, PUb, which A can use to encrypt messages destined for B.

 The original request used to enable A to match this response with the corresponding earlier request
and to verify that the original request was not altered before reception by the authority.

M.Sc II Year III Semester

74
Rahul Publications

The original timestamp given so A can determine that this is not an old mes- sage from the
authoritycontaining a key other than B’s current public key

3. A stores B’s public key and also uses it to encrypt a message to B containing an identifier of A(IDA)
and a nonce (N1), which is used to identify this transaction uniquely.

4, 5. B retrieves A’s public key from the authority in the same manner as A retrieved B’s public key.

At this point, public keys have been securely delivered to A and B, and they may begin their protected
exchange. However, two additional steps are desirable:

6. B sends a message to A encrypted with PUa and containing A’s nonce (N1) as well as a new nonce
generated by B (N2). Because only B could have decrypted message (3), the presence of N1 in
message (6) assures A that the correspondent is B.

6. A returns N2, which is encrypted using B’s public key, to assure B that its cor- respondent is A.

Thus, a total of seven messages are required. However, the initial four messages need be used only
infrequently because both A and B can save the other’s public key for future use a technique known
ascaching. Periodically, a user should request fresh copies of the public keys of its correspondents to
ensurecurrency.

Public-Key Certificates

The public-key authority could be somewhat of a bottleneck in the system, for a user must appeal to
the authority for a public key for every other user that it wishes to contact. As before, the directory of
names and public keys maintained by the authority is vulnerable to tampering.

An alternative approach,, is to use certificates that can be used by participants to exchange keys
without contacting a public-key authority, in a way that is as reliable as if the keys were obtained directly
from a public-key authority. In essence, a certificate consists of a public key, an identifier of the key owner,
and the whole block signed by a trusted third party. Typically, the third party is a certificate authority, such
as a government agency or a financial institution, that is trusted by the user community. A user can
present his or her public key to the authority in a secure manner and obtain a certificate. The user can
then publish the certificate. Anyone needing this user’s public key can obtain the certificate and verify that
it is valid by way of the attached trusted signature. A participant can also convey its key information to
another by transmitting its certificate. Other participants can verify that thecertificate was created by the
authority. We can place the following requirements on this scheme:

1. Any participant can read a certificate to determine the name and public key of the certificate’sowner.

2. Any participant can verify that the certificate originated from the certificate authority and is
notcounterfeit.

3. Only the certificate authority can create and update certificates.

4. Any participant can verify the currency of the certificate.

A certificate scheme is illustrated in Figure 14.12. Each participant applies to the certificate
authority,supplying a public key and requesting a certificate.

UNIT - II NETWORK SECURITY

75
Rahul Publications

Application must be in person or by some form of secure authenticated communi- cation. For participant
A, the authority provides a certificate of the form

CA = E(PRauth, [T || IDA || PUa])

where PRauth is the private key used by the authority and T is a timestamp. A may
then pass this certificateon to any other participant, who reads and verifies the cer-
tificate as follows:

D(PUauth, CA)= D(PUauth, E(PRauth, [T || IDA || PUa])) = (T || IDA || PUa)

The recipient uses the authority’s public key, PUauth, to decrypt the certificate. Because the certificate
is readable only using the authority’s public key, this verifies that the certificate came from the certificate
authority. The elements IDA and PUa provide the recipient with the name and public key of the
certificate’s holder. The timestamp T validates the currency of the certificate. The time stamp
counters the following scenario. A’s private key is learned by an adversary. A generates a new private/
public key pair and applies to the certificate authority for a new certificate. Meanwhile, the adversary
replays the old certificate to B. If B then encrypts messages using the the compromised old public key, the
adversary can read those messages.

2.4.3 X.509 Certificates

Q15. Write about x.509 certificates.

Ans :
ITU - t recommendation X.509 is part of the X.500 series of recommendations that define a directory

service.

X.509 defines a framework for the provision of authentication services by theX.500 directory to its
users. The directory may serve as a repository of public-key certificates of the type. Each certificate contains
the public key of a user and is signed with the private keyof a trusted certification authority. In addition,
X.509 defines alternative authentication protocols based on the use of public-key certificates.

X.509 is an important standard because the certificate structure and authentication protocols defined
inX.509 are used in a variety of contexts.

M.Sc II Year III Semester

76
Rahul Publications

X.509 is based on the use of public-key cryptography and digital signatures. The standard does not
dictate the useof a specific algorithm but recommends RSA.The dig- ital signature scheme is assumed to
require the use of ahash function. Again, the stan- dard does not dictate a specific hash algorithm.

Certificates
The heart of the X.509 scheme is the public-key certificate associated with each user. These user

certificates are assumed to be created by some trusted certification authority (CA) and placed in the
directory by the CA or by the user. The directory server itself is not responsible for the creation of public
keys or for the certification function; it merely provides an easily accessible location for users to obtain
certificates. Figure 14.14a shows the general format of a certificate, which includes the following elements.

UNIT - II NETWORK SECURITY

77
Rahul Publications

 Version

Differentiates among successive versions of the
certificate format; the default is version 1. If
theissuer unique identifier or subject unique
identifier are present, the value must be version
2. If one or moreextensions are present, the
version must be version 3.

 Serial Number

An integer value unique within the issuing CA
that is unambiguously associated withthis
certificate.

 Signature Algorithm Identifier

The algorithm used to sign the certificate
together with anyassociated parameters.
Because this information is repeated in the
signature field at the end of thecertificate, this
field has little, if any, utility.

 Issuer Name

X.500 is the name of the CA that created and
signed this certificate.

 Period of Validity

Consists of two dates: the first and last on which
the certificate is valid.

 Subject Name

The name of the user to whom this certificate
refers. That is, this certificate certifies thepublic
key of the subject who holds the corresponding
private key.

 Subject’s Public-Key Information

The public key of the subject, plus an identifier
of the algorithm forwhich this key is to be used,
together with any associated parameters.

 Issuer Unique Identifier

An optional-bit string field used to identify
uniquely the issuing CA in theevent the X.500
name has been reused for different entities.

 Subject Unique Identifier

An optional-bit string field used to identify
uniquely the subject in theevent the X.500
name has been reused for different entities.

 Extensions

A set of one or more extension fields. Extensions
were added in version 3 .

 Signature

Covers all of the other fields of the certificate; it
contains the hash code of the other
fieldsencrypted with the CA’s private key. This
field includes the signature algorithm identifier.

The unique identifier fields were added in
version 2 to handle the possible reuse of subject
and/or issuer names over time. These fields are rarely
used.

The standard uses the following notation to
define a certificate:

CA << A >> = CA {V, SN, AI, CA, UCA, A, UA,
Ap, TA}

where

Y<< X>> = the certificate of user X issued by
certification authority Y

Y {I} = the signing of I by Y. It consists of I with an
encrypted hash code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the
certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

TA = period of validity of the certificate

The CA signs the certificate with its private key.
If the corresponding public key is known to a user,
then thatuser can verify that a certificate signed by
the CA is valid. This is the typical digital signature
approachillustrated in Figure 13.2.

M.Sc II Year III Semester

78
Rahul Publications

2.4.4 The Diffie-Hellman Algorithm

Q16. Write about Diffie-Helman Algorithm

Ans :
This algorithm uses arithmetic modulus as the

basis of its calculation. Suppose Alice and Bob follow
this key exchange procedure with Eve acting as a
man in middle interceptor .

Here are the calculation steps followed in this
algorithm that make sure that eve never gets to
know the final keys through which actual encryption
of data takes place.

 First, both Alice and Bob agree upon a prime
number and another number that has no factor
in common. Lets call the prime number
as p and the other number as g. Note
that g is also known as the generator and p is
known as prime modulus.

 Now, since eve is sitting in between and listening
to this communication so eve also gets to
know p and g.

 Now, the modulus arithmetic says that r =
(g to the power x) mod p. So r will always
produce an integer between 0 and p.

 The first trick here is that given x (with g and p
known), its very easy to find r. But given r (with
g and p known) its difficult to deduce x.

 One may argue that this is not that difficult to
crack but what if the value of pis a very huge
prime number? Well, if this is the case then
deducing x (if r is given) becomes almost
next to impossible as it would take thousands
of years to crack this even with super
computers.

 This is also called the discrete logarithmic
problem.

 Coming back to the communication, all the
three Bob, Alice and eve now know g and p.

 Now, Alice selects a random private number
xa and calculates (g to the power xa) mod p
= ra . This resultant ra is sent on the

communication channel to Bob. Intercepting
in between, eve also comes to know ra.

 Similarly Bob selects his own random private
number xb, calculates (g to the power xb)
mod p = rb and sends this rb to Alice
through the same communication channel.
Obviously eve also comes to know about rb.

 So eve now has information about g, p, ra
and rb.

 Now comes the heart of this algorithm. Alice
calculates (rb to the power xa) mod p = Final
key which is equivalent to (g to the power
(xa*xb)) mod p .

 Similarly Bob calculates (ra to the power xb)
mod p = Final key which is again equivalent
to (g to the power(xb * xa)) mod p.

 So both Alice and Bob were able to calculate a
common Final key without sharing each
others private random number and eve sitting
in between will not be able to determine
the Final key as the private numbers were
never transferred.

Diffie-Hellman algorithm works perfectly to
generate cryptographic keys which are used to
encrypt the data being communicated over a public
channel.

UNIT - III NETWORK SECURITY

79
Rahul Publications

UNIT
III

Cryptographic Hash Functions: Applications of Cryptographic Hash Functions, Two
Simple Hash Functions, Secure Hash Algorithm (SHA) & MD5 Algorithm.Message
Authentication Codes: Message Authentication Requirements, Message Authentication
Functions, Requirements for Message Authentication Codes,Security of MACs,MACs
Based on Hash Functions:HMAC,MACs Based on Block Ciphers:DAA and
CMAC.Digital Signatures: Digital Signatures, NIST Digital Signatures Algorithm.

3.1 CRYPTOGRAPHIC HASH FUNCTIONS

3.1.1 Applications of Cryptographic Hash Functions

Q1. Write the applications of cryptographic has functions.

Ans :

Perhaps the most versatile cryptographic algorithm is the cryptographic hash function. It is used in
a wide variety of security applications and Internet protocols.

1. Message Authentication

Message authentication is a mechanism or service used to verify the integrity of a message. Message
authentication assures that data received are exactly as sent. In many cases, there is a requirement that the
authentication mechanism assures that purported identity of the sender is valid. When a hash function is
used to provide message authentication, the hash function value is often referred to as a message digest.

Figure 1 illustrates a variety of ways in which a hash code can be used to provide message
authentication, as follows.

M.Sc II Year III Semester

80
Rahul Publications

Figure 1 : Simplified Examples of the Use of a Hash Function for Message Authentication

a) The message plus concatenated hash code is encrypted using symmetric encryption. Because only
A and B share the secret key, the message must have come from A and has not been altered. The
hash code provides the structure or redundancy required to achieve authentication. Because
encryption is applied to the entire message plus hash code, confidentiality is also provided.

b) Only the hash code is encrypted, using symmetric encryption. This reduces the processing burden
for those applications that do not require confidentiality.

It is possible to use a hash function but no encryption for message authentication. The technique
assumes that the two communicating parties share a common secret value S.A computes the hash
value over the concatenation of M and S and appends the resulting hash value to M. Because B
possesses S, it can recomputed the hash value to verify. Because the secret value itself is not sent, an
opponent cannot modify an intercepted message and cannot generate a false message.

c) Confidentiality can be added to the approach of method (c) by encrypting the entire message plus
the hash code.

When confidentiality is not required, method (b) has an advantage over methods. (a) and (d),
which encrypts the entire message, in that less computation is required.

 Encryption software is relatively slow. Even though the amount of data to be encrypted per
message is small, there may be a steady stream of messages into and out of a system.

 Encryption hardware costs are not negligible. Low-cost chip implementations of DES are
available, but the cost adds up if all nodes in a network must have this capability.

 Encryption hardware is optimized toward large data sizes. For small blocks of data, a high
proportion of the time is spent in initialization/invocation overhead.

 Encryption algorithms may be covered by patents, and there is a cost associated with licensing
their use.

More commonly, message authentication is achieved using a message authentication code (MAC),
also known as a keyed hash function.

Typically, MACs are used between two parties that share a secret key to authenticate information
exchanged between those parties.

UNIT - III NETWORK SECURITY

81
Rahul Publications

2. Digital Signatures

Another important application, which is similar to the message authentication application, is the
digital signature. The operation of the digital signature is similar to that of the MAC. In the case of the
digital signature, the hash value of a message is encrypted with a user’s private key. Anyone who knows
the user’s public key can verify the integrity of the message that is associated with the digital signature.

Figure 2 illustrates, in a simplified fashion, how a hash code is used to provide a digital signature.

a) The hash code is encrypted, using public-key encryption with the sender’s private key.

b) f confidentiality as well as a digital signature is desired, then the message plus the private-key-
encrypted hash code can be encrypted using a symmetric secret key. This is a common technique.

Figure 2 : Simplied Examples of Digital Signature

3. Other Applications

Hash functions are commonly used to create a one-way password file. Thus, the actual password is
not retrievable by a hacker who gains access to the password file. In simple terms, when a user enters a
password, the hash of that password is compared to the stored hash value for verification. This approach
to password protection is used by most operating systems.

Hash functions can be used for intrusion detection and virus detection. Store H(F) for each file on
a system and secure the hash values. One can later determine if a file has been modified by re-computing
H(F). An intruder would need to change F without changing H(F).

3.2 TWO SIMPLE HASH FUNCTIONS

Q2. Write about two simple hash functions.

Ans :
To get some feel for the security considerations involved in cryptographic hash functions, we present

two simple, insecure hash functions in this section. All hash functions operate using the following general
principles. The input (message, file, etc.) is viewed as a sequence of n-bit blocks. The input is processed
one block at a time in an iterative fashion to produce an n-bit hash function.

M.Sc II Year III Semester

82
Rahul Publications

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be
expressed as

Ci = bi1 bi2 bim

Where,

Ci = ith bit of the hash code, 1  i  n

m = number of n-bit block in the input

bij = ith bit in jth block

= XOR operation

This operation produces a simple parity for each bit position and is known as a longitudinal
redundancy check. It is reasonably effective for random data as a data integrity check. Each n-bit hash
value is equally likely. Thus, the probability that a data error will result in an unchanged hash value is
2-n. With more predictably formatted data, the function is less effective.

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value
after each block is processed. The procedure can be summarized as follows.

1. Initially set the n-bit hash value to zero.

2. Process each successive n-bit block of data as follows:

a) Rotate the current hash value to the left by one bit.

b) XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming any regularities
that appear in the input. Figure 3 illustrates these two types of hash functions for 16-bit hash values.

Although the second procedure provides a good measure of data integrity, it is virtually useless for
data security when an encrypted hash code is used with a plain text message.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is encrypted,
you may still feel that such a simple function could be useful when the message together with the hash
code is encrypted. We can define the scheme as follows: Given a message M consisting of a sequence of
64-bit blocks X1, X2, Á , XN, define the hash code h = H(M) as the block-by-block XOR of all blocks and
append the hash code as the final block:

h = XN + 1 = X1X2ÁXN

Next, encrypt the entire message plus hash code using CBC mode to produce the encrypted message
Y1, Y2, ..., YN+1.

 X1 = IV D(K, Y1)

 Xi = Yi – 1D(K, Yi)

 XN+1= YN D(K, YN+1)

UNIT - III NETWORK SECURITY

83
Rahul Publications

Figure 3 : Two Simple Hash Function

But, XN + 1 = is the hash code:

XN + 1 = X1  X2  ...  XN

= IV D(K, Y1)]  [Y1D(K, Y2)]  [YN – 1 D(K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the cip her text blocks were permuted.

3.3 SECURE HASH ALGORITHM (SHA)

Q4. What is secure hash algorithm? Explain.

Ans :
The most widely used hash function has been the Secure Hash Algorithm (SHA). When weaknesses

were discovered in SHA, now known as SHA-0, a revised version was issued as FIPS 180-1 in 1995 and
is referred to as SHA-1. The actual standards document is entitled “Secure Hash Standard.” SHA is based
on the hash function MD4, and its design closely models MD4. SHA-1 is also specified in RFC 3174,
which essentially duplicates the material in FIPS 180-1 but adds a C code implementation.

SHA-1 produces a hash value of 160 bits that defined three new versions of SHA, with hash value
lengths of 256, 384, and 512 bits, known asSHA-256, SHA-384, and SHA-512, respectively. Collectively,
these hash algorithms are known as SHA-2. These new versions have the same underlying structure and
use the same types of modular arithmetic and logical binary operations as SHA-1. A revised document

M.Sc II Year III Semester

84
Rahul Publications

was issued as FIP PUB 180-3 in 2008, which added a 224-bit version (Table). SHA-2 is also specified in
RFC 4634, which essentially duplicates the material in FIPS 180-3 but adds a C code implementation.

SHA-512 Logic
The algorithm takes as input a message with a maximum length of less than 2128 bits and produces

as output a 512-bit message digest. The input is processed in 1024-bit blocks. Figure 4 depicts the overall
processing of a message to produce a digest. The processing consists of the following steps.

Table : Comparison of SHA Parameters

Figure 4 : Message Digest Generation Using SHA-512

Step 1 : Append padding bits
The message is padded so that its length is congruent to 896 modulo 1024 [length K 896(mod

1024)]. Padding is always added, even if the message is already of the desired length. Thus, the number
of padding bits is in the range of 1 to 1024. The padding consists of a single 1 bit followed by the
necessary number of 0 bits.

UNIT - III NETWORK SECURITY

85
Rahul Publications

Step 2 : Append length

A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit
integer (most significant byte first) and contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in
length. In Figure 4, the expanded message is represented as the sequence of 1024-bit
blocks M1, M2, ….. , MN, so that the total length of the expanded message is N * 1024 bits.

Step 3 : Initialize hash buffer

A 512-bit buffer is used to hold intermediate and final results of the hash function. The buffer
can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are initialized to the
following 64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908

e = 510E527FADE682D1

b = BB67AE8584CAA73B

f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B

g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1

h = 5BE0CD19137E2179

These values are stored in big-endian format, which is the most significant byte of a word in
the low-address (left most) byte position. These words were obtained by taking the first sixty-four
bits of the fractional parts of the square roots of the first eight prime numbers.

Step 4 : Process message in 1024-bit (128-word) blocks

The heart of the algorithm is a module that consists of 80 rounds; this module is labeled Fin
Figure 4. The logic is illustrated in Figure 5.

Each round takes as input the 512-bit buffer value, abcdefgh, and updates the contents of the
buffer.

At input to the first round, the buffer has the value of the intermediate hash value, Hi - 1. Each
round t makes use of a 64-bit value Wt, derived from the current 1024-bit block being processed (Mi).
These values are derived using a message schedule described subsequently. Each round also makes use of
an additive constant Kt, where 0 … t … 79 indicates one of the 80 rounds. These words represent the first
64 bits of the fractional parts of the cube roots of the first 80 prime numbers.

The output of the eightieth round is added to the input to the first round (Hi - 1) to produce Hi. The
addition is done independently for each of the eight words in the buffer with each of the corresponding
words in Hi-1, using addition modulo 264.

Step 5 : Output

After all N 1024-bit blocks have been processed, the output from the Nth stage is the 512-bit
message digest.

M.Sc II Year III Semester

86
Rahul Publications

Figure 5 : SHA-512 Processing of a Single 1024-Bit Block

We can summarize the behavior of SHA-512 as follows.

 H0 = IV

 Hi = SUM64(Hi – 1, abcdefghi)

MD = HN

Where,

 IV = Initial value of the abcdefgh buffer, defined in step 3.

abcdefghi = The output of the last round of processing of the ith message block.

 N = The number of blocks in the message (including padding and length fields).

 SUM64 = Addition modulo 264 performed separately on each word of the pair of inputs.

MD = Final message digest value.

UNIT - III NETWORK SECURITY

87
Rahul Publications

3.4 MD5

Q5. Explain about MD5 algorithm.

Ans :
The MD5 hashing algorithm is a one-way cryptographic function that accepts a message of any

length as input and returns as output a fixed-length digest value to be used for authenticating the
original message. The MD5 hash function was originally designed for use as a secure cryptographic hash
algorithm for authenticating digital signatures. MD5 has been deprecated for uses other than as a non-
cryptographic checksum to verify data integrity and detect unintentional data corruption.

Message Digest Algorithm Characteristics

Message digests, also known as hash functions, are one-way functions; they accept a message of
any size as input, and produce as output a fixed-length message digest.

MD5 is the third message digest algorithm created by Rivest.

How MD5 works

The MD5 message digest hashing algorithm processes data in 512-bit blocks, broken down into 16
words composed of 32 bits each. The output from MD5 is a 128-bit message digest value.

Computation of the MD5 digest value is performed in separate stages that process each 512-bit
block of data along with the value computed in the preceding stage. The first stage begins with the
message digest values initialized using consecutive hexadecimal numerical values. Each stage includes
four message digest passes which manipulate values in the current data block and values processed from
the previous block. The final value computed from the last block becomes the MD5 digest for that block.

