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IMPORTANT QUESTIONS REAL ANALYSIS

UNIT - I

1. If {an}, {bn} and {cn} are three sequences such that (i) an bn
 cn for nK where K is

some positive integer and (ii) 
n
lim


an= n
lim


cn= l = then 
n
lim


bn= l .

Sol.
Refer Unit-I, Q.No. 5.

2. Prove that an = 0 for |a|<|

(a)


1/n

n
lim n =1



(b)


1/n

n
lima =1


 for a > 0

Sol.
Refer Unit-I, Q.No. 7.

3. Prove 
n

lim


(a1/n) = 1 for a > 0.

Sol.
Refer Unit-I, Q.No. 8.

4. Let {sn} be sequence in R prove that the lim sn = 0 iff lim |sn| = 0.

Sol.
Refer Unit-I, Q.No. 23.

5. If {sn} is converges to s, and {tn} is converges to ‘t’. Then {sn + tn} converges to s + t that
is lim {sn + tn} = lim sn + lim tn.

Sol.
Refer Unit-I, Q.No. 25.

6. Let t1 = 1 and tn+1 = 
2
n

n

t +2
2t

 for n 1. Assume that {tn} converges and find the limit.

Sol.
Refer Unit-I, Q.No. 33.

7. Prove that
n

lim


p

1
n

= 0 for p > 0.

Sol.
Refer Unit-I, Q.No. 36.

Important Questions
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8. All bounded monotone sequence converge.

(i) Every monotonically increasing sequence which is bounded above is convergent.

(ii) Every monotonically decreasing sequence which is bounded below is convergent.

OR

State and prove Montone Converge Theorem.

Sol.
Refer Unit-I, Q.No. 40.

9. Let (Sn) be an increasing sequence of positive number and define n = 
1
n

(S1+S2+....+Sn)

prove (n) is an increasing sequence.

Sol.
Refer Unit-I, Q.No. 45.

10. Let  t1 = 1 and tn+1 = 
 
 
 

2

1
1 –

(n+1)
 tn for all n 1 .

(a) Show Lim tn exists.

(b) What do you think Limtn is?

(c) Use induction to show tn = 
n+1
2n

(d) Repeat part (b)

Sol.
Refer Unit-I, Q.No. 47.

11. Let S1 = 1 and Sn+1 = 
1
3

(Sn+1) for n1.

(a) Find S2, S3 and S4

(b) Use induction to show Sn > 
1
2

 for all n.

(c) Show (Sn) is a decreasing sequence

(d) Show lim Sn exists and find lim Sn.

Sol.
Refer Unit-I, Q.No. 48.

12. If the sequence {sn} converges, then every subsequence converges to the same limit.

Sol.
Refer Unit-I, Q.No. 52.
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UNIT - II

1. Let f be a real valued function whose domain is a subset of R. Then f is continuous
at x0 in dom(f) if and only if for each e>0 d>0  xdom(f) and |x – x0|<d  |f(x) –
f(x0)|<.

Sol.
Refer Unit-II, Q.No. 1.

2. Let f(x) = x2 sin  
 
 

1
x

for x  0, f(0) = 0 Prove that f is continuous at 0.

Sol.
Refer Unit-II, Q.No. 3.

3. If f and g are real valued functions at x0 then,

(1) f + g is continuous at x0

(2) fg is continuous at x0

(3) f/g is continuous at x0 if g(x0)  0.

Sol.
Refer Unit-II, Q.No. 5.

4. Let f be a continous on [a, b] and assume f(a) < f(b) then for every k such that f(a) < k <
f(b) there exists c[a, b] such that f(c) = k.

Sol.
Refer Unit-II, Q.No. 8.

5. Let f be a continuous function mapping [0, 1] into [0, 1] in other words, dom(f) = [0, 1] and
f(x) [0, 1] for all x [0, 1] show f has fixed point, i.e., a point x0

 [0, 1] such that f(x0) = x0,
x0 is left fixed by f.

Sol.
Refer Unit-II, Q.No. 10.

6. Prove that x = cos(x) for some x in  
 
 


0,

2
.

Sol.
Refer Unit-II, Q.No. 15.

7. Let S R and suppose there exists a sequence {xn} in S converying to a number x0
S

show there exists an unbounded continuous function on S.

Sol.
Refer Unit-II, Q.No. 16.
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8. Let f and g be continuous function, on [a, b] such that f(a)  g(a) and f(b)  g(b) prove that
f(x0) = g(x0) for at lest one x0 in [a, b].

Sol.
Refer Unit-II, Q.No. 17.

9. Show that f(x) = 2

1
x

 is uniformly continous on [0,  ) where a > 0.

Sol.
Refer Unit-II, Q.No. 21.

10. Let f1 and f2 be function for which the limits L1 = 
 sx a
lim f1(x) and L2 = 

 sx a
lim f2(x) exist and

are finite. Then

(i)
 sx a
lim (f1+f2) (x) exists and equals L1 + L2

(ii)
 sx a
lim (f1 f2) (x) exits and equals L1 L2

(iii)
 sx a
lim (f1 / f2) (x) exits and equals L1/L2 provides L2  0 and f2(x)  0  for xs

Sol.
Refer Unit-II, Q.No. 45.

UNIT - III

1. If f is differentiable at a point ‘a’. Then ‘f’ is continuous at a.

Sol.
Refer Unit-III, Q.No. 1.

2. Find h'(a) where h(x) = x–m for x  0. h(x) = 
f(x)
g(x)  where f(x) = 1 & g(x) = xm for all x.

Sol.
Refer Unit-III, Q.No. 3.

3. Determine by using mean value theorem.
(a) x2 on [–1, 2] (b)  sin x on [0, ] (c) |x| on [–1, 2]

(d)  
1
x

 on [–1, 1] (e) 
1
x

 on [1, 3] (f) sgn (x) on [–1, 2]

Sol.
Refer Unit-III, Q.No. 14.

4. Prove that |cosx – cosy|   |x – y| for all x, yR.

Sol.
Refer Unit-III, Q.No. 15.
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5. Let a, bR. let f(x) = eax cos(bx) and g(x) = eax sin(bx)

(i) Compute f'(x) and g'(x)

(ii) Use (i) to compute f'' and f'''

Sol.
Refer Unit-III, Q.No. 20.

6. Suppose that f is differentiable on R that  i   f'(x)   2 for  xR, and that f(0) = 0 prove
that x f(x) 2x for all x > 0.

Sol.
Refer Unit-III, Q.No. 24.

7. Let f, g are derivable on (a, a + h) such that

(i) g'(x)   0   x  (a, a + h),

(ii)
x a
lim


f(x) = 0 = 

x a
lim


g(x)

(a) If 
x a

f '(x)
lim

g '(x)
 = l, a real number the 

x a

f '(x)
lim

g '(x)
 = l.

(b) If 
x a

f '(x)
lim

g '(x)
=     then 

x a

f(x)
lim

g(x)
 =   

Sol.
Refer Unit-III, Q.No. 26.

8. State and prove L - Hospital Rule II :

(OR)

If f, g are derivable in a deleted nbd of ‘a’

x a
lim


f(x) =   , 

x a
lim


g(x) =    and 

x a

f '(x)
lim

g '(x)
 = l , then 

x a

f(x)
lim

g(x)
 = l

Sol.
Refer Unit-III, Q.No. 27.

9. State and prove Binomial Series Theorem :

If R  and |x| < 1  Then

(1 + x) = 1 + k

k 1

( 1)...( k 1)
x

k !





     


Sol.
Refer Unit-III, Q.No. 39.

10. Expassion of ex.

Sol.
Refer Unit-III, Q.No. 40.
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UNIT - IV

1. If  f : [ab]   R is a bounded function then 
b

a
 f(x) dx 

b

a
  f(x) dx.

Sol.
Refer Unit-IV, Q.No. 1.

2. If,  f, g   R [a b] and f(x)   g(x)   x   [a, b]  then 
b

a
 f(x) dx 

b

a
 g(x) dx

Sol.
Refer Unit-IV, Q.No. 17.

3. If  f   R [a b] and m, M are the inf. and sup. of f in [a b] then m(b – a) 
b

a
 f(x) dx   M

(b – a) and 
b

a
 f(x) dx = (b – a)  where     [m, M].

Sol.
Refer Unit-IV, Q.No. 19.

4. Prove that




2

2 8 x

–2

x sin (e )dx
316

3




Sol.
Refer Unit-IV, Q.No. 24.

5. A bounded function f is integrable on [ab] if and only if for each > 0,    a partition p of
[ab]. Such that U(p, f) – L(p, f) <  .

Sol.
Refer Unit-IV, Q.No. 28.

6. if ‘g’ is integrable on [a, b] & g is a continuous function on [a, b] which is differentiable
on [a, b].

Then prove that 
b

a
g ' = g(b) – g(a)

Sol.
Refer Unit-IV, Q.No. 40.
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1.1  SEQUENCE

A sequence is a funtion whose domain is the set N of all natural numbers where as the range may

be any set S.

In other words if A is a non empty set then a function S : N  A is called a Sequence.

Sequences are useful in deciding the continuity of a real valued function on a subset  of R.

1.1.1 Real Sequence

A real sequence is a function whose domain is the set N of all natural numbers and range of subset

of the set R of real numbers

i.e., x : N  R is a real sequence which is denoted by {xn} or <xn>. Sometimes the sequence x is

represented by an argument of the terms in increasing order of the argument n such as {x1, x2, x3 ..... xn

.....}

1.1.2 Range of a Sequence

The set of all distinct terms of a sequence is called its range. If n  N, where N is an infinite set then
the number of terms of a sequence is always infinite. But the range of a sequence may be a finite set.

for example if xn = (–1)n then {xn} = {1, –1, 1, –1 .....}

The range of sequence {xn} = {–1, 1} which is finite set

1.1.3 Constant Sequence

A sequence {xn} defined by xn = C  R  n  N is called a constant sequence. Therefore

{xn} = {C, C, C, .....} is a constant sequence with range = {C}, a singleton set.

1.1.4 Bounded and Unbounded Sequence

1. Bounded above sequence

A sequence {an} is said to be bounded above if   a real number K such that an  K n N.

2. Bounded Below Sequence

A sequence {an} is said to be bounded below if   a real number K such that an  K  n N.

UNIT
I

Sequences: Limits of Sequences - A Discussion about Proofs - Limit
Theorems for Sequences Monotone Sequences and Cauchy Sequences
- Subsequences - Lim sup’s and Lim inf’s-Series-Alternating Series
and Integral Tests.
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3. Bounded Sequence

A sequence is said to be bounded if it is bounded above as well as bounded below. Thus a sequence
{an} is bounded if two real numbers K1 and K2 such that K1K2, then K1  an  K2 nN.

4. A Sequence is said to be unbounded if it is not bounded

(i) Unbounded above sequence : A sequence {an} is said to be unbounded above if it is not
bounded above i.e., for every real number K1,   mN  am > K1.

(ii) Unbounded below sequence : A sequence {an} is said to be unbounded below if it is not
bounded below, i.e., for every real number K2   m N   am < K2.

Examples

(i) Every constant sequence is bounded

(ii) The sequence <–n> is bounded above because an – 1   n  N and it is not bounded
below

(iii) The sequence {an} defined by an = (–1)n, n is neither bounded above nor bounded below.

Note: The sequence {an} is bounded iff   a positive real number M  na  M nN.

5. Least Upper bound and greatest lower bound of a sequence

a) Least upper bound of a sequence

If a sequence {an} is bounded above, then   a real number K1   an  K1   n  N.

K1 is called an upper bound of the sequence.

If K1< K2 then an < K2   n  N.

 K2 is also an upper bound of the sequence

 Any number > K1 is also an upper bound of the sequence.

Therefore if a sequence is bounded above, it has infinitely many upper bounds of all the
upper bounds of the sequence, if K is the least, then K is called the least upper bound (lub) of
the sequence or Supremum of the sequence.

b) Greatest lower bound of a sequence

If a sequence {an} is bounded below, then a real number K1   K1  an or a  K1  n N.
 K1 is called an lower bound of the sequence.

If K2< K1 or K1> K2 then an > K2   n  N.

 K2 is also a lower bound of the sequence

 Any number < K1 is also an lower bound of the sequence.

 If a sequence is bounded below, it has infinitely many lower bounds of all the lower
bounds of the sequence, if K is the greatest, then K is called the greatest lower bound
(glb) of the sequence or infimum of the sequence.
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1.2  LIMITS OF SEQUENCE

Let {an} be a sequence and lR. The real number l  R is said to be the limit of the sequence {an}

if to each > 0   m  N   na  l    n  m.

If l is the limit of {an}, then we write an  l as n 

or  
n
lim


 an=l

Note

na  l    n  M

 – < an – l <  n  m

 l  – < an < l +  n  m

 an (l – l  n  m

1.2.1 Convergent Sequence

If 
n
lim


 an=l, then we say that the sequence {an} converges to ‘l’.

i.e., A sequence {an} is said to converge to a real number ‘l’ if given > 0, a positive integer m

 na  l    n  m. the real number l is called the limit of the sequence {Sn}.

1. Every convergent sequence has a unique limit.

Sol.

If possible, let the sequence {an} converge to two distinct real numbers l and l1

Let = 1l l  l  l1  1l l > 0 >0

 The sequence {an} converges to ‘l’

 Given  > 0 a postive integer m1 na /2  l 1n m  ... (1)

again the sequence {an} converges to l1

 Given  > 0 a postive integer m2
1

na /2  l 2n m  ... (2)

let m = max {m1, m2}

 From (1) and (2)

n m   na /2 l  and 1
na /2 l
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consider

       1l l = 1
n na a   ll

= na  l + 1
na  l

< 2
 + 2



 1 2 2
 l l

 1 l l

 1 1  l l l l 1l l 

Which is a contradiction

Hence our assumption is wrong

1 l l

 Every convergent sequence has a unique
limit.

2. Every convergent sequence is bounded.

Sol. (May/June-18, Imp.)

Let {an} be a convergent sequence. Which
converges to ‘l ’

Let   = 1,   a positive integer m

 na 1 l  n  m

 l – 1< an < l +1   n  m

    Let K1 = min {a1, a2, .....an–1, l – 1} and

K2 = max {a1, a2, .....am–1, l + 1}

 K1  an  K2   n  N

 Sequence {an} is a bounded sequence.

Note

1. Converse of the above theorem need not be
true.

2. If a sequence is not bounded, it cannot be
convergent.

3. If 
n

lim  an= l 


nn
lim a l  but the

converse is not true.

Sol.

n
lim


 an=l

 Given > 0,   a positive integer m such

that na  l    n  m        ... (1)

 na  l  < na  1 ... (2)

 from (1) and (2) we get

 na  l  <   n  m

 na  = l

To prove converse need not be true

Let {an} = {(–1)n} = { –1, 1, –1, 1 ...... }

 {an} does not converges to any limit

Whereas

 na =   n1  =  1,1,1,.....

Hence proved

4. If an  0  n  N and 
n

lim  an = l then

l  0.

Sol.

If possible, let l < 0

n
lim


  an = l

 Given   > 0,  , a posit ive

integer  na  1    n  m

 l – < an < l +  n  m
... (1)

 l < 0, let 0
2


 
l
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Substituting  in (1) then we get

2


l
l <an < 

2


l
l  n  m ... (2)


3
2
l
< an 2

l
<  n  m

    an< 2
l

< 0  n  m

Which is a contradiction to the hyp that an  0. Hence our assumption l < 0 is wrong

 l  0

Note

1. If  
n
lim


an = l and 
n
lim


bn = l1 then 
n
lim


(an + bn) = l + l1 and 
n
lim


(an–bn) = l – l1

2. If  
n
lim


an = l and 
n
lim


bn = l1 then 
n
lim


(an bn) = ll1.

3. If  
n
lim


an = l and C  R then 
n
lim


Can = Cl

4. If bn
 0 for every n, l1  0, 

n
lim


an=l and 
n
lim


bn=l1 then 
n
lim


n

n

a
b

 
 
 

= 1

 
 
 

l
l

5. If {an} and {bn} be two convergent sequences then an   bn  n  N  
n
lim


an   
n
lim


bn

5. If {an}, {bn} and {cn} are three sequences such that (i) an bn
 cn for n  K where K is

some positive integer and (ii) 
n
lim


an= n
lim


cn= l = then 
n
lim


bn= l

(OR)

State and prove Sandwich Theorem or Squeeze Theorem

Sol. (Imp.)

Let   > 0

n
lim


an = l

    m1
  z+   na  l <    n  m1

  l –   < an < l +    n  m1 ... (1)

Simillarly

n
lim


cn = l

    m2
  z+   nc l <    n  m1

  l –   < cn < l +    n  m2 ... (2)
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Also by hyp we have

an   bn   cn   n  K ... (3)

Let m = max {m1, m2, K}

 l –   < an   bn   cn < l +    n  m

  l –   < bn < l +    n  m

  nb  l <    n  m

  
n
lim


bn = l

6. If {an}, {bn} are two sequences such that

na   nb  n K where K is a positive

integer and 
n

lim bn = 0 then 
n

lim an=0.

Sol.

Let   
n
lim


bn = 0


n
lim
 nb = 0 ... (1)


n
lim


 nb = 0 ... (2)

 na   nb n K 

 – nb    an   nb  n K 

 By Sandwich Theorem and from (1) and (2)
we get

n
lim


an = 0

1.3  A DISCUSSION ABOUT PROOFS

7. Prove that an = 0 for |a|<|

(a)


1/n

n
lim n =1



(b)


1/n

n
lima =1


 for a > 0

Sol. (Nov./Dec.-18, Dec.-17, Imp.)

(a) n

n
lim a 0


  for |a| < 1

If a = 0

Then the result is thus

If |a|<| where a  0

we have |a| < 
1

1 b
 ; b > 0

Apply binomial theorem for (1+ b)n

(1 + b)n = 1 + nb + 2n(n 1)
b ....

2




(1 + b)n = 1 + nb > 0

(1 + b)n > nb ... (1)

To show that 
n
lim


 an = 0

That is to find the natural number N 

|an – 0| <  n > N

consider |an – 0|< 

|an|< 

n
1

1 b
     

1
nb

 

nb > 
1


 n > 
1
b

Select N = 
1
b

for n > N = n > 
1
b

= nb > 
1


1
nb

< 

n

1
(1 b)

<

|a|n <

 |an – 0| < for  n > N

 lim an = 0
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(b) To prove 
n
lim


 1/nn 1

n
lim


1/nn – 1  = 0

    here  Sn =
1

nn – 1       [ sn  0]

Let us consider

      sn= 
1/nn 1

      1 + sn = n1/n

Add power ‘n’ on both sides

(1 + sn)
n = (n1/n)n

(1 + sn)
n = n ... (1)

By using binomial Expansion

     (1+sn)
n = 1 + nsn+

n(n 1)
2
 2

ns  ....

    (1 +sn)
n = 1 + n sn +

n(n 1)
2
 2

ns 

    (1 +sn)
n> n(n 1)

2
 2

ns

       (n1/n)n > n(n 1)
2
 2

ns

              n> n(n 1)
2
 2

ns

              1> 
n 1

2


2
ns

            2
n

1
s

> 
n 1

2


            2
ns < 

2
n 1

      sn<
2

n 1

consider sn  0 and sn =
2

n 1

0    sn < 2

n 1

nn
lim s 0




By sandwich theorem

      
n
lim


 
2

n 1
= 2 n

lim


 
1

n 1

n  , 1
n
 0

= 2 (0) = 0

       
n
lim


 sn = 0

n
lim


 
1/nn –1= 0

       
n
lim


 
1/nn = 1

8. Prove 
n

lim


(a1/n) = 1 for a > 0.

Sol. (Imp.)

For a > 0, 0 < a < 1

(i) If a  1

Then n a

we have 1 a  n

nth root of each term

11/n a1/n n1/n

By sandwich theorem

lim 11/n lim a1/n lim n1/n

1 lim a1/n 1

lim a1/n=1

(ii) 0 < a < 1

consider a < 1

1
1

a


by case (i)

lim 
1/n1

1
a

   
 
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lim 1/n

1
1

a


 lim a1/n = 1

 If {sn} converges to s then 
n

1
s

 
 
 

converges

to
1
s

.

9. Prove that lim sn = 
1
4

 where

sn = 
3 2

3

n +6n +7
4n +3n – 4

.

Sol.
Given that,

      sn= 
3 2

3

n 6n 7
4n 3n 4

 
 

lim sn = lim 
3 2

3

n 6n 7
4n 3n 4
  
   

= lim 

3
3

3
2 3

6 7n 1
n n
3 4n 4
n n

       
       

=
3

2 3

1 1
1 6lim 7 lim

n n
1 1

4 3 lim 4 lim
n n

 

 

as n   , 
1
n  0

=
1 6(0) 7(0)
4 3(0) 4(0)
 
 

= 
1
4

lim sn = 
1
4

10. Find lim 
2

n – 5
n +7

.

Proof :

Given that sn = 2

n 5
n 7



lim sn = lim 
2

n 5
n 7
 

  

= lim 

2n 2

2

1 5
n n

n

   

2

71
n

 
 
 

      

= 
2

2

1 1
lim 5lim

n n
1

1 7lim
n





as n   , 
1
n  0

= 
0
1

 lim 2

n 5
n 7



 = 0

11. Show that 


     
 n

1 1 1 1
lim 1 .....

n 2 3 n
 = 0.

Sol.

Let an = 
1
n

then 
n
lim


 an = 0

by cauchy’s first theorem on limits we have

n
lim


 1 2 na a ..... a
n

   
  

= 0


n
lim


1
n

 
1 1 1

1 .....
2 3 n

      
= 0
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12. Show that  


   1/2 1/2 1/n

n

1
lim 1 2 3 ..... n

n
 = 1.

Sol.
Let an = n1/n

then 
n
lim


 an = 
n
lim


 n1/n = 1

By cauchy’s first theorem on limits we have


n
lim


 
1 2 na a ..... a

n
   

  
= 1


n
lim


1
n

 1/2 1/3 1/21 2 3 ..... n      = 1

13. Using cauchy’s first theorem on limits
show that



 
  

   2 2 2n

1 1 1
lim

n 1 n 2 n n
 = 1.

Sol.

Let  aK = 2

n

n K
then an = 2

n

n n


n
lim


an = 
n
lim


1
1

1
n

  = 1

 By cauchy’s first theorem on limits we have

n
lim


 1 2 na a ..... a
n

   
  

= 1

 
n
lim


1
n 2 2 2

n n n
.....

n 1 n 2 n n

 
   

   
= 1

    
n
lim
 2 2 2

1 1 n
.....

n 1 n 2 n n

 
   

   
 = 1

14. Prove that 


 
 

 

1/nn

n

n
lim e

n!
.

