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Important Questions

UNIT - |

1. If {a }, {b } and {c } are three sequences such that (i) a <b <c_for n>K where K is

some positive integer and (ii) lim a =lim ¢ =1 = then lim b =1.
Sol.

Refer Unit-l, Q.No. 5.
2. Prove that a" = O for |a|<]|

@ limn'"=1

(b) lima'"=1 fora>0
Sol.

Refer Unit-l, Q.No. 7.
3. Prove lim(a*) = 1 fora > 0.
Sol.

Refer Unit-l, Q.No. 8.
4. Let {s } be sequence in R prove that the lims =0 iff lim |s | = 0.
Sol.

Refer Unit-l, Q.No. 23.
5. If {s } is converges tos, and {t } is converges to ‘t’. Then {s_+ t } converges to s + t that

islim{s +t}=Ilims +limt.
Sol.

Refer Unit-l, Q.No. 25.

t?+2 ) .

6. Lett=1landt_ = nZt for n>1. Assume that {t } converges and find the limit.
Sol.

Refer Unit-l, Q.No. 33.

] 1

7. Prove thatlim F=Oforp>0.
Sol.

Refer Unit-l, Q.No. 36.

[ )
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8.  All bounded monotone sequence converge.
(i) Every monotonically increasing sequence which is bounded above is convergent.
(if) Every monotonically decreasing sequence which is bounded below is convergent.

OR

State and prove Montone Converge Theorem.

Sol.
Refer Unit-l, Q.No. 40.

1
9. Let (S, be an increasing sequence of positive number and define 6., = n (S;+S,+...+S))

prove (o) is an increasing sequence.

Sol.
Refer Unit-l, Q.No. 45.

1
10. Let t;=1andt, = {1—m} tnforall n>1.

(@) Show Lim tn exists.
(b) What doyou think Limtn is?

n+1
2n

(c) Use induction to show tn =
(d) Repeat part (b)

Sol.
Refer Unit-l, Q.No. 47.

1
11. lLetS;=1andS ;= 3 (Sj4p) forn>1.

(@) FindS,, S;ands,

1
(b) Use induction to show S > > forall n.

(c) Show (S,) is a decreasing sequence

(d) Show lim S exists and find lim S,..
Sol.

Refer Unit-l, Q.No. 48.

12. If the sequence {s _} converges, then every subsequence converges to the same limit.

Sol.
Refer Unit-l, Q.No. 52.

— ' vV }
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IMPORTANT QUESTIONS REAL ANALYSIS

UNIT - 1I

1. Let f be a real valued function whose domain is a subset of R. Then f is continuous
at x, in dom(f) if and only if for each e>03d>05 xe dom(f) and |x - x,|<d = [f(X) -
f(x,) | <e.

Sol.
Refer Unit-1l, Q.No. 1.

2. Let f(x) = x2 sin [%} for x# 0, f(0) = 0 Prove that f is continuous at O.

Saol.
Refer Unit-1l, Q.No. 3.

3. If f and g are real valued functions at x, then,
(1) f+giscontinuous atx,
(2) fgiscontinuous at x,
(3) flgis continuous at x if g(x,) # 0.

Sol.
Refer Unit-1l, Q.No. 5.

4. Let f be a continous on [a, b] and assume f(a) < f(b) then for every k such that f(a) <k <
f(b) there exists ce[a, b] such that f(c) = k.

Sol.
Refer Unit-1l, Q.No. 8.

5. Let f be a continuous function mapping [0, 1] into [0, 1] in other words, dom(f) = [0, 1] and
f(x) € [0, 1] for all xe [0, 1] show f has fixed point, i.e., a point x € [0, 1] such that f(x ) = x,,
X, is left fixed by f.

Sol.
Refer Unit-1l, Q.No. 10.

6. Prove that x = cos(x) for some x in [O, g} :

Sol.
Refer Unit-1l, Q.No. 15.

7. Let SS R and suppose there exists a sequence {X } in S converying to a number X ¢S
show there exists an unbounded continuous function on S.

Sol.

Refer Unit-1l, Q.No. 16.

[ v }
)
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8. Let fand g be continuous function, on [a, b] such that f(a) >g(a) and f(b) <g(b) prove that
f(x,) = g(x,) for at lest one x in [a, b].
Sol.
Refer Unit-1l, Q.No. 17.
1
9.  Show that f(x) = Z is uniformly continous on [0, « ) where a > 0.
Sol.
Refer Unit-1l, Q.No. 21.
10. Letf and f, be function for which the limits L, = lim f (x) and L, = lim f (x) exist and
x—as X—as
are finite. Then
(i) lim (f +f)) (x) exists and equals L, + L,
x—as
(i) lim (f f)) (x) exitsand equals L, L,
x—as
(iii) lim (f /f)) (x) exits and equals L /L, provides L, =0 and f,(x)#0 for xes
x—as
Sol.
Refer Unit-1l, Q.No. 45.
UNIT - I
1. If f is differentiable at a point ‘a’. Then ‘f’ is continuous at a.
Sol.
Refer Unit-1ll, Q.No. 1.
f(x)
2. Find h'(a) where h(x) = x™ for x«0. h(x) = @ where f(x) = 1 & g(x) = x™ for all x.
Sol.
Refer Unit-1ll, Q.No. 3.
3. Determine by using mean value theorem.
(& x?on[-1, 2] (b) sinxon [0, «] (©) Ix] on [-1, 2]
1 1
(d) > on [-1, 1] (e) > on [1, 3] (f) sgn (x) on [-1, 2]
Sol.
Refer Unit-1ll, Q.No. 14.
4.  Prove that |Jcosx — cosy| < |x-y] forall x, yeR.
Sol.

Refer Unit-1ll, Q.No. 15.

= Vi =
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IMPORTANT QUESTIONS REAL ANALYSIS

5. Leta, beR. let f(x) = e cos(bx) and g(x) = e* sin(bx)
(i) Compute f'(x) and g'(x)
(ii) Use (i) to compute f"and "

Sol.
Refer Unit-1ll, Q.No. 20.

6. Suppose that f is differentiable on R that i < f(x) < 2 for xe R, and that f(O) = O prove
that x < f(x) 2x for all x = 0.

Sol.
Refer Unit-1ll, Q.No. 24.

7. Let f, g are derivable on (a, a + h) such that
M dxX) 0 v xe(a,a+h),

(i) Jim f(x) =0 = lim g(x)

x—at
. f'(x) f'(x)
lim —= — lim —
(@ If e gX) I, a real number the e gX)
( ) _ f(X)
lim I|m
Sol.
Refer Unit-1ll, Q.No. 26.
8.  State and prove L - Hospital Rule Il :
(OR)
If f, g are derivable in a deleted nbd of ‘a’
I|m f(X) = + 0 I|m g(X) = + o and lim L =1, then lim LI
x—at ’ x—sat x—at X) x—at g(x)

Sol.
Refer Unit-1ll, Q.No. 27.
9.  State and prove Binomial Series Theorem :

If aeR and |x] <1 Then

© ofo—1)...(a— k+l)Xk

QA+x=1+ 2
a k!

Sol.
Refer Unit-1ll, Q.No. 39.
10. Expassion of e*.

Sol.
Refer Unit-1ll, Q.No. 40.

J

VI

:
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UNIT - IV
B b
1. If f:[ab] - R is abounded function then J. f(x) dx < j' f(x) dx.
a
a
Sol.
Refer Unit-1V, Q.No. 1.
b b
2. If, f,ge R[ablandf(X) > g(X) v X € [a, b] then If(x) dx > J'g(x) dx
a a
Saol.
Refer Unit-IV, Q.No. 17.
b
3. If fe R[ab]land m, M are the inf. and sup. of fin [a b] then m(b-a) < If(x) dx < M
a
b
(b-a)and [ f(x) dx =p(b-a) where p e [m, M].
a
Sol.
Refer Unit-1V, Q.No. 19.
2n 3
8 1
4.  Prove that j x?sin®(e*)dx| < or
27
Sol.
Refer Unit-1V, Q.No. 24.
5. A bounded function fis integrable on [ab] if and only if for each € > 0, 3 a partition p of
[ab]. Such that U(p, f) - L(p, f) < €.
Sol.
Refer Unit-1V, Q.No. 28.
6. if‘g’isintegrable on [a, b] & g is a continuous function on [a, b] which is differentiable
on [a, b].
b
Then prove that fo'= g(b) - g(a)
a
Sol.
Refer Unit-1V, Q.No. 40.
— (v}
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Sequences: Limits of Sequences - A Discussion about Proofs - Limit
U N I T Theorems for Sequences Monotone Sequences and Cauchy Sequences
- Subsequences - Lim sup’s and Lim inf’s-Series-Alternating Series
I and Integral Tests.
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I 1.1 SEQUENCE

A sequence is a funtion whose domain is the set N of all natural numbers where as the range may
be any set S.

In other words if A is a non empty set then a function S : N — A is called a Sequence.
Sequences are useful in deciding the continuity of a real valued function on a subset of R.
1.1.1 Real Sequence

A real sequence is a function whose domain is the set.N of all natural numbers and range of subset
of the set R of real numbers

i.e.,, X : N — Ris a real sequence which is denoted by {x } or <x >. Sometimes the sequence X is
represented by an argument of the terms.in increasing order of the argument n such as {x,, X, X, ..... X

1.1.2 Range of a Sequence

The set of all distinct terms of a sequence is called its range. If n € N, where N is an infinite set then
the number of terms of a sequence is always infinite. But the range of a sequence may be a finite set.

for example if x = (-1)"then {x } ={1,-1,1,-1 ...}
. The range of sequence {x } = {-1, 1} which is finite set
1.1.3 Constant Sequence

A sequence {x } defined by x = C € R vn e N is called a constant sequence. Therefore
{x}={C, C, C, ...} is a constant sequence with range = {C}, a singleton set.

1.1.4 Bounded and Unbounded Sequence
1. Bounded above sequence

A sequence {a } is said to be bounded above if 3 a real number K such thata <Kvn € N.
2. Bounded Below Sequence

A sequence {a } is said to be bounded below if 3 a real number K suchthata >K v n € N.

'1‘
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Bounded Sequence

A sequence is said to be bounded if it is bounded above as well as bounded below. Thus a sequence
{a } is bounded if 3two real numbers K and K, such that K <K , then K <a <K Vne N.

A Sequence is said to be unbounded if it is not bounded

(i) Unbounded above sequence : A sequence {a } is said to be unbounded above if it is not
bounded above i.e., for every real number K, 3 meN >a_> K.

(if) Unbounded below sequence : A sequence {a_} is said to be unbounded below if it is not
bounded below, i.e., for every real number K, 3 m e N > a_ <K,

Examples
(i) Every constant sequence is bounded

(i) The sequence <-n> is bounded above because a < -1 V n e N and it is not bounded
below

(iii) The sequence {a } defined by a = (-1)", n is neither bounded above nor bounded below.

Note: The sequence {a } is bounded iff 3 a positive real number M> |an| <MVneN.
Least Upper bound and greatest lower bound of'a sequence
a) Least upper bound of a sequence
If a sequence {a_} is bounded above, then 3 a real number K, > a <K Vv n e N.
K, is called an upper bound of the sequence.
IfK.<K,thena <K, V ne N.
= K, is also an upper bound of the sequence
= Any number > K_ is also an upper bound of the sequence.

Therefore if a sequence is bounded above, it has infinitely many upper bounds of all the
upper bounds of the sequence, if K is the least, then K is called the least upper bound (lub) of
the sequence or Supremum of the sequence.

b) Greatest lower bound of a sequence

If a sequence {a } is bounded below, then a real number K, > K, <a ora>K, vn e N.
= K is called an lower bound of the sequence.

IfK, <K orK>Kthena >K, Vv neN.
= K, is also a lower bound of the sequence
= Any number <K is also an lower bound of the sequence.

= If a sequence is bounded below, it has infinitely many lower bounds of all the lower
bounds of the sequence, if K is the greatest, then K is called the greatest lower bound
(glb) of the sequence or infimum of the sequence.

Rahul Publications
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UNIT - | REAL ANALYSIS

1.2 LiMmITS OF SEQUENCE

Let {a_} be a sequence and | eR. The real number | € R is said to be the limit of the sequence {a }

iftoeache >03I me N> |an_l|<€ vn>m.

If | is the limit of {a }, then we writea_ — lasn -«

or lim a =|

n—o

Note

|an_||<€ vYn>M

=> -e<a-l<evnzm

= l-e<a<l+eVnxm

= ae(l-€,l+e)vnxm
1.2.1 Convergent Sequence

If lim a =I, then we say that the sequence {a } converges to ‘I".

n—o

i.e., A sequence {a } is said to converge to a real number ‘I if given € > 0, Ja positive integer m

3 |an —|| < € ¥V n2xm. the real number l'is called the limit of the sequence {S }.
1. Every convergent sequence has a unique limit.

Sol.

If possible, let the sequence {a _} converge to two distinct real numbers | and I*
Lete:|l—ll| I¢I1:>|I—I1|>0:>e>0
The sequence {a _} converges to ‘I’

= Given € >0 Japostive integer m, 3 |a, —I| <€ /2 Vn =m, .. (1)

again the sequence {a _} converges to I*

= Given € >0 Japostive integerm, |a, —I1|<e/2Vn >m, .. (2
let m = max {m , m_}
= From(1)and(2)
vn>m= [a, —I|<e/2 and [a, -I'|<e /2
[ 3 }
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consider 3. If lim a=I = =[I| but the
=1 =1-a,+a, -1 converse is not true.
Sol.
= |a, -]+
lim a =l
e e —0
< 72% 7 | .
= Given € = 0, 3 a positive integer m such
> [I-1<2% that [2,—1| < € Yn=m - (D)
= J-f<e e -
from (1) and (2) we get
= [-r|<p-1) e=-1
. - = |-l <evnzm
Which is a contradiction
Hence our assumption is wrong = |a] =11
= To prove converse need not be true
=  Every convergent sequence has a unique Let{a }={C-1}r={-11-11... }
limit. = {a_} does not converges to any limit
2. Every convergent sequence is bounded. l Whereas
Sol. (May/June-18, Imp.) )
_ {la.]} {‘(—1) ‘} = {111....}
Let {a } be a convergent sequence. Which
converges to ‘|’ Hence proved
Let'e =1, 3 a positive integer m | 4 lfa >0 vn>Nand lim a = I then
3|an—l|<an2m >0 i
= I-l<a <l+1Vnzm Sol.
Let Kl = min {al, ayy e l} and If pOSSIble, Iet I <0
K,=max{a,a, ... a ., l+1}
slim a =1
= K,an<K, vV n2N
. Given € = 0, 3, a positive
= Sequence {a } is a bounded sequence. = P
integer3|an—14 <e VvVnxm
Note
1.  Converse of the above theorem need not be = l-e<a <Il+eVnzm
true. . Q)
2. If a sequence is not bounded, it cannot be =
v 1<0,lete=—>0
convergent. 2
[ 4 )
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Substituting € in (1) then we get

I I
l+— l—— >
5 <a,< 2Vn_m .. (2)
—3|< I—<V >
= 5= n>m

I
an<E<0 Yynm

Which is a contradiction to the hyp that a_> 0. Hence our assumption | < 0 is wrong

>0
Note
1. If lima =land limb =I"thenlim (@ +b)=1+1"and lim (a-b)=1-I
2. If lima =land limb =I"then lim (a_b)=II".
3. If lima =1landC € Rthen lim Ca = CI
- - . an I

4, If b, =0 for every n, I'=0, lim a =l and lim b =I*then lim b =T
5. If {a } and {b } be two convergent sequencesthena < b Vn>N = lima < limb_
5. If {a }, {b } and {c } are three sequences such that (i) a <b <c_for n>K where K is

some positive integer and (ii) lim a =lim ¢ =1=then lim b =1

Sol.

(OR)

State and prove Sandwich Theorem or Squeeze Theorem

(Imp.)
Let € >0

lima =1
n

n—o0
= 3mez 3 |a,-l|]<evnxm,

= l-e<a <l+e€Vnxm (1)
Simillarly

limc =1

n—o n

= 3mez"3 [c,—-l|<e vnxm,

= l-e<c<l+¢€Vnxm, - (2

g
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Also by hyp we have Then the result is thus
a <b <c VnxK .. (3) If J]a]<| where a=0

Let m = max {m , m,, K} we have |a] < 1ib ‘b>0

lI-e<a <b <c<l+€vVvn2m ] )
oot Apply binomial theorem for (1+ b)"

:>I—E<bn<l+e Yn>m

1+b"=1+nb+ =Dz,
= |b,~l|<€ vn2m 2

. A+b=1+nb=0
= limb =1
oo " (L+b)>nb . Q)
6. If {a }, {b, } are two sequences such that

To show that lim an =0
la,| < |b, | vn > KWhere K is a positive

. . . That is to find the natural number N>
integer and lim b_= 0 then lim a =0.

N—c0 n—ow Ia”—0|<8 vn>N
Sol. consider |a"-0]|<ce
. a|<
Let limb =0 S
— lim |b,|=0 - (@ ) <.
o 1+b
= lim (-|b,[)=0 .. ) |
—<g
la,| < |b,| ¥n>K nb
= -|b,| <& < |b,| ¥n=K nb> =
€
By Sandwich Theorem and from (1) and (2)
we get n> L
eb
lima =0
n—o 1
Select N = @b
I 1.3 A DiscussioN ABOUT PROOFs &
1 1
7. Prove that a" = 0 for |a|<] forn>N:n>£=nb>g
@ limn'"=1 1
nb = ¢
(b) limaY"=1 fora>0
n —oo l
Sol. (Nov./Dec.-18, Dec.-17, Imp.) 1+ D)’ <&
(@) lima"=0 for |a] <1 lal" <e
" — la"-0]<¢  for n>N
fa=0 — lima"=0

[ 6 }
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lim 1/n
(b) Toprove M pun _4 0< s < J2
n-1
Ilql_rl;]c nl/n _1 — 0
lims, =0
—n
here S,=n"-1 [rs,20] By sandwich theorem
Let us consider 5 .
: 2 :
n lim Y2 — lim
s = nn _1 >0 Jn_1 NP Jn-1
1+s =n'" 1
" N—w, ——0
Add power ‘N’ on both sides n
l + n — 1/nmyn _ _
( s.) (n*") =/20)=0
(I+s)=n - (1) i
img =
By using binomial Expansion o 5= 0
-1 lim nlln_ e
(I+s)=1+ nsn+M s N 1=0
— rl,'l_Ill r.]1/n 3 1
(L+s)=1+ns + -1 S
8.  Prove lim(a¥) = 1 for a > 0.
(1 +s)> n(n-1) 52 Sol. (Imp.)
Fora>0,0<a<1
(ntnyr > n(n—1) . (i Ifax1
2 Thenn>a
& n(n—1) $ we have 1<a<n
" n" root of each term
n 1 lllng allnS nlln
1> ——s By sandwich theorem
L N1 lim 1 <lima" < lim n¥
s_2> 5 1<lima'"<1
" lima*n=1
< 2 i) O0<a<1
"on-1 consider a < 1
5§ < \/E 1 >1
" Jn-1 a
by case (i)
. 2
considers >0ands = V2 . 1\V"
n n n-1 im|=| =1
a
J
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. 1
lim PR
Slimain=1
1
-+ If {s_} converges to s then 5[ converges
1
to—.
S

. 1
9. Prove that lim s, = 2 where

n-5
n2+7

10. FindIlim

Proof :

. n-—
Giventhats =———
n® +

. . n-5
Ilmsn=I|m [ 5 J

= lim 7
ﬂ{{l+2}
s = n®+6n°+7
" 4n®+3n-4
Sol. lim ™ ~5tim =
—_._n n
Given that, 1+7Iimi2
n
n®+6n*+7
T 4’ +3n-4 1
n°+3n- asn—>oo,ﬁ—>0
[ A3 2
lims, = lim | D00 +7 _0
| 4n® +3n-4 1
_ I _5 —_
14847 M7 T
\ n n
&0 3 4 1(, 1 1 1
n3(4+nz_n3j 11. Show that Iim—£1+§+§+ ..... +—J =0.
e N n
Sol.
1+6limE+71im L
— n 1
- Leta = —
4+3limL —4lim L "
n n
then lim a =0
l n—o
asn —»w, —~—0 by cauchy’s first theorem on limits we have
_1+6(0)+7(0) _ i lim {a1+a2+ ..... +an}_
©4+3(0)-4(0) 4 e n
lims = 1 li 1+—+£+ +1
T 4 = My 3 7 n =0
(8 }
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12. Show that |im1(1+2”2+3”2+ ..... +n””) =1.
N
Sol.
Leta = n'"
then lim a = lim n'" =1
By cauchy’s first theorem on limits we have
_ {aﬁaz Foe +an}
lim =
n—>o n
— lim 1 [1+21’2+31’3+ ..... +n1’2]:
n—oo n
13. Using cauchy’s first theorem on limits
show that
. { 1 1 1 }
lim + + =1.
= n241 Yn2+2 Jn?+n
Sol.
_n _n_
Let a = mthenaﬂ— 2 on

1

\/::

By cauchy’s first theorem on limits we have

= |lim a = lim

n—o n—o

5

li 1{ n_ . n . 40 } 1
= |m — | T/ T T /—/—/——— T s —— | —
e N Jn2+1 Jn?+2 n®+n

= |lim

n—owo

{ 1 + 1 + +L} 1
Jn?+1 Jn?+2 n+n|

nn 1/n
=€
n!

14.

Prove that lim

n—w

Sol.

(n +l)n+1
thena . = W
consider
a,, _(n+1)™ nt
a, (n+1)! n"

N (n+1)'(n+1) nt (n+1)

ni(n+1) n" "
_ n (1+n1/n)
n
= (1+1n)’
I. an+1 T n o__
im = LILTJC (1+1m) =e

n—o0 n

By cauchy’s second theorem on limits

1/n
nn
lim (@)"=e=lim|—| =e.
n—o0 n n—o0 nl

15.

Sol.

=

1/n

n!

showthat fim (™) _1
n—oo n e

(")

Given lim

n—o0

Let an = F :>an+1: (n+l)n+1
Consider

an+1 — (n+l)l n_n

a, (n+1)”+1 n!

n!(n+1).n" _ n" 1

(n+1)".(n+1)n!  n"[1+1n] - (1+1/n)"

. a . 1
o lim it = fim ——=

1
= g = (1+1/n)" €

n

g
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. By cauchy’s second theorem on limits

1
Ilm IIn— —
(@ )"=1

n—o

/ 1/n
"1 ()" 1
= Ilim|—| === Ilm ==
n—o nn e n—»o n e

16.

Sol.

(i)

(ii)

n

. X .
Prove that le P 0 where x is any real number.
—>0

"
Let a, =m
-+ X is any real number, three cases arises they are
x=0
Wherex= 0 =a =0 Vn

n

. . X
= Ilman:hm — =0

n—w n-»o Nl

whenx <0Oorx>0

Xn Xn+1
a = — =
"ontt (n+1)!
consider
n+l
a,, __x"' n!

a x".x.nl X
a ni(n+1)x" n+1

. a . X
- lim 2L = Jim —— =0<1
n—ow an n—o n+1

: : a
we know that if {a } is a sequence 3a 0V nand —2L — | where ||| <1thena —»0asn— «
a

n

n

. . X
o lima =0 = lim — =0.

n—ow n-o N |

g
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1/n
. nj!
17. Prove that the sequence is {((3 ) J }convergent

Sol. (Imp.)
Leta = (3!’])3! =thena :3(n—+1)!3
" (nY) " ((n+1))
Consider
a,, _ (3n+3)  (n)°

a, [(n+1)!]3 (3n)!

(3n+3)(3n+2)(3n+1)(3n) _(nY)°

[n!(n+1)]3 (3n)!

- (3n+3)(3n+2)(3n+1) 3(3n+2)(3n+1)

(n+1)3 (n +1)2

3.9n? l+i l+i 27 l+£ l+i
3n 3n 3n 3n

= = >
=
n

now g n—w 1 2
n
1+~
. a
= lim S =27
n—o0 a

By cauchy’s second theorem on limits

= lim (@)= 27

- _ 30! 1/n
Let (a) X {(”!)3]

= lim X =27

n—o0

= {x_}is convergent

1/n
3n!
= N3 | is convergent

(n))

g
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fim | L 1 1 1o
18.  Showthat ;" F+(n+1)2+ """ (2n)|
Sol.
Let b
eta = 5 +———+....
nT p? (n-|-]_)2 (2n)2

We know that
n? < (2n)?,

1
n2 (2n)2 = > > (2n)2 and so on

-+ n+l>n

-+ (n+1)2 > n?

n+1 11
= a < > = (n+1) <Fandsoon

=>a< —t—
"on n
. from (1) and (2) we get

an &SN T2

4n
. by squeeze theorem, we get

1 1 1
alsoasn >« , — —>0 and H+_2 -0

fim a_ = lim |5+ ——g + et —g | = 0
e T e (nen)? (2n) |~

. (1)

. (2)
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19. For each sequence below determine it n2+3
converges. b) b,= n2_3
L n’+3
A &= Given equation is b, = — 3
n —
b) b, = n®+3 Apply limit on both sides
n 2
n*-3 We get,
c) C,=2"
2
2 Lt p = Lt n“+3
d) n=1+— n—ow N n—o n2_3
n
e) X,= 73+ (-1)" 3
1 1+—
fy S,=(@)n — Lt n
n—w 3
1-=
Sol. n
n
3 &= n+1’ 1S
o 00
: o 2 N
Given equation is a,= b —
n+1 o
Apply limit on both sides 140
We get T 1-0
Lt g = Lt h=1
n—o N n—>o n+1
2
n Foreach >0 Imez' 3n2+3—l<e
= Lt n°-3
n—o0 l+1
=+, c) C,=2n
Given equationis C, = 2"
1 Apply limit on bothsides we get
— Lt 1
o e o= H 2
This can be written as
1 BT
= — n—w 2N
l+!1
0 _1_1_,
2% o
Lt a,=1
now | : Lt ¢ =0
o n—o N
Foreach >0 3mez’ 5| ——-1i<e Foreach >0 3mez" 5|27 -0|<e
+

' 13 |
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2 20. Determine the limits of the following
d t"=1 +H sequences and then prove your claims.
. _ 2 a) a = n
n — — =
Given equation is t 1+ N nT 241
Apply limit on bothsides we get b) b, = /n-19
" 3n+7
Lt ¢ = Lt (1+3J _ 4n+3
n—o N n—o n C) Cn = 7n-5
2 2n+4
© " 5n+2
1 .
=1 e) S,=_sinn
2 Sol.
Foreach >0 Imez' > (1+—j—1 <e
n ) n
a a,=—
n°+1
&) X= 73+ ()" Given that
Given equation is x, = 73 +(-1)" - n
X, =73+ (-1)1=73-1=72 " n?i
X, =73+ (-1)2=73+ 1= 74 — n
1
X3 =73+ (-1)*=73-1=72 n2(1+nzj
X, =73+ (-1)*=73+1=174
1 1
x, = {72, 74} ~n 1
- [1+5¢)
X5 1 not aconvergent sequence n
x, is a oscillatory sequence Applying limits on both sides
1
= 1 1
— Lt = Lkt =~
f) Sn - (2)n n—oo an_ n—-w n ( 1 j
1+
1 n?
Given that S, = (2)"
- . _1 1
Apply limit on bothsides, we get T 1
1+—
Lt — Lt / ®
n—oo Sn_ n—oo (2)1 "
1 1
AT 0 =0.:|—
= 2*=(2) [1+ OJ
Lt s =1 2, =0
n—oo N
Foreach >0 Imez* 3‘(2)1’” —1‘<e Foreach e>0 3Imez' > 2 +1_0 <€
— (14 }
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UNIT - |
_ 7n-19 _ 4n+3
o) b= 3n+7 R -
. _/n-19 ) 4n+3
Given that b,, = 3N+ 7 Giventhat C, = 7n_5
Applying limits on both sides Apply limits on both sides
Lt p = Lt 7n-19 Lt ¢ = Lt 4n+3
n—o n n-»o 3n+7 n—o n n-»o 7n-5
19 4+§
[ — Lt _n
= I—t n _n—>oo 5
n—w 7 7-=
J’_i
n n
7— E _ 4+ ;
© =
= 5
3—+21 7'_;g
o0
- Lt _ 4+0
Lt p = — nswo N 7.0
n—ow N 3
7n-19 7 4, Ch= 2
Foreach ¢>0 Imez* > | <e W 7
3n+7 3 4an+3 4
Foreach €>0 gmez" > -—|<e
‘21n—57—21n—49‘ m-5 7
— <e
9n+21 28n+21-28n+20|__
(or) 49n - 35 |
-106 1
<e
9n +21 ‘—7(7n_5)‘<e
‘ﬂ <e 7n -5 > 0, we can drop the absolute value
3(3n+7) and manipulate the inequality to solve for n.

3n + 7 >0, we can drop the absolute value
manipulate, the inequality to solve for n.

106

¥<3n+7

06 _,

3e n

106 7

—_ —<N

9¢ 3
S ill put _ 16 7
owe will put n="o"= — 3

N tob ber | th 06 7
0 be any number larger than “"= - -

i<7 5
T7e n-

i+5<7n
Te

1 5
N= —+—

So we will put 29< 7

1
_+_
N to be any number larger than 29 7

|l 15 l
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d)

_ 2n+4

N 5n+2

. _ 2n+4
Given that d, = 512

Apply limit on both sides

2 4 2+4
i i
Lt g= Lt 2244 _ 1t “Tn " w _ 240
nsw N nosw 5n42 n—o 5+g 5+£ 5+0
2 n ”
Lt g==
n—w N 5
2n+4 2
For each >0 * -—|<
mez 25 5‘ ©
10n+20-10n-4
<e
25n+10
16
—|<e
5(n+2)
5n + 2 > 0, we can drop the absolute values manipulate the inequality to solve for n.
E <bn+2
5¢ n
2 _2<s
5¢ :
16 2
Z—=<n
25¢ 5
S ill put N= 2
o we will pu = 5c " 5
Nto b ber | th 10 2
0 be any number larger than "=~ -
J— 1 H
e) S, =5 sinn
. 1
Giventhat S, = Lsinn
Apply limit on both sides
1
Lt g5 = Lt =sinn
nN—oo nN—oo n
Lt S,= Lt sine
n—oo n—oo
= 0 sin w
=0
{ 16 |
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I 1.4 LimiT THEOREMS FOR SEQUENCES

{a1+a2+ ..... an} -

21. Show that If lim a = | then lim

n—o n—o

Sol.
Define the sequence {b } suchthatb =a - |

foralln e z*

limb = lim (a -l)lima ~1=1-1=0
n—o0 n—o0 n—o0

limb =0

— foreach e > Osuchthat 3 r e z* such that |b,-0| = |b,| < e/2 Vn>r

limb =0 = {b}isbounded = I K e R*> |b, | <K Vnez

lb,+b,+...b,| |b,+b,+...b, b +...b]
n |~ n no |
K+K+...+K(rtimes) e/2+e/2+....+€/2(n—r)times
+
B n n
_ K, (nm0)s
n 2n
2 rK e re
A, "=
~n 2 2n
rK IS IS re P
—+ — - - —<
= ht2 2 on= €
b, +b,+....b, € € r
n <_+E<E putm= ——
b, +b,+....0b,
= : Zn _0‘<EVn>m
i b +b,+..+b, |
= nl—rl]c n -
but we have
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Note:

lim n lim
n—o n —>00 n
a+a,+...+a, b, +b,+....+b,
= lim = lim + |
n—oo n n—oo n

n—o

Ifa >0 Vvnez'anda =Ithenlim (a,a,...a)"=I
n n N—so0 1 2 n

22.

Sol.

. . a +1 . .
If {a } is a sequence suchthata >0 Vnez'and lim —~——=| then lim lim =,
n n n—o0 a n—o N—w

a

Let the sequence {b_} defined by b, =a, b, = -2, b,

al 2 n-1

sothatb, b, b.....b =a
. a . a .

o lim =1 = lim —-=1=limb =1

n—o0 a n—o0 a 1 n—o0
n n—

-an>OVn:>bn>OVn

Now we have asequence {b } suchthatb >0 vnand limb =

n—owo

— (b, b% b,...b ) =

— lim (@) =1
n—o n

23.
Sol.

Let {s } be sequence in R prove that the lims = 0 iff lim |s | = 0.
(Imp.)
Let {s } be a sequence in R.
Suppose that lims = |
i.e.,, for each ¢ >03n 3]s, — /e vn>N
We know that lims =0
— foreach ¢>03neN>|s -0|<evn=N
< |s, -0]<e
< |lIs, | -0l<e
< limls | =0

Hence lims, =0 < lim|s | = 0.

Rahul
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24. Ifthe sequence {s } converges to s and KeR then the sequence {ks_} converges to ks that
is, lim{ks } = klims .

Sol.

Given that {s } is convergestosi.e., lims =s.

— foreach g>OE|neN3ISn—SI<ﬁ vn=N .. (1)
also, {ks } converges to ks
— foreach ¢>03ne N> |ks —ks|<e .. (2

Required to prove limks =k lims_

consider Iks, — Kk |= Ik(s, - s)l
< Ikl Is, - s
K] [+ by()]
BT
= K y

= |ks —ks|<e
foreach £ >03ne N> |ks —ks|<e vn>N
lim ks = ks

limks, = klims, [ s=lims]

25. If{s }isconvergestos, and {t }is converges to ‘t’. Then {s + t } converges tos + t that
islim{s +t}=Ilims +limt.

Sol. (Dec.-2017, Imp.)

Given that, {s } convergestosi.e., lims_=s.

= for each g>03neNla|sn—s|<%vn2Nl . (@)
also, {t } convergestoti.e., limt =t

— foreach s>03neN23|tn—t|<%vn2N2 .. (2

Required to prove {s_+t } convergesto s + t

To prove for eache >03neN> (s, +t) - (s + )] vn>N

Let N=max {N,, N,}

€
From (1) :>8>OEIneN3|Sn—S|<E vn >N .. 3
€
From (2) = ¢>03neN> It ~tl<7 vn>N .. (4)
(19 } _
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consider |(s. +t)—(s+ )] =|s +1t —s-t]

=1, -9) + (¢, -9l

=|Is,—s| + |t —t]

<%+% [From (3) - (4)]
2¢
= — =&
2

Is, +t,- s+ D]<e
= lim(s +t)=s+t

= lim(s, +t)=Ilims +Ilimt

26. If {s } is converges to s and {t } is converges to t, then {s_ t } converges to st i.e., lim
(s, t)=(lims)(limt).

Sol. (May/June - 18, Nov./Dec.-18, Imp.)

{s } is converges to s

= lims =s
. €
i.e.,, foreach ¢>03neN, >|s —s|< vn >N . Q)
n 2]t +1
{t } is converges to t
= limt =t
€
for each ¢ >03ne N, > |tn—t|<m vn>N .. (2

required to prove that lim {s_t } converges to st.

i.e., to prove foreach e >03neN>|s t —st] <evn>N.
Let N=max {N,, N,}
consider |s t —st] =|]s t —st+st-st|
= (s, t,—s, )+ (st—st)]
= |s,(t, - ) + It(s, - 9|
= |s,11t, - tl+ 1t(s, - )|
Is,11t, - tl+ 1t s, 5|

IA

+ It

< |S|L
= Bloy 211t

. (3)
To solve above inequality

We know that every convergent sequence is bounded.

Since {s_} is convergent then it is bounded

i.e, M>03]s |<M vn . (4)

{ 20 }
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From (3)
€ e
- — +
=I5 t-sth o< s oo+ g
€ S
M—+ |t by 4
sMow o &9
<£+_
2
<2
2 €
Sols t —-stl<e

foreach ¢e>03neNs>|s t —stj<e vn>N
= lims t =st
lims t =lims limt

Hence proved.