MD5 Security

The goal of any message digest function is to produce digests that appear to be random. To be
considered cryptographically secure, the hash function should meet two requirements: first, that it is
impossible for an attacker to generate a message matching a specific hash value; and second, that it is
impossible for an attacker to create two messages that produce the same hash value.

MD5 hashes are no longer considered cryptographically secure, and they should not be used for
cryptographic authentication.

M.Sc II Year III Semester

88
Rahul Publications

3.5 MESSAGE AUTHENTICATION CODES

3.5.1 Message Authentication Requirements

Q6. What are the message authentication
requirements?

Ans :
In the context of communications across a

network, the following attacks can be identified.
1. Disclosure: Release of message contents to

any person or process not possessing the
appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern
of traffic between parties. In a connection-
oriented application, the frequency and
duration of connections could be determined.
In either a connection-oriented or connection
less environment, the number and length of
messages between parties could be
determined.

3. Masquerade: Insertion of messages into the
network from a fraudulent source. This
includes the creation of messages by an
opponent that are purported to come from
an authorized entity. Also included are
fraudulent acknowledgments of message
receipt or nonreceipt by someone other than
the message recipient.

4. Content modification: Changes to the
contents of a message, including insertion,
deletion, transposition, and modification.

5. Sequence modification: Any modification
to a sequence of messages between parties,
including insertion, deletion, and reordering.

6. Timing modification: Delay or replay of
messages. In a connection-oriented
application, an entire session or sequence of
messages could be a replay of some previous
valid session, or individual messages in the
sequence could be delayed or replayed. In a
connection less application, an individual
message (e.g.,data- gram) could be delayed
or replayed.

7. Source repudiation: Denial of transmission
of message by source.

8. Destination repudiation: Denial of receipt
of message by destination.

Measures to deal with the first two attacks are
in the realm of message confidentiality and are dealt
with in Part One. Measures to deal with items (3)
through (2) in the foregoing list are generally
regarded as message authentication. Mechanisms
for dealing specifically with item (7) come under
the heading of digital signatures. Generally, a digital
signature technique will also counter some or all of
the attacks listed under items (3) through (6).
Dealing with item (8) may require a combination
of the use of digital signatures and a protocol
designed to counter this attack.

In summary, message authentication is a
procedure to verify that received messages come
from the alleged source and have not been altered.
Message authentication may also verify sequencing
and timeliness. A digital signature is an authentication
technique that also includes measures to counter
repudiation by the source.

3.5.2 Message Authentication Functions

Q7. Explain about message authentication
functions.

Ans :
Any message authentication or digital

signature mechanism has two levels of functionality.
At the lower level, there must be some sort of
function that produces an authenticator: a value to
be used to authenticate a message. This lower-
level function is then used as a primitive in a higher-
level authentication protocol that enables a receiver
to verify the authenticity of a message.

 These may be grouped into three classes.

 Hash function: A function that maps a
message of any length into a fixed-length hash
value, which serves as the authenticator

 Message encryption: The cip her text of the
entire message serves as its authenticator

 Message authentication code (MAC): A
function of the message and a secret key that
produces a fixed-length value that serves as
the authenticator

Message Encryption

Message encryption by itself can provide a
measure of authentication. The analysis differs for
symmetric and public-key encryption schemes.

UNIT - III NETWORK SECURITY

89
Rahul Publications

SYMMETRIC ENCRYPTION Consider the straightforward use of symmetric encryption (Figure). A
message M transmitted from source A to destination B is encrypted using a secret key K shared by A and
B. If no other party knows the key, then confidentiality is provided: No other party can recover the plain
text of the message.

Given a decryption function D and a secret key K, the destination will accept any input X and
produce output Y = D(K, X). If X is the ciphertext of a legitimate message M produced by the corresponding
encryption function, then Y is some plain text message M. Otherwise, Y willlikely be a meaningless sequence
of bits.

The implications of the line of reasoning in the preceding paragraph are profound from the point
of view of authentication. Suppose the message M can be any arbitrary bit pattern. In that case, there is
no way to determine automatically, at the destination, whether an incoming message is the ciphertext of
a legitimate message. This conclusion is incontrovertible: If M can be any bit pattern, then regardless of
the value of X, the value Y = D(K, X) is some bit pattern and therefore must be accepted as
authentic plain text.

Figure : Basic Uses of Message Encryption

Thus, in general, we require that only a small subset of all possible bit pat- terns be considered
legitimate plain text. In that case, any spurious ciphertext is unlikely to produce legitimate plain text.

M.Sc II Year III Semester

90
Rahul Publications

For a number of applications and encryption schemes, the desired conditions prevail as a matter of
course. For example, suppose that we are transmitting English- language messages using a Caesar
cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

Nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

B decrypts to produce the following plain text: maresea to ats and doese a to ats and little lambseativy
A simple frequency analysis confirms that this message has the profile of ordinary English. On the other
hand, if an opponent generates the following random sequence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq this decrypts to

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

which does not fit the profile of ordinary English.

One solution to this problem is to force the plain text to have some structure that is easily recognized
but that cannot be replicated without recourse to the encryption function.

Figure : Internal and External Error Control

Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small fixed-
size block of data, known as a cryptographic checksum or MAC, that is appended to the message. This
technique assumes that two communicating parties, say A and B, share a common secret key K. When A
has a message to send to B, it calculates the MAC as a function of the message and the key.

 MAC = MAC(K, M)

Where,

 M = input message

 C = MAC function

 K = shared secret key

MAC = message authentication code

UNIT - III NETWORK SECURITY

91
Rahul Publications

The message plus MAC are transmitted to the intended recipient. The recipient per- forms
the same calculation on the received message, using the same secret key, to generate a new MAC. The
received MAC is compared to the calculated MAC (Figure). If we assume that only the receiver and the
sender know the identity of the secret key, and if the received MAC matches the calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker alters the message but
does not alter the MAC, then the receiver’s calculation of the MAC will differ from the received
MAC. Because the attacker is assumed not to know the secret key, the attacker cannot alter the
MAC to correspond to the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no one else knows the
secret key, no one else could prepare a message with a proper MAC.

3. If the message includes a sequence number , then the receiver can be assured of the proper sequence
because an attacker cannot successfully alter the sequence number.

A MAC function is similar to encryption. One difference is that the MAC algorithm need not be
reversible, as it must be for decryption. In general, the MAC function is a many-to-one function. The
domain of the function consists of messages of some arbitrary length, whereas the range consists of all
possible MACs and all possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas
there are N possible messages with N 77 2n. Furthermore, with a k-bit key, there are 2k possible keys.

Figure : Basic Uses of Message Authentication Code (MAC)

Three situations in which a message authentication code is used.

1. There are a number of applications in which the same message is broadcast to a number of
destinations. the message must be broadcast in plain text with an associated message authentication
code. The responsible system has the secret key and performs authentication. If a violation occurs,
the other destination systems are alerted by a general alarm.

M.Sc II Year III Semester

92
Rahul Publications

2. Another possible scenario is an exchange in
which one side has a heavy load and cannot
afford the time to decrypt all incoming
messages. Authentication is carried out on a
selective basis, messages being chosen at
random for checking.

3. Authentication of a computer program in
plain text is an attractive service. The
computer program can be executed without
having to decrypt it every time, which would
be wasteful of processor resources. However,
if a message authentication code were
attached to the program, it could be checked
whenever assurance was required of the
integrity of the program. Three other
rationales may be added.

4. Separation of authentication and
confidentiality functions affords architectural
flexibility.

5. A user may wish to prolong the period of
protection beyond the time of reception and
yet allow processing of message contents. With
message encryption, the protection is lost
when the message is decrypted, so the
message is protected against fraudulent
modifications only in transit but not within
the target system.

6. Finally, note that the MAC does not provide
a digital signature, because both sender and
receiver share the same key.

3.5.3 Requirements For Message
Authentication Codes

Q8. What are the requirements for message
authentication codes? Explain briefly.

Ans :
A MAC, also known as a cryptographic

checksum, is generated by a function C of the form.

T = MAC(K, M)

where M is a variable-length message, K is a
secret key shared only by sender and receiver, and
MAC(K, M) is the fixed-length authenticator,
sometimes called a tag. The tag is appended to the
message at the source at a time when the message
is assumed or known to be correct. The receiver
authenticates that message by recomputing the tag.

When an entire message is encrypted for
confidentiality, using either symmetric or asymmetric
encryption, the security of the scheme generally
depends on the bit length of the key. Barring some
weakness in the algorithm, the opponent must
resort to a brute-force attack using all possible keys.
On average, such an attack will require 2(k - 1)
attempts for a k-bit key. In particular, for a
ciphertext- only attack, the opponent, given
ciphertext C, performs Pi = D(Ki, C) for all possible
key values Ki until a Pi is produced that matches
the form of acceptable plain text.

Suppose k 7 n; that is, suppose that the key
size is greater than the MAC size. Then, given
a known M1 and T1, with T1 = MAC(K, M1), the
cryptanalyst can perform Ti = MAC(Ki, M1) for all
possible key values ki. At least one key is guaranteed
to produce a match of Ti =T1. Note that a total of
2k tags will be produced, but there are only 2n 6
2k different tag values. Thus, a number of keys will
produce the correct tag and the opponent has no
way of knowing which is the correct key. On average,
a total of 2k/2n = 2(k - n) keys will produce a
match. Thus, the opponent must iterate the attack.

 Round 1

Given : M1, T1 = MAC(K, M1)

Compute Ti = MAC(Ki, M1) for all 2k keys

Number of matches = 2(k – n)

 Round 2

Given M2, T2 = MAC (K, M2)

Compute Ti = MAC(Ki, M2)for the 2(k – n) keys
resulting from round 1 number of matches 
2(k – 2 × n)

And so on. On average, a rounds will be
needed if k = a × n. For example, if an 80-bit key
is used and the tab is 32 bits, then the first round
will produce about 248 possible keys. The second
round will narrow the possible keys to about 216
possibilities. The third round should produce only
a single key, which must be the one used by the
sender.

If the key length is less than or equal to the
tag length, then it is likely that a first round will
produce a single match. It is possible that more than

UNIT - III NETWORK SECURITY

93
Rahul Publications

one key will produce such a match, in which case
the opponent would need to perform the same test
on a new (message, tag) pair.

Consider the following MAC algorithm.
Let M = (X1||X2||Á||Xm) be a message that
is treated as a concatenation of 64-bit blocks Xi.
Then define.

(M) = X1
X2

 ... Xm

MAC(K, M) = E(K, (M))

where Í$ is the exclusive-OR (XOR) operation
and the encryption algorithm is DES in electronic
code book mode. Thus, the key length is 56 bits,
and the tag length is 64 bits. If an opponent observes
{M || MAC(K, M)}, a brute-force attempt to
determine K will require at least 256 encryptions.
But the opponent can attack the system by replacing
X1 through Xm - 1 with any desired values Y1 through
Ym - 1and replacing Xm with Ym, where Ym is
calculated as

Ym = Y1
Y2  ... Ym –1  (M)

The opponent can now concatenate the new
message, which consists of Y1 through Ym, using
the original tagto form a message that will be accepted
as authentic by the receiver. With this tactic, any
message of length 64*(m–1) bits can be
fraudulently inserted.

Then the MAC function should satisfy the
following requirements.

1. If an opponent observes M and MAC(K, M),
it should be computationally infeasible for the
opponent to construct a message M¿ such
that

MAC(K,’’) = MAC(K, M)

2. MAC(K, M) should be uniformly distributed
in the sense that for randomly choosen
messages, M and M¿, the probability that
MAC(K, M) = MAC(K, M') is 2 - n, where n
is the number of bits in the tag.

3. Let M''' be equal to some known
transformation on M. That is, M'' = f(M).
For example, f may involve inverting one or
more specific bits. In that case,

Pr[MAC(K, M) = MAC(K, M')] = 2 – n

3.5.4 Security Of Macs

Q9. Write about various attacks on MACs.

Ans :

We can group attacks on MACs into two
categories: brute-force attacks and cryptanalysis.

Brute-Force Attacks

A brute-force attack on a MAC is a more
difficult undertaking than a brute-force attack on a
hash function because it requires known message-
tag pairs. To attack a hash code, we can proceed in
the following way. Given a fixed message x with n-
bit hash code h = H(x), a brute-force method of
finding a collision is to pick a random bit string y
and check if H(y) = H(x). The attacker can do this
repeatedly offline. Whether an off-line attack can
be used on a MAC algorithm depends on the
relative size of the key and the tag.

To proceed, we need to state the desired
security property of a MAC algorithm, which can
be expressed as follows.

Computation resistance: Given one or more
text-MAC pairs [xi, MAC(K, xi)], it is
computationally infeasible to compute any text-
MAC pair [x, MAC(K, x)] for any new input
x|= xi.

In other words, the attacker would like to
come up with the valid MAC code for a given
message x. There are two lines of attack possible:
attack the key space and attack the MAC value. We
examine each of these in turn.

If an attacker can determine the MAC key,
then it is possible to generate a valid MAC value for
any input x. Suppose the key size is k bits and that
the attacker has one known text–tag pair. Then the
attacker can compute the n-bit tag on the known
text for all possible keys. At least one key is
guaranteed to produce the correct tag, namely, the
valid key that was initially used to produce the known
text–tag pair.

M.Sc II Year III Semester

94
Rahul Publications

Cryptanalysis

As with encryption algorithms and hash functions, cryptanalytic attacks on MAC algorithms seek to
exploit some property of the algorithm to perform some attack other than an exhaustive search. The way
to measure the resistance of a MAC algorithm to cryptanalysis is to compare its strength to the effort
required for a brute-force attack. That is, an ideal MAC algorithm will require a cryptanalytic effort greater
than or equal to the brute-force effort.

3.6 MACS BASED ON HASH FUNCTIONS: HMAC

Q10. Explain about HMAC algorithm.

Ans :

HMAC Design Objectives

RFC 2104 lists the following design objectives for HMAC.

 To use, without modifications, available hash functions. In particular, to use hash functions that
perform well in software and for which code is freely and widely available.

 To allow for easy replace ability of the embedded hash function in case faster or more secure hash
functions are found or required.

 To preserve the original performance of the hash function without incurring a significant degradation.

 To use and handle keys in a simple way.

 To have a well understood cryptographic analysis of the strength of the authentication mechanism
based on reasonable assumptions about the embedded hash function.

HMAC Algorithm

Figure illustrates the overall operation of HMAC.

Define the following terms.

 H = embedded hash function

 IV = initial value input to hash function

 M = message input to HMAC

 Yi = i th block of M,0 Š i Š (L – 1)

 L = number of blocks in M

 b = number of bits in a block

 n = length of hash code produced by embedded hash function

 K = secret key; recommended length is Š n; if key length is greater than b, the key is input to
the hash function to produce an n-bit key

UNIT - III NETWORK SECURITY

95
Rahul Publications

Figure : HMAC Structure

K+ = K padded with zeros on the left so that the result is b bits in length ipad = 00110110 (36 in
hexadecimal) repeated b/8 times opad = 01011100 (5C in hexadecimal) repeated b/8 times Then HMAC
can be expressed as HMAC(K, M) = H[(K+ opad) || H[(K+ ipad) || M]]

We can describe the algorithm as follows.

1. Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of length 160 bits and
b= 512, then K will be appended with 44 zeroes).

2. XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3. Append M to Si.

4. Apply H to the stream generated in step 3.

5. XOR K+ with opad to produce the b-bit block So.

6. Append the hash result from step 4 to So.

7. Apply H to the stream generated in step 6 and output the result.

A more efficient implementation is possible, as shown in Figure.

Two quantities are precomputed:

f(IV, (K +  ipad))

f(IV, (K +  opad))

where f(cv, block) is the compression function for the hash function,

M.Sc II Year III Semester

96
Rahul Publications

Security of HMAC
The security of any MAC function based on an embedded hash function depends in some way on

the cryptographic strength of the underlying hash function.

Figure : Efficient Implementation of HMAC

The security of a MAC function is generally expressed in terms of the probability of
successful forgery with a given amount of time spent by the forger and a given number of message–tag
pairs created with the same key. the probability of successful attack on HMAC is equivalent to one of
the following attacks on the embedded hash function.
1. The attacker is able to compute an output of the compression function even with an IV that is

random, secret, and unknown to the attacker.
2. The attacker finds collisions in the hash function even when the IV is random and secret.

3.7 MACS BASED ON BLOCK CIPHERS: DAA AND CMAC

Q11. Explain about Data Authentication algorithm (DAA).

Ans :
Data Authentication Algorithm

The Data Authentication Algorithm (DAA), based on DES, has been one of the
most widely used MACsfor a number of years.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation
of DES (Figure) with an initialization vector of zero. The data (e.g., message, record, file, or program) to
be authenticated are grouped into contiguous 64-bit blocks. D1, D2, , DN. If necessary, the final

UNIT - III NETWORK SECURITY

97
Rahul Publications

block is padded on the right with zeroes to form a full 64-bit block. Using the DES encryption
algorithm E and a secret key K, a data authentication code (DAC) is calculated as follows (Figure).

O1 = E(K, D)

O2 = E(K, [D2 O1])

O3 = E(K, [D3  O2])



ON = E(K, [DN ON – 1])

Figure : Data Authentication Algorithm (FIPS PUB 113)

The DAC consists of either the entire block ON or the left most M bits of the block, with
16 <= M <= 64.

Q11. Explain briefly about CMAC.

Ans :
Cipher-Based Message Authentication Code (CMAC)

As was mentioned, DAA has been widely adopted in government and industry. Only messages of
one fixed length of mn bits are processed, where n is the cipher block size and m is a fixed positive integer.
As a simple example, notice that given the CBC MAC of a one-block message X, say T = MAC(K,X), the
adversary immediately knows the CBC MAC for the two- block message X||(X{T) since this is once
again T.

First, let us define the operation of CMAC when the message is an integer multiple n of the cipher
block length b. For AES, b = 128, and for triple DES, b = 64. The message is divided into n blocks
(M1, M2, ..., Mn). The algorithm makes use of a k-bit encryption key K and an n-bit constant, K1. For AES,
the key sizek is 128, 192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is calculated as
follows (Figure).

M.Sc II Year III Semester

98
Rahul Publications

Figure : Cipher-Based Message Authentication Code (CMAC)

C1 = E(K, M1)

C2 = E(K, [M2C1])

C3 = E(K, [M3C2]])



Cn = E(K, [Mn Cn – 1 K1])

 T = MSBTlen(Cn)

Where,

 T = Message authetication code, also referred to as the tag

 Tlen = Bit length T

MSB,(X) = the S left most bits of the bit string X.

If the message is not an integer multiple of the cipher block length, then the final block is padded to
the right (least significant bits) with a 1 and as many 0s as necessary so that the final block is also of
length b. The CMAC operation then proceeds as before, except that a different n-bit key K2 is used
instead of K1.

UNIT - III NETWORK SECURITY

99
Rahul Publications

The two n-bit keys are derived from the k-bit encryption key as follows.
 L = E(K, 0n)
K1 = L  x
K2 = L  x2 = (L  x)  x

where multiplication () is done in the finite field GF(2n) and x and x2 are first-and second-order
polynomials that are elements of GF(2n). Thus, the binary representation of x consists of n-2 zeros
followed by 10; the binary representation of x2 consists of n - 3 zeros followed by 100. The finite field is
defined with respect to an irreducible polynomial that is lexicographically first among all such polynomials
with the minimum possible number of nonzero terms. For the two approved block sizes, the polynomials
are x64 + x4 + x3 + x + 1 and x128 + x7 + x2 + x + 1.

To generate K1 and K2, the block cipher is applied to the block that consists entirely of 0 bits. The first
sub key is derived from the resulting ciphertext by a left shift of one bit and, conditionally, by XORing a
constant that depends on the block size. The second subkey is derived in the same manner from the first
subkey.

3.7.1 Digital Signatures

Q12. Explain briefly about digital signatures.

Ans :
Properties

Message authentication protects two parties who exchange messages from any third party.
However, it doesnot protect the two parties against each other. Several forms of dispute between the two
are possible.

Bob’s
private key

Bob’s
public key

Digital
signature

generation
algorithm

Digital
signature

verification
algorithm

S

S

Bob’s
signature

for M

Return signature
valid or not valid

Fig. : Generic Model of Digital Signature Process

M.Sc II Year III Semester

100
Rahul Publications

For example, suppose that John sends an authenticated message to Mary, using one of the schemes
of Figure. Consider the following disputes that could arise.

1. Mary may forge a different message and claim that it came from John. Mary would simply have to
create a message and append an authentication code using the key that John and Mary share.

2. John can deny sending the message. Because it is possible for Mary to forge a message, there is no
way to prove that John did in fact send the message.

Both scenarios are of legitimate concern.

In situations where there is not complete trust between sender and receiver, something more than
authentication is needed. The most attractive solution to this problem is the digital signature.