Sol.

Let an = 
nn

n!

then an+1 = 
 
 

n 1
n 1
n 1 !




consider

n 1

n

a
a
   

 

n 1

n

n 1 n!
n 1 ! n






   
 

n

n

n 1 n 1 n!
.

n! n 1 n
 




 n

n

n 1
n





 nn

n

n 1 1/n
n


  n
1 1/n


n
lim


n 1

n

a
a


= 
n
lim


 n
1 1/n  = e

 By cauchy’s second theorem on limits

n
lim


(an)
1/n=e 

n
lim


1/nnn
n!

 
 
 

= e.

15. Show that 
 




1/n

n

n! 1
lim

n e
.

Sol.

Given 
n
lim


 
 

1/n

1/nn

n!

n

Let an = n

n!
n

 an+1 = 
 
 n 1

n 1 !

n 1





Consider

n 1

n

a
a
  = 

 
 n 1

n 1 !

n 1






nn
n!



  
 

   

n

n

n! n 1 .n

n 1 . n 1 .n!




 
=

 
n

nn

n

n 1 1/n
=
 n

1

1 1/n

 
n
lim


n 1

n

a
a
 = 

n
lim
  n

1

1 1/n
=

1
e
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  By cauchy’s second theorem on limits

n
lim


(an)
1/n=

1
e


n
lim


1/n

n

n! 1
n e
    


n
lim


 1/n
n! 1

n e


16. Prove that 


n

n

x
lim

n!
= 0 where x is any real number..

Sol.

Let 
n

n

x
a

n!


  x is any real number, three cases arises they aree

(i) x = 0

Where x =  0  an = 0  n


n
lim


an = 
n
lim


nx
n!

 = 0

(ii) when x < 0 or x > 0

an = 
nx

n!
an+1 =  

n 1x
n 1 !





consider

 
n 1

n 1
n

n

a x n!
a n 1 ! x


  



 n 1

n

a
a
   

n

n

x .x.n!
n! n 1 x




x
n 1

 
n
lim


n 1

n

a
a
 

n
lim


x
n 1



we know that if {an} is a sequence  an0 n and n 1

n

a
a
   l where l < 1 then an  0 as n 

 
n
lim


an = 0  
n
lim


nx
n!

 = 0.
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17. Prove that the sequence is  
 

         

1/n

3

3n !

n!
convergent

Sol. (Imp.)

Let an=
 
 3

3n !

n!
= then an+ 1 =

 
  3

3 n 1 !

n 1 !




Consider

    n 1

n

a
a
 = 

 
  3

3n 3 !

n 1 !



  

 
 

3
n!
3n !



= 
     

  3

3n 3 3n 2 3n 1 3n !

n! n 1

  

  

 
 

3
n!
3n !



    
 3

3n 3 3n 2 3n 1

n 1

  




   
 2

3 3n 2 3n 1

n 1

 




2

2
2

2 1
3.9n 1 1

3n 3n

1
n 1

n

          
   

2

2 1
27 1 1

3n 3n

1
1

n

          
   

 
n
lim


n 1

n

a
a
  27 

n
lim
 2

2 1
1 1

3n 3n
1

1
n

     
  

  
 

   
n
lim


n 1

n

a
a
 = 27

By cauchy’s second theorem on limits

   
n
lim


(an)
1/n = 27

Let (an)
1/n = xn = 

 

1/n

3

3n!

n!

 
 
  


n
lim


xn = 27

 {xn} is convergent

  

1/n

3

3n!

n!

 
 
  

is  convergent
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18. Show that    

 
   
  

2 22n

1 1 1
lim ..... 0

n n 1 2n .

Sol.

Let an = 
   2 22

1 1 1
.....

n n 1 2n
  



We know that
n2 < (2n)2 ,  (n+1)2 < (2n)2

 22

1 1
n 2n

 
   2 2

1 1

n 1 2n
 


 and so on

  an > 
     2 2 2

1 1 1
.....

2n 2n 2n
  

  an >  2

n 1

2n



  an > 2

n
4n  n+1 > n

  an > 
1

4n
... (1)

Also

  an    2 22

1 1 1
.....

n n 1 2n
   



  an < 2 2 2

1 1 1
.....

n n n
     (n+1)2 > n2

  an < 2

n 1
n


   2

1

n 1  < 2

1
n

 and so on

  an < 2

1 1
n n
 ... (2)

 from (1) and (2) we get

1
4n

< a
n
 < 2

1 1
n n


also as n  , 
1

0
4n

  and 2

1 1
n n

   
  0

 by squeeze theorem, we get

n
lim


an = 
n
lim
    2 22

1 1 1
.....

n n 1 2n

 
   

  
= 0
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19. For each sequence below determine it
converges.

a) an = 
n

n+1

b) bn = 
2

2
n +3

n – 3
c) Cn = 2–n

d) tn = 1 +
2
n

e) xn =  73 + (–1)n

f) Sn = 
1
n(2)

Sol.

a) an = 
n

.
n+1

Given equation is an=
n

n 1
Apply limit on both sides

We get

   
n
Lt
 an = 

n
Lt


n
n 1

= 
n
Lt


n
1

n 1
n

  
 

= 
n
Lt


1
1

1
n

 
 
 

  
 

= 
1

1
1

0


    n
n
Lt a 1




For each  0  m z   n
1

n 1
  



b) bn = 
2

2
n +3

n – 3

Given equation is  bn = 
2

2

n 3

n 3




Apply limit on both sides

We get,

            
n
Lt
 bn = 

n
Lt


2

2

n 3

n 3





= 
n
Lt
  

2

2

3
1

n
3

1
n





= 

3
1

3
1







= 
1 0
1 0



   
n
Lt
 bn= 1

For each  0  m z   
2

2
n 3

1
n 3


  



c) Cn = 2–n

Given equation is  Cn = 2–n

Apply limit on bothsides we get

n
Lt
   Cn = 

n
Lt
 2–n

This can be written as

= 
n
Lt
 n

1

2

= 
1 1

0
2  




n
Lt
 Cn = 0

For each  0  m z   n2 0  



B.Sc. II YEAR  III SEMESTER

14
Rahul Pub lications

Rahul Publications

d) tn = 1 +
2
n

Given equation is tn = 1 + 
2
n

Apply limit on bothsides we get

   
n
Lt
 tn = 

n
Lt


2
1

n
  
 

= 
2

1 


 = 1+ 0

    
n
Lt
 tn= 1

For each  0  m z 
2

1 1
n

     
 

e) xn =  73 + (–1)n

Given equation is  xn = 73 +(–1)n

   x1 = 73 + (–1)1 = 73 – 1 = 72

   x2 = 73 + (–1)2 = 73 + 1 = 74

   x3 = 73 + (–1)3 = 73 – 1 = 72

   x4 = 73 + (–1)4 = 73 + 1 = 74

   xn = {72, 74}

xn  is  not a convergent sequence

xn  is  a oscillatory sequence

f) Sn = 
1
n(2)

Given that  Sn = 
1
n(2)

Apply limit on bothsides, we get

  
n
Lt
  Sn=

n
Lt
 (2)1/n

= 
1

2 = (2)0

  
n
Lt
 Sn = 1

For each  0  m z  1/n(2) 1  

20. Determine the limits of the following
sequences and then prove your claims.

a) an = 2
n

n +1

b) bn = 
7n –19
3n+7

c) Cn = 
4n+3
7n – 5

d) dn = 
2n+4
5n+2

e) Sn =
1
n

sin n

Sol.

a) an = 2
n

n +1
Given that

   an= 2
n

n 1

= 
2

2

n
1

n 1
n

   

= 

2

1 1
1n 1
n

  
 

Applying limits on both sides

   
n
Lt
 an = 

n
Lt


2

1 1
1n 1
n

  
 

= 
1 1

1
1


 


= 0 · 
1

1 0
 
  

   
n
Lt
 an = 0

For each  0  m z  2

n
0

n 1
  


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b) bn = 
7n –19
3n+7

Given that bn =
7n 19
3n 7



Applying limits on both sides

 
n
Lt
   bn= 

n
Lt


7n 19
3n 7



= 
n
Lt


19
7

n
7

3
n





= 

19
7

7
3







 
n
Lt
  bn = 

7
3

For each  0  m z   7n 19 7
3n 7 3


  



21n 57 21n 49

9n 21
  




(or)

106
9n 21





106
3(3n 7)





 3n + 7 > 0,  we can drop the absolute value
manipulate, the inequality to solve for n.

106
3

< 3n + 7

106
3

– 7 < 3n

106
9

– 
7

n
3


So we will put  n = 
106
9

 – 
7
3

 N  to be any number larger than 
106
9

– 
7

.
3

c) Cn = 
4n+3
7n – 5

Given that  Cn = 
4n 3
7n 5




Apply limits on both sides

 
n
Lt
  Cn = 

n
Lt


4n 3
7n 5




=
n
Lt


3
4

n
57
n





= 

3
4

57







 
n
Lt
  Cn = 

4 0
7 0



  
n
Lt
 Cn = 

4
7

 For each 0  m z   
4n 3 4
7n 5 7


  



28n 21 28n 20
49n 35
  




1
7(7n 5)




7n – 5 > 0, we can drop the absolute value
and manipulate the inequality to solve for n.

1
7

< 7n – 5

1
5 7n

7
 



1 5
n

7(7 ) 7
 



1 5
n

49 7
 



 So we will put  N = 
1 5

49 7




 N  to be any number larger than 
1 5

49 7



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d) dn = 
2n+4
5n+2

Given that dn = 
2n 4
5n 2




Apply limit on both sides

 
n
Lt
   dn= 

n
Lt


2n 4
5n 2




 = 
n
Lt


4
2

n
2

5
n




 = 

4
2

2
5







 = 
2 0
5 0



  
n
Lt
  dn= 

2
5

For each 0  m z   
2n 4 2
5n 2 5


  



10n 20 10n 4
25n 10
  




16
5(5n 2)




5n + 2 > 0, we can drop the absolute values manipulate the inequality to solve for n.

16
5

 < 5n + 2

16
5

 – 2 < 5n

16
25

 – 
2

n
5


 So we will put  N = 
16

25
 – 

2
5

 N to be any number larger than 
16 2

.
25 5




e) Sn =
1
n

sin n

Given that  Sn = 
1
n

sin n

Apply limit on both sides

 
n
Lt
   Sn= 

n
Lt


1
n

sin n

  
n
Lt
  Sn= 

n
Lt
 sin

=  0  sin 
=  0
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1.4  LIMIT THEOREMS FOR SEQUENCES

21. Show that If 
n
lim


an = l then 
n
lim


 
  

1 2 na +a +.....a
n

 = l.

Sol.
Define the sequence {bn} such that bn = an – l
for all n   z+


n
lim


bn = 
n
lim


(an – l)
n
lim


an – l = l – l = 0

n
lim


bn = 0

 for each   > 0 such that   r   z+ such that nb 0  = nb  <  /2 n r 


n
lim


bn = 0   {bn} is bounded     K   R+   nb  < K n z 


1 2 nb b .....b

n
 


1 2 r r 1 nb b .....b b .....b

n n
  



  
 K K ..... K r times

n
  

+
 /2 /2 ..... /2 n r times

n
    

  
rK
n

+
 n r

2n
 


rK
n

+ 
2


–
r
2n


<
rK
n

+ 
2


 
2


 – 
r
2n


<  /2


1 2 nb b .....b

n
 

 < 
2


 + 
2


 <  put m = 
2Kr


  
1 2 nb b .....b

0
n

 
  <   n > m


n
lim


1 2 nb b ..... b
n

   
  

= 0

but we have

1 2 nb b ..... b
n

  
 = 

     1 2 na a ..... a

n

     l l l

= 1 2 na a ..... a
n

  
 –l
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
n
lim


1 2 nb b ..... b
n

    = lim


1 2 na a ..... a
n

   - l


n
lim


1 2 na a ..... a
n

   
  

= 
n
lim


1 2 nb b ..... b
n

   
  

+ l


n
lim


1 2 na a ..... a
n

   
  

= 0 + l = l

Note:

If an > 0 n z  and an = l then 
n
lim


(a1, a2 .....an)
1/n = l

22. If {an} is a sequence such that an > 0   n z and 
n

lim n

n

a +1
= l

a
 then 

n
lim

n
lim = l.

Sol.

Let the sequence {bn} defined by b1 = a1, b2 = 2

1

a
a

, b3 
3

2

a
a

 ...... bn = 
n

n 1

a
a 

......

so that b1, b2, b3......bn = an

  n
lim


n 1

n

a
a
 = l 

n
lim


n

n 1

a
a 

= l 
n
lim


bn = l

   an > 0  n   bn > 0  n

 Now we have a sequence {bn} such that bn > 0  n and 
n
lim


bn = l

 (b1, b
2, b3.....bn)

1/n = l


n
lim


(an)
1/n = l

23. Let {sn} be sequence in R prove that the lim sn = 0 iff lim |sn| = 0.

Sol. (Imp.)

Let {sn} be a sequence in R.

Suppose that lim sn = l

i.e., for each n0 n |s |      n N 

We know that lim sn = 0

 for each 0  nN  |sn – 0|<  n N 

 |sn – 0|< 

 ||sn| – 0|< 

 lim|sn| = 0

Hence lim sn = 0   lim|sn| = 0.
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24. If the sequence {sn} converges to s and KR then the sequence {ksn} converges to ks that
is, lim{ksn} = k lim sn.

Sol.
Given that {sn} is converges to s i.e., lim sn = s.

 for each 0 n N     |sn – s|<
|k|


 n N  ... (1)

also, {ksn} converges to ks

 for each 0 n N     |ksn – ks|< ... (2)

Required to prove lim ksn = k lim sn

consider    |ksn – ks|= |k(sn – s)|

  |k| |sn – s|

  |k| 
|k|


[ by(1)]

 |ksn – ks|< 

for each 0 n N     |ksn – ks|<  n N 

lim ksn = ks

lim ksn = k lim sn [  s = lim sn]

25. If {sn} is converges to s, and {tn} is converges to ‘t’. Then {sn + tn} converges to s + t that
is lim {sn + tn} = lim sn + lim tn.

Sol. (Dec.-2017, Imp.)

Given that, {sn} converges to s i.e., lim sn = s.

 for each 10 n N     |sn – s|< 
2

 n N1 ... (1)

also, {tn} converges to t i.e., lim tn = t

 for each 20 n N     |tn – t|< 
2

 n N2 ... (2)

Required to prove {sn + tn} converges to s + t

To prove for each 0 n N     |(sn + tn) – (s + t)| n N 

Let N = max {N1, N2}

From (1)  0 n N     |sn – s|<
2


 n N  ... (3)

From (2)  0 n N     |tn – t|<
2


 n N  ... (4)
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        consider |(sn + tn) – (s + t)|=|sn + tn – s – t|

=|(sn – s) + (tn – t)|

=|sn – s| + |tn – t|

      <
2 2
 
 [From (3) (4)]

=
2
2


 = 

|sn + tn – (s + t)|< 

  lim (sn + tn) = s + t

  lim (sn + tn) = lim sn + lim tn

26. If {sn} is converges to s and {tn} is converges to t, then {sn  tn} converges to st i.e., lim
(sn tn) = (lim sn) (lim tn).

Sol. (May/June - 18, Nov./Dec.-18, Imp.)

{sn} is converges to s

  lim sn = s

i.e., for each 10 n N     |sn – s|<
2|t| 1




 n N  ... (1)

{tn} is converges to t

  lim tn = t

for each 20 n N     |tn – t|<
2M


 n N  ... (2)

required to prove that lim {sn tn} converges to st.

i.e., to prove for each 0 n N     |sn tn – st|  <  n N  .

Let N = max {N1, N2}

    consider |sn tn – st| = |sn tn – snt + snt – st|

= |(sn tn – sn t) + (snt – st)|

= |sn(tn – t) + |t(sn – s)|

= |sn||tn – t|+ |t(sn – s)|

  |sn||tn – t|+|t||sn – s|

  |sn| 2M


 + |t|
2|t|t|


... (3)

To solve above inequality

We know that every convergent sequence is bounded.

Since {sn} is convergent then it is bounded

i.e., M > 0  |sn| M  n ... (4)
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From (3)

 |sn tn – st|   |sn| 2M


 + |t| 2|t| 1



  M
2M


+ |t|
2|t| 1




(by 4)

< 
2 2
 


< 
2
2


 = 

 |sn tn – st|< 

for each >0nN  |sn tn – st|<   n N 

 lim sn tn = st

lim sn tn = lim sn lim tn

Hence proved.

27. If {sn} converges to s, if sn  0 n and if s  0, then
 
 
 n

1
s

converges to 
1
s

.

(Nov./Dec.-18, Imp.)

Sol.
Let 0  m > 0  |sn| m  n

Since lim sn = s there exists N suits that

 n > N   |s – sn|<.m|s|

Then n > N 

     
n

1 1
s s

 = 
n

n

s s
s s


= n

n

s s
s s


   n

n

|s s |
|s ||s|



< 
m|s|
m|s|


      
n

1 1
s s

 < 

for each 0 n N    
n

1 1
s s

   n N 

 lim
n

1
s

 
 
 

=
1
s
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28. Suppose that {sn} converges to s and {tn} converges to t. If s   0 and sn  0 n then

 
 
 

n

n

t
s

converges to 
t
s

.

Sol.
{sn} is converges to s

By previous theorem 
n

1
s

 
 
 

 is converges to 
1
s

 and also, {tn} converges to t.

 lim tn = t

Required to prove n

n

t
s

 
 
 

is converges to 
t
s

.

i.e., for each 0 n N     n

n

t t
s s

 <   n N   or lim n

n

t t
s s

 .

 lim n

n

t
s

= lim 
n

1
s

. tn

= lim 
n

1
s

. lim tn

= 
1

.t
s

       n

n

t
lim

s
= 

t
s

.

1.4.1 Divergent Sequence

(i) A sequence {an} is said to diverge to +  if given any positive real number K, however large   a positive
integer m such that an > k    n   m.

(ii) A sequence {an} is said to diverge to –  if given any positive real number K, however large,   a positive
integer m such that an < – k  n   m.

1.4.2 Oscillatory Sequence

If a sequence {an} neither converges to a finite number nor diverges to +  or – , it is called an
oscillatory sequence.

Note :

If 
n
Lim


 an = 0 then sequence {an} is called as null sequence.
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29. Give a formal proof that lim

[ n +7]=+ .

Sol.

Given that lim ( n 7)  = + 

for each 0 N n N       sn > M

 n +7 > M

 n > M – 7

 n > (M – 7)2

we will take N = (M – 7)2

Formal proof

Let M > 0 and Let N = (M – 7)2

Then n > N   n > (M – 7)2

hence n > M – 7

n  + 7 > M

lim ( n  + 7) = +

30. Let { sn} and {tn} be sequence such that
lim sn =+  and lim tn > 0 [lim tn can
be finite or +  ] then lim sn tn = +  ].

Sol :
Given that {sn} is sequence which is diverges

to + .

i.e., lim sn = +

for each >0n  n>N1   sn>
M
m

     ... (1)

Let {tn} be sequences, then lim tn > 0 or lim
tn = +

Let M > 0

Select a real number m so that 0 < m < lim
tn   N2 such that n > N2   tn > m.

Put N = max {N1, N2}

Then n > N   sn tn = tn

  M
m

. m

sn tn > M

  lim sn tn = +

31. Prove that lim 
2n +3

n+1
 = + .

Sol :

Observe that 
2n 3

n 1



 = 

1 3
n

n n
1

n 1
n

   
   

= 

1 3
n n

1
1

n





= sn . tn

Where  sn=
1
n

+
3
n

  and tn =
1

1
1

n


 lim  sn tn = lim 
3

n
n

  
 

1
11
n

 
 
 
  
 

lim sn = lim 
3

n
n

  
 

lim sn = +

lim tn= lim
1

1
1

n
  
 

= 1

lim sn tn = (+ ) (1) = +

lim (sn tn) = +

32. For a sequence {sn} of +ve real number
we have lim sn = +  if and only if lim

n

1
s

= 0.

Sol.
Let {sn} be sequence of +ve real numbers.

for each M > 0 nn > N sn > M
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Required to prove,

i.e., lim sn= +   lim 
n

1
s

 = 0        ... (1)

and lim 
n

1
s

 = 0   lim sn =+        ... (2)

(i) Suppose lim sn =+

Let > 0 and M = 
1


since lim sn =+

N  n>N   sn > M =
1


  n > N   sn > 
1


  > 
n

1
s

  > 0 
n

1
s

>0

for each 0 n N    
n

1
0

s
  

  lim 
n

1
s

 = 0

(ii) Suppose that lim 
n

1
s

= 0

at M > 0 and  = 
1
M

Then > 0 N n N   
n

1 1
0

s M
     
 

n

1 1
s M



sn > 0 we can write

n>N   0 <
n

1 1
s M



n>N   M < sn

then lim sn = + .

33. Let t1 = 1 and tn+1 = 
2
n

n

t +2
2t

 for n 1.

Assume that {tn} converges and find the
limit.

Sol. (Nov./Dec.-18, Imp.)

Let lim tn = t

{tn} is converges to t

   tn+1 =
2
n

n

t 2
2t


     lim tn+1 = lim 
2
n

n

t 2
2t

 
 
 

 = 
2
n

n

lim (t 2)
lim (2t )



lim 2
n(t 2) = lim 2

nt 2

= lim tn . lim tn + 2

= t2 + 2

   lim (2tn) = 2 lim tn

= 2t

    lim tn+1 = 
2
n

n

lim (t 2)
lim (2t )


=

2t 2
2t


  lim tn+1 = 
2t 2
2t


    here   t1 = 1

      n   1

If n = 1   t1+1 =
2
1

1

t 2
2t


     t2 =
21 2
2(1)


     t2 = 
3
2

If n = 2   t2+1 =
2
2

2

t 2
2t




2
3

2
2

3
2

2

   
 

 
 
 
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= 
9 8
12


      t3 = 
17
12

If n = 3   t3+1 =
2
3

3

t 2
2t




2
17

2
12

17
2

12

   
 

 
 
 

= 
6(289 288)

2448


  1.414257

   Since 1.4142   2

 lim {tn} is converges to  2

34. Suppose that there exists N0 such that

sn   tn 0n > N .

(a) Prove that if lim sn = +  then lim
tn = + .

(b) Prove that if lim tn = –  then lim
sn = –

(c) Prove that if lim sn and lim tn exist.
Then lim sn   lim tn.

Sol.