) . 1
27. If{s }convergestos, ifs =0 vnand ifs=0, then {i} converges to —.
s S

(Nov./Dec.-18, Imp.)
Sol.
Let e>03m=>0>]s |>m yn
Since lim s = s there exists N suits that
Nn>N = [s=s |<em]s|

Thenn >N =

1 1 |s=s,
s, s| | S
— S_Sn < IS—SnI
$,S Is, sl
- em|s|
m|s|
1 1
———|<e¢
s, S

for eache >03ne N>

. {1} 1
Solimi=L ==
s,| s

S

n

<evn>N

g
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28. Suppose that {s } converges to s and {t } converges tot. Ifs » O and s 0V n then

{tn } t
— p converges fo —.
S S

n

Sol.

{s }is converges to s

1 1
By previous theorem {s_} is converges to S and also, {t } converges to t.

n

= limt =t

. t . t
Required to prove o[ Is converges to ~

n

i.e., foreache >03dne N >

t t‘ ottt
—+—-—<g¢ vn>N orlim—-=—.
S S S

n n

ot .
= lim +=Ilim i.tn
S, S

n

=lim L lim¢
S

n

ot
lim-=+=
S

n

1.4.1 Divergent Sequence

0} A sequence {a } issaid to diverge to + oo if given any positive real number K, however large 3 a positive
integer msuch thata >k vn > m.

(i) Asequence {a } is said to diverge to —oo if given any positive real number K, however large, 3 a positive
integer msuch thata <-k vn > m.

1.4.2 Oscillatory Sequence

If a sequence {a _} neither converges to a finite number nor diverges to +o or -, itis called an
oscillatory sequence.

Note :

If LIm a =0 then sequence {a } is called as null sequence.
n—ow n n

' 22 }
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29. Give a formal proof that lim
[\/ﬁ+7]:+oo.
Sol.

Given that lim (/n +7) = + o
foreach e>03IN>n>N = s > M
:>\/H+7>M

=Jn>M-7
=n>M-7)?
we will take N = (M - 7)?
Formal proof
LetM > 0and LetN = (M-7)?
Thenn>N = n> (M -7)?

hence \/[n >M-7

\/ﬁ+7>M

lim(Jn +7)=+w

30. Let{s }and {t } be sequence such that
lims =+ and limt > O [limt can
be finite or + oo ] thenlims t.= + o 1.

Sol :

Given that {s_} is sequence which is diverges
to + oo,

ie., lims = +oo

M
for each e=03n>n>N, = > 1)

Let {t } be sequences, thenlimt >0 or lim
tn =+

LetM =0

Select a real number mso that 0 < m < lim
t 3 N,suchthatn>N, = t >m.

Put N =max {N,, N,}

n®+3
n+1

31. Prove that lim

=+ow.

Sol :

n>+3
Observe that - =

+1 n{l+l}
n

1 3
7_1'_7
—_Nn _n
l+l
n
=5t
3 1
Where sn:1+— andt :_1
Y\ " 1+—
n
i im n+2 .
ims t =lim N 1+1
n
s —iim [0+3
Ilmsn—llm n
|imSn=+oo
lim t= Iim;z 1

&

lims t = (+w) (1) =+x

lim(s t)= +oo

32. For asequence {s_} of +ve real number
we have lims = +oo if and only if lim

Thenn>N = s t =t S—=O.
M
= —.m
I Sol.
st >M Let {s } be sequence of +ve real numbers.
= lims t =+ foreachM >0 3nen>N=s >M
[ 23 }
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Required to prove, 242
33. Lett, =landt, = nZt for n>1.
. . _ .1 n
i.e, lims =+o = lim s 0 - (1) Assume that {t } converges and find the
" limit.
andlim X =0 = lim s, =+ . @ | Sol. (Nov./Dec.-18, Imp.)
S
I” Letlimt =t
[ Suppose lims_ =+ .
(0 PP n 1 {t } is converges to t
Lete=0and M = —
. _ € t2+2
since lims =+ b = 2t
AN>n>N = s > M =1
e i g [ m@E+2)
1 Mua =M {72t ) = Tlim )
“N>N=s > -
lim(t2 +2)=lim t? + 2
e> 1
S, =limt .limt +2
=t2+2
§>0=-==0 lim (2t) =2limt,
=2t
1
for each g>OE|n>N:>S__0<8 _ im@t+2) 242
\ Imt. = Timey) = 2
.1
=lim — =0
” imt = L2
1 : n+1 2t
i Suppose that lim — =0
(i bp s, here t =1
1 n>1
atM>0ande= v
t2+2
fn=1=1t, =
1 1 2t
Thene>03IN>5n>N=|—-0 <a( MJ
n 1 +2
1 ERFT0)
_<_
SI’]
_3
s > 0 we can write L=5
1 1
>N = 0<—<— 3\
Sn M t2+2 E +2
fn=2=1t, =2 =
n>N= M<s 2t, 2(3}
thenlims = +oo. 2
— (24 }
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9+8 (b) Iflimt =-o thenlims = -
=~ 12 Suppose limt = oo
. foreachM>03 n>N =t <M vn>N
L= E s, <t
= s <t <M
7y, = s,<M  vn>N
2+2 |12
fn=3=1t, = o = T foreachM=>03 n> s <M vn>N
: 2(12j = lims =-o
(c) Iflims and limt exist then lims <limt
_ 6(289+ 288) from (a) and (b)
- 2448 The limits one infinite
_ 1414257 So, assume {t }, {s } converges.
ie,t-s >0 wvn>N
Since 1.4142 =~ .
V2 lim( -s) >0
- lim {t } is converges to = /2 limt —lims >0
34. Suppose that there exists N, such that g, = (o
s <tvn>N Ilmsngllmtn
n—= "n 0-
(@) Prove thatiflims, = +o thenlim | 3> Calculate,
tn =+ow.
A ] lim 1+l+l+i+_"_+i .
(b) Prove that if limt = -« then lim n— 3 9 27 3"
S, =~ Sol. (June/July-19)
(c) Provethatiflims and limt_exist. 11 1 1
Thenlims < Ilimt. Giventhat lim | 1+=+=+—+...+—
n—o 3 9 27 3"
Sol. Which can written as
Giventhat IN,>s <t vn>N, S [P T F PO SR SO ) I (1)
n—o 3 9 27 3"
(@ Iflims =+ =limt =+
a
Suppose lims = + oo ByGR S, = 1-r r<1
foreachM>03n>N=s >M Since  a= first term
IN,> S, <t Vn>N, U P
t, 3
M<s <t
M<t 11
3 _3_1
foreachM>03n>t >M = 3”2_1:725
1-= =
= limt = +x 3 3
[ 25 ) —
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2

from (1) 1+ lim

n—oo

_,. 1
N 2
_3
T2
lim 1+1+1+ ..... +i _3
n—e 9 3") 2
] 1
36. Prove thatlim —= 0 forp > 0.
n-o N
Sol. (Imp.)
.1
To prove that lim —
n—x 0P
Required to prove that, for each =03
1
neN>|—-0/<e ¥Yn>N
np

R
nP

<€

lim i:o p > 0.

n—ow np

37. Assumeall s # 0 and that the Limit L

Sr‘|+1
S

= lim exists.

(@) ShowthatifL <1, thenlims =0

(b) Show thatif L>1, thenlim |s | =
+ .

Sol.
IfL<1lthenlims =0
Suppose that L <a <1

So,e=a-L=L+eg=a

1
forn > N, ‘F_O <g
Then 3 N'where n > N' = [2o2f | | < ¢
sn
1/,
n
L LetN=N+1thenn> N= [ <L +¢
e (-a)
Sn+1
n°P> — <a
€ n
1/p
1 Sns
n> (—j Elca=s l<als|
8 n
1/p So, clearly |s,,|< als,| By Induction Now
Selecting N = (lj we see that
€
ISyl <2 lsy..1<aIsl
>
forn >N Is,.. ] <a“|s | foranyk >0
(ljup Changing variable andn =N + kforn>N
n>|-
€ we have |s | <a M |s |
= 26 ',
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Now, lim a"™|s, |

Is, | is number so that,

limitis |s | lima™™

since |Ja<1],lima =0

since |s |<a™™|s,| vnx>N

By sandwitch theorem lims = 0

t S

n
S

n+1

t

n

(b) Lett = N

n

n+1

Sn+1

So, we know that converges to L that

n

n+l

IS, s =+ 0.
L0
tn+1 n 1
— = converseto —, L > 1 we
tn n+1 L
know 1 <1
L

Apply part (a) to conclude that

limt =0
limJt |=0
Is,| are the real number
4 1 .
lim +— =lim|t |[=0
SI’]
lims = + .
38. Suppose lim a, = a, lim b, = b, and s
_ ad+4an . _ a’+4a
= bren prove that Lim S, = e

carefully, using the limit theorems.

Sol.
GiventhatLima,=a, Ltb,=Db
ad+da, a+4a
" bﬁ +1 b2 +1

First we use by known theorem. If (S,)
converges to s and (t,) converges to ft,
then (S, t,) converges to S..

= Lt t) = (LS, (L t)
Lt a®=Lta, L, a2 Lta?

=alta,-Lima,
=a-a-a
=3as

We have that (S, +t) = LtS, + Ltt,

- Lt (aﬁ +4an) = lim aﬁ +4 . Lta,

=ad+4a
Similarly,

=b-b+1=Db2+1

Limb, - Ltb, + 1

Since b2+ 1 #0 [-- by known theorem

3
a” +4a
s LtS, =—( > )
(b +12)
1
Ltt—”th—-tn
Sn Sn

Hence the proof.

39. Let x,=1 and Xx,,,= 3x2far n>1

1
Show ifa =Ltx,, thena=- ora=0.

3
Sol.
a) Let x,=1,n=1
X2: 3X12_ :3
n=2 = x3 = 3x,2=3(3)? = 27
soa= Ltx,
XI:>toc Xn: BXﬁ—l
_ L oaco
a= 5 ora=

b) Does Ltx, exist?
Yes Ltx, is exist.

1
We have limit points a = 3 (ona=0

X, has limit point
Lt x,, exist.

27 J
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c) Let a=Limx,
a>Limx, (or) a<Ilimx,
a is constant
We know that Lim x,>a
We prove a > Limx,
X—00
a>x,
a>x,
But which is contradiction
a # Limx, iswrong
a=Ltx,
I 1.5 MoNoOTONE SEQUENCES AND CAUCHY SEQUENCES
(i)  Asequence {a } is said to be monotonically increasingifa ., >a v n €N
ie,a <a,<a <...<a<a, <.
(i) Asequence {a } is said to be monotonically decreasing ifa ., <a VvV n<€ N
ie,a 2a,2a,2...2a 2a,, ..
(i) Asequence {a } is said to be monotonic if it monotonically increasing or monotonically decreasing.
(v)  Asequence {a } is said to be strictly monotonically increasingifa ., >a vV n &€ N
(v)  Asequence {a } is said to be strictly monotonically decreasing ifa ,,<a v n € N
(vi) A sequence {a } is said to be strictly monotonic if it is either strictly monotonically increasing or
strictly monotonically decreasing
Note
1)  Every monotonically increasing sequence which is bounded above converges to its supremum.
2)  Every monotonically decreasing sequence which is bounded below converges to its infimum.
40. All bounded monotone sequence converge.
(i) Every monotonically increasing sequence which is bounded above is convergent.
(i) Every monotonically decreasing sequence which is bounded below is convergent.
OR
State and prove Montone Converge Theorem.
Sol. (June/July - 19, Dec.-17, Imp.)
(i)  Let{s } be sequence which is monotonically increasing and bounded above.

To prove that {s } is convergent.
i.e., to prove that {s } exists

lim s =sup{s |neN}

g
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for each e=0 3meN> |s - k|<e v n>m let the range of the sequence.
S={s, :neN}

Clearly it is non empty and is bounded above energy non empty subset of R which {s } is bounded
above has supremum.

Letsups =Kk
where k is least upper bound.
k — € is not an upper bound of s

dmeN> s, >k-¢ . (@)

= {s,} is monotonically increasing sequence vn>m —s >s_ .. (2)
from (1) and (2)

k—-e<s_ <s .. (3

k is the supremum of s Vne N
s, <k<k+e .. (4)
3). 4
k—-e<s <k+ceg
sols, -kl <e
.. Every monotonically increasing sequence which is bounded above is convergent.
(i) Let {s } be sequence which is monotonically decreasing and bounded below.
To prove that {s } is convergent
i.e.,to PT lim{s } is exists
lims = Inf{s /neN}
To prove that for each ¢ > 03Ime N> |s,— ¢l <& vn>m
Since {s_} is bounded below.
{s } has intimum =/
Letinf =/
Where ¢is a great lower bound ¢+ ¢ is not a lower bound of s
dmeN> sm</ +¢ . (1)
= {s,} is monotonically decreasing sequence.

vnxM = s <s_ .. (2)
from (1) and (2)= s <s < /+ ¢ .. (3
fisintimum of s vne N .. (4)

from (3) and (4)
(—e<s </(+c¢
Is,-/1<evneN
.. Every anatomically decreasing sequence which is bounded below is convergent.

' 29 |
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41. If{s } is an unbounded non decreasing sequence then lims = +o.

Sol.

Let {s } be non decreasing sequence but not bounded above.

{s.} is an increasing sequence = s_>s_for n>m.
{s.} is not bounded above

dmez + >s >M where M > 0

s,2s, > M forn>m

s,>M Y h>m

{s } is diverges to infinity

i.e., lims, =+ow

42. If{s } is an unbounded non increasing sequence then lims = - .

Sol.

Let {s } be decreasing sequence and not bounded below.

{s.} is an decreasing sequence — s <s_for n>m.
{s.} is not bounded below
dmez* 5s <M where M > 0
s,<s <M forn >m
s,<M v n>m
{s } diverges to —x

lims, ==

43. Which of the following sequences are increasing decreasing ? Bounded ?

1
a) n
"
0 =
c) nd°
d) Sin[nTﬂ-J
e) (2"
n
N
Sol.
1
a) n
Let S, =1
n

g
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S, = 2 is bouned.

g
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B.Sc.
c) n°
Let S,=n®
Sp+1 = (N+1)°
Put

n=1= §=1"=1; n=1 = S,,=S,=(1+1)°=2°

n=2 = S§,=2%=
n=3 = S,=3%=
Sngsn+1

This shows increasing

;, N=2 = S, =S;=(+1)° =3
, N=3 = S;,,=5,=@B+1)°=4°

n> is increasing sequence.

. nr
d) Sin [TJ
nw
Let S, = Sin[7J

Spe1 = SIN [(n +71)TCJ

T
Put n=1inS§, = Sl=Sin[7J; n=linSl+l=SZZSin[7)
n=2 = S, =Sin[

n=3 = S, =Sin[

|Sn+1—Sn| < e

e s arbitrary

e) (2

Let S, = (-2)
Sn+l - (_2)n+l
Putn=11in S,;

S, = (2 =2
n=2
S2=(-22=4
n=3 =
S;=(22%=-8
n=4 =

S, =(-2)*=16

S, <S,;

T
—J; n=3;S3+l=S4=Sin[7J

2n

2n [ 3m
7 | R=2 = Sy, T S3=Sin| -

41

nn
Sin [7} is bounded sequence.

Put n=1in S,
$141=8,= (2" =4

= n=2=

S$,,1=S;=(2)2%=-8
n=3
S;3.1=S,=(-2)*=16

S,<Ss; S;<S,

It is increasing and bounded sequence.

Rahul Publications
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n
f) 3—n
n n+1
Let Sn=3—n; Sn+lzw
Putn=1
1 i 2
Sl_E’SHl:Sz 82:3225
n=2
. 1
S, 9’Sz+1: 3—3—2
n=
1 4
S3= 32’ S3+1_S4:3_4
n

3—n is decreasing bounded sequence.

44. Let (S,) be asequence such that |S, ., -S| <2™ forall neN. Prove (S,) is a Cauchy
sequence and hence a convergent sequence.

Sol.

Given {S,} is a sequence 5[S;,; -S| <2™"

n+1
Let {S,} is a Cauchy sequence
= {S,} is bounded

.. By Balzano weiestrass theorem we know that {S_} has atleast one limit point say |.
If possible, Let |1 be another limit point of {S_}
Let e:|l —I'| >0

{S,} is a Cauchy sequence, for each

e>0 Imez" 3[sp—Sy|<2" VneN, n>m here e=2"
I, I'are limit points, 3 positive integers n+1 > m, n >0
S S
1S+ - lI< 3 and |S,-I|< 3
Consider
=11 = 1= Spyq+ Spay + Sy =Sy = I
Spa1=Sal< 27
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n=1 = [S.,;-S,I<27?; =2 = |S;-S,|< 272
1 1
IS,-S,1I< Py IS5 - S,1< n
I1S,+1-S,I<e VvneN o 1S,41-Spl<e VvneN
1 1
e=— e=—
2 4
S,, is bounded - S, is bounded
< ISn+l_|| + ISn+l_Sn| + ISn_II
€,€. €
= 3
< e
=-ry<p-r

ISh+1=Sal < 1Sp1 - S0l

which is contradiction

Hence our assumption is wrong

{S,} has a unique limit point ‘I’

{S,} is bounded and has a unique limit point

= {S,} is convergent.

45.

Sol.

1
Let (S,,) be an increasing sequence of positive number and define 6., = n (S;+S,+....+S))

prove (o) is an increasing sequence.

(June/July-19, May/June-18, Dec.-17, Imp.)

Given {S.} is an increasing sequence of positive number

Sp < Spe1 VNeN 2+

1
Op = (S;+S,+..+S))

n+1 = n+1 (Sl+ SZ++ Sn)

n=1= Gn+l=m(Sl+SZ+...+Sn)
1
01:1(31+ S,+..+5S)) Putn=1
=(2S;+S,+ .. +S) Gn+1262:m(81+ S,+..+5S)
( 34 )
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1
o3 =73 (S;+S,+ ..+ Sy

1
=3 (5;+S,+2S;...+8S))

B Gn < On+1

. o, IS an increasing sequence.

263

264

1

1
o, =E(ZSl+ S,+ ..+ S

1

= §(Sl+ 2S,+ ...+ S))

3. 1(S+S + ..+ S,

= Z(Sl+ S,+25;+ ... +5S,)

46. lett; =1 and t _, =

a) Show lim t, exists

b) What do you think lim t,

Sol.

Given t;=1 and t

a)  We will show that Limt is exist

1
{1—F}th for n>1

1
1-—|-t, for n>
[ an? } n>1

It is enough to show that {t.} is a bounded monatone sequence

First we prove that {t } is a bounded

3 two real numbers k; and k, > k; <k,

then k; <t, <k, vVneN

[to] <[tneal

t is monotone sequence

n

t, is bounded sequence

{t.} is bounded monotone sequence

Lim t, is exist.

= 35=
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b)  The answer is not obvious! t.,>0
It twins out that lim t_ is a waltes product N+l
2 S
and has value - which is about 0.6366 n 2n
Observe how much easier part (a) is than Thus (2) holds for n+1 for n
part (b). Hence (2) holds for all n by induction
1 Thus limt, = t exits.
47. let t; =1landt,, = |:1—m:| tn 0
forall n>1. 1
48. lLetS;,=1andS, ;= 5(S,.,)forn>1.
(@) Show Lim tn exists. 3
(b) What do you think Limtn is? (@) Find S, S;and s,
. : n+1 1
(¢) Useinduction to show tn = — (b) Use induction to show S_ > = for
no2
(d) Repeat part (b) all n.
Sol. (June/July-19, May/June-18, Imp.) (c) Show (S,) is adecreasing sequence
(@) (b) and (d) same as the above problem. (d) Showlim S existsand find lim S,
L Sol. (June/July-19, Imp.)
) t=1t,= {1—m} tn . (1) 1
| (@ Given S;=1and S, = 3 (Sp+q) for
+1
We have to show that t, =—— nz1
& s,=1
1
We will prove by induction put n=1inS_,,
o<t <t <1 1
S, =S, += - (S;+1
It is holds for n >1 el T2 3 G+
1 L (1+1)
n+ =3
. 3
multiply on b/s
_2
o<t t n+i 2 3
< < <—
Lo T 2n @ Put n=2
. n+1 1
this holds t, < on for n S,py =S;+ = 3 (S,+1)
Now to show t n+1 1 [2+1J
> — =—|z
ow to show t, on 33
from (2) 5 5 5
0<t ., 9 33 #F
— ,' 36 ,'
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=
o
=

4

w
w
w
w

1
(b) S;=1andS,, = E(S” +1)forn > 1
. . . 1
We will prove by induction S, > PRAL
1
0< Sn+l < Sn <§ (Sn + l)

It is holds for n =

N |

1 1
Hence S, > 5 is holds n = S v

We prove thatn =n+ 1 yn

1
0<Sn+1<Sn< E(Sn+l)

1
Sn+l = E(Sn + 1)

Put n=1 in equation (2)
1
S141= S 25(31 +1)
1
Ig(l + 1)
1 2
25(2) =3 = 0.66
Put n = 2 in equation (2)

1
Sy = S3=§(S2 + 1)

Put n = 3 in equation (2)

1
Saus =8,=5(S; + 1)

1(5)-265

—E—osz
27 T

7S = Spag

- {S,} is decreasing sequence

S, is greater (d) We will show that Lim t, is exist
1 It is enough to show that {t } is a bounded
St > is holds rrTonatone sequence |
First we prove that {t } is a bounded
S+, also holds for n + 1 for n
1 3 two real numbers k; and k, > k; <k,
0<S,,,<S,< 7 (S, + 1) holds for n
=S =g G then k, <t, <k, vneN
1
S, > 5 Vn |tn| < |tn+l|
(©) Given t, is monotone sequence
s,=1 .. (1) t, is bounded sequence
1 {t.} is bounded monotone sequence
S“+1:§ S - () Lim t, is exist.
37
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1.5.1 Cauchy Sequence
Definition (1)

A sequence {a } is said to be a Cauchy
sequence if given € > 0, however small, 3 a
positive integer m such that [a_ —a_|<e Vn >m.

Definition (2)
A sequence {a } is said to be a Cauchy

sequence if given € > 0, however small, 3
a positive integer msuch that |a . —a | < e Vp

= la-al<1lvp>m

= am—l<ap<am+1 Yp=>m

Let K =min.{a,a, ... ca a -1} and
K,=min. {a,a,, ..... ,a ,a + 1}

= K<a<K Vnez

= {a } is bounded.

Note : Converse of the above theorem need
not be true.

>0, pem. 51. If{a }isa Cauchysequence then {a }is
Definition (3) convergent.
A sequence {a } is said to be a Cauchy Sol. (May/June-18, Dec.-17)
sequence if given € > 0, however small, 3 a Let {a } is a Cauchy sequence
positive integer msuch that Ja -a,|<e vV p,q >m. = {a }is bounded
Note : All the above definitions are By bolzano weierstrass theorem we
equivalent. know that {a_} has atleast one limit point
49. Every Convergent Sequence is a Cauchy say ‘I"
Sequence. If possible, let I" be another limit point of {a }
Sol. (Dec.-17) Let € = |.|-|'| >0
Let {a } converges to ‘I" {a } is a Cauchy sequence, for each
Foreach € >0, 3 me 77 > ]a —I] < l €>0,Imez' > |a-al< % v P,
S
E Y n>m. q>m
If p,q > mthen Ja —I|'< e/2 [, I"are limits points, 3 positive integers
S
la, -1l < % p=m g>m>Ja-Il <7 and
Consider . &
_ la, 1173
la,~al = la,—1+1I-a] |
P |ap I+ |a K I Consider
< — —
P g [I-1'=ll-a,+a-a +a-I
<%+ % < la,- 11+ la-a| + [a,- "]
=€ < E,E8. ¢
la,-al<e€vpg>m <3 3 3
= {a }is a Cauchy sequence. -1 |EI "
e < I
50. |If {a }is a Cauchy sequence, then {a } I -
is bounded. which is a contradlc.tlon..
Sl Hence our assumption is wrong
. Dec.-17 . - .

0 (Dec ) {a } has a unique limit point ‘".
Let{a,} is a Cauchy sequence {a } is bounded and has a unique limit
= For e =1 3mez > |a-al<l point.

vV p,g>m = {a } is convergent.
— ,' 38 ,'
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1.6 SUBSEQUENCE I

If {s } is a sequence and {n, } is a sequence of positive integer such thatn, <n, < ....<n,. Then the

sequence {S, }is called subsequence of {s }.
Example

s, = n? (-1)"
s,=-1,s,=4,s,=-9,s, =16 .... and 4, 16, 36, ... are subsequence of s .

52. If the sequence {s } converges, then every subsequence converges to the same limit.
Sol. (May/June-18, Nov./Dec.-18, Dec-2017, Imp.)
Let {S,, } be subsequence of {s } n>1.
To prove
S, is converge to/
Vv e>0 3 keN> for any k>K> | Sy, — ¢ |<e
as we know s_converges to ¢, 3k such that for any k>k
Is,— 7 1<e
then for any k> K we have,
n >n =k
n > K
IS —r]<e
For given ¢ >03ksforany k>K = |5y - ¢ |<c¢
since £ >0 was arbitrary it holds for any ¢
V £>0,3k> S = 7]<e vk >k
53. If the sequence {s_} converges toy prove that it is subsequence also converges to £.
Sol. (Imp.)

Given sequence {s } is convergesto lims = /.
n—ow

foreache >03meNn |s - {]<e Yn>m . Q)
Let k be any natural number

foreach e >0IdmeNs>|s - {|<e Vn>m .. (2
To prove that
The subsequence s, converges to /.
i.e., to prove k
for each e<O03ImeN |5y, - 7 ]|<e Vvn >m
o n >k
from (1) and (2) |Sn, — 7 |<e ¥YNn>=m
slim S, =7

subsequence {5, } converges to /.
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54. Everysequence {s } has a monotonic subsequence.
Sol. (June/July-19, Dec.-17, Imp.)

Let {s } be a sequence to prove that {s } has a monotone subsequence {s } is any sequence then
three cases arise.

Case (i) : {s } has no peak point
Case (ii) : {s } has finite number of peak point
Case (iii) : {s } has infinite number of peak point
Case (i)
{s.} has no peak point
*1leN
(n,) 1is not a peak point of {s }

dn,eN and n,>1

35S, =58,

~.n,eN
n, is not a peak point of {s }
dn;eNandn,>n,> S, >S5,
Repeating the same argument, we get

n<n<n<..538 <§ <S5 <..

2

where {s, } is a subsequence of {s }
{s } has a monotone subsequence.
Case (ii)
{s.} has finite number of peak point, let m be the maximum among all the peak point
Let n, >meN

Then n_ is not a peak point of {s }
dn,eN >n,>n and s, =S,

n,eN andn,>n >m

n, is not a peak point
dn,eN sn,>n,and s, 25,
Repeating the same process than we get

<
n<n<n ..>s <s <s <...

ny n — 7ng
where {S, } is a subsequence of {s } and it is monotonically increasing sequence.
-+ {s,} has monotone subsequence.

{ 40 }
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Case (iii)

{s.} has infinite number of peak points let n , n, ... be the infinite number of peak points.
>n <n,<n,<..
-+ n_is a peak point

Thenn,>n, = s <s_
-+ N, is peak point

Thenn,>n, = s, <SS,

Repeating the above process, we get

> > >
n<n<n<..=S, 25 285 >..

where {S, } is a subsequence of {s } and it is monotonically subsequence.

.. Every sequence contains monotone subsequence.

55. State and prove Bolzano Weierstrass theorem
OR
Every bounded sequence has convergent subsequence.
Sol. (June/July-19, Nov./Dec.-18, Imp.)
Let {s,} be a bounded sequence
To prove that {s } has convergent subsequence
-+ {8, } is a sequence.
As we know that every sequence has monotone subsequences.
-+ {s,} is bounded and the subsequence of {s_} is also bounded.
Also subsequence of {s } is either monotonically increasing or monotonically decreasing.
By monotone convergence theorem
Subsequence {3, } is convergent
Every bounded sequence has a convergent.

56. Find the subsequence limitofs = n?(-1)" Vne N.
Sol :
S, = n(-1)" vn
s;=-1, =2 (1) =4
s,=-9, s5,=16
s,=—25, s,= 36.....
The subsequence of even terms on {4, 16, 36...} is diverge to + oo .
The subsequence of odd terms are {-1, -9, —25, ---} is diverges t0 — o .
.. All subsequence that have a limit diverge to + « Or — oo .
S ={~w, + o } subsequential limit of {s_}.
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57. Let s denote the set of subsequential
limit of sequence {s _}. Suppose {t }isa
sequence in SN Randthatt=Ilimt_then
tes.

Sol.

{5} is subsequence of {s } is converges to
tonos|s, —-t]<l

Assume thatn,, n,, ..., n_have been selected,

1! 2! .
sothatn, <n,<..n, .. (1)
itis " term
1 .
| Sn,—t] <Tf0”:l’ 2, ...k .. (2)

If {Sn} is subsequence convergestot

1
<_
k+1

Snk_1 - tk+1

Eir1k+1 = r-1k 3

from (1) and (2) hold k + 1

Case (ii)
Suppose t = + from equation (4)

S —tj‘<£_

J

n; j=l,2,k

S

1
nk_tk|<E VkeN

1 1
Snk>tk—§for S < + tk

sdims, =+

58. Letan=3+ 2(-1)nforneN.

a) List the first eight terms of the
sequence(a,)).

b) Give asubsequence that is constant
{takes a single values specify the
selection function o.

case (i) suppose teR Sol. (Imp.)
i.e., tis not + 10 oo l @) First eight terms of the sequence (a,)).
consider |, —t‘ =1s, —t +t —t‘ Given that a, = 3 + 2(-1)" for ne N.
‘ Putn=1ina,
= (Snk —t)+(t -1
a,; =3+ 2(-1)!
= |5, —t 1+t~ =3-2=1
n=2 =a, = 3+2(-1)2
1
:E+|tk_t|| - (3) =3+2
{t } is sequence is convergent a,=>5
ie,limt =t Putn=3in
for each ¢>03 N> |t —t]<e az=3 + 2(-1)°
From (3) =3-2
a, =1
Is, —tl < 1 + g 3
k Putn=4in
Is, —tl<e vk eN a,= 3+ 2(-1)*
=3+2
lims, =t
nosw K =5
— (42 )
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Putn=>5in Example
a;= 3 + 2(-1)° n, - 2k
—372 an, = (-1)%
=1
Putn==6in 1
= b,==
ag= 3 + 2(-1)° n
=3+2 111
:5 (12!3!4)
Putn=7in o o s (bny) K N wh
The subsequence is (bn € N where
— _1Y7 k
3 =3+ 2(-1) n, = 2k monotone subsequence.
=3-2
bn, = —
Putn=8in k™ 2k
ag = 3 + 2(-1)8 = c,=n?
=3+2 The subsequence is (1, 4, 9, 16, 25 ....)
ag =95 .
b) Letao(k) =n, = 2k The subsequence is (cn,) K € N where

Then (an,) is the sequence that takes the
single value 5.

There are many other possible choice of o.

59.

Sol.

Consider the sequences defined as
follows:

1
a, = (-1)", bn =5:Cn= n2,

6n+4

n-3
For each sequence, given an example of
a monatone subsequence.

dn =

Given an = (-1)" is sequence
Let a,, be subsequence of a,,.
a,=(-1)" 5 ami= (e
anis(-1,1,-1,1,-1,1,-1,1...)
an,= (1) ;
= possitive value

any .y = (1)1

~ k=1lan <ang,
an, <an,
. an,,, is monotone subsequence
o (<1)"k+1 js monotone subsequence

n, = 2k monotone subsequence is

en, = (2k)?
_ 6n+4
= "= 7n-3
The sequence is d, = 6+4_10
7-3 4
4o 24 16
27 14-3 110

The subsequence is (d,,) KeN where
n, = 2k

_ 6(2k)+ 4
kT 7(2k)- 3

12K +4
T 14K -3

= 43 l
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b)  Subsequential Limits

.1
= LtInfbn, = inf ok

1
= (=1)n = —
= & = (1) = by n = Cc,=n?
1 Subsequence is cn, = n?
Subsequence is  bn, = subsequence
Lt sup cn, = sup cn, =n?
an,= (-1)"k
. Lt inf cn, = inf cnk = n?
La, =cyn=c1 =0
_6n+4 )
—~ C=n = d,= 7n_3 subsequence is
- 6n, +4
q _6n+4 dn,= 7n, -3
= ~7n-3
6n, +4
4 » Ltsup dn, = supdn, = ; 3
6+—k e~
dn =—1"
S . Ltnf dn, = Inf dn, = o2
k o Ltinf dn, = In nk_?nk—S
6 d)  Converge? Diverges to + « ? Diverges
dnk=7 to-w .
. o | = from (b) condition
c) Limsupand lim inf L
an is diverges at — o
= an = (-1)" sub sequence is an, — b_is converges
n
We have that — ¢, is diverges at + oo
.. Lim Sup = Lim inf = dn is converges
Lim sup an, = Lim inf an,. e)  Which of the sequences is bounded?
- ng > k. = a,=(-1)"
n=1 Ay = (1M
a,=(1;an=1,an=-1 ay=-La,=1la=-1
Lt sup an, = Lt inf an, “lean<l
a, is bounded sequence
= bn=— 1
n = bn =—
n
1
subsequence bn,=— b .= 1
My o ngl
Lt sup bn, = sup bn, and 1 1
Inf bn, = Lt inf bn, by =1b, = 5ib =3
st —up Lot 1
= sup— - = sup K on <b,<1
— ( 44}
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It is not bounded sequence.

= €= % Gt (1)
c,=c¢c,=4
Ch<Cos1 l1<c,=4
1=sc,<c,y <4

¢, is bounded sequence

6n+4
= dy= n-3
Put n=1=d =2 _0_5_,g
wwn=1=0=9"3= 372~

16

—2_14
d =77
dn>dn+l

d,, is not bounded sequence.

I 1.7 Lim supr’s AND LIM INF’s I

Let {s_} be any sequence of real number and let s be the set of subsequential limit of {s_}.

lim sup s = lim sup {s :n > N} = Sups

lim Inf s = lim Inf {s_:n > N} = Infs

60. If{s } converges to a positive real number s and {t } is any sequence then lim sup

s,t.=slimsupt.

Sol.

For every sequence there exists a montane subsequences.

Lets, andt, be the monotonic subseqnce of s and t respectively.

(Nov./Dec.-18, Imp.)

If sequence converges to a limit. Then its subsequence also converges to the same limit

First we show that limsups t > s.limsupt .
Let limsups =s
limsupt =
Case (i) B is finite

k—o

Sequence converges to limit then subsequence also converges to the same limit.

Similarly lims_ =s
k—o0 k
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Consider sequence s_t such that there exist a monotone subsequence s, t,
limsup (s t) =sp
limsup (s, t, ) =sP .. (3
Then lim (s, t, ) = sp

Aslimsup s t is the largest possible limit of subsequence of {s_t }.

lim sup (s t) > sp

k—o

lim sup (s, t) > s.limsupt .. (4)

k—o

Replace s_by 1 and t bys t
s

n

limsupt = lim sup L (s, t)
S

n

w0 |

>~ limsups_t

slimsupt > limsups_ t ... (5)
from (4) and (5)
limsup (s, t) =s.limsupt
Case (ii) =+ »
from equation (1) = limsupt = +o
limt, =+o
limsup (s t)=sp
limsup (s, t) =s(+»)
limsup (s t)=s.limsupt
Case (iii) p = -

Equation (1) limsup t = -
Equation (2) lI(im t, = -

limsup (s t)=sp

limsup (s, t) = s(-o0)
limsup (s t)=s.limsupt
All the three cases are holds

limsup (s, t,) = slimsup t,.

g
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61. Prove that for sequence of non zero real numbers lim inf

/ .

|s,[" < lim sup Soea
Sn
Sol.