The digital signature must have the following properties:

 It must verify the author and the date and time of the signature.

 It must authenticate the contents at the time of the signature.

 It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.

Message M
Message M

Cryptographic
hash function

h

Bob’s
private key

Bob’s
public key

Encrypt

S

Bob’s signature
for M

Return signature
valid or not valid

Compare

h h

Cryptographic
hash function Decrypt

S

Fig. : Simplified Depiction of Essential Elements of Digital Signature Process

UNIT - III NETWORK SECURITY

101
Rahul Publications

Attacks and Forgeries

The following types of attacks, in order of increasing severity. Here A denotes the user whose
signature method is being attacked, and C denotes the attacker.

 Key-only attack: C only knows A’s public key.

 Known message attack: C is given access to a set of messages and their signatures.

 Generic chosen message attack: C chooses a list of messages before attempting to breaks Signature
scheme, independent of A’s public key. C then obtains from A valid signatures for the chosen
messages. The attack is generic, because it does not depend on A’s public key; the same attack is
used against everyone.

 Directed chosen message attack: Similar to the generic attack, except that the list of messages to
besigned is chosen after C knows A’s public key but before any signatures are seen.

 Adaptive chosen message attack: C is allowed to use A as an “oracle.” This means the A may request
signatures of messages that depend on previously obtained message–signature pairs.

Digital Signature Requirements

On the basis of the properties and attacks just discussed, we can formulate the following requirements
for a digital signature.

 The signature must be a bit pattern that depends on the message being signed.

 The signature must use some information unique to the sender to prevent both forgery and denial.

 It must be relatively easy to produce the digital signature.

 It must be relatively easy to recognize and verify the digital signature.

 It must be computationally infeasible to forge a digital signature, either by constructing a new
message for an existing digital signature or by constructing a fraudulent digital signature for a given
message.

 It must be practical to retain a copy of the digital signature in storage.

3.7.2 Nist Digital Signatures Algorithm

Q13. Explain briefly about NIST digital structure algorithm.

Ans :
The Digital Signature Algorithm (DSA) is a variant of the ElGamal signature scheme

Key Generation

Key generation has two phases. The first phase is a choice of algorithm parameters which may be
shared between different users of the system, while the second phase computes public and private keys
for a single user.

Parameter Generation

Choose an approved cryptographic hash function H. In the original DSS, H was always SHA-1, but
the stronger SHA-2 hash functions are approved for use in the current DSS.[5][9] The hash output may
be truncated to the size of a key pair.

Decide on a key length L and N. This is the primary measure of the cryptographic strength of the
key. The original DSS constrained L to be a multiple of 64 between 512 and 1,024 (inclusive). NIST 800-
57 recommends lengths of 2,048 (or 3,072) for keys with security lifetimes extending beyond 2010 (or

M.Sc II Year III Semester

102
Rahul Publications

2030), using correspondingly longer N.[10] FIPS
186-3 specifies L and N length pairs of (1,024, 160),
(2,048, 224), (2,048, 256), and (3,072, 256).[4]
N must be less than or equal to the output length of
the hash H.

Choose an N-bit prime q.

Choose an L-bit prime p such that p “ 1 is a multiple
of q.

Choose g, a number whose multiplicative
order modulo p is q. This may be done by setting
g = h(p – 1)/q mod p for some arbitrary h (1 < h
< p – 1), and trying again with a different h if the
result comes out as 1. Most choices of h will lead to
a usable g; commonly h = 2 is used.

The algorithm parameters (p, q, g) may be shared
between different users of the system.

Per-user keys

Given a set of parameters, the second phase
computes private and public keys for a single user:

Choose a secret key x by some random
method, where 0 < x < q.

Calculate the public key y = gx mod p.

There exist efficient algorithms for computing
the modular exponentiations h(p – 1)/q mod p and
gx mod p, such as exponentiation by squaring.

Signing

Let H be the hashing function and m the
message :

 Generate a random per-message value
k where 1 < k < q

 Calculate  = (gk mod p) mod q

 In the unlikely case that r = 0, start again
with a different random k.

 Calculate s = k–1 (H(m) + xr) mod q

 In the unlikely case that s = 0, start again
with a different random k.

 The signature is (r, s)

The first two steps amount to creating a new
per-message key. The modular exponentiation here
is the most computationally expensive part of the
signing operation, and it may be computed before

the message hash is known. The modular inverse

k -1modq is the second most expensive part, and
it may also be computed before the message hash
is known. It may be computed using the extended
Euclidean algorithm or using Fermat’s little theorem

as k q-2q.

Verifying

 Reject the signature if 0 < r < q or 0 <
s < q is not satisfied.

 Calculate w = s–1 mod q

 Calculate u1 = H(m).w mod q

 Calculate u2 = T. w mod q

 Calculate v = (gu1 yu2 mod p) mod q

 The signature is invalid unless v = r

DSA is similar to the Elgamal signature
scheme.

Correctness of the algorithm

The signature scheme is correct in the sense
that the veritifer always accept signatures. This can
be shown as follows.

First, if g = h(p – 1)/q mod p, it follows that gq =
hp – 1  1 mod p by Femat’s little theorem. Since
g > 0 and q is prime g must have order q. The
signer computes

s = k–1(H(m) + xr) mod q

Thus

 k  H(m)s–1 + xrs–1

  H(m)w + xrw (mod q)

Since g has order q (mod p) we have

 gk  gH(m)w gxrw

 gH(m)w gxrw

 gu1 yu2 (mod p)

Finally, the correctness of DSA follows from

 r = (gk mod p) mod q

= (gu1, yu2 mod p) mod q

= v

UNIT - IV NETWORK SECURITY

103
Rahul Publications

4.1 TRANSPORT - LEVEL SECURITY

4.1.1 Web Security Considerations

Q1. Write about the security considerations of internet.

Ans :
Web security Vulnerables

The Web is vulnerable to attacks on the Web servers over theInternet.

• The Web is increasingly serving as a highly visible outlet for corporate and product information and
asthe platform for business transactions. Reputations can be damaged and money can be lost if the
Web serversare subverted.

• Although Web browsers are very easy to use, Web servers are relatively easy to configure and
manage,and Web content is increasingly easy to develop, the underlying software is extraordinarily
complex.

• A Web server can be exploited as a launching pad into the corporation’s or agency’s entire computer
complex. Once the Web server is subverted, an attacker may be able to gain access to data and
systems not part of the Web itself but connected to the server at the local site.

• Casual and untrained (in security matters) users are common clients for Web-based services. Such
users are not necessarily aware of the security risks that exist and do not have the tools or knowledge
totake effective counter measures.

Web Security Threats

One way to group these threats is in terms of passive and active attacks. Passive attacks include
eavesdropping on network traffic between browser and server and gaining access to information on a
Web site that is supposed to berestricted. Active attacks include impersonating another user, altering
messages in transit between client andserver, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the threat: Web server,
Webbrowser, and network traffic between browser and server.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various approaches that have
been considered are similar in the services they provide and, to some extent, in the mechanisms that they
use, butthey differ with respect to their scope of applicability and their relative location within the TCP/IP
protocolstack.

UNIT
IV

Transport-Level Security : Web Security Considerations, Secure Sockets
Layer (SSL), Transport Layer Security (TLS), HTTPS,Secure Shell (SSH),
E-Mail Security: Pretty Good Privacy, S/MIME. IP Security: IP Security
Overview, IP Security Architecture, Encapsulating Security Payload,
Combining Security Associations,Internet Key Exchange.Intruders, Virus
and Firewalls: Intruders, Intrusion Detection, Password Management, Virus
and Related Threats, Countermeasures, Firewall Design Principles, Types
of Firewalls.

M.Sc II Year III Semester

104
Rahul Publications

Figure 16.1 illustrates this difference. One way to provide Web security is to use IP security (IPsec).
The advantage of using IPsec is that it is trans- parent to end users and applications and provides ageneral-
purpose solution. Furthermore, IPsec includes a filtering capability so that only selected traffic need incur
the overhead of IPsec processing.

Cryptographic techniques• Misrepresentation of
user

• Belief that false
information is valid

• Impersonation of legitimate users
• Data forgery

Authentication

Difficult to prevent• Disruptive
• Annoying
• Prevent user from

getting work done

• Killing of user threads
• Flooding machine with bogus

requests
• Filling up disk or memory
• Isolating machine by DNS attacks

Denial of
Service

Encryption, with proxies• Loss of information
• Loss of privacy

• Eavesdropping on the net
• Theft of info from server
• Theft of data from client
• Info about network configuration
• Info about which client talks to server

Confidentiality

Cryptographic checksums

Counter measures

• Loss of information
• Compromise of machine
• Vulnerability to all other

threats

Consequences

• Modification of user data
• Trojan horse browser
• Modification of memory
• Modification of message

traffic in transit

Threats

Integrity

Cryptographic techniques• Misrepresentation of
user

• Belief that false
information is valid

• Impersonation of legitimate users
• Data forgery

Authentication

Difficult to prevent• Disruptive
• Annoying
• Prevent user from

getting work done

• Killing of user threads
• Flooding machine with bogus

requests
• Filling up disk or memory
• Isolating machine by DNS attacks

Denial of
Service

Encryption, with proxies• Loss of information
• Loss of privacy

• Eavesdropping on the net
• Theft of info from server
• Theft of data from client
• Info about network configuration
• Info about which client talks to server

Confidentiality

Cryptographic checksums

Counter measures

• Loss of information
• Compromise of machine
• Vulnerability to all other

threats

Consequences

• Modification of user data
• Trojan horse browser
• Modification of memory
• Modification of message

traffic in transit

Threats

Integrity

4.1.2 Secure Socket Layer and Transport Layer Security

Q2. Explain about SSL architecture.

Ans :
SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL is not a
single protocol but rather two layers of protocols, as illustrated in Figure 16.2.

The SSL Record Protocol provides basic security services to various higher- layer protocols. In
particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web client/
server interaction, can operate on top of SSL. Three higher-layer protocols are defined as part of SSL: the
Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-spe- cific
protocols are used in the management of SSL exchanges and are examined later in this section.

UNIT - IV NETWORK SECURITY

105
Rahul Publications

Two important SSL concepts are the SSL session and the SSL connection, which are defined in the
specification as follows.

 Connection: A connection is a transport (in the OSI layering model definition) that provides a
suitable type of service. For SSL, such connections are peer-to-peer relationships. The connections
are transient. Every connection is associated with one session.

 Session: An SSL session is an association between a client and a server. Sessions are created by the
Handshake Protocol. Sessions define a set of cryptographic security parameters which can be shared
among multiple connections. Sessions are used to avoid the expensive negotiation of new security
parameters for each connection.

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression

TCP
Transmission control protocol provides reliable, connection-
Oriented end-to-end delivery

IP
Internet protocol provides datagram delivery across
Multiple networks

SSH User
Authentication Produced
Authenticates the client-side
User to the server

SSH User
Connection Protocol
Multiplexes the encrypted
tunned into several logical
channels

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression

TCP
Transmission control protocol provides reliable, connection-
Oriented end-to-end delivery

IP
Internet protocol provides datagram delivery across
Multiple networks

SSH User
Authentication Produced
Authenticates the client-side
User to the server

SSH User
Connection Protocol
Multiplexes the encrypted
tunned into several logical
channels

A session state is defined by the following parameters.

 Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

 Peer certificate: An X509.v3 certificate of the peer. This element of the state may be null.

 Compression method: The algorithm used to compress data prior to encryption.

 Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES, etc.)
and a hashalgorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines
cryptographic attributes such asthe hash_size.

 Master secret : 48-byte secret shared between the client and server.

 Is resumable: A flag indicating whether the session can be used to initiate new connections.

A connection state is defined by the following parameters.

 Server and client random: Byte sequences that are chosen by the server and
client for each connection.

 Server write MAC secret: The secret key used in MAC operations on data sent by the server.

 Client write MAC secret: The secret key used in MAC operations on data sent by the client.

 Server write key: The secret encryption key for data encrypted by the server and
decrypted by the client.

M.Sc II Year III Semester

106
Rahul Publications

 Client write key: The symmetric encryption key for data encrypted by the client and decrypted by
the server.

 Initialization vectors: When a block cipher in CBC mode is used, an initialization vector (IV) is
maintained for each key. This field is first initialized by the SSL Handshake Protocol. Thereafter, the
final cipher text block from each record is preserved for use as the IV with the following record.

 Sequence numbers: Each party maintains separate sequence numbers for transmitted and received
messages for each connection.

Q3. Explain SSL Record Protocol.

Ans :
SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections :

 Confidentiality : The Handshake Protocol defines a shared secret key that is used for conventional
encryption of SSL payloads.

 Message Integrity : The Handshake Protocol also defines a shared secret key that is used to form a
message authentication code (MAC).

Figure 16.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol takes
an application message to be transmitted, fragments the data into manageable blocks, optionally compresses
the data, applies a MAC, encrypts, adds a header, and transmits the resulting unit in a TCP segment.
Received data are decrypted, verified, decompressed, and reassembled before being delivered to higher-
level users.

The first step is fragmentation. Each upper-layer message is fragmented into blocks of 214 bytes
(16384 bytes) or less. Next, compression is optionally applied. Compression must be lossless and may
not increase the content length by more than 1024 bytes.1In SSLv3 (as well as the current version of
TLS), no compression algorithm is specified, so the default compression algorithm is null.

The next step in processing is to compute a message authentication code over the compressed data.
For this purpose, a shared secret key is used.

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record header

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record header

SSL Record Protocol Operation

UNIT - IV NETWORK SECURITY

107
Rahul Publications

The final step of SSL Record Protocol processing is to prepare a header consisting of the following
fields :

 Content Type (8 bits): The higher-layer protocol used to process the enclosed fragment.

 Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the value is 3.

 Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.

 Compressed Length (16 bits): The length in bytes of the plaintext fragment (or compressed fragment
if compression is used). The maximum value is 214 + 2048.

Figure 16.4 illustrates the SSL record format.

Content
type

Major
Version

Minor
Version

Compressed
length

Plaintext
(optionally

Compressed)

Plaintext
(optionally

Compressed)

MAC (0, 16, or 20 bytes

E
nc

ry
pt

ed

Content
type

Major
Version

Minor
Version

Compressed
length

Plaintext
(optionally

Compressed)

Plaintext
(optionally

Compressed)

MAC (0, 16, or 20 bytes

E
nc

ry
pt

ed

SSL Record Formula

1

1 byte

(a) Change Cipher Spec Protocol

(b) Alert Protocol

Level

1 byte

Alert

1 byte

LengthType Content
1 byte 3 bytes 0 bytes

(c) Handshake Protocol

Opaque content

1 bytes

(d) Other Upper-Layer Protocl (e.g. HTTP)

1

1 byte

(a) Change Cipher Spec Protocol

(b) Alert Protocol

Level

1 byte

Alert

1 byte

Level

1 byte

Alert

1 byte

LengthType Content
1 byte 3 bytes 0 bytes

LengthType Content
1 byte 3 bytes 0 bytes 0 bytes

(c) Handshake Protocol

Opaque content

1 bytes 1 bytes

(d) Other Upper-Layer Protocl (e.g. HTTP)

SSL Record Protocol Payload

Q4. Discuss about Alter Protocol.

Ans :
Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with other applications
that use SSL, alert messages are compressed and encrypted, as specified by the current state.

Each message in this protocol consists of two bytes (Figure 16.5b). The first byte takes the value
warning (1) or fatal (2) to convey the severity of the message. If the level is fatal, SSL immediately

M.Sc II Year III Semester

108
Rahul Publications

terminates the connection. Other connections on
the same session may continue, but no new
connections on this sessionmay be established. The
second byte contains a code that indicates the
specific alert. First, we list those alerts that are always
fatal (definitions from the SSL specification):

 unexpected_message: An inappropriate
message was received.

 bad_record_mac: An incorrect MAC was
received.

 decompression_failure: The decompression
function received improper input (e.g., unable
to decompress or decompress to greater than
maximum allowable length).

 handshake_failure: Sender was unable to
negotiate an acceptable set of security
parameters given theoptions available.

 illegal_parameter: A field in a handshake
message was out of range or inconsistent with
other fields.

The remaining alerts are the following :

 close_notify: Notifies the recipient that the
sender will not send any more messages on
this connection. Each party is required to send
a close_notify alert before closing the write side
of a connection.

 no_certificate: May be sent in response to a
certificate request if no appropriate certificate
isavailable.

 bad_certificate: A received certificate was
corrupt (e.g., contained a signature that did not
verify).

 unsupported_certificate: The type of the
received certificate is not supported.

 certificate_revoked: A certificate has been
revoked by its signer.

 certificate_expired: A certificate has expired.

e) certificate_unknown : Some other
unspecified issue arose in processing the
certificate, rendering itunacceptable.

Q5. Explain about Handshake protocol.

Ans :
Handshake Protocol

The most complex part of SSL is the
Handshake Protocol. This protocol allows the server
and client toauthenticate each other and to negotiate
an encryption and MAC algorithm and
cryptographic keys to be used to protect data sent
in an SSL record. The Handshake Protocol is used
before any application data is transmitted.

The Handshake Protocol consists of a series
of messages exchanged by client and server. All of
these have the format shown in Figure 16.5c. Each
message has three fields :

a) Type (1 byte): Indicates one of 10 messages.
Table 16.2 lists the defined message types.

b) Length (3 bytes): The length of the message
in bytes.

c) Content (Ú 0 bytes): The parameters
associated with this message; these arelisted in
Table 16.2.

Figure 16.6 shows the initial exchange needed
to establish a logical connection between client and
server. Theexchange can be viewed as having four
phases.

Phase 1. Establish Security Capabilities

This phase is used to initiate a logical
connection and to establish the security capabilities
that will be associated with it. The exchange is
initiated by the client, which sends aclient_hello
message with the following parameters:

d) Version: The highest SSL version understood
by the client.

e) Random: A client-generated random structure
consisting of a 32-bit timestamp and 28 bytes
generated by a secure random number
generator. These values serve as nonces and
are used during keyexchange to prevent replay
attacks.

UNIT - IV NETWORK SECURITY

109
Rahul Publications

hash valuefinished

Parameters, signatureclient_key_exchange

signaturecertificate_verify

Nullserver_done

type.authotitiescertificate_request

parameters, signatureserver_key_exchange

chain of X.5093 certificatecertificate

verson, random, session id, cipher suite, compression methodserver_hello

verson, random, session id, cipher suite, compression methodclient_hello

Null

Parameters

hello_request

Message

hash valuefinished

Parameters, signatureclient_key_exchange

signaturecertificate_verify

Nullserver_done

type.authotitiescertificate_request

parameters, signatureserver_key_exchange

chain of X.5093 certificatecertificate

verson, random, session id, cipher suite, compression methodserver_hello

verson, random, session id, cipher suite, compression methodclient_hello

Null

Parameters

hello_request

Message

Table : SSL Handshake Protocol Message Types

 Session ID : A variable-length session identifier. A nonzero value indicates that the client wishes to

update the parameters of an existing connection or to create a new connection on this session. A zero

value indicates that the client wishes to establish a new connection on a new session.

 CipherSuite : This is a list that contains the combinations of cryptographic algorithms supported by

the client, in decreasing order of preference. Each element of the list (each cipher suite) defines both

a key exchange algorithm and a CipherSpec; these are discussed subsequently.

 Compression Method: This is a list of the compression methods the client supports.

After sending the client_hello message, the client waits for the server_hello message, which contains

the same parameters as the client_hello message. For the server_hello message, the following

conventions apply. The Version field contains the lower of the versions suggested by the client and the

highest supported by the server.

The Random field is generated by the server and is independent of the client’s Random field. If the

SessionID field of the client was nonzero, the same value is used by the server; otherwise the server’s

SessionID field contains the value for a new session. The CipherSuite field contains the single cipher

suite selected by the server from those proposed by the client. The Compression field contains the

compression method selected by the server from those proposed by the client.

M.Sc II Year III Semester

110
Rahul Publications

Client Server

Certificate

Server_hello

Certificate

Server_key_exchange

Certificate_request

Server_hello_done

Client_key_exchange
Certificate_verify

Change_cipher_spec
finished

Change_cipher_spec

finished

Ti
m

e

Phase 1
Establish security capabilities, including
Protocol version, session ID, cipher suite,
Compression method, and initial random
numbers

Phase 2
Server may send certificate, key exchange,
And request certificate. Server signals end
Of hello message phase.

Phase 3
Client sends certificate if requested. Client
Sends key exchange. Client may send certificate verification.

Phase 4
Change cipher suite and finish
Handshake protocol

Note :
Shaded transfers are
optional or situation-dependent
Messages that are not always sent.

Handshake Protocol Action

Client Server

Certificate

Server_hello

Certificate

Server_key_exchange

Certificate_request

Server_hello_done

Client_key_exchange
Certificate_verify

Change_cipher_spec
finished

Change_cipher_spec

finished

Ti
m

e

Phase 1
Establish security capabilities, including
Protocol version, session ID, cipher suite,
Compression method, and initial random
numbers

Phase 2
Server may send certificate, key exchange,
And request certificate. Server signals end
Of hello message phase.