Given that N0
 sn tn 0n N 

(a) If lim sn = +  lim tn = +

Suppose lim sn = +

for each M > 0  n > N   sn > M

N0   sn   tn 0n N 

M < sn   tn

M < tn

for each M > 0  n   tn > M

  lim tn = +

(b) If lim tn = –  then lim sn = –
Suppose lim tn = –

for each M > 0  n>N   tn < M n N 

 sn  tn
 sn  tn < M

 sn < M n N 

for each M > 0  n   sn< M n N 

 lim sn = –

(c) If lim sn and lim tn exist then lim sn  lim tn

from (a) and (b)

The limits one infinite

So, assume {tn}, {sn} converges.

i.e., tn – sn  0  n N 

lim (tn – sn)   0

lim tn – lim sn  0

lim tn   lim sn

lim sn   lim tn

35. Calculate,

   
n

lim


 
 
 n

1 1 1 1
1+ + + +....+

3 9 27 3
.

Sol. (June/July-19)

Given that 
n
lim
 n

1 1 1 1
1+ + + +....+

3 9 27 3
 
 
 

Which can written as

 1 + 
n
lim


 
n

1 1 1 1
1+ + + +....+

3 9 27 3
 
 
 

     ... (1)

By GP,   Sn = 
a

1 r
r < 1

Since      a= first term

      r = 2

1

t
t

 = 
1
3

<1

         sn =

1
3

1
1

3


=

1
3
2
3

=
1
2
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from (1) 1+ 
n
lim


 
1
2

 
 
 

= 1 + 
1
2

= 
3
2

 
n
lim


 
n

1 1 1 3
1+ + +.....+

3 9 23
   
 

.

36. Prove that
n

lim


p

1
n

= 0 for p > 0.

Sol. (Imp.)

To prove that 
n
lim
 p

1
n

Required to prove that, for each >0

nN  p

1
0 n N

n
    

for n > N, p

1
0

n
  

p

1
n

 

p

1
n

< 

np > 
1


n > 
1/p

1 
  

Selecting N = 
1/p

1 
  

for n > N

n >
1/p

1 
  

np > 
1


p

1
n

<

p

1
0

n
  

n
lim


 p

1
n

 = 0    p > 0.

37. Assume all sn   0 and that the Limit L

= lim n+1

n

s
s

 exists.

(a) Show that if L < 1, then lim sn = 0

(b) Show that if L > 1, then lim |sn| =
+ .

Sol.
If L < 1 then lim sn = 0

Suppose that L < a < 1

So,  = a – L   L +  = a

Then   N' where n > N'   n 1

n

s
L

s
   

Let N = N' + 1 then n  N n 1

n

s
s


< L + 

(–a)

       
n 1

n

s
s


 < a

n 1

n

s
a

s
   |sn+1|< a |sn|

So, clearly |sN+1|< a|sN| By Induction Now
we see that

|sN+2| < a |sN+1|<a2 |sN|

|sN+k| < ak |sN| for any k > 0

Changing variable and n = N +  k for n > N

we have |sn| < an – N |sN|
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Now, lim an–N|sN|
|sN| is number so that,
limit is |sN| lim an–N

since |a<1|, lim an = 0

since |sN|< an–N|sN|  n N 
By sandwitch theorem lim sn = 0

(b) Let tn = 
n

1
s

   n 1

n

t
t
  = n

n 1

s
s 

So, we know that n 1

n

s
s
  converges to L that

is, 
n 1

n

s
s


   0.

L  0

n 1

n

t
t
  = n

n 1

s
s 

 converse to 
1
L

, L > 1 we

know 
1
L

<1

Apply part (a) to conclude that
         lim tn = 0
      lim |tn|= 0
|sn| are the real number

     lim 
n

1
s

= lim|tn|= 0

lim sn = + .
38. Suppose lim an = a, lim bn = b, and sn

= 
3
n

2
n

a +4an

b +1
 prove that Lim Sn = 

3

2
a +4a

b +1

carefully, using the limit theorems.

Sol.
Given that Lim an = a,  Lt bn = b

 Sn = 
3
n n

2
n

a 4a

b 1




 = 

3

2

a 4a

b 1




First we use by known theorem. If (Sn)
converges to  s  and  (tn)  converges to  t,
then (Sntn) converges to St.

      Lt (St tn) = (Lt Sn) (Lt tn)

    Lt  3
na = Lt an · Lt 

2
na  · Lt 2

na

= a Lt an · Lim an

= a · a · a
= a3

We have that (Sn + tn) = Lt Sn + Lt tn

Lt 3
n(a 4an) = lim 3

na  + 4 · Lt an

= a3 + 4a
Similarly,

      Lt  2
nb 1 =  Lim bn · Lt bn + 1

= b · b + 1 = b2 + 1

Since  b2 + 1 0 [  by known theorem

 Lt Sn =
3

2

(a 4a)

(b 1)




    Lt n

n

t
S

= Lt 
n

1
S

· tn

 Hence the proof.

39. Let  x1 = 1  and   xn+1 = 2
n3x  far n 1

Show if a = Lt xn, then a =
1
3

 or a = 0.

Sol.
a) Let  x1 = 1, n = 1

   x2 = 2
13x 3

    n = 2   x3 = 3x2
2 = 3(3)2 = 27

 a = Lt xn

   
x
Lt


 xn= 2
n 13x 

    a= 
1
3

  or  a = 0

b) Does  Lt xn  exist ?
Yes  Lt xn  is exist.

We have limit points a = 
1
3

 (or) a = 0

 xn  has limit point
 Lt xn exist.
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c) Let   na Limx

a > Lim xn  (or)  a < lim xn

a  is constant
We know that  Lim  xn > a

We prove a > nx
Lim x


a > x0

 a > x0

 But which is contradiction

 na  Lim x  is wrong

 a = Lt xn

1.5  MONOTONE SEQUENCES AND CAUCHY SEQUENCES

(i) A sequence {an} is said to be monotonically increasing if an+1  an   n  N

i.e., a1  a2  a3 .....  an  an+1 .....

(ii) A sequence {an} is said to be monotonically decreasing if an+1  an   n  N

i.e., a1  a2  a3 .....  an  an+1 .....

(iii) A sequence {an} is said to be monotonic if it monotonically increasing or monotonically decreasing.

(iv) A sequence {an} is said to be strictly monotonically increasing if an+1 > an   n  N

(v) A sequence {an} is said to be strictly monotonically decreasing if an+1< an n  N

(vi) A sequence {an} is said to be strictly monotonic if it is either strictly monotonically increasing or
strictly monotonically decreasing

Note

1) Every monotonically increasing sequence which is bounded above converges  to its supremum.

2) Every monotonically decreasing sequence which is bounded below converges to its infimum.

40. All bounded monotone sequence converge.

(i) Every monotonically increasing sequence which is bounded above is convergent.

(ii) Every monotonically decreasing sequence which is bounded below is convergent.

OR

State and prove Montone Converge Theorem.

Sol. (June/July - 19, Dec.-17, Imp.)

(i) Let {sn} be sequence which is monotonically increasing and bounded above.

To prove that {sn} is convergent.

i.e., to prove that {sn} exists

lim  sn = sup{sn|nN}
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for each >0 mN  |sn – k|<  n m let the range of the sequence.

S = {sn : nN}

Clearly it is non empty and is bounded above energy non empty subset of R which {sn} is bounded
above has supremum.

Let sup s = k

where k is least upper bound.

k –  is not an upper bound of s

   m N   sm > k –  ... (1)

 {sn} is monotonically increasing sequence n m   sn sm ... (2)

from (1) and (2)

k –  < sm  sn ... (3)

k is the supremum of s n N 

sn 
 k < k +  ... (4)

(3), (4)

k –  < sn < k + 

 |sn – k| < 

 Every monotonically increasing sequence which is bounded above is convergent.

(ii) Let {sn} be sequence which is monotonically decreasing and bounded below.

To prove that {sn} is convergent

i.e., to P.T lim{sn} is exists

lim sn = Inf{sn/nN}

To prove that for each 0 m N     |sn –  | <  n m 

Since {sn} is bounded below.

{sn} has intimum =
Let inf =

Where  is a great lower bound +  is not a lower bound of s

mN   sm <   +  ... (1)

 {sn} is monotonically decreasing sequence.

 n M    sn
 sm ... (2)

from (1) and (2)  sn 
 sm< +  ... (3)

 is intimum of s n N  ... (4)

from (3) and (4)

  –  < sn <   + 

|sn –  |<  n N 

Every anatomically decreasing sequence which is bounded below is convergent.
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41. If {sn} is an unbounded non decreasing sequence then lim sn = + .

Sol.
Let {sn} be non decreasing sequence but not bounded above.

{sn} is an increasing sequence   sn sm for n>m.

{sn} is not bounded above

 mz +  sm>M where M > 0

sn
 sm > M for n > m

sn>M  n>m

{sn} is diverges to infinity

i.e., lim sn =+

42. If {sn} is an unbounded non increasing sequence then lim sn = – .

Sol.
Let {sn} be decreasing sequence and not bounded below.

{sn} is an decreasing sequence   sn sm for n>m.

{sn} is not bounded below

mz+  sm<M where M > 0

 sn sm<M for n > m

sn<M  n>m

{sn} diverges to –

lim sn =–

43. Which of the following sequences are increasing decreasing ? Bounded ?

a)
1
n

b)
n

2

(–1)

n
c) n5

d) Sin  
 
 

nπ
7

e) (–2)n

f) n
n
3

Sol.

a)
1
n

            Let  Sn =
1
n
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       Sn+1=
1

n 1

   Sn=
1
n

    n = 1   S1 = 
1
1

= 1;

       S1+1 = S2 = 
1

1 1
= 

1
2

= 0.5

    n = 2 = 
1
2

 = 0.5

       S2+1 = S3 = 
1

2 1
= 

1
3

= 0.33

 n n 1S  S 


1
n

 is decreasing sequence and bounded.

b)
n

2

(–1)

n

      Let  Sn = 
n

2

( 1)

n



Sn+1 = 
n 1

2

( 1)

(n 1)




    n = 1  S1 = 
1

2

( 1)

1


 = –1;

     n= 1    S1+1 = S2 = 
2

2

( 1)

1


= 1

n = 2     S2 = 
2

2

( 1)

(2)


 = 

1
4

; n = 2     S2+1 = S3 = 
2

2

( 1)

2


= 

1
4

n = 3     S3 = 
3

2

( 1)

(3)


 = 

1
9


; n = 3     S3+1 = 
3

2

( 1)

3


= 

1
9


 Sn  = 
n

2

( 1)

n


 is bouned.
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c) n5

Let  Sn = n5

Sn+1 = (n+1)5

Put

n = 1     S1 = 15 = 1 ;   n = 1     S1+1 = S2 = (1+1)5 = 25

n = 2     S2 = 25 =    ;   n = 2     S2+1 = S3 = (2+1)5 = 35

n = 3     S3 = 35 =    ;   n = 3     S3+1 = S4 = (3+1)5 = 45

 n n 1S S 

This shows increasing

 n5  is increasing sequence.

d) Sin  
 
 

nπ
7

Let  Sn = Sin
n
7
 

 
 

Sn+1 = Sin
(n 1)

7
  

 
 

Put n = 1  in  Sn    S1 = Sin 7
 

 
 

;  n = 1 in S1+1 = S2 = Sin
2
7
 

 
 

n = 2     Sn  = Sin
2
7
 

 
 

;  n = 2   S2+1 = S3 = Sin
3
7
 

 
 

n = 3     S3  = Sin
3
7
 

 
 

;  n = 3 ; S3+1 = S4 = Sin
4
7
 

 
 

 |Sn+1 – Sn| < 

   is arbitrary

 Sin 
n
7
 

 
 

 is bounded sequence.

e) (–2)n

Let         Sn = (–2)n

          Sn+1 = (–2)n+1

 Put  n = 1  in  Sn ;   Put  n = 1  in  Sn+1
       S1 = (–2)1 = 2      S1+1 = S2 = (–2)1+1 = 4
        n = 2                 n = 2 
       S2 = (–2)2 = 4      S2+1 = S3 = (–2)3 = –8
        n = 3            n = 3
       S3 = (–2)3 = –8      S3+1 = S4 = (–2)4 = 16
        n = 4  
      S4 = (–2)4 = 16

 S1 < S2 ;    S2 < S3 ;  S3 < S4

 It is increasing and bounded sequence.
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f) n
n
3

   Let  Sn = n

n

3
;  Sn+1 = (n 1)

n 1

3 


     Put n = 1

  S1 = 
1

;
3

S1+1 = S2 = S2 = 2

2

3
= 

2
9

    n = 2

  S2 = 
2

;
9

S2+1 = S3 = 2

1

3

    n = 3

   S3= 2

1
;

3
  S3+1 = S4 = 4

4

3

  n

n

3
 is decreasing bounded sequence.

44. Let  (Sn) be a sequence such that  |Sn+1 – Sn| < 2–n  for all n N.  Prove (Sn) is a Cauchy
sequence and hence a convergent sequence.

Sol.

Given {Sn} is a sequence n
n 1 nS S 2
  

Let {Sn} is a Cauchy sequence

 {Sn} is bounded

By Balzano weiestrass theorem we know that  {Sn} has atleast one limit point say  l.

If possible, Let  l 1  be another limit point of {Sn}

Let  0  l l

 {Sn}  is a Cauchy sequence, for each

0  m z   n 1 ns s  < 2–n  n N,   n m  here  n2

 l, l' are  limit points,    positive integers  n+1   m, n  0

|Sn+1 – l|< 
3


 and  |Sn – l|< 
3


Consider

|l – l'| = |l – Sn+1 + Sn+1 + Sn – Sn – l|

|Sn+1 – Sn|< 2–n
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n=1     |S1+1 – Sn|< 2–1 ;  n=2   |S3 – S2|< 2–2

|S2 – S1|< 
1
2

|S3 – S2|< 
1
4

 |Sn+1 – Sn|<   n N  |Sn+1 – Sn|<   n N 

  
1
2

  
1
4



 Sn is bounded  Sn is bounded

  |Sn+1 – l| + |Sn+1 – Sn| + |Sn – l|

  
3 3 3
  
 

< 

 |l – l'| < |l – l'|

 |Sn+1 – Sn| < |Sn+1 – Sn|

which is contradiction

 Hence our assumption is wrong

 {Sn} has a unique limit point ‘l’

 {Sn} is bounded and has a unique limit point

 {Sn} is convergent.

45. Let (Sn) be an increasing sequence of positive number and define n = 
1
n

(S1+S2+....+Sn)

prove (n) is an increasing sequence.

Sol. (June/July-19, May/June-18, Dec.-17, Imp.)

Given {Sn} is an increasing sequence of positive number

 Sn   Sn+1  n N   

 n = 
1
n

 (S1+S2+...+ Sn)

      n 1 = 
1

n 1
(S1+ S2 +...+ Sn)

n = 1                  n+1 =
1

n 1
(S1+ S2 + ... + Sn)

1 =
1
1

(S1+ S2 + ... + S1)    Put n = 1

= (2S1+ S2 + ... + S0) n+1 = 2 =
1

1 1
(S1+ S2 + ... + S1)
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     n= 2     1+1 = 2 =
1

1 1
(S1+ S2 + ... + S1)

  2 =
1
2

(S1+ S2 + ... + S2)        2 =
1
2

(2S1+ S2 + ... + S0)

= 
1
2

(S1+ 2S2 + ... + S1)          n = 2

     n= 3 2+1 = 3 =
1

2 1
(S1+ S2 + ... + S2)

   3 =
1
3

(S1+ S2 + ... + S3) = 
1
3

(S1+ 2S2 + ... + S1)

= 
1
3

(S1+ S2 + 2S3 ... + S2)          n = 3

3+1= 4 =
1

3 1
(S1+ S2 + ... + S3)

= 
1
4

(S1+ S2 + 2S3 + ... + S2)

 n  < n+1

 n is an increasing sequence.

46. Let  t1 = 1  and  tn+1 = 
 
  

n2
1

1– ×t
4n

 for n 1

a) Show lim tn exists

b) What do you think lim tn  is ?

Sol.

Given  t1 = 1  and  tn+1 = n2

1
1 t

4n
    

 for  n 1

a) We will show that  Lim tn  is exist

It is enough to show that  {tn} is a bounded monatone sequence

First we prove that {tn}  is a bounded

   two real numbers  k1 and k2  1 2k k 

then  1 n 2k t k    n N 

 n n 1t t 

tn  is monotone sequence

 tn  is bounded sequence

 {tn}  is bounded monotone sequence

 Lim tn  is exist.
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b) The answer is not obvious!

It twins out that  lim tn is a waltes product

and has value 
2


 which is about 0.6366

Observe how much easier part (a) is than
part (b).

47. Let  t1 = 1 and tn+1 = 
 
 
 

2

1
1 –

(n+1)
 tn

for all n 1 .

(a) Show Lim tn exists.

(b) What do you think Limtn is?

(c) Use induction to show tn = 
n+1
2n

(d) Repeat part (b)

Sol. (June/July-19, May/June-18, Imp.)

(a) (b) and (d) same as the above problem.

(c) t1 = 1, tn+1 = 2

1
1

(n 1)
   

 tn ... (1)

We have to show that tn =
n 1
2n


We will prove by induction

0< tn+1 < tn < 1

It is holds for n  1

multiply 
n 1
2n


 b/s

0 < tn+1 < tn <
n 1
2n


... (2)

this holds tn < 
n 1
2n


 for n

Now to show tn > 
n 1
2n


from (2)

0 < tn+1

tn+1 > 0

 tn+1>
n 1
2n


Thus (2) holds for n+1 for n

Hence (2) holds for all n by induction

Thus limtn = t exits.

48. Let S1 = 1 and Sn+1 = 
1
3

(Sn+1) for n1.

(a) Find S2, S3 and S4

(b) Use induction to show Sn > 
1
2

 for

all n.

(c) Show (Sn) is a decreasing sequence

(d) Show lim Sn exists and find lim Sn.

Sol. (June/July-19, Imp.)

(a) Given  S1 = 1 and Sn+1 = 
1
3

 (Sn+1) for

n  1

   S1= 1

   put   n = 1 in Sn+1

    S1+1 = S2 + = 
1
3

(S1+1)

= 
1
3

(1+1)

= 
2
3

   Put   n = 2

    S2+1 = S3 + = 
1
3

(S2+1)

= 
1
3

2
1

3
  
 

= 
5
9

 = 
5

3.3
 = 2

5
3
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Put n = 3

    S3+1 = S4 + = 
1
3

(S3+1)

= 
1
3

5
1

9
  
 

= 
14

3.3.3
 = 3

14
3

(b) S1=1 and Sn+1 = 
1
3

(Sn + 1) for n   1

We will prove by induction Sn > 
1
2  n.

0 < Sn+1 < Sn <
1
3

 (Sn + 1)

It is holds for n = 
1
2

Hence Sn > 
1
2

 is holds n = 
1
2  n

We prove that n = n + 1  n

0 < Sn+1 < Sn < 
1
3

(Sn + 1)

Sn+1 < 
1
3

(Sn + 1)

Sn+1 is greater

 Sn+1 >
1
2

 is holds

Sn+1 also holds for n + 1 for n

 0 < Sn+1 < Sn < 
1
3

 (Sn + 1) holds for n

 Sn > 
1
2 n

(c) Given

    S1= 1 ... (1)

Sn+1 =
1
3

 (Sn+1) ... (2)

Put n=1 in equation (2)

   S1+1 = S2 =
1
3

(S1 + 1)

=
1
3

(1 + 1)

=
1
3

(2) = 
2
3

 = 0.66

Put n = 2 in equation (2)

    S2+1 = S3=
1
3

(S2 + 1)

=
1
3

2
1

3
  
 

=
5
9

 = 0.55

Put n = 3 in equation (2)

    S3+1 = S4=
1
3

(S3 + 1)

=
1
3

5
1

9
  
 

 = 
1
3

14
9

 
 
 

= 
14
27

 = 0.52

 Sn > Sn+1

 {Sn} is decreasing sequence

(d) We will show that  Lim tn  is exist

It is enough to show that  {tn} is a bounded
monatone sequence

First we prove that {tn}  is a bounded

   two real numbers  k1 and k2  1 2k k 

then  1 n 2k t k    n N 

 n n 1t t 

tn  is monotone sequence

 tn  is bounded sequence

 {tn}  is bounded monotone sequence

 Lim tn  is exist.
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1.5.1 Cauchy Sequence

Definition (1)

A sequence {an} is said to be a Cauchy
sequence if given   > 0, however small,   a
positive integer m such that |an – am|<  n  m.

Definition (2)

A sequence {an} is said to be a Cauchy
sequence if given   > 0, however small, 
a positive integer m such that |am+p – am| <   p
> 0, pm.

Definition (3)

A sequence {an} is said to be a Cauchy
sequence if given   > 0, however small,   a
positive integer m such that |ap – aq|<  p, q  m.

Note :  All the above definitions are
equivalent.

49. Every Convergent Sequence is a Cauchy
Sequence.

Sol. (Dec.-17)

Let {an} converges to ‘l’.

 For each   > 0,   m   z+   |an – l| <

2


   n   m.

If  p, q   m then |ap – l| < 2
 ,

     |aq – l| < 2


Consider

|ap – aq| =  |ap – l + l – aq|

  |ap – l| + |aq – l|

< 2
  + 2



< 

 |ap – aq| <     p, q   m.

 {an} is a Cauchy sequence.

50. If {an} is a Cauchy sequence, then {an}
is bounded.

Sol. (Dec.-17)

Let {an} is a Cauchy sequence

 For    = 1,    m   z+   |ap – aq|<1

      p, q   m.

 |ap – am| < 1   p   m

 am – 1 < ap < am + 1    p   m
Let K1 = min. {a1, a2, ....., am–1, am–1} and

K2 = min. {a1, a2, ....., am–1, am + 1}

 K1   an   K2   n   z+

 {an} is bounded.

Note : Converse of the above theorem need
not be true.

51. If {an} is a Cauchy sequence then {an} is
convergent.

Sol. (May/June-18, Dec.-17)

Let {an} is a Cauchy sequence

 {an} is bounded

 By bolzano weierstrass theorem we
know that {an} has atleast one limit point
say ‘l’.

If possible, let l ' be another limit point of {an}
Let    = |l – l '| > 0

 {an} is a Cauchy sequence, for each

>0,   m   z+   |ap – aq| < 
3


   p,

q   m

 l,  l ' are limits points,   positive integers

p   m,  q   m   |ap – l| < 
3


 and

|ap – l '| < 
3


Consider
     |l – l '| =  |l – ap + ap – aq + aq – l'|

   |ap – l| + |ap – aq| + |aq – l'|

<  
3


 + 
3


 + 
3


<  

           |l – l '| <  |l – l '|
which is a contradiction.
Hence our assumption is wrong

 {an} has a unique limit point ‘l’.