{s.} be any sequence of non zero real number.
Consider

lim inf 30| < lim inf |s ['" . ()

SI’]
I 1/n H 1/n
liminf |s |'" < limsup |s .. (2)

Sn+1

. @3)

1 1/n 1
limsup s |'" < lim sup

n

The inequality (2) is true for all sequences
Now, required to prove (1) and (3)
Consider inequality (3)

. . S
1/n n+l
limsup |s '™ < lim sup =%

n

Let, limsupl]s |"" = a

. s
limsup [ =

We need to prove that a<L
Consider M be any positive number such that
L<M .. (4)

Sn+1

i.e., limsup <M

n

i sn+ .
lim SUp{ L .n>N}<M

sup{s”+1 :nzN}<M

Sn+1

<M for n>N ...(5)

n

)

S n+1

S

n

< liminf |s,["" < lim sup

(June./July.-19)

4
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for n>N We prove that S, = 0
We know that
sn Sn— Sno .
|5n|:5—s—l ----- N-L]s, | Lim sup S, = Sup Sn
n-1 n-2
§ Lim sup |S,| = sup]|S,|
There are n — N fractions —  Limsup|S,| =0
n-(N+1)+1=n-N-1+1 sup|S.| =0
n
=n-N IS, =0
Then (2) becomes S,=0
Is |<MN s, | forn> N Conversly prove that Lim sup|S,| =0
h =
Is,] <M"M™M|s | forn=>N we have S, =0
apply suprimum both sides
As M and L are fixed
SupS,=0
Assume M| S | as a constant value a
ISl Sup |S,| =0
— s I<M".a vn>N apply limit on b/s
Is,I"" < (M"a)*" forn >N Lim sup|S;] =0
= |Is|""<Ma' forn>N Limsup |S,] =0 < S, =0
lim |s | <M lim a" 63. Let(Sy) and_(tn) be the following squares
N Ton N—e0 l that repeat in cycles of four.
I|m l/n< M l (Sn):(oilaza1101112111211101 1121
v 151 @) 1,0...)
limsup |s |""<M (t)=(2,1,1,0,2,1,1,0,2,1,1,0, 2,
o = lim sup |5n|1/n§ L 1,1,0,2...)
find @) liminfs_ + liminft,
. . s
limsup-[s_|“"< lim sup ”—“‘ Sol.
a) LiminfS, + lim Inft,
Similarly
= (01 ll 2! ll 0! ll 2! llol 1121 ll Ol ll 2!
liminf |s ['"< liminf]s | 1,0....)
=(,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2
lim inf 22| <lim inf Is I""< lim sup )
n =0-0+2-2
s =0
s |¥"<limsup [, o
15,1 P ] b) Liminf (S, +t)
i Liminf(0+2-1)=1
62. Prove Limsup |S,| =0IffS, =0. . i
c) LiminfS, + lim Sup t,
Sal. — LiminfS, =0
Let (S,) be a sequence — Liminft, =2
We have Limsup |S,| =0 soliminf S+ limsupt, =0+ 2=2
— : 48 ,'
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d) Limsup (S, +t)
limsup (S, +t)=1+2=3
e) Limsup S,+Ltsup t,
Limsup S, =2
Limsupt, =2
o Limsup S, =Limsupt=2+2=4
f) Lim inf (S, t.)
- LimInf (0.1) =0
g) Limsup(S,t)
o Limsup (S, t) =12 =2.

1.8 Series (OR) INFINITE SERIES I

If {u_} is a sequence of real numbers then u, + u, + u, + ...u_+ ... is called an infinite series. and
is denoted by X u, or Zu,.
n=.

The numbers u,, u,, u,, ... u_, ... are called the 1%, 2", 3", ... n".. term of the series.
1.  Series of Positive Terms

If all the terms of the series Zu, = u, + u, + .... +u_+ ... are positive i.e., ifu >0 v n. Then the
series is called a series of positive terms.

2.  Alternating Series
A series in which the terms are alternatively positive and negative is called an alternating series.
I(=)tu. =u,—u,+u,—u,+ ..+ (=1)"*u +..whereu >0 vnisan alternating series.
1.8.1 Partial Sums

IfZu =u, +u,+u,+..+u + .. isaninfinite series where the terms may be +ve or —ve then
s, =u, +u,+ ..+ u_iscalled the n" partial sum of Xu_. Thus the n™ partial sum of an infinite series is the
sum of its first n terms.

n e N, {s } is a sequence called the sequence of partial sums of the infinite series Zu .
To every infinite series Xu_there corresponds a sequence {s } of its partial sums.
Note :
1. The series Zu_converges if the sequence {s } of its partial sums converges.
2. Theseries Zu_diverges if the sequence {s } of its partial sums diverges.

3. Theseries Zu_oscillates finitely if the sequence {s } of its partial sum oscillates finitely.

4. Anecessary and sufficient condition for the convergence of an infinite series is if the series ¥ u_
n=.

converges, then Lim y = 0.
n—oo n
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© 1
5. Geometric Series : If |[r] < 1or-1 <r <1 the series §O r"(r e R) converges to 1 and if |r]
> 1 the series ;Or” diverges.
. . . , 1 1 1 )
6. Auxilary series or p-series test : The series ZF = 1—p+§+§+ ...,P €R a) converges if P >
1, b) diverges if 0 < p < 1 and c) divergesif p < 0.
7. Comparison test of the first type : Let Zu_and Xv_be two positive term series such that Zv_is
convergentand 3 m e N > u < V. wvn>mthen Zu_is convergent.
8. Comparison Test of the Second Type : If u_and Xv_are two series of non negative terms such
that v, is divergent and 3Ime N> u, >v Vn>mthen Zu_is divergent.
- - - . . E un
9. Limit comparison test : Let u_and Zv_be two series of positive terms such that %LT T = leR
then if | # O then the series Zu , v _either converges or diverges together.
10. Cauchy’s n" root test : Let Zu_be a +ve term series and Let %LT (u )" = 1. then the series is
(i) convergesifl<1
(i) divergesifl > 1 and
(iii) test fails to decided the nature of the series if | = 1.
. . . .
11. D'Alemberts ratio test : If Zu_is a series of +ve terms > Lim u”—“ =, then
a) Xu convergesifl<1
b) Xu_divergesif! > 1and
c) Test fails to decided the nature of the series if | = 1.
12. If Zu_is a series of +ve terms > Lim ot — o, then Zu_diverges.
n—o un
64. Determine which of the following series converge. Justify your answers.
Sol.
n4
a) X — this will prove by ratio test
n4
Let a,= ?
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— (n +l)4 an+1
n+17 " il HI;EC ? <1
¢ (n+1° o
a ., (n;}l) % DY o IS converges.
a, ot
An on n?
2 2 C) an = 3n
(n+1)*  , _ (n+1)'n’ This will prove by ratio test
=—2xn* = —F— Y
2 2
n2
apply limit on b/s Let a, = -
T B (R _+?
now | g T onow 2 an = 3(n+1)
a.., (n+1y
. n';EC a, <1 a,., _ 30D
a, n
4 3"
2? is converges
(n+1)> y 3"
2" -3 (n%)
by X
n!
_ (n+12)y
This will prove by ratio test = T 3p?
n apply limit on b/s
Leta,= F
| L [Reaf o [0
2n+1 n—w an T now 3[‘]2
&1 (n+1)!
an+1
2n+1 e an
D ——— n+1
3h _ (N+1) _ 2 N n(n;l)! o2
a, 2" (h+1t 2 — s converges.
n!
zn!
nn-1! (- D N3
T (+HY(M)! T (n+D)! |
n!
apply limit on b/s Leta, = "5
a,.. (n—1)! __(h+D)!
Lt == = Lt 1= o
n—w an n—w (n+l)| (n +l) +3
[ 51 )
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(n+1)!
a,,  (+1)"+3
a, - n!
n*+3
(n+1)! n*+3

(n+1)*+3 n!

(n* +3)(n+1)
= (h+1)'+3

f)

>

—= logn

= logn <n

1 >1
= logn  n

1
Compare with ZH

>

= logn =

1 1
n V"

1
ZH is diverges [.. Comparison test]

apply limit on b/s 1 .
“ Togn is also diverges.
4
Lt |Boa| _ (" +3)(n+1) Second Method
= 4
a, (n+1)*+3 Cos n<1
nth terms do not converges to ‘O’ Cosn _ 1
n’  n2
5 n!
is diverges.
n*+3 g cos’ n & )
) % 2~ 2
cos“n
e IT—; | 1
But X e s get by P-test
cos?n COSZ(n +1) )
a,= v A = T AL cos‘n .
N on? g (n+2)° 3 — 7 isless the convergence
cos’(n+1) . itis converges, [--comparison test]
B :ﬁ (or) 65. Prove that if Za, is a convergent series
a, cos’n of nonnegative numbers and P>1, then
n2
Yal converges.
cos’(n+1) n? Sol.
(n+17° "cos’n Ta, is a sequence
1 there exists N such that a <1 for n>N
Compare this with Pl Za, is a convergent series of non negative
numbers.
1 Since P>1,
. — isconverges
n P — P-1 < f >N
= af = a,a; ' <a,forn
1 _
». L7 is converges = a,a, <an
) . a" is converges series
) cos ni nver n
" n2 S converges - X al is converges.
[ 52 )
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66.

Sol.

Show that if Za, and Zb,, are convergent
series of non-negative numbers, then

X,/a,b, converges.

Given that Xa, and Xb are convergent series

of non negative numbers by the known theorem

= a, converges and b, converges
= a, + b, also converges

(a, + b,)¥? converges
We prove ./a_b_ is converges
1/2
anbn S (an + bn)

a, + b, is converges ,/a b, also converges

Ja,b, <o, o is positive integer

X,/a b, isconverges
> to=
67. We have seen that b) nzln(n+1)_
2 (2Y) =( 2Y" . .
(@) Calculate Z(Ej and Z(—Ej Z 1 _ i1
n=1 n=1 ~nin+1) — S|k k+1
3 = 1 =1 1
®) 250D _ it
= (”+1) Sn—én(nu) = 4|k k1
n- 1 1
(c) Prove Z I R N R T
T2 Sy = 2) \2 3) |3 4)"*
z,n 2, 4k k
d n o= yrar 1 1
@) Xow = 2o [H_Mﬂ
Sol. (Imp.)
© (9 n © 2 n S = 1_14_1_14_1_3_14_14_
Z(—j andZ(——j "2 23 4 45 5
n=1 3 n=1 3
2).(2), 1,11
3/ (3 and n n n+l
2 2y (-2Y 1
—— |+ == | = * S=1-
3 3 3 n n+1
[ 53 )
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1
Lts =1- =1-0

" nsen o+1
LS, =1
c) Prove zn 1 ;

By Partial fractions

apply limit on b/s
n
Lt — Lt |2—-—
n—ow S T oo |: 2n:|

Lts—g

> N
LR

68. Does series converge? Justify your

answer.

a

) Z flogn
= logn

b) 2,

c)i

— n(logn) (Iog logn

= log,
d 2"
1 n+1 "~
S\= 5~ Sol.
apply limit.on b/s S 1
pply a) Z
n=2 \/ﬁlogn
1 n+1
nL;tocSn: n|:>toc E_ 2”+1 :;
Jn log n
1 0
== = Lt ———
Lt g = 1 Jn logn<n
now N 2
1 1
Jn——>=
in_l 1 logn n
e~ 2n+1 2 1 1
x/ﬁlogn n
d i n _ 4k _K . it is divergence
) r_|=12n - k=12k+1 2k : I )
> logn
> 2, 4k k b) nz=2 n
LetSn: 2?222k+1_ ?
n-1 k=1 logn>n
{ 54 |
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1 1 Necessary Condition
logn = n By P - Test
S <52 T
nzlog n <n2n nlogn N
. 11
2 (nlogny < P>1

. it is convergence sequence.

= 1

C) z

=i n(logn) (log log n

nlogn=>n
(n log n) log logn) = (log log n)

1 1
(nlogn) (log log n) = (log logn)n

it is diverges.

g Zlogn

log h > n2

1 1
< R
logn n?

.comparep-testP>12>1

. it'is convergence.

69. Z:;n(logn)P
P=>1.

Sol.
Given that

converges if and only if

(Nov./Dec.-18)

n(Iogn)P

©

We have that Z

n=2

n(Iogn)P is convergence

we prove P > 1.

1 1

— < — ..
(n |Og n)P np [. P - teSt]

Sufficient Condition

Conversly P> 1

We prove that Z 7 IS convergent

n(Iog n)
this-prove by integral test

n log n
=) e
log 3

Lim | ——
N ;[n(log n)”

by using P test where P > 1.

n

1
J— is convergence sequence
5 n(log,,)° 9 q

Z n(Iog )P is convergence sequence at P > 1.
n=2

I 1.9 ALTERNATING SERIES I

A series whose terms are alternatively positive
and negative is called an alternating series.

An alternating series may be written as u, —
u,+u,-u,+ ..+ (-1)""*u + .. whereeachu,
is positive or negative and it is denoted by

;1(—1)”’1un where u_ > 0.

|l 55 ',
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1.9.1 Leibnitz’s Test
70. The alternating series £(-1)""*u = u, —u, + u, - u, + ... (u > 0 yn) converges if

(i) u >u . vynand(ii) Limu,=0.

OR

State and prove Alternating Series (or) Leibnitz’s Test

Sol.

Lets_denote the n™ partial sum of the series Z(-1)""* u .

= s,=Uu,—-u,+u-u,+.. +1)tu
Then S,,=u -u,+u-u +..+u  -U
and Sonve = U Uy H U —U F U, U, T, Uy,
Consider

S, v ,=S,,=Uu, ., —u, > 0Dbycond.(i)

= S2n+2 2 SZn vn

The subsequence {s, } of {s } is an increasing sequence (1)
Now consider

Spn= Uy~ (uz - U3) Z (U4 A us) RN (U2n-2 - u2n—1) - U,

s,,=u,—[(u,-u)+(Uu,-u)+ ..+

-2 u2n—1) + u2n]

s, = u; — [a positive number] -- u >0 vn.

S,, < U vn

= {s,,} is bounded above .. (2)

from (1) and (2)
{s,,} converges
= tim s, =1

we haves, =u -u,+u,-u,+..+u, -U,

= Son = Son_1 T Uy,
= S2n—l = SZn + u2n

= Lim s = Lim s, + Lim u,

n—ow 2N-= n—ow n—ow

= Lim s ,=1+0

n—o 2n-

= Lim s =

n—oo

g
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= {s,,_,}convergesto‘l
The subsequence of {s } converges to ‘I’

= The sequence {s _} converges to ‘I’

— The series 21(—1)”’1un converges.
n=.

1.9.2 Absolute and Conditional Convergence

A series Zlun is said to be absolutely convergent if the series le u, |is convergent.
n=. n=.

If Zlunconverges but not absolutely i.e., ¥ | u_ |diverges then the series Zlunis known as
n=. n=1 n n=

conditionally convergent.

Note

Every absolutely convergent series is convergent converse need not be true. i.e.; A convergent
series need not be absolutely convergent.

71. |Ifaseries Za converges them lima = 0.
Sol. (Dec.-17, Imp.)

Given Za_is convergent
Let Za convergent to A

1 2
Let lims =A
lims  =A

s,=a,+a,+..+a

s —=a +a+..+a

Consider,
s,—s,,=a +a,+..+a-a-a,..a_
Sn_sn—l = an

Apply limit on both sides
lim(s —s_,)=Ilima_

ims —lims . =lima
n n-1 n

A—-A=Ilim a

lima =0

for each e=03N> |a |<e
thenlima =0
Hence proved
Note
Converse of the above theorem is not there i.e., lima =0 = Xa_is convergent.
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72. Absolutely convergent series are convergent.
Sol.
Let Za_be an absolutely convergent series.
i.e, ZXZ]a | isconvergent
To prove that Xa_is convergent
Z]a | is convergent
By Cauchy’s general principle of convergent we know that
dmez' > |ap+l +a, +..+ aq| <e vyQq=p=m
for eache=03meN> | |ap+1|+|ap+2|+ ..... +|aq|<qu2 p=>m
la,, +a,,+..+al<lla,,l+la | +... +la,ll
la,,+a,+..+al<e+a>p>m
Za_is convergent by Cauchy general principle
Z]a | is convergent
¥a, is convergent
73. Suppose that Za = A and Zb_= B where A and B are real numbers.
@ Z(a +b)=A+B
(b) Zka =kAVkeR
Sol.
(@) Given Xa_ converges to Aand Zb_ isconverges to B.

To prove thata + b_converges to A + B
Let s be the nth-partial sum of Za_
s,=a, +a,+..+a

Let t_be the n" partial sum of Zb_

Za_is converges to A
lims =A
Zb_is converges to B
limt =B
Let p, be the n" partial sum of £(a_+ b )
p=(@ +b)+(@+b)+.+(@ +b)
=@ +a,+..+a)+ (b +b,+..+Db)
=s +t
Consider limp_=lim(s, + 1)
=lims +limt
@ +b)=A+B
Z(a, + b )is convergesto A + B

Rahul Publications
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(b)

Given that Za_converges to A

o (_1)n+l B o 1 ] )
Lets be the n™ partial sum of Za_ and| 2 —o—|= 2 —isconvergent,ifP>1
S,=a ta,+..+a and divergent if P < 1.
- Xa, is converges to A The given series is absolutely convergent if
lims = A P > 1 and conditionally converges if
. 0<P< 1
To prove that Xk a_is converges to kA
. 75. Test for convergence, absolute conver-
let t, be the ™" partial sum of ka, gence and conditional convergence of
i.e.,t =ka +ka +ka,+ .. +ka I ) 1 1 1
" : ’ ’ " the series nilcfg(r:+1) - log2 _@+ logd =
=k(@, +a,+ ... +a)
=ks Sol.
limt = lim (ks )
= —VneN
=klims, Letu,= log(n+1)
limt = kA
Ska = KA — Limu =Lim———_
a,= N > log(n+ 1)
>ka_is conver kA
3, Is converges to We know thatn +2>n+ 1 yneN
74. Test for convergence, absolute conver- l6g (n + 2) > log(n + 1)
gence and conditional convergence of = 109 g
I = e B R | 1 1
by =1-—4+-——— <
the series n=1 NP 27 3P 4P log(n+2) log(n+1)
forp > 0. =Uu,,<uvneN
Sol. by Leibnitz’s therom given series is
convergent. Now consider,
) 0 (_l)n+l
2 _1 n+l = 2 *© & l - - .
LEy n=1( ) b= = n® Z |u, | ¥ —— which is divergent.
n=2 n=2 og n
P = 0 and we know that ]
= Zu_is not absolutely convergent.
(n+1)>n : -
Zu_is conditionally convergent.
P p
= M+ 1y=>n 76. Show that the series
1 log2 log3 , log4
(n+1y W = Uy < U, vnel > g2 +—,z ~--converges.
also we have Sol.
. . 1 log(n+1)
Lim u = Lim —=0 — vneN
MU= e e Letu, = " 1y?
_ ) logn i —
.. by Lebnitz’s test El( n)p is convergent IELT ngz 0 l;LT u, =0
[ 59 }
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Toproveu .. <U, VneN

log x
Let u(x) = NE

x?(1/x)—2xlog x

= U'(x) = N

_1-2logx <

= NO

0

= 1-2logx<0

= logx>1/2

= X > el/Z = X >\/E

= Uu(x) is a decreasing function

= u <u.,,VneN

n+2

log(n+2) < log(n+1)

Consider

n n+1 1
u-u =

= - = >
"= 01 2na1 ani_1- 0 VneN

= Uu=u., VvVneN
. . n
Also Lim y = Lim
n—w n n—w 2n_1

Lim d Lim 1
n—o n(2—l/n) n—o 2_1/n

1
= E;tO

by Leibnitz’s therom Zu,. does not.converges.

=  The given series diverges.

78. <Test for.convergence and absolute

- 2 - 2 Vn S N 0
(n+2) (n+1) convergence of the series gl(—l)”"1
= Un+l<un VneN (/n2+1_n)
By Leibnitz’s therom the given series is | S| :
convergent. _ _
Let the given series be
77. Test the convergence and absolute
2 (-D)"'n D" u = D" (n241-n
convergence of the series X ED7n n=1 n=1 ( )
=l 2n-1
Sl T n><\/n2+1+n
ol. = u = N X ———
" Vn®+1+n
Letu _m n*+1-n’ 1
n _ u = = >0
= 5T Un?+14n Jn?sl4n vneN
2ED"In 2
) =2 (D)""u 1
=1 2n—1 n-1 n = u — >0VneN
M N+ +1+(n+1)
__n = U >U_, VneN
U= 55_7 >0 VvneN
1
I im T . _=
n+1 also Lim Jn®+1+n 0
= n+1 =
2n+1 by Leibnitz’s test the given series converges.
— |' 60 ,'
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Now consider

lu,| -
ul| = —
n Vvn?Z+1+n
_ 1
n{ 1+12+1}
\" ' n
1
Letv = —
n n
lu. | 1
v,
l+i2+l
\" n
= Limm Lim;:%;to
Vi /l+i2+l
n

by comparison test Z|u | and Zv_behave a
like

S

1
v =YX—=X—=P=1
n

n

. by Auxilary series Zv_diverges

=u .,

<u vn

= un>un+l vn

1
Jnva =°

Also Lim u = Lim

n—owo n—ow

.. by Lebnitz’s test, the series is convergent.

Now consider,

1 1
ul = =
lu,| Jn++a \/ﬁ[lh/a/n]
v 1
— - =
" Jn
Consider,
lu, | 1
Y,
S
n
1
= Lim Wl
n—oo Vn n—ow a
1+,|—
n
—}—1 0
=1=1=

By comparision test
Z]u, | and Zu_be have a like.

= ZXZ]u_| also diverges n
1 1
= The given series is conditionally convergent. V=X ﬁ = ZF
79. Test for convergence and absolute | > P=12<1
) = (-1t By Auxilary series Zv_diverges
convergence of the series Elﬁ )
—Vn+va = X]u | diverges
Sol. =  The given series is conditionally convergent.
o = ()" 80. Test for convergence and absolute
Let = (-1)""*u, = Elﬁwg .
convergence of the series §l(—1)”‘1
Hereu = 1
S FR
+
We know thatn +1 >n n" (n+1)
= Jn+1>vn = Jn+1+vJa >Jn+a Sol.
1 1 o i nal 1 1
I P T E
Jn+l+va Jn++a A = n® (n+1y7
[ 61 }
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1 1 Consider,
Here u =—+ >0
"on? (n+1)7 vneN cos® no.
lul= " /n
! 1 1 , .
= 1 cos® na.
o (n+1? (n+1)7 = — SWVH
Consider, L
and we know that x——_is convergent by
1 1 n3/2
U= her= 2 Ty Auxilary series.
The series X]u_|converges.
An+4 = The given series is absolutely convergent.
= —S—>=— >0vneN
n°(n+2) w -
82. Show that the series n§1£1_COSHJ
= Uu=U_, VvneN
A o converges.
so we have
Sol.
— J— —_— = J— — —_ — 2 ——
nl—>rorc1 u” nl—>rorc1 n2 (n +1)2 Let nz:: u nz::l n nz::1 2sin 2n
. By Lebnitz’s test the given series is e, T
convergent. Here u = 2 sin on >0 wyn
Now consider, 1
Letv = e
1 1 11 2
ul= =+ < S+5<S5vneN in2 ™
| nI n? . (n+1)? N m o n2 € i: 2sin on
v, 1/n?
. 2 1
The series * — =2X— is convergent by 2
n n 2| sin
comparison test. _,  Lim o — Lim T 2n
. n—ow Vn n—ow l
= Z]u, | is convergent. 2n
The given series is absolutely convergent. _ 2
sin—
81. Test for convergence and absolute _ Lim 2n
w T2 o k3
convergence of the series §l(—1)”‘1 2n
TI:2 TI:2
(_1)n-10082a ) = —Xl = — ¢0
T, o is real. 2 2
By comparison test u_& Xv_behave a like
1 1
Sol. V=i =35
Let the given series is,
g Where P =2 > 1
: : (-1)"* cos® na. By auxilary series Zv_converges
y=3y- <~ >
L n/n = XZu_converges.
{ 62 |
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83. Test for convergence of the series

© 2rI
n+1

fEl( b n!

Sol.

L t g —_ g“ l n+1 2_”

€ n=1 u” - n:l(_ ) n!

Consider |u | = o

2n+1

= U= iy
) u ) 2" (n+1)!
Lim u = Lim {—l-( n+1) }
n—ow un+1 n—ow n 2
Lim n+1 _
n—ow 2 - ®

By ratio test, Z|u,_|is convergent

Hence the given series is absolutely
convergent.

1.10 INTEGRAL TEST I

84. |If for x >1, f(x) is a non-negative
nonotonically decreasing integrable
function of x such that f(n) = u_for all
positive integral values of n, then the

series El u_and the improper integral
e

I f(x)dx converges or diverges together.

1

Sol.
Given f is non-negative on [1, «)

= f(x) >0 yx>1

= 3 f(n) is a series of non-negative terms.
n=1

= 3 U isa series of non-negative terms.
n=1

Now let r be any positive integer. Choose a
real number x such thatr +1 > x > r.
-~ fis monotonically decreasing function of x.

= fr+1) < f(x) <f(r)
also f is integrable.

r+1

r+1 r+1
— jf(r+1) dx < If(x)dx < Jf(f)dX
r+1 r+1

=+ 1) [ax < [ 090k < g [ ox

r+1

= fr+1) [x]" < Jf(X)dX <f(x) [x]"

r
r

= fr+1)@r+1-r1< r]‘1f(x)dx < f(r)[x]:+1

r

r+1

= fr+1) < j f(x)dx < f(r)

r+1
= U< [+ Ddx < u,
-~ f(nN)=u vneN
Puttingr=1, 2, 3, ..., (n— 1) successively in
the above inequality we get,

2
u, < j f(x)dx < u,
1

u, < Jn‘ f(x)dx <u_ , . Q)

n-1

adding the above inequalities then we get

u +u +u +..u <

B —nN

f(x)dx + Tf(x)dx +..+

n
J‘ fx)dx <U, U+ ..U
n-1

TMs

u

n
= $,~U < [f)dx <s, -u, -8, =4,
1

|l 63 ',

Rahul Publications



B.Sc.

Il YEAR Il SEMESTER

U

uu U

u>S -1 >u >0 U >0vneN
0<S -l >u .. (2)
The sequence {S_- 1} is bounded.

Consider,

and

S, -1)-6,_~1._)=E-S,_)-0-1_)

—u - _Tf(x)dx—nflf(x)dx

1

1

f(x)dx

=u - __Tf(x)dx+

n

=u - j‘f(x)dx

0 (from (1))

IN

Sn - In < Sn—l_ In—l
{S, -1 } is monotonically increasing
Every bounded monotonic sequence converges,
{S, =1 } converges

from (2) we have,

0< Lim(S -1)<u,

0<LmsS -Lml <u

n—owo n—ow

Lim | <Lim S .. (3)

now N n—ow n

Lims < u, + Lim| .. (4)

n—ow n—ow

Hence from (3) and (4) we conclude that {S } and {I } converges or diverges together and hence

§1u1 and J f(x)dx converges or diverges together.
1
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85. Discuss the convergence of the series E_l _
n=1 N(logn)P
Sol.
Here, u = _r
" " n(logn)’
Case (i)
WhenP < 0
— _ > 1Vn >2
n(logn)P  n
s L " S S
L. diverges, by comparision test =, n(log n)P diverges.
Case (i)
When P =0

{n(log n)"} is an increasing sequence
= {u } is a decreasing sequence.

= u=>u_  >0vnx2.

+

By cauchy’s condensation test, the series o u and 222”u2n converges or diverges together.
n=2 n=

o0 20 l
>2"u, = X 2"
NOW ) 2n oo 2 2n (|Og 2n)P

g 1
n-2 (log2")"

_ 1 1
~ (log 2)° n=2n”

©

EZn—p is convergent if P > 1 and diverges if P < 1.
§2 2" u, is convergent if P > 1 and diverges if P <1

= §2 u_convergent if P > 1 and diverges if P <1

Hence §2 u_is convergent if P > 1 and diverges if P <1.
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86. Discuss the convergence of the series

Sol.

Hereu =

nlogn

{n log n} is an increasing sequence
= {u } is a decreasing sequence.
= un>un+l>0vnzz'

E 1
n=2Nnlogn

By cauchy’s condensation test the series §2un and §22” u,, converges or diverges together.

Now §2”un = §2”.;
n=2 2 n=2 2"|og2"
o
n-2nlog 2
l o0
- -1
log2 n=2n
5 1.
21 divergent.
. . 5 1
87. Discuss the convergence of the series = (logny’
Sol.
H Q!
ereu = (log Y
Case (i)
WhenP=0 = u =1
Limu =1=#20
= ;2 u_diverges
Case (ii)
When P < 0, Let p = - q where g > 0.
1
Lim Un =Lim (|Og n)—q =Lim (|Ogn)q —woz0
X u, diverges
( 66 }
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Case (iii) When P >0

{(logn)F} is an increasing sequence
{u,} is a decreasing sequence

un>un+l anZ

By cauchy’s condensation test, the series §2 u_and §22” u,,

Now

Consider,

n

2
u= o so that (v )" =

2
(nlln)P
1
—Te=2>1

(nlln)P

By cauchy’s n™ root test, Xv, is divergent.

Lim (v )" =2 I;im

= §A2”u2n is divergent = ;2 u_is divergent.

ngzun is divergent for all values of P.

converges or diverges together.

88.

Sol :

. . < logn
Discuss the convergence of the series X o
n=1

logn
Hereu = g 2 0vn

log x
Let f(x) =X > 0

1
X.— —logx
, 1-logx
= f=—"F—="7

- fX)<0=1-logx<0 = logx>1
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elogx > e'
X>e
f(x) is a decreasing function when x > e

un>un+l vn>2

ud Ul

{u_} is a decreasing function of positive terms.

converges or diverges together.

By cauchy’s condensation test, the series §1un and §12”.u2n

o0 o0 IO 2rI o0 o0
Now §12”.u2n =3 2n, 09s _ ;1 nlog2=1log2 Zn

n=1 2” =1
21 n is divergent.
n=.
= X 2"u, isdivergent
n=1

= 21 u_is divergent.
n=.

g
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‘ Choose the Correct Answers I

Lim ¥£-+ 1 ot 1
L. e | n? o (n+1)? 2n® | [a]
(@ 0 (b) 1
(c) 2 (d) None
2. Asequence {a } is said to be Cauchy sequence if givene > 0, 3 a positive integer m > [c]
@ |ap—aq|>eVp,q2m (b) |ap—a|<evp2m
(c) |ap—aq| <eVvVpqg>m (d) None
3. Lim M = [c]
n—ow n
(@ e (b) 1
1
(c) . (d) None
. 1Y
Lim |1+—| =
4. n—o ( + nj [a]
(@ e (b) 1
(c) e-1 (d e+1
5. Lim pho= [b]
@ (b) 1
(ONY (d) -
2
6. The sequence {nz+3—n+5} converges to [d]
2n“+5n+7
(@ 1 (b) ©
1
(€ -1 A %
7. The sequence {(-1)" . n} oscillates [b]
(@) Finitely (b) Infinitely
(d) Diverges (d) Converges

g
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g. Lim % = [a]
(@ o (b) 1
(c) -1 (d) 2

9. Limpm=g if [c]
@ Irl>1 (b) Irl=1
© Irl<1 (d) Irl =1

10. A necessary and sufficient condition for a sequence {a } to converge to ‘I’ is that for each € > 0
there corresponds a MeN> [d]
(@ la-ll=€vn>m (b) la,-Il>€ Vvn>m
) la -l # € vn>m (d) la,-ll<eVvn>m

11. Every monotonically decreasing sequence which is bounded above converges to its [a]
(@ lub (b) glb
() ub (d) Ib

12. Every monotonically increasing sequence which is bounded below converges to its. [b]
(@ lub (b) glb
() ub (d) Ib

13. If{a}=1and {b} =mthen LiMm {3 + b} = [d]
@ I-m (b) 1-1
() m+1 (d) 1+m

14. The value of Lim (1+%jn lies between [a]
(@ 2and3 (b) 2and 1
(c) 1andO (d) 0and1

15. Every bounded monotonic sequence is [c]
(a) Divergent (b) Oscillates
(c) Convergent (d) None

16. Theseries1 +r+r2+ 3+ ... is oscillatory if = [d]
@ r<1 (b) r>1
(c) r=1 (d r=-1
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1
17. Infinite series X — is convergent if [b]
n
@ P<1 (b) P>1
c) P=1 dP<1
18. Xu_is a series of positive terms and Lim(u,)"" > 1then the series is [a]
() Divergent (b) Convergent
(c) Oscillates (d) None
. . un .
19. Series 2u_of positive terms is divergent if Lim n{u —1} is [a]
n—e n+1
(@ <1 (b) >1
c =1 d <1
20. The series ZW is divergent if [b]
@ P>1 (b) P<1
c) P<1 (dy P=
21. The series Xu ,where u = \/n2 41 —nis [b]
(a) Convergent (b) Divergent
(c) Oscillates (d) None
. §+_+1 .
22. Theseries 1 + TRETRPT is [a]
(a) Convergent (b) Divergent
(d) Oscillates (d) None
1 1 1 .
23. The series ?+5—p+;+9—p+--- converges if [c]
@ p<1 (b) p=
) p=1 (d) None
. 1
24. The SEI’IBSZW is [b]
(a) Convergent (b) Divergent
(c) Oscillates (d) None
[ 71 )
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25. If Tu_converges then Limu, = [a]
(@ 0 (b) 1
(c) -1 (d) None
26. The series §(1+1j is [c]
n=1 n
(a) Oscillates (b) Divergent
(c) Convergent (d) None
27. Lim un =% then Zu_ [a]
n+1
(a) Converges (b) Infinite
(c) Diverges (d) None
28. The series Ez n?logn [c]
() Diverges (b)  Oscillates
(c) Converges (d) Infinite
|
29. The sequence {n_n} converges to [b]
n
(@ 1 (b) 0
(€ 2 (d -1
30. A sequence converges to [a]
(@) One limit point (b) More than one limit point
(c) Finite limit points (d) None

g
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‘ Fill in the blanks I

1.

ok 0D

© ® N o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24,

25.

A function whose domain is the set of natural numbers N and range a subset of real numbers R is
called as

The set of all distinct terms of a sequence is called its

The set of all limit points of a bounded sequence is

Limit of a sequene, if it exists then it is

{0,1,2,01,220,1, 20,1, 24 ...} is an unbounded sequence with exactly two limit pts

and

Every convergent sequence is

The upper and lower bounds of the sequence {(-1)"} ¥ n € N are and

lfa > 0¥ neNandLima =|then

If {a_} and {b_} are two sequences such that |a | < |[b | Vv n > mwhere m € N and %LT b =
0then Lim 5 =

Every Cauchy’s sequence is

Every convergent sequence is a

A sequence {a } is said to be monotonically increasingif ________ v n e N.

A sequence {a } is said to be monotonically decreasingif _______ vV n e N.

The sequence {(-1)"} is neither monotonically nor

A sequence which is either monotonically increasing or decreasing is called a —______ sequence.
Every bounded sequence hasa —_____ subsequence.

A cauchy sequence of real number is convergent if and only if it has a convergent
The smallest limit point of {a } is called the

The greatest limit point of {a } is called the

A bounded sequence {a_} converges to | if and only if

The infinite series Zu_is said to be convergent if the sequence {s } and its partial sums is

The Limu, # 0 then the series

n—o

. u .
If LIm Znd — o5 then Tu is
n—oo u n

n

H url . . .
If Lim n{u —1} = | then the series Tu_is convergent if

n—ow
n+l

Every absolutely convergent series is

' 73 |
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26. Aseries Xu_is absolutely convergent if ____is convergent.
27. Aseries Xu_is conditionally convergentif ______is divergent.
28. él (1) u_iscalled ______series.
29. If the subsequence converges then ______ converges.
30. The series éun and élZ” u,,, converges or diverges together then the test is known as
ANSWERS

1. Real sequence.

2. Range

3. Bounded

4. Unique

5. O0and1l

6. Bounded

7. -landl

8. |>0

9. 0

10. Bounded

11. Cauchy sequence

12. a ., >a

13. a ., <a

14. Increasing, Decreasing

15. Monotonic

16. Convergent.

17. Subsequence

18. Limitinferior

19. Limit superior

20. Limgypa = Lim jnf. a =1

21. Convergent

22. Diverges

23. Divergent

24, 1>1

25. Convergent

26. Z|u |

27. Z|u |

28. Alternating

29. Sequence.

30. Cauchy’s condensation test
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- Uniform Continuity - Limits of Functions

Continuity: Continuous Functions - Properties of Continuous Functions
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1.