Phase 3
Client sends certificate if requested. Client
Sends key exchange. Client may send certificate verification.

Phase 4
Change cipher suite and finish
Handshake protocol

Note :
Shaded transfers are
optional or situation-dependent
Messages that are not always sent.

Handshake Protocol Action

Phase 2. Server Authentication and Key Exchange

The server begins this phase by sending its certificate if it needs to be authenticated; the message

contains one or a chain of X.509 certificates. The certificate message is required for any agreed-on key

exchange method except anonymous Diffie-Hellman. Note that if fixed Diffie- Hellman is used, this certificate

UNIT - IV NETWORK SECURITY

111
Rahul Publications

message functions as the server’s key exchange message because it contains the server’s public Diffie-
Hellman parameters.

Next, a server_key_exchange message may be sent if it is required. It is not required in two instances:
(1)The server has sent a certificate with fixed Diffie-Hellman parameters or (2) a RSA key exchange is to
be used. The server_key_exchange message is needed for the following:

 Anonymous Diffie-Hellman: The message content consists of the two global Diffie-Hellman values
(a prime number and a primitive root of that number) plus the server’s public Diffie-Hellman key .

 Ephemeral Diffie-Hellman: The message content includes the three Diffie- Hellman parameters
provided for anonymous Diffie-Hellman plus a signature of those parameters.

 RSA key exchange :Accordingly, the client cannot simply send a secret key encrypted with the
server’s public key. Instead, the server must create a temporary RSA public/private key pair and use
the server_key_exchange message tosend the public key.

Phase 3. Client Authentication and Key Exchange

Upon receipt of the server_done message, the client should verify that the server provided a
valid certificate (if required) and check that the server_hello parameters are acceptable. If all is satisfactory,
the client sends one or more messagesback to the server.

If the server has requested a certificate, the client begins this phase by sending a certificate message.
If no suitable certificate is available, the client sends a no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase.

Phase 4. Finish

This phase completes the setting up of a secure connection. The client sends achange_cipher_spec
message and copies the pending CipherSpec into the current CipherSpec.. The finished message verifies
that the key exchange and authentication processes were successful.The content of the finished message
is the concatenation of two hash values :

MD5(master_secret | pad2 | MD5(handshake_messages | Sender | master_secret | pad1))

SHA(master_secret | pad2 | SHA(handshake_messages | Sender | master_secret | pad1))

4.2 HTTPS

Q6. Explain briefly about HHTPS protocol.

Ans :
HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to implement secure

communication between a Web browser and a Web server. The HTTPS capability is built into all modern
Web browsers. Its use depends on the Web server supporting HTTPS communication. For example,
search engines do not support HTTPS.

When HTTPS is used, the following elements of the communication are encrypted :

 URL of the requested document

 Contents of the document

 Contents of browser forms (filled in by browser user)

M.Sc II Year III Semester

112
Rahul Publications

 Cookies sent from browser to server and from server to browser

 Contents of HTTP header

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The client initiates a
connection to the server on the appropriate port and then sends the TLS Client Hello to begin the TLS
handshake. When the TLS handshake has finished, the client may then initiate the first HTTP request. All
HTTP data is to be sent as TLS application data. Normal HTTP behavior, including retained connections,
should be followed.

We need to be clear that there are three levels of awareness of a connection in HTTPS. At the HTTP
level, an HTTP client requests a connection to an HTTP server by sending a connection request to the
next lowest layer.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the following line in
an HTTP record: Connection: close. This indicates that the connection will be closed after this record is
delivered.

The closure of an HTTPS connection requires that TLS close the connection with the peer TLS
entity on there mote side, which will involve closing the underlying TCP connection. At the TLS level, the
proper way to close a connection is for each side to use the TLS alert protocol to send a close_notify alert.
TLS implementations must initiate an exchange of closure alerts before closing a connection.

HTTP clients also must be able to cope with a situation in which the underlying TCP connection is
terminated without a prior close_notify alert and without a Connection: close indicator. Such a situation
could be due to a programming error on the server or a communication error that causes the TCP
connection to drop. However, the unannounced TCP closure could be evidence of some sort of attack.
So the HTTPS client should issue some sort of security warning when this occurs.

4.3 SECURE SHELL (SSH)

Q7. Write about SSH.

Ans :
Secure Shell (SSH) is a protocol for secure network communications designed to be relatively

simple and inexpensive to implement. The initial version, SSH1 was focused on providing a secure remote
logon facility to replace TELNET and other remote logon schemes that provided no security. SSH also
provides a more general client/server capability and can be used for such network functions as file transfer
and e-mail.

SSH is organized as three protocols that typically run on top of TCP (Figure 16.8):

 Transport Layer Protocol: Provides server authentication, data confidentiality, and data integrity
with forward secrecy (i.e., if a key is compromised during one session, the knowledge does not affect
the security of earlier sessions). The transport layer may optionally provide compression.

UNIT - IV NETWORK SECURITY

113
Rahul Publications

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression

TCP
Transmission control protocol provides reliable, connection-
Oriented end-to-end delivery

IP
Internet protocol provides datagram delivery across
Multiple networks

SSH User
Authentication Produced
Authenticates the client-side
User to the server

SSH User
Connection Protocol
Multiplexes the encrypted
tunned into several logical
channels

SSH Transport Layer Protocol
Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression

TCP
Transmission control protocol provides reliable, connection-
Oriented end-to-end delivery

IP
Internet protocol provides datagram delivery across
Multiple networks

SSH User
Authentication Produced
Authenticates the client-side
User to the server

SSH User
Connection Protocol
Multiplexes the encrypted
tunned into several logical
channels

 User Authentication Protocol : Authenticates the user to the server.

 Connection Protocol : Multiplexes multiple logical communications channels over a single, underlying
SSH connection.

Transport Layer Protocol

HOST KEYS Server authentication occurs at the transport layer, based on the server possessing a
public/private key pair. A server may have multiple host keys using multiple different asymmetric encryption
algorithms. Multiple hosts may share the same host key. RFC 4251 dictates two alternative trust models
that can be used:

1. The client has a local database that associates each host name (as typed by the user) with the
corresponding public host key. This method requires no centrally administered infrastructure and no
third-party coordination.

2. The host name-to-key association is certified by a trusted certification authority (CA). The client only
knows the CA root key and can verify the validity of all host keys certified by accepted CAs.

PACKET EXCHANGE Figure 16.9 illustrates the sequence of events in the SSH Transport Layer
Protocol. First, the client establishes a TCP connection to the server. This is done via the TCP protocol and
is not part of the Transport Layer Protocol. Once the connection is established, the client and server
exchange data, referred to as packets, in the data field of a TCP segment. Each packet is in the following
format (Figure 16.10).

 Packet length: Length of the packet in bytes, not including the packet length and MAC fields.

 Padding length: Length of the random padding field.

 Payload: Useful contents of the packet. Prior to algorithm negotiation, this field is uncompressed. If
compression is negotiated, then in subsequent packets, this field is compressed.

M.Sc II Year III Semester

114
Rahul Publications

 Random padding: Once an encryption algorithm has been negotiated, this field is added. It contains
random bytes of padding so that that total length of the packet (excluding the MAC field) is a multiple
of the cipher block size, or 8 bytes for a stream cipher.

 Message authentication code (MAC): If message authentication has been negotiated, this field
contains the MAC value. The MAC value is computed over the entire packet plus a sequence
number,excluding the MAC field. The sequence number is an implicit 32-bit packet sequence that is
initialized to zero for the first packet and incremented for every packet. The sequence num- ber is
not included in the packetsent over the TCP connection.

UNIT - IV NETWORK SECURITY

115
Rahul Publications

Payload

COMPRESS

pkt1 pd1 paddingSeq #

ENCRYPT

Compressed payload

Ciphertext

MAC

SSH Packet

pktl = packet length
pdl = paddling length

Payload

COMPRESS

pkt1 pd1 paddingSeq #

ENCRYPT

Compressed payload

Ciphertext

MAC

SSH Packet

pktl = packet length
pdl = paddling length

SSH Transport Layer Protocol packet Formation

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is authen- ticated
to the server.

Message Types and Formats

Three types of messages are always used in the User Authentication Protocol. Authentication requests
from the client have the format :

byte- SSH_MSG_USERAUTH_REQUEST (50)

string user name string service name string method name

... method specific fields

where user name is the authorization identity the client is claiming, service name is the facility to which the
client is requesting access and method name is the authentication method being used in this request. The
first byte has decimal value 50, which isinterpreted as SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts therequest but requires one
or more additional authentication methods, the server sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue

boolean partial success

Message Exchange

The message exchange involves the following steps.

1. The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method of none.

M.Sc II Year III Semester

116
Rahul Publications

2. The server checks to determine if the user name is valid. If not, the server returns SSH_
MSG_USERAUTH_FAILURE with the partial success value of false. If the user name is valid, the
serverproceeds to step 3.

3. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more authentication methods
to be used.

4. The client selects one of the acceptable authentication methods and sends a SSH_MSG_USE
RAUTH_REQUEST with that method name and the required method-specific fields.

5. If the authentication succeeds and more authentication methods are required, the server proceeds
tostep 3, using a partial success value of true. If the authentication fails, the server proceeds to step 3,
using a partialsuccess value of false.

6. When all required authentication methods succeed, the server sends a SSH _ MSG _ USERAUTH _
SUCCESS message, and the Authentication Protocol is over.

Authentication Methods

The server may require one or more of the following authentication methods.

• publickey : The details of this method depend on the public-key algorithm chosen. In essence,
the client sends a message to the server that contains the client’s public key, with the message
signed by theclient’s private key. When the server receives this message, it checks whether the
supplied key is acceptablefor authentication and, if so, it checks whether the signature is correct.

• password : The client sends a message containing a plaintext password, which is protected
byencryption by the Transport Layer Protocol.

• hostbased : Authentication is performed on the client’s host rather than the client itself.

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and assumes that
a secureauthentication connection is in use.

Channel Mechanism

All types of communication using SSH, such as a terminal session, are supportedusing separate
channels. Either side may open a channel. For each channel, each side associates a uniquechannel
number, which need not be the same on both ends. Channels are flow controlled using a window
mechanism. No data may be sent to a channel until a message is received to indicate that window
space isavailable.

Figure 16.11 provides an example of Connection Protocol Message Exchange.

Channel Types

Four channel types are recognized in the SSH Connection Protocol specification.

Session : The remote execution of a program. The program may be a shell, an application such as
file transferor e-mail, a system command, or some built-in subsystem. Once a session channel is opened,
subsequentrequests are used to start the remote program.

UNIT - IV NETWORK SECURITY

117
Rahul Publications

Establish Authenticated Transport Layer Connection

SSH_MSG_CHANNEL_OPEN

SSH_MSG_CHANNEL_OPEN_CONFIRMATION

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

Data
transfer

Close a
channel

Example SSH Connection Protocol Message Exchange

Open a
channel

Establish Authenticated Transport Layer Connection

SSH_MSG_CHANNEL_OPEN

SSH_MSG_CHANNEL_OPEN_CONFIRMATION

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

Data
transfer

Close a
channel

Example SSH Connection Protocol Message Exchange

Open a
channel

• x11 : This refers to the X Window System, a computer software system and net- work protocol
that provides a graphical user interface (GUI) for networked computers. X allows applications to run
on a networkserver but to be displayed on a desktop machine.

• forwarded-tcpip : This is remote port forwarding, as explained in the next sub- section.

• direct-tcpip : This is local port forwarding, as explained in the next subsection.

• x11 : This refers to the X Window System, a computer software system and net- work protocol
that provides a graphical user interface (GUI) for networked computers. X allows applications to run
on a networkserver but to be displayed on a desktop machine.

• forwarded-tcpip : This is remote port forwarding, as explained in the next sub- section.

• direct-tcpip : This is local port forwarding, as explained in the next subsection.

Port Forwardning

One of the most useful features of SSH is port forwarding. In essence, port forwarding provides the
ability to convert any insecure TCP connection into a secure SSH connection. This is also referredto as
SSH tunneling. We need to know what a port is in this context. A port is an identifier of a user of TCP.So,
any application that runs on top of TCP has a port number. Incoming TCP traffic is delivered to
theappropriate application on the basis of the port number.An application may employ multiple port
numbers.

M.Sc II Year III Semester

118
Rahul Publications

Figure 16.12 illustrates the basic concept behind port forwarding. We have a client application that
isidentified by port number x and a server application identi- fied by port number y. At some point, the
client application invokes the local TCP entity and requests a connection to the remote server on port y.
The localTCP entity negotiates a TCP connection with the remote TCP entity, such that the connection
links local portx to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer Protocol establishes a
TCP connection between the SSH client and server entities with TCP port numbers a and b, respectively.
A secure SSH tunnel is established over this TCP connection. Traffic from the client at port x is redirected
tothe localSSH entity and travels through the tunnel where the remote SSH entity delivers the data to the
server application on port y. Traffic in the other direction is similarly redirected.

SSH supports two types of port forwarding: local forwarding and remote for- warding. Local
forwardingallows the client to set up a “hijacker” process. This will intercept selected application-level
traffic and redirect it from an unsecured TCP connection to a secure SSH tunnel. SSH is configured to
listen on selected ports. SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On
the otherend, the SSH server sends the incoming traffic to the destination port dic- tated by the client
application.

UNIT - IV NETWORK SECURITY

119
Rahul Publications

We can secure this traffic in the following way :

1. The SSH client sets up a connection to the remote server.

2. Select can unused local port number, say 9999, and configure SSH to accept traffic from thisport

destined for port 110 on the server.

3. The SSH client informs the SSH server to create a connection to the destina tion, in this case mail

server port 110.

4. The client takes any bits sent to local port 9999 and sends them to the server inside theencrypted

SSH session. The SSH server decrypts the incoming bits and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110 and sends theminside the

SSH session back to the client, who decrypts and sends them to the process connected to port 9999.

4.4 E-MAIL SECURITY

4.4.1 Pretty Good Privacy

Q8. What is PGP (Pretty Good Privacy) discuss it ?

Ans :

PGP has grown explosively and is now widely used. A number of reasons can be cited for this

growth.

1. It is available free worldwide in versions that run on a variety of platforms, including

Windows,UNIX, Macintosh, and many more.

2. It is based on algorithms that have survived extensive public review and are con- sidered extremely

secure. Specifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryption.

3. It has a wide range of applicability, from corporations that wish to select and enforce a

standardizedscheme for encrypting files and messages to individuals who wish to communicate

securely with othersworldwide over the Internet and other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards organization.

5. PGP is now on an Internet standards track

Notation

Most of the notation used in this chapter has been used before, but a few terms are new. It is

perhaps best to summarize those at the beginning. The following symbols are used.

M.Sc II Year III Semester

120
Rahul Publications

Ks = session key used in symmetric encryption scheme

PRa = private key of user A, used in public key encryption scheme

PUa = public key of user A, used in public-key encryption scheme

EP = public-key encryption

DP = public-key descryption

EC = symmetric encryption

DC = symmetric descryption

H = hash function

|| = concatenation

Z = compression using ZIP algorithm
R64 = conversion to radix 64 ASCII format
The actual operation of PGP, as opposed to the management of keys, consists of four services :

Authentication

Figure 18.1a illustrates the digital signature service provided by PGP. This is the digital signature
scheme discussed in Chapter 13 and illustrated in Figure 13.2. The sequence is as follows.

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender’s private key, and the result is prepended to
the message.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the hash code.

5. The receiver generates a new hash code for the message and compares it with the decrypted
hashcode. If the two match, the message is accepted as authentic.

Radix-64 Conversion

ZIP

CAST or IDEA or
Three-key Triple DES
with Diffie-Hellman or

RSA

DSS/SHA or RSA/SHA

Algorithms Used

To provide transparency for e-mail
applications, an encrypted message may
be converted to an ASCII string using
radix-64 conversion

E-mail
compatibility

A message may be compressed for
shortage or transmission using ZIP

Compression

A message is encrypted using CAST-128
or Idea or 3DES with a one-time session
key generated by the sender. The session
key is encrypted using Diffie-Hellman or
RSA with the recipient’s public key and
included with the message

Message
encryption

A bash code of a message is created
using SHA-1. This message digest is
encrypted using DSS or RSA with the
sender’s private key and included with
the message

Description

Digital signature

Function

Radix-64 Conversion

ZIP

CAST or IDEA or
Three-key Triple DES
with Diffie-Hellman or

RSA

DSS/SHA or RSA/SHA

Algorithms Used

To provide transparency for e-mail
applications, an encrypted message may
be converted to an ASCII string using
radix-64 conversion

E-mail
compatibility

A message may be compressed for
shortage or transmission using ZIP

Compression

A message is encrypted using CAST-128
or Idea or 3DES with a one-time session
key generated by the sender. The session
key is encrypted using Diffie-Hellman or
RSA with the recipient’s public key and
included with the message

Message
encryption

A bash code of a message is created
using SHA-1. This message digest is
encrypted using DSS or RSA with the
sender’s private key and included with
the message

Description

Digital signature

Function

Table 18.1 : Summary of PGP Services

UNIT - IV NETWORK SECURITY

121
Rahul Publications

Confidentiality

Another basic service provided by PGP is confidentiality, which is provided by encryptingmessages
to be transmitted or to be stored locally as files. In both cases, the symmetric encryption algorithmCAST-
128 may be used. Alternatively, IDEA or 3DES may be used. The 64-bit cipher feedback (CFB) mode is
used.

Figure 18.1b illustrates the sequence, which can be described as follows.

1. The sender generates a message and a random 128-bit number to be used as a session key
forthis message only.

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the ses- sion key.

3. The session key is encrypted with RSA using the recipient’s public key and is prepended to
themessage.

4. The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

As an alternative to the use of RSA for key encryption, PGP provides an option referred to as Diffie-
Hellman.

Compression

As a default, PGP compresses the message after applying the signature but beforeencryption. This
has the benefit of saving space both for e-mail transmission and for file storage.

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store only the uncompressed
message together with the signature for future verification.

M.Sc II Year III Semester

122
Rahul Publications

2. Message encryption is applied after compression to strengthen cryptographic security. Becausethe
compressed message has less redundancy than the original plaintext, cryptanalysis is more difficult.

E-Mail Compatability

When PGP is used, at least part of the block to be transmitted is encrypted. If only thes signature
service is used, then the message digest is encrypted . If theconfidentiality service is used, the message plus
signature are encrypted..

The scheme used for this purpose is radix-64 conversion. Each group of three octets of binary data
ismapped into four ASCII characters.

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys, public keys, private keys,
andpassphrase-based symmetric keys :

1. A means of generating unpredictable session keys is needed.

2. We would like to allow a user to have multiple public-key/private-key pairs. One reason is that
theuser may wish to change his or her key pair from time to time. When this happens, any
messages in the pipeline will be constructed with an obsolete key.

3. Each PGP entity must maintain a file of its own public/private key pairs as well as a file ofpublic
keys of correspondents.

Session Key Generation

Each session key is associated with a single message and is used only for the purpose of
encrypting and decrypting that message. Recall that message encryption/decryption is done witha symmetric
encryption algorithm. CAST-128 and IDEA use 128-bit keys; 3DES uses a 168-bit key. For the following
discussion, we assume CAST-128.

Random 128-bit numbers are generated using CAST-128 itself. The input to the random number
generator consists of a 128-bit key and two 64-bit blocks that are treated as plaintext to be encrypted.
Using cipherfeedback mode, the CAST-

Key Indentifiers

The solution adopted by PGP is to assign a key ID to each public key that is, with very high
probability, unique within a user ID.

A message consists of three components: the message component, a signature (optional), and
a session key component (optional).

The message component includes the actual data to be stored or transmitted, as well as
a filename and atimestamp that specifies the time of creation.

The signature component includes the following.

 Timestamp : The time at which the signature was made.

 Message digest : The 160-bit SHA-1 digest encrypted with the sender’s private signature key.
The digest is calculated over the signature timestamp concatenated with the data portion of the
message component.

UNIT - IV NETWORK SECURITY

123
Rahul Publications

Notation :
E(PUb, ·) = encryption with user b’s public key
E(PRa, ·) = encryption with user a’s private key
E(Ks, ·) = encryption with session key
ZIP = Zip compression function
R64 = Radix-64 conversion function

Fig. : General Format PGP Message (from A to B)

Public-Key Management

PGP provides a structure for solving this problem with several suggested options that may be
used. Because PGP is intended for use in a variety of formal and informal environments.

Approaches to Public-key Management, for example, if A got the key from a bulletin board system
(BBS) that was used by B to post the public key but that has been compromised by C. The result is that
two threats now exist. First, C can send messages to Aand forge B’s signature so that A will accept the
message as coming from B. Second, any encrypted messagefrom A to B can be read by C.

A number of approaches are possible for minimizing the risk that a user’s public-key ring contains
falsepublic keys. Suppose that A wishes to obtain a reliable public key for B. The following are some
approachesthat could be used.