 {an} is bounded and has a unique limit
point.

 {an} is convergent.
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1.6  SUBSEQUENCE

If {sn} is a sequence and {nk} is a sequence of positive integer such that n1 < n2 < .... < nk. Then the
sequence {

rns }is called subsequence of {sn}.

Example
sn = n2 (–1)n

s1 = –1, s2 = 4, s3 = –9, s4 = 16 .... and 4, 16, 36, ... are subsequence of sn.

52. If the sequence {sn} converges, then every subsequence converges to the same limit.

Sol. (May/June-18, Nov./Dec.-18, Dec-2017, Imp.)

Let {
kns } be subsequence of {sn} n 1.

To prove

kns  is converge to 

 >0   kN   for any k K  | kns  –  |<

as we know sn converges to  , k such that for any k k

|sn –  |<

then for any k K we have,

nk > nk  k
nk > K

| kns  –  |< 

For given >0 k  for any k K  | kns  –  |< 
since >0 was arbitrary it holds for any 

 >0, k  | kns  –  |<  k k 
53. If the sequence {sn} converges to   prove that it is subsequence also converges to  .

Sol. (Imp.)

Given sequence {sn} is converges to 
n
lim


sn=  .

for each 0 m N    n |sn –  |<  n m ... (1)
Let k be any natural number

for each 0 m N     |sk –  |<   n m ... (2)
To prove that

The subsequence 
kns  converges to  .

i.e., to prove

for each <0mN | kns  –  |<  nk m
 nk  k

from (1) and (2) | kns  –  |<  n m

 lim kns  = 

subsequence { kns } converges to  .
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54. Every sequence {sn} has a monotonic subsequence.

Sol. (June/July-19, Dec.-17, Imp.)

Let {sn} be a sequence to prove that {sn} has a monotone subsequence {sn} is any sequence then
three cases arise.

Case (i) : {sn} has no peak point

Case (ii) : {sn} has finite number of peak point

Case (iii) : {sn} has infinite number of peak point

Case (i)

{sn} has no peak point

 1 N

(n1) 1 is not a peak point of {sn}

2n N    and  n2  1


2ns

  1ns

 n2
N

n2 is not a peak point of {sn}

 3n N   and n3 > n2   
3ns 

2ns

Repeating the same argument, we get

n1 < n2 < n3 < .... 
1ns 

2ns   
3ns <....

where {
rns } is a subsequence of {sn}

   {sn} has a monotone subsequence.

Case (ii)

{sn} has finite number of peak point, let m be the maximum among all the peak point

Let n1 > mN

Then n1 is not a peak point of {sn}

2n N    n2 > n1 and 
2 1n ns s

 n2
N  and n2 > n1 > m

 n2 is not a peak point

3n N    n3 > n2 and 
3 2n ns s

Repeating the same process than we get

n1< n2 < n3 ....  1ns   
2ns  

3ns  .....

where {
rns } is a subsequence of {sn} and it is monotonically increasing sequence.

  {sn} has monotone subsequence.
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Case (iii)

{sn} has infinite number of peak points let n1, n2 ... be the infinite number of peak points.

  n1 < n2 < n3 < ....

 n1 is a peak point

Then n2 > n1   
2ns  

1ns

  n2 is peak point

Then n3 > n2  3ns  2ns

Repeating the above process, we get

n1 < n2 < n3 < .... 1 2 3n n ns s s .....  

where {
rns } is a subsequence of {sn} and it is monotonically subsequence.

 Every sequence contains monotone subsequence.

55. State and prove Bolzano Weierstrass theorem

OR

Every bounded sequence has convergent subsequence.

Sol. (June/July-19, Nov./Dec.-18, Imp.)

Let {sn} be a bounded sequence

To prove that {sn} has convergent subsequence

{sn} is a sequence.

As we know that every sequence has monotone subsequences.

{sn} is bounded and the subsequence of {snk} is also bounded.

Also subsequence of {sn} is either monotonically increasing or monotonically decreasing.

 By monotone convergence theorem

Subsequence { rns } is convergent

 Every bounded sequence has a convergent.

56. Find the subsequence limit of sn = n2(–1)n n N  .

Sol :
Sn = n2(–1)n n
     s1= –1,      s2= (2)2 (–1)2 = 4

     s3= –9,      s4= 16

     s5= –25,    s6= 36.....

The subsequence of even terms on {4, 16, 36...} is diverge to + .

The subsequence of odd terms are {–1, –9, –25, ---} is diverges to – .

 All subsequence that have a limit diverge to + or – .

S ={– , + } subsequential limit of {sn}.
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57. Let s denote the set of subsequential
limit of sequence {sn}. Suppose {tn} is a
sequence in SR and that t = lim tn then
ts.

Sol.
{ kns } is subsequence of {sn} is converges to

t1  n1  |
1ns  – t1|<1.

Assume that n1, n2, ... , nk have been selected,
so that n1 < n2 < .... nk        ... (1)

it is jth term

|
jns – tj| < 

1
j
 for j = 1, 2,  ... k        ... (2)

If { kns } is subsequence converges to tk+1

nk+1 > nk   
k 1n k 1

1
s t

k 1  


from (1) and (2) hold k + 1

case (i) suppose t R

i.e., t is not +  to –

consider 
kns t = 

kn k ks t t t  

= 
kn k k(s t ) (t t)  

= 
kn k ks t | |t t  

= 
1
k

 + kt t|      ... (3)

{tn} is sequence is convergent

i.e., lim tn = t

for each >0  N  |tn – t|<

From (3)

kn|s t|  < 
1
k

 + 

kn|s t| < k N 

n
lim
 kns = t

Case (ii)

Suppose t = +  from equation (4)

jn j

1
s t

j
  j = 1, 2, ... k

kn k

1
s t

k
  k N 

kns > tk – 
1
k

 for 
kns < 

1
k

 + tk

kns  < tk – 
1
k

 lim 
kns  = +

58. Let an = 3 + 2(–1)n for nN.

a) List the first eight terms of the
sequence (an).

b) Give a subsequence that is constant
{takes a single values specify the
selection function .

Sol. (Imp.)

a) First eight terms of the sequence (an).

Given that an = 3 + 2(–1)n for nN.

        Put n = 1 in an

    a1 = 3 + 2(–1)1

= 3 – 2 = 1

     n = 2  a2 = 3+2(–1)2

= 3 + 2

    a2 = 5

        Put n = 3 in

    a3 = 3 + 2(–1)3

= 3 – 2

    a3 = 1

        Put n = 4 in

    a4 = 3 + 2(–1)4

= 3 + 2

= 5
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        Put n = 5 in

    a5 = 3 + 2(–1)5

= 3 – 2

= 1

        Put n = 6 in

    a6 = 3 + 2(–1)6

= 3 + 2

= 5

        Put n = 7 in

   a7 = 3 + 2(–1)7

= 3 – 2

= 1

        Put n = 8 in

   a8 = 3 + 2(–1)8

= 3 + 2

   a8 = 5

b) Let a (k) = nk = 2k

Then (ank) is the sequence that takes the
single value 5.

There are many other possible choice of .

59. Consider the sequences defined as
follows:

   an = (–1)n, bn =
1
n

, Cn = n2,

  dn = 
6n+4
7n – 3

For each sequence, given an example of
a monatone subsequence.

Sol.
Given an = (–1)n is sequence

Let ank be subsequence of an.

    an=(–1)n ; an+1 = (–1)n+1

an is (–1, 1, –1, 1, –1, 1, – 1, 1....)

  ank = (–1)nk ; ank+1 = (–1)nk+1

= possitive value

  k = 1 ank < ank+1

an1 < an2

  ank+1 is monotone subsequence

  (–1)nk+1 is monotone subsequence

Example

 nk – 2k

 ank = (–1)2k

   bn =
1
n

(1, 
1
2

, 
1
3

, 
1
4

 .... )

The subsequence is (bnk) K   N where
nk = 2k monotone subsequence.

bnk = 
1
2k

    cn = n2

The subsequence is (1, 4, 9, 16, 25 ....)

The subsequence is (cnk) K   N  where
nk = 2k monotone subsequence is

 cnk = (2k)2

   dn = 
6n 4
7n 3




The sequence is d1 = 6 4 10
7 3 4





          d2 = 
12 4
14 3




 = 
16

110

          d3 = 
18 4
21 3




 = 
22
18

 =
11
9

 The sequence is 
5 16 11

, , .....
2 11 9

 
 
 

The subsequence is (dnk) K N  where
nk = 2k

        Cnk =
6(2k) 4
7(2k) 3




=
12K 4
14K 3



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b) Subsequential Limits

  an = (–1)n   bn = 
1
n

Subsequence is bnk =
1


 subsequence

 ank = (–1)nk

   
k
Lt
 na

 = (–1)n = ( 1)  = 0

      Cn= n2

=

      dn=
6n 4
7n 3




 dnk=

4
6

nk
3

7
nk





 dnk=
6
7

c) Lim sup and lim inf

  an = (–1)n sub sequence is ank

We have that

 Lim sup = Lim inf

Lim sup ank = Lim inf ank.

 nk   k.

n = 1

a1 = (–1); an = 1, an = – 1

Lt sup ank = Lt inf ank

    bn =
1
n

subsequence bnk=
k

1
n

Lt sup bnk  = sup bnk and

Inf bnk = Lt inf bnk

 Lt sup
1
nk

 = sup 
1
nk

=
k

1
n

 Lt Inf bnk = inf 
1
nk

+
1
nk

  cn = n2

Subsequence is cnk =
2
kn

Lt sup cnk = sup cnk =
2
kn

Lt inf cnk = inf cnk = 2
kn

 dn =
6n 4
7n 3




 subsequence is

dnk= 
k

k

6n 4
7n 3




 Lt sup dnk = sup dnk = k

k

6n 4
7n 3




 Lt Inf dnk = Inf dnk = k

k

6n 4
7n 3




d) Converge? Diverges to +  ? Diverges
to – .
  from (b) condition

an is diverges at –
 bn is converges

 cn is diverges at +
 dn is converges

e) Which of the sequences is bounded?

 an = (–1)n

an+1 = (–1)n+1

a1 = –1; a2 = 1, a3 = –1
 –1 c an < 1

an is bounded sequence

 bn =
1
n

bn+1 = 
1

n 1

b1 = 1; b2 = 
1
2

; b3 = 
1
3

1
2

< bn < 1
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It is not bounded sequence.

    cn = n2 ; cn+1+ (n+1)2

   c1 = c2 = 4

   cn < cn+1  1   cn  4

    1  cn cn+1 4
cn is bounded sequence

    dn= 
6n 4
7n 3




  Put    n = 1 d1 = 
6 4
7 3



 = 
10
4

=
5
2

= 2.5

  d2 =
16

1.4
11



 dn > dn+1

 dn is not bounded sequence.

1.7  LIM SUP’S AND LIM INF’S

Let {sn} be any sequence of real number and let s be the set of subsequential limit of {sn}.

lim sup sn= N
lim


sup {sn : n > N} = Sups

lim Inf sn= N
lim


Inf {sn : n > N} = Infs

60. If {sn} converges to a positive real number s and {tn} is any sequence then lim sup
sn tn = s lim sup tn.

Sol. (Nov./Dec.-18, Imp.)

For every sequence there exists a montane subsequences.

Let
kns and

knt be the monotonic subseqnce of sn and tn respectively..

If sequence converges to a limit. Then its subsequence also converges to the same limit

First we show that lim sup sn tn   s. lim sup tn.

Let lim sup sn = s

lim sup tn =  ... (1)

Case (i)  is finite

k
lim


 
knt  =  ... (2)

 Sequence converges to limit then subsequence also converges to the same limit.

Similarly
k
lim
 kns = s
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Consider sequence sn tn such that there exist a monotone subsequence 
k kn ns t

lim sup (sn tn)  = s

lim sup (
k kn ns t ) = s ... (3)

Then lim (
k kn ns t ) = s

As lim sup sn tn is the largest possible limit of subsequence of {sn tn}.

k
lim


 sup (sn tn)   s

k
lim


 sup (sn tn)   s. lim sup tn ... (4)

Replace sn by 
n

1
s

 and tn by sn tn

lim sup tn = lim sup 
n

1
s

(sn tn)


1
s

 lim sup sn tn

s lim sup tn  lim sup sn tn ... (5)

from (4) and (5)

lim sup (sn tn) = s.lim sup tn

Case (ii)  = + 

from equation (1) lim sup tn = +

lim 
knt = +

lim sup (sn tn) = s

lim sup (sn tn) = s(+ )

lim sup (sn tn) = s. lim sup tn

Case (iii)  = –

Equation (1) lim sup tn = –

Equation (2) 
k
lim
 knt = –

lim sup (sn tn) = s

lim sup (sn tn) = s(– )

lim sup (sn tn) = s . lim sup tn

All the three cases are holds

lim sup (sn tn) = s lim sup tn.
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61. Prove that for sequence of non zero real numbers lim inf n+1

n

s
s

  lim inf 1/n

ns   lim sup

1/n

ns   lim sup n+1

n

s
s

.

Sol. (June./July.-19)

{sn} be any sequence of non zero real number.

Consider

lim inf n 1

n

s
s
   lim inf 1/n

ns ... (1)

lim inf |sn|
1/n   lim sup 1/n

ns ... (2)

lim sup |sn|
1/n   lim sup n 1

n

s
s
 ... (3)

The inequality (2) is true for all sequences
Now, required to prove (1) and (3)

Consider inequality (3)

    lim sup |sn|
1/n   lim sup n 1

n

s
s


  Let,     lim sup|sn|
1/n = 

     lim sup n 1

n

s
s
 = L

We need to prove that  L

Consider M be any positive number such that
L < M ... (4)

i.e., lim sup n 1

n

s
s
  < M

N
lim


 sup n 1

n

s
: n N M

s


    
  

sup n 1

n

s
: n N M

s


    
  

n 1

n

s
s
 < M   for n N ...(5)
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for n>N

          |sn|= n

n 1

s
s 

n 1

n 2

s
s





 ..... N 1

N

s
s
 |sN|

There are n – N fractions

 n – (N +1) + 1 = n – N – 1 + 1

= n – N

Then (2) becomes

|sn|<Mn – N |sN| for n > N

|sn| < Mn M–N |sN| for n > N

As M and L are fixed

Assume M–N|Sn| as a constant value a

 |sn|< Mn . a  n N 

|sn|
1/n < (Mn a)1/n for n > N

 |sn|
1/n < M  a1/n  for n > N

N
lim


|sn|
1/n < M 

N
lim


1/na

N
lim


|sn|
1/n < M (1)

lim sup |sn|
1/n < M

 = lim sup |sn|
1/n   L

lim sup |sn|
1/n  lim sup n 1

n

s
s


Similarly

lim inf |sn|
1/n  lim inf|sn|

1/n

 lim inf n 1

n

s
s
  lim inf |sn|

1/n  lim sup

|sn|
1/n lim sup n 1

n

s
s
 .

62. Prove Lim sup |Sn| = 0 Iff Sn = 0.

Sol.
Let (Sn) be a sequence

We have Lim sup |Sn| = 0

We prove that Sn = 0

We know that

Lim sup Sn = Sup Sn

Lim sup |Sn| = sup|Sn|

 Lim sup|Sn| = 0

Sup|Sn| = 0

|Sn| = 0

Sn = 0

Conversly prove that Lim sup|Sn| = 0

we have Sn = 0

apply suprimum both sides

Sup Sn = 0

Sup |Sn| = 0

apply limit on b/s

Lim sup|Sn| = 0

 Lim sup |Sn| = 0   Sn = 0

63. Let (Sn) and (tn) be the following squares
that repeat in cycles of four.

(Sn) = (0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2,
1, 0 ....)

(tn) = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2,
1, 1, 0, 2 ....)

find a) lim inf sn + lim inf tn,

Sol.
a) Lim inf Sn + lim Inf tn

= (0, 1, 2, 1, 0, 1, 2, 1,0, 1,2, 1, 0, 1, 2,
1,0....)

= (2, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2
...)

= 0 – 0 + 2 – 2

= 0

b) Lim inf (Sn + tn)

Lim inf (0 + 2 – 1) = 1

c) Lim inf Sn + lim Sup tn
  Lim inf Sn = 0

  Lim inf tn = 2

 lim inf Sn+ lim sup tn = 0 + 2 = 2
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d) Lim sup (Sn + tn)

lim sup (Sn + tn) = 1 + 2 = 3

e) Lim sup Sn+Lt sup tn
Lim sup Sn = 2

Lim sup tn = 2

 Lim sup Sn = Lim sup tn= 2 + 2 = 4

f) Lim inf (Sn tn)

 Lim Inf (0.1) = 0

g) Lim sup (Sn tn)

 Lim sup (Sn tn) = 1.2 = 2.

1.8  SERIES (OR) INFINITE SERIES

If {un} is a sequence of real numbers then u1 + u2 + u3 + ... un + ... is called an infinite series. and

is denoted by nn 1
u




  or un.

The numbers u1, u2, u3, ... un, ... are called the 1st, 2nd, 3rd, ... nth .. term of the series.

1. Series of Positive Terms

If all the terms of the series un = u1 + u2 + .... + un + ... are positive i.e., if un > 0  n. Then the
series is called a series of positive terms.

2. Alternating Series

A series in which the terms are alternatively positive and negative is called an alternating series.

 (–1)n – 1 un = u1 – u2 + u3 – u4 + ... + (–1)n –1 un + ... where un > 0 n is an alternating series.

1.8.1 Partial Sums

If un = u1 + u2 + u3 + ... + un + ... is an infinite series where the terms may be +ve or –ve then
sn = u1 + u2 + ... + un is called the nth partial sum of un. Thus the nth partial sum of an infinite series is the
sum of its first n terms.

 n   N, {sn} is a sequence called the sequence of partial sums of the infinite series un.

 To every infinite series un there corresponds a sequence {sn} of its partial sums.

Note :

1. The series un converges if the sequence {sn} of its partial sums converges.

2. The series un diverges if the sequence {sn} of its partial sums diverges.

3. The series un oscillates finitely if the sequence {sn} of its partial sum oscillates finitely.

4. A necessary and sufficient condition for the convergence of an infinite series is if the series 
n 1




  un

converges, then 
n
Lim


 un = 0.
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5. Geometric Series : If |r| <  1 or – 1 < r < 1 the series 
n 0




 rn(r   R) converges to 

1
1 r

 and if |r|

 1 the series n

n 0
r




  diverges.

6. Auxilary series or p-series test : The series  p p p p

1 1 1 1
...,P R

n 1 2 3
      a) converges if P >

1, b) diverges if 0 < p   1 and c) diverges if p   0.

7. Comparison test of the first type : Let un and vn be two positive term series such that vn is
convergent and   m  N   un   vn n m  then un is convergent.

8. Comparison Test of the Second Type : If un and vn are two series of non negative terms such

that nv  is divergent and n nm N u v n m      then un is divergent.

9. Limit comparison test : Let un and vn be two series of positive terms such that 
n
Lim


n

n

u
v = lR

then if l   0 then the series un, vn either converges or diverges together..

10. Cauchy’s nth root test : Let un be a +ve term series and Let 
n
Lim


(un)
1/n = l. then the series is

(i) converges if l < 1

(ii) diverges if l > 1 and

(iii) test fails to decided the nature of the series if l = 1.

11. D'Alemberts ratio test : If un is a series of +ve terms 
n
Lim


n 1

n

u
u
  = l, then

a) un converges if l < 1

b) un diverges if l > 1 and

c) Test fails to decided the nature of the series if l = 1.

12. If un is a series of +ve terms n 1

n
n

u
Lim

u



   then un diverges.

64. Determine which of the following series converge. Justify your answers.

Sol.

a)
4

n

n
2

  this will prove by ratio test

Let     an = 
4

n

n
2
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       an+1 =
4

n 1

(n 1)
2 



   n 1

n

a
a
 =

4

n 1

4

n

(n 1)
2
n
2





=

4

n

4

n

(n 1)
2 .2
n
2



= 
4

4(n 1)
n

2


  = 
4 4(n 1) n

2


apply limit on b/s

n
Lt


 
n 1

n

a
a


 = 
n
Lt


4 4(n 1) .n
2



 
n
Lt


n 1

n

a
a


 < 1

 
4

n

n
2

  is converges

b) 
n2

n!

This will prove by ratio test

     Let an= 
n2

n!

an+1= 
n 12

(n 1)!





   n 1

n

a
a
 =

n 1

n

2
(n 1)!

2
n!



 = 
n 1

n

2 n(n 1)!
(n 1)! 2

 




= 
n(n 1)!

(n 1)(n)!


  = 
(n 1)!
(n 1)!



apply limit on b/s

n
Lt


n 1

n

a
a


 = 
n
Lt


(n 1)!
(n 1)!



n
Lt


n 1

n

a
a


< 1

  
n2

n!
 is converges.

c)
2

n n

n
a =

3

This will prove by ratio test

   Let  an = 
2

n

n
3

an+1= 
2

(n 1)

(n 1)
3 



   n 1

n

a
a
 = 

2

(n 1)

2

n

(n 1)
3
n
3





= 
2 n

2

(n 1) 3
3 (n )




= 
2

2

(n 1)
3n


apply limit on b/s

n
Lt


 
n 1

n

a
a


 = 
n
Lt


 
2

2

(n 1)
3n


 
n
Lt


n 1

n

a
a


 < 1

 
2

n

n
3


 is converges.

d) 4

n!
n +3


    Let an = 4

n!
n 3

       an+1 = 4

(n 1)!
(n 1) 3


 
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      n 1

n

a
a
 = 

4

4

(n 1)!
(n 1) 3

n!
n 3


 



= 
4

4

(n 1)! n 3
n!(n 1) 3

 


 

= 
4

4

(n 3) (n 1)
(n 1) 3
 
 

apply limit on b/s

n
Lt


 
n 1

n

a
a


 = 
n
Lt


4

4

(n 3) (n 1)
(n 1) 3
 
 

nth terms do not converges to ‘O’

 4

n!
n 3




 is diverges.

e)
2

2

cos n
n



    an= 
2

2

cos n
n

,   an+1 = 
2

2

cos (n 1)
(n 1)




         n 1

n

a
a
 =

2

2

2

2

cos (n 1)
(n 1)
cos n

n


  (or)

= 
2 2

2 2

cos (n 1) n
.