2.1 DeriNITION OoF CONTINUOUS FUNCTION I

Let f be a real valued function whose domain is a subset of R. Then function f is continuous at x in
dom(f). If, every sequence {x } in dom(f) converging to x,. We have lim f(x ) = f(x). If f is continuous at
each point of a set s < dom(f). Then fis said to be continuous on s. The function f is said to be continuous
if it is continuous on dom(f) in other words. f is said to be continuous at X, If > 038> 05 IX=Xx,|< &

= [f(x) - f(x,)| <& Vx e dom(f).

Let f be a real valued function whose domain is a subset of R. Then f is continuous
at x, in dom(f) if and only if for each e>03d>05Xxedom(f) and |x - x,|<d = [f(X) -

f(x,)] <e.

Sol.

Given that f is a real valued function

consider a sequence {x } in dom(f) such that lim x_= x,.

We have to prove that lim f(x,) = f(x).

Since f is continuous at X,

for given £ > 035> 05 X=X, <d = [f(x) - f(x)]| <e

Again, Since lim x =
n—ow n 0

3 positive integer ‘m’> n>m = |x - x |<e

Setting x = x_in (1)

We get

I, =% 1<d = [f(x)-f(x)| <e

From (2) and (3) gives

n>m = |f(x)-f(x)]<e

Hence lim f(x ) = f(x,)

Conversely suppose that

Suppose for every sequence {x } converging to x

We have lim f(x ) = f(x)

. (1)

. (2)

. @3)

(Imp.)

ey,
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Then we have to show that f is continuous at X,

Let us assume that, f is not continuous at n, then there exists an ¢ > 035 > 05 [x - x,|< & but
[f(x) - f(x,)| > & Vx e dom (f).

1 1
If we take 8 = —we see that for each positive integer n, 3 a x, A X=X, I<Hbut 1) = f(x))I

>¢ VX e dom (f) fails for each neN.

1
So, for each neN3 x_in dom(f) such that |x - x |< n and [f(x,) - f(x )| > &.

Thus we have lim x_ = X,

but we cannot have lim f(x ) = f(x)
Since [f(x,) - f(x )| >& v n.

This shows f cannot be continuous at X
. Our assumption is wrong.

Hence f is continuous at X,

2. Letf(x) =2x* + 1 for x e R, Prove f is continuous on R, by.
(@) Using the definition
(b) Using the € — 8 property
Sol.
(@)  Suppose that limx. =n,.
Thenwe have lim f(x )= lim(2x> +1)
=21lim(x?) + 1
=2(x3)+1
=2x:+1
= f(x;)
lin f(x )= f(x,).
(b) Letx, beinRand Let e=0. We have to show |f(x) - f(x )| <e provided |x - x | <.
[f(x) = f(x )] = 12x2 + 1 - (2%5 + 1)]
=22+ 1-2x2-1]
= |2x2- 2% |
=21¢ - x|
< 2J(x = xp) (x + %)l

{ 76 }
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100 = o) < 21x = x| Ix + X,
if [x —x,]< 1 (Say)
then x| < |x,|+ 1
= I+ x| = X1+ Ix|
= Ix| + 1+ x|
=2|x,| +1
1769 - Tl < 20x = x| @Ix,| + 1)
Provided |x - x |<1

S
To arrange 2|x — x| (2]x.] + 1)< ¢ it suffices to how |x - x | < ———— and also
= ge 2|x - x,| 2Ix,] + V< =%l < Zon T

Ix-x,1<1.

S0, 5 = min 1,;
221, 1+1)

1) - f(x )] < 2. ¢

221, 1=n 2ol D

[f(x) - f(x,)] < € whenever |x - x |< é.

3. Let f(x) = x2 sin [EJ for x# 0, f(0) = 0.Prove that fis continuous at O.
X

Sol. (Imp.)

We have to prove f is continuous at 0.
By definition of continuous we have

forevery > 038> 05 |x—al] <d = [f(x) - f(0)|<e,
Consider

1) - f(0)] = |2 sin [EJ 0]
X

1
= |x2sin ;|

1
sin —
X

IA

1%

Ix*]1 [ ]sinx] <1]
Ix12

IANIA

IA

X2 VX .
Letd = e Then [x-0]<d = x*<& (= (Ve )) X <e
So, [x-0] <d = |f(x) - f(0)]<e

.. fis continuous at ‘0.

' 77 | .
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Given that f and g are real valued functions at ‘X '.
Then prove that (1) f + g is continuous at x,

i.e., to prove that

for e>036> 0> |x-x <8 = [(f+ g) (X) - (f + g) x0O)]<e

(78 )
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4.  Letfbe areal value function with dom(f) S R. If f is continuous at x_ in dom(f). Then |[f]
and kf, ke R are continuous at x,.
Sol.
Consider a sequence {x } in dom(f) converging to x,.
Since f is continuous at X,.
We have lim f(x ) = f(x))
Then we have to prove that (1) kf is continuous at X,.
(2) If] is continuous at x,.
(1) k=0, the result is obvious
If k =0,
Lete=>0
Then show that [kx - kx |<eVn
sinlimx = x,
ThereexistsN > n>N = |xn—x0|<ﬁ
Thenn >N = |kx - kx |<e
- kf is continuous at X, .
(2) To prove |f] is continuous at xO
We need to prove lim [f(x )] = [f(x )]
- fis continues at X
for eache > 038 > 05xeS, X - x |<d = [f(x) - f(x,)|<e
soXes, Ix=x 1< d = [f(x) = Ifx ) < 1(x) - f(x,)|<e
. |f] is continuous at x, i.e, lim|f(x,)| = [f(X,)|.
5. If f and g are real valued functions at x, then,
(1) f+ giscontinuous at X,
(2) fgiscontinuous atx,
(3) flgis continuous at x if g(x,) # 0.
Sol. (Imp.)
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(2)

-+ fis continuous at X,

€
= for £>035, >05|x-x[|<3 = |f(x)—f(x0)|<5 VX e S . (@)

g is continuous at x,

€
for £>035,>05 |x-x[|<9, = |g(x)—g(x0)|<5 VX e S .. (2)

Let 3 =min {3, 8,}

Consider |(f + g)(x) - (F + g)(x))] = If(x) + g(x) — f(x)) — 9(x;)|
= [(f(x) - f(x;) + (9(x) - 9(x)I
< [f(x) = f(x )] + 19(x) - g(x,)I

By (1) and (2)

2

€ €
< S

2 2 2
[(f+9)(x) - (F+g)(x )| <e
f + g is continuous at X,
f g is continuous at x;
Lete > 0, since f is continuous at X,
€
i.e., for each &> 035, > 05 |f(x) - f(x0)|<m
0
Ix-x,1'< 38, . (1)
g is continuous at X,

€
i - - —_— .. (2
i.e., foreach ¢>035,>05 [x - x,]<8, = [9(X) - g(x ) I< AL (2)

Also, for £ >0358,>05

xes, |x-x]<8, = [f(x) - f(x))|<e

= [ -1) T <e = 11 <If(x) | +2 - (3)

If 5 =min {5, ,, 5,} then (1), (2) (3) holds for xes|x - x,|< d

~1(fg) (%) = (fa)(x )1 = () 9(x) = f(x;) 9(x,)1 = () 9(x) - f(x) glx;) + f(x) 9(x,) - f(x;) 9(x)1
11(<) 9(x) = f(x) g0 + 1f(x) g(x,) = f(x;) 9(x,)1

1) @) = gx N1+ 19(x,) (F(x) = f(x)]

IO 19(x) = g(x) 1 + T9(x )1 1H(x) = f(x)]

IAN A

IA

€ €
< If(Xo) +8.—2|f(xo)|+8 -+ Ig(Xo)I . 2(g(X0)|+8)

[ 79 ]
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< £+£

2 2
<eforxes, [x-x,|< 3
- fg is continuous at X,
(3) fig is continuous at X

Since f is continuous at X, and g is continous at X,.

1. .
To prove that — is continuous at X,
g

ks, k-1 5 = 1960 - g6l <o 19T
o) - lax < ¢
= Ig(X)I => Ig(XO)I - = Ig(x)l > Ig(xo)l _ Ig(;())l >Ig(;o)|

for ¢>035>05

11 |_ |akxe)= 9t - 196¢) - 91 _190)-9(x,)]
€S, - d - - |=
xS xS = S Tl L a0 gt | 1900 a0l 1969 90¢o)]
<_8
g1
NLEDE
(11 2 | _,
1960 9(x,) g(;o) 9 )
1 1
—_— = <Eg
9x)  9(x,)

1. .
= —iscontinuous at x, and g 0.
g

. . . 1. .
Since f is continuous at x, and — is also continuous at x, by (2)
g

1 f . .
f. — = — is continuous at X,
g g

{ 80 }
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Sol.

Sol.

If f is continuous at x, and g is continuous at f(x,) then the composite function g of is
continuous at x,..

Lety = f(x) for xes and b = f(x )
Since g is continuous at f(x ) = b,
fore > 035, >0>5 yeT, |y - b]<§,= |a(y) — g(b)|<e
Since f is continuous at x,
for >0 3 6=>0>
xes, [x-x,|<06 = [f(x) - f(x0)}<3,
i.e, Xes, X=X |<6 = |y-b] <5,yeT
xes,Ix - x1< 8 = 19(y) - g(b)|<e = 19(f(x)) - g(f(x,) | <e
= |g of(x) — g o f(x )| <e

- g of is continuous at x, properties of continuous functions.

I 2.2 PROPERTIES OF CONTINUOUS FUNECTION

Let f be a continuous real valued function on a closed-interval [a, b]. Then f is a bounded
function more over f assumes its maximum and minimum values on [a, b], i.e., there

exists x, y, in [a, b] such that f(x,) < f(x) < f(y,) for all xe[a, b].

f is a continous real valued function [a, b] f is a bonded on [a, b].

l.e., if there exists real number M such that [f(x)] £M V¥x e dom (f).
Assume that f'is not bounded on [a, b]

Then to each ne N there correspondence x, €[a, b] such that |5(x )| >n.
By Bolzanoweierstrass Theorem,

{x.} has a subsequence { X, } that converge to some real number X,.
The number x also must be long to the [a, b]
Since f is continuous at X,.

We have lI(im f(X,) = f(x,)

But we also have lim [f(X,)] = +
—>0

which is a controdection

.. fis bounded.
Now let M = sup {f(x)|x<€[a, b]}
For each ne N there exists y_€[a, b]
Such that

g
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1
M- <fly) <M
limfly ) =M
By Bolzanowierslrass Theorem
There is a subsequence {y, } of {y } converging to a limity, in [a, b].
Since f is continous at y, .

We have f(y, )= Lim f(y,)-

Since {f(y_)} is subsequence of {f(y )} VneN.
By theorem [Every sequence {s } has a monotonic subsequence] shows,

im f(y, )= limfy)y=m

k—o0

fly,) = M
Thus f assumes its maximum at g,
— f assumes its maximum at some x; €[a, b].
— fassumes its minimum at x .

Sol.

State and prove Intermediate value theorem.
(OR)

If fis a continuous real valued function on an interval I, then f has the intermediate value

property on I, whereever a < b and y lies between f(a) and f(b).

[i.e,, f(a) <y < f(b) or f(b) <y < f(a)] there exists at least one x in (a, b) such that

f(x) =vy.
(OR)

Let f be a continous on [a, b] and assume f(a) < f(b) then for every k such that f(a) <k <

f(b) there exists ce[a, b] such that f(c) = k.

f is continous at a,
forg(=-f@)>03d=>0>3|x-a] <d = |[f(x) - fl@)]|<e
Consider
H = {xe[a, b] / f{(xX)< k}#0 = ¢ = sup (H)
Show that f(c) = k
Suppose f(c) < k < k-f(c)>0

(Imp.)

We know f is continuous at ¢ so Ve>k—f(c)>0 38 = 0]|f(x) - f(c)] < &(= k - f(c)) when
X —c|<é.

= f(x) - f(c) < k -f(c)
Sayx=c+382= fx) <k = ¢+ 8/2 €H
which is a contradiction the fact ¢ = sup (H) since 6 > 0.
Similarly f(c) > k. thus
f(c) = k.

= 82 ',
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9. If f is a continuous real valued function
on an interval I, then the set f(I) = {f(x) :
x e I} is also an interval or a single point.

Saol.
fis a continuous real valued function on | the
set,
J = 1(l)
Yo Ypedandy, <y <y, = yel . (1)

If Inf J < Sup J. Then such a set J will be an
interval.

We will show inf J<y<supJ = yel ... (2)

So, J is an interval with end points inf J and
sup J

inf J and sup J may or may not belong to J
and they may or may not be finite.

Consider infJ <y < supJ
3Y, Y, inJ

Sothaty, <y <y,

Thus yeJ by (2).

10. Let f be a continuous function mapping
[0, 1] into [O, 1] in other words, dom(f) =
[0, 1]and f(x) € [0, 1] for all x € [0, 1] show
f has fixed point, i.e., a point x & [0, 1]
such that f(x,) = x,, X, is left fixed by f.

By Intermediate value theorem show
g(x,) =0

for some x, €[0,1]
Then obviously we have f(x ) = X..

11. Showthatify>0and meN. Theny has
a positive m*" root.

Sol.

The given function is f(x) = x™ is continuous,
b > 0sothaty<bm
Letbh=1=vy <1
ify=1letbh=y
Thus f(0) < y <f(b) and the intermediate
value theorem = f(x) =y for some xin (0, b),
So, y = x™and x is an mi" root of y.

12. Letfbeacontinuous strickly increasing
function on some interval I. Then f(l) is
an _interval J and f! represents a
function with domain J. The function
f1 is continous strictly increasing
function on J.

Sol.
Leta<x, <x,<b
Then either f(x,) > f(x,) or f(x,) < f(x)
Suppose that first possibility,
Then we claim fis strickly increasing on (a, b)

Sol. Imp.
. (Imp.) Leta<x; < x; < b be any other ordered two
Consider g(x) = f(x) - points in the interval.
Which is continuous on [0, 1] Set x(H) =t + (1-1) X, y(t)
1 1’
Since g(0)=f(0) -0
=g+ (1 +1)x
= f(0)>0 b+ L+,
D=fD-1<1-1=0 Thena < x(t) <y() <bfor0<t<1
==t = 1= et gt)= f(y() - fx()
y Then g is the composition of continuous
function so is continous on [0, 1].
1b------- 7§ = x Also g(t) # 0 since f is one to one
! So, g(t) cannot change sign by the interme-
; Graph of f diate value theorem.
. ! Since g(0) = f(x,) - f(x,)=0, g(t) > 0
o] x 1
° and hence g(1) = f(x}) - f(x) > 0.
[ 83 } —
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13. Letg be astrictly increasing function on an interval J such that g(J) is an interval I. Then

g is continous on J.

(or)

If f is continous and one to one on an interval then f* is also continous.
Sol.

By previous theorem, f is either strictly increasing or strictly decreasing.

Let x, be in the interval with y, = f(x ) we must show that f(y) = x,.

Let £=0 be given

Ifx,—e<Xx, <X, +¢

Then f(x, — &) < f(x,) < f(x, + €)

Choose & = min (f(x,) - f(x, — €), f(x, + &) f(x,))

Then f(x, - €) < f(x,) — 6 and f(x)) + & < f(x, + ¢)

Hence if f(x ) 6 <y < f(x,) + &

then f(x, —¢) <y < f(x, + ¢)

Since fis strictly increasing.

So, is f* and therefore x, —e < f'(y) <x, + ¢

ie, |FXy) —x0| <¢gif |y—y0|<8

= Y -y, <eif ly -y, |<é

f is continous.

14. Show that if - f assumes its maximum at x e [a, b]. Then f assumes its minimum at z,..
Sol.

Suppose if ~f assumes its maximum at x;

i.e., Vx e[a,b]

We have —f(x) < -f(x)

Thus f(x) > f(x,)) vV x €[a,b]

Which means exactly f assumes its minimum at x_
15. Prove that x = cos(x) for some x in [O, g}
Sol. (Imp.)

Consider the function f(x) = cos(x) — X, which is a continuous function.

Since both cos(x) and x are continous

fx=0
f(0)=cos0-0
fO)=1
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If x==
2
f(n/2) = cos r_. Iz
2 2
:0_2
2
T
f(n/2) = =
(w/2) = -

Thus, by the intermediate value theorem, we have that there is comec € (0%) such that f(c) =0.

This means exactly that cos (x) = x has a solution in this interval.

16. Let SSR and suppose there exists a sequence {x } in S converying to a number X &S
show there exists an unbounded continuous function on S.

Sol. (Imp.)
Let f: S — R be given by f(x) = . x X, &S
0
f is bounded.
Let M = O be given
. 1
Choosing € = M
Since x, — X, there exists n for.which
1 1 1
_ <g —=— —_— > — (=M
X, <% |<e =30 e > D EW
So, th f -t 1
o, then [f(x )| = Ix —x, 1
>M
S =M

17. Letfand g be continuous function, on [a, b] such that f(a) >g(a) and f(b) <g(b) prove that
f(x,) = g(x,) for at lest one X, in [a, b].

Sol. (Imp.)

Given that f and g are continuous function on [a, b]
let h =f-g So, his also continuous function.
We have h(@) > 0 and h(b)<O0

fa) - g@a) >0 f(b) — g(b)<0

f@) > g(a) f(b) < (b)
By intermediate value theorem, there exists x, € [a, b] for which h(x)) = 0

ie, f(x)-g(x)=0
f(x) = g(x,)-

|l 85 ',
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18.

Sol.

Prove that a polynomial function f of odd degree has at least one real root.

Letf(x)=a x"+a_ X"+ .. +ax+a,
Where a_#0 and n is odd.

Multiplying f by a non - zero constant does not change its roots.
So, without loss of generality a = 1

. f(x a,_ a a
Consider (—n) =a + " + .. L+=2
X X X" X

) _
x"

1+

for each 1<k<n
there exists R_> 0 for which |x|> R,

1
<_
2n

a'n—k

Xk

=

Taking R = max {R, ...... R}
The triangle inequality gives that

So, M>1—1>0
x" 2

In particular f(x) has the same sign as x" for x sufficiently large in magnitude so, when x is large and
positive.

f(x) is positive, and when X is large and negative,
f(x) is negative,
Since polynomial functions are continuous
By intermediate value theorem
f(x) = 0.

19.

Sol.

1
Let f(x) = sin K—J for x£0 and let f(0) = O show that f has the intermediate value

X
property on R.

Leta < b be given
Ifa<0<bora<O0<b

Then sin LEJ attains all values between - 1 and 1.
X

Rahul Publications
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any y between f(a) and f(b) is attained between a and b.

fO<a<bora<hb<oO

1
Then since sin [—J is itself continuous on the domains {x >0} and x < 0.

f has the intermediate value property.
I 2.3 UnNiForM CONTINUITY

Let f be a real valued function defined on a set SSR. Then f is uniformly continous on S. if for each

£>038>0>5 X, yesand
Ix-yl <8 = [f(x) - f(y) < el
f is uniformly continuous if f is uniformly continous on dom(f).
Verify fis continous on set S& dom(f) if an only if for each x ,es and >0 there is 6 > 0
1

20.
so that xedom(f) and |x-x | <& = |f(x) - f(x,) | <e for the function f(x) = 7 on (0, «).

Sol.

Given that,

1
f(x) = ez on 0, «)

Letx,>0ande>0
We have to show | f(x) —f(x )| <e for |x - x | <&

Consider
1 1
00100 = 737
X*X¢
(Xg —X) (X, +X)
R
Choose § = -2
oose § = >

X
= Ix-x]|< 70 then we have |x|>—=

5X,

|x|<%and Ix, +x] <
2 0 2
Rahul Publications
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X,
2 _10]x,-x]

Thus if we set 8 = min 510

IXo _XI
[f(x) — f(x) 1<

= Ix-x| <38 = [f(x) -f(x)|<e

1
21. Show that f(x) = Z is uniformly continous on [0, « ) where a > 0.

Sol. (Imp.)

Given that f(x) :i2 on [0, «) wherea >0
X

let e>0
We have to show that

38>05x-y]l <d = |fX)-f(y)|][<evXx,y>a .. ()
. 1 1
Consider f(x) — f(y) = pal
_ y2_X2
- Xzyz
_ y=x)(y+x)
- x2y2
Y+X . _ e
If we can show = is bounded on [a, «) by a constant M, then we will take & = IVE
X7y
y+x Yy X
x2y2 - x2y2 + Xzyz
« 1 N 1
X%y xy?
~ a’a aa’ Y 2
1 1
<@
+X 2
izyz < a—3(= M)

g
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= &

_ ly-xlly+xl 1.1 2
xza,yzaand|x—y|<8:>|f(x)—f(y)|—T<8 X2y+xy2 <

S ) - fy)]<e vx,y=a

.. fis uniformly continous on [a, «).

1
22. The function f(x) = Z is not uniformly continuous on the set (0, «) or even on the set
(0, 1).

Sol.

1
Given function is f(x) = el

We will show that f is not uniformly continuous let ¢ = 1.

i.e.,, foreach 8 =0 3 x, yin (0, 1) such that |x — y|< & and yet [f(x) - f(y)| > 1 . (@)

3
To show that (1) it suffices to take y = x + Ey

= |f(x)—f£x+%J|2l . (2)

1)
Consider f(x)— f[x +EJ >1

A ONS_ 1
X2 (x+8/2)

(X+%)2 —-x?

= l<—F"

- XZ(X+%)2

g
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6(2x+6j
2]

2x2(x+j
2

1
It is sufficient to prove (1) for 8 < By

Letx =20

5
(2.0 + —
(25+7)

2
252 (6 + 6)
2

55 ,
2 %95 58 5 20

= = > =
262 @ ’ % 964 9 1 ’ 9
2 2 2

1
ie,If0 <8< 7 then If(d)_f[8+EJ B

by 3) =

o2

So, (1) hold withx =6andy = & +

2

23. Isthe function f(x) = x* Uniformly continuous on [-7, 7]?
Sol.

Given that f(x) = x?

To check the given function is uniformly continous on [-7, 7].

i.e., to check by definition,

foreach e>036>0>|x-y] <d = |fX)-fX)] <e

Consider [f(x) - f(y)] = IX*-y*| = Ix-y| Ix +y]

Since [x+y| < | 7+ 7] forx,yin[-7,7]

Ix+y|] <14

S0 = (W) < 14x -yl for x, y in [-7, 7]

€
Choose § = 1

= 1) - )] < 14 o5

[f0) -t < e X,y €[-7,7]
S Ix=yl<s8 = ldX) - fly) <e
.. fis uniformly continous on [-7, 7].

= 90 ',
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24. Iffis continuous on a closed interval [a, b] then f is uniformly continous on [a, b].

Sol.

f is continuous on a closed interval [a, b] we have to prove, f is uniformly continous on [a, b]
i.e., to prove.

forany € >038> 05 |f(x)) - f(x,)] <eforany arbitrary points x,, x, of [a, b] such that |x , x| <&
Lete > 0,
-+ fis continous on [a, b]

= for ¢ = 0, we can divide [a, b] into a finite number (say n) of sub intervals.

ie., a=t <t <

a=T[t,t] [t,t] .. [t ,t][t,t 1..[t ., t]1=D
Such that [f(x,) - f(x,)] < % for x_, X, belonging to the same sub interval,

1
Letd = 5 min {Jt -t _| >0, 1<r<n}

Let x, X, be any two points of [a, b] such that |x, — x| <3&.

Then x,, x, either belong to the same sub interval or to two consecutive sub intervals with a common
end point.

Case (1) let x, x, belong to the same subinterval
€
We have [f(x ) - f(x)] < E< e for |x, —x,|<3d.

Case (2) let x,, x, belong to two consecutive sub interval with a common end point.

Sayt.

€ €
We have [f(x,) - f(t)] < 5 and [f(t) - f(x2)|<5

() = O = 1(f(x,) - f(t) + () - O]
= 1(f(x,) - f(t)) + (f(t) - I
= 1f(x) = f(O1 + 1) - f,)]

€
+ =
2

N |

=¢ for [x, - x| <o
Thus in either case,

We have for any e > 0 there exists 6 > 0 such that |f(x,) — f(x,)] < e for any arbitrary points x_, X,
of [a, b] such that |x, — x| <3d.

.. fis Uniformly continous in [a, b]

' 91 |
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25. Iff:s - R isuniformly continuous, then fis continuous, in S.
Sol. (Imp.)
Suppose that f is uniformly continous on s.
= fore> 035 > 0> |f(x) - f(x,)|<e for x,, x, being any pair of arbitrary point of such that
IX, = x| <3d.
Let ces
On taking x, = x and x, = C we have for ¢ > 035 > 05 |f(x) - f(c)| <e for |x - c]<d
= fis continous at any point ‘C’ of S, Since C is arbitrary:
f is continous at every point of S,
f is continuous in S.
26. Prove that f: R —» R given by f(x) = x? is a continous function on R but not Uniformly
continous on R.
Sol. (Imp.)

Clearly f is continuous on R,

Now we show that f is not uniformly continous on R

Given ¢ > 0,

We prove that there is no single 6 that serves for every x < R inthe condition of continuity.
To see this let us assume that there exists such a number & > 0.

)
Thenfor x andx,=x, + E

)
IX,=x,|=75<3$

2

1

L H0) <10 = X=X = Ix, = %] 1%, + x,]

=<egifx, >0
62
Since —>0
4
we must have x,8<gvx, R, x, >0

But this is impossible.
. & depends on ¢ and x, and hence the function f is not uniformly continous on R.

Rahul Publications
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27. Areal valued function fon (a, b) is uniformly continous on (a, b) if and only if it can be
extended to a continous function on [a, b].

Sol. (Imp.)
Suppose that f is uniformly continous on (a, b)
we have to prove f is continous function on [a, b].
f is uniformly continous on (a, b)
for ¢>035>05 If(x,) — f(x,)]<e for x, x, being any pair of arbitrary points of S such that
IX, = x| <3d.
LetCeS
on taking x, = xand x, = C
We have
for e=0 36 = 05 |f(X) — f(c)|<e for |[x —c|< &
= fis continous at any point ‘c’ of s
Since C is any arbitrary
f is continous at every point of S.
f is continous in [a, b]
Conversely suppose that
f is continous in [a, b] then prove thatf is uniformly continous.
f is continous on [a, b]
We have to prove that
f is uniformly continuous
i.e., to prove that
for any > 035> 05 [f(x) - f(x,))| < & for any arbitrary point x, x, of [a, b]> |x, — x,| <&
Lete=0
f is continuous on [a, b]
= for ¢ > 0, we can divide [a, b] into finite sub intervals (say n)

a=1[t, tLIt,t].. [t tLIt,t,.]...t .t]=bh

Such that [f(x,) - f(x))] <% for x_, X, belonging to the same sub interval.

1
Letd = 5 min {|Jt -t_|=>0,0 <r < n}

Let x, X, be any two points of [a, b] such that |x, — Xx,|< 3.

Then x,, X, either belong to the same sub interval or to two consecutive sub interval with a common
end point.

Case (i)

€
Let x,, X, belong to the same sub-interval we have, |f(x ) - f(x2)|<5< e for |x, —x,|<3d.

' 93 |
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Case (ii)
Let x,, x, belong to two consecutive sub Intervals with a common end point say t, we have,

If(x,) - f)1<~ and If(t) - fx) <7
= 17x) = 01 = 17x) = TOI+1R) - )]

€ €
< — 4+ —
2 2
<efor |x, -x,| <&
Thus in either case, we have for any ¢ > 0 there exists 8 > 0 such that
If(x,) = f(x,)] < € for any arbitrary points x,, x, of [a, b] such that |x, —x,] <&

f is uniformly continous.
28. Show that the function f defined by f(x) = x® is uniformly continous in [-2, 2].

Sol.
Given that f(x) = x®

Letx, x,e[-2, 2] then |x | <2, |x,| <2

11(x,) = )1 = 1% =3 |
= |(x, - X,) (xf+x§+x1 x)|

2
= 106, =X)L, [ x|+ 1%, 11,11
= |x,=x|]2*> + 2> + 2, 2|
=12|x,- x|

€

oo Jf(x) = f(x) < € whenever |x,-x |< o

. Giveng > 0398 :% such that [f(x,) - f(x,)| whenever |x, —x |< & for every x , X, €[-2, 2]

. f(x) is uniformly continous in [-2, 2].
29. If fis uniformly continous on an aggregate s and {s } is a Cauchy sequence in s, then
prove that {f(s )} is also Cauchy sequence.

Sol.

f is uniformly continuous on s

= givene>0 3 6>0suchthatx, X, € S,
IX, = x| <38 = [f(x) - f(x,)|<e . (@)

{s.} is a Cauchy sequence

{ 94 )
Rahul Publications —J



UNIT - 1l REAL ANALYSIS

= for & > 0 there exists positive integer ‘m’ such that |s —s | <& V p,q=m

Buts,s, efs,} = s, .5,€s

By (1), for each >0 there exists a positive integer ‘m’ such that [f(s)) - f(s )| < evp,q>m.

- {f(s,)} is also a Cauchy sequences.

1
30. Show f(x) = Z is not uniformly continous on (0O, 1).

Sol.
1
Lets = Y for neN

L1
—lim = =9

n—oo n

lim S

n—ow n =
which is convergent and we know that every convergent sequence are Cauchy sequence.
{s.} is a Cauchy sequence

Since f(s ) = n,

lim f(s )= lim n2 which is not a convergent
n n—oo g

f(s ) is not a cauchy sequence.
f cannot be uniformly continous on (0, 1).

f(x) is not a uniformly continous.

31. Letfbe acontinuous function on an interval | [| may be bounded or unbounded] Let I° be
the interval obtained by removing from | any end points that happen to be in I. If fis
differentiable on I° and if f* is bounded on 1°, then f is uniformly continous on I.

Sol.

Given that f is continous function on |, here ‘I’ may be bounded or unbounded
Let M be bounded for f on |

suppose that |f'(x)] <M on |
. €
Let £=0 be given and set & = vl

We show that this € — & pair satisfy the definition of Uniform continuity.

S
Let X, yel such that |[x - y|< 5[= MJ
by mean value theorem

There exists C e (x, y) such that f(c) :w

' 95 |
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But then

1) — W1 = If©1 Ix-yl
< M&

< MM
<eg
If(x) - fY)l <e

f is uniformly continous on I.

1
32. Show f(x) = Z is uniformly continous
on [0, «).
Sol.
Leta = 0,
1
Consider f(x) = X
. . -2
Since f'(x) = &
. 2
Ifx)] = PO [a, «)

We have to show that —f is uniformly
continous there exists 8=>0 5 |X - y]< & = |f(x) —
fly) | <e.

vX,y > a
2 2
- 1 1 Yi-x
Consider f(x) — f(y) = Ty oy
_ =¥ -x%
- Xzyz
If we can show X*Y is bounded on [a, «)
X2y2

€
by constant M, then we will take 6 = IVE

IA
mw| N
—

[
<
N—r

x>a,y>aand |[x-y| <3 = |f(x) - f(y)]

_ ly—=xlly+x]
- Xzyz

S -fy)l <e v x,y > a
f is Uniformly continous on [a, o).

33.

Sol.

Prove f(x) = 3x + 11 on R is uniformly
continous.

Given f(x) = 3x + 11 on R,

€
> = -
e=>0, Let 6 3

then |[x-y| <& [::j: 1f(x) - f(y)|<e
Consider,
[fx) = f(y)] = |3x + 11 - (3y + 11)]
= |3x + 11 - 3y - 11]
= |3x - 3y|
= 3|xyl

<3E
° 3

=c¢
S0 - fy)] < e
.. fis uniformly continous.

34. Prove f(x) = x? on [0, 3] is uniformly
y+X 1 1 continuous.
NN
Yoxly xy? Sol.
1 1 Given that f(x) = x2 on [0, 3]
< S3t=%
- ata’ To prove f is uniformly continous
( 96 |
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i.e.,toprove € >038 > 05 |x-y|<d= |f(X) c
- fy)l<e -4/ .
1
£ 4

€
=0, LetB(Z 6j>0, then |x-y|< B(Z gj

Consider [f(x) — f(y)| = |x*-vy?|
= x-y) x+yl
= Ix=ylIx+yl

€
<E|3+3| VX=3,y=>3

€

< —6=c¢
6

[f(x) - f(y)|<e on [0, 3]
f is uniformly continous on [0, 3].

35.

Sol.

1
Prove f(x) = > on |:%ooj is uniformly

continuous.

1
Given that f(x) = X

Prove that f(x) is uniformly continous
i.e, to prove.

£>038> 005 IX-yl< 8= [f(x) - fly)|<e

=%1s0
Lete=>0,8{~7,

€

Then |x-y]| <8[:ZJ

Consider [f(x) - f(y)] =

IA

IA

g

1
109 - f)l<e o b,ooj

f is uniformly continous.

1 . .
36. Check f(x) = ) on (0, 1] is uniformly
continous or not?

Sol.
1
Lets = —
n n

Since s_ is convergent

1

[i.e, lims =lin A S 0 which is convergent]

and we know that every convergent sequence
are Cauchy sequence.

. {s,} is a cauchy sequence.

But f(s,) = n® and n® is not cauchy sequence
since it is diverges to + .

.. f cannot be uniformly continous on (0, 1].

37. Show that f(x) = x®on [0, 1] is uniformly
continous.

Sol.
Given that f(x) = x®
To show that f(x) is uniformly continuous.

i.e., showthatforeach ¢ > 035 > 03| x -y |<

S
= § =
Ifx) - fW)I< e

Consider |f(x) — f(y)] = |3 -¥y3]
= |(x-y) (x* +y* + xy)|
= Ix=y| ¥ +y*+xy|
= Ix=yl HIxI>+ 1yl + Ixyl|
=31+ 1+1]|=33

=3

3

[f(x) - ()] <.

.. fis uniformly continuous on [0, 1]
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38.

Sol.

(@)

Which of the following continous
functions are uniformly continuous on
the specified set? Justify your answer.

@ f(x)=x*onR
(b) f(x) =x%0on (0, 1)

Given that f(x) = x*on R
Claim

f is not uniformly continous on R.

In particular, for e = 1 any §>03,x,y eR

2.4 Limits oF FUNCTIONS

Definition : Let s be a subset of R, let ‘a’ be a

real number or symbol ‘o0’ or ‘=0 " i.€., the limit of
some sequence in s, and let L be a real number, we

write lim f(n) = L if fis a function defined on s and

x—a®

for every sequence {x } in s with limit a, we have

lim f(x,) = L.

The expression lim f(x) is read “limit, as x
x—a®

tends to a along s, of f(x).

Various standard limit concepts for functions.