1. Physically get the key from B. B could store her public key (PUb) on a floppy disk and hand it to A.
A could then load the key into his system from the floppy disk. This is a very secure method but has
obvious practical limitations.

M.Sc II Year III Semester

124
Rahul Publications

2. Verify a key by telephone. If A can recognize B on the phone, A could call B and ask her to dictate
thekey, in radix-64 format, over the phone. As a more practical alternative, B could transmit her key
in an e-mailmessage to A. A could have PGP generate a 160-bit SHA-1 digest of the key and display
it in hexadecimal format;.

3. Obtain B’s public key from a mutual trusted individual D. For this purpose, the introducer, D, creates
asigned certificate. The certificate includes B’s public key, the time of creation of the key, and a validity
period forthe key. D generates an SHA-1 digest of this certificate, encrypts it with her private key, and
attaches the signature to the certificate. Because only D could have created the signature, no one else
can create a false public key and pretend that it is signed by D. The signed certificate could be sent
directly to A by B or D, or itcould be posted on a bulletin board.

4. Obtain B’s public key from a trusted certifying authority. Again, a public-key certificate is createdand
signed by the authority. A could then access the authority, providing a user name and receiving a
signedcertificate.

4.5 S/MIME

Q9. Write about S/MIME.

Ans :
Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement to the MIME

Internet e-mail format standard based on technology from RSA Data Security.

RFC 5322
RFC 5322 defines a format for text messages that are sent using electronic mail. It has been the

standard forInternet-based text mail messages and remains in common use. In the RFC 5322 context,
messages are viewed ashaving an envelope and contents.The envelope contains whatever information is
needed to accomplishtransmission and delivery. The contents compose the object to be delivered to the
recipient.

Multipurpose Internet Mail Extensions
Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 framework that is

intended to address some of the problems and limitations of the use of Simple Mail Transfer Protocol
(SMTP), defined in RFC 821.

1. SMTP cannot transmit executable files or other binary objects. A number of schemes are in
usefor converting binary files into a text form that can be used by SMTP mail systems,
including the popular UNIX UUencode/UUdecode scheme.

2. SMTP cannot transmit text data that includes national language characters, because these are
represented by 8-bit codes with values of 128 decimal or higher, and SMTP is limited to 7-bit
ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not use a
consistentset of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual data included in
X.400 messages.

Overview

The MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an RFC 5322
header. Thesefields provide information about the body of the message.

UNIT - IV NETWORK SECURITY

125
Rahul Publications

2. A number of content formats are defined, thus standardizing representations that support
multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content for- mat into a
form that isprotected from alteration by the mail system.

The five header fields defined in MIME are

• MIME-Version : Must have the parameter value 1.0. This field indicates that the message
conforms to RFCs 2045 and 2046.

• Content-Type: Describes the data contained in the body with sufficient detail that the
receiving user agent can pick an appropriate agent or mechanism to represent the data to the
user or otherwise deal with the data in an appropri- ate manner.

• Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent
thebody of the message in a way that is acceptable for mail transport.

• Content-ID : Used to identify MIME entities uniquely in multiple contexts.

• Content-Description: A text description of the object with the body; this is useful when the
object isnot readable (e.g., audio data).

Functions

S/MIME provides the following functions.

• Enveloped data : This consists of encrypted content of any type and encrypted- content
encryption keys for one or more recipients.

• Signed data : A digital signature is formed by taking the message digest of the content to be
signed and then encrypting that with the private key of the signer. The content plus signature
are then encoded using base64 encoding. A signed data message can only be viewed by a
recipient with S/MIME capability.

• Clear-signed data: As with signed data, a digital signature of the content is formed. However,
in this case, only the digital signature is encoded using base64. As a result, recipients without S/
MIME capabilitycan view the message content, although they cannot verify the signature.

• Signed and enveloped data : Signed-only and encrypted-only entities may be nested, so
that encrypted data may be signed and signed data or clear-signed data may be encrypted.

4.6 IP SECURITY

4.6.1 IP Security Overview

10. Explain IP security applications.

Ans :
Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across private and
public WANs, and across the Internet. Examples of its use include :

• Secure branch office connectivity over the Internet: A company can build a secure virtual
private network over the Internet or over a public WAN. This enables a business to rely heavily

M.Sc II Year III Semester

126
Rahul Publications

on the Internet andreduce its need for private networks, saving costs and network management
overhead.

• Secure remote access over the Internet: An end user whose system is equipped with IP
securityprotocols can make a local call to an Internet Service Provider (ISP) and gain secure
access to a companynetwork. This reduces the cost of toll charges for traveling employees and
telecommuters.

• Establishing extranet and intranet connectivity with partners: IPsec can be used to secure
communication with other organizations, ensuring authentication and confidentiality and providing
a key exchange mechanism.

• Enhancing electronic commerce security: Even though some Web and electronic commerce
applicationshave built-in security protocols, the use of IPsec enhances that security. IPsec guarantees
that all traffic designatedby the network administrator is both encrypted and authenticated, adding
an additional layer of security towhatever is provided at the application layer.

Figure 19.1 is a typical scenario of IPsec usage.

Q11. What are the benefits of IPSec ?

Ans :
Benefits of IPsec

Some of the benefits of IPsec :
 When IPsec is implemented in a firewall or router, it provides strong security that can be applied

to alltraffic crossing the perimeter.

 IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and the firewall is
the only means of entrance from the Internet into the organization.

UNIT - IV NETWORK SECURITY

127
Rahul Publications

 IPsec is below the transport layer (TCP, UDP) and so is transparent to applications. There is

noneed to change software on a user or server system when IPsec is implemented in the firewall

or router.

 IPsec can be transparent to end users. There is no need to train users on security mechanisms,

issue keyingmaterial on a per-user basis, or revoke keying material when users leave the

organization.

 IPsec can provide security for individual users if needed. This is useful for offsite workers and for

settingup a secure virtual subnetwork within an organization for sensitive applications.

Q12. Explain IP security services.

Ans :

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select required security

protocols,determine the algorithm(s) to use for the service(s), and put in place any cryptographic keys

required toprovide the requested services. lists the following services:

 Access control

 Connectionless integrity

 Data origin authentication

 Rejection of replayed packets (a form of partial sequence integrity)

 Confidentiality (encryption)

 Limited traffic flow confidentiality

Q13. Write about transport mode and tunnel mode.

Ans :

Transport and Tunnel Modes

Transport Mode

Transport mode provides protection primarily for upper-layer protocols. That is, transport mode

protection extends to the payload of an IP packet.. When ahost runs AH or ESP over IPv4, the payload

is the data that normally follow the IP header. For IPv6, thepayload is the data that normally follow both

the IP header and any IPv6 extensions headers that arepresent, with the possible exception of the destination

options header, which may be included in theprotection.

ESP in transport mode encrypts and optionally authenticates the IP payload but not the IP header.

AH in transport mode authenticates the IP payload and selected portions of the IP header.

M.Sc II Year III Semester

128
Rahul Publications

Tunnel Mode

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH orESP fields
are added to the IP packet, the entire packet plus security fields is treated as the payload of new outer IP
packet with a new outer IP header. The entire original, inner, packet travels through a tunnel from one
point of an IP network to another; no routers along the way are able to examine the inner IP header.
Because the original packet is encapsulated, the new, larger packet may have totally different source and
destination addresses, adding to the security.

Tunnel mode is used when one or both ends of a securityassociation (SA) are a security gateway,
such as a firewall or router that implements IPsec. With tunnel mode, a number of hosts on networks
behind firewalls may engage in secure communications without implementing IPsec. The unprotected
packets generated by such hosts are tunneled through external networks by tunnel mode SAs set up by
the IPsec software in the firewall or secure router at the boundary of the local network.

UNIT - IV NETWORK SECURITY

129
Rahul Publications

4.6.2 IP Security Architecture

Q14. Describe IP Security Architecture.

Ans :
 Architecture: Covers the general concepts, security requirements, definitions, and mechanisms

defining IPSec technology.

 Encapsulating Security Payload (ESP): Covers the packet format and general issues related to
the use of the ESP for packet encryption and, optionally, authentication.

 Authentication Header (AH): Covers the packet format and general issues related to the use of
AH for packet authentication.

 Encryption Algorithm: A set of documents that describe how various encryption algorithms are
used for ESP.

Fig. : 1.2 IPSec Document Overview

 Authentication Algorithm: A set of documents that describe how various authentication algorithms
are used for AH and for the authentication option of ESP.

 Key Management: Documents that describe key management schemes.

Domain of Interpretation (DOI): Contains values needed for the other documents to relate to each
other. These include identifiers for approved encryption and authentication algorithms, as well as operational
parameters such as key lifetime.

4.6.3 Encapsulating Security Payload

Q15. Explain about ESP (Encapsulaitng Security Payload).

Ans :
ESP can be used to provide confidentiality, data origin authentication, connection- less integrity, an

anti-replay service (a form of partial sequence integrity), and (lim- ited) traffic flow confidentiality. The set

M.Sc II Year III Semester

130
Rahul Publications

of services provided depends on options selected at the time of Security Association (SA) establishment
and on the location of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms, including authenticated
encryption algorithms such as GCM.

ESP Format

Figure 19.5 a shows the top-level format of an ESP packet. It contains the following fields.

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-
replayfunction, as discussed for AH.

 Payload Data (variable): This is a transport-level segment (transport mode) or IP packet (tunnel
mode) that is protected by encryption.

 Padding (0 – 255 bytes): The purpose of this field is discussed later.

 Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

 Next Header (8 bits): Identifies the type of data contained in the payload data field by
identifyingthe first header in that payload (for example, an extension header in IPv6, or an
upper-layer protocol such asTCP).

 Integrity Check Value (variable): A variable-length field (must be an integral number of
32-bit words) that contains the Integrity Check Value computed over the ESP packet minus the
Authentication Data field.

UNIT - IV NETWORK SECURITY

131
Rahul Publications

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and
Next Header fields are encrypted by the ESP service.
If the algorithm used to encrypt the payload requires
crypto- graphic synchronization data, such as an
initialization vector (IV), then these data may be
carried explicitly at the beginning of the Payload
Data field. If included, an IV is usually not encrypted,
although it is often referred to as being part of the
ciphertext.

Padding

The Padding field serves several purposes:

• If an encryption algorithm requires the plaintext
to be a multiple of some number of bytes (e.g.,
the multiple of a single block for a block cipher),
the Padding field is used to expand the plaintext
(consisting of the Payload Data, Padding, Pad
Length, and Next Header fields) to the required
length.

• The ESP format requires that the Pad Length
and Next Header fields be right aligned within
a 32-bit word. Equivalently, the ciphertext must
be an integer multiple of 32 bits. The Padding
field is used to assure this alignment.

Anti-Replay Service

A replay attack is one in which an attacker
obtains a copy of an authenticated packet and later
transmits it to the intended destination. The receipt
of duplicate, authenticated IP packets may disrupt
service in some way or may have some other
undesired consequence. The Sequence Number
field is designed to thwart such attacks. First, we
discuss sequence number generation by the sender,
and then we look at how it is processed by the
recipient.

4.6.5 Combining Security Associations

16. Explain how to combine security
associations.

Ans :
Security associations may be combined into

bundles in two ways :

 Transport Adjacency : Refers to applying
more than one security protocol to the same

IP packet without invoking tunneling. This
approach to combining AH and ESP allows for
only one level of combination; further
nesting yields no added benefit since the
processing is performed at one IPsec instance:the
(ultimate) destination.

 Iterated tunneling: Refers to the application
of multiple layers of security protocols effected
through IP tunneling. This approach allows for
multiple levels of nesting, since each tunnel can
originate or terminate at a different IPsec site
along the path.

The two approaches can be combined, for
example, by having a transport SA between hosts
travel part of the way through a tunnel SA between
security gateways.

Authentication Plus Confidentiality

Encryption and authentication can be
combined in order to transmit an IP packet that has
both confidentiality and authentication between
hosts. We look at several approaches.

ESP with Authentication Option

This approach is illustrated in Figure 19.8. In
this approach, the user first applies ESP to the data
to be protected and then appends the
authentication data field. There are actually two
subcases :

• Transport mode ESP : Authentication and
encryption apply to the IP payload delivered
to the host, but the IP header is not protected.

• Tunnel mode ESP: Authentication applies to
the entire IP packet delivered to the outer
IPdestination address (e.g., a firewall), and
authentication is performed at that
destination. The entire inner IP packet is
protected by the privacy mechanism for
delivery to the inner IP destination.

For both cases, authentication applies to the
ciphertext rather than the plaintext.

Transport Adjacency

Another way to apply authentication after
encryption is to use two bundled transport SAs,

M.Sc II Year III Semester

132
Rahul Publications

with the inner being an ESP SA and the outer being an AH SA. In this case, ESP is used without
itsauthentication option.

Transport-Tunnel Bundle

The use of authentication prior to encryption might be preferable for several reasons. First, because
the authentication data are protected by encryption, it is impossible for anyone to intercept the message
and alter the authentication data without detection. Second, it may be desirable to storethe authentication
information with the message at the destination for later reference.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that must be supported
by compliant IPsec hosts (e.g., workstation, server) or security gateways (e.g. firewall, router). These
areillustrated in Figure 19.10.

The lower part of each case in the figure represents the physical connectivity of the elements; the
upper part representslogical connectivity via one or more nested SAs. Each SA can be either AH or ESP.
For host-to-host SAs, the mode may be either transport or tunnel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec. For any two end systems
tocommunicate via an SA, they must share the appropriate secret keys. Among the possible combinations
are

• AH in transport mode

• ESP in transport mode

• ESP followed by AH in transport mode (an ESP SA inside an AH SA)

• Any one of a, b, or c inside an AH or ESP in tunnel mode

Case 2. Security is provided only between gateways (routers, firewalls, etc.) and no hosts implement
IPsec. This case illustrates simple virtual private network support.

UNIT - IV NETWORK SECURITY

133
Rahul Publications

Case 3. This builds on case 2 by adding end-to-
end security. The same combinations discussed for
cases 1 and 2 are allowed here. The gateway-to-
gateway tunnel provides either authentication,
confidentiality, or both for all traffic between end
systems.

Case 4. This provides support for a remote host
that uses the Internet to reach an organization’s
firewall and thento gain access to some server or
workstation behind the firewall.

4.6.6 Internet Key Exchange

Q17. Write about Inter Key Exchange.

Ans :
The key management portion of IPsec

involves the determination and distribution of secret
keys. A typical requirement is four keys for
communication between two applications: transmit
and receive pairs for both integrity and
confidentiality. The IPsec Architecture document
mandates support for two types of keymanagement:

 Manual: A system administrator manually
configures each system with its own keys and
with the keys of other communicating systems.
This is practical for small, relatively static
environments.

 Automated: An automated system enables
the on-demand creation of keys for SAs and
facilitates the use of keys in a large distributed
system with an evolving configuration.

 The default automated key management
protocol for IPsec is referred to as ISAKMP/
Oakley and consists of the following elements:

 Oakley Key Determination Protocol:
Oakley is a key exchange protocol based on
the Diffie-Hellman algorithm but providing
added security. Oakley is generic in that it does
not dictate specific formats.

 Internet Security Association and Key
Management Protocol (ISAKMP): ISAKMP
provides aframework for Internet key
management and provides the specific protocol
support, including formats, fornegotiation of
security attributes.

Key Determination Protocol

IKE key determination is a refinement of the
Diffie-Hellman key exchange algo- rithm. Recall that
Diffie-Hellman involves the following interaction
between users A and B. There is prior agreement
on two globalparameters: q, a large prime number;
and a, a primitive root of q. A selects a random
integer XA as its privatekey and transmits to B its
public key VA = aXA mod q. Similarly, B selects a
random integer XB as its privatekey and transmits
to A its public key VB = aXB mod q. Each side
can now compute the secret session key:

K = (VB)XA mod q = (VA)XB mod q =
aXAXB mod q

The Diffie-Hellman algorithm has two
attractive features :

 Secret keys are created only when needed.
There is no need to store secret keys for a long
period oftime, exposing them to increased
vulnerability.

 The exchange requires no pre-existing
infrastructure other than an agreement on the
global parameters.

IKE key determination is designed to retain
the advantages of Diffie- Hellman, while countering
its weaknesses.

Features of IKE Determination

The IKE key determination algorithm is
characterized by five important features :

1. It employs a mechanism known as cookies to
thwart clogging attacks.

2. It enables the two parties to negotiate a group;
this, in essence, specifies the global parameters
of theDiffie-Hellman key exchange.

3. It uses nonces to ensure against replay attacks.

4. It enables the exchange of Diffie-Hellman public
key values.

5. It authenticates the Diffie-Hellman exchange to
thwart man-in-the-middle attacks.

M.Sc II Year III Semester

134
Rahul Publications

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and delete security
associations.IKE HEADER FORMAT An IKE message consists of an IKE header followed by one or
more payloads. All of thisis carried in a transport protocol. The specification dictates that
implementations must support the use of UDPfor the transport protocol.

Figure 19.12a shows the header format for an IKE message. It consists of the following fields.

 Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE security
association(SA).

 Responder SPI (64 bits): A value chosen by the responder to identify a unique IKE SA.

 Next Payload (8 bits): Indicates the type of the first payload in the message; payloads
are discussed inthe next subsection.

 Major Version (4 bits): Indicates major version of IKE in use.

 Minor Version (4 bits): Indicates minor version in use.

 Exchange Type (8 bits): Indicates the type of exchange; these are discussed later in this section.

 Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits are
defined so far. Theinitiator bit indicates whether this packet is sent by the SA ini-
tiator. The version bit indicates whether the transmitter is capable of using a higher major version
number than the one currently indicated. The response bit indicates whether this is a response
to a message containing the same message ID.

 Message ID (32 bits): Used to control retransmission of lost packets and matching of
requestsand responses.

 Length (32 bits): Length of total message (header plus all payloads) in octets.

UNIT - IV NETWORK SECURITY

135
Rahul Publications

IKE Payload Types

All IKE payloads begin with the same generic
payload header shown in Figure 19.12b. The Next
Payload field has a value of 0 if this is the last payload
in the message; otherwise its value is thetype of
the next payload. The Payload Length field indicates
the length in octets of this payload, including the
generic payload header.

These elements are formatted as substructures
within the payload as follows.

 Proposal: This substructure includes a proposal
number, a protocol ID (AH, ESP, or IKE),
anindicator of the number of transforms, and
then a transform substructure.

 Transform: Different protocols support
different transform types. The trans- forms are
used primarilyto define cryptographic
algorithms to be used with a particular protocol.

 Attribute: Each transform may include
attributes that modify or complete the
specification of the transform. An example is
key length.

1. The Key Exchange payload can be used
for a variety of key exchange tech- niques,
including Oakley,Diffie-Hellman, and the
RSA-based key exchange used by PGP.
The Key Exchange data field contains the
data required to generate a session key and
is dependent on the key exchange
algorithm used.

2. The Identification payload is used to
determine the identity of communicating
peers and may be used fordetermining
authenticity of information. Typically the
ID Data field will contain an IPv4 or IPv6
address.

3. The Certificate payload transfers a public-
key certificate. The Certificate Encoding
field indicates the type of certificate or
certificate-related information,

4. The Delete payload indicates one or
more SAs that the sender has deleted from

its database and that therefore are no
longer valid.

5. The Vendor ID payload contains a
vendor-defined constant. The constant is
used by vendors to identify and recognize
remote instances of their implementa-
tions. This mechanism allows a vendor to
experiment with new features while
maintaining backward compatibility.

6. The Traffic Selector payload allows
peers to identify packet flows for process-
ing by IPsec services.

7. The Encrypted payload contains other
payloads in encrypted form. The encrypted
payload format is similar to that of ESP. It
may include an IV if the encryption
algorithm requires it and an ICV if
authentication is selected.

8. The Configuration payload is used to
exchange configuration information
between IKE peers.

4.6.7 Industries

Q18. Write about Intruders.

Ans :
One of the two most publicized threats to

security is the intruder (the other is viruses), often
referred to as a hacker or cracker. There are three
classes of intruders :

 Masquerader : An individual who is not
authorized to use the computer and who
penetrates a system’s access controls to exploit
a legitimate user’s account.

 Misfeasor : A legitimate user who accesses
data, programs, or resources for which such
access is not authorized, or who is authorized
for such access but misuses his or her privileges.

 Clandestine user : An individual who seizes
supervisory control of the system and uses
this controlto evade auditing and access controls
or to suppress audit collection lists the following
examples of intrusion :

M.Sc II Year III Semester

136
Rahul Publications

• Performing a remote root compromise of
an e-mail server

• Defacing a Web server

• Guessing and cracking passwords

• Copying a database containing credit card
numbers

• Viewing sensitive data, including payroll
records and medical information, without
authorization

• Running a packet sniffer on a workstation
to capture usernames and pass- words

• Using a permission error on an anonymous
FTP server to distribute pirated software
and music files.

• Dialing into an unsecured modem and
gaining internal network access

• Posing as an executive, calling the help
desk, resetting the executive’s e-mail
password, and learning the new password

• Using an unattended, logged-in work
station without permission.