(n 1) cos n




Compare this with 2

1
n

 2

1
n

 is converges

  2

1
n

is converges

 
2

2

cos n
n

is converges

f)
n 2




 1

log n
    logn < n

  
1 1

log n n


Compare with 
1
n

  
1

log n    
1
n

  n

 
1
n

 is diverges [ Comparison test]

 
1

log n  is also diverges.

Second Method

Cos n 1

2

Cos n
n


2

1
n


2

2 2

cos n 1
n n



But  2

1
n

 is get by P-test


2

2

cos n
n

 is less the convergence

 it is converges,    [comparison test]

65. Prove that if an is a convergent series
of nonnegative numbers and P>1, then

 P
na  converges.

Sol.
an is a sequence
there exists N such that an<1 for n>N

 an is a convergent series of non negative
numbers.
Since P>1,

 P
na = P 1

n na a   < an for n>N

  P 1
n na a  < an

 P
na is converges series

  P
na is converges.
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66. Show that  i f an and bn are convergent
series of non-negative numbers, then

n na b  converges.

Sol.
Given that an and bn are convergent series

of non negative numbers by the known theorem

 an converges and bn converges

 an + bn also converges

(an + bn)1/2 converges

We prove n na b  is converges

anbn   (an + bn)1/2

     an + bn is converges n na b  also converges

n na b   ,  is positive integer

      n na b  is converges

67. We have seen that

(a) Calculate 
 
 
 


n

n=1

2
3



 and 
  
 


n

n=1

2
3



(b)



n=1

1
=1

n(n+1)

(c) Prove 


 n+1
n=1

n – 1 1
=

22

(d)


 n
n=1

n
2

 = 


 k+1 k
k=1

4k k
–

2 2

Sol. (Imp.)

n n

n=1 n 1

2 2
and

3 3

 



      
   

 
2

2 2
....

3 3
       
   

 and

2 3
2 2 2

....
3 3 3

              
     

2
3

22 2
1 ...

3 3

      
   

 and

2 32 2 2
....

3 3 3

           
     

2
3

25 2
....

3 3

     
   

 and

2 32 2 2
1 ...

3 3 3

           
     

2 2 3
[3] and

3 3 5
 

 
 

2 and 
2

5
 

 
 

b)



n=1

1
=1

n(n+1)

n 1

1
n(n 1)



   = 
n 1

1 1
k k 1





   


   Sn =
n 1

1
n(n 1)



   = 
n 1

1 1
k k 1





   


   Sn =
1 1 1

1
2 2 3

         
   

1 1
3 4

  
 

+....+

1 1
n n 1

   

    Sn= 
1 1 1 1

1
2 2 3 4

    
1 1 1

.....
4 5 5
  

1 1 1
n n n 1

  


 Sn= 1 – 
1

n 1
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 
n
Lt


Sn = 1 – 
1

1 
 = 1 – 0

nn
Lt S 1


 

c) Prove 


 n+1
n=1

n – 1 1
=

22

By Partial fractions

Let Sn = n 1 k k 1
n 1 k 1

n 1 k k 1
2 2 2

 

 
 

     
 

             Sn = 1 2 2 3 3 4

1 2 2 3 3 4
2 2 2 2 2 2

              
     

+ .... + n n 1

n n 1
2 2 

  
 

= 
1
2


2

2
2

+ 2

2
2

– 3

3
2

–
4

4
2

+ ..... –

n

n
2

+
n

1
2

–
n 1

n 1
2 



    Sn= n 1

1 n 1
2 2 




apply limit on b/s

    
n
Lt


Sn = 
n
Lt
 n 1

1 n 1
2 2 

   

= 
1

0
2


    
n
Lt


Sn = 
1
2

n 1
n 1

n 1 1
22







 

d)


 n
n=1

n
2

 = 


 k+1 k
k=1

4k k
–

2 2

Let Sn = n k 1
n 1 k 1

n 4k
2 2

 


 

  – k

k
2

    Sn= 2 2

4 1 8 2 12
.....

2 4 162 2
      

   Sn = 2 – n

n
2

apply limit on b/s

n
Lt


 Sn = n
Lt
 n

n
2

2
   

  
n
Lt


 Sn = 2

n
n 1

n
2

2






68. Does series converge? Justify your

answer.

a) 
n=2

1

nlogn



b)



n=2

logn
n

c)



n=4

1
n(logn) (log log n

d)


 n
2

n=2

log
n

Sol.

a) 
n=2

1

nlogn



Sn =
1

n log n

Lt Sn= n

1
Lt

n log n

n log n n

1 1
n

log n n


1 1
nn log n



 it is divergence.

b)



n=2

logn
n

log n > n
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1
log n  < 

1
n

n 2

1
log n




  < 

n 2

1
n






< 
1
2

 it is convergence sequence.

c)



n=4

1
n(logn) (log log n

n log n > n

(n log n) log logn) > (log log n)

1
(n log n) (log log n)  < 

1
(log log n)n

it is diverges.

d)


 n
2

n=2

log
n

log n > n2

2

1 1
log n n



 compare p - test P > 1 2 > 1

 it is convergence.

69. 
n=2

1
n(logn)P



 converges if and only if

P >1.

Sol. (Nov./Dec.-18)

Given that

n=2

1
n(logn)P





We have that 
n = 2

1
n(logn)P



  is convergence

we prove P > 1.

Necessary Condition

By P - Test

1
nlog n

 =
1
n

p

1
(n log n)  p

1
n

 ; p > 1

P p

1 1
(n log n) n

 [ P test]

Sufficient Condition

Conversly P > 1

We prove that P
n 2

1
n(log n)




  is convergent

this prove by integral test

n
Lim


 
n

nP
3

1
d

n(log n)  = 

log n

npn
nlog 3

1
Lt ds

S 

by using P test where P > 1.

n

p
n3

1 1
nn(log )




n

p
n3

1
n(log )  is convergence sequence

   p
n 2 n

1
n(log )




  is convergence sequence at P > 1.

1.9  ALTERNATING SERIES

A series whose terms are alternatively positive
and negative is called an alternating series.

An alternating series may be written as u1 –
u2 + u3 – u4 + ... + (–1)n – 1 un + ... where each un
is positive or negative and it is denoted by

n 1

n 1
( 1)





  un where un > 0.
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1.9.1 Leibnitz’s Test

70. The alternating series (–1)n – 1 un = u1 – u2 + u3 – u4 + ... (un > 0  n) converges if

(i)  un   un + 1 n and (ii) 
 nn

Limu =0 .

OR

State and prove Alternating Series (or) Leibnitz’s Test

Sol.
Let sn denote the nth partial sum of the series (–1)n – 1 un.

       sn= u1 – u2 + u3 – u4 + ... + (–1)n – 1 un

Then      s2n= u1 – u2 + u3 – u4 + ... + u2n – 1 – u2n

and s2n + 2 = u1 – u2 + u3 – u4 + ... + u2n – 1 – u2n + u2n + 1 – u2n + 2

Consider

  s2n + 2 – s2n = u2n + 1 – u2n + 2   0 by cond .(i)

  s2n + 2   s2n  n

 The subsequence {s2n} of {sn} is an increasing sequence (1)

Now consider

     s2n= u1 – (u2 – u3) – (u4 – u5) – ... – (u2n – 2 – u2n – 1) – u2n

     s2n= u1 – [(u2 – u3) + (u4 – u5) + ... + (u2n – 2 – u2n – 1) + u2n]

     s2n= u1 – [a positive number]  un > 0  n.

    s2n < u1 n

  {s2n} is bounded above ... (2)

 from (1) and (2)

{s2n} converges

  
n
Lim


 s2n = l

       we have s2n = u1 – u2 + u3 – u4 + ... + u2n – 1 – u2n

      s2n = s2n – 1 – u2n

  s2n – 1 = s2n + u2n

   
n
Lim


 s2n – 1 = 
n
Lim


s2n + 
n
Lim


 u2n

   
n
Lim


 s2n – 1 = l + 0

   
n
Lim


 s2n – 1 = l



UNIT - I REAL ANALYSIS

57
Rahul Pub lications

Rahul Publications

 {s2n – 1} converges to ‘l’

 The subsequence of {sn} converges to ‘l’

 The sequence {sn} converges to ‘l’

 The series n 1
nn 1

( 1) u





  converges.

1.9.2 Absolute and Conditional Convergence

A series nn 1
u




 is said to be absolutely convergent if the series nn 1

|u |



 is convergent.

If nn 1
u




 converges but not absolutely i.e., 

nn 1
|u |




 diverges then the series nn 1

u



 is known as

conditionally convergent.

Note

Every absolutely convergent series is convergent converse need not be true. i.e., A convergent
series need not be absolutely convergent.

71. If a series an converges them lim an = 0.

Sol. (Dec.-17, Imp.)

Given an is convergent

Let an convergent to A

      sn= a1 + a2 + ..... + an be the nth partial sum of an.

Let lim sn = A

      lim sn–1 = A

      sn= a1 + a2 + .... + an

    sn–1= a1 + a2 + .... + an–1

Consider,

     sn – sn–1 = a1 + a2 + .... + an – a1 – a2 .... an–1

     sn – sn–1 = an

Apply limit on both sides

lim (sn – sn–1) = lim an

lim sn – lim sn–1 = lim an

A – A = lim an

lim an = 0

for each >0N  |an|<

then lim an = 0

Hence proved

Note

Converse of the above theorem is not there i.e., lim an = 0   an is convergent.



B.Sc. II YEAR  III SEMESTER

58
Rahul Pub lications

Rahul Publications

72. Absolutely convergent series are convergent.

Sol.
Let an be an absolutely convergent series.

i.e, |an| is convergent

To prove that an is convergent

 |an| is convergent

By Cauchy’s general principle of convergent we know that

m z   |ap+1 + aP+2 + .... + aq| <     q p m

for each >0mN  ||ap + 1|+|ap + 2|+.....+|aq|< q p>m

|ap+1 + ap+2 + .... + aq| ||ap+1|+|ap+2| + ..... + |aq||

|ap+1 + ap+2 + .... + aq| <  + a,  p > m

 an is convergent by Cauchy general principle

|an| is convergent

an is convergent

73. Suppose that an = A and bn = B where A and B are real numbers.

(a) (an + bn) = A + B

(b) k an = kA k R 

Sol.
(a) Given an converges to A and bn is converges to B.

To prove that an + bn converges to A + B

Let sn be the nth partial sum of an

      sn= a1 + a2 + .... + an

Let tn be the nth partial sum of bn

      tn = b1 + b2 + ..... + bn

 an is converges to A

lim sn = A

bn is converges to B

lim tn = B

Let pn be the nth partial sum of (an + bn)

     pn = (a1 + b1) + (a2 + b2) +.... + (an + bn)

= (a1 + a2 + .... + an) + (b1 + b2 + .... + bn)

= sn + tn

 Consider lim pn = lim(sn + tn)

= lim sn+ lim tn

(an + bn) = A + B

(an + bn) is converges to A + B
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(b) Given that an converges to A

Let sn be the nth partial sum of an

   sn= a1 + a2 + .... + an

 an is converges to A

lim sn = A

To prove that k an is converges to kA

let tn be the nth partial sum of kan

       i.e., tn = ka1 + ka2 + ka3 + .... + kan

= k(a1 + a2 + ..... + an)

= k sn

lim tn = lim (ksn)

= k lim sn

lim tn = kA

kan = kA

kan is converges to kA

74. Test for convergence, absolute conver-
gence and conditional convergence of

the series 
n 1

pn



 p p p
n=1

(–1) 1 1 1
=1– + – +...

2 3 4

for p > 0.

Sol.

Let n 1

n 1
( 1)





   un = 

n 1

pn 1

( 1)
n








 P > 0 and we know that

(n + 1) > n

 (n + 1)P > np

 P P

1 1
(n 1) n




 un+1 < un  nN

also we have

n
Lim


 un = 
n
Lim


 p

1
0

n


 by Lebnitz’s test 
n 1

pn 1

( 1)
n






  is convergent

and
n 1

p pn 1 n 1

( 1) 1
n n

 

 


   is convergent, if P> 1

and divergent if P   1.

 The given series is absolutely convergent if
P > 1 and conditionally converges if
0   P   1.

75. Test for convergence, absolute conver-
gence and conditional convergence of

the series 



n+1

n=1

(–1) 1 1 1
= – + – ...

log(n+1) log2 log3 log4

Sol.

Let un = 
1

n N
log(n 1)

 


 nn n

1
Limu Lim

log(n 1) 


 = 0

We know that n + 2 > n + 1 n N 

 log (n + 2) > log(n + 1)


1 1

log(n 2) log(n 1)


 

= un+1 < un n N 

 by Leibnitz’s therom given series is
convergent. Now consider,

nn 2 n 2

1
|u |

log n

 

 
    which is divergent.

 un is not absolutely convergent.

 un is conditionally convergent.

76. Show that the series

2 2 2

log2 log3 log4
– + –...

2 3 4 converges.

Sol.

Let un = 2

log(n 1)
n N

(n 1)


 


  
n
Lim


 
2

log n
0

n
  n

Lim


un = 0
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To prove un + 1 < un, n N 

Let u(x) = 2

log x
x

  u'(x) = 
2

4

x (1 / x) 2x log x
x


= 3

1 2log x
0

x




 1 – 2 log x < 0

 log x > 1/2

 x > e1/2   x > e

 u(x) is a decreasing function

 un + 2   un + 1 n N 

 2 2

log(n 2) log(n 1)
(n 2) (n 1)

 


   n N 

 un + 1 < un n N 

 By Leibnitz’s therom the given series is
convergent.

77. Test the convergence and absolute

convergence of the series 



n-1

n=1

(–1) n
2n –1

Sol.

Let un = 
n

2n 1


n 1

n 1
nn 1 n 1

( 1) n
( 1) u

2n 1

 


 


   



 un = 
n

2n 1
 > 0 n N 

 un+1 = 
n 1
2n 1



Consider

 un – un +1 = 2

n n 1 1
2n 1 2n 1 4n 1


 

  
>0 n N 

 un > un + 1 n N 

Also 
n
Lim


 un = 
n
Lim


n
2n 1

= 
n
Lim


n
n(2 1 / n) n

Lim


1
2 1 / n


1

0
2


 by Leibnitz’s therom un does not converges.

 The given series diverges.

78. Test for convergence and absolute

convergence of the series 


 n+1

n=1
(–1)

2( n +1 – n)

Sol :
Let the given series be

n 1

n 1
( 1)





   un = n 1

n 1
( 1)





  2( n 1 n) 

    un = 
2

2

2

n 1 n
n 1 n.

n 1 n

 
  

 

    un = 
2 2

2 2

n 1 n 1

n 1 n n 1 n

 


   
> 0 n N 

    un+1 = 2

1
0 n N

(n 1) 1 (n 1)
  

   

    un > un + 1 n N 

also 
n
Lim


2

1

n 1 n 
 = 0

 by Leibnitz’s test the given series converges.
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Now consider

|un| = 
2

1

n 1 n 

= 

2

1

1n 1 1
n

 
  

 

      Let vn = 
1
n


n

n

|u |
v  = 

2

1

1
1 1

n
 

  
n
Lim


n

n

|u |
v

 
n
Lim


2

1 1
0

21
1 1

n

 
 

     by comparison test |un| and vn behave a
like

 vn = 
1
n

 =  p

1
n   P = 1

      by Auxilary series vn diverges

    |un| also diverges

    The given series is conditionally convergent.

79. Test for convergence and absolute

convergence of the series 





n–1

n=1

(–1)

n a

Sol.

Let 
n 1




 (–1)n – 1 un = 

n 1

n 1

( 1)

n a










Here un = 
1

n a

We know that n + 1 > n

       n 1 n    n 1 a   > n a

       
1 1

n 1 a n a


  

= un + 1 < un  n

  un > un + 1  n

Also 
n
Lim


un = 
n
Lim


 
1

n a
 = 0

      by Lebnitz’s test, the series is convergent.
Now consider,

|un| =
1 1

n a n 1 a / n


   

    vn = 
1

n

Consider,

n

n

|u | 1
v a

1
n





n
Lim


 n

n

|u |
v

 = 
n
Lim


1

a
1

n


=
1
1

=1  0

 By comparision test
|un| and un be have a like.

 vn =  
1

n
=  p

1
n

 P = 1/2 < 1

 By Auxilary series vn diverges

 |un| diverges

 The given series is conditionally convergent.

80. Test for convergence and absolute

convergence of the series 


 n–1

n=1
(–1)

 
 
 

2 2

1 1
+

n (n+1)

Sol.

Let n 1

n 1
( 1)





   un = 

n 1
2 2n 1

1 1
( 1)

n (n 1)






     
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Here    un = 2 2

1 1
n (n 1)




 > 0 n N 

   un+1 = 2 2

1 1
(n 1) (n 1)


 

Consider,

  un – un + 1 = 2 2

1 1
n (n 1)




= 2 2

4n 4
n (n 2)




 > 0 n N 

 un > un + 1 n N 

Also we have

n
Lim


 un = 
n
Lim


2 2

1 1
0

n (n 1)
    

      By Lebnitz’s test the given series is
convergent.

Now consider,

       |un| = 2 2

1 1
n (n 1)




 < 2 2

1 1
n n

 < 2

2
n n N 

     The series  2 2

2 1
2

n n
   is convergent by

comparison test.

  |un| is convergent.

 The given series is absolutely convergent.

81. Test for convergence and absolute

convergence of the series 


 n–1

n=1
(–1)

n-1 2(–1) cos

n n
,  is real.

Sol.
Let the given series is,

n 1




 un = 

n 1






n 1 2( 1) cos n

n n

 

Consider,

|un| = 
2cos n

n n



= 
2

3/2 3 /2

cos n 1
n

n n

 

and we know that 
3/2

1
n

 is convergent by

Auxilary series.
 The series |un|converges.
  The given series is absolutely convergent.

82. Show that the series 
    
 n=1
1– cos

n

converges.

Sol.

Let 
n 1




  un = 

n 1




 1 cos

n
  

 
 = 

n 1




  2 sin2

2n


    Here un = 2 sin2 
2n


 > 0  n

      Let vn = 2

1
n



2

n
2

n

2sinu 2n
v 1 / n





 n
Lim


   n

n

u
v

= 
n
Lim


 

2

2 sin
2n

2
2n

 
 
  
 

= 
2

2


n
Lim


2

sin
2n

2n

 
 
  
 

= 
2

1
2


  = 
2

2


 0

 By comparison test un & vn behave a like

 vn =  2

1
n

 =  P

1
n

Where P = 2 > 1

 By auxilary series vn converges

 un converges.
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83. Test for convergence of the series




n

n+1

n=1

2
(–1)

n!

Sol.

Let 
n 1




  un = 

n 1




 (–1)n+1 

n2
n!

Consider |un| = 
n2

n!

 |un + 1| = 
n 12

(n 1)!






n
Lim


n

n 1

|u |
u 

 = 
n
Lim


n

n 1

2 (n 1)!
.

n! 2 

 
 
 

n
Lim


n 1
2


 = 

 By ratio test, |un|is convergent
Hence the given series is absolutely

convergent.

1.10  INTEGRAL TEST

84. If for x  1, f(x) is a non-negative
nonotonically decreasing integrable
function of x such that f(n) = un for all
positive integral values of n, then the

series 



n=1

 un and the improper integral




1

f(x)dx  converges or diverges together..

Sol.
Given f is non-negative on [1,  )

 f(x)  0 x 1 


n 1




 f(n) is a series of non-negative terms.


n 1




 un is a series of non-negative terms.

Now let r be any positive integer. Choose a
real number x such that r + 1   x   r..

         f is monotonically decreasing function of x.

 f(r + 1)   f(x)  f(r)

also f is integrable.


r 1

r

f(r 1)


  dx   
r 1

r

f(x)dx


   
r 1

r

f(r)dx




 f(r + 1) 
r 1

r

dx


 
r 1

r

f(x)dx


   f(r)
r 1

r

dx




 f(r +1)  r 1

x
x


  

r 1

r

f(x)dx


  f(x)  r 1

r
x



 f(r + 1) (r + 1 – r)   
r 1

r

f(x)dx


   f(r)  r 1

r
x



 f(r + 1)   
r 1

r

f(x)dx


   f(r)

 ur + 1 
r 1

r

f(r 1)dx


   ur

 f(n) = un n N 
Putting r = 1, 2, 3, ... , (n – 1) successively in

the above inequality we get,

u2   
2

1
1

f(x)dx u

u3 
3

2
2

f(x)dx u

..................

................

n

n n 1
n 1

u f(x)dx u 


  ... (1)

adding the above inequalities then we get

    u1 + u2 + u3 + ... un   
2 3

1 2

f(x)dx f(x)dx ...   
n

n 1

f(x)dx

  u1 + u2 + .... un – 1

 sn – u1 
n

n n
1

f(x)dx s u     sn = n 1




 un
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 Sn – u1   In   Sn – un where In =
n

1

f(x)dx

 – u1   In – Sn   – un

 u1   Sn – In  un   0 un 0 n N  

 0   Sn – In   u1 ... (2)

 The sequence {Sn – In} is bounded.

Consider,

           (Sn – In) – (Sn – 1– In – 1) = (Sn – Sn – 1) – (In – In – 1)

= un – 
n n 1

1 1

f(x)dx f(x)dx
 

 
 
 

= un – 
n 1

1 n 1

f(x)dx f(x)dx


 
 

 
 

= un – 
n

1

f(x)dx

  0 (from (1))

    Sn – In   Sn – 1 – In – 1

 {Sn – In} is monotonically increasing

 Every bounded monotonic sequence converges,

 {Sn – In} converges

 from (2) we have,

0   
n
Lim


(Sn – In)  u1

 0 
n
Lim


 Sn – 
n
Lim


 In   u1


n
Lim


 In  n
Lim


 Sn ... (3)

and
n
Lim


Sn   u1 + 
n
Lim


In ... (4)

Hence from (3) and (4) we conclude that {Sn} and {In} converges or diverges together and hence

1n 1
u




  and 

1

f(x)dx


 converges or diverges together..
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85. Discuss the convergence of the series  



n=1

1
n(logn)P

  .

Sol.

Here,   un = P

1
n(log n)

Case (i)

When P   0


1 1

n 2
n(logn)P n

  

 n 2

1
n




 diverges, by comparision test n 2

1
n(log n)P




  diverges.

Case (ii)

When P > 0

 {n(log n)P} is an increasing sequence

 {un} is a decreasing sequence.

 un > un + 1 > 0 n 2  .

 By cauchy’s condensation test, the series
n 2




 un and n

2nn 2
2 u




  converges or diverges together..