1. ForaeRand a function f we
Such that |x - y]< d and |x®-y*| >1 write lim f(x)=L provided limf(x) = L for
x—a* x—a’
To find x and y, : \
some open interval s = (a, b) M f(X) is the
Let’s first simplify things by looking for positive . _ N e
s, plity y g right hand limit of — f at a.
2. Forr aeRand a function f we
and lettingy = x + % write XILT f(x)=L provided XILrgf(x) =L for
some open interval s = (c, a) IM f(X) is called
3 X—a
Then IX3 _ y3| — IX3 _ (X +%j l left hand limit of f at a.
3. For a function f, we write limf(x)=L
= o %X52 +§+%x26 provided lim f(x)=L for some interval s =
(c, o) like wise we write lim f(x) = L
3 ,. 3., & .
= 5X 5+ZX5 iy provided lim f(x)=L for some interval s =
2 .
=57 5 39. Find
: 3 .1
2 @) ||rQX (b) lim=
.. . _ X x=2 X
This is equal to 1 if x = ,/5 formally, for
Sol.
8=>0,letx = ,/i dlety =x + u imx®
any 6>0, letx = 35 and lety = x 5 (@) lemx
o 5 S b e >§ Given that
enIX_YI_2< and |x® - y?| 2 f(x) = x3 :>|Ximx3:43
Xt = |(=¢)
H 3
So, f is not uniformly continous. 'X'El X' = 64.
— : 98 ,'
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b) lim:
X—=2 X

Given that

1
0=

lim f) = =
X—2 (X)_ 2

im L _ 1
im - = =
X—2 X
2
40. Final lim X =%
X2 X_2
Sol.
x’— 4

Given that lim
X2 X — 2

x’—4

X—-2

f)=

Rewrite the function as

X2 4 :()(/12/)(X+2)

We multiply numerator and denominator by
Jx + 1, then we obtain.

x-1_ X1 x+l_ (X -l

x-1  x-1 X+1 _(x—l)(\/;+1)
=D (Wx+D)
1
~ Ux+1
Now it is clear that,
lim Vx -1 — lim 1
x>l X —1 x—1 \/;-i-l
1
\/I+1
. Alx-1 1
lim =
x—=1 X—l 2
42. If f(x) = for x£2. Then prove
) x_2) # p

that (i) limf(x) = limf(x) = 0, (ii)

2 lm 09 = +<0 and i 16 =~
=x+2-forx = 2. Sol. (Imp.)
o To verify lim f(x) = 0
None it is clear that Iim2 = Iim2 X+ 2 fyl'i’l e
We consider sequence {X },
i x?—4
X'an x—2 Such thatlim X =+
. . Ax-1 1
41. Find lim . fX) = ——=
x->1 w1 (X_2)3
Sol limgyy = lim X —
. X = =
X—>0 ( ) X—>0 (X_2)3
Given that lim /x-1 This show’s that,
x>l X —1
limf(x) = 0. For (2, ) Now to show
_ lx_l X—>00
)=~ that lim (x, - 2)° = + o0 (D)
|l 99 ',
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y—rgc (0 +2)° =0
Here ¢ > 0 forlarge n, we need |x - 2] <¢ or g {x -2 ifx > e"2+2
There exists Nso thatn > N = x >&*+2
iie,n>N=|x-2]°<e
imf(x,) = 0
43. Find the limit IimM, b > 0.
Xx->b X-—
Sol. (Imp.)
Given that Iim\/;_\/B = f(x) = x=vb
x=b xX—Db x—Db
Multiply and divide by \/x ++/b
we obtain,
2 2
f(x)_&—\/5><\/;h/52> (%) -({b) )
~ x-b _Jx+vb (X—b)(«/;er/B) = (x~B) (Vx+vb) T Jx+vb
lim lim 1
o 1) =0 A b
1
—2Jb
JVx =+/b
Let =
etgr) = =

Note that (0, ) is an open interval containing b and (0, «) — {b} < dom (g)

If {x } is a sequence in (0,0 ) — {b}

Jadb 1
Xn—b :\/Z+\/BVHEN

andlimx =b. Theng(x ) =

(Since x_= b, for any n)

Since limx =b =lim x, =+/b

g
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Since lim /b =/p
and lim \/x, =+b .

= lim x, +vb=2Vb

The reciprocal limit law then implies that

1

1
g(xn):Iim\/Zﬂ/B :m

we have shown that whenever {x } is sequence in (0, o) — {b} such that lim x = b then

b1

lim X —b = %>/
_x-+b _ 1

So, lim——— =

x»b X-—D - 2\/6

44.

Sol :

(@)

Prove that if )I(l_r)r; f(x) = 3 and )I(l_r)r; gx) =2

Then  (a) M [3f(x) + g(x)?] = 13

| =

(b) Iimi =
x—a g(X) 2

(©) lim3160 +890) = 5

Given that im f(x) = 3

and im g(x) = 2 .. (1)
To prove that im [3 f(x) + g(x)2] = 13

Consider RH.S i.e., IM [3(x) + g(x)?]

= M 3f(x)] + im g(xy?

= 3)|(|Lrg1 f(x) + l'i'l g(x)?

= 33)+ (2F = 13 by (1) & (2)

M [3f(x) + g(x)7] = 3

|l 101 ',
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(b)

(©)

.1 1
To prove that l'[{‘a@ =3

1

. 1
consider )'('E;@ = liir;g(x)

1
5 by (2)

To prove that lim/3f(x)+8g(x) =5

Consider

lim J3f(x)+8g(x) = \/3 lim f(x)+ 8 lim g(x)

J33)+8(2)
= Jo+16
= J25

lim /3f(x) + 89(x) = 5

45.

Sol.
(i)

Let f,_and f, be function for which the limits L, = lim f (x) and L, = lim f(x) exist and
x—as X—as

are finite. Then

0) )!Lr?s (f,+f,) (x) exists and equals L, + L,

(i) )!Lr?s (f, f,) (x) exitsand equals L, L,

(iii) )!Lr?s (f, / f)) (x) exits and equals L /L, provides L, =0 and f(x) =0 for xes

Given that f and f, are defined on s.

a is the limit of some sequence in s.

(Imp.)

clearly the function f, + f, and f, f, are defined on s and so, is f /f, if f (x) = O for xes.

consider a sequence {x } in s with limit a.

By given hypothesis we have

L= limf(x) .. (1)

n—ow
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andL,= lim f(x) (2

Let ¢ > 0, we have to show that

If, +f,- (L, + L)| <e for large

by (1) = for each &> 03 neN,>|f, (x)-L,| < % vn<N, - (3

by (2) = foreach ¢>03 neN,|f,(x)-L,| < % yn=>N, ..(4)

N = max {N,, N_}

Consider
If,+f—(L,+L)] = If,+f-L—L]
16, - L)+ (0, L)
= 1,00~ L1+ 1£,0) - L,
_ £,
2 2
< ¢
If1+f2_(L1+L2)I<8 vn >N

lm (fl + fz) = L1 + Lz

(i) Toshowthat iM (ff)(x)=L, L,

i.e., toshowthat |[ff,-L L] <¢ vn>N
consider |ff,-L L | = |ff-fL +fL —-L L]
= |(ff,-fL)+ (fL,-LL)I
If,(f, - L)1+ L - L)I
1,1 1f,- L1+ L] If,-L,] (1)

IA

IA

There is a constant M > 0 such that |[f | <M v n

€

Since lim f, = L, there exists N, suchthatn >N, = |f,-L,| < oM

€
Also, since lim f, = L, there exists N, such thatn > N, = |f - L | < —2(1L21+1)

Now if N = max {N,, N,} Then n > N implies

by equation (1) we can write

' 103 |
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Iflfz_Llel < Ifll Ifz_Lzl + ILzl Ifl_Lll

M-S &
REAPTVERS LA TR P

€

€ €
_+_
2 2

Iff-LL]l<e

r!lirl flfz = L1 Lz

L

Iimfi - -1
L2

(i) ms

To prove that

1
first we will prove fl convergesto |
2

2

Let ¢ >~ 0 there exists M > 0 such that
If,] =M wvn.

Since lim f, there exists N.such that

I
—
I
—

L,
L,

. fl Ll
lim A L,

46. Let f be a function defined on a subject
S of R, Let a be a Real number that is

the limit of some sequence in S and let
L be a real numbers thenlimf(x) = L if

X—a
and only ifforeach ¢ =0 3 § >0 such
thatxeS and |x-a] < § implies |f(x) -
LI < ¢

Sol.

Given that f is function on ‘S’ and SCR,
where R is Real numbers.

Required to prove M f(x) = L If and only if
l for each

e>03 §>0>xesand|x-a]<s§
n>N= |L,-f,] < e:M|L,| = [f)-Ll<e ..(Q)
1 1 L, -1, To show that im f(x ) = L
Then n >N = AT _
2 22 () lmfx)=L = foreache >03 5 >0
. L, —f] [f(x) = L] < ¢ whenever x s, 0
[f2[IL| <Ix-a] <35
Xes, a-§<x<a
M = Xe5,0<a-x<3
Y
‘%‘ = Xes,0<|x-al<s
= |fxX)-L] <e
1 1
———|<¢g i
f L, M) = |
1 Xes,a<x<a+§
lim— — —
nsof, = L, = Xes,0<|x-al <3
1 = |fX-L]<c¢e
. f . .
Now, lim == limf, Ilml__2 lim f0 = L
2 x—at
— ( 104}
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o foreach ¢>038>03 x €5, |[x-a] <s§ = lim (x + a)
X—a
= [fxX)-L] < ¢
1109 - LI o
lim = lim = =
Let M f(x) =L, 1M f(x) =L = 2a
and let ¢ > 0 lim f(x) = 2a
X—a
Nim f(x) =1 — there exists &, > 03 L msd o
T x>a X—a -
[f(x) = 1] < ¢ wheneverx es,a- 3§, <x<a
x3—a3
i = i 48. Find the limit of f(x) = ———
Jim f(x) =1 = there exists &, > 0 such that ==
f(x) = 1] < & wheneverx es,a<x<a+ 5, | Sol.
— H X3 —a3
If we take § = min {5,,5,} Given that, 1) = ~—
Thenx es, 0 < |x-a] < §
lim ) = lim 222
= Xes,0<a-x<gsgor0<x-a<j o A" =M=
= XeS,a-§ <x<aora<x<a+ gy
i (x~8)(x2 +ax +a2)
— Xes,a-3§ <x<aora<x<a-+3J, T x-a x<a
= |[fX)-1]<ce = a’+a.a+a?
lim f(x) = L S @Ay
X—a
lim = 332
47. Find the limit of f(x), where f(x) = o f(x) = 3a
x?—a? i X5 =23 ,
X—a |e,xlina a2 3a
Sol.
Let f:R-{a} > R
clearly ‘a’ is a limit point of R — {a}
X2_a2
flx) = —a
2 _92
limf(x) = lim X7 ~a
X—a X—a X—a
_ jim A +a)
x—a M
[ 105 } —
) Rahul Publications



B.Sc.

Il YEAR Il SEMESTER

‘ Choose the Correct Answer I

1.

If f and g are real valued function then min (f, g) =

(@) max (-f, -g)

© Z0+9-Z1f-gl

1
() 5

€ 1

The domain of g of is

(@ R

(c) {x e dom (f) ; f(x) xedom (g)}

If f(x) = (1 + 3x)**is continuous at X = 0 then f(0) =

@ e
(c) e
sinn®

lim -

n—oo n -

@ 1

If f and g are real valued function then max (f, g) (x) =

(@) max {f(x), g(x)}

(©) () 9(x)

g

(b)

(d)

(b)

(d)

(b)
(d)

(b)
(d)

(b)

(d)

(b)

(d)

[c]
1 1
E@+@+E@—m
None

[a]
_1

2

0

[c]
dom (f) ~dom (g)
{x € dom (f) n xedom (g)}

[c]
eZ
0

[b]
L
180
None

[a]
fx)
9(x)
f(x) — 9(x)
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10.

1-cos ax
IF1(x) = "X sin x
@ a=1
(c) a==1
sinx .
f(x) = ' is always

() Continuous

(c) Continuous if f(0) = 1

f(x) = x?, is continuous at x, =

(@ 4
(c) O
Limit of £ = < :ZB
(@ 3
(c) O

(b)
(d)

(b)
(d)

(b)
(d)

(b)
(d)

1
is continous at x = 0 where f(0) = 5 then

a=-1

None

Discontinuous

None

3a?

None

[c]

[c]

[d]

[d]

g
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‘ Fill in the blanks I

1. If f is uniformly continous on [a, b] thenfis _______on [a, b].
2. Afunction continous in one open interval ___________ uniformly continuous in that interval.
3. If |f] is continuous at ‘a’ then fisneed nottobe —___________at‘a’.

4, The domain of i is the set

5. Afunction f is continuous in dom (f) = Sifand only if —_______ continuous.
2

6.  The domainof X ~% is
X—2

7. The function f(x) = x? is uniformly continuous on

8. Mean value theorem is f'(x) =

9, The set on which fis defined iscalledthe _—____ of f.
10. The natural domain of f(x) = /4 _x2 is
ANSWERS

1. Continuous

2. Need not to be

3. Continuous

4. Dom (f) ~{x e dom(g) : g(x) =0}

5. Uniformly Continuous

6. (-0,2) U, )

7. 7.7

8 f(b) - f(a)

' b-a
9. Domain

10. {xeR:x=0}

g
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Differentiation : Basic Properties of the Derivative - The Mean Value Theorem -
* Hospital Rule - Taylor’s Theorem.

) O
T T
IS EEEEEEEEEEEEE]

K[‘I][I][I][I][I][I [I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I][I]{
3.1 Basic ProPeRTIES OF THE DERIVATIVE I lim [f(x) - f(c)] = lim {f(x)—f(c)} lim (x - ¢)
X—C X—C X —C X—C
Definition 1.
Let ‘f” be a real valued function defined on = 1(©).0
an open internal containing a point ‘a’ we say that =0
fis differentiable at a or that f has a derivative at ‘a’
limfx) = liMmfc) = 0
_ f(x)-f(a = () ©)
if the limit, jim 100~ 1(@) exists and is finite o e
x—>a X —a )
o . = M) =1()
i.e., fis differentiable at ‘a’ we can write f'(a)
. f(x)— f(a) f.is continuous at ce (a, b)
T x»a X-—a Let c=a
Definition 2. . f(x)—f(a
| fis derivable ata = JL@O;%;) = Rf'(a)
Let ‘s’ be an aggregate and f: S — R be a
function, let C€ S, be a limit pointof Sand | eR, fis ) _ Tf0-f@)]
said to be derivable at ‘C’ if for a given ¢ > 0 there Nim Ti(x) - f(a)] = X'LT{ “_a } Jim (x - a)
ist .
&S 5>0 = RFf(a).0
f(x) — f(x) =0
SuchthatO |[x-¢c] < § = T x—c <e,

The number ‘I’ is called the derivative of ‘I’ at
¢ and denoted by f(c).

lim f(x) = f(a)

x—at

= fisright continuous at ‘a’.
1. Iffis differentiable at a point ‘a’. Then Similarly, we can prove that fis left continuous
‘f” is continuous at a. atb.
Sol. (imp.) | 2. Let f and of be functions that are
differentiable at the points each of the
letf:[a, b] - R, at e[a, b] functions cf [c a constant], f+g, fg and f/
g is also differentiable at a, except f/g
let, ce (@, b) if g(a) = O since f/g is not defined ata in
this case.
. . i fX)—f(c) _ .
= lim 2 7% — ¢
fis derivable at ¢ e — (c) The formulas are
1. (cf)'(a) =cf(a)
f(x) - f(c) : . .
for x#c. ) -f() = |, —; |(x-0©) 2. (f+g'@="f(a+d@
kﬁ) Rahul Publications
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Sol.

3. (fg)(a) =f(a)g'(a) + f(a)g(a)
4. (flg)y(a) = [o(@)f(a) - f(a) g'(a)l/g*(a)
if g(a)=0.
(Imp.)
Given, that f & g are functions, which are differentiable at ‘a’.

Let f is differentiable at ‘a’.

- f(x)—f(a)
(@) = lim—"——=
Then f(a) am 2 (1)
Similarly ‘g’ is differentiable at ‘a’
Then g'(a) = jim 909 -0@) .(2)

x»>a X-—a
By definition of (cf) (x) = cf(x). for all xe dom(f)

im €N X)—(ch)(@)

—a X—a

(e (a) = |

Xx—a X—a

— clim =@
x—>a  X-—a
= c.f(a)
(cf) (a) = cf(a)
f & g are differentiable at ‘a’

(f+9)()-(f+9)@)
X—a

Then (f + g)' (@) = lim

f+9)X)-(F+g)@) _ fX)+9x)-f@)-g@) _ fX)-f@)+9x)-g@) (F+9)x)-F+9)@)
X —a B X—a o X—a X—a

_ f(x)—f(a)+g(x)—g(a)
T x-a X—a

Apply limitas x — a

i (00~ +0)@) _ i (00-@ i 909-0(@)
a

X—a X—a Xx—>a X — X—a X —a

(f+g)@ = f(@)+g@

Rahul Publications

'l 110 j



UNIT - 1l REAL ANALYSIS

3.  Observe that
fg(x) - fg(@) 9(x)-9(@) f(x) - f(a)
X—a = 169 X—a +9(@) X—a
for xedom(fg), xxa.
we take the limit as x — a and note that l'g; f(x) = f(a).
(fg) (a) = f(a) g'(a) + g(a)f(a)
4.  Since g(a)=0. and g is continuous at a, There exists an open interval | consisting a such that
g(x) £ 0. for xel.
for x el we can write
o = 1 f@
(flg)(x) - (t/9)(a) 00~ 9@
_ fe)g(@) —f(@)g(x)
9(x)g(@)
_ f()g(@) - 9(a)f(a) + g(a)f(a) - f(a)g(x)
9(x)9(@)
(f/9)x)-(f/9)@) _ fe)-f@ ¢, 9x)—9(@) 1
So. x—a {g(a) T a } 9()9)
for xel, xza
Now, take the limitas x —a to obtain
f 1 1
lim =
x>ag(x)g@  92(a)
f(x)
3. Find h'(a) where h(x) = x™ for x£0. h(x) = @ where f(x) = 1 & g(x) = x™ for all x.
Sol. (Imp.)

Let m be the positive integer

h(x) = x™

By the Quotient Rule
a)f'(@-fag'(a

h(a) = 9(@) (g)2(a§ )9'(@)

Since g(xX) = x" & f(x) = 1

X=a=g@=a"&g@=1

h'=g@ =ma™ &f(@ =0

g
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am-0-1-mam-1t
h'(a) = (@@am)2

_ —mam-1 —mam -a-1
a<m a2m

h'(a) = -ma™*

for a=0.

4.  State and prove Chain Rule
(OR)

If fis differentiable at a and g is differentiable at f(a), then the composite function gof is
differentiable at a and (gof)'(a) = g'(f(a)).f'(a).

Sol. (Imp.)
Let f(x) =y for xe[a, b]
and f(c) = d for ce[a, b]
Since | is the range of f, f(c) €|
defineh:l - R

VDl [C

Sothath(y) =4 Yy-d
g'd), y=d
Since g is deriable at f(c) = d,
- 9(y)—9(d)
[ — I
o) = Im="—}
= M h(y)

from the definition of h: | —» R.
g(y) — g(d) = h(y)(y - d) fory-d

(9of)(x) - (gof)(c)
X—C

for x+c,

_9(f(x) —9(fc)
- X—C

§
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9(y)-9(d)
X—C

h(y)(y —d)
X—C

— niipg 10

- . . f(x)—f(c)
f is differentiable at ¢ = lILTlx—_C

= f(c)
fis continuous at ¢, h is continuous at f(c)
=d = hof is continuous at ¢

= M (hof) (x) = h(f(c))

im @D ~©@ONE) _ jim [h(f(x))' f(x)—f(c)}
X—C X —C X—>C X—C
h(f(c).f(c)
h(d).f(c)
g'(d) f(c)
= g'(f(c)).f(c)
(gof)(x) - (gof)(c)
X—-C

lim
X—C

= g(f(c) f(c)

5.  Show that f(x) = sin x is derivable at every ae R.

Sol.
Given that f(x) = sin x
Iimf(x)—f(a) _ i SINX—sina
x»a X-—a x»a  X—a
X+a . X—-a
2cos sin——
_ lim 2
X—a X—a
=cos a.1
= Ccos a.

f(x) = sin xis derivable atacR
and f'(a) = cos a.

Since aeR is orbitrary

f(x) = cosx VxeR.

g
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6. Discuss the differentiability of f(x) = |x-a] in R.
Sol.

LetCeR andc<a

Thenc-a<0

There exists a deleted nbd of ‘c’
such that x ec delected nbd = x < a

im f0=f©) _ [x—a|-|c—a
X—C X—C X—C X—C

~(x—a)-{-(c-2a)}

X—C X—C
. C—=X
= lim——
X=>CX—C
= limr—1)=_
e =-1

f(x) is derivable at c(< a) €R.
and f(c) = -1
LetCeRandc>a,thenc-a=>0
There exists a delected nbd of ‘c’ such that xec deleted nbd = x > a.

lim f(X)_f(a) — lim (X _a)_(c _a)

Xx>¢ X —C X—¢ X—C
. X—=C .
= IIm™—= =1lmq1 =1
X=>CX—C X—>C

f(x).is derivable at c (> a)<R.
and f(c) = 1
LetCeRandc = a.
Thenf(c)=c-a=0
for xec - left hand = x < aso that Lf(c) = -1
for x e c- right hand = x > a so that Rf(c) = 1
f(x) is not deriable at c(= a)<R
Hence f(x) is derivable in R — {a}
7. Discuss the derivability of f(x) = |x] + |[x-a] in R.
Sol. (Imp.)
We have f(x) =1-2x, x<0
fx) =1 0<x<1
fx) =2x-1 x>1

g
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i 100=fQ _ . 1-2x-1
x>0 X-0 x—0— X

= lipe2)

=-2

= Lf(0)
im 0= _ i 1= imo
x>0t X-=0 Xx—0t X X—0+

=0 = Rf(0)
LF(0) % RF(0)

and hence f'(0) does not exist.

lim —f(x)‘;(l) — imizt

Xx—1- X -

= limg=0= Lf'(1)

x-1-x -1 X—1-

lim
Xx—>1r X —

fx)-f() im 2x—-1-1
1 o x-—1

= lim 2x=1)
x> X -1
= 2 =Rf(1)
Lf(1) = Rf(1)
and hence f'(1) does not exists.
fis derivable at every R — {0, 1}
Also, f(x)=-2 for x<0O0;
fx)=0 for O0<x<1
fx)=2 for x>1

1
8. Letf(x) =x sin; for x=0 and f(0) = 0O

(@) Observe that fis continuousatx =0

(b) Is f differentiable at x = 0 ? Justify your answer.

Sol.

1
(a) Given that f(x) = x sin; X0

. . 1
lim — limy qin=
x—0 f(X) x—0 X sin X

(Imp.)

g
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. 1
Since l'[g x =0and sin[;} is bounded in a deleted nbd of ‘0’

im (x) = (0)

= fis continuous at the origin

xsin(lJ—O
— . X
= lim——=

x—0 X

i 100-f(0)
x>0 X-0

(b)

.1
= lim sin—
x—0 X
does not exists

fis not derivable at x =0

9. State and prove Rolle's Theorem
(OR)

f:[a, b] - R is such (i) f is continuous on [a, b] (ii) f is derivable on (a, b) and
(iii) f(a) = f(b). The there exists ce (a,b) such that f(c) = 0.

Sol.
f is continuous on [a, b]
— fis bounded.on [a, b] and attains the inf and sup
= Thereexists a, B <[a, b] such that
f@) = m=nff
f(B) = M =supfin[a, b]
case (i)
Let m =M, Then f(xX) = m wvme]a, b]
f is constant function in [a, b]
and here f(x) = 0 for every xe[a, b]
Thus the theorem is true
case (ii)

Let m=M

Since f(a) = f(b) and m=M

we have either M =f(a) and hence M= f(b) or M=f(a)
and hence M = f(b)

let us suppose that M =f(a), M = f(b)

'l 116 ',
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10.

Sol.

f(B) = M=f(a) = B=a
fB) = M=f(b) = B=b
a<PB<borBe(a b)
f is derivable on (a, b) & Be(a, b)
— fis derivable at 8
Now, we prove that f(3) = 0
If possible, let f(B) < O

There exists 8, > 0 such that f(x) > f(B) =M v xe (-3, B) C[a, b]
This is a contradiction as M is supremum.
Similarly, we can prove that f(3) ~ 0
Hence f(B) = 0

There exists e (a, b) such that f(B) = 0

3.2 THeE MEeAN VALUE THEOREM I

State and prove Mean value theorem
(OR)
Let f be continuous function on [a, b] that is differentiable at (a, b). Then there exist [at

f(b) = f(a) _
-a

least one] ce[a, b] such that b =f'(c).

Define the function ¢ : [a, b] — R such that
d(x) = f(x) + kx where keR is given by
®(@) = ¢(b)
d@) = ¢(b) = f(a) + ka = f(b) + kb

f(a) — f(b) = kb — ka

- (f(b) - f(2)) = k(b - a)

f(b)—f(a

(- e

keR xis continuous on R= kx is continuous and derivable on R.

f is continuous on [a, b] and kx is continuous on R = ¢ is continuous on [a, b]
f is derivable on (a, b) and kx derivable on R
= ¢ is derivable on (a, b)

Further from the definition of ¢, ¢(a) = ¢(b)

The function ¢ satisfies all the conditions of Rolle’s theorem

There exists ce (a, b) such that ¢'(c) = 0

{ 117 ' T .
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Since  ¢(X) = f(xX) + kx v xe[a, b]
dx) =f(x) + k wvxe(a,b)
¢'(c) =f(c) + k for ce(a, b)
and ¢'(c) =0 =f(c)=-k
f(b) - f(a)
b-a

11. |Iff:[a, b] » Rissuch that

(i) fiscontinuous on [a, b]

(if) fis differentiable on (a, b)

(iii) f(x) = O for all xe(a, b) then f is constant function on [a, b]

f(c) =

Sol.
Letx, X, e[a, bl and x, < x,
Then [x, X,] < [a, b]
f satisfies all the condition lagrange’s theorem on [x,, X,]
There exists C e (x,, X,) such that
f(x,) - f(x) = (x,-x) f(c)
= (x,—x).0 [..f(c) =0 by (iii)]
=0
f(x,) - f(x) = 0 = f(x,) = f(x,) for x;; x, e (a, b)
= fis constant function on (a, b)
Since f is continuous on [a, b]
f.is constant function on [a, b]
Note :
Iff:[a,b] > R, g:[a,b] > R
Satisfy the condition of kagrange’s theorem and f'(x) = g'(x) v x € (a, b). Then f and g differ by a
real numbers (constant) i.e., f(x) = g(x) + c for some CeR.
Definition

Let f be a red valued function defined on interval I. We say that f is strictly increasing on | if
X, X, e land x, <x, = f(x) <f(x)

strictly decreasing on | if

X, X, € land x, <x, = f(x) > f(x)

Increasing on | if

X, X, e land x, <x, = f(x) < f(x,)

Decreasing on | if

X, X, e land x, < x, = f(x) > f(x,)

{ 118 |
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12. If fis differentiable function on an interval (a, b). Then
1. f(X) > 0 yx e(a, b), Then fis increasing on (a, b).
2. f(X) < 0 yxe(a, b), Then fis decreasing on (a, b).

Saol.
Letx, X, e (@, b)and x, < x,. Then [x, x,] < (a, b)
f is derivable on (a, b) = fis continuous on (a, b)
Since [x,, X,] < (a, b),
f satisfies the continuous of lagrange’s theorem on [x,, X.]
There exists Ce(x,, X,) < (a, b) such that
f(x,) - f(x) = (x, = x,) f(c)
Case (1) :
Letf(x) > 0 vx e(a, b)
Then f(c) > 0Oas Ce(a, b)
f(c) =0 = f(x,) =f(x) or f(c) =0 = f(x,) >f(x) (X, =>Xx)
forall x,, x, e (a, b), x,>x, = f(x)) > f(x)
= fisincreasing on (a, b)
Case (2) :
Let f(x) < 0 vxe(a, b)
Then f(c) < 0asce(a, b)
f(c)= 0= f(x,) =f(x) and
fe)<0 = 1f(x) <f(x) (. x,>x)
forall x,, x, e(@, b), x, > x, = f(x,) < f(x,)

= fis monotonically decreasing on (a, b)

13. Iffis derivable at ce[a, b], f(c) #0 and f* is continuous at f(c). Then f is derivable at
1
1\' _—
O () = Fg -
Sol.

Since f: [a, b] — [a, B] is a bijection

f1 = g is also bijection from [a, ] to [a, b]

Let g = f(x) for xe[a, b] and d = f(c) for ce[a, b]
Since ft =g, x=1*=g(y)

1 is continuous at f(c)
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— g iscontinuous atd = J'LT], a(y) = g(d)

= X—>casy >dandx zc ify = d

1
yod y—d T xocf(x)—f(c) im [0=f© ~ ')
Xx=>¢c X—C

g is derivable at d
i.e., f* derivable at f(c)

- 9(y)—g(d) 1
Also, (FY(fe) =g’ =T = 5 = g

14.

Sol.

(@)

(b)

Sol.

Determine by using mean value theorem.
(& x?on[-1, 2] (b) sinxon [0, «] (©) Ix] on [-1, 2]

(d) % on[-1, 1] (e) % on[1, 3] (f) sgn (x) on [-1, 2]

x?on [-1, 2]

yes, let f(x) = x* with dom(f) = [-1, 2]
Then  f(x) = 2x.

Further more, we have f(-1) = 1 & f(2) = 4

f(Q-f(-1.  4-1
and so, 2-(1) T 2417

1

Now we request have to let f(x) =2x =1

N =

which implies x =

sinx on [0, «]

yes, let f(x) = sinx with dom(f) = [0, =«]
Then f(x) = cosx
further more, we have f(0) = 0 = f(n)
f(m) - (0
and so, (@-10) =0
-0

Now, we let f(x) = cos x =0

N

(Imp.)
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(©)

Sol.

(d)

Sol.

|x] on [-1, 2]

No, Notice that

-1 if x<0O
fx) =410 if x=0
1 if x>0

f(2)-f(-1) 2-1
2-(-1) ~ 2+1
Which is different than f'(x) for every xe (-1, 2)
The hypothesis that fails is the following
f(x) is not differentiable on 0.
In effect let f(x) = |x], with dom(f) = [-1, 2]
Then

1
3

im 10=10) _ o X120 i =X
x>0 X—-0 x>0~ X -0 x—>0- X

im 10=10) _ o IXI=0 i X
x>0t X -0 x=>0+ X —0 x—0+ X

and there

im 1) =1(0) _ f0-f(0)
x>0~ X-=0 x—0

1n11
o1, 1]

-1
No, Infact, we have f'(x) = Y

however le_—(_DZEZI
©of-(1)

and there is no xe (-1, 1)

such that f(x) = 1

The hypothesis that fails is this f is

discontinuous at x = 0

. .1
Since lim = =_4
x—0~- X

d lim 1
n e
a x—0t X 0

g
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1
(e) > on [1, 3]

Sol.

)
Sol.

1
yes, let f(x) = N with dom(f) = [1, 3]

1
Then f(x) = - )

2

1
more over f(1) = 1 and f(3) = 3 and hence

1
f3)-f(1) 5—1
3-1 _ﬁ

-1
3
-1 -1 .
Now we put f(x) = =3 which results in x = /3
sgn (x) on [-1, 2]

—X
No, sinc sgn(x) = m for x = 0
and sgn(0) =0 we have f(x) =0

for x-= 0. while f'(x) is not defined for x = 0 on the other hand

sgn(2) =sgn(-2) _ 1-(-1) _

2.(-2) T 2-(2

1
2
The hypothesis that fails is this

sgn is discontinuous at x = 0

i li =_
Since M sgn(x) = -1 and

lim Sgn(x) =1

x—0+

15.
Sol.

Prove that |cosx — cosy| < |x-y]| forall x, ye R.

Let us begin with a trivial case
If x =y then

Jcosx-cosy| =0 < |0] = [x=-x]| = |x-Y]

122
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So, clearly the inequality holds for this case.

In what follows, we assume X Y.

let f(x) = cosx.

Since f is differentiable on R. if it is differentiable only interval (X, y) = R.
By mean value theorem

These is ve (x, y) such that

fe) - f(y)
f(v) = ﬁ
we know that f'(x) = —sin x .

So the equation above becomes,

. COSX —COSYy
—-sinv = —x—y (1)

Taking the absolute value on both side of equation (1)

|- sinv| = COSX —COSY
X=y
. | cosx —cosy|
Isinvl =", 1 ..(2)

Ix-yl
But |sin x| < | for all xeR,
This fast and equation (2) implies
|cosx—cosy|Sl
Ix-yl
or. equivalenty
Jcosx—-cosy| < |x-Y]|

which is a desired result

16.

Sol.

Show that ex < e* forall xeR

(Imp.)
Let f(x) = e*—ex then
fx)=e-e
fx=>1,fx)=>0
Since fis strictly increasing
Ifx <1, f(x)<O.

g
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as fis strictly decreasing.
and If x =0, f(x) =0
as f is strictly decreasing for x < 1, strictly increasing for x > 1 and f is continuous on R
f(1) is minimum for f,
Butf(l)=e-e=0
f(x) = ex—ex > 0. for all xeR.

which implies ex < ex.

17. Showthatsinx < xforallx > 0

Sol.
Let f(x) = X —sin x
Then  f(x) =1 - cos x
Notice that for all x > 0,1 -cosx > 0
fis increasing on [0, «)
Since f(0) = 0-sin (0) =0
If follows that f(x) = x-sinx > 0 yx > 0

Hence sin x< x for all x > 0.

18. Suppose that f is twice differentiable on an open interval | and that f'(x) = 0 vV xel.
Show that f has the form f(x) = ax + b be for suitable constants a and b.

Sol :
If f'(x) =0,
as we know that, let f be a differentiate function on (a, b) such that f(x) = 0 for all xe (a, b)
Then f is constant function on (a, b)
f(x) is constant function
f(x) = a, where a€<l.
Let g be a function on | such that
g(x) = ax,
Then g is differentiable and g'(x) = a = f(x)
By corollary
= fx)=g(x) +b=a(x)+b for

Since constant bell.

g
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19.

Sol :

Suppose f is three times differentiable on an open interval | and that f* = 0. on I. What
form does f have ? prove your claim

a
We claim that f(x) = EXZ +bx +c

for constants a, b, cel

In effect, if f(x) = 0

" is constant function defined by f'(x) = a.

for some acl.

Let g be a function on | such that

g(x) = ax

Then g is differentiable and g'(x) = a = f'(x)

= f(X) =g(x) + b = ax + b for some constant bel.

Finally let h be a function on I.

a
Definitely by h(x) = EXZ + bx
Then h is differentiable on I.
and h'(x) = ax + b = f(x)
a
= fx)=hXx)+c= Ex2+bx+c

for some constant cel.

Hence the claim is true.

20.

Sol.

Leta, beR: let f(x) = e* cos(bx) and g(x) = e* sin(bx)
(i) ~ Compute f'(x) and g'(x)
(ii) Use (i) to compute f"and "
(Imp.)
(i) We have f(x) = e* cos(bx)
g(x) = e* sin(bx)

f(x) = — be® sin(bx) + ae* cos(bx)
and g'(x) = be® cos(bx) + ae*sin(bx)
(i) We have

f'(x) = — b2%e* cos(bx) — abe® sin(bx) — abe® sin(bx) + a%e® cos(bx)
= (a® - b?) e* cos(bx) — 2abe* sin(bx)

f"(x)= - b(a? — b?) e sin(bx) + a(a® — b?) e* cos(bx) — 2ab? e cos bx — 2a*be® ain(bx)
= (a% - b?) e (a cos (bx) — b sin(bx) — 2abe® (b cos(bx) — a sin(bx))

125
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T
(i) Show that x < tan x for all X € (OE\J :

21.
Sol.
Let f(x) = tan x — x
Then f(x) = sec2x —1 > 0 for all xe [OgJ
- - - - TE
Therefore fis strictly increasing on (OEJ
Thatis,
s
f(x,) < f(x,) whenever 0 < x, <Xx, < 5
Now let x, — O
Since f(x,) is decreasing as x, — 0,
0 =f0) = M f(x,) < f(x,)
i s
That is f(x) > 0 for all xe (OEJ
X < tan x.
22. Show that Sinx is a strictly increasing function on (0
Sol. (Imp.)
If fo) =
=Ninx
Then f(x) = SinX — XCOS X
enfl) = ~nex
Since sin X > x cos X
So, f(x)=>0
. . . - TE
f is strictly increasing on (OEJ
T T
23.  Show that X < sin x for xe [OE} .
Sol.
. . T X . . L ..
Equality holds at the end point 0,5 and Sinx s increasing on [O’EJ [by (ii)]
{ 126 }
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T
Henceif O<x<y<

2
we have
X X .
.—<-Land.—< ||m.L
sinx  siny sinx y-2siny
T
_2_"™
12

24. Suppose that f is differentiable on R that i < f(x) < 2 for xe R, and that f(O) = O prove
that x < f(x) 2x for all x = 0.