4.7 VIRUS AND FIREWALLS

4.7.1 Intruders

Q19. What are the various types of intruders
and explain intrusion techniques ?

Ans :
One of the most publicized attacks to security

is the intruder, generally referred to as hacker or
cracker. Three classes of intruders are as follows:

 Masquerader – an individual who is not
authorized to use the computer and
who penetrates a system s access controls to
exploit a legitimate user s account.

 Misfeasor – a legitimate user who accesses
data, programs, or resources for which
such access is not authorized, or who is
authorized for such access but misuse his or
her privileges.

 Clandestine user – an individual who seizes
supervisory control of the system and uses this
control to evade auditing and access controls
or to suppress audit collection.

Intrusion Techniques

The objective of the intruders is to gain access
to a system or to increase the range of privileges
accessible on a system. Generally, this requires
the intruders to acquire information that should
be protected. In most cases, the information is in
the form of a user password.

Typically, a system must maintain a file that
associates a password with each authorized user. If
such a file is stored with no protection, then it is an
easy matter to gain access to it. The password files
can be protected in one of the two ways:

 One way encryption – the system stores only
an encrypted form of user s password.
In practice, the system usually performs a one
way transformation (not reversible) in which
the password is used to generate a key for the
encryption function and in which a fixed length
output is produced.

 Access control – access to the password file
is limited to one or a very few accounts.

The following techniques are used for
learning passwords.

 Try default passwords used with standard
accounts that are shipped with the system.
Many administrators do not bother to change
these defaults.

 Exhaustively try all short passwords.

 Try words in the system s online dictionary or a
list of likely passwords.

 Collect information about users such as their
full names, the name of their spouse and
children, pictures in their office and books in
their office that are related to hobbies.

 Try user s phone number, social security
numbers and room numbers.

 Try all legitimate license plate numbers.

 Use a torjan horse to bypass restriction on
access.

UNIT - IV NETWORK SECURITY

137
Rahul Publications

 Tap the line between a remote user and the
host system.

Two Principle Countermeasures

1. Detection – concerned with learning of an
attack, either before or after its success.

2. Prevention – challenging security goal and an
uphill bottle at all times.

Q20. What is intrusion detection ? Explain
about intrusion detection techniques.

Ans :
Intrusion Detection

Inevitably, the best intrusion prevention
system will fail. A system’s second line of defense is
intrusion detection, and this has been the focus of
much research in recent years. This interest is
motivated by anumber of considerations, including
the following:

i. If an intrusion is detected quickly enough, the
intruder can be identified and ejected from the
system before any damage is done or any data
are compromised. Even if the detection is not
sufficientlytimely to preempt the intruder, the
sooner that the intrusion is detected, the less
the amount of damage and the more quickly
that recovery can be achieved.

ii. An effective intrusion detection system can
serve as a deterrent, so acting to pre- vent
intrusions.

iii. Intrusion detection enables the collection of
information about intrusion tech- niques that
can beused to strengthen the intrusion
prevention facility.

Intrusion detection is based on the assumption
that the behavior of the intruder differs from that
of a legitimate user in ways that can be quantified.

Identifies the following approaches to
intrusion detection :

1. Statistical anomaly detection: Involves the
collection of data relating to the behavior of
legitimate users over a period of time. Then
statistical tests are applied to observed behavior

to determine with a highlevel of confidence
whether that behavior is not legitimate user
behavior.

a. Threshold detection: This approach
involves defining thresholds, independent
of user, for thefrequency of occurrence of
various events.

b. Profile based: A profile of the activity of
each user is developed and used to detect
changes in thebehavior of individual
accounts.

2. Rule-based detection : Involves an attempt
to define a set of rules that can be used to decide
that agiven behavior is that of an intruder.

a. Anomaly detection : Rules are
developed to detect deviation from
previous usage patterns.

b. Enetration identification : An expert
system approach that searches for
suspicious behavior.

Audit Records

A fundamental tool for intrusion detection is
the audit record. Some record of ongoing activity
by users must be maintained as input to an intrusion
detection system. Basically, two plans are used :

 Native audit records: Virtually all multiuser
operating systems include accounting software
that collects information on user activity. The
advantage of using this information is that no
additional collection software is needed. The
disadvantage is that the native audit records
may not contain the needed information nor
may not contain it in a convenient form.

 Detection-specific audit records: A
collection facility can be implemented that
generates audit records containing only that
information required by the intrusion detection
system. One advantage of suchan approach is
that it could be made vendor independent and
ported to a variety of systems. The disadvantage
is the extra overhead involved in having, in
effect, two accounting packages running on a
machine.

M.Sc II Year III Semester

138
Rahul Publications

Each audit record contains the following fields :

• Subject : Initiators of actions. A subject is typically a terminal user but might also be a
processacting on behalf of users or groups of users. All activity arises through commands
issued by subjects. Subjects may be grouped into different access classes, and these classes
may overlap.

• Action : Operation performed by the subject on or with an object; for example,
login, read, performI/O, execute.

• Object : Receptors of actions. Examples include files, programs, messages, records, terminals,
printers, and user- or program-created structures.

• Exception-Condition : Denotes which, if any, exception condition is raised on return.

• Resource-Usage : A list of quantitative elements in which each element gives the amount used
of some resource (e.g., number of lines printed or displayed, number of records
read or written, processortime, I/O units used, session elapsed time).

• Time-Stamp : Unique time-and-date stamp identifying when the action took place.

Statistical anomaly detection techniques fall into two broad categories: threshold detection and profile-
based systems.

Threshold detection involves counting the number of occurrences of aspecific event type over an
interval of time. If the count surpasses what is considered a reasonable numberthat one might expect
to occur, then intrusion is assumed.

Profile-based anomaly detection focuses on characterizing the past behavior of individual users or
related groups of users and then detecting significant deviations. A profile may consist of a set of
parameters, sothat deviation on just a single parameter may not be sufficient in itself to signal an alert.

2. Rule-Based Intrusion Detection

Rule-based techniques detect intrusion by observing events in the system and applying a set of rules
that lead to a decision regarding whether a given pattern of activity is or is not suspicious.

Rule-based anomaly detection is similar in terms of its approach and strengths to statistical anomaly
detection. With the rule-based approach, historical audit records are analyzed to identify usage patterns
and to generate automatically rules that describe those patterns. Rules may represent past behavior
patterns of users, programs, privileges, time slots, terminals, and so on. Current behavior is then
observed, and eachtransaction is matched against the set of rules to determine if it conforms to any
historically observed patternof behavior.

Rule-based penetration identification takes a very different approach to intru- sion
detection. The key feature of such systems is the use of rules for identifying known penetrations or
penetrations that would exploit known weaknesses.

3. Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand- alone facilities.
The typical organization, however, needs to defend a distributed collection of hosts supported by a
LAN or internetwork. Although it is possible to mount a defense by using stand-alone intrusion
detection systems on each host, a more effective defense can be achieved by coordination and
cooperation among intrusiondetection systems across the network.

UNIT - IV NETWORK SECURITY

139
Rahul Publications

Following major issues in the design of a distributed intrusion detection system.

• A distributed intrusion detection system may need to deal with different audit record formats. In
aheterogeneous environment, different systems will employ different native audit collection systems
and, ifusing intrusion detection, may employ different formats for security-related audit records.

• One or more nodes in the network will serve as collection and analysis points for the data from the
systems on the network. Thus, either raw audit data or summary data must be transmitted across the
network.

• Either a centralized or decentralized architecture can be used. With a central- ized architecture, thereis
a single central point of collection and analysis of all audit data. This eases the task of correlating
incoming reports but creates a potential bottleneck and single point of failure.

4.7.2 Password Management

Q21. Explain about password management and protection.

Ans :
The front line of defense against intruders is the password system. Virtually all multiuser systems

requirethat a user provide not only a name or identifier (ID) but also a password. The password serves to
authenticate the ID of the individual log- ging on to the system. In turn, the ID provides security in the
following ways :

• The ID determines whether the user is authorized to gain access to a system. In some systems,
only those who already have an ID filed on the system are allowed to gain access.

• The ID determines the privileges accorded to the user. A few users may have supervisory or
“superuser” status that enables them to read files and perform functions that are especially
protected by theoperating system. Some systems have guest or anonymous accounts, and users
of these accounts have more limited privileges than others.

• The ID is used in what is referred to as discretionary access control. For exam- ple, by listing the
IDsof the other users, a user may grant permission to them to read files owned by that user.

Access Control

One way to thwart a password attack is to deny the opponent access to the password file. If the
encrypted password portion of the file is accessible only by a privileged user, then the opponent
cannotread it without already knowing the password of a privileged user several flaws in thisstrategy:

• Many systems, including most UNIX systems, are susceptible to unanticipated break-ins. Once
anattacker has gained access by some means, he or she may wish to obtain a collection of
passwords in order touse different accounts for different logon sessions to decrease the risk of
detection.

• An accident of protection might render the password file readable, thus com- promising all
theaccounts.

• Some of the users have accounts on other machines in other protection domains, and they use
the samepassword. Thus, if the passwords could be read by anyone on one machine, a machine
in another location mightbe compromised.

Thus, a more effective strategy would be to force users to select passwords that are difficult
to guess.

M.Sc II Year III Semester

140
Rahul Publications

Password Selection Strategies

Four basic techniques are in use :

• User education

• Computer-generated passwords

• Reactive password checking

• Proactive password checking

Users can be told the importance of using
hard-to-guess passwords and can be provided with
guidelines forselecting strong passwords. This user
education strategy is unlikely to succeed at most
installations, particularly where there is a large user
population or a lot of turnover.

• Computer-generated passwords also have
problems. If the passwords are quite random
in nature, users willnot be able to remember
them. Even if the password is pronounceable,
the user may have difficulty remembering it and
so be tempted to write it down..

• A reactive password checking strategy is one in
which the system periodically runs its own
password crackerto find guessable passwords.
The system cancels any passwords that are
guessed and notifies the user

• The most promising approach to improved
password security is a proactive password
checker. In thisscheme, a user is allowed to select
his or her own pass- word. However, at the
time of selection, the systemchecks to see if the
password is allowable and, if not, rejects it. Such
checkers are based on the philosophy that, with
sufficient guidance from the system, users can
select memorable passwords from a fairly large
password space that are not likely to be guessed
in a dictionary attack.

The first approach is a simple system for rule
enforcement. For example, the following rules could
be enforced :

• All passwords must be at least eight characters
long.

• In the first eight characters, the passwords must
include at least one each of uppercase,

lowercase,numeric digits, and punctuation
marks.

 These rules could be coupled with advice to the
user. Although this approach is superior to simply
educating users, it may not be sufficient to thwart
password crackers. This scheme alerts crackers as
towhich passwords not to try but may still make it
possible to do password cracking.

4.7.3 Viruses and Related Threats

Q22. What are called malicious programs and
discuss its types ?

Ans :
Perhaps the most sophisticated types of

threats to computer systems are presented by
programs that exploit vulnerabilities in computing
systems.

Malicious Programs

Fig. : Taxonomy of Malicious Programs

Malicious software can be divided into two
categories :

• those that need a host program, and

• those that are independent.

The former are essentially fragments of
programs that cannot exist independently of some
actual application program, utility, or system
program. Viruses, logic bombs, and backdoors are
examples. The latter are self-contained programs
that can be scheduled and run by the operating
system. Worms and zombie programs are examples.

UNIT - IV NETWORK SECURITY

141
Rahul Publications

Program activated on an infected machine that is activated to launch
attacks on other machines

Zombie

Set of hacker tools used after attacker has broken into a computer
system and gained root-level access

Rootkit

Captured keystrokes on a compromised systemKeyloggers

Used to attack networked computer systems with a large volume of
traffic to carry out a denial of service (DoS) attack

Flooders

Used to send large volumes of unwanted e-mailSpammer
programs

Set of tools for generating new viruses automaticallyKit (Virus
generator)

Malicious hacker tools used to break into a new machines remotelyAuto – rooter

Program that installs other items on a machine that Is under attack.
Usually, a downloader is sent in an e-mail

Down loaders

Code specific to a single vulnerability or set of vulnerabilitiesExploits

Program modification that allows unauthorized access to functionalityBackdoor
(Trapdoor)

Program that contains unexpected additional functionality

Triggers action when condition occurs

Program that propagates copies of itself to other computers

Attaches itself to a program and propagates copies of itself to other
programs

Description

Trojan horse

Logic bomb

Worm

Virus

Name

Program activated on an infected machine that is activated to launch
attacks on other machines

Zombie

Set of hacker tools used after attacker has broken into a computer
system and gained root-level access

Rootkit

Captured keystrokes on a compromised systemKeyloggers

Used to attack networked computer systems with a large volume of
traffic to carry out a denial of service (DoS) attack

Flooders

Used to send large volumes of unwanted e-mailSpammer
programs

Set of tools for generating new viruses automaticallyKit (Virus
generator)

Malicious hacker tools used to break into a new machines remotelyAuto – rooter

Program that installs other items on a machine that Is under attack.
Usually, a downloader is sent in an e-mail

Down loaders

Code specific to a single vulnerability or set of vulnerabilitiesExploits

Program modification that allows unauthorized access to functionalityBackdoor
(Trapdoor)

Program that contains unexpected additional functionality

Triggers action when condition occurs

Program that propagates copies of itself to other computers

Attaches itself to a program and propagates copies of itself to other
programs

Description

Trojan horse

Logic bomb

Worm

Virus

Name

M.Sc II Year III Semester

142
Rahul Publications

Q23. Write about the nature of viruses.

Ans :
The Nature of Viruses

A virus is a piece of software that can “infect”
other programs by modifying them; the
modification includes a copy of the virus program,
which can then go on to infect other programs.

A virus can do anything that other programs
do. The only difference is that it attaches itself to
another program and executes secretly when the
host program is run. Once a virus is executing, it
can perform any function, such as erasing files and
programs.

During its lifetime, a typical virus goes through
the following four phases :

• Dormant phase: The virus is idle. The virus
will eventually be activated by some event, such
as a date, the presence of another program or
file, or the capacity of the disk exceeding some
limit. Not all viruses have this stage.

• Propagation phase: The virus places an
identical copy of itself into other programs
or into certain system areas on the disk. Each
infected program will now contain a clone of
the virus, which will itself enter a propagation
phase.

• Triggering phase: The virus is activated to
perform the function for which it was intended.
As with the dormant phase, the triggering phase
can be caused by a variety of system events,
including a count of the number of times that
this copy of the virus has made copies of
itself.

• Execution phase: The function is performed.
The function may be harmless, such as a
message on the screen, or damaging, such as
the destruction of programs and data files.

Q24. Write about virus structure.

Ans :
Virus Structure

A virus can be prepended or postpended to
an executable program, or it can be embedded in

some other fashion. The key to its operation is that
the infected program, when invoked, will first
execute the virus code and then execute the original
code of the program.
An infected program begins with the virus
code and works as follows.

The first line of code is a jump to the main
virus program. The second line is a special marker
that is used by the virus to determine whether or
not a potential victim program has already been
infected with this virus.

When the program is invoked, control is
immediately transferred to the main virus program.
The virus program first seeks out uninfected
executable files and infects them. Next, the virus
may perform some action, usually detrimental to
the system.

This action could be performed every time
the program is invoked, or it could be a logic bomb
that triggers only under certain conditions.

Finally, the virus transfers control to the
original program. If the infection phase of the
program is reasonably rapid, a user is unlikely to
notice any difference between the execution of an
infected and uninfected program.

When this program is invoked, control passes
to its virus, which performs the following steps :
1. For each uninfected file P2 that is found, the

virus first compresses that file to produce P’2,
which is shorter than the original program by
the size of the virus.

2. A copy of the virus is prepended to the
compressed program.

3. The compressed version of the original infected
program, P’1, is uncompressed.

4. The uncompressed original program is
executed.

4.7.4 Virus Counter Measures

Q25. What are the various approaches to use
to protect from viruses ?

Ans :
Antivirus Approaches

The ideal solution to the threat of viruses is
prevention: The next best approach is to be able to
do the following :

UNIT - IV NETWORK SECURITY

143
Rahul Publications

 Detection : Once the infection has occurred,
determine that it has occurred and locate
the virus.

 Identification : Once detection has been
achieved, identify the specific virus that
has infected a program.

 Removal : Once the specific virus has been
identified, remove all traces of the virus
from the infected program and restore it to its
original state. Remove the virus from all infected
systems so that the disease cannot spread
further.

If detection succeeds but either identification
or removal is not possible, then the alternative is to
discard the infected program and reload a clean
backup version.

There are four generations of antivirus
software :

 First generation: simple scanners

 Second generation: heuristic scanners

 Third generation : activity traps

 Fourth generation: full-featured protection

 A first-generation scanner requires a virus
signature to identify a virus.. Such signature-
specific scanners are limited to the detection
of known viruses. Another type of first-
generation scanner maintains a record of the
length of programs and looks for changes in
length.

 A second-generation scanner does not rely
on a specific signature. Rather, the scanner
uses heuristic rules to search for probable virus
infection. One class of such scanners looks for
fragments of code that are often associated with
viruses.

 Third-generation programs are memory-
resident programs that identify a virus by its
actions rather than its structure in an infected
program. Such programs have the advantage
that it is not necessary to develop signatures
and heuristics for a wide array of viruses. Rather,.

 Fourth-generation products are packages
consisting of a variety of antivirus techniques
used inconjunction. These include scanning and
activity trap components. In addition, such a
package includes access control capability, which
limits the ability of viruses to penetrate a system
and then limits the ability of a virus to update
files in order to pass on the infection.

4.7.5 Firewall Design Principles

Q26. What are the fire wall design priciples ?

Ans :
Internet connectivity is no longer an option

for most organizations. However, while internet
access provides benefits to the organization, it
enables the outside world to reach and interact with
local network assets. This creates the threat to the
organization. While it is possible to equip each
workstation and server on the premises network with
strong security features, such as intrusion protection,
this is not a practical approach. The alternative,
increasingly accepted, is the firewall.

The firewall is inserted between the premise network
and internet to establish a controlled link and to
erect an outer security wall or perimeter. The aim
of this perimeter is to protect the premises network
from internet based attacks and to provide a single
choke point where security and audit can be
imposed. The firewall can be a single computer
system or a set of two or more systems that cooperate
to perform the firewall function.

4.7.6 Types of Firewalls

Q27. Explain various types of firewalls.

Ans :
There are 3 common types of firewalls.

 Packet filters

 Application-level gateways

 Circuit-level gateways

 Packet filtering router

A packet filtering router applies a set of rules to
each incoming IP packet and then forwards or

M.Sc II Year III Semester

144
Rahul Publications

discards the packet. The router is typically configured to filter packets going in both directions. Filtering
rules are based on the information contained in a network packet:

 Source IP address – IP address of the system that originated the IP packet. Destination IP address
– IP address of the system, the IP is trying to reach. Source and destination transport level address –
transport level port number. IP protocol field – defines the transport protocol.

 Interface – for a router with three or more ports, which interface of the router the packet come from
or which interface of the router the packet is destined for.

Two default policies are possible :

 Default = discard: That which is not expressly permitted is prohibited.

 Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is the more conservative. Initially everything is blocked, and services must
be added on a case-by-case basis. This policy is more visible to users, who are most likely to see the
firewall as a hindrance. The default forward policy increases ease of use for end users but provides reduced
security.

Advantages of Packet Filter Router

  Simple

  Transparent to users

  Very fast

Weakness of Packet Filter Firewalls

 Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks that
employ application specific vulnerabilities or functions.

 Because of the limited information available to the firewall, the logging functionality present in packet
filter firewall is limited.

 It does not support advanced user authentication schemes.

 They are generally vulnerable to attacks such as layer address spoofing.

Application Level Gateway

An Application level gateway, also called a proxy server, acts as a relay of application level traffic.
The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gateway asks the
user for the name of the remote host to be accessed. When the user responds and provides a valid user
ID and authentication information, the gateway contacts the application on the remote host and relays
TCP segments containing the application data between the two endpoints.

Application level gateways tend to be more secure than packet filters. It is easy to log and audit all
incoming traffic at the application level. A prime disadvantage is the additional processing overhead on
each connection.

UNIT - IV NETWORK SECURITY

145
Rahul Publications

TELNET

FTP

SMTP

HTTP

Inside
connection

Inside
connection

Outside
connection

Application-level
gateway

Application-level gateway

Outside host Inside host

TELNET

FTP

SMTP

HTTP

TELNET

FTP

SMTP

HTTP

Inside
connection

Inside
connection

Outside
connection

Application-level
gateway

Application-level gateway

Outside host Inside host

Circuit Level Gateway

Circuit level gateway can be a stand-alone system or it can be a specified function performed by an
application level gateway for certain applications. A Circuit level gateway does not permit an end-to-end
TCP connection; rather, the gateway sets up two TCP connections, one between itself and a TCP user on
an inner host and one between itself and a TCP user on an outer host. Once the two connections are
established, the gateway typically relays TCP segments from one connection to the other without examining
the contents. The security function consists of determining which connections will be allowed.