Now n
2nn 2

2 u



  = 

n 2




  2n. n n P

1
2 (log 2 )

      = 
n 2




 n P

1
(log 2 )

      = P Pn 2

1 1
(log 2) n






 Pn 2

1
n




  is convergent if P > 1 and diverges if P   1.


n 2




  2n u2n is convergent if P > 1 and diverges if P  1


n 2




  un convergent if P > 1 and diverges if P  1

Hence 
n 2




  un is convergent if P > 1 and diverges if P  1.
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86. Discuss the convergence of the series  



n=2

1
nlogn

Sol.

Here un = 
1

nlog n

 {n log n} is an increasing sequence

  {un} is a decreasing sequence.

 un > un + 1 > 0 n 2  .

     By cauchy’s condensation test the series  nn 2
u




  and n

n
2n 2

2 u



 converges or diverges together..

Now  n
n

2n 2
2 u




 = n

n nn 2

1
2 .

2 log 2






= n 2

1
nlog 2






= 
1

log 2 n 2

1
n






 n 2

1
n




  is divergent.

87. Discuss the convergence of the series  


 P
n=2

1
(log n)

Sol.

Here un = P

1
(log n)

Case (i)
When P = 0   un = 1


n
Lim


 un = 1   0


n 2




  un diverges

Case (ii)
When P < 0, Let p = – q where q > 0.

  
n
Lim


 un = n
Lim


 q

1
(log n)  =

n
Lim


(logn)q = 0 


n 2




  un diverges
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Case (iii) When P > 0

 {(logn)P} is an increasing sequence

 {un} is a decreasing sequence

 un > un + 1 n 2 

 By cauchy’s condensation test, the series 
n 2




 un and n

n
2n 2

2 u



  converges or diverges together..

Now

  n
n

2n 2
2 u




 =

n 2




 2n . n P

1
(log 2 )

 = n

n 2
2




 . P

1
(n log 2)

= 
n

P Pn 2

1 2
(log 2) n






Consider,

     un = 
n

P

2
n

 so that (vn)
1/n = 1/n P

2
(n )

  
n
Lim


(vn)
1/n = 2

n
Lim
 1/n P

1
(n )

= 2 > 1

 By cauchy’s nth root test, vn is divergent.

 n
n

2n 2
2 u




  is divergent 

n 2




 un is divergent.

 nn 2
u




 is divergent for all values of P..

88. Discuss the convergence of the series  



n=1

log n
n

Sol :

Here un = 
log n

0 n
n

 

Let f(x) =
log x

,x 0
x



 f'(x) = 2 2

1
x. log x 1 log xx

x x

 


 f'(x) < 0   1 – log x < 0   log x > 1



B.Sc. II YEAR  III SEMESTER

68
Rahul Pub lications

Rahul Publications

 elogx > e'

 x > e

 f(x) is a decreasing function when x > e

 un > un + 1 n 2 

 {un} is a decreasing function of positive terms.

 By cauchy’s condensation test, the series nn 1
u




  and n

n
2n 1

2 .u



  converges or diverges together..

Now  n
n

2n 1
2 .u




  = 

n 1




  2n . 

n

n

log 2
2

 = 
n 1




  n log 2 = log 2 

n 1




 n


n 1




  n is divergent.

 n
n

2n 1
2 .u




  is divergent


n 1




 un is divergent.
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Choose the Correct Answers

1.
n
Lim


 2 2 2

1 1 1
.....

n (n 1) 2n
     

 = [ a ]

(a) 0 (b) 1

(c) 2 (d) None

2. A sequence {an} is said to be Cauchy sequence if given> 0,   a positive integer m  [ c ]

(a) |ap – aq| >     p, q   m (b) |ap – a| <     p   m

(c) |ap – aq| <     p, q   m (d) None

3.
n
Lim


 
1

n(n!)
n

 = [ c ]

(a) e (b) 1

(c)
1
e

(d) None

4.
n
Lim


 
n

1
1

n
  
 

 = [ a ]

(a) e (b) 1

(c) e – 1 (d) e + 1

5.
n
Lim


 
1

nn  = [ b ]

(a)  (b) 1

(c) 0 (d) –

6. The sequence 
2

2

n 3n 5
2n 5n 7

  
 

  
 converges to [ d ]

(a) 1 (b) 0

(c) –1 (d)  1
2

7. The sequence {(–1)n . n} oscillates [ b ]

(a) Finitely (b) Infinitely

(d) Diverges (d) Converges
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8.
n
Lim


  
1

n!
 = [ a ]

(a) 0 (b) 1

(c) –1 (d) 2

9.
n
Lim


 rn = 0  if [ c ]

(a) |r| > 1 (b) |r| = 1

(c) |r| < 1 (d) |r|   1

10. A necessary and sufficient condition for a sequence {an} to converge to ‘l’ is that for each   > 0
there corresponds a  MN [ d ]

(a) |an – l| =     n   m (b) |an – l| >     n   m

(c) |an – l|       n   m (d) |an – l| <     n   m

11. Every monotonically decreasing sequence which is bounded above converges to its [ a ]

(a) l u b (b) g l b

(c) ub (d) lb

12. Every monotonically increasing sequence which is bounded below converges to its. [ b ]

(a) l u b (b) g l b

(c) ub (d) lb

13. If {an} = l  and  {bn} = m then 
n
Lim


 {an + bn} = [ d ]

(a) l – m (b) l – 1

(c) m + 1 (d) l + m

14. The value of 
n
Lim


 
n

1
1

n
  
 

 lies between [ a ]

(a) 2 and 3 (b) 2 and 1

(c) 1 and 0 (d) 0 and 1

15. Every bounded monotonic sequence is [ c ]

(a) Divergent (b) Oscillates

(c) Convergent (d) None

16. The series 1 + r + r2 + r3 + ....  is oscillatory if = [ d ]

(a) r < 1 (b) r > 1

(c) r = 1 (d) r = – 1
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17. Infinite series  p

1
n

 is convergent if [ b ]

(a) P < 1 (b) P > 1

(c) P = 1 (d) P  1

18. un is a series of positive terms and 1/n
nn

Lim(u ) 1


 then the series is [ a ]

(a) Divergent (b) Convergent

(c) Oscillates (d) None

19. Series un of positive terms is divergent if 
n
Lim


n
n

n 1

u
1

u 

 
 

 
 is [ a ]

(a) < 1 (b)   1

(c) = 1 (d)   1

20. The series  P

1
n(log n)  is divergent if [ b ]

(a) P > 1 (b) P   1

(c) P < 1 (d) P = 1

21. The series un, where un = 2n 1  – n is [ b ]

(a) Convergent (b) Divergent

(c) Oscillates (d) None

22. The series 1 + 
3 5 7

...
1! 3! 4!
    is [ a ]

(a) Convergent (b) Divergent

(d) Oscillates (d) None

23. The series p p p p

1 1 1 1
...

3 5 7 9
     converges if [ c ]

(a) p < 1 (b) p = 1

(c) p > 1 (d) None

24. The series  3/4

1
n

 is [ b ]

(a) Convergent (b) Divergent

(c) Oscillates (d) None
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25. If un converges then nn
Lim u


 = [ a ]

(a) 0 (b) 1

(c) – 1 (d) None

26. The series 
2n

n 1

1
1

n





   
 

 is [ c ]

(a) Oscillates (b) Divergent

(c) Convergent (d) None

27.
n
Lim


 
n

n 1

u
u 

  , then un [ a ]

(a) Converges (b) Infinite

(c) Diverges (d) None

28. The series 
n 2




 2

1
n log n

[ c ]

(a) Diverges (b) Oscillates

(c) Converges (d) Infinite

29. The sequence 
n

n!
n

 
 
 

 converges to [ b ]

(a) 1 (b) 0

(c) 2 (d) – 1

30. A sequence converges to [ a ]

(a) One limit point (b) More than one limit point

(c) Finite limit points (d) None
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Fill in the blanks

1. A function whose domain is the set of natural numbers N and range a subset of real numbers R is

called as .

2. The set of all distinct terms of a sequence is called its .

3. The set of all limit points of a bounded sequence is .

4. Limit of a sequene, if it exists then it is .

5. {0, 1, 2, 0, 1, 22, 0, 1, 23, 0, 1, 24, .....} is an unbounded sequence with exactly two limit pts

 and .

6. Every convergent sequence is .

7. The upper and lower bounds of the sequence {(–1)n}   n   N are  and .

8. If an   0   n   N and 
n
Lim


 an = l then .

9. If {an} and {bn} are two sequences such that |an|   |bn|   n   m where m   N and 
n
Lim


 bn =

0 then 
n
Lim


 an = .

10. Every Cauchy’s sequence is .

11. Every convergent sequence is a .

12. A sequence {an} is said to be monotonically increasing if    n   N.

13. A sequence {an} is said to be monotonically decreasing if    n   N.

14. The sequence {(–1)n} is neither monotonically  nor .

15. A sequence which is either monotonically increasing or decreasing is called a  sequence.

16. Every bounded sequence has a  subsequence.

17. A cauchy sequence of real number is convergent if and only if it has a convergent .

18. The smallest limit point of {an} is called the .

19. The greatest limit point of {an} is called the .

20. A bounded sequence {an} converges to l if and only if .

21. The infinite series un is said to be convergent if the sequence {sn} and its partial sums is  .

22. The nn
Limu 0


 then the series .

23. If 
n
Lim


 n 1

n

u
u

    then un is .

24. If 
n
Lim


 n
n

n 1

u
1

u 

 
 

 
= l then the series un is convergent if .

25. Every absolutely convergent series is .
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26. A series un is absolutely convergent if  is convergent.

27. A series un is conditionally convergent if  is divergent.

28.
n 1




 (–1)n–1 un is called  series.

29. If the subsequence converges then  converges.

30.  The series 
n 1




 un and n

2nn 1
2 u




 converges or diverges together then the test is known as .

ANSWERS

1. Real sequence.

2. Range

3. Bounded

4. Unique

5. 0 and 1

6. Bounded

7. –1 and 1

8. l   0

9. 0

10. Bounded

11. Cauchy sequence

12. an+1   an

13. an+1   an

14. Increasing, Decreasing

15. Monotonic

16. Convergent.

17. Subsequence

18. Limit inferior

19. Limit superior

20.
n
Lim


sup an = 
n
Lim


 inf. an = l

21. Convergent

22. Diverges

23. Divergent

24. l > 1

25. Convergent

26. |un|

27. |un|

28. Alternating

29. Sequence.

30. Cauchy’s condensation test
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2.1  DEFINITION OF CONTINUOUS FUNCTION

Let f be a real valued function whose domain is a subset of R. Then function f is continuous at x0 in
dom(f). If, every sequence {xn} in dom(f) converging to x0. We have lim f(xn) = f(x0). If f is continuous at
each point of a set s  dom(f). Then f is said to be continuous on s. The function f is said to be continuous
if it is continuous on dom(f) in other words. f is said to be continuous at x0, If 0 0     |x – x0|< 

 |f(x) – f(x0)|<  x dom(f)  .

1. Let f be a real valued function whose domain is a subset of R. Then f is continuous
at x0 in dom(f) if and only if for each e>0d>0  xdom(f) and |x – x0|<d  |f(x) –
f(x0)|<.

Sol. (Imp.)

Given that f is a real valued function

consider a sequence {xn} in dom(f) such that lim xn = x0.

We have to prove that lim f(xn) = f(x0).

Since f is continuous at x0.

for given 0 0     |x – x0| < d   |f(x) – f(x0)| < ... (1)

Again, Since 
n
lim


 xn = x0

 positive integer ‘m’   n > m  |xn – x0|< ... (2)

Setting x = xn in (1)

We get

|xn – x0|< d   |f(xn) – f(x0)| <  ... (3)

From (2) and (3) gives

n > m   |f(xn) – f(x0)|<

Hence 
n
lim


 f(xn) = f(x0)

Conversely suppose that

Suppose for every sequence {xn} converging to x

We have 
n
lim


 f(xn) = f(x0)

UNIT
II

Continuity: Continuous Functions - Properties of Continuous Functions
- Uniform Continuity - Limits of Functions
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Then we have to show that f is continuous at x0.

Let us assume that, f is not continuous at n0 then there exists an 0 0     |x – x0|<  but

|f(x) – f(x0)|  x dom (f)  .

If we take  = 
1
n

we see that for each positive integer n,   a xn 0

1
|x x |

n
   but |f(x) – f(x0)|

  x dom (f)   fails for each nN.

So, for each nN  xn in dom(f) such that |xn – x0|< 
1
n

 and |f(x0) – f(xn)| .

Thus we have lim xn = x0

but we cannot have lim f(xn) = f(x0)

Since |f(x0) – f(xn)|  n.

This shows f cannot be continuous at x0

  Our assumption is wrong.

Hence f is continuous at x0.

2. Let f(x) = 2x2 + 1 for x R, Prove f is continuous on R, by..

(a) Using the definition

(b) Using the  –  property

Sol.
(a) Suppose that lim xn = n0.

Then we have lim f(xn)= lim( 2
n2x 1 )

= 2 lim( 2
nx ) + 1

= 2( 2
0x ) + 1

= 2 2
0x  + 1

= f(x0)

   lin f(xn)= f(x0).

(b) Let x0 be in R and Let >0. We have to show |f(x) – f(x0)|< provided |x – x0| < .

      |f(x) – f(x0)| = |2x2 + 1 – (2 2
0x  + 1)|

= |2x2 + 1 – 2 2
0x  – 1|

= |2x2 –  2 2
0x |

= 2|x2 –  2
0x |

  2|(x  – x0) (x + x0)|
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      |f(x) – f(x0)|   2|x –  x0| |x + x0|

if |x – x0|< 1 (Say)

then |x|< |x0|+ 1

        |x + x0| = |x| + |x0|

= |x0| + 1 + |x0|

= 2|x0| + 1

 |f(x) – f(x0)|   2|x – x0| (2|x0| + 1)

Provided |x – x0|<1

 To arrange 2|x – x0| (2|x0| + 1)<  it suffices to how |x – x0| < 
02(2|x | 1)



 and also

|x – x0|<1.

So,  = min
0

1,
2(2|x | 1)

 
 

 

|f(x) – f(x0)| < 2 . 
02(2|x | 1)



2(|x0| + 1)

|f(x) – f(x0)| <  whenever |x – x0|< .

3. Let f(x) = x2 sin  
 
 

1
x

for x  0, f(0) = 0 Prove that f is continuous at 0.

Sol. (Imp.)

We have to prove f is continuous at 0.

By definition of continuous we have

for every 0 0     |x – a| < d  |f(x) – f(0)|<,

Consider

      |f(x) – f(0)| = |x2 sin 1
x

 
 
 

 – 0|

= |x2 sin 
1
x

|

  |x2| 
1

sin
x

  |x2|1 [|sinx| 1]

  |x|2

  x2 x .

Let  =   Then |x – 0|<    x2 < 2 (= (   )2) x2 <

So, |x – 0| < d   |f(x) – f(0)|<

 f is continuous at ‘0’.
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4. Let f be a real value function with dom(f) R. If f is continuous at x0 in dom(f). Then |f|
and kf, kR are continuous at x0.

Sol.
Consider a sequence {xn} in dom(f) converging to x0.

Since f is continuous at x0.

We have lim f(xn) = f(x0)

Then we have to prove that (1) kf is continuous at x0.

(2) |f| is continuous at x0.

(1) k  0, the result is obvious

If k = 0,

Let > 0

Then show that |kxn – kx0|< n

sin lim xn = x0

There exists N   n > N   |xn – x0|<
|k|


Then n > N  |kxn – kx0|<

 kf is continuous at x0.

(2) To prove |f| is continuous at x0

We need to prove lim |f(xn)| = |f(x0)|

 f is continues at x0

for each 0 0     xS, |x – x0|<  |f(xn) – f(x0)|<

 xs, |x – x0|< d  ||f(xn) – |f(x0)|| |f(xn) – f(x0)|<

 |f| is continuous at x0 i.e, lim|f(xn)| = |f(x0)|.

5. If f and g are real valued functions at x0 then,

(1) f + g is continuous at x0

(2) fg is continuous at x0

(3) f/g is continuous at x0 if g(x0)  0.

Sol. (Imp.)

Given that f and g are real valued functions at ‘x0’.

Then prove that (1) f + g is continuous at x0

i.e., to prove that

for 0 0     |x – x0|<   |(f + g) (x) – (f + g) (x0)|<e
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  f is continuous at x0

 for 10 0     |x – x0|< 1  |f(x) – f(x0)|<
2


 x S  ... (1)

 g is continuous at x0

for 20 0     |x – x0|< 2  |g(x) – g(x0)|<
2


 x S  ... (2)

Let  = min {1, 2}

Consider |(f + g)(x) – (f + g)(x0)| = |f(x) + g(x) – f(x0) – g(x0)|

= |(f(x) – f(x0) + (g(x) – g(x0)|

< |f(x) – f(x0)| + |g(x) – g(x0)|

By (1) and (2)

  2
2 2 2
  
   

 |(f+g)(x) – (f+g)(x0)|<

 f + g is continuous at x0.

(2) f g is continuous at x0

Let  > 0, since f is continuous at x0

i.e., for each 10 0     |f(x) – f(x0)|<
02(|g(x )| + )




|x – x0| < 1 ... (1)

g is continuous at x0

i.e., for each 20 0     |x – x0|<2  |g(x) – g(x0)|<
02|f(x )|



... (2)

Also, for 30 0    

xs, |x – x0|<3  |f(x) – f(x0)|<

 ||f(x)|–|f(x0)||<  |f(x)|<|f(x0)|+ ... (3)

If  = min {1, 2, 3} then (1), (2) (3) holds for xs|x – x0|< d

 |(fg) (x) – (fg)(x0)| = |f(x) g(x) – f(x0) g(x0)| = |f(x) g(x) – f(x) g(x0) + f(x) g(x0) – f(x0) g(x0)|

  |f(x) g(x) – f(x) g(x0)| + |f(x) g(x0) – f(x0) g(x0)|

  |f(x) (g(x) – g(x0))|+ |g(x0) (f(x) – f(x0)|

  |f(x)| |g(x) – g(x0)| + |g(x0)| |f(x) – f(x0)|

< |f(x0) +
0

.
2|f(x )|





+ |g(x0)| . 

02(g(x )| )



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  
2 2
 


<  for xs, |x – x0|< 

 fg is continuous at x0.

(3) f/g is continuous at x0

Since f is continuous at x0 and g is continous at x0.

To prove that 
1
g

 is continuous at x0.

xs, |x – x0|<   |g(x) – g(x0)| < 
2

0|g(x )|
2

||g(x)| – |g(x0)||< 

 |g(x)| > |g(x0)| –    |g(x)| > |g(x0)| – 0|g(x )|
2

 > 0|g(x )|
2

 for 0 0    

xs, |x – x0|<  
0

1 1
g(x) g(x )

 = 0

0

g(x ) g(x)
g(x) g(x )


< 0

0

|g(x ) g(x)|
|g(x) g(x )|


< 0

0

|g(x) g(x )|
|g(x) g(x )|



        < 
0

0

g(x )
|g(x )|

2





2

0

00
0

g(x )
1 1 2

g(x )g(x) g(x ) g(x )
2


   


0

1 1
g(x) g(x )

  


1
g

is continuous at x0 and g  0.

Since f is continuous at x0 and 
1
g

 is also continuous at x0 by (2)

f . 
1
g

 = 
f
g

 is continuous at x0.
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6. If f is continuous at x0 and g is continuous at f(x0) then the composite function g of is
continuous at x0.

Sol.
Let y = f(x) for xs and b = f(x0)

Since g is continuous at f(x0) = b,

for 10 0      yT, |y – b|<1 |g(y) – g(b)|<

Since f is continuous at x0,

for 1>0   >0 

xs, |x – x0|<   |f(x) – f(x0)}<1

i.e., xs,|x – x0|<  |y – b| < 1, yT

xs,|x – x0|<   |g(y) – g(b)|< |g(f(x)) – g(f(x0)|<

 |g of(x) – g o f(x0)|<

 g of is continuous at x0 properties of continuous functions.

2.2   PROPERTIES OF CONTINUOUS FUNCTION

7. Let f be a continuous real valued function on a closed interval [a, b]. Then f is a bounded
function more over f assumes its maximum and minimum values on [a, b], i.e., there
exists x0, y0 in [a, b] such that f(x0)   f(x)   f(y0) for all x[a, b].

Sol.
f is a continous real valued function [a, b] f is a bonded on [a, b].

I.e., if there exists real number M such that |f(x)| M x dom (f)  .

Assume that f is not bounded on [a, b]

Then to each n N  there correspondence nx [a, b]  such that |(xn)| >n.

By Bolzanoweierstrass Theorem,

{xn} has a subsequence {
knx } that converge to some real number x0.

The number x0 also must be long to the [a, b]
Since f is continuous at x0.

We have
k
lim


f(
knx ) = f(x0)

But we also have 
k
lim


|f(
knx )| = +

which is a controdection
 f is bounded.

Now let M = sup {f(x)|x[a, b]}
For each nN there exists yn

[a, b]

Such that
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M – 
1
n

< f(yn)   M

lim f(yn) = M

By Bolzanowierslrass Theorem

There is a subsequence {ynk} of {yn} converging to a limit y0 in [a, b].

Since f is continous at y0.

We have f(y0)= k
lim


f(yk).

Since {f(ynk)} is subsequence of {f(yn)} n N  .

By theorem [Every sequence {sn} has a monotonic subsequence] shows,

k
lim


 f(
kny ) = 

n
lim


 f(yn) = M

 f(y0) = M

Thus f assumes its maximum at g0

– f assumes its maximum at some x0 [a, b].

  f assumes its minimum at x0.

8. State and prove Intermediate value theorem.

(OR)

If f is a continuous real valued function on an interval I, then f has the intermediate value
property on I, whereever a < b and y lies between f(a) and f(b).

[i.e., f(a) < y < f(b) or f(b) < y < f(a)] there exists at least one x in (a, b) such that
f(x) = y.

(OR)

Let f be a continous on [a, b] and assume f(a) < f(b) then for every k such that f(a) < k <
f(b) there exists c[a, b] such that f(c) = k.

Sol. (Imp.)

f is continous at a,

for ( = – f(a)) > 0   d > 0  |x – a| < d  |f(x) – f(a)|<

Consider

    H = {x[a, b] / f(x)< k}  0   c = sup (H)

Show that f(c) = k

Suppose f(c) < k  k – f(c) > 0

We know f is continuous at c so k f(c) 0     > 0||f(x) – f(c)| < (= k – f(c)) when
|x – c|<.

  f(x) – f(c) < k – f(c)

Say x = c + /2  f(x) < k   c + /2 H

which is a contradiction the fact c = sup (H) since  > 0.