Sol. (Imp.)
let g(x) = 2x — f(x)
Sothatg'(x) =2 -f(x) >0

g is increasing on R
Since g(0) = 0, g(x) >0, for x
Thus, f(x) < 2x for x > O.
Let h(x) = f(x) — x
Sothath'(x) =f(x)-1 > 0

h is increasing on R.
Since h(0).= 0, h(x) > 0forx > 0

Thus X < f(x) for all x > 0.

\
(@)

25. Let f be a differentiable function on an interval (a, b) then (i) f is strictly decreasing if
f'(x) < O for all xe (a, b).

(i) fisincreasing if f(x) = O for all xe (a, b)
(iii) fis decreasing if f(x) < O all x e(a, b)
Sol. (Imp.)

Given that f is differentiable function on an interval (a, b)
(i) Ifa<x <x,<Dbthen

oot _
ox, = (c) < 0 for some ce (x,, X,)
X, <X, = X,-x >0
= f(x)-f(x) <0

= f(x) > f(x,)

g
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(ii)

(i)

Ifa<x <x,<b

[f(x2) = (x,)]

Then,
Xy =Xy

= f(c) > 0 for some ce(a, b)

Therefore, x, <x, = x,-x,>0
= f(x,)-f(x) >0
= f(x,) < f(x,)

if a<x, <x,<b

[f(x2) — f(x,)]

Xy =Xy

Then, = f(c) < 0 for some ce(x)

Therefore, X, <X, = X,-X >0
= f(x)-f(x) <0

= f(x) > f(x,)

3.3 L - HospPiTAL RULE

If iMf(x) = 1and iMg(x) = m((0)

. f(x) |
i imi lim—- — —
Then by Quotient theorem of limits we have ™M 9(x) -

=0.

lim &) o
Then xoag(x) takes the form 0"

. However, if l'g; f(x) = 0 and l'i'l 9(x)

In this case lim(f/g) is said to be indeterminate. Depending on that particular functions f, g the limit

may be a real number or may not exist.

Also, if IMf(x) = o and M g(x) = o

. f(x)
lim—= ©
Then xa g(x) takes the form -

0 0
The forms 0 and . taken by the above limits are called indeterminate forms.

26.

State and prove L - Hospital Rule |

(OR)
Let f, g are derivable on (a, a + h) such that
M dXx) 0 vy xe (a,a+h),

(ii) lim f(x) =0 = lim g(x)

x—at x—at

Rahul Publications
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F0
=1, a real number the 1im

. f'(x)
(@ if I'm g =

x—at 9'(X)

by If lim f'(X)—+ th Iimm—+
() It gy = % @ then g =+
Sol. (Imp.)
Let a<a<fB<a+h
g(x) = 0, vx e(@ a+h) = g(a) = 9(B)
Using Cauchy mean value theorem,
for f, g in [a, B]
we have that there exists u €(a, B)

fB)-fl) _ f)
gB)-g(e)  9'(u)

Such that (1)

Case (i)

lim m

woa- g'(x) =l = given ¢=0

There exists § > 0 such that

o

<
g') €fora<x<a+d<a-+h

0
= |l —e< g'(u) <l|l+z¢

fora<u<a+3d

f(B) — f(cr)

= l-g< g(B)_g(a)<I+sfora<a<[3<a+8

keeping B fixed
proceeding to the limit as a — a* to the above inequality
we have,

f
I—s<%<l+sfora<ﬁ<a+8

. R - f(x)
Since & > 0 is arbitrary IM —* = |

—a* g(X)
Case (ii)
Iim@ =0w = forG=0
x—at g (X)

There exists 6 = 0 such that

g
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f'(x) .
_g(x)>G ora<x<a-+3d

f(B) - (o)

= 9@ —g() - Gfora<a<pf<a+ s

f(®)
keeping B fixed, proceeding to the limit as « — a +, we have EB) >Gfora<p<a+ys

Since G = 0 is arbitrary

)

gy =* e

The argument is similar for

(0

xea+ (X)

27. State and prove L - Hospital Rule Il :
(OR)

If f, g are derivable in a deleted nbd of ‘a’

X
M f(x) = +o, lim g(x) = o and lim e = 1. then lim ) —
x—at x—a’t x—=at g (X) x—at g(X)
Sol. (Imp)
e .
oar g'(x) | = foragivene >0

There exists

€
< —
3

f'ly)

8 = 0 such that a'y)

whenevera<y<a+3

)
Leta+£EJ =xosothata<x<x0<a+8

clearly f, g are continuous on [x, x_] and derivable on (x, x.)

Also, g't) # 0, v t € (X, X))
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By Cauchy mean value theorem COS X —
There exists y  (x, x) 29. Calculate )|(I_T)Tg)x—2 By L'Hospitals
)~ 109 Rule.
f'(y) Xp) —TX
h th oy =
Sueh that 4y = g(xe) - 909 Sol.
. . cosx—1
f(X,) Given that lli% 2
_f0 )7 1 , .
= 9 m fx) =cosx—-1 = f(x) =-sinx
9(x) g(x) = x? = f(x) = 2x
- f'(x) _—sinx
lim——~= = lim
1_9o) = x50g'(X) T x50 2x
) f) #
= g0 T gy [1- %) _ jim—Lsinx
f(X) x=0 2 X
im 9% i N\t SinX
%o/ lim —— =
But xILT+ gx) — 9(x,) erg g(x) 2 x>0 X
=0 _
=5 @)
(Xo)
li =
08 0 T _ 1
2
9(Xo)
1-220] . cosx-1 -1
f \ lim = —
m T i O _ 969 x50 X2 2
x—a* g(X) x—a+ ('(y) x—at 1- f(XO)
fx) . o . 1-cosx
30. Find the limit for lim ————
=|lx1=| x>0 X
: Sol.
. sinx ) )
28. Calculate lim —— by using L'Hospital
X=0 X , lim 10 _ . 1—cosx
Rule. Given that M 90) = b x2
Sol. (Imp.) Hence f(x) = 1 - cosx
L sin 90 =
Given % f0)=1-cos(l)=1-1=0
Note that f(x) = sinx and g(x) = x 90)=0*=0
lim SNX =8I0, SINX lim 1) _ (gformJ
x>0 X —C x—0 X x-0g(X) 0
klg—lj Rahul Publications
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f(x), g(x) are derivable in a nbd of ‘0’ and
f(x) = sinx

g'(x) = 2x
again f(0) =0, ¢g'(0)=0
- (%) 0
im——= icin —
x50 g'(X) isin 0 form.

f(x), g'(x) are differentiable in nbd of ‘0’ and
f'(x) = cosx, g"(x) =2

32.

Sol.

2X
Find the limit for |jm &~ 95X,
x—0 X
- f(x) . ex_cosx
. lim—= = lim——
Given that X—0 g(X) x—0 X

f(x) = > - cosx = f(x) = 2e* — (- sinx)

g(x) = x =>gx) =1

_jimE®) o cosx 1
T ox50g"(X) T xs0 2 T 2 f(0) = e*® — cos(0)
=1-1=0
. tanx-x
31. Find the limit for lim ——— g(0)=0
x—0 X
- fx) 0
Sol. Imp. lim——% — >
(Imp.) M aeo = o form)
- f(x) . tanx —x
Given that !} gx) — l'ﬂé X3 and fim f(x)  2e2+sinx
Here, f(x) = tanx — x *0g'(x) 1
g(x) = x3 f(0) =2e*® +sin (0) =2(1) +0=2
f(0) = tan(0)- 0 =0 g0 =1
g(0)=0 ot 2
fx) (0 Mee =y =2
lim——- — —form} 9 y
x—0 g(x) 0
3
f(x), 9(x) are differentiable in a nbd of ‘0’ | 33 Find the limit for |imX__
and ’ x—=0 er
f(x) =secx - 1 Sol.
g'(x) = 3x2 o
f(0) =sec’(0)-1=0 Given that lILTg) v
g'0) =0 ) = x° L f0) =0
jim 10y 80X g)=e* = g0)=e0=e"=1
x—0+ y(X) x—0+ 3x2
lim 1) _ 0
—FV=—=0
1. (tanx}2 >0g(x) 1
= — lim
3 x>0+ X 3
1 x—0 SIN X — X
= —(1)?
s® Sol.
1 . i X3
=3 Given that lim—
x>0 SiNX — X
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f(x) = x® = f(0)=0
g(x) =sinx—-x = g(0) =sin(0)-0=0
IimM = [gformJ
x=0g(X) 0
f(x), g(x) are derivable in a nbd of ‘0’
and f(x) = = 3x?
g'(x) = cosx — 1
again, f(0)=3(0)?*=0
g(0)=cos(0)-1=1-1=0
f(x), g'(x) are differentiable is a nbd of ‘0’
and f'(x) = 2x
g"(x) = —sin x
again f'(0) =2(0) =0
g"(0) =-sin(0) =0
'(x), g"(x) are differentiable in a nbd of
and f"(x) = 2
g"(X) = — cosx
again  f"(0) =2
g"(0) =-cos(0) =-1
') 2

lim =% N
o0g"(x) — oL T F

1 X
35. Find limit lim (1——) .
X—>00 X

Sol. (Imp.)

. 1Y
The limit )!ILTJO (l—;j is indeterminate of the form 1= .

1Y 1
. Sy (L
Since (1 XJ =e Iog[ XJ

evaluate
log (1 - lj
_\ X)
1

1
lim 1-=| = lim
waX'OQ( XJ— !

X—>0

g
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X— X

1 X
We have = lim (1—_J =gt

I 3.4 TAYLOR’S THEOREM I

Let f be a function defined on some open interval containing 0. If f possess derivatives of all orders

@, (0

at 0, then the series Z

)xk is called the taylor’s series for f about 0.

The remainder R (x) is defined by

n- 1f(k)(0)
RM)=fx)- 2
k=0
for any x,
= k(0
fx) = 2. ( )xk if and only if
ko k!

imR (x)=0

36. State and prove Taylor’s Theorem
Let[a, b] - R such that
(i) fand its sucessive derivative ', f',....f™ (ne N) are continuous on [a, b] and
(if) fDexist on (a, b). If x e [a, b]
Then for any xe [a, b]. There exits a point ‘c’ between x and x, such that

2 n+1
f(x) = f(x,) + ﬂ) —llﬂmﬁﬁﬁ%ﬁ4%Q+LJLﬂHMQ
Sol.

foragiven x, x e[a, b]
let I = [x,, x] or [, X ] according a x, < x or X, > X.
DefineF:1 — Ras

_ x-1_ . (x-tn x—t )"
F(t) = f(x) - f(t) - 1 f(b).... o f(t) —A(X_Xoj vitel (1)

{ 134 |
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where A is a real numbers choosen that F(x ) = F(x).

F(x,) = F(x) = f(x) - f(x,) - = )f() = )f<n>(x) A=0  ..(2)

from (1) & (2) f, f, f"...f™ are continuous on [a, b] = f, f, f"...f" are continuous on I c [a, b]
fn+D exist on [a, b] = "+ exists on |

further,

The polynomial in t,

n+1
X
namely, (X —t), (x = t)....(x = t)" and (x » J are continuous and derivable on |
]

F(t) is continuous and derivable on | further F(x ) = F(x).
By Rolle’s Theorem,
There exits ‘c’ between x and X, such that F' (c) = 0

Butfort e I, Fi(t) = - f(t) - {(~ 1) (t) + (x - 1) f“(t)}....{%ﬂmm + (X t) f(”+l>(t)}

~ AFED(+D)(x—t)

(X — Xo)m—l
ke AR

= F@t)= y fo+D (f) + (X Xyt

=0, = Py (g 4 AL

F(C) =0 = T T ) ( ) (X—Xo)n+1 =0

(X -X )n+1
= A= Tol)!f(nﬂ) ©
from (2)
109 = ) + = x) 70 oot C g 4 E2L g0

Notation :
(X—Xg)

We denote p, (x) = f(x,) + (x = x) f(x,) +...+Tf<”> (x,) and

(X —X )n+1
(n+1)!

Then f(x) = P (x) + R (x) = f(x) - P _(x) =R (x)
P (x) is called the n™ Taylor polynomial for f at x,.

R () = f+ (c), where ‘C’ is a point between x and x,

R (x) is called the Lagranges form of Remainder.

{ 135 }
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37. Let fbe defined on (a, b) where a < 0 < b, and suppose the nt" derivative f™ exists and
is continuous on (a, b) then for x e (a, b) we have

)nl

R (x )—.f( - Zqyr fr(ndt

Sol.

for n =1, equation (1) assets

R, (x) = f(x) - f(0) = [ f(t) dt
0

for n> 2
we repeatedly apply integration by parts

i.e., we use mathematical induction assume (1) holds for some n.

n>1

X —tn-t
we evaluate the integral in (1) using u(t) = fO(t), v'(t) = (n—1)!

(x-=tn
So that u'(t) = f** (t) and v(t) = - BT
we obtain

X

R (%) = u(x)v(x) — u(0) v(0) - gv(t) u'(t) dt

J'( —tn

Xn
= f0(x).0 + f(n)(o)F fo+) dt ..(2)

Hence from (2) we see that (1) holds for n + 1.

38. Iffis defined on (a, b) then for each x in (a, b) different from O there is some y between
0 and x such that

X —y)n-1
R (x)= Wﬁ“)(y)x . This form of R _is known as cauchy’s form of the remainder.

Sol.
Suppose x <0
Thecase x>0
The intermediate value theorem for integrals show that

0
x=ot e
i o1 " @dt=1[0- X]—l)f“y )
(az )
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for some y in (X, 0)

Since the integral in (2) equals — R (x) and formula (1) holds.

i(n
The Binomial theorem tells us that (a + b)" = 2 [FJ ak bnx

where

nf nt nn-1..n-k+1)

k)~ kli(n-k)! — Kl forl <k<n
Let a=xandb=1

Then

n n(n—l)...(n—k+l)Xk

L+x)=1+ 2
] k!

39.

Sol.

State and prove Binomial Series Theorem :

If aeR and |x] <1 Then

(1 =+ X)“ =1+ kf:l()t((x—l)..l.((!(x_k_i_l))(k

for k=1,2,3..

eta, = oc(a—l)..l.((lon—k+l) )

If o is @ non negative integer thena, = 0 for k > a.

and (1) holds for all x as noted in our discussion prior to this theorem.

Hence forth we assume « is not a

non negative integer so thata, = 0

for all k

Since,
. a . |la—k
lim | =L — lim =1
k—w a, k—so| Kk +1

The series in (1) has radius of convengence.

Likewise Xka x*-* = 0 convenges for |x] <1
Hence liMna xmt =0 for x| <1
X—00 n

let f(x) = (1 + x)*for [x] <1 for n=1, 2 ...

(Imp.)
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we have
fox) = a(x - 1) ...(}0 = n + 1) (1 + x)*™"
=nla (1+ x)*"
Thus 7 (0) = nl a_for all n > 1 and the series in(1) is the taylor series for f
(x-1)

R(x)= '([Tl)_' nla (1+ t)“"dt

= [na {X—_t} (L + - ot 3)
fra, 2=

for Ix] <1

It is easy to show that

x-1
X+t

<X if-t<x<t<O0or0<t<x<l1
To see this, note that t = xy for some y <0, 1], So

x=t _ [x=xy|

_ 1-y
|1+t| - |l+xy| = I

1+xy

< Ix]

Since l1+xy>1-y
Thus the integrade in (3) is bounded by nfa_|.[x]™*.(1 + t)**
Xl

IR,09l< nla | IxI"™* [ (1 + t)dt
L

Applying (2), we now see that X“L?O R ()

for |[X] <1 equation (1) holds good

40.
Sol.

Expassion of ex.

domain of e*is R.
letf(x) =e* vX e R
we know that f (x) = e*
fm@0)=e"=1 yvyneN
Further fV (x) = e* yvx e Randr ¢ N
f has continuous derivative of every order on [-h, h]

Lagrange’s form of remainder

Rahul Publications
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Xn
R () = Fﬁ”) ®x)where0<b6<1

Xn
= Se"0<0<1

n

X
lim— =
But ki 0 yxeR

. . xn .
im R (n) = lim— = lime®*
n—ow n n-o Nl n—o

= 0.e™

=0

f(x) = e* has maclarian series expassion ¥ Xe[- h, h]

2

X XN
for all xeR, ex = f(0) + x f(0) + Ef"(O) + ....+mf<”) 0) + ...

X2 XN
=14+X+ — + .. +—
1+ X o1 e
o0 Xn
eX: —_

g
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‘ Choose the Correct Answer I

1.  f(x)is strictly increasing at x = a then [a]
(@ f(@ =0 (b) f(@ <O
(c) f(@ =0 (d) f(@ =0
2. If h"ﬂlw = h'Lwa then at x = a, f(x) [d]
(a) is continuous (b) exists
(c) isaconstant (d) isdifferentiable
d | 2x | _
3. getan| 2| = [b]
2
(8 2 (b) T
! d
(c) e (d) "none

4. f(x) = tanx is differentiable at every point in[ b ]

@ R (b) R- {(Zn +1)g/nez}
@ R={ @ R
nez
5. The derivative of x| x| for x € Riis [c]
(@ 2x (b) - 2x
© 2]x] (d) none
6. If f and g are functions that are differentiable at point ‘a’ (f + g)' (a) = [b]
(@) f(a) g(@) (b) f(a) + g'(a)
f'(@)
(€ f@@-g@) @ 5@
7.  Thefunctione*on R is [b]
(a) increasing (b) strictly increasing
(c) strictly decreasing (d) continuous

140
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8. The function cosx on [0, x] is [b]
(&) increasing (b) continuous
(c) differentiable (d) strictly decreasing

9. If f(x) = x3. Then f'(x) = [a]
(@) 3x? (b) 3x
(c) 3 (d) none

10. limxx = [c]
(@) k (b) a
(€ a (d) Kk
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‘ Fill in the blanks I

. 1
1. limxtan==___ .
X—>0 X
2. If f is continuous on [a, b] and differentiable on (a, b) and f(x) =0 fora<x <b thenfis
on [a, b].

3. If imf(x).g(x) exits then both M f(x) and IMg) = _____.

and decreasing on

4. If f(x) = x2 — 4x — 2 then f(x) is increasing on

5. In Taylor’s Theorem, Lagrange’s form of remainder is

6. The xILrQ+ x* is of the indeterminate form

7.  The derivative of f(x) = x +2atx =ais

8.  The domain of ‘f” is set of points at which f is

at ‘a’.

9. If f is differentiable at a point as then f is

10. If fis differentiable function on an interval (a, b)then strictly-increasing if

ANSWERS
1. 1
2. _constant
3. 'neednot exist
4. (2, ), (~o, 2)
g 1
' 3
6. et
7. 1
8. differentiable
9. continuous
10. f(x)>0
Rahul Publications @
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Integration : The Riemann Integral - Properties of Riemann Integral-Fundamental
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4.1 INTEGRATION I

4.1.1 Partition of a Closed Interval

Let | = [ab] be a finite closed interval. If
a=X,<X, <X, <...<X =D, then the finite set
p = {X, X,, X,, ..., X } is called a partition of [ab].

The n + 1 points X, X, X,, ..... , X are called
partition points of p.

The n sub-intervals [x,, x,1, [X;, X,], ..... [x_,
X] ... [x._,, x| are called the segments of the

partition p and the union of these n subintervals is
equal to the closed interval [a, b].

The r" subinterval [x_,, x] is denoted by |
and its length = x - X,

is denoted by &

A closed interval [ab] can be partitioned in
infinitely many ways. The set of all partitions of [ab]
is denoted by ¢[ab].

4.1.2 Norm of a Partition

The maximum of the lengths of the sub
intervals of a partition p is called the norm of the

partition p and is denoted by | p|.

Thus normp = | p| = max. {5, 5, ....., 8,
..... 5}

where &, 5, ..... RECT. d_are the length of
the n-subintervals

If P, P, € ¢[ab] and P,c P, then |P,|

< [P

Note :

28 =8+ 8, + .+ = (X - X))+

1 0

(X, —x)+ ... + (X -Xx )=X-X =b-a.

4.1.4 Upper and Lower Riemann Sums

Let f:[ab] — R be a bounded function and
P=Ha =X, X, X5 ... X = b} be a partition of
[ab].

Since f is bounded on [ab], f is also bounded
on each of the subintervals.

Let M and m be the supremum and infimum
of in [ab] and M, m_be the supremum and infimum
of finthe rsubinterval. | =[x _,x] V r=1,2,3,
..... ,N. The sums M3 + M5, + ... + M3 + .....

n

+ M3 + = Z M3, is called the upper Riemann

r=1
Sum and is denoted by U(P, f) and read as upper
Riemann sum for the f w.r.t partition P,

Similarly, the sums m 8, + m.5, + ..... +mgo,

n

=2 m3g, is called the lower

n-n o1
Riemann sum and is denoted by L(P, f) and read as
lower Riemann sum for the function function and
w.r.t partition P.

4.1.3 Refinement of a Partition

If P,, P, be two partitions of [ab] and P, < P,
then the partition P, is called a refinement of partition

4.1.5 Oscillatory Sum

Let f:[ab] —» R be a bounded function and
P={a=x,X, X, ... , X, = b} be a partition of

P, on [ab] (or) P, is finer than P, [ab].

P, is a point of P, and P, has some more points. ofon| =[x_,x]V r=1,23,...,nthenUp,
{143}
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N-Lp.0= 2 M3~ 2, M8, = 2, (M-m)3,

is called the oscillatory sum of f w.r.t partition P and
is denoted by W(p, f).

W(p, ) = U(p. ) - L(p. 9

=2 (M-m)s.
r=1
Note :
1. If f:[a, b] > R be a bounded function and

p € ¢ [ab] then

() U, f) > Lp A
(i) U(p, -f) = -L(p, f)
(i) L(p, -f) = -U(p, f)

4.1.6 Lower and Upper Riemann Integrals

Let f:[ab] —» R be a bounded function and

= f f(x) dx = sup {L(p, f) | p € [ab]} <
M(b - a)
Since U(p, f) > m(b - a)

— | f(x) dx = infimum {U(, f) | p <

[ab]} = m(b - a)

I 4.2 RIEMANN INTEGRAL

Let f:[ab] —» R be a bounded function and
p={a=x, X, ..., X, = b} be a partition of [ab].

b
If I f(x) dx = then f is said to be Riemann integral
on [ab].

b

e, [ dx=| f)dx= | fx) dx

p={a =X, X, X, .. , X, = b} be a partition of a a a
[ab]. 1. If f:[ab] - R is a bounded function
Then the lower Riemann integral of f on [ab] l b =
is defined as sup {L(p, f) | p € ¢ [ab]} and is then If(x) dx < I f(x) dx.
b b a
a
denoted by [ f(x) dx i.e., | f(x).dx = sup {L(p, )
3 a Sol. (Dec.-17)
| p € ¢ [ab]} Let P, P, € ¢ [ab].
Similarly, the‘upper Riemann integral of f on o
[ab] is defined as infimum {U(p, f) | p < ¢ [ab]} = L(p,, ) < U(p, f) whichis true for each
i p, < ¢ [ab]
and is denoted by J: f(x) dx. The set of lower sums has an upper
¢ bound U(p,, f) we know that
8 b
i.e., J: f(x) dx = infimum {U(p, ) | p € ¢ J‘ () dx = sup {L(p, ) | p, € ¢ [ab]}
[ab]}.
Note - But supremum < Any upper bound
Let f: [ab] —» R be a bounded function 0
then for every p e ¢ [ab] we have m(b -a) < L(p, ! f(x) dx < U(p, f)
f) < U(p, ) < M(b-a) where mand M are infimum
and supremum of f on [ab]. b
Since L(p, f) < M(b - a) = U, 7 > if(x) dx v p, € ¢ [ab]
Rahul Publications ﬂ)
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b
I f(x) dx is a lower bounded of the set of all upper sums.

a

[ f(x) dx = infimum {U(p,, f) | p, < ¢ [ab]}

But any lower bound < Infimum, we get

J 100 dx < | 100 ax

Note :

b

b
By definition of lower and upper Riemann integral v p € ¢ [ab], L(p, f) < I f(x) dx and I f(x) dx

< U(p, f)
L. = [ 100 dx < [ 1) dx <U(p, ) v p < ¢ [ab]

b

Also m(b - a) < [ () dx < | f.dx < M(b - a).

a

2. A constant Function is Riemann Integrable on [ab].
Sol.

Let f(x) =K v x € [ab]

Where K is a constant function.

Clearly f is bounded on [a, b] and infimum f = K and Sup. f = K
Let P ={a=x, X, X,, ..., Xx_= b} be a partition on [ab].

Let m, M be the infimum and sup. of fon I = [x_,, x]

-1' “r.
() =K v x e [ab], m =M =K

Now consider

L. )= 2 M5 =K 2, 5 =K(b-a)
r=1 r=1

and Up,H= 2 M3 =K §=Kb-a)
r=1 r=1

= L(p, f) = U(p, f) = K (b — a) which is a constant.

'l 145 ', —
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Consider

I f(x) dx = Sup. {L(p, f) | p € ¢ [ab]}

= K(b - a)
Similarly
b

[ ) dx = infimum {U(p, HIpe ¢ [ab]}

a

= K(b - a)

b

i) dx = | f(x) dx = K(b - a)

a

D) Sy T

f is Riemann integrable on [a b].

b
3. Iff e R [ab] and m, M are the infimum and Supremum of f on [a b], then m(b - a) < I f(x)
a

dx < M(b - a).
Sol.

Let f € R[ab]

b b b
= If(x) dx =I f(x) dx =I fx)dx ... (1)
Let-p ={a =X, X, X,, ... , X, = b} be a partition on [ab] and m,, M, be the infimum and

supremum of f on [x |, X].
Then we have
m<m-<M<MVr=123..n
= mg <mgs <M3 <M VvVr=123 ..n
Adding these n inequalities
= rzn;mérgrznl:mrﬁrgrzn;MrSrg rznllMéSr

= mb-a) < L{p, ) <Up, ) <Mb-a)

J:f(X) dx = sup {L(p, f) | p € ¢ [ab]}
and ] (4 dx > L(p, f)
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Similarly

b

[ ) dx = infimum {U(p, HIpe ¢ [ab]}

a

and f f(x) dx < U(p, f)

b

mb-a) < L(p, ) < [fx)dx < | ) dx < U(p, ) < M(b - a)

a a

b

— mb-a) < | fx)dx < M(b-a)

a

- fe R[ab], from (1)

Sol.

If ‘f is a bounded function on [a, b]. Then prove that L(f) < U(f)

P Q. [a b]
Since L(f, p)<U(f, Q)
Keeping P fixed,
The set {L(f, p)/ p is partition of [a, b] /'has on upper bound U(f, Q)
also sup{L(f, p)/ p is a partion of [a, b]} = L(f)
Since sup < any upper bound.

L(f) < U(f, Q)
= Now, the set {U(f, Q)/ Q is partition of [a, b]} = U(f)

lower bound < Inf

L(f, p) < U(f)

we know that L(f, p) < U(f, Q)
L(f) < U()

(Dec.-17)

Sol.

Prove that every monotonic function on [a, b] is integrable.

Given that ‘f’ is monotonic on [a, b]
Suppose that f is monotic increasing on [a, b]
= as<x<b = f@)<f(x)<f(b)
= f(x) is bounded function

= fis bounded on [a, b]

(May /June-18)

247)
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Suppose f(a) < f(b)

e>0, let P={a=t <t <..<t <t <..<t =Db] bea partition of [a, b], where mesh p.

mesh P < m ..(1)

To prove that f is integrable

we consider

ulf, p) - L, p) = kz::lM(f, k., tD) @ -t )- kz::lm(f, [t tD) (¢, ~t_)
Z M(F, [t t]) - m (f, [t t]) ¢ -t_)

= kzn:[f(tk) - ftt_ )1t —t_,) fisincreasing f
=1

N S S
< kz::lf(tk) - f(t,_)- o —f@ mesh(p) < 1@
< f(b) @ Zf(t) f(t, )

@Mﬂf

<
f(b) -

=" = Uf,p)-LE p)<ce

fis integrable

6. Prove that every continuous function defined on [a, b] is integrable.

Sol. (May /June-18)
Since f(x) is continuous function on [a, b]

= f(x) is uniformly continuous.

€
By def: ve > 03 §>031f(x) - f(y)l< ;= whenever |x-y| <& (1)

Let P={a=t <t <.<t_ <t ..<t =Db}bea partition of [a, b] with mesh ||p]| <&
e, max (t -t ) <3
Since ‘f’ is continuous on [t _, t]

‘f” is continuous on [t_, t]

B
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= fattainsitssup & infin[t_, t]
IM.m e[t t]
Sup of f M, = f(M,) = M(f, [t_,, t]) ..(2)
infof fm = f(m)=m (f,[t_, t])
Now, to prove that ‘f’ is integrable
consider U(f, p) - L (f, p)

n

Z[M(f [t td) - m(f It tDI (G - t.)

= ZZ:[f(M) f(m)l @ - t,)

< 1) - )1 -1,

<ki_l -t

<b a Slx 7T <bg/aM

Uf, p) - L p) < e
f is integrable on [a, b]

(ii)

By the definition Let f: [a, b] - R is a bounded function.

Up, f) < If(x)dx+ e and

a

b
L(p, f) > If(x)dx— e for each pe¢ [a, b] with ||P]] < 4.

a

Given f(x) = x for rational x = and f(x) = O for international x interval [0, b].

b

jf(x) dx = Infimum {U(P, F)| pe¢ [0, b]}

0

For each e> 0,3 a partition P; ={0 = Xy, X3, X, .... X, = b} >

U f) < !f(x)dx+§ (1)
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The partition P, has (P — 1) points excluding the end points 0 and b choose

8>032k(P—1)8=§ e

Let P be any partition with | |[P]] < &. Thus P may contain some an none of the partition points.
X, r=1,2...P-1belonging to P,
If P, = P U P, then P, is finer than P and contains.

At the most (P — 1) additional points

UR f) - 2k(P 1) 8 < U(P,, T) <

b
U, f) < If(x)dx +§ [-- from (1)]
0
b (S
= Up, <2k (P-1)5+ [f(dx+—
0
S b (=
= Up <5 + .([f(x)dx+5 [-- form (2)]
b
= U(p, f) < [f()dx+e for any partition P with | |P|] <&
0

f(x)dx = Sup{L(P, f)/P€¢[0, b]}

=
Ot—

For each e> 0,3a partition

P, =A{0, Xy, X4, ... X, = b} 3

L(P,, ) > !f(X)dX—% - (3

The partition P, has (P — 1) points excluding the end points O and b choose 6 > 0 > 2k(P - K)
d=¢€el2 .. (4)

Let P be any partition with ||P|]|] < &. Thus P may contain some or none of the partition x,,
r=1,2,3,..P-1belonging to P,.

If P, = P U P, thus P, is finer than P and contains at most P — 1 additional points.
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L(p, f) + 2k(P - 1) 6 > L(P,, f) > L(P,, f) > J.f(x) dx —% [+ from(3)]

€

= L(p, f)> If(X)dX—E—E [ from(4)]

b
= L(p, > J.f(x) dx— e for any partition P with | |P]] < 8.
0

b) If f integrable on [0, b]?
b
= [f(x)dx
0
= [Xf = 0-b=-b
Integrable.
8. Given that f is a bounded function on [a, b] their exist sequence (U,)) and (L) upper and
lower darboux.
Sol.

Suppose first that f is Darboux integral on [a, b] in the sense that

For each > 0 and let 3 > 0 be chosen so that

<e v (1)

For every ricmann sum

f = I )

associated with a partition P having (P) < 6.

Clearly we have L(f, P) < [ <U(f, P), so (1) follows from the inequalities.

U, p) < L(, P) + e < L() e = Jtlf+e

and

L(f, P) > U(f, P) - e >U() — e = [T-<
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Hence f is integrable

3(U,) and (L,) upper and lower darboux sum

Lt(U,-L,) =0
b
j f(x)dx = Lt (U,-L)=0

n—o n—o

b
j fo)dx = Ltu, = LtL,

9. Afunctionfon [a, b]is called a step function 3 apartition P ={a=uy<u; <...u, = b}
of [a, b] such that f is constant on each interval (u; _;, u;).

Say f(x) = ¢; for xin (u;_4, u;)
(@) PartitionP ={a=uy<u; <...u,=Db}

Sol.

Show that step function is f is integrable

b b
j f(x)dx = j f(x)dx is increasing

ff(x)dx <
fis integrable
(b) IP(X)dX
Sol.
Teoodx = [POdx = pat = 2
— 47 + 6B
of o] o

Constant function1 +1+ 1+ 1+ 2 =6B

A & B two

O ey

'| 152 ',
Rahul Publications



UNIT - IV

REAL ANALYSIS

10.

Sol.

I 4.3 PROPERTIES OF RIEMANN INTEGRAL

b b
If f e R [ab] then—-f e R [ab] and | (=f) (x) dx = -] f(x) dx.
a a
Let f € R[ab]
b b b
= [ dx=[fx) dx=[fx) dx ... (1)
Let p ={a =X, X, X,, ....., X = b} be a partition of [ab].
Let m, M be the infimum and sup. of f on | =[x_, x]
f is bounded on [ab], —f is also bounded on [ab]
Infimum (-f) = —sup f =-M_V | wherer =1ton.
and sup (-f) = —Infimum f =-m_V | where r = 1to n.
Up,f)= 2 (-m)8 =-2 ms = -L(p,fand
r=1 2=1
L(p, f) = ; (M) & = —; M, & = - U(p, f)
b
[ (). dx
=inf. {U(p, -f) | p € ¢ [ab]}
=inf. {-L(p,f) | p € ¢ [ab]}
= -sup {L(p, f) | p € ¢ [ab]}
b
= [ (x) dx
b
=-[fx)dx ..(2) from (1)
Similarly

[ ) ) dx

]

= —sup {L(p, ) | p € ¢ [ab]}
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=sup {-U(p, -f) | p € ¢ [ab]}
= -inf {U(p, -f) | p € ¢ [ab]}

= —Jtl f(x) dx

=_[fx)dx .. (3) from (1)

. from (2) and (3) we get

b b

() () dx = | (f) (x) dx =—[ f(x) dx.

a

D ey T

Hence (-f) € R [ab] and I (=) (x) dx

= —Jtl f(x) dx

11. Iffe R[ablandK € R, thenKf e [ab]

b b
and | (Kf (0 dx=K | f(x) dx.

Sol.
Let f € R[ab]
= [0 dx =10 dx = 160 dx) .. (1)
Since K e R = K> 0and K< 0.

Case (i)

Let K> 0

Let p={a =X, X, X, ..cr, X = Db} bea
partition of [a b]

Let inf. f=m andsup.off=M Vv | where
r=1ton.

- fis bounded on [a b]
= Kfis bounded on [a b]
Inf. (Kf) =Kinf.f=Km vr=1ton.
and sup. (Kf) =Ksup.f=KM Vvr=1ton.

and

L(p, K f) = Z (Km) s = K L(p, f)

(K f) (x) dx

D Sy T

= inf. {U(p, Kf) | p € ¢ [ab]}
= Kinf. {U(p, f) | p € ¢ [ab]}

b

=K [ (9 dx

a

b

=K [ fx)dx ..(2) from (1)

a

Similarly,

[ (k) (x) dx

= sup. {L(p, Kf) | p € ¢ [ab]}
= Ksup. {L(p, f) | p € ¢ [ab]}

b

=K [ (9 dx

a

b

=K [ fx)dx ..(3) from (1)

a

From (2) and (3) we get.

Jkh 9 ax= [ (<H () dx =K f(x) dx
— KfeR [abland [ (Kf) (x)dx

= KJlZ f(x) dx.