A typical use of Circuit level gateways is a situation in which the system administrator trusts the
internal users. The gateway can be configured to support application level or proxy service on inbound
connections and circuit level functions for outbound connections.

Out In

Out In

Out In

Inside
connection

Outside
connection

Outside host

Inside host

Circuit-level
gateway

Circuit-level gateway

Out In

Out In

Out In

Inside
connection

Outside
connection

Outside host

Inside host

Circuit-level
gateway

Circuit-level gateway

M.Sc II Year III Semester

146
Rahul Publications

Q1. Write a program to generate cipher text and recover the plaintext using.

Ans :
a) Caesar-Cipher text algorithm

//A Java Program to illustrate Caesar Cipher Technique
class CaesarCipher
{
 // Encrypts text using a shift od s
public static StringBuffer encrypt(String text, int s)
 {
 StringBuffer result= new StringBuffer();

for (int i=0; i<text.length(); i++)
 {
if (Character.isUpperCase(text.charAt(i)))
 {
char ch = (char)(((int)text.charAt(i) +
 s - 65) % 26 + 65);
result.append(ch);
 }
else
 {
char ch = (char)(((int)text.charAt(i) +
 s - 97) % 26 + 97);
result.append(ch);
 }
 }
return result;
 }

 // Driver code
public static void main(String[] args)
 {
 String text = “ATTACKATONCE”;
int s = 4;
System.out.println(“Text : “ + text);
System.out.println(“Shift : “ + s);
System.out.println(“Cipher: “ + encrypt(text, s));
 }
}

LAB PROGRAMMES
(Implementation Using Java)

LAB PROGRAMMES NETWORK SECURITY

147
Rahul Publications

b) Product Cipher

import java.util.*;

class ProductCipher {
public static void main(String args[]) {
System.out.println(“Enter the input to be encrypted:”);
String substitutionInput = new Scanner(System.in).nextLine();
System.out.println(“Enter a number:”);
int n = new Scanner(System.in).nextInt();

// Substitution encryption
StringBuffer substitutionOutput = new StringBuffer();
for(int i=0 ; i<substitutionInput.length() ; i++) {
char c = substitutionInput.charAt(i);
substitutionOutput.append((char) (c+5));
}
System.out.println(“\nSubstituted text:”);
System.out.println(substitutionOutput);

// Transposition encryption
String transpositionInput = substitutionOutput.toString();
int modulus;
if((modulus = transpositionInput.length()%n) != 0) {
modulus = n-modulus;
// ‘modulus’ is now the number of blanks/padding (X) to be appended
for(; modulus!=0 ; modulus–) {
transpositionInput += “/”;
}
}
StringBuffer transpositionOutput = new StringBuffer();
System.out.println(“\nTransposition Matrix:”);
for(int i=0 ; i<n ; i++) {
for(int j=0 ; j<transpositionInput.length()/n ; j++) {
char c = transpositionInput.charAt(i+(j*n));
System.out.print(c);
transpositionOutput.append(c);
}
System.out.println();
}
System.out.println(“\nFinal encrypted text:”);
System.out.println(transpositionOutput);

// Transposition decryption
n = transpositionOutput.length()/n;

M.Sc II Year III Semester

148
Rahul Publications

StringBuffer transpositionPlaintext = new StringBuffer();
for(int i=0 ; i<n ; i++) {
for(int j=0 ; j<transpositionOutput.length()/n ; j++) {
char c = transpositionOutput.charAt(i+(j*n));
transpositionPlaintext.append(c);
}
}

// Substitution decryption
StringBuffer plaintext = new StringBuffer();
for(int i=0 ; i<transpositionPlaintext.length() ; i++) {
char c = transpositionPlaintext.charAt(i);
plaintext.append((char) (c-5));
}

System.out.println(“\nPlaintext:”);
System.out.println(plaintext);
}
}

/*

Output :
Enter the input to be encrypted:
The quick brown fox jumps over the lazy dog.
Enter a number:
7

Substituted text:
Ymj%vznhp%gwt|s%kt}%ozrux%t{jw%ymj%qf#~%itl3

Transposition Matrix:
Yhszjql
mp%rwf3
j%ku%#/
%gtxy~/
vw}%m%/
zt%tji/
n|o{%t/

Final encrypted text:
Yhszjqlmp%rwf3j%ku%#/%gtxy~/vw}%m%/zt%tji/n|o{%t/

Plaintext:
The quick brown fox jumps over the lazy dog.*****

*/

LAB PROGRAMMES NETWORK SECURITY

149
Rahul Publications

Q2. Write a program to generate cipher text and recover the plaintext using

Ans :
a) Play fair cipher

importjava.awt.Point;
importjava.util.Scanner;

publicclass PlayfairCipher {
privatestaticchar[][] charTable;
privatestaticPoint[] positions;

publicstaticvoid main(String[] args){
 Scanner sc = new Scanner(System.in);

String key = prompt(“Enter an encryption key (min length 6): “, sc, 6);
String txt = prompt(“Enter the message: “, sc, 1);
String jti = prompt(“Replace J with I? y/n: “, sc, 1);

boolean changeJtoI = jti.equalsIgnoreCase(“y”);

 createTable(key, changeJtoI);

String enc = encode(prepareText(txt, changeJtoI));

System.out.printf(“%nEncoded message: %n%s%n”, enc);
System.out.printf(“%nDecoded message: %n%s%n”, decode(enc));
}

privatestaticString prompt(String promptText, Scanner sc, int minLen){
String s;
do{
System.out.print(promptText);
 s = sc.nextLine().trim();
}while(s.length()< minLen);
return s;
}

privatestaticString prepareText(String s, boolean changeJtoI){
 s = s.toUpperCase().replaceAll(“[^A-Z]”, “”);
return changeJtoI ? s.replace(“J”, “I”) : s.replace(“Q”, “”);
}

privatestaticvoid createTable(String key, boolean changeJtoI){
 charTable = newchar[5][5];
 positions = newPoint[26];

M.Sc II Year III Semester

150
Rahul Publications

String s = prepareText(key + “ABCDEFGHIJKLMNOPQRSTUVWXYZ”, changeJtoI);

int len = s.length();
for(int i = 0, k = 0; i < len; i++){
char c = s.charAt(i);
if(positions[c - ‘A’] == null){
 charTable[k / 5][k % 5] = c;
 positions[c - ‘A’] = newPoint(k % 5, k / 5);
 k++;
}
}
}

privatestaticString encode(String s){
 StringBuilder sb = new StringBuilder(s);

for(int i = 0; i < sb.length(); i += 2){

if(i == sb.length() - 1)
 sb.append(sb.length() % 2 == 1 ? ‘X’ : “”);

elseif(sb.charAt(i) == sb.charAt(i + 1))
 sb.insert(i + 1, ‘X’);
}
return codec(sb, 1);
}

privatestaticString decode(String s){
return codec(new StringBuilder(s), 4);
}

privatestaticString codec(StringBuilder text, int direction){
int len = text.length();
for(int i = 0; i < len; i += 2){
char a = text.charAt(i);
char b = text.charAt(i + 1);

int row1 = positions[a - ‘A’].y;
int row2 = positions[b - ‘A’].y;
int col1 = positions[a - ‘A’].x;
int col2 = positions[b - ‘A’].x;

if(row1 == row2){
 col1 = (col1 + direction) % 5;
 col2 = (col2 + direction) % 5;

LAB PROGRAMMES NETWORK SECURITY

151
Rahul Publications

}elseif(col1 == col2){
 row1 = (row1 + direction) % 5;
 row2 = (row2 + direction) % 5;

}else{
int tmp = col1;
 col1 = col2;
 col2 = tmp;
}

 text.setCharAt(i, charTable[row1][col1]);
 text.setCharAt(i + 1, charTable[row2][col2]);
}
return text.toString();
}
}

b) Hill cipher

package ciphers;
import java.io.*;
import java.lang.*;
public class hillcipher
{
public static void main(String []arg)throws Exception
{
 int k[][]={{17,17,5}, {21,18,21}, {2,2,19}};
 int p[]=new int[300];
 int c[]=new int[300];
 int i=0;
 //System.out.println(“enter key”);
 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
 /*for(i=0;i<3;i++)
 {
 for(int j=0;j<3;j++)
 {
 String str=br.readLine();
 k[i][j]=Integer.parseInt(str);
 }
 }*/

 System.out.println(“enter plain text”);
 String str=br.readLine();

M.Sc II Year III Semester

152
Rahul Publications

 for(i=0;i<str.length();i++)
 {
 int c1=str.charAt(i);
 //System.out.println(c1);
 p[i]=(c1)-97;
 }
 i=0;int zz=0;
 for(int b=0;b<str.length()/3;b++)
 {
 for(int j=0;j<3;j++)
 {
 for(int x=0;x<3;x++)
 {
 c[i]+=k[j][x]*p[x+zz];
 }i++;
 }
 zz+=3;
 }
 System.out.println(“Encrypted Text : “);
 for(int z=0;z<str.length();z++)
 System.out.print((char)((c[z]%26)+97));

}
}

Q3. Write a program to generate random numbers using pseudo random number generation
algorithm.

Ans :
importjava.util.Random;
importjava.util.Scanner;

publicclass Middle_Suqare_Method
{
staticint a[]={1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000};
staticint middleSquareNumber(int numb, int dig)
{
int sqn = numb*numb, next_num=0;
int trim =(dig/2);
sqn= sqn / a[trim];
for(int i=0; i<dig; i++)
{
 next_num +=(sqn%(a[trim]))*(a[i]);
sqn= sqn/10;
}

LAB PROGRAMMES NETWORK SECURITY

153
Rahul Publications

return next_num;
}
publicstaticvoid main(String args[])
{
System.out.println(“Enter the #-digit random numbers you want: “);
 Scanner sc =newScanner(System.in);
int n = sc.nextInt();

int start=1, end=1;

start= a[n-1];
end= a[n];

Random rand =newRandom();
int number = rand.nextInt(end-start)+start;
System.out.print(“The random numbers are:\n”+number+”, “);
int new_number=0;
for(int i=0; i<9; i++)
{
number= Middle_Suqare_Method.middleSquareNumber(number, n);
System.out.print(number+”, “);
}
System.out.print(“...”);

sc.close();
}
}

Q4. Write a program to implement Poly-Alphabetic Cipher.

Ans :
package polyciipher;
import java.util.*;
public class PolyCiipher {

 public static void main(String[] args) {
 int[] j = new int[100];
 int[] s = new int[100];
 String test=””;
 // initialization of the Scanner class,handles input from user,can be found in the java.util.*;
library.
 // we are creating object “in” from the scanner and telling java that this will be System input
 try{
 Scanner in = new Scanner(System.in);
 System.out.println(“Enter the plain text(STRING SHOULD BE IN UPPERCASE AND DONT
GIVE SPACE BETWEEN WORDS)::”);

M.Sc II Year III Semester

154
Rahul Publications

 // next() is a method which gets the next string of text that a user types on the keyboard
 test = in.nextLine();
 for (int i = 0; i < test.length(); ++i) {
 char c = test.charAt(i);// “c” holds the individual character of the string
 s[i] = (int) c-65;

 }
 for(int i=0;i<test.length()-1;i++){
 j[i+1]=s[i];
 }
 System.out.println(“Enter the key::”);
 int k = Integer.parseInt(in.nextLine());
 j[0]=k;
 System.out.println();
 System.out.println(“The position of the character in the cipher text::”);
 for(int i=0;i<test.length();i++){
 j[i]=j[i]+s[i];
 j[i]=j[i]%26;
 System.out.print(j[i]);
 }
 System.out.println();
 System.out.println(“The cipher text::”);
 for(int i=0;i<test.length();i++){
 char c=(char) (j[i]+65);
 System.out.print(c);
 }
 System.out.println();
 }
 catch(Exception er){
 System.out.println(“—YOU HAVE TYPE INVALID DATA—”);
 }
 }
}
Output :
run:
Enter a string(STRING SHOULD BE IN ASCII AND DONT GIVE SPACE BETWEEN WORDS)::
ATTACKISTONIGHT
Enter the key::
12

1219121921218011712114130
MTMTCMSALHBVONA
BUILD SUCCESSFUL (total time: 16 seconds)

LAB PROGRAMMES NETWORK SECURITY

155
Rahul Publications

Q5. Write a program to implement Transposition Cipher and Rail fence Technique.

Ans :
Transposition Cipher (Java)
import java.util.*;
class TransCipher
{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
System.out.println(“Enter the plain text”);
String pl=sc.nextLine();
String demo=””;
String s=””;
int start=0;
for(int i=0;i<pl.length();i++)
{
if(pl.charAt(i)==’ ‘)
{
s=s+pl.substring(start,i);
start=i+1;
}
}
s=s+pl.substring(start);
System.out.print(s);
System.out.println();
//end of space deletion

int k=s.length();
int l=0;
int col=4;
int row=s.length()/col;
char ch[][]=new char[row][col];
for(int i=0;i<row;i++)
{
for(int j=0;j<col;j++)
{
if(l<k)
{
ch[i][j]=s.charAt(l);
l++;
}
else
{
ch[i][j]=’#’;

M.Sc II Year III Semester

156
Rahul Publications

}
}
}
//arranged in matrix

char trans[][]=new char[col][row];
for(int i=0;i<row;i++)
{
for(int j=0;j<col;j++)
{
trans[j][i]=ch[i][j];
}
}

for(int i=0;i<col;i++)
{
for(int j=0;j<row;j++)
{
System.out.print(trans[i][j]);
}
}
//display
System.out.println();
}
}

Implement Rail Fence Cipher In Java

import java.util.*;
class RailFenceBasic{
 int depth;
 String Encryption(String plainText,int depth)throws Exception
 {
 int r=depth,len=plainText.length();
 int c=len/depth;
 char mat[][]=new char[r][c];
 int k=0;

 String cipherText=””;

 for(int i=0;i< c;i++)
 {
 for(int j=0;j< r;j++)
 {
 if(k!=len)
 mat[j][i]=plainText.charAt(k++);
 else
 mat[j][i]=’X’;
 }
 }

LAB PROGRAMMES NETWORK SECURITY

157
Rahul Publications

 for(int i=0;i< r;i++)
 {
 for(int j=0;j< c;j++)
 {
 cipherText+=mat[i][j];
 }
 }
 return cipherText;
 }

 String Decryption(String cipherText,int depth)throws Exception
 {
 int r=depth,len=cipherText.length();
 int c=len/depth;
 char mat[][]=new char[r][c];
 int k=0;

 String plainText=””;

 for(int i=0;i< r;i++)
 {
 for(int j=0;j< c;j++)
 {
 mat[i][j]=cipherText.charAt(k++);
 }
 }
 for(int i=0;i< c;i++)
 {
 for(int j=0;j< r;j++)
 {
 plainText+=mat[j][i];
 }
 }

 return plainText;
 }
}

class RailFence{
 public static void main(String args[])throws Exception
 {
 RailFenceBasic rf=new RailFenceBasic();
 Scanner scn=new Scanner(System.in);
 int depth;

M.Sc II Year III Semester

158
Rahul Publications

 String plainText,cipherText,decryptedText;

 System.out.println(“Enter plain text:”);
 plainText=scn.nextLine();

 System.out.println(“Enter depth for Encryption:”);
 depth=scn.nextInt();

 cipherText=rf.Encryption(plainText,depth);
 System.out.println(“Encrypted text is:\n”+cipherText);

 decryptedText=rf.Decryption(cipherText, depth);

 System.out.println(“Decrypted text is:\n”+decryptedText);

 }
}

Q6. Write a program to implement DES Algorithm.

Ans :
import java.security.lnvalidKeyException;
 import java.security.NoSuchAlgorithmException;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;

import com.sun.mail.util.BASE64DecoderStream;
import com.sun.mail.util.BASE64EncoderStream;

public class EncryptDecryptStringWithDES {

private static Cipher ecipher; private static Cipher dcipher;

019 private static SecretKey key;
020

public static void main(String[] args) {
try{

// generate secret key using DES algorithm
key = KeyGenerator.getInstance(“DES”).generateKey();

ecipher = Cipher.getInstance(“DES”);
dcipher = Cipher.getInstance(“DES”);

LAB PROGRAMMES NETWORK SECURITY

159
Rahul Publications

/// initialize the ciphers with the given key

ecipher.init(Cipher.ENCRYPT_MODE, key);

dcipher.init(Cipher.DECRYPT_MODE, key);
String encrypted = encrypt(“This is a classified message!”);

String decrypted = decrypt(encrypted);

System.out.println(“Decrypted:” + decrypted);
 }

catch (NoSuchAlgorithmException e) {
System.out.println(“No Such Algorithm:” + e.getMessageQ);
return;

 }
catch (NoSuchPaddingException e) {
System.out.println(“No Such Padding:” + e.getMessageQ);
return;
}
catch (InvalidKeyException e) {
System.out.println(“Invalid Key:” + e.getMessageQ);
return;
}

}

public static String encrypt(String str) {

try {

// encode the string into a sequence of bytes using the named charset
// storing the result into a new byte array.

byteQ utf8 = str.getBytes(“UTF8”);

byte[] enc = ecipher.doFinal(utf8);

// encode to base64

enc = BASE64EncoderStream.encode(enc);
return new String(enc);
}

catch (Exception e) {

e.printStackT raceQ;

}

M.Sc II Year III Semester

160
Rahul Publications

return null;
}
public static String decrypt(String str) {
try{
// decode with base64 to get bytes
byte[] dec = BASE64DecoderStream.decode(str.getBytesQ^
byte[] utf8 = dcipher.doFinal(dec);
// create new string based on the specified charset return new String(utf8, “UTF8”);
}
catch (Exception e) {
e.printStackTraceQ;
}
return null;
}
}

Q7. Write a program to implement AES Algorithm

Ans :
package nomad;

import java.security.*;
import java.security.spec.InvalidKeySpecException;
import javax.crypto.*;
import sun.misc.*;

publicclass AESencrp {

privatestaticfinalString ALGO = “AES”;
privatestaticfinal byte[] keyValue =
new byte[] { ‘T’, ‘h’, ‘e’, ‘B’, ‘e’, ‘s’, ‘t’,
‘S’, ‘e’, ‘c’, ‘r’,’e’, ‘t’, ‘K’, ‘e’, ‘y’ };

publicstaticString encrypt(String Data) throwsException {
Key key = generateKey();
 Cipher c = Cipher.getInstance(ALGO);
c.init(Cipher.ENCRYPT_MODE, key);
byte[] encVal = c.doFinal(Data.getBytes());
String encryptedValue = newBASE64Encoder().encode(encVal);
return encryptedValue;
 }

publicstaticString decrypt(String encryptedData) throwsException {
Key key = generateKey();
 Cipher c = Cipher.getInstance(ALGO);
c.init(Cipher.DECRYPT_MODE, key);

LAB PROGRAMMES NETWORK SECURITY

161
Rahul Publications

byte[] decordedValue = new BASE64Decoder().decodeBuffer(encryptedData);
byte[] decValue = c.doFinal(decordedValue);
String decryptedValue = newString(decValue);
return decryptedValue;
 }
privatestaticKey generateKey() throwsException {
Key key = newSecretKeySpec(keyValue, ALGO);
return key;
}
}
publicclass Checker {

publicstatic void main(String[] args) throwsException {

String password = “mypassword”;
String passwordEnc = AESencrp.encrypt(password);
String passwordDec = AESencrp.decrypt(passwordEnc);

System.out.println(“Plain Text : “ + password);
System.out.println(“Encrypted Text : “ + passwordEnc);
System.out.println(“Decrypted Text : “ + passwordDec);
 }
}

Q8. Write a program to implement RSA public key encryption algorithm.