Similarly f(c) > k. thus

f(c) = k.
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9. If f is a continuous real valued function
on an interval I, then the set f(I) = {f(x) :
xI} is also an interval or a single point.

Sol.
f is a continuous real valued function on I the

set,

     J = f(I)

y0, y1,J and y0 < y < y1   yJ       ... (1)

If Inf J < Sup J. Then such a set J will be an
interval.

We will show inf J<y<sup J   yJ   ... (2)

So, J is an interval with end points inf J and
sup J

inf J and sup J may or may not belong to J
and they may or may not be finite.

Consider inf J < y < sup J

  y0, y1 in J

So that y0 < y < y1

Thus yJ by (1).

10. Let f be a continuous function mapping
[0, 1] into [0, 1] in other words, dom(f) =
[0, 1] and f(x) [0, 1] for all x [0, 1] show
f has fixed point, i.e., a point x0

 [0, 1]
such that f(x0) = x0, x0 is left fixed by f.

Sol. (Imp.)

Consider g(x) = f(x) – x

Which is continuous on [0, 1]

Since g(0) = f(0) – 0

= f(0) 0

 g(1) = f(1) – 1   1 – 1 = 0

x0 1

Graph of f

y = x

0

1

y

x0 1

Graph of f

y = x

0

1

y

By Intermediate value theorem show
g(x0) = 0

for some 0x [0,1]

Then obviously we have f(x0) = x0.

11. Show that if y > 0 and mN. Then y has
a positive mth root.

Sol.
The given function is f(x) = xm is continuous,

b > 0 so that y bm

Let b = 1   y  1

if y > 1 let b = y

Thus f(0) < y  f(b) and the intermediate
value theorem   f(x) = y for some x in (0, b),

So,  y = xm and x is an mth root of y.
12. Let f be a continuous strickly increasing

function on some interval I. Then f(I) is
an interval J and f–1 represents a
function with domain J. The function
f–1 is continous strictly increasing
function on J.

Sol.
Let a < x1 < x2 < b
Then either f(x2) > f(x1) or f(x2) < f(x1)
Suppose that first possibility,
Then we claim f is strickly increasing on (a, b)

Let a < 1
1x < 1

2x < b be any other ordered two
points in the interval.

              Set x(t)= 1
1tx  + (1 – t) x1, y(t)

= 1
2tx + (1 + t) x2

Then a < x(t) < y(t) < b for 0 t < 1
     Set g(t)= f(y(t) – f(x(t))
Then g is the composition of continuous

function so is continous on [0, 1].

Also g(t)  0 since f is one to one
So, g(t) cannot change sign by the interme-

diate value theorem.
Since g(0) = f(x2) – f(x1)>0, g(t) > 0

and hence g(1) = f( 1
2x ) – f( 1

1x ) > 0.
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13. Let g be a strictly increasing function on an interval J such that g(J) is an interval I. Then
g is continous on J.

(or)

If f is continous and one to one on an interval then f1 is also continous.

Sol.
By previous theorem, f is either strictly increasing or strictly decreasing.

Let x0 be in the interval with y0 = f(x0) we must show that f–1(y) = x0.

Let >0 be given

If x0 –  < x0 < x0 + 

Then f(x0 – ) < f(x0) < f(x0 + )

Choose  = min (f(x0) – f(x0 – ), f(x0 + ) f(x0))

Then f(x0 – ) < f(x0) –  and f(x0) +  < f(x0 + )

Hence if f(x0) < y < f(x0) + 

then f(x0 – ) < y < f(x0 + )

Since f is strictly increasing.

So, is f–1 and therefore x0 –  < f–1(y) < x0 + 

i.e, |f–1(y) – x0| <  if |y – y0|<

 |f–1(y) – f–1(y0) <  if |y – y0|<

 f–1 is continous.

14. Show that if – f assumes its maximum at x0 [a, b]. Then f assumes its minimum at z0.

Sol.
Suppose if –f assumes its maximum at x0

i.e., x [a,b] 

We have –f(x) –f(x0)

Thus f(x)   f(x0) x [a,b]

Which means exactly f assumes its minimum at x0

15. Prove that x = cos(x) for some x in  
 
 


0,

2
.

Sol. (Imp.)

Consider the function f(x) = cos(x) – x, which is a continuous function.

Since both cos(x) and x are continous

   If x = 0

  f(0) = cos 0 – 0

  f(0) = 1
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If    x =
2


        f(/2) = cos 
2


 – 
2


= 0 – 
2


        f(/2) = 
2


Thus, by the intermediate value theorem, we have that there is come  c 0, 2
 such that f(c) =0.

This means exactly that cos (x) = x has a solution in this interval.

16. Let S R and suppose there exists a sequence {xn} in S converying to a number x0
S

show there exists an unbounded continuous function on S.

Sol. (Imp.)

Let  f : S R be given by f(x) = 
0

1
x x

 x0
S

f is bounded.

Let M > 0 be given

Choosing  = 
1
M

Since xn  x0 there exists n for which

n 0|x x | < =
1
M

   
n 0

1
|x x |

 > 
1


 (= M)

       So, then |f(xn)| = 
n 0

1
|x x | = 

1


> M

 |f(xn)| > M

17. Let f and g be continuous function, on [a, b] such that f(a)  g(a) and f(b)  g(b) prove that
f(x0) = g(x0) for at lest one x0 in [a, b].

Sol. (Imp.)

Given that f and g are continuous function on [a, b]

let h = f – g So, h is also continuous function.

We have h(a)   0 and h(b)  0

f(a) – g(a)  0 f(b) – g(b) 0

f(a)   g(a) f(b)  (b)

By intermediate value theorem, there exists x0[a, b] for which h(x0) = 0

 i.e., f(x0) – g(x0) = 0

       f(x0) = g(x0).
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18. Prove that a polynomial function f of odd degree has at least one real root.

Sol.
Let f(x) = an x

n + an–1 x
n–1 + .... + a1x + a0

Where an
 0 and n is odd.

Multiplying f by a non - zero constant does not change its roots.

So, without loss of generality an = 1

Consider    n

f(x)
x

= an + n 1a
x
  + .... + 1

n 1

a
x 

+ 0
n

a
x

          n

f(x)
x

= 1 +  n 1a
x
  + .... + 0

n

a
x

for each 1 k n

there exists Rk > 0 for which |x|> Rk

 n k
k

a 1
2nx

 

Taking R = max {R1, ...... Rn}

The triangle inequality gives that

n 1 n
2

a a 1
.......

x 2x
     for |x|> R

So, 
n

f(x) 1
1 0

2x
  

In particular f(x) has the same sign as xn for x sufficiently large in magnitude so, when x is large and
positive.

f(x) is positive, and when x is large and negative,

f(x) is negative,

Since polynomial functions are continuous

By intermediate value theorem

f(x) = 0.

19. Let f(x) = sin 
 
 
 

1
x  for x  0 and let f(0) = 0 show that f has the intermediate value

property on R.

Sol.
Let a < b be given

If a  0 < b or a < 0  b

Then sin 1
x

 
 
 

 attains all values between - 1 and 1.
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any y between f(a) and f(b) is attained between a and b.

If 0 < a < b or a < b < 0

Then since sin
1
x

 
 
 

 is itself continuous on the domains {x >0} and x < 0.

f has the intermediate value property.

2.3  UNIFORM CONTINUITY

Let f be a real valued function defined on a set SR. Then f is uniformly continous on S. if for each
0   0    x, ys and

|x – y| <    |f(x) – f(y) < |

f is uniformly continuous if f is uniformly continous on dom(f).

20. Verify f is continous on set S  dom(f) if an only if for each x0s and >0 there is  > 0

so that xdom(f) and |x – x0| <   |f(x) – f(x0)|< for the function f(x) = 2

1
x

 on (0,  ).

Sol.
Given that,

  f(x) = 2

1
x

 on (0,  )

Let x0 > 0 and  > 0

We have to show |f(x) – f(x0)|< for |x – x0|<

Consider

 f(x) – f(x0) = 2 2
0

1 1
x x



= 
2 2
0

2 2
0

x x
x x


 f(x) – f(x0) = 0 0
2 2

0

(x x) (x x)
x x
 

  Choose  = 0x
2

 |x – x0| < 0x
2

 then we have |x|> 0x
2

|x| < 03x
2

 and |x0  + x| < 05x
2
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|f(x) – f(x0)|< 

 

0
0

22
20
0

5x
|x x|

2
x

x
2



 
 
 

= 0
3
0

10|x x|
x


Thus if we set  = min 
3

0 0x x
,

2 10
 
 
 

  |x – x0| <    |f(x) – f(x0)|<

21. Show that f(x) = 2

1
x

 is uniformly continous on [0,  ) where a > 0.

Sol. (Imp.)

Given that f(x) = 2

1
x

 on [0,  ) where a > 0

let 0 

We have to show that

0   |x – y| < d   |f(x) – f(y)|<  x, y  a ... (1)

  Consider  f(x) – f(y) = 2 2

1 1
x y



= 
2 2

2 2

y x
x y


= 2 2

(y x) (y x)
x y

 

If we can show 
2 2

y x
x y
  is bounded on [a,  ) by a constant M, then we will take  = 

M


.

               2 2

y x
x y


= 2 2

y
x y

 + 2 2

x
x y

      x = 2 2

1 1
x y xy



  2 2

1 1
a .a a.a

 x, y   a.

  3 3

1 1
a a



        2 2

y x
x y


  3

2
( M)

a

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 = 
3a

2


x   a, y  a and |x – y|<    |f(x) – f(y)| = 2 2

|y . x||(y x)|
x y


<  2 2

1 1
x y xy

 
 

   3

2
a


= 

 |f(x) – f(y)|<  x, y a 

 f is uniformly continous on [a,  ).

22. The function f(x) = 2

1
x

 is not uniformly continuous on the set (0,  ) or even on the set

(0, 1).

Sol.

Given function is f(x) = 2

1
x

We will show that f is not uniformly continuous let  = 1.

i.e., for each  > 0   x, y in (0, 1) such that |x – y|<  and yet |f(x) – f(y)| 1 ... (1)

To  show that (1) it suffices to take y = x + 
2


  |f(x) – f x
2
  

 
| 1 ... (2)

Consider f(x) – f x
2
  

  
1

 1 2

1
x

 – 2

1
(x / 2) 

 1
 

 

2
2

2
2

x x2

x x 2

 



 1 2
2

x x x x
2 2

x x
2

              
     

  
 

 1 2
2

2x
2 2

x x
2

       
   

  
 
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 1 2
2

2x
2

2x x
2

   
 

  
 

... (3)

It is sufficient to prove (1) for  < 
1
2

Let x = 

      by (3)   
2

2

(2. )
2

2
2


  

    
 

= 

2

2
2

5
2
3

2
2



   
 

 = 4

25 2
9
2




 = 

2

4 2

5 5 20
1

99 1
9

2


  

  
 
 

i.e., If 0 <  < 
1
2

 then |f(d) – f 2
   

 
|>|

So, (1) hold with x =  and y =  + 

2


23. Is the function f(x) = x2 Uniformly continuous on [–7, 7]?

Sol.
Given that f(x) = x2

To check the given function is uniformly continous on [–7, 7].

i.e., to check by definition,

for each 0 0      |x – y| < d   |f(x) – f(x)| < 

Consider |f(x) – f(y)| = |x2 – y2| = |x – y| |x + y|

Since |x + y|   | 7 + 7| for x, y in [–7, 7]

|x + y|  14

 |f(x) – f(y)|  14|x – y| for x, y in [–7, 7]

Choose  = 
14


  |f(x) – f(y)| < 14 
14


|f(x) – f(y)| <  x, y [–7, 7]

  |x – y|<   |d(x) – f(y) < e

 f is uniformly continous on [–7, 7].
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24. If f is continuous on a closed interval [a, b] then f is uniformly continous on [a, b].

Sol.
f is continuous on a closed interval [a, b] we have to prove, f is uniformly continous on [a, b]

i.e., to prove.

for any 0 0      |f(x1) – f(x2)| <  for any arbitrary points x1, x2 of [a, b] such that |x1, x2| <

Let  > 0,

  f is continous on [a, b]

 for  > 0, we can divide [a, b] into a finite number (say n) of sub intervals.

i.e.,       a = t0 < t1 < ..... < tn = b

      a = [t0, t1], [t1, t2] .... [tr–1, tr] [tr, tr+1] .... [tn–1, tn] = b

Such that |f(x1) – f(x2)| < 
2


 for x1, x2 belonging to the same sub interval,

Let  = 
1
2

 min {|tr – tr–1| > 0, 1 r  n}

Let x1, x2 be any two points of [a, b] such that |x1 – x2| < .

Then x1, x2 either belong to the same sub interval or to two consecutive sub intervals with a common
end point.

Case (1) let x1, x2 belong to the same subinterval

We have |f(x1) – f(x2)| < 
2

   for |x1 – x2|< .

Case (2) let x1, x2 belong to two consecutive sub interval with a common end point.

Say tr.

We have |f(x1) – f(tr)| < 
2


 and |f(tr) – f(x2)|<
2


 |f(x1) – f(x2)| = |(f(x1) – f(tr) + f(tr) – f(x2)|

= |(f(x1) – f(tr)) + (f(tr) – f(x2))|

= |f(x1) – f(tr)| + |f(tr) – f(x2)|

= 
2


 + 
2


=   for |x1 – x2| < 

 Thus in either case,

We have for any e > 0 there exists  > 0 such that |f(x1) – f(x2)| <  for any arbitrary points x1, x2
of [a, b] such that |x1 – x2| < .

 f is Uniformly continous in [a, b]
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25. If f : s R  is uniformly continuous, then f is continuous, in S.

Sol. (Imp.)

Suppose that f is uniformly continous on s.

 for  > 0 > 0  |f(x1) – f(x2)|< for x1, x2 being any pair of arbitrary point of such that
|x1 – x2| < .

Let C S

On taking x1 = x and x2 = C we have for  > 0 > 0  |f(x) – f(c)|< for |x – c|<

 f is continous at any point ‘C’ of S, Since C is arbitrary:

f is continous at every point of S,

 f is continuous in S.

26. Prove that f : R R given by f(x) = x2 is a continous function on R but not Uniformly
continous on R.

Sol. (Imp.)

Clearly f is continuous on R,

Now we show that f is not uniformly continous on R

Given  > 0,

We prove that there is no single  that serves for every x R  in the condition of continuity..

To see this let us assume that there exists such a number  > 0.

Then for    x1 and x2 = x1 + 
2


 |x1 – x2|= 
2


< 

 |f(x1) – f(x2)| = 2 2
1 2x x  = |x1 – x2| |x1 + x2|

=
2


1 1x x
2


 

= 
2


12x
2




= x1  + 
2

4


= <  if x1 > 0

Since 
2

0
4




we must have 1 1x x R,    x1 > 0

But this is impossible.

  depends on  and x1 and hence the function f is not uniformly continous on R.
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27. A real valued function f on (a, b) is uniformly continous on (a, b) if and only if it can be
extended to a continous function on [a, b].

Sol. (Imp.)

Suppose that f is uniformly continous on (a, b)

we have to prove f is continous function on [a, b].

 f is uniformly continous on (a, b)

for 0 0     |f(x1) – f(x2)|< for x1, x2 being any pair of arbitrary points of S such that
|x1 – x2| < .

Let CS

on taking x1 = x and x2 = C

We have

for >0  > 0  |f(x) – f(c)|< for |x – c|< 

 f is continous at any point ‘c’ of s

Since C is any arbitrary

f is continous at every point of S.

 f is continous in [a, b]

Conversely suppose that

f is continous in [a, b] then prove that f is uniformly continous.

 f is continous on [a, b]

We have to prove that

f is uniformly continuous

i.e., to prove that

for any 0 0     |f(x1) – f(x2)|<  for any arbitrary point x1, x2 of [a, b]  |x1 – x2|<

Let  > 0

f is continuous on [a, b]

  for  > 0, we can divide [a, b] into finite sub intervals (say n)

a = [t0, t1], [t1, t2] ... [tr-1, tr], [tr, tr+1] . . . [tn–1, tn] = b

Such that |f(x1) – f(x2)| <
2


 for x1, x2 belonging to the same sub interval.

Let  = 
1
2

 min {|tr – tr–1|>0, 0   r   n}

Let x1, x2 be any two points of [a, b] such that |x1 –  x2|< .

Then x1, x2 either belong to the same sub interval or to two consecutive sub interval with a common
end point.

Case (i)

Let x1, x2 belong to the same sub-interval we have, |f(x1) – f(x2)|<
2


<  for |x1 – x2|< 
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Case (ii)

Let x1, x2 belong to two consecutive sub Intervals with a common end point say tr, we have,

|f(x1) – f(tr)|<
2


 and |f(tr) – f(x2)|<
2


 |f(x1) – f(x2)| =  |f(x1) – f(tr)|+|f(tr) – f(x2)|

< 
2


 + 
2


<  for |x1 – x2| < 

 Thus in either case, we have for any  > 0 there exists  > 0 such that

|f(x1) – f(x2)| <  for any arbitrary points x1, x2 of [a, b] such that |x1 – x2|<

 f is uniformly continous.

28. Show that the function f defined by f(x) = x3 is uniformly continous in [–2, 2].

Sol.
Given that f(x) = x3

Let x1, x2[–2, 2] then |x1| 2, |x2| 2

    |f(x2) – f(x1)| = | 3 3
1 2x x |

= |(x2 – x1) (
2
1x + 2

2x +x1 x2)|

= |(x1 – x1)| [ 2

1x + 2

2x +|x1||x2|]

= |x2 – x1||22 + 22 + 2, 2|

= 12|x2 – x1|

  |f(x2) – f(x1)|<   whenever |x2 – x1|<
12


  Given  > 0 =
12


  such that |f(x2) – f(x1)| whenever |x1 – x1|<  for every x1, x2 [–2, 2]

  f(x) is uniformly continous in [–2, 2].

29. If f is uniformly continous on an aggregate s and {sn} is a Cauchy sequence in s, then
prove that {f(sn)} is also Cauchy sequence.

Sol.
f is uniformly continuous on s

 given >0   >0 such that x1, x2  S,

|x1 – x2| <   |f(x1) – f(x2)|< ... (1)

{sn} is a Cauchy sequence
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 for  > 0 there exists positive integer ‘m’ such that |sp – sq| <  p,q m 

But sp, sq n{s }    sp . sqs

By (1), for each >0 there exists a positive integer ‘m’ such that |f(sp) – f(sq)| <  p,q m  .

  {f(sn)} is also a Cauchy sequences.

30. Show f(x) = 2

1
x

 is not uniformly continous on (0, 1).

Sol.

Let sn = 
1
n

 for nN

      
n
lim


 sn = – 
n
lim


 
1
n

 = 0

which is convergent and we know that every convergent sequence are Cauchy sequence.

 {sn} is a Cauchy sequence

Since f(sn) = n2

n
lim


 f(sn) =  
n
lim


 n2 which is not a convergent

 f(sn) is not a cauchy sequence.

 f cannot be uniformly continous on (0, 1).

 f(x) is not a uniformly continous.

31. Let f be a continuous function on an interval I [I may be bounded or unbounded] Let Iº be
the interval obtained by removing from I any end points that happen to be in I. If f is
differentiable on Iº and if f1 is bounded on Iº, then f is uniformly continous on I.

Sol.
Given that f is continous function on I, here ‘I’ may be bounded or unbounded

Let M be bounded for f' on I

suppose that |f'(x)| M on I

Let >0 be given and set  = 
M


We show that this  –  pair satisfy the definition of Uniform continuity.

Let x, yI such that |x – y|<  M
  

 

by mean value theorem

There exists C(x, y) such that f'(c) =
f(x) f(y)

x y


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But then

       |f(x) – f(y)| = |f'(c)| |x – y|

< M

< M
M


< 

       |f(x) – f(y)| < 

f is uniformly continous on I.

32. Show f(x) = 2

1
x

 is uniformly continous

on [0,  ).

Sol.
Let a > 0,

    Consider f(x) = 2

1
x

 Since f'(x) = 3

2
x


       |f'(x)| = 3

2
a

 on [a,  )

We have to show that –f is uniformly
continous there exists >0  |x – y|<   |f(x) –
f(y)|<.

x,y a 

Consider f(x) – f(y) = 
2 2

1 1
x y

 = 
2 2

2 2

y x
x y


= 2 2

(y x) (y x)
x y

 

If we can show 
2 2

x y
x y
  is bounded on [a,  )

by constant M, then we will take  = 
M


.

       2 2

y x
x y


= 2 2

1 1
x y xy



  3 3

1 1
a a



  3

2
( M)

a


   = .
3a

2

x a, y a and |x – y| <   |f(x) – f(y)|

= 2 2

|y x||y x|
x y

 

< 3

2
a



= .

  |f(x) – f(y)| <    x, y   a

f is Uniformly continous on [a,  ).

33. Prove f(x) = 3x + 11 on R is uniformly
continous.

Sol.
Given f(x) = 3x + 11 on R,

>0, Let  = 
3


then |x – y| <  3
  

 
|f(x) – f(y)|<

Consider,

      |f(x) – f(y)| = |3x + 11 – (3y + 11)|

= |3x + 11 – 3y – 11|

= |3x – 3y|

= 3|xy|

< 3 . 
3


= 

 |f(x) – f(y)| < 

 f is uniformly continous.

34. Prove f(x) = x2 on [0, 3] is uniformly
continuous.

Sol.
Given that f(x) = x2 on [0, 3]

To prove f is uniformly continous
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i.e., to prove 0 0     |x – y|<d |f(x)
– f(y)|<

>0, Let  6
  

 
>0, then |x – y|<  6

  
 

Consider |f(x) – f(y)| = |x2 – y2|

= |(x – y) (x + y)|

= |x – y||x + y|

< 
6


|3 + 3| x 3, y 3  

< 6
6


= 

 |f(x) – f(y)|< on [0, 3]

 f is uniformly continous on [0, 3].

35. Prove f(x) = 
1
x

 on ,
  

1
2

 is uniformly

continuous.

Sol.

Given that f(x) = 
1
x

Prove that f(x) is uniformly continous

i.e, to prove.

0 0     |x – y|<  |f(x) – f(y)|<

Let > 0,  0
4
   

 

Then |x – y| <  4
  

 

Consider |f(x) – f(y)| = 
1 1
x y


= 
y x
xy


  
y x
xy


  
|x y|

1 1
.

2 2



< 4
1
4



 = 

 |f(x) – f(y)|<     on 1
,

2
  

 f is uniformly continous.

36. Check f(x) = 3

1
x

 on (0, 1] is uniformly

continous or not?

Sol.