Consider Case (ii)
. Let K< 0, putK=-1 where >0
Up, K f) = Z;, (KM) 8 = K U(p, f) L Ki—1o)
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feR[ab] = -feRJ[ab]

By Case (i)
>0 = feR[ab] = I(-fle R[ab]
= KfeR[ab]

Also | (K ) (x) dx= [ 1(f) (x) dx = I | f(x) dx

a a

= |(—1)T f(x) dx=—|]1 f(x) dx =KJQ f(x) dx

12. If f e R[ab] then |fle R [ab]
Sol.

Let f € R[ab]

— foragiven € >0, 3 a partition

p={a=X, X, X, woee , X = b}

30< U, H-Lp, < e (D

f is bounded on [a, b]
= |f(x)] <KV K e R*and x € [a, b]
= |f] is bounded on [a, b]
Letm, M be the inf. and sup. of fon | and m;, M/ be the inf. and sup. of |f] on I
Now for each a, B € |,
If(c) = f(B)] = [1f(c) - B < 1f(a) - f(B)I
M -m <M-mVr=1ton.
Now

U(lel, f) - L(Ipl. 1)

= i (M; = m;) 3,
< i M -m) 3§
< Up, f) - L(p, f)

< e from (1)

U(lpl, f) - L(Ipl, f) < €
— |f] € R[ab].

g
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b b b
13. If f,ge R[ab], thenf+g e R[abland [ (f+g) (x) dx = [ f(x) dx + [ g(x) dx.

Sol.
Let f, g are bounded on [a b]

= f+ gis bounded on [a b]

Let e =0
feR[ab] = 38, >05U(p,f-Lp,H< % with | p| <8, . (1)
and g e R[ab] = 3§,>05 U(p, f)-L({p, f) < % with | p, || <3, .. (2)

Let p=p, U P,
Then [p| < [ or |p|
= [p| <3and|p| <3,
(1) and (2) conditions holds for the partition p we know,that
W(p, f+9) =U(p, f+9)-L(p f+0)
< {U(p. f) - L(p, N}
+{U(p, 9) = L(p, 9)}

€
+ =
2

N M

< €
Foreach € >0, 3 § =max{5,8,} > 0 < W(p, f + g) < e with | p| <.

f+g e R[ab]
b
feR[ab] = [f(x)dx
= 5h 2 )8,
Similarly

geRabl = [g(x) dx

B
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= H'Hﬁino Z; 9(&) 3,
Hpr Z (f+9) (&) 3,
= 5 Z {f(g) + 9(&)} 5,

= T 2 ) 8+ 5T Z 9(E) 3,

Jll (f +g) (x) dx =Jll f(x) dx +Jll g(x) dx

14. If fe R[ab]then € R [ab]

Sol.

Let f € R[ab]

= |fl e R[ab]
f is bounded on [a b]

= |f] is bounded on [a b]

= |f]? = f?is bounded on [a b]
P=1fl2=f>0

Let sup. fin[ab]=M =0

Let €e=>0 and f € R[ab]

= Japedlab] >
;(Mr—mr) 5 = U, f) - L(p, f)<% e

Letinf. () = m? and sup. () = M? in| V r=1ton.

U(p, ) - L(p, )

=2 (M2 - m?)3,
r=1

=3 M- m) M- m) s,

IN

i M, —m) (M-M) 3
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<2M D, (M -m)s
r=1

<2Mi
2M

U(p, ) - L(p, ) < €
For each € =0 we can find pe ¢ [a b]>
U(p, ) - L(p, ) < €

= f2isintegrable on [a, b].

15. Iffe RJ[ab] and a<c<bthenfe R[ac],fe R]c, b]and Jt)f(x)dx= Jc‘f(x)dx+ Jt:f(x)

N a a c
Sol.

Let f € R[ab]

= fis bounded on [a, b]

= fis bounded on [a, c] and [c, b]

ra<<c<bhb.
f € R[ab], for a given € >0, 3 a partition p of [a b] such that U(p, f) - L(p, f) < €
Let p'=p u {C}thenL(p,f) < L(p,f) < U@, < Up,f
= U, f)-LpE,f) < Up f)-Lp, H<e (1)

Let p,, p, denote the set of points of p' on [a, c], [c, b] respectively, then p,, p, are partitions on [a,
c] and [c, b] respectively and p' = p, U p,.

U(p', f) = U(p,, f) + U(p,, f) and . (2
L(p', ) = L(p,, f) + L(p,, ) - (3)
Subtracting (3) from (2), we get
U, f) - L’ f) = [U(p,, ) - L (p,, O] + [(U(p, f) - L (p,, NI
= U@, H-LE,f)<e from(1)

For partitions p,, p, of [a, c] and [c, b] respectively U(p,, f) - L(p,, f) < € and U(p,, f) - L(p,,
l< e

Hence f € R[a, c] and f € R [c, b]
Now consider
U(p', f) = U(p,, f) + U(p,, f)
= inf. U(p', f) = inf. U(p,, f) + inf. U(p,, f)

158
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= [f)dx = [fx) dx + [ fx) dx

a c

D ey T

c

- Jqf(x) dx = [ f(x) dx + Jqf(x) dx

a c

feRJ[ab],feR[a clandf e R [c, b]

b
16. If fe R[ab] and f(x) 2 0 V x < [a, b] then J f(x) dx = 0.
a

Sol.
Let m, M be the inf. and sup. of f in [a b].
fx) >0V xela,bl]=>=m=>0
For pe ¢[ab], L(p,f) > m(b-a)
= L{p f)=0

= 1(x) dx = sup {L(p, Hlp<o [ab]} >0

]

b

- Tf(x)dx= [fx)dx > 0

a

b
17. If, f,g € R[abland f(X) > g(x) v x < [a, b] then | f(x) dx > lfg(x) dx

Sol. (May/June-18, June/July-19)

f,ge R[a,b] = f-g € R[ab]
VvV x € [a, b], f(x) > g(x)

= fX)-g(x) >0V x € [ab]
= (f-ggx) >0

Consider
J -9 ) dx= [ [0 -gex)] dx > 0

= Jqf(x)dx—]zg(x)dxz 0

= Jqf(x) dx > Tg(x) dx

g
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18. If f € R[ab]then

b
[ 09 dx

b
< [ 1569] dx

Sol.
Let f € R[ab]
= |fl e R[ab]
= -Ifl e R[ab]
= —Ifl ¥) <f(x) < |f] (X) V x e [ab]

= [-1f 0 dx < Tf(x) dx < T 1] () dx

a

b

< [ 11091 dx

a

b

j f(x) dx

a

b
19. If f e R[ab] and m, M are the inf. and sup. of f in [a b] then m(b -a) < If(x) dx < M
a

(b - a) and tff(x) dx = p(b - a) where p < [m, M].

Sol. (June/July-19), (Imp.)
Let g:[a,b] - Randh:[ab] » R bedefined by g(x) =mandh(x) =M V x € [a, b]
m, M are inf. and sup. of f in [a, b]
= m<fX) <MV xelab]

gx) < f(x) < h(x) ¥ x < [a b]

= Tg(x) dx < Jqf(x) dx < Jll h(x) dx

= qudxg Tf(x)dxs JQde

b

— mb-a) < [f(x)dx < M(b - a)

a

b

Now 3 a real number p € [m, M] > If(x) dx = wb - a)

a

'| 160 ',
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b
20. If fe R[ab]land |f(X)] < K V x e [a, b] where K € R*, then I f(x) dx | < K (b - a).
a
Sol.
Given [f(x)] < KV x € [a, b]
= -K<fx) <KV xelab]
If m, M are the inf. and sup. of fin [a, bl then-K < m < f(x) < M < K V x € [a, b]
b
Bu we have m(b—a) < [ f(x) dx < M(b - a)
b
-K{b-a) <m(p-a) < If(x)dx < M(b-a) < K(b-a)
b
— —Kb-a) < [f(x)dx < K(b-a)
b
- jf(x)dx < K (b-a)
b b
21. |Iffand g are integrable on [a, b] and if f(x) < g(x) for x ¢ [a, b], then If S Ig .
a a
Sol.

Given that f(x) < g(x) VX e[a,b]
fx) -9(x) < 0
g(x) - f(x) = 0
9-0>0
Given that f is integrable on [a, b] & g is integrable on [a, b]

b b

e, UM = LM = [f)dx & u@g) = L(g) = [90dx
b

ifg-H>0 = J@-HE)dx>0

b b
[ge) dx = [fx) dx > 0

'l 161 ', —
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b b
o) dx > [(x) dx

b b
ie., Jf < Jg
a a
b| b
22. Iffis integrable on [a, b]; then |f] is integrable and If < |f|
a a
Sol. (May/June-18)

Given that f is integrable in [a, b]
Since |f] < f < |f]
b

b b
- < fg£|f|

a a

—

b

[f

a

b

< Il

a

Now, to to Show that |f] is integrable on [a, b]
i.e., to show that U(|f], p).— L(lfl, p) < ¢
Since [(f)] - 1T < Af(x) - f(V)I
taking supremum of on both sides
MAfC], Tty tD - m IfL Tt t])
< M(F It tD-m (It t])
multiply (t, -t )
ML T t]) = ML B tD] € -t < MG, T tD) - m(E T tD] ¢ - t)
Now, taking 3 on both side.

S ML [ t]) (-t )= Sl [t G-t ) < 2 [ t] € ~t )
k=1 k=1 k=1

_m I ) -t )
k=1

U(lfl, p) - L (Ifl. p) < U (f, p) - L(f, p)
U(lfl, p) - L(fl -p) < ¢
|f] is integrable on [a, b]

§
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4.3.1 Darboux’s Theorem

23. If f:[ab] - Risabounded function, then for each € > 0, 3 6 > 0 such that

b

() U@ f)< | fx) dx + e and

a

i) L(p, f)> [f(x) dx - € for each p € ¢ [a b] with |p| <.

Sol.

Let fis bounded on [a, b], then 3 a real number K= 0 > |f(x)] < K V x € [ab].

(i) By definition we have

D ey T|

f(x) dx = infimum {U(p, f) | p < ¢ [ab]}

b
Foreach € > 0, 3 a partition p, = {a = X, X;; X,,+:we, X, = b} 2 U(p, f) < If(x) dx + %
=« (1)
The partition p, has (p — 1) points excluding the end points a and b. Choose

8>032K(p—1)8=§ 2

Let p be any partition with | p| < &. Thus p may contain some or none of the partition points
X,r=1,2,...p-1belonging to p,.
If p,=p U p,then p, is finer than p and contains.

At the most (p — 1) additional points

b

Up, ) - 2K (p-1) 8 < U(p,. f) < Up, f) < | f(x) dx + % from (1)

a

= Up fl<2K(p-1)5+ f f(x) dx +§

b
~ U, < % + | o) dx + % from (2)

b

— U(p 7)< | f(x)dx + e for any partition p with |p| < &.

a
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(i) By definition we have
b
| 1) dx = sup {L(p, ) I p < ¢ [ab]}
o S
For each €> 0, 3 a partition p, = {a = X, X, X,, ..., X, = b} 3> L(p,, f) > I f(x) dx — 5
. (3)
The partition p, has (p — 1) points excluding the end points a and b choose 6 > 0 > 2K (p - 1)
5= 4
=5 .. (4)
Let p be any partition with | p| < 8. Thus p may contain some or none of the partition points
X, r=1,2,3, ... p — 1 belonging to p,.
If p,=p U p,thus p, is finer than p and contains atmost p — 1 additional points.
o S
L(p, )+ 2K (p-1)8 > L(p,, f) >L(p, N > | f(x) dx - S from (3)
B S
= L(p,H> ] f)dx- 5 -2K(p-13
> [ fogdx=s - £ 4
= L(p, )>J§' () dx = ~ 5 from (4)
b
= L(p,f)> [ f(x)dx- e for any partition p with |p| <.
2n 3
. X 16
24. Prove that j x2sin®(e*)dx| < =~
27
Sol. (May/June-18, Nov/Dec.-18), (Imp.)

27
< [ Ix*sin®(e")] dx
27

[y 3
X
<| =cos®(e*
3

2n 20
— | sin®(e*).2x dx

2r -2=n

[(+2n)° . (2n)*
3

IA

:| COSB(e2r: _ e—2r:]
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2n

{Zxécoss(ex) —2sin® ex}

27

8n® 8n® .
< g + g (i) - [(2m)2+(2m)2 cosB(2n — 2) — 2 siné(e2v27)
3 3

< 8n N 8n” 0

3 3

3

< 16xn

3

25. Letfbe abounded function on [a, b], so that there exists B > 0 such that |f(x)] <B for all

x € [a, b]

(a) ForanysetS <[a, b]and x,, y, €S,
Sol.

We have f(x,)? — f(yy)? <

< 1f(xg) + flyo)l - (%) — f(yo)l

< 2B]f(xo) = f(yo)l

< 2B[M(f,S) - m(f, S)]

It follows that M(f2, S) — m(f2, S) <

< 2B[M(f, S) - m(f, S)

U(f2, P) - L[f?, P] < 2B [U(f, P) - L(f, P)]
(b) Supposethatfis integrable and considere > 0 3 partitions P, and P,, of [a, b] satisfying.
Sol.

L(E, Py > L = 5 and UG, P) < U+
ForP =P, UP,
U(f, P) - L(f, P)<U(f, P,) - L(f, P,)
<u@ + g - {L(f)—g}

<U(f) - L(f) +<
u(f) = L(H)
fis integrable

fis integrable

8
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f2=1.f

1 3+h
t2
. () Lt [ et
[ f2dx = (f.f)dx °
a a Sol.
B . 3+h
Ifdx<w [~ using part (a)] Consider j et dt
a 3
B 2 3+h
If dx <o Letl= I e 9t
a 3
f2 also integrable on [a, b]
3+h ) 3+h )
1% . p= [edt[e”dy
26. (a) Lt=[e"dt 3 3
x—0 ¥ 5
3+h 3+h s
Sol. — .[ .[e’t Y dydt
3 3
(1)
| = ,[e dt 3thath
0 = j Ie" .r.de.dr
« 3 3
2 — [
12 = !e dt | “
— I e’ rdr
X X 3
2= [[efe dydt—(t*+y*)=r
00 2 3h
X X ] 2
= ”e" r.do.dr 3
00
Substitute in given equation
X [e " rdr=x —° 1 e o
0 2 | Lt = H| - +
h>0 Jf 2 2
—e ¥
12 = x|~ | substitute given { o3+ e—(s)z}
Lt |- +
h>>0 2 2
1 -
Lt —.X
X—0 2 e 3 e G
2 /2
_ 1
= _,
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27. Letf(x) & g(x) is continuous real valued function on [a, b].

Sol.

Foreach e>03mez' > |[f{X)-gX)] < ¢

f(x) is continous and g(x) is continous

f(x) g(x) also continuous function

.tff(x)g(x)dx =0

For every continuous function g on [a, b]

.tff(x)g(x)dx =0

.tff(x)dx =0

f(x) = 0 for all x in [a, b]

4.4 FuNDAMENTAL THEOREM OF CALCULUS I

4.4.1 Necessary and Sufficient Condition for Integrability

28. A bounded function fis integrable on [ab] if and only if for each € > 0, 3 a partition p of
[ab]. Such thatU(p, f) - L(p, f) < €.

Sol. (Nov/Dec.-18, June/July-19, Dec.-17)

Let f be Riemann integrable on [ab].

b b b
= If(x) dx =I f(x) dx =I f(x) dx . (@)
Let e>0
B S
By Darboux’s theorem, 3 8 >0 > U(p, f) < If(x) dx + 5 .. (2)
b
S
and L(p, f) > [ f(x) dx - > - 3

For each p € ¢ [a b] with | p| <.

From (1) and (2) and from (1) and (3) we get.

'l 167 ', —
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b b

U H < [0 dx + > and L(p, ) > [ fx) dx - >
— U(p, )< | fx) dx + % and [ f(x) dx < L(p, ) + %

= Up <L+ -+
2 2

= Up N-Lp H<ce
Also we have U(p,f)-L({p,f) >0
= 0<Upf)-Lp f<e
Conversely :
Let for each €e> 0, 3 a partitionp of [a, b] 3 0 < U(p, f)—L(p,f) < €

By definition we have

D ey T|

f(x) dx = infimum {U(p, f) | p < ¢ [ab]}

IN

= [ dx < up, . (@

Similarly

[0 dx = Sup. {L(p, O | p € ¢ [ab]}

]

\%

= Jodx = L,

= -[19dx < -L(p, 0 .. (5)

Adding (4) and (5)

b

f(x) dx- | f(x) dx< U(p, f) - L(p, fl<e

a

=

D ey T|

Also we have

b

i) dx — [ f(x) dx > 0

a

D ey T|

B
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=

=

b

i) dx — [ f(x)

a

0<

D ey T|

e >0 is arbitrary

b

D ey T|

a

b

fx) dx = [ f(x) dx

a

D ey T|

dx < e

fx) dx — | f(x) dx = 0

f is Riemann integrable on [a b].

29.

Sol.

2
Show that f(x) = 3x + 1 is integrable on [1, 2] and I Bx+1)dx =
1

Let f(x) = 3x + 1 is bounded on [0, 2]
Consider the partition

p= {1, 1+1 142
n n

ol

ro 2}
n

r-1 r
Let r" subinterval | = [1+T’ 1"‘;} and length of each subinterval §, =

f(x) = 3x + 1is increasing on [1, 2].

M =sup. of finl =3

r 3r . .
(1+—j +1= 4+ F and mr=|nf. of fin

n
_ 3(r-1
| = 3(1+r_1j h1=q4 D
r n n
n n 3r l
U, H=2M,8,= 2 (4+—j "
r=1 rr r=1 n n
n 4 3 n
= — =+ —2 r
r=1 n n r=1
_4 . 3 n(n+1)
- n(n) n2 . 2
3 1
= 2 [ 1+—
4+ on? " ( nj
3 1
= = 1+=
43 ( nj
|' 169 |'
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Similarly 30. Prove that f(x) = x? is integrable on [O,
n a a3
L, = D m & aland [ x?dx= .
r=1 0 3
(L A-D) 1 Sol.
- & n n Let f(x) = x2 is bounded on [0, a]
Consider the partition
D ICITHES S
= n — n2 r=1 p= {0, 3’ E’ ..... , E, _____ }
n n n
_4. .3 (=Dn  sbi _|(-Da ra
= M+ 5 > Let r subinterval |, = |~
a
3n? 1 Length of each subinterval = § = —
=4 + 5 1-; r n
2n f(x)=x2is an increasing-function in [0,a]
3 1 . ra)" _ ra?
=4+§(1_Hj Let M =sup.offin | = h) T
and m = infimum of f in
2
[ 100 dx = Lim L(p, f) (-Da¥ (17 a?
1 l Ir= T = T
= Lim {4+§ (1—1ﬂ Now
n—cow 2 n
n n r.2 a2 a
4y 31 Up = 2 M3 =2 — . —
=4+ - = — r=1 rr r=1 n n
2 2
Similarly n 932 g3 Q@
= T =3 r2
5 r=1 n n r=1
J 60 dx = Him ugp, ) @ n(n+D@n+d)
~6n° 6
3 1
= Lim [4+— [1——]} 3
n—w |: 2 n — a e (14_1) (24_1)
6 n n
_a.3_u
= —_— = — 3
6 n n
2 2 11 Similarl
= [fxax = [ fx)dx = 5 mifarly
1 1
_ n _ n (r_l)ZaZ 3
— f(x) = 3x + 1 is integrable on [1, 2] Lp. )= ; ms, = ; 2 on
and f (3x +1) d = a’ <
X X= —
) 2 =3 D (r-1)
r=1
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a® (h-1)n@2n-1)
= F x f
3
-2 n3 (1+lj (2+1j
6n° n n
3
= a (1+lj (2+1j
6 n n
Consider

O |ty

f(x) dx= Lim (p, f)

n—o

3
— Lim & (1+lj (2+1j
oo g n n

Similarly

n

J.f(x) dx = I;LT U(p, fy = Lim f (1+1j [2+—

n—o 6

3

i) dx =" [ f(x) dx = %

O |ty
O t—y

3

t a
= f(x) = x? is integrable on [0, 4] and I X2 dx = 3
0

1 2a® at
n

31.

Sol.

Prove that f(x) = sinx is integrable on [0, %J and J sinx dx = 1.
0

Let f(x) = sinx is bounded on [0, %}

Consider the partition

(r=DIT rI1
2n ' 2n

Let r? subinterval | = [

%

'l 171 ||
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IT
and Length of each subinterval § = on

f(x) = sinx is increasing in [O, %}
Let M, = Ffinl = sin b
e ,=sup.of finl =sin on

(r—=1I1

and m = Infimum of fin | = sin
r r 2n

Now consider

IT IT

I . 201
§ § — x — = — |Ssin—+sin—+
Up, f) = M3, = sin on b on = on [ on on

We know that sina + sin(a + d) + ..... +sin(@a+(n-1)d)=

. (II n-1T11I . nIl
sin| — + —— sin——
2n 2 ‘2n 4n

D= 2n sin (Hj
4n

(n+1)H .
sin m—
2n 4n 4

i

IT IT IT IT
SII’]*COS*-I— cos—sin—
4n 4 4n

2J_

R

1 I n( I j
= — |cos—+1| = — |cot—+1
2\2n - \f( j 4n 4n

I1 I1
Similarly we can prove that L(p, f) = an (COtH_lj

§
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NE

: - o M)
f69 dx = LI Lp. ) = Ly W—%wg an

Oty

=1-0=1 ( Lim —:1)

60 0
Similarly

% -
[ 60 dx = Lim ygp, f) =1

0

b
i) dx = [ f)dx =1

0

o\‘—.N\:1

b
f(x) = sinx is integrable on [0, %J and I sinx dx-=1.
0

4.4.2 Another Definition of Riemann Integral

Let f:[ab] — R be a functionand p = {a = x_, X, X,, ..... , X, = b} be a partition of [ab]. Let
S (R S &) < [ablbesuchx <& <x wr=1,23 ... n. The function f is said to be Riemann

integrable over [ab]; if to each € =0, 3 & > 0 and a number | such that

Zn: f(ér)Sr—I‘ <eforped

r=1

b
X ]. The number | is the Riemann integral of f over [a, b] = I f(x) dx

a

[ab] with | p| <5 and ¢ e [x

-1’

— Lim {2 f(&r)sr]

4.4.3 Primitive (Definition)

If fe R[ablJandif 3 ¢:[ab] - R 3 ¢(X) =f(x) V x € [a, b] then ¢ is called a primitive or
antiderivature of f.

I 4.5 FuNDAMENTAL THEOREM OF INTEGRAL CALCULUS

b
32. If f e R[ab]and ¢is a primitive of ¢ then If(x) dx = ¢(b) - ¢(a).

Sol.

¢ is a primitive of f on [a, b]

'l 173 ', —
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= ¢X)=1x) vV x € [a, b] . (1)
Consider the partition p = {a = X, X, X, ..., X = b} of [a b]

feRIa, b]

= X,<&<x Vvr=12..n

= HM 2 ) 8 = [ ) dx e

¢ is derivable on [a b]

= ¢ s continuous and derivable on [x _,Xx] Vv r=1ton

1

By lagrange’s mean value theorem we have

o(x,) — d(x,_,)

¥E) = — VEe (X, x),r=1ton.

r r-1

= o) -dx_)=x-x_)¢E) Vr=1lton
Adding these n equalities we get

Z [0(x) = d(x,_)] =§ 0(E) 3,
= §[¢(xr> - ¢(xr_1>]=§f(;) §, from (1)
= Z f(£) 8, = d(%,) — o(X;) + d(x,)

X)) F s+ BX) = BX )

= Z f(g) 8, = o(x) — &(x,)

ST 2 ) 8, = 5T b)) - ox,)]

b

= [f) dx = ¢(b) - ¢(a)  from (2)

a

33.

Sol.

T 1
Show that f xtdx= -
o 5

Let f(x) = x*is continuous on R

= Continuous on [0, 1]

Rahul Publications

g



UNIT - IV

REAL ANALYSIS

h b
= I x* dx exists. 35. Prove that I e* dx = eb — e,
0 a
NG Sol.
Let ¢(x) = — defined on [0, 1] . .
5 Let f(x) = e*is continuous on R
Clearly ¢ is derivable on [0, 1] and = f(x) is continuous on [a, b]
(X) = x* = f(x) vV 0,1 ; _
¥0) = x &) v x< [0 1] = I e* dx exists
¢ is primitive of f on [0, 1] a
By fundamental theorem Let ¢(x) = e defined on [a, b] and
P(x) = e = f(x)
z 1 1 = ¢ is primitive of f on [a, b]
[ xtdx=9¢1)-¢0)= = -0==
. 5 5 )
| e ax = 4(0) = o(@)
1
= J. xtdx = 1 :
0 5 b
= j eXdx =eP-e?
b a
34. Show that I cosx dx = sinb - sina. »
a H4
36. Evaluate I (sec*x — tan*x) dx
Sol. !
Let f(x) = cosx is continuous on R. Sol.
= f(x) is continuous on [a, b] Let f(x) = sec*x — tan*x
) = (secx — tanx) (sec?x + tanx)
= f cosx dx exists. = (1) (sec®x + tan®x)
: f(x) = 2secx -1
Let ¢(x) = sinx defined on [a, b] tan?x = sec2x — 1 and sec2x — tan? = 1
= ¢ is derivable on [a, b] and
which is continuous on [0, %J and
¢'(X) = cosx = f(x)
= ¢ is primitive of f on [a, b] Va
’ Hence J' f(x) dx exists.
By fundamental theorem 0
8 Let ¢(x) = 2 tanx — x defines on | 0, I
[ cosx dx = ¢(b) - ¢(a) ) [ A}
and ¢'(x) = 2sec?x -1 = f(x)
b
= I cosx dx = sinb — sina S I
. — ¢ is primitive of f on [0, A}
l' 175 }
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By fundamental theorem

Vi

J' (sec*x — tan‘x) dx

(W4) - 90

¢
- (2-1%) -
b7

J' (sec’x — tanx) dx = 2 — %

0

37. f(x)=2n;2n—l+1<xS21n vn=0,1,2,.... ,f(0)=0
Sol.
Let f e RO, 1]
We have
1 FAl FAN
[ foax= [ feodx+ [0 dx
(35) (3 (%)
+ o+ | () dx
(%)
- - )
= T dx + _[ — dx + ... + I 1 dx
. 2 o 2
() () %
1 { 1 1 } 1
= 2n—l 2”*1 2” + 2n—l
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which is a geometric series

1
with CR 2 <1

1

[ 109 dx = Lim [ f(x) dx
° (35)

b
1
38. Show that Ix” dx = —— (b"!-a")wheren € N.
" n+1

Sol.

Let f(x) = x"is continuous on R

= f(x) is continuous on [a, b]

b
and I X" dx exists.
a

n+1

Let ¢(x) =

defined on [a, b]
n+1

= ¢(x) is derivable on [a, b] and
dxX) =x"=1f(x) V x € [a, b]

= ¢ is a primitive of f on [a, b]
By fundamental theorem

b

| % dx = o(b) - o(a) =

" n+l n+1

n+1 n+1
a

D ——y T

1
n —_ — n+1 _ Aan+l
X" dx 1 (b a™)y v neN

'l 177 ', —
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39. Intermediate value theorem for integrability
f(x) = 1 f(x)d
() = = fe)dx
Sol.
Let M = Sup {f(x) / x €[a, b]}
m = inf {f(x) / xe[a, b]}
= m< M
Case (i)
Letm-M
f(x) = k,
i.e., a constant function
1 1 ® 1
= — - — = kX
RHS= — [ F()x — {kdx J)/a[ ]
= (b
b=a
=k
= f(x)
Case (ii)

Statement : If ‘f’ is continuous on [a, b]. Then prove that for atleast x in [a, b],

m<M
f is continuous on [a, b]
it attains its sup & inf on [a, b]
= 3.% Yyela bl 3f(x) =M, fiy)=m
= m<fx)<M

Integrating throughout with respect to ‘x’ between the limits a & b

b b b
[mdx < [f(x)dx < [ Mmdx
a a a

b
m(b - a) < |fdx < M(b — a)

a

b
m< —— dex <M

_a a

1 b
fy) < T {fdx < f(x,)

(1)

(May/June-18)

1 ®
p—a 11 = XXy Yol
1 ®
T {f = f(x)
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40.

Sol.

if ‘g’ is integrable on [a, b] & g is a continuous function on [a, b] which is differentiable

on [a, b].

b
Then prove that [ 9'= g(b) - g(a)
a

Since @' is integrable on [a, b]
by cauchy criteria

U@, p)-L(@gp) < e
where P={a=t <t ..<t_
since g is continuous & differentiable
= (giscontinuousin [t _,t]

g is differentiable in [t,_, t ]

By Legrange’s mean value theorem

a(t,) -9, _,) —

xe(t_,t), 3 (t,
-1

g(t) - 9(t) = g(x) t - t_,)

2 lot) - gt )= 2gx) @ -t.)
k=1 k=1

g(b)-g(a) = 2gx) (- t,.)

L(f.p) < L(f) < UM < U (f p)

= L(g,p) < L(@) < U(@) < U@, p)

b
g'is integrable = by differentiable, L(g") = U(g) = Jg'
a

g’ X,

, <t..<t =Db}ispartition of [a, b]

b
(2) = L@ @) < [g° < U@ p

m(g, [t_. tD < g'(x) < M(@ [t,_,. t])

multiply (t -t _) & taking 2.
k=1

(Imp.)

2 m(g, It tD) ¢ —-t.,) < 20x)E-t) < 2M@, [t t] ¢ -t.)
k=1 k=1 k=1

1179 ]
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L@ p) < 200) - 9(t.) < U@, p)

L(g', p) < 9(b) -9(a) < U(g', p) -.(4)
Using (3) & (4)

b
“g¥%mm—g@»}<s
e = 0 is arbitrary

b
{ g' = g(b) - 9(a)

41.

Sol.

If U and V are continuous function on [a, b] that are differentiable on (a, b) and if U' and

V' are integrable on [a, b] then Jt')U(x) V'(X) dx + Jt')U'(x) V(x)dx = U(b) V(b) = U(a)V(a)

Suppose that g(x) = u(x) v(x)
u & v are differentiable
Since every differentiable function is continuous
U, V are continuous on [a, b]
Since every continuous function is integrable
i.e.,, U& V are Integrable on [a, b]
Since  g(x) = U(x) V(X)
g'(x) = UX) V'(x) + V(x)U'(x)
U,V ela, b]
By Fundamental Theorem of Integral Calculus

b
[g(x)dx = g(b) - ()
b b
pmm=£wmvm+umwmm

b b
[00]. = U Vi) dx + [Ugv(x)ax

b b

[UoVe)]E = TUVidx + [U'(x) V(x)dx

b b
Ub)V(b) - U@V(@) = JUVx)dx + [U)V(x)dx

(Imp.)

180
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42. Fundamental Theorem of Integrate Calculus - 11
Let f be an integrable function on [a, b] for x in [a, b]
X
Let f(x) = If(t)dt, then F is continuous in [a, b]
a

if f is continuous at x in (a, b) then F is differentiable at x, and f(x,) = f(x,)

Sol.

Select B > 0 such that |f(x)] £ B VX €]a, b]

Ifx, y  [a, b] where [x—y| < % then

y y
IF(y) - FO)I = |£ f(Hdt| < J I(t) dit

[F@) -FX)I < ¢
= F is uniformly continuous on [a, b]
= F.is‘continuous on [a, b]

Suppose f is continuous at x, in (a, b)

F)—F 1
RIZRG) _ [ ft)dt where x«x,

Then =
X —Xg X=X %

1 X
) = % x. IO f(x) dt

43. Let f be a function defined on [a, b] if a < ¢ < b and f in integrable on [a, b] and [c, b]
b [ b
then f in integrable on [a, b] and [f(x)dx = [f(x)dx + [ (x)dx
a a c

Sol. (June/July-19)

f € R[a, b] = fis bounded on [a, b]
= fis bounded on [a, b] & [c, b]

'l 181 ||
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Since feR[a, b]
for a given ¢ > 0, 3 a partition O of [a, b] 3 U(f, p) - L(f, p) < ¢
[p C p' C p'in refinement of p
Then  L(f, p) < L(f, p) < U(f, p) < U(f, p)
= U, p) - L, p) < ¢ ..(1)
Let P, P, denote the set of points of p' on [a, b] & [c, b] respectively.
Then P, P, are partition on [a, b] & [c, b] respectively.
P'=P,UP,
uft, P)=U(f,p) + Ut p,)
L(f, p) = L(f,p,) + L(f. p,)
u(f, p) - L(f, p) = U(f, p) + U(f, p) - (L. p) + L(f.p) < ¢
= [U(f, p) - L{E p)] + [U(E p,) - L(f, p)]l < & by (1)

Since each of [U(f, p,) - L(f, p,)] and [U(f, p,) — L (f, p,)] are non negative, each of these is less then
€.

i.e., U, p) - L(, p) < & and U(f, p,) - L(f, p,) < ¢
for partition on [a, b] & [c, b] respectively.

Hence feR][a, c] and feR[c, b]

Now U, p) = U (f,p) + U, p,)

inf U(f, p') = inf U(f, p,) + inf U (f,; p,)

c b
f)dx = [fx)dx + | fx)dx

L =Tl

b © b
[fdx = [f)dx + [ f(x)dx

Since feR [a, b], fe[a, c] and feR[c, b]

44  Letu be adifferentiable function on an open interval J such that U is continuous and let
I be can open interval such that u(x) el v xeJ. Iffis continuous on I, then f_ u is continuous

b u(b)
onJand [fouu()dx= | f(u)dx.vabed
a

u(a)

Sol.

Let F(x) = | f(u)du

Since f is continuous on |
= Fis differentiable in J with F'(u) = f(u) vueT

'| 182 ',
Rahul Publications




UNIT - IV REAL ANALYSIS

Let g(x) = Fou(x) = g'(x) = [F(ux)]
= Ful))u'(x)
g'(x) = fuG)u'(x)
U' is continuous on | and fou is continuous on J

By fundamental theorem on integral continous

b
{ g()dx = g(b) - g(a)

b b b
[fuuedx = | (fouydx = | g'(x)dx

= g(b) - 9(a)
= F(U(b)) - F(U(a))

() U(a)
= | fudu- | fudd

C

U(b) c
= | fu)du + { f(udy
U(a

C

U(b)
T fou(u'(x)dx = U{ f(ydu

45.

Sol.