Ans :
import java.math.BigInteger;
import java.security.SecureRandom;
publicclass RSA {
private BigInteger n, d, e;

privateint bitlen = 1024;

 /** Create an instance that can encrypt using someone elses public key. */
public RSA(BigInteger newn, BigInteger newe) {
 n = newn;
 e = newe;
 }

 /** Create an instance that can both encrypt and decrypt. */
public RSA(int bits) {
bitlen = bits;
 SecureRandom r = newSecureRandom();
 BigInteger p = newBigInteger(bitlen / 2, 100, r);

M.Sc II Year III Semester

162
Rahul Publications

 BigInteger q = newBigInteger(bitlen / 2, 100, r);
 n = p.multiply(q);
 BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q
 .subtract(BigInteger.ONE));
 e = newBigInteger(“3”);
while (m.gcd(e).intValue() > 1) {
 e = e.add(new BigInteger(“2”));
 }
 d = e.modInverse(m);
 }

 /** Encrypt the given plaintext message. */
publicsynchronized String encrypt(String message) {
return (new BigInteger(message.getBytes())).modPow(e, n).toString();
 }

 /** Encrypt the given plaintext message. */
publicsynchronized BigInteger encrypt(BigInteger message) {
return message.modPow(e, n);
 }

 /** Decrypt the given ciphertext message. */
publicsynchronized String decrypt(String message) {
returnnew String((new BigInteger(message)).modPow(d, n).toByteArray());
 }

 /** Decrypt the given ciphertext message. */
publicsynchronized BigInteger decrypt(BigInteger message) {
return message.modPow(d, n);
 }

 /** Generate a new public and private key set. */
publicsynchronizedvoid generateKeys() {
 SecureRandom r = newSecureRandom();
 BigInteger p = newBigInteger(bitlen / 2, 100, r);
 BigInteger q = newBigInteger(bitlen / 2, 100, r);
 n = p.multiply(q);
 BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q
 .subtract(BigInteger.ONE));
 e = newBigInteger(“3”);
while (m.gcd(e).intValue() > 1) {
 e = e.add(new BigInteger(“2”));
 }
 d = e.modInverse(m);
 }

LAB PROGRAMMES NETWORK SECURITY

163
Rahul Publications

 /** Return the modulus. */
publicsynchronized BigInteger getN() {
return n;
 }

 /** Return the public key. */
publicsynchronized BigInteger getE() {
return e;
 }

 /** Trivial test program. */
publicstaticvoid main(String[] args) {
 RSA rsa = newRSA(1024);

 String text1 = “Yellow and Black Border Collies”;
System.out.println(“Plaintext: “ + text1);
 BigInteger plaintext = newBigInteger(text1.getBytes());

 BigInteger ciphertext = rsa.encrypt(plaintext);
System.out.println(“Ciphertext: “ + ciphertext);
plaintext = rsa.decrypt(ciphertext);

 String text2 = newString(plaintext.toByteArray());
System.out.println(“Plaintext: “ + text2);
 }
}

Q9. Write a program to implement Diffie- Helman Key Exchange Algorithm.

Ans :
import java.util.*;
class DiffieHellman
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.println(“Enter the value of Xa & Xb”);
int Xa=sc.nextInt();
int Xb=sc.nextInt();
System.out.println(“Enter a Prime no. p”);
int p=sc.nextInt();
System.out.println(“Enter Primitive Root a, such that a<p”);
int a=sc.nextInt();
int Ya=(int)((Math.pow(a,Xa))%p);

M.Sc II Year III Semester

164
Rahul Publications

int Yb=(int)((Math.pow(a,Xb))%p);
int Ka=(int)((Math.pow(Yb,Xa))%p);
int Kb=(int)((Math.pow(Ya,Xb))%p);
if(Ka==Kb)
{
System.out.println(“Transmission successful”);
}
else
{
System.out.println(“Transmission failed”);
}
}
}

Q10. Write a program to implement SHA-1 algorithm.

Ans :
import java.io.FileInputStream;
import java.security.MessageDigest;

publicclassSHACheckSumExample
{
publicstaticvoidmain(String[] args)throws Exception
{
 MessageDigest md =MessageDigest.getInstance(“SHA-256”);
 FileInputStream fis =newFileInputStream(“c:\\loging.log”);

byte[] dataBytes =newbyte[1024];

int nread =0;
while((nread = fis.read(dataBytes))!=-1){
md.update(dataBytes,0, nread);
};
byte[] mdbytes = md.digest();

//convert the byte to hex format method 1
 StringBuffer sb =newStringBuffer();
for(int i =0; i < mdbytes.length; i++){
sb.append(Integer.toString((mdbytes[i]&0xff)+0x100,16).substring(1));
}

System.out.println(“Hex format : “+ sb.toString());

//convert the byte to hex format method 2
 StringBuffer hexString =newStringBuffer();

for(int i=0;i<mdbytes.length;i++){
hexString.append(Integer.toHexString(0xFF& mdbytes[i]));
}

LAB PROGRAMMES NETWORK SECURITY

165
Rahul Publications

System.out.println(“Hex format : “+ hexString.toString());
}
}

Output
Hex format: 21a57f2fe765e1ae4a8bf15d73fc1bf2a533f547f2343d12a499d9c0592044d4
Hex format: 21a57f2fe765e1ae4a8bf15d73fc1bf2a533f547f2343d12a499d9c0592044d4

Q11. Write a program to implement MD5 algorithm.

Ans :
import java.io.FileInputStream;
import java.io.UnsupportedEncodingException;
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class MD5 {
 public static String getMD5(String input) {
 try {
 MessageDigest md = MessageDigest.getInstance(“MD5”);
 byte[] messageDigest = md.digest(input.getBytes());
 BigInteger number = new BigInteger(1, messageDigest);
 String hashtext = number.toString(16);
 // Now we need to zero pad it if you actually want the full 32 chars.
 while (hashtext.length() < 32) {
 hashtext = “0” + hashtext;
 }
 return hashtext;
 }
 catch (NoSuchAlgorithmException e) {
 throw new RuntimeException(e);
 }
 }

 public static void main(String[] args) throws NoSuchAlgorithmException {
 System.out.println(getMD5(“Javarmi.com”));
 }
}

Q12. Write a program to Implement the Signature Scheme Digital Signature Standard.

Ans :
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

M.Sc II Year III Semester

166
Rahul Publications

import java.io.ObjectOutputStream;
import java.nio.file.Files;
import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.Signature;
import java.security.spec.PKCS8EncodedKeySpec;
import java.util.ArrayList;
import java.util.List;

import javax.swing.JOptionPane;

public class Message {
private List<byte[]> list;

//The constructor of Message class builds the list that will be written to the file.
//The list consists of the message and the signature.
public Message(String data, String keyFile) throws InvalidKeyException, Exception {

list = new ArrayList<byte[]>();
list.add(data.getBytes());
list.add(sign(data, keyFile));

}

//The method that signs the data using the private key that is stored in keyFile path
public byte[] sign(String data, String keyFile) throws InvalidKeyException, Exception{

Signature rsa = Signature.getInstance(“SHA1withRSA”);
rsa.initSign(getPrivate(keyFile));
rsa.update(data.getBytes());
return rsa.sign();

}

//Method to retrieve the Private Key from a file
public PrivateKey getPrivate(String filename) throws Exception {

byte[] keyBytes = Files.readAllBytes(new File(filename).toPath());
PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(keyBytes);
KeyFactory kf = KeyFactory.getInstance(“RSA”);
return kf.generatePrivate(spec);

}

//Method to write the List of byte[] to a file
private void writeToFile(String filename) throws FileNotFoundException, IOException {

File f = new File(filename);
f.getParentFile().mkdirs();
ObjectOutputStream out = new ObjectOutputStream(new

FileOutputStream(filename));

LAB PROGRAMMES NETWORK SECURITY

167
Rahul Publications

out.writeObject(list);
out.close();
System.out.println(“Your file is ready.”);

}

public static void main(String[] args) throws InvalidKeyException, IOException, Exception{
String data = JOptionPane.showInputDialog(“Type your message here”);
new Message(data, “MyKeys/privateKey”).writeToFile(“MyData/SignedData.txt”);

}
}

Q13. Write a program to retrieve the data from the database and encrypt them using any encryption
algorithm.

Ans :
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.xml.bind.DatatypeConverter;

/**
 * This example program shows how AES encryption and decryption can be done in Java.
 * Please note that secret key and encrypted text is unreadable binary and hence
 * in the following program we display it in hexadecimal format of the underlying bytes.
 * @author Jayson
 */
public class AESEncryption {

 /**
 * 1. Generate a plain text for encryption
 * 2. Get a secret key (printed in hexadecimal form). In actual use this must
 * by encrypted and kept safe. The same key is required for decryption.
 * 3.
 */
public static void main(String[] args) throws Exception {
 String plainText = “Hello World”;
 SecretKey secKey = getSecretEncryptionKey();
byte[] cipherText = encryptText(plainText, secKey);
 String decryptedText = decryptText(cipherText, secKey);

System.out.println(“Original Text:” + plainText);
System.out.println(“AES Key (Hex Form):”+bytesToHex(secKey.getEncoded()));
System.out.println(“Encrypted Text (Hex Form):”+bytesToHex(cipherText));
System.out.println(“Descrypted Text:”+decryptedText);

 }

M.Sc II Year III Semester

168
Rahul Publications

 /**
* gets the AES encryption key. In your actual programs, this should be safely
 * stored.
 * @return
 * @throws Exception
 */
public static SecretKey getSecretEncryptionKey() throws Exception{
 KeyGenerator generator = KeyGenerator.getInstance(“AES”);
generator.init(128); // The AES key size in number of bits
 SecretKey secKey = generator.generateKey();
return secKey;
 }

 /**
 * Encrypts plainText in AES using the secret key
 * @param plainText
 * @param secKey
 * @return
 * @throws Exception
 */
public static byte[] encryptText(String plainText,SecretKey secKey) throws Exception{

// AES defaults to AES/ECB/PKCS5Padding in Java 7
 Cipher aesCipher = Cipher.getInstance(“AES”);
aesCipher.init(Cipher.ENCRYPT_MODE, secKey);
byte[] byteCipherText = aesCipher.doFinal(plainText.getBytes());
return byteCipherText;
 }

 /**
 * Decrypts encrypted byte array using the key used for encryption.
 * @param byteCipherText
 * @param secKey
 * @return
 * @throws Exception
 */
public static String decryptText(byte[] byteCipherText, SecretKey secKey) throws Exception {

// AES defaults to AES/ECB/PKCS5Padding in Java 7
 Cipher aesCipher = Cipher.getInstance(“AES”);
aesCipher.init(Cipher.DECRYPT_MODE, secKey);
byte[] bytePlainText = aesCipher.doFinal(byteCipherText);
return new String(bytePlainText);
 }

LAB PROGRAMMES NETWORK SECURITY

169
Rahul Publications

 /**
 * Convert a binary byte array into readable hex form
 * @param hash
 * @return
 */
private static String bytesToHex(byte[] hash) {
return DatatypeConverter.printHexBinary(hash);
 }
}

Q14. Generation of public key and private keys.

Ans :
import java.security.KeyPairGenerator;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.KeyFactory;
import java.security.spec.EncodedKeySpec;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.NoSuchAlgorithmException;

public class GeneratePublicPrivateKeys {

 private static void generateKeys(String keyAlgorithm
 , int numBits) {

 try {

 // Get the public/private key pair
 KeyPairGenerator keyGen = KeyPairGenerator.getInstance(keyAlgorithm);
 keyGen.initialize(numBits);
 KeyPair keyPair = keyGen.genKeyPair();
 PrivateKey privateKey = keyPair.getPrivate();
 PublicKey publicKey = keyPair.getPublic();

 System.out.println(
 “\n” +
 “Generating key/value pair using “ +
 privateKey.getAlgorithm() +
 “ algorithm”);

M.Sc II Year III Semester

170
Rahul Publications

 // Get the bytes of the public and private keys
 byte[] privateKeyBytes = privateKey.getEncoded();
 byte[] publicKeyBytes = publicKey.getEncoded();

 // Get the formats of the encoded bytes
 String formatPrivate = privateKey.getFormat(); // PKCS#8
 String formatPublic = publicKey.getFormat(); // X.509

 System.out.println(“ Private Key Format : “ + formatPrivate);
 System.out.println(“ Public Key Format : “ + formatPublic);

 // The bytes can be converted back to public and private key objects
 KeyFactory keyFactory = KeyFactory.getInstance(keyAlgorithm);
 EncodedKeySpec privateKeySpec = new PKCS8EncodedKeySpec(privateKeyBytes);
 PrivateKey privateKey2 = keyFactory.generatePrivate(privateKeySpec);

 EncodedKeySpec publicKeySpec = new X509EncodedKeySpec(publicKeyBytes);
 PublicKey publicKey2 = keyFactory.generatePublic(publicKeySpec);

 // The original and new keys are the same
 System.out.println(
 “ Are both private keys equal? “ + privateKey.equals(privateKey2));

 System.out.println(
 “ Are both public keys equal? “ + publicKey.equals(publicKey2));

 } catch (InvalidKeySpecException specException) {

 System.out.println(“Exception”);
 System.out.println(“Invalid Key Spec Exception”);

 } catch (NoSuchAlgorithmException e) {

 System.out.println(“Exception”);
 System.out.println(“No such algorithm: “ + keyAlgorithm);
 }
 }

 public static void main(String[] args) {

 // Generate a 1024-bit Digital Signature Algorithm (DSA) key pair
 generateKeys(“DSA”, 1024);

 // Generate a 576-bit DH key pair
 generateKeys(“DH”, 576);

LAB PROGRAMMES NETWORK SECURITY

171
Rahul Publications

 // Generate a 1024-bit RSA key pair
 generateKeys(“RSA”, 1024);
 }

}

15. Write a program to write the contents in the file in encrypted manner and read them in decrypted
manner using any algorithm.

Ans :
package com.javapapers.java.security;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.util.Random;

import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;

publicclassFileEncryption{

publicstaticvoid main(String[] args)throwsException{

FileInputStream inFile =newFileInputStream(“plainfile.txt”);
FileOutputStream outFile =newFileOutputStream(“plainfile.des”);

String password =”javapapers”;
PBEKeySpec pbeKeySpec =newPBEKeySpec(password.toCharArray());
SecretKeyFactory secretKeyFactory =SecretKeyFactory

.getInstance(“PBEWithMD5AndTripleDES”);
SecretKey secretKey =secretKeyFactory.generateSecret(pbeKeySpec);
byte[] salt =newbyte[8];
Random random =newRandom();
random.nextBytes(salt);
PBEParameterSpec pbeParameterSpec =newPBEParameterSpec(salt,100);
Cipher cipher =Cipher.getInstance(“PBEWithMD5AndTripleDES”);
cipher.init(Cipher.ENCRYPT_MODE, secretKey, pbeParameterSpec);
outFile.write(salt);

byte[] input =newbyte[64];
int bytesRead;

M.Sc II Year III Semester

172
Rahul Publications

while((bytesRead = inFile.read(input))!=-1){
byte[] output = cipher.update(input,0, bytesRead);
if(output !=null)

outFile.write(output);
}

byte[] output = cipher.doFinal();
if(output !=null)

outFile.write(output);

inFile.close();
outFile.flush();
outFile.close();

}

}

FileDecryption.java
package com.javapapers.java.security;

import java.io.FileInputStream;
import java.io.FileOutputStream;

import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;
publicclassFileDecryption{

publicstaticvoid main(String[] args)throwsException{
String password =”javapapers”;
PBEKeySpec pbeKeySpec =newPBEKeySpec(password.toCharArray());
SecretKeyFactory secretKeyFactory =SecretKeyFactory

.getInstance(“PBEWithMD5AndTripleDES”);
SecretKey secretKey =secretKeyFactory.generateSecret(pbeKeySpec);

FileInputStream fis =newFileInputStream(“plainfile.des”);
byte[] salt =newbyte[8];
fis.read(salt);

PBEParameterSpec pbeParameterSpec =newPBEParameterSpec(salt,100);

Cipher cipher =Cipher.getInstance(“PBEWithMD5AndTripleDES”);
cipher.init(Cipher.DECRYPT_MODE, secretKey, pbeParameterSpec);
FileOutputStream fos =newFileOutputStream(“plainfile_decrypted.txt”);
byte[] in =newbyte[64];

LAB PROGRAMMES NETWORK SECURITY

173
Rahul Publications

int read;
while((read = fis.read(in))!=-1){

byte[] output = cipher.update(in,0, read);
if(output !=null)

fos.write(output);
}

byte[] output = cipher.doFinal();
if(output !=null)

fos.write(output);

fis.close();
fos.flush();
fos.close();

}
}

Q16. Write a program to implement FEM (Fast Exponentiation Method) for find congruential values
used in RSA algorithms Ex: 577mod 45.

Ans :
public static int modpow(int value , int power, int mod){
int e = 1;

for (int i = 0; i < power; i++) {
 e = ((e * value) % mod);

 }

return e;
}//modpow

/*

((value^power)%mod)

call as modpow(value, power, mod);

*/

M.Sc II Year III Semester

174
Rahul Publications

FACULTY OF SCIENCE

M.Sc. II Year III - Semester Examination

NETWORK SECURITY

Time : 3 Hours] ANSWERS TO MODEL PAPER - I [Max. Marks : 80

PART - A (8 × 4 = 32)

Answer all questions

Each Question Carries Equal Marks ANSWERS :

1. What is computer security? (Refer to Q.No.1, Unit -1)

2. What is Padding in Block Cipher ? (Refer to Q.No.14, Unit -1)

3. Explain about the features of AES. (Refer to Q.No.1, Unit -2)

4. What are stream ciphers ? (Refer to Q.No.10, Unit -2)

5. Write briefly about Message Authentication. (Refer to Q No.1, Unit -3)

6. Write shortly about Message Authentication Code. (Refer to Q.No.6, Unit -3)

7. Explain SSL Record Protocol (Refer to Q.No.3, Unit -4)

8. Write about transport mode and tunnel mode (Refer to Q No.13, Unit -4)

PART - B (4 × 12 = 48)
Answer any four from the following

9. What are rotor machines? Explain (Refer to Q No.11, Unit - I)

10. What is cipher block chaining mode? Explain. (Refer to Q No.21, Unit 1)

11. Explain AES Key Expansion algorithm. Illustrate AES with an example.

(Refer to Q No.4,5, Unit -2)

12. Write about x.509 certificates. (Refer to Q No.16, Unit -2)

13. What are the message authentication requirements ? (Refer to Q No.5, Unit -3)

14. Explain briefly about digital signatures. (Refer to Q No.12, Unit -3)

15. Explain about ESP(Encapsulaitng Security Payload) (Refer to Q No.15, Unit -4)

16. Explain various types of firewalls. (Refer to Q No.27, Unit -4)

SOLVED MODEL PAPERS NETWORK SECURITY

175
Rahul Publications

FACULTY OF SCIENCE

M.Sc. II Year III - Semester Examination

NETWORK SECURITY

Time : 3 Hours] ANSWERS TO MODEL PAPER - II [Max. Marks : 80

PART - A (8 × 4 = 32)

Answer all questions

Each Question Carries Equal Marks ANSWERS :

1. Explain about various security attacks in network. (Refer to Q.No.3, Unit -1)

2. What is block cipher? (Refer to Q.No.13, Unit -1)

3. Explain about the structure of AES. (Refer to Q.No.2, Unit -2)

4. What are called Round Keys? (Refer to Q.No.3, Unit -2)

5. What are Digital Signatures ? (Refer to Q.No.1, Unit -3)

6. What is Message Encryption ? (Refer to Q.No.6, Unit -3)

7. Discuss about Alter Protocol. (Refer to Q.No.4, Unit -4)

8. Explain IP security services. (Refer to Q.No.12, Unit -4)

PART - B (4 × 12 = 48)
Answer any four from the following

9. Explain about DES algorithm. (Refer to Q.No.5, Unit -1)

10. What is Electronic code Book ?write a note on it. (Refer to Q.No.20, Unit -1)

11. What are stream ciphers ? Explain about it. (Refer to Q.No.10, Unit -2)

12. Explain briefly RSA Algorithm. (Refer to Q.No.13, Unit -2)

13. Explain about MD5 algorithm. (Refer to Q.No.4, Unit -3)

14. Write about various attacks on MACs. (Refer to Q.No.8, Unit -3)

15. Explain briefly about HHTPS protocol. (Refer to Q.No.6, Unit -4)

16. Describe IP Security Architecture. (Refer to Q.No.14, Unit -4)

M.Sc II Year III Semester

176
Rahul Publications

FACULTY OF SCIENCE

M.Sc. II Year III - Semester Examination

NETWORK SECURITY

Time : 3 Hours] ANSWERS TO MODEL PAPER - III [Max. Marks : 80

PART - A (8 × 4 = 32)

Answer all questions

Each Question Carries Equal Marks ANSWERS :

1. Explain about various security services in network. (Refer to Q.No.4, Unit -1)

2. Write the strength of DES. (Refer to Q.No.17, Unit -1)

3. What is the use of Random Numbers ? (Refer to Q.No.7, Unit -2)

4. What are Public-Key Certificates ? (Refer to Q.No.15, Unit -2)

5. Write shortly about Message Authentication Code. (Refer to Q.No.6, Unit -3)

6. Write about Digital Signature Requirements. (Refer to Q.No.12, Unit -3)

7. Explain about Handshake protocol. (Refer to Q.No.5, Unit -4)

8. What is called port forwarding ? (Refer to Q.No.7, Unit -4)

PART - B (4 × 12 = 48)
Answer any four from the following

9. Write about the symmetric cipher model. (Refer to Q.No.8, Unit -1)

10. What is Output Feedback Mode? Explain (Refer to Q.No.23, Unit -1)

11. Explain, how to generate a pseudo random number using
a block cipher. (Refer to Q.No.9, Unit -2)

12. Write about Diffie-Helman Algorithm. (Refer to Q.No.17, Unit -2)

13. Write about various attacks on MACs. (Refer to Q.No.8, Unit -3)

14. Explain about HMAC algorithm. (Refer to Q.No.9, Unit -3)

15. What is intrusion detection ? Explain about intrusion detection
techniques. (Refer to Q.No.20, Unit -4)

16. Explain about password management and protection. (Refer to Q.No.21, Unit -4)