Let sn = 
1
n

Since sn is convergent

[i.e., lim sn = lin 
1
n

 = 0 which is convergent]

and we know that every convergent sequence
are Cauchy sequence.

 {sn} is a cauchy sequence.

But f(sn) = n3 and n3 is not cauchy sequence
since it is diverges to + .

 f cannot be uniformly continous on (0, 1].

37. Show that f(x) = x3 on [0, 1] is uniformly
continous.

Sol.
Given that f(x) = x3

To show that f(x) is uniformly continuous.

i.e., show that for each 0 0 |x y|      <

   3
 

 
  

|f(x) – f(y)|< 
Consider |f(x) – f(y)| = |x3 – y3|

= |(x – y) (x2 + y2 + xy)|
= |x – y| |x2 + y2 + xy|

= |x – y| ||x|2 + |y|2 + |xy||
=  |1 + 1 + 1|= 3

= 3
3


|f(x) – f(y)| < .
 f is uniformly continuous on [0, 1]
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38. Which of the following continous
functions are uniformly continuous on
the specified set? Justify your answer.

(a) f(x) = x3 on R

(b) f(x) = x3 on (0, 1)

Sol.

(a) Given that f(x) = x3 on R

Claim

f is not uniformly continous on R.

In particular, for  = 1 any 0 ,x,y R   

Such that |x – y|< d and |x3 – y3| 1

To find x and y,

Let’s first simplify things by looking for positive
x's.

and letting y = x + 
2


Then    |x3 – y3|= |x3 – 
3

x
2
  

 
|

= x3 – x3 + 23
x

2
 +

3

8


+ 23
x

4


= 
3

2 23 3
x x

2 4 8


   

> 23
x

2
 

This is equal to 1 if x = 
2
3

 formally, for

any > 0, let x = 
2
3

 and let y = x + 
2


.

Then |x – y| = 
2


 <  and |x3 – y3| > 
3
2


x2 = |(=)

So, f is not uniformly continous.

2.4  LIMITS OF FUNCTIONS

Definition : Let s be a subset of R, let ‘a’ be a
real number or symbol ‘ ’ or ‘– ’ i.e., the limit of
some sequence in s, and let L be a real number, we

write 
sx a

lim


f(n) = L if f is a function defined on s and

for every sequence { xn} in s with limit a, we have

sx a
lim


f(xn) = L.

The expression 
sx a

lim


f(x) is read “limit, as x

tends to a along s, of f(x).
Various standard limit concepts for functions.

1. For a R and a function f we

wri te
x a
lim f(x) L


 provided

sx a
lim f(x) L


 for

some open interval s = (a, b) 
x a
lim f(x)


 is the

right hand limit of – f at a.

2. For a R and a function f we

wri te
x a
lim f(x) L


 provided

sx a
lim f(x) L


 for

some open interval s = (c, a) –x a
lim f(x)


 is called

left hand limit of f at a.

3. For a function f, we write 
x
lim f(x) L




provided 
sx

lim f(x) L


  for some interval s =

(c,  ) like wise we write 
x
lim


f(x) = L

provided 
sx

lim f(x) L


  for some interval s =

(– , b).
39. Find

(a)


3

x 4
limx (b)

x 2

1
lim

x

Sol.

(a)


3

x 4
limx

Given that

f(x) = x3   
3

x 4
lim x


 = 43

  
3

x 4
lim x


 = 64.
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(b)
x 2

1
lim

x

Given that

  f(x) = 
1
x

    
x 2
lim


 f(x) = 
1
2

       
x 2
lim


 
1
x

= 
1
2

40. Final 


2

x 2

x – 4
lim

x – 2
.

Sol.

Given that 
2

x 2

x – 4
lim

x – 2

   f(x)=
2x – 4

x – 2

Rewrite the function as

     
2x – 4

x – 2
=

( x 2 ) (x 2)
x 2




= x + 2 – for x   2.

None it is clear that 
x 2
lim


2x 4
x 2



 = 
x 2
lim


 x + 2

x 2
lim


2x 4
x 2



 = 4

41. Find 
x 1

lim x –1
x –1

.

Sol.

Given that 
x 1
lim


x 1
x 1



f(x) = 
x 1

x 1



We multiply numerator and denominator by

x  + 1, then we obtain.

x 1
x 1




= 
x 1

x 1



×
x 1

x 1



=
2( x) 1

(x 1) ( x 1)



 

= 
(x 1)

(x 1) ( x 1)

= 
1

x 1

Now it is clear that,

       
x 1
lim


 
x 1

x 1



= 
x 1
lim


1

x 1

= 
1

1 1

     
x 1
lim


x 1
x 1




= 
1
2

.

42. If f(x) = 3

1
(x – 2)

 for x  2. Then prove

that (i) 
x

lim


f(x) = 
–x

lim


f(x) = 0,  (ii)

x
lim


f(x) = +  and 

x
lim


 f(x) = – .

Sol. (Imp.)

To verify
x
lim


f(x) = 0

We consider sequence {xn},

Such that
n
lim


 xn = +

f(x) = 3

1
(x 2)

x
lim


f(x) = 
x
lim


 3

1
(x 2)

 = 0

This show’s that,

x
lim


f(x) = 0. For (2,  ) Now to show

that
x
lim


(xn – 2)–3 = +   ... (1)
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x
lim
 3

1
( 2)   = 0

Here 0   for large n, we need |x – 2|–3 <   or 1 3
n|x 2|    if xn > 1/2 2 

n
lim


 xn = + 

There exists N so that n > N   xn >
1/3 +2

i.e., n > N  |xn– 2|–3 < .


n
lim


f(xn) = 0

43. Find the limit 
x b

x b
lim

x b




, b > 0.

Sol. (Imp.)

Given that 
x b

x b
lim

x b




   f(x) = 
x b
x b



Multiply and divide by x b

we obtain,

f(x) = 
x b
x b



×
x b

x b




 
   

   

2 2
x b

x b x b



 
 = 

 x b

 x b  x b  = 
1

x b

 
x b
lim


f(x) = x b

1
lim

x b 

= 
1

2 b

Let g(x) = 
x b
x b



Note that (0,  ) is an open interval containing b and (0,  ) – {b} dom (g)

If {xn} is a sequence in (0, ) – {b}

and lim xn = b. Then g(xn) = 
n

n

x b

x b


  = 

n

1

x b  nN

(Since xn  b, for any n)

Since lim xn = b  lim nx b
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Since lim b b

and lim nx b .

  lim nx b 2 b 

The reciprocal limit law then implies that

g(xn) = lim
n

1

x b  = 
1

2 b

we have shown that whenever {xn} is sequence in (0,  ) – {b} such that lim xn = b then

lim
n

n

x b

x b


  = 

1

2 b

So, 
x b

x b
lim

x b




 = 
1

2 b

44. Prove that if 
x a
lim


f(x) = 3 and 
x a
lim


 g(x) = 2

Then (a) 
x a
lim


 [3f(x) + g(x)2] = 13

(b) 
x a

1
lim

g(x)
 = 

1
2

(c) 
x a
lim 3f(x) 8g(x)


  = 5

Sol : (Imp.)

Given that 
x a
lim


 f(x) = 3

and 
x a
lim


 g(x) = 2 ... (1)

(a) To prove that 
x a
lim


 [3 f(x) + g(x)2] =  13

Consider R.H.S i.e., 
x a
lim


 [3 f(x) + g(x)2]

 x a
lim


[3f(x)] + 
x a
lim


g(x)2

 3
x a
lim


f(x) + 
x a
lim


g(x)2

= 3(3) + (2)2   13 (by (1) & (2)


x a
lim


 [3f(x) + g(x)2] = 3
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(b) To prove that x a

1
lim

g(x)  = 
1
2

consider x a

1
lim

g(x)  = 
x a

1
lim g(x)


= 
1
2

by (2)

 x a

1
lim

g(x)  = 
1
2

(c) To prove that 
x a
lim 3f(x) 8g(x)


  = 5

Consider

x a
lim 3f(x) 8g(x)


  =  
x a x a

3 lim f(x) 8 lim g(x)
 



= 3(3) 8(2)

= 9 16

= 25


x a
lim 3f(x) 8g(x)


  = 5

45. Let f1 and f2 be function for which the limits L1 = 
 sx a
lim f1(x) and L2 = 

 sx a
lim f2(x) exist and

are finite. Then

(i)
 sx a
lim (f1+f2) (x) exists and equals L1 + L2

(ii)
 sx a
lim (f1 f2) (x) exits and equals L1 L2

(iii)
 sx a
lim (f1 / f2) (x) exits and equals L1/L2 provides L2  0 and f2(x)  0  for xs

Sol. (Imp.)

(i) Given that f1 and f2 are defined on s.

a is the limit of some sequence in s.

clearly the function f1 + f2 and f1 f2 are defined on s and so, is f1/f2 if f2(x)  0 for xs.

consider a sequence {xn} in s with limit a.

By given hypothesis we have

L1 = 
n
lim


f1(xn) ... (1)
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and L2 = 
n
lim


 f2(xn) ... (2)

Let 0  , we have  to show that

|f1 + f2 – (L1 + L2)| <   for large

by (1)   for each 0    nN1 |f1 (xn) – L1| < 
2


  n < N1 ... (3)

by (2)   for each 0    nN2 |f2 (xn) – L2| < 
2


  n > N2 ...(4)

N = max {N1, N2}

Consider

|f1 + f2 – (L1 + L2)| = |f1 + f2 – L1 – L2|

= |(f1 – L1) + (f2 – L2)|

= |f1(x) – L1| + |f2(xn) – L2|

<
2


 + 
2


< 

 |f1 + f2 – (L1 + L2)| <  n N 


x
lim


(f1 + f2) = L1 + L2

(ii) To show that 
x
lim


(f1f2) (x) = L1 L2

i.e., to show that |f1f2 – L1L2| <   n N 

consider |f1f2 – L1L2| = |f1f2 – f1L1 + f1L1 – L1L2|

= |(f1f2 – f1L2) + (f1L2 – L1L2)|

  |f1(f2 – L2)| + |L2(f1 – L1)|

  |f1| |f2 – L2| + |L2| |f1 – L1| ...(1)

There is a constant M > 0 such that |f1| M  n

Since lim f2 = L2 there exists N1 such that n > N1   |f2 – L2| < 
2M


Also, since lim f2 = L2 there exists N2 such that n > N2  |f1 – L1| <  22 1L 1 1



Now if N = max {N1, N2} Then n > N implies

by equation (1) we can write
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|f1f2 – L1L2|   |f1| |f2 – L2| + |L2| |f1 – L1|

< M
2M


 + |L2| 22(|L | 1)




< 
2


 + 2L
22( L



1)

< 
2 2
 


|f1f2 – L1L2| < 


n
lim


f1f2 = L1 L2

(iii) To prove that 
1

n
2

f
lim

f  = 
1

2

L
L

first we will prove 
2

1
f

 converges to 
2

1
L

 Let 0   there exists M > 0 such that

|f2|  M   n.

Since lim f2  there exists N such that

n > N   |L2 – f2| <  . M|L2|

Then  n > N   
2 2

1 1
f L
 = 

2 2

2 2

L f
f L


  2 2

2 2

L f

f L



<
2 M L

2M L

2 2

1 1
f L
  

 n
2

1
lim

f  = 
2

1
L

Now,  lim 1

2

f
f

=  lim f1, lim 2

1
L

= 1
2

1
L

L


=
1

2

L
L

 lim
1

2

f
f  = 

1

2

L
L

46. Let f be a function defined on a subject
S of R, Let a be a  Real number that is
the limit of some sequence in S and let

L be a real numbers then
x a

lim f(x) = L if

and only if for each   > 0     > 0 such
that xS and |x – a| <   implies |f(x) –
L| < 

Sol.
Given that f is function on ‘S’ and S R,

where R is Real numbers.

Required to prove  
x a
lim


f(x) = L If and only if

for each

  > 0      > 0   x  s  and |x – a| < 
  |f(x) – L| <      ...(1)

To show that 
x
lim


f(xn) = L

(i)
x a
lim


f(x) = L   for each   > 0     > 0

|f(x) – L| <   whenever x s, 0

  < |x – a| < 

x s, a –   < x < a

 x s, 0 < a – x < 

 x s, 0 < |x – a| < 

 |f(x) – L| < 


x a
lim


f(x) = l

x s, a < x < a + 

  x s, 0 < |x – a| < 

 |f(x) – L| < 


x a
lim


f(x) = L
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  for each 0   0    x s, |x – a| < 

 |f(x) – L| < 

Let 
x a
lim


f(x) = L, 

x a
lim


f(x) = L

and let 0 

x a
lim


f(x) = l   there exists 1 0  

      |f(x) – l| <   whenever x s, a – 1  < x < a

x a
lim


f(x) = l   there exists 2 0   such that

        f(x) – l| <   whenever x s, a < x < a + 2

If we take   = min  1 2, 

Then x s, 0 < |x – a| < 

 x s, 0 < a – x <   or 0 < x – a < 

 x s, a –   < x < a or a < x < a + 

 x s, a – 1  < x < a or a < x  < a + 2

 |f(x) – l| < 


x a
lim


f(x) = L

47. Find the limit of f(x), where f(x) =
2 2x a
x a



.

Sol.
Let  f : R – {a}   R

clearly ‘a’ is a limit point of R – {a}

       f(x) = 
2 2x a
x a



x a
lim


f(x) =
x a
lim


2 2x a
x a



=
x a
lim


(x a)

 
(x a)

x a





=
x a
lim


(x + a)

= a + 9

= 2a


x a
lim


f(x) = 2a

i.e.,
2 2

x a

x a
lim

x a




 = 2a

48. Find the limit of f(x) = 
3 3x a
x a



Sol.

Given that, f(x) = 
3 3x a
x a



x a
lim


f(x) =
3 3

x a

x a
lim

x a




=
x a

(x a)
lim


 2 2(x ax a )

x a

 



= a2 + a.a + a2

= a2 + a2 + a2

x a
lim


f(x) = 3a2

i.e., 
3 3

x a

x a
lim

x a




 = 3a2
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Choose the Correct Answer

1. If f and g are real valued function then min (f, g) = [ c ]

(a) max (–f, –g) (b)
1 1

(a b) (a b)
2 2

  

(c)
1 1

(f g) |f g|
2 2

   (d) None

2.
x 1
lim


x 1
x 1




 = [ a ]

(a)
1
2

(b)
1
2



(c) 1 (d) 0

3. The domain of g of is [ c ]

(a) R (b) dom (f)  dom (g)

(c) {x  dom (f) ; f(x) xdom (g)} (d) {x  dom (f)   xdom (g)}

4. If f(x) = (1 + 3x)1/x is continuous at x = 0 then f(0) = [ c ]

(a) e (b) e2

(c) e3 (d) 0

5.
n
lim


 
0sin n

n
 = [ b ]

(a) 1 (b)
180


(c)
180


(d) None

6. If f and g are real valued function then max (f, g) (x) = [ a ]

(a) max {f(x), g(x)} (b)
f(x)
g(x)

(c) f(x) g(x) (d) f(x) – g(x)
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7. If f(x) = 
1 cos ax

x sin x


 is continous at x = 0 where f(0) = 
1
2

 then [ c ]

(a) a = 1 (b) a = –1

(c) a = ± 1 (d) None

8. f(x) = 
sin x

x
 is always [ c ]

(a) Continuous (b) Discontinuous

(c) Continuous if f(0) = 1 (d) None

9. f(x) = x2, is continuous at x0 = [ d ]

(a) 4 (b) 1

(c) 0 (d) 2

10. Limit of f(x) = 
3 3x a
x a



[ d ]

(a) 3 (b) 3a2

(c) 0 (d) None
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Fill in the blanks

1. If f is uniformly continous on [a, b] then f is  on [a, b].

2. A function continous in one open interval  uniformly continuous in that interval.

3. If |f| is continuous at ‘a’ then f is need not to be  at ‘a’.

4. The domain of 
f
g

 is the set .

5. A function f is continuous in dom (f) = S if and only if  continuous.

6. The domain of 
2x 4

x 2



 is .

7. The function f(x) = x2 is uniformly continuous on .

8. Mean value theorem is f’(x) = .

9. The set on which f is defined is called the  of f.

10. The natural domain of f(x) = 24 x  is .

ANSWERS

1. Continuous

2. Need not to be

3. Continuous

4. Dom (f)  {x  dom(g) : g(x)  0}

5. Uniformly Continuous

6. (– , 2)  (2,  )

7. [–7, 7]

8.
f(b) f(a)

b a



9. Domain

10. {x R : x 0} 
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3.1 BASIC PROPERTIES OF THE DERIVATIVE

Definition 1.

Let ‘f’ be a real valued function defined on
an open internal containing a point ‘a’ we say that
f is differentiable at a or that f has a derivative at ‘a’

if the limit, 
x a

f(x) f(a)
lim

x a




 exists and is finite

i.e., f is differentiable at ‘a’ we can write f'(a)

= 
x a

f(x) f(a)
lim

x a




Definition 2.

Let ‘s’ be an aggregate and f : S   R be a
function, let CS, be a limit point of S and lR, f is
said to be derivable at ‘C’ if for a given 0  there
exists 0  .

Such that 0 |x – c| <  
f(x) f(x)

x c


 
 .

The number ‘l’ is called the derivative of ‘l’ at
c and denoted by f'(c).

1. If f is differentiable at a point ‘a’. Then
‘f’ is continuous at a.

Sol. (Imp.)

let f : [a, b]   R, at [a, b]

let, c(a, b)

f is derivable at  c 
n c
lim


f(x) f(c)
x c



= f'(c)

for x c . f(x) – f(c) = 
f(x) f(c)

x c
 

  
(x – c)

UNIT
III

Differentiation : Basic Properties of the Derivative - The Mean Value Theorem  -

* L’Hospital Rule - Taylor’s Theorem.

x c
lim


[f(x) – f(c)] = 
x c
lim


f(x) f(c)
x c
 

   x c
lim


(x – c)

= f'(c).0

= 0

 x c
lim


f(x) – 
x c
lim


f(c) = 0

 x c
lim


f(x)  = f(c)

 f is continuous at c(a, b)

Let c = a

f is derivable at a   
x a

f(x) f(a)
lim

x a




 = Rf'(a)

x a
lim


[f(x) – f(a)] = 

x a

f(x) f(a)
lim

x a

 
   x a

lim


(x – a)

 = Rf'(a).0

 = 0

   
x a
lim


f(x) = f(a)

 f is right continuous at ‘a’.

Similarly, we can prove that f is left continuous
at b.

2. Let f and of be functions that are
differentiable at the points each of the
functions cf [c a constant], f+g, fg and f/
g is also differentiable at a, except f/g
if g(a) = 0 since f/g is not defined at a in
this case.

The formulas are

1. (cf)'(a) = c f'(a)

2. (f + g)'(a) = f'(a) + g'(a)
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3. (fg)'(a) = f(a)g'(a) + f'(a)g(a)

4. (f/g)'(a) = [g(a)f'(a) – f(a) g'(a)]/g2(a)

if g(a)  0.

Sol. (Imp.)

Given, that f & g are functions, which are differentiable at ‘a’.

Let f is differentiable at ‘a’.

Then f'(a) = 
x a

f(x) f(a)
lim

x a




...(1)

Similarly ‘g’ is differentiable at ‘a’

Then g'(a) = 
x a

g(x) g(a)
lim

x a




...(2)

By definition of (cf) (x) = cf(x). for all x dom(f)

   (cf)' (a) = 
x a

(cf)(x) (cf)(a)
lim

x a




=
x a

f(x) f(a)
lim c

x a






= c
x a

f(x) f(a)
lim

x a




= c.f'(a)

 (cf)' (a) = cf'(a)

2. f & g are differentiable at ‘a’

Then (f + g)' (a) = 
x a

(f g)(x) (f g)(a)
lim

x a

  


 (f g)(x) (f g)(a)
x a

  


=
f(x) g(x) f(a) g(a)

x a
  


 = 

f(x) f(a) g(x) g(a)
x a

  


 
(f g)(x) (f g)(a)

x a
  



= 
f(x) f(a) g(x) g(a)

x a x a
 


 

Apply limit as  x   a

x a

(f g)(x) (f g)(a)
lim

x a

  


=
x a

f(x) f(a)
lim

x a




 + 
x a

g(x) g(a)
lim

x a




(f + g)'(a) = f'(a) + g'(a)
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3. Observe that

fg(x) fg(a)
x a



= f(x)
g(x) g(a)

x a



 + g(a)
f(x) f(a)

x a



for xdom(fg),  x  a.

we take the limit as x a and note that 
x a
lim


f(x) = f(a).

 (fg)' (a) = f(a) g'(a) + g(a)f'(a)

4. Since g(a)  0. and g is continuous at a, There exists an open interval I consisting a such that
g(x)  0. for xI.

for xI we can write

(f/g)(x) – (f/g)(a) = 
f(x)
g(x)

 – 
f(a)
g(a)

=
f(x)g(a) f(a)g(x)

g(x)g(a)


=
f(x)g(a) g(a)f(a) g(a)f(a) f(a)g(x)

g(x)g(a)
  

So,
(f / g)(x) (f / g)(a)

x a



 = 
f(x) f(a) g(x) g(a)

g(a) f(a)
x a x a
     

1
g(x)g(x)

for x I, x  a

Now, take the limit as x a  to obtain

x a

1
lim

g(x)g(a)  = 2

1
g (a)

3. Find h'(a) where h(x) = x–m for x  0. h(x) = 
f(x)
g(x)  where f(x) = 1 & g(x) = xm for all x.

Sol. (Imp.)

Let m be the positive integer

h(x) = x–m

By the Quotient Rule

h'(a) = 2

g(a)f (a) f(a)g (a)
g (a)

 

Since g(x) = xm & f(x) = 1

x = a   g(a) = am & g(a) = 1

h' = g'(a) = mam–1 & f'(a) = 0
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 h'(a) = 
m m 1

m 2

a 0 1 ma
(a )

  

=
m 1

2

ma
a m




m 1

2m

ma a
a

 

=
1

m

ma
a



= m 1

m
a 



h'(a) = –ma–m–1

for a  0.

4. State and prove Chain Rule

                              (OR)

If f is differentiable at a and g is differentiable at f(a), then the composite function gof is
differentiable at a and (gof)'(a) = g'(f(a)).f'(a).

Sol. (Imp.)

Let f(x) = y for x[a, b]

and f(c) = d for c[a, b]

Since I is the range of f, f(c) I

define h : I   R

So that h(y) = 

g(y) g(d)
, y d

y d
g '(d), y d

  
 

Since g is deriable at f(c) = d,

g'(d) = 
y d

g(y) g(d)
lim