If f is bounded function on [a, b] and if ‘p’ and ‘Q’ are two partitions of [a, b] such that P
< Q then prove that L(f, p) < L(f, Q) < U(f, Q) = U(f, p)

(Nov/Dec.-18)
We have prove that

L(f, p) < L((f, Q) < U(f, Q) < U(f, p)
To prove that

ie., LEp) < L, Q) ..(1)
L(f, Q) < U(f, Q) ..(2)
L(f, Q) < U(f, p) -.(3)

here (2) i.e., L(f, Q) < U(f, Q) is obivous

Now we prove (1) L(f, p) < L(f, Q)

let p={a=t <t <..<t_ <t <..<t = Db} be partition on [a, b]

let Q be the partition which continuous one more point (say U) more then of P because PS Q

e, Q={Q=t <t <..<t <U<t <..<t = Db} be the partition of [a, b]

'l 183 ', —
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By differentiable,
L@, p) = 2 m(f, [t t]) (- t.,)

=m(f, [It, t]) (—15) + m(f, [L~t]) (t, - t) +..+m(f, [t t D) ¢ —t)
m(ft_, t]) ¢ -t ) +..+m( [t t]) ¢ -t )

L(f, (Q) = mlf, [t, - t]) (t, - t,) + m[f, [tertz]) (¢, - t) +..4mlf, [t t D) (bt

+mlf, [t_, t) U-t_) + ..+ m{, [trt]) @ -t )

L(f, Q) - L(f, P) =m(f, [t_, UD (U-t_)+ m[f [U t]) (t -t)-m[Lt_,t]) ¢ -t.) ..(1)

Since ueft_,tl
[t VTt t]

m(, [t UD) >m(, [f_. t])

Similarly [U, t]c [t _,, t]

= m(f, [U,t]) > m(f, [t
Consider

m(f, [t_, t]) ¢t -t_)

=m(f, [t_,tD)t-U+U=t_ )

=m(f, [t_, t]) ¢ -U) +m{ [t .t U-t)

t]) by note

k=17 ke

< m(f, [U, t]) ¢ -U) + m(f, [t_, U]) (U-t_) by (2)
we have
m(f, [t_.,t]) -t ) < m@ [U t]) ¢ -U)+md[t_, U)U-t ) ..(3)

(1) = m(, [t_,tD)U-t_)+md [U K] -U)-m{[t_,t]) -t ) >0 by(3)
L(f, Q) -L(f p) > 0
= L p) < L Q)
Similarly we can prove that U(f, Q) < U(f, p)
L(f, p) < L(f, Q) < L(f, Q) < U(f, Q)
L, Q-L(fp) <O
L(f, Q) < L(f, Q)

L(f, Q) - L, p) > m(f, [hertel) (t, — 1) - m(f, [tertid) (-t )
L(f, Q) - L(f, P) > 0

L(f, Q) > L(f, p)

L(f, p) < L(f, Q)

g
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‘ Choose the Correct Answer I

1. Up, f) = [a]
(@ i M 5, (b) i m 3,
(©) i p o, (d) None
2. L(p, f) = [b]
(@ i M 5, (b) i m 3,
© 23 @ el
3. [fwax= [d]
(@) Inf.{L(p. ) | p € ¢ [ab]} (b) Inf {U(p, f) |'p-€ ¢ [ab]}
(¢) Sup.{U(p.f) | p € ¢ [ab]} (d) Sup. {L(p, f) | p € ¢ [ab]}
4. | ) dx = [b]
(@) Inf. {L(p, ) | p € ¢ [ab]} (b) Inf {U(p,f) | p € ¢ [ab]}
(c) Sup.{U(p, f) | p s ¢ [ab]} (d) Sup.{L(p. ) | p € ¢ [ab]}
5. Necessary.and sufficient condition for integrability is [a]
@ U H-Lp H<e (b) L. H-Up, ) <e
(€) U, f) <L(p f) (d) U, f)-L(p f)
6. If feR[ab]then [ f(x)dx = [a]
(@ fm Z} f&) 3, (b) I ) 3,
(©) Z f(g) o, (d) None
0, xis rational b
7. 100 =1_1 xisirrational then [ 100 ax = [a]
(@ O (b) -a
(c) a-b (d) -1
(7 ac )
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1 1 1
8. f(x) is defined in (0, 1) as f(x) = n for n > x> ol and f(0) = 0. Then f(x) in (0, 1) is [ b ]
(@) R - Integrable (b) Not R - Integrable
(c) Totally discontinuous (d) None of these
9. If f:[ab] —» Risbounded functionand P, P, € [ab] > P, = P, then [c]
(@) U(p, ) < Up, f) (b) L(p,, f) = L(p, f)
(c) W(p,f) > WP, f) (d) None
10. If fis bounded on [a b] and p be a partition of [a b] then L(p, f) is [c]
@ <m(M-a) (b) 2 m((b-a)
(c) <M((b-a) (d =M(b-2a)
11. A bounded function f is R — integrable on [a b] iff [a]
b b b
@ [ ) dx= [ f(x) dx () [ f(x) dx
(c) fis continuous (d) None
R n? I1
Lim = = — —
12, 1f Lim = Z;, 7 = ¢ thenk [c]
(@ 0 (b) 5
(c) 4 (d) 1
b
13. A bounded function f is R - integrable on [a b] and M, m are bounds of f(x) on [a b] then I f(x) dx
lies between [d]
@ m@-aandM (b + a) (b) m(b+a)and M (b -a)
(c) m(M+a)andM (b + a) (d m(p-a)and M (b -a)
14. For f(x) = x?, the lower R - integral on [2, 4] is [b]
1 ) 5
(@ 3 (b) 3
2 d) 0
© 5 (d)
15. The set of ordered pairs p = {(I,, t) (I, t) ..... (1,t) ... (I, t)} is called [b]
(2) Sub intervals of partition (b) Tagged partition of |
(c) Partition of [a b] (d) None
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‘ Fill in the blanks I

1. If f be a bounded function defined on [a, b] and p,, p, be two partitions of [a. b] such that p, is
refinement of p, then

2. For Riemann integrability condition of continuity is

b

j f(x) dx

a

3. If fis Riemann integrable on [a, b] then <

4. If the function f(x) is bounded and integrable on [a, b] such that f(x) > 0 Vv x € [a, b] where b ¢

b
athen | f(x) dx is

5. Iff(x) = x Vv x € [0, 3] and p = {0, 1, 2, 3} be a partition of p then L(p, f) and U(p, f) are

and
] (r-a ra|_
6. Length of the " subinterval | = n . lis
7. If p={X,, X,, X,, ....., X _}is a partition of [a b] then the n + 1 points are called as
8 [pl =—
9. X8 =_
r=1
10. For every partition p of [ab] L(p, f) <
11. U(p, f) and L(p, f) are known as and
12. If P, P, e flab]andp, <p,, then the partition p,is calledasa _______of p,.
13. If fis bounded on [a b] then M and m are known as and of fin [a b].

14. If f:[ab] —» Ris abounded function and p € ¢ [a b] then U(p, f) — L(p, f) is called the
of f w.r.t partition p.

b

b b
15. 1f [ 60 dx = [ f(x) dx = [ f(x) dx then f is known as

a

'l 187 ', —
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ANSWERS
1. L(p,f) = Up,
2. Sufficient
b
3. | 1f] dx
>0
3and 6
6. 2
n
7. Partition points
8. max{s,39, ..., 8}
b-a
10. U(p, f)
11. Upper and Lower Riemann sums
12. Refinement
13. Supremum and Infimum
14. Oscillatory Sum
15. Riemann Integrable
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FACULTY OF SCIENCE

B.Sc. Ill - Semester, (CBCS) Examination
DECEMBER - 2017

MATHEMATICS (REAL ANALISYS)
Time : 3 Hours] [Max. Marks : 80

PART - A (5 x 4 = 20 Marks)
Answer any Five of the following questions.

ANSWERS
1
1. Prove that lim | n" |=1. (Unit-1, Q.No. 7)
n—o0
2. Prove that every convergent sequence is a Cauchy sequence. (Unit-1, Q.No. 49)
Let {s} be a sequence converging to s. Then prove (Unit-1, Q.No. 45)
that lim o, =s, where o, 1 (s;+s,+....+s).
n—o0 n
4.  Ifaseries 2a, converges, then show that lim a, = 0. (Unit-1,Q.No. 71)
n—o0
. . - 3" |on
5. Find the radius of convergence of Z o X (Out of Syllabus)
n=1 :
6. Let {f .} be a sequence of continuous functions on [a, b] and suppose (Out of Syllabus)
b b
that f,— f uniformly on [a,b]. Then prove that lim J. f.(x)dx = If(x)dx.
n—o0
7. If f is a bounded function on [a, b] and if P and Q “are partitichs (Unit-1V, Q.No. 1)

of [a, b] then prove that L(f,P)<U(f,Q).

8. Let f(x) = x forrational x and f(x) = O for irrational x. Calculate the upper and lower Darboux
integrals for f on the interval [a, b].

ADNs :

Given f(x) = x for rational x
f(x) = 0 for irrational x
By Daraboux theorem of lower integral.

L(P, F) >'t[)f(x)dx— € (1)

Darboux theorem of upper integral

UPR ) < lef(x)dx+ e ..(2)

The upper and lower integrals far f(x) = x for rational x and f(x) = 0 for irrational ‘x’ on the
internal [0, 1]
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9. a) i) If{s,}convergesto s and {t,} convergesto t then prove

PART - B (4 %< 15 = 60 Marks)
[Essay Answer Type]

Note : Answer ALL the questions.

that s,+t, converges to s-+t.

i)  Prove that a bounded monotone sequence converges.

(OR)

b) i) Prove that every Cauchy sequence is bounded.

i) Prove that every Cauchy sequence of real numbers is convergent.

(Unit-1, Q.No. 25)

(Unit-1, Q.No. 40)

(Unit-1V, Q.No. 50)
(Unit-1V, Q.No. 51)

10. a) Let {s,} be asequence, teIR. Then prove that there is a subsequence of {s.} converging to

t if and only if the set {n e IN :|s, —t| <€} is infinite for each e> 0.

ADNs :

Let {S,} be a sequence, telR

and Let {S,} be a sequence

We shall prove that {S_} is converges to t

ie. |S,-t]<e

Suppose the set {neN: S, =t} is infinite

Then there are subsequences (Snk)

keN

Subsequence of {s } converging to t.

We assume {neN:S, =t} is finite

3S, =tvk

then {neN:0<|S,-t|<e} isinfinite far >0

{neN:t-e<S,-t} U{neN:t<S,<t+e}, as e >0, we have

{neN:t-e<S, -t} isinfinite forall €>0

{neN:t<S, <t+e} isinfinite forall €>0

Both (1) & (2) finite

Now we will show subsequence {Snk } keN

t-1<S,,<t

Max {Snkl,t -

We assume n,, n,

and

1
k

N, satisfying

—} < Sp <t far k=2

(1)
(2)

..(3)

Rahul Publications
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This will give us an infinite inceasing sequence {n,}k « N and subsequence

{Syk} of {S,} satisfied (3)
We have S, _; <S, Vk

{Snk } is monitonically increasing
! S vk

v (3) = t—E_ n, <t

Likm Sp, =t

nl < n2 < TR < nk_l

1
max {Snj_l,t——_} SSnJ <t far J =2... k—l
J

Using (1) with € = max {S t—l}

Me-1"" k
We can choose n, > n,_; satisfies (5) for j=k,
So that (3) holds for k

The sequence {nJkeN for |S,—t|<e

Hence the proof.

..(4)

..(5)

(OR)

b) i) Ifthesequence {s } converges, then prove that every subsequence converges to the same

limit.

ADNs :

Let the sequence {S } convergest | and
Let the subsequence {S, } of sequence {S }
{S,} converges to |

— Given >0 3Ja positive integer m — s, —l|<e Vnz=m ..(1)

We can find a natural number 2ny>m
If 2n>2n, then 2n=m
from equation (1) we get,
ISh-1]<eV2n>m

= {S,} convergesto |

Every subsequence converges to the same limit.

|l 191 ',
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i) Prove that every sequence has monotone subsequence. (Unit-1, Q.No. 54)
11. a) i) Find the radius of convergence of the series ZX”!. (Out of Syllabus)
n=1
i) Prove that the uniform limit of continuous functions is continuous. (Out of Syllabus)
(OR)
b) i) State and prove Weierstrass M-test. (Unit- 111, Page No. 71)
ii) Show that if the series g, converges uniformly on a set s, (Out of Syllabus)

then lim sup {|g,(X)] : xes}=0.
Nn—o0

b
12. a) Define Riemann integral If(x)dx. If f isa bounded function (Unit-1V, Q.No. 4)
a
on [a, b] then prove that L(f)<U(f).
(OR)
b) Prove that a bounded function f on [a, b] is integrable if (Unit- 1V, Q.No. 28)

and only if for each e> 0 there exists a partition P of [a,b]
such that U(f, P) - L(f, P)<e.

g
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Time : 3 Hours]

[Max. Marks : 80

PART - A (5 x 4 = 20 Marks)
Answer any Five of the following questions

ANSWERS

1. Let {s,} be a sequence of non-negative real numbers converging to s. Prove that n lim ﬁ =/s.

Sol :

Case(i) :
Given {s,} be the sequence & s, > 0
Ifs=0,then IImS, =0

Ve>03meN suchthat s, —0|<e” Vn>m
= Ogsn—0<e2
= 0<s,<e Vnzm

Case (ii) :
Let S=>0 then [s>0

(S0 —Vs)(sn ++/s) Sp =S
Jsn =5 = on +5 = Js, ++/s

=

11
Jon i %S

Since limS, ='s we have lim,fs, =+/s .

N—o0

2. Prove that convergent sequences are bounded.

3. If the sequence {s.,} converges, prove that every subsequence of it
converges to the same limit.

nm
4. If a,= sin(?} then find lim sup a, and liminf a,.

ADNs :

. - (nm
Given a, = sm[?J Vnez

g

(Unit -1, Q.No.2)

(Unit - 11, Q.No.1)
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But we know that v n e z*+

-1< sinmgl
3

=

sinM <1
3

{s,} is bonded.
lim inf fs, = -1 and lim sups, =1

0 n
5. Check whether the power series Y. (ijn converges for every x eR. (Out of Syllabus)
n=0 '
1 . .
6. Iff (x) = n sin nx, X e R, then prove that f, — 0 uniformly on R. (Out of Syllabus)

b

7. Define Riemann integral jf(x)dx.

Ans :

Definition :

a

Letf: [a, b] » R be abounded function and P = {a = X, X, .... X, = b} be a partition of [a,b]

b
If [ f(x)dx =sup {L(p,f)/P e ¢[a,b]}

a

then f is Riemann integrable over [a, b].

b
is equal to [f(x)dx =inf {U(p,IP e ¢[a, b]}

8. Prove that every monotonic function f on [a, b] is integrable.

(ii)

b) ()

(ii)

PART - B (4 < 5 = 60 Marks)
[Essay Answer Type]
Note : Answer ALL the questions

Let {s.} be an increasing sequence of positive numbers.

1
Define o, = n (s; +s, + ... + ). Prove that {c} is also

an increasing sequence.
Prove that Cauchy sequences are bounded.
(OR)

Lett,=1 and t_, = (1— Jtn for n>1. Prove by

(n+1)?

. . n+1 . .
induction that =0 and hence find the lim t,..

Prove that Cauchy sequences are convergent.

(Unit-1V, Q.No. 5)

(Unit-1, Q.No. 45)

(Unit - I, Q.No. 50)

(Unit-1, Q.No. 47)

(Unit-1, Q.No. 51)
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10.

a) (i) If {s,} convergesto s and {t.} converges to
t, then prove that {s, t,} converges to st.

1
(i) Calculate lim(nhn.
n—o

Sol. :

1
Let y = (n!)n
Applying logoritham on both sides

1
logy = n log n!

Applying Lt on both sides

log n!
n

Lt ology= Lt

S TRV log n!

n—ow n
1

== x Lt |ogn!
o0 n—ow

=0x Lt jogni=0

Lt logy =0
log L y=0
Lt y=e'=1

n—oo

(OR)

(Unit - I, Q.No. 26)

b) (i) Prove that a series converges if and only if it satisfies the Cauchy criterion.

ADNs :

Let s, be the n' partial sum of XU,
Sq= Up+ U+ Hu g+ Uy, ot U
Sq= U+ Uy +...+u,

Sq=Sp = Upsr + Upip + ..+ Uy

The series U, converges « the sequence {s,} converges

< Foreach ¢>03mez". suchthat [s,—s4|/<eVg=p=m
p q

< foreach ¢>03Imez" such that

|UP+1+UP+2+....+Uq| <egVQg=p=>m

|l 195 ',
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(ii)

Ans :

Check whether the series Y 209" converges.
n=0

(_1)n—l n

Given 2 no1
1 2

which is an alternating series

n
U, on_1 then
U -U.,,=—— —n+1—;u>u vneN
n~ “Yn+1 — 2n_1_ 2n+1_ (Zn_l)(2n+1) n n+1 ne
lim U, = lim
Also n[)noo " how2n-1
—im—% _=1.¢
n—ow o_ i 2
n
By Leibnitz’s Test
I(-1)1 U, is not convergent.
2
11. a) (i) Let fn(x)zhzc%. Prove that {f } converges (Out of Syllabus)
n
uniformly to ‘a’ on R.
(i) If g and h are integrable on [a, b] and if g(x) < h(x) (Unit -1, Q.No. 17)
b b
for all x [a,b] then prove that |9(x)dx < [h(x)dx.
a a
(OR)
b) Let {f } be a sequence of continuous functions on [a, b] and (Out of Syllabus)
suppose that f, — f uniformly on [a, b]. Then prove that
b b
lim [f,0)dx = [f(x)dx.
n—>ooa a
12. a) (i) Prove that every continuous function f on [a, b] is integrable. (Unit- 1V, Q.No. 6)
(ii) If f is integrable on [a, b] then prove that |f] is integrable (Unit - 1V, Q.No. 22)
b| b
on [a,b] and | [f|< [|f].
a a
(OR)
b) (i) State and prove intermediate value theorem for integrals. (Unit- 1V, Q.No. 19)
- 2n 167° .
(i) Provethat | [ x?sin®(e)dx| < = (Unit - 1V, Q.No. 24)
27
{196 }
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PART - A (5 %< 4 = 20 Marks)
(Short Answer Type)

Note : Answer any FIVE of the following questions.

1. Determine the limit of the sequence {s,}, where s, = vn’+1-n
Sol :

Given, S, = Jn2+1-n

QK

2
= \/n2 +1—n><—Jrn
241+n

,/(nz +1)2 —n?
- n?+1+

JnZ 4140

n? +1-n?

n2+1+n

1
S =
n JnZ+14n

lim S, = lim !

n—oo n—oo ,n2+1+n

8 |+

=0

'S, = vn?+1—n is converges to ‘0’

' 197 |
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t2+2 . .
2. letty =landt,, = ", forn> 1 Findthelimt,

n

Sol :
Given that,

tn?+2
L=1 6= 2t,

Let us assume that {t,} convergesto ti.e., limt, =t
. (2 +2)  limt2 42
limt, ., =Ilim —Ztn 2limt,

. _ tn +2
limt = o

_ o tn? +2
To find the limit , t,, = ot forn>1
n

tf+2 1+2 3
If n =1, t2=—2tl = (1) =E=1.5

= 12 = 5_1416 .....
t23 +2
fn=3t,= 2,
2
7 +2
_\212
)
12
_ 289+288 xg
T 144 17
=207 1.4142156
T 408
.. The given sequence, is converges to ~ 1.414
ie.,t=42
l| 198 ,'
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nn
3. Ifa,=sin L?J then find lim sup a, and lim inf a,
Sol :

7} is a subsequential limit

hence the lim sup a,, = 3

2
. —/3
liminfa, = —
2
4, Show that D, converges if and only if p > 1. (Unit-1, Q.No. 68(c))
a2 Nn(logn)°
ar-y )
5. For n=0,1,2,3, .. leta,= — 5 |- Find lim (Out of Syllabus)
1 i 1
sup (an)ﬁ lim inf (an)ﬁ
1+ 2c0s? nx _
6. Letf,(x) = T Prove that {f.} converges uniformly (Out of Syllabus)
to 0 on R.
|' 199 ,'
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7. Prove that every contiuous function f on [a, b] is integrable.

Sol :
Given that,n f is continuous on [a, b]
for each ¢ < 03a partition P on [a, b] 3[f(X,)—f(x, 1)< ﬁ&H € [X_1.%; ]
Ir :[Xr—lixr]
sup of f= M, = f(M,)
Inf of f = m, = f(m,)
n n
Consider UP, f) - L (Pf) = 2 M8 -2 m3,
r=1 r=1
n
= Z(Mr _mr)gr
r=1
n
= Z(f(Mr)—f(mr))Sr
r=1
n
= Z(f(xr)—f(xr+1))6r
r=1
< n
< or
b-a
< n
< b—argi(xr _Xr—l)
ﬁ (Xg=Xg)+(Xg =Xq )+ oot (Xng = X2 )+ (Xp =X 1) ]
bia[%_onr/X{_ {4t X7 — X 2+xn—%]
€
< b (X= Xg)
<
b-a ( - a)
L~UPH-LPFH<e
.. fis Reimann integrable on [a, b]
2n 167°
8.  Show that I sin®(e*)dx | < : (Unit-1V, Q.No. 24)

-2n

g
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10.

11.

12.

Sol :

(@)

(b)

(@)

(b)

(@)

(b)

(@)

(b)

PART -B (4 x 15 = 20 Marks)
(Essay Answer Type)

Note : Answer ALL the following questions.

(i) If (S,) converges to s, (t,) converges to t, then prove that

(s, t,) converges to s t.

(i) 1If (S,) converges to s and s,, =0 for all n, and if s+ 0, then

1 1
show that (s_j converges to 5

n

(OR)

(i) Provethat lima, =0 of |a,|<1
n—o

(i) Prove that lim n% -1

n—o0

(i)  If the sequence (s,) converges, then prove that every
subsequence converges to the same limit.

(i) State and prove Bolzano - Weierstrass theorem.
(OR)

If (s,) converges to a positive real number s and (t,) is

any sequence then prove that lim sup s, t, = s lim sup t,

Let (f,) be a sequence of functions defined and uniformly
Cauchy on a set S c R. Then prove that there exists

a function f on S such that f, — f uniformly on S.

(OR)

o0
. .. 2,n
Derive an explicit formula for 2. X" for |x]<| and hence
n=1
0 2
evaluate 2. .
n=13

Let f be a bounded function on [a, b]. If P and Q are partitions

of [a, b] and P c R, then prove that L(f, P) < L(f, Q) < U(f,Q) < U(f,P)

(OR)

(Unit-1, Q.No. 26)

(Unit-1, Q.No. 27)

(Unit-1, Q.No. 7)

(Unit-1, Q.No. 49)

(Unit-1, Q.No. 55)

(Unit-1, Q.No. 60)

(Out of Syllabus)

(Out of Syllabus)

(Unit-1V, Q.No. 45)

Prove that a bounded function f on [ a, b] in Riemann integrable on [a, b] > it is Darboux

integrable, in which case the values of the integrals agree.

Suppose first that f is Darboux integrable on [a,b]

Let e > 0, and Let § > 0 be choosen

= 201 ',
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b

s—[f

a

We know that <€

n
for everuy Riemann sum S = sz(xk)(tk ~tyq)
]

associated with a partition P having mesh (P) < §

Clearly, we have L(fP) < S < U (f, P)

b b
URP) <L (fP)+e< L(f)+e= |f+e and L(EP) > U (fP) —& > UM - = [T-2

a
Hence f is Riemann Integrable

b b
ij:jf
a a

Now suppose that f is Riemann Integrable and consider ¢ > 0. Let § = 0 and r be as given
P={a=t,<t <...<t,= b} withmesh (P) < 3§

for each k =1, 2 .....n select x, in [t,_;, t]

so that

fx) < m(fltq, D) + &

The Riemann sums for this choice of x, 's satisfies

SSL(f,P)+e(b-a)aswellas |s-r|<c¢
It followes that L ()=L(f,P)>S—-¢c(b—-a)>r-c—-¢b-a)
Since ¢ is arbitary
We have L(f) > r
Similarly U(f) < r
Since L(f) < U(f)
as we see that L (f) = U(f) =r
b

b
This showes that f is integrable and jf =r=R If
a a
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[Max. Marks : 80

PART - A (5 %< 4 = 20 Marks)
(Short Answer Type)

Note : Answer any FIVE of the following questions.

Compute M (/4n? 4 n) —2n.

. 1 1 1 1
Computer rl]lll]o 1+§+§+—+....— .

o 3 1
Does the series = n(log n)(log log n)

Find the set of subsequential limits of the sequence (s,), where
nn
Sp=C0s| 3 |

For n=0,1,2, ..., let a :(

converge ? Justify your answer.

4+ 2(-1)" n
—5 —an and

n

J - Find lim sup

. . an+1
lim inf .

n

Let f(X) = —2—, xe(0,00). Find f(x) = lImf,(0).
n 1inx’ X€0x). oo

b b
If f and g are integrable on [a, b] then prove that [f <|g
a a

wherever for all x in [a, b].
State and prove intermediate value theorem for integrals.

PART - B (4 %< 15 = 60 Marks)
(Essay Answer Type)
Note : Answer ALL the questions.

Prove that all bounded monotone sequences converge.

i) Let (s,) be an increasing sequence of positive numbers and
define o, = 1(sl +5,+...5,). Prove that (c,) is also an
n

increasing sequence.

(Out of Syllabus)

(Unit-1, Q.No. 35)

(Unit-1, Q.No. 68(c))

(Out of Syllabus)

(Out of Syllabus)

(Out of Syllabus)

(Unit-1V, Q.No. 21)

(Unit-1V, Q.No. 39)

(Unit-1, Q.No. 40)
(Unit-1, Q.No. 45)

|l 203 ',
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b)

10. a)

b)

11. a)

b)

12. a)

b)

(OR)
1 1
Let s, =1 and s, = g(sn+l). Prove that S, ZE for all
n, by using induction.

1
(n +1)?

Let t, =1 and t, = [1— jtn for n>1, prove that

n+1
tn: on .

Prove that every sequence (s,) has a monotonic subsequence.

Prove that every bounded sequence has a convergent sequence.
(OR)

Let (s,) be a sequence of non-zero real numbers. Prove that

St 1 1 S

n+. . . . - .

— | <liminf]s, | <limsup]a,|" <lim sup|-"%
s

lim inf
Sn

n

Let (f,) be a sequence of continuous functions on [a, b], and

suppose that f — f uniformly on [a, b]. Then prove that

lim jz f (X)dx = szf(x)dx.

(OR)

o0
. .. 2.,n
For |x]< 1, derive an explicit formula for 2, N°X" and hence

evaluate

n=1
0 2

Py
n=1 2

Prove that a bounded function f on [a, b] is integrable if

and only if for each e> 0. there exists a partition P of [a, b]
such that U(f,P)-L(f,P) <e.

(OR)

Let f be a function defined on [a, b]. If a<c<b and f is

integrable on [a, ¢] and on [c, b], then prove that

i)

i)

f isintegrable on [a, b] and

b c b
[f=[f+]t
a a c

(Unit-1, Q.No. 48)

(Unit-1, Q.No. 47)

(Unit-1, Q.No. 54)
(Unit-1, Q.No. 55)

(Unit-1, Q.No. 61)

(Out of Syllabus)

(Out of Syllabus)

(Unit-1V, Q.No. 28)

(Unit-1V, Q.No. 43)
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[Max. Marks : 80

10.

11.

12.

PART - A (8 x 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

Every convergent sequence is bounded.

Every Convergent Sequence is a Cauchy Sequence.
Does series converge? Justify your answer.

& 1

n; Jn log n

s
Prove that x = cos(x) for some x in [0, E)

1
Let f(x) = x2 sin [;J for x#0, f(0) = 0 Prove that f is continuous at 0.

Is the function f(x) = xUniformly continuous on [-7, 7]?

Show that sin x < x for all x > 0.

1
Let f(x) = x sin; for x= 0 and f(0) = 0.

() Observe that f is continuous at x = 0

(b) Is f differentiable at x = 0 ? Justify your answer.

Find the limit for fim £~ %X |

x—=0 x2

If f e RJ[ab]andm, M are the inf. and sup. of f in [a b] then

b b
m(b-a) < [f(x) dx < M (b —a) and [f(x) dx = (b - a)

where p e [m, M].

(Unit-1, Q.No. 2)
(Unit-1, Q.No. 49)
(Unit-1, Q.No. 68(a))

(Unit-11, Q.No. 15)

(Unit-11, Q.No. 3)

(Unit-11, Q.No. 23)
(Unit-111, Q.No. 17)

(Unit-111, Q.No. 8)

(Unit-111, Q.No. 30)

(Unit-1V, Q.No. 19)

b b
If, f,g € R[ab]landf(x) > g(x) v X € [a, b] thenjf(x) dx > jg(x) dx  (Unit-1V, Q.No. 17)
a a

Prove that every continuous function defined on [a, b] is integrable.

|l 205 ',
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PART -B (4 < 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL the questions.

13. a) All bounded monotone sequence converge. (Unit-1, Q.No. 40)
(i)  Every monotonically increasing sequence which is bounded
above is convergent.
(i)  Every monotonically decreasing sequence which is bounded
below is convergent.
OR
b) (i) Lets denote the set of subsequential limit of sequence {s }. (Unit-1, Q.No. 57)
Suppose {t } is a sequence in SN R and thatt = lim t then
tes.
(i) If the sequence {s } converges to/ prove that it is subsequence (Unit-1, Q.No. 53)
also converges to ¢.
14. a) \Verify fis continuous on set S dom(f) if an only if for each (Unit-11, Q.No. 20)
x,es and e>0 there is 5 > 0 so that xedom(f) and |x — x|
1
< & = |f(x) - f(x,) | <e for the function f(x) = Xz on (0, ).
OR
b) i) If f and g are real valued functions at x, then, (Unit-11, Q.No. 5)
(1) f+ giscontinuous at x,
(2) fgis continuous at X,
(3) flgis continuous at x, if g(x ) # 0.
i) A real valued function f on (a, b) is uniformly continuous on (Unit-11, Q.No. 27)
(a, b) if and only if it can be extended to a continuous function
on [a, b].
15. a) Leta, beR. letf(x) = e* cos(bx) and g(x) = e* sin(bx) (Unit-111, Q.No. 20)
(i) Compute f'(x) and g'(x)
(i)  Use (i) to compute f* and "
OR
b) Letf be continuous function on [a, b] that is differentiable (Unit-111, Q.No. 10)
at (a, b). Then there exist [at least one] ce[a, b] such that
f(b) - f(a) :f'(C).
b-a
b b
16. a) If f,ge R[ab], thenf+g e R[ab]and|(f+ g)(x) dx =]f(x) (Unit-1V, Q.No. 13)
b a a
dx + [ g(x) dx.
: OR
b) Prove that every monotonic function on [a, b] is integrable. (Unit-1V, Q.No. 5)
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10.

11.

12.

13.

PART - A (8 x 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

If a series Za_converges them lima_ = 0.
Let {s_} be sequence in R prove that the lims = Qiff lim |s | = 0.
1 1 1 1
Calculate, LI_TO [1+§+§+E+....+?)
Let f and g be continuous function, on [a, b] such that f(a) > g(a)
and f(b) <g(b) prove that f(x) = g(x,) for at lest one x in [a, b].
Show that the function f defined by f(x) = x2 is uniformly continous
in [-2, 2].
Prove that f : R — R given by f(x) = x? is a continous function on
R but not Uniformly continous on R.
1 X
Find limit lim (1——) .
X—>0 X
If f is differentiable at a and g is differentiable at f(a), then the composite
function gof is differentiable at a and (gof)'(a) = g'(f(a)).f'(a).
Show that ex < e* for all xe R.

2
Show that f(x) = 3x + 1 is integrable on [1, 2] and [ (3x + 1) dx :1—21.
1

If f< R[ab]then |fle R [ab]

16n°

<

2n
Prove that I x%sin®(e*)dx

-2n

PART -B (4 x 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL the questions.

a) (i) Every bounded sequence has convergent subsequence.
(i) Letan =3+ 2(-1)nfor ne N.

a) List the first eight terms of the sequence (a,,).
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(Unit-1, Q.No. 23)

(Unit-1, Q.No. 35)
(Unit-11, Q.No. 17)

(Unit-11, Q.No. 28)

(Unit-11, Q.No. 26)

(Unit-111, Q.No. 35)

(Unit-111, Q.No. 4)

(Unit-111, Q.No. 16)
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b) Give a subsequence that is constant {takes a single
values specify the selection function .
OR
b) (i) If{s }isconvergestos, and {t} is converges to ‘t’. Then (Unit-1, Q.No. 25)
{s, +t}convergestos +tthatislim{s +t}=Ilims +Ilimt.
(i)  Let(S,) be an increasing sequence of positive number and (Unit-1, Q.No. 45)
1
define o, = H(Sl+82+....+8n) prove (c,,) is an increasing
sequence.
14. a) Letfbe areal valued function whose domain is a subset of R. (Unit-11, Q.No. 1)
Then f is continuous at x in dom(f) if and only if for each
e>03d>05 xe dom(f) and |x - x |<d = [f(x) - f(x )| <e.
OR
b) (i) Iffiscontinuous on a closed interval [a, b] then f is (Unit-11, Q.No. 24)
uniformly continous on [a, b].
(i)  Find the limit lim M, b > 0. (Unit-11, Q.No. 43)
x=>b X-—
15. a) f:[a, b] - Rissuch (i) fis continuous on [a, b] (ii) f is derivable (Unit-111, Q.No. 9)
on (a, b) and (iii) f(a) = f(b). The there exists ce (a,b) such that
f(c) = 0.
OR
o1
b) Letf(x) =x sin’ for x= 0 and f(0) = 0. (Unit-111, Q.No. 8)
(a) Observe that f is continuous at x = 0
(b) Is f differentiable at x = 0 ? Justify your answer.
16. a) If Uand V are continuous function on [a, b] that are differentiable (Unit-1V, Q.No. 41)
b
on (a, b) and if U' and V' are integrable on [a, b] then J'U(x) V'(x) dx
a
b
+ J' U'(x) V(x)dx = U(b) V(b) - U(@)V(a)
a
OR
b) If f e R[ab]and m, M are the inf. and sup. of f in [a b] then (Unit-1V, Q.No. 19)

b b
mb-a) <] fx)dx < M (b-a)and] f(x) dx = u@ - a)

where p e [m, M].
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10.
11.

12.

13.

PART - A (8 x 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

State and prove Sandwich Theorem or Squeeze Theorem.
Every convergent sequence is bounded.

1 1
If {s,} convergestos, ifs #0 vnand if s 0, then {s_} converges to 5

n

If f is uniformly continous on an aggregate s and {s_} is a Cauchy
sequence in s, then prove that {f(s )} is also Cauchy sequence.
Let f(x) = 2x? + 1 for x eR, Prove f is continuous on R, by.

(&) Using the definition

(b) Using the ¢ — & property

2
. . X°-=4
Final lim )
X>2 X — 2

. o . tanx-x
Find the limit for lim T
x>0 X

If f is differentiable at a point ‘a’. Then ‘f’ is continuous at a.
Expassion of e*.

b b
Iff « R[ab]andK € R, then K f € [ab] and [ (K f)(x) dx = K [f(x) dx.

Given that f is a bounded function on [a, b] their exist sequence :
(U,) and (L,) upper and lower darboux.

b b
If f:[ab] —» R is a bounded function then Jf(x) dx < jf(x) dx.
a

a

PART -B (4 < 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL the questions.

a) (i) Everysequence {s } has a monotonic subsequence.

(if)  Lets denote the set of subsequential limit of sequence {s }.

Suppose {t } is a sequence in SN R and thatt = lim t then tes.

OR

|l 209 ',

(Unit-1, Q.No. 5)
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(Unit-11, Q.No. 29)

(Unit-11, Q.No. 2)

(Unit-11, Q.No. 40)

(Unit-111, Q.No. 31)

(Unit-111, Q.No. 1)
(Unit-111, Q.No. 40)

(Unit-1V, Q.No. 11)
(Unit-1V, Q.No. 8)
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14.

15.

16.

b)

b)

b)

b)

(i) If{s }is convergesto s and {t } is converges to t, then
{s, t }convergestostie., lim(s t)=(lims)(limt).

(i) Prove thata" = 0 for |a]<]|

(@ limn'"=1

n— o

(b) lima'=1fora>0

n— o

1
Show f(x) = Z is uniformly continous on [0, «).
OR

Let f and f, be function for which the limits L, = lim £ (x)

x—as 1

andL, = ”ms f,(x) exist and are finite. Then
X—a

@ lim (f,+f,) (x) existsand equals L, + L,

x—as

(i) Jim (f, ,) (x) exits and equals L, L,

i) lim (£, /1,) (x) exits and equals L,/L, provides L, «0
and f,(x)=0 for xes
Discuss the differentiability of f(x) = |x —a] in R.
OR
Let f and of be functions that are differentiable at the
points each of the functions cf [c a constant], f+g, fg and
flg is also differentiable at a, except f/g if g(a) = 0 since f/g
is not defined at a in this case.
The formulas are
1. (cf)y(@ =cf(a)
2. (f+9)@)="f@+g@
(fg)(a) = f(@)g'(a) + f(a)g(a)
4. (flg)(a) = [9(a)f(a) - f(a) g'(@)l/g*(a) if g(a)=O.

w

Prove that every continuous function defined on [a, b] is integrable.

OR

If f eR [a b] and m, M are the infimum and Supremum of f on

b
[a b], then m(b —a) < | (x) dx < M(b - a).

(210}
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(Unit-1, Q.No. 7)
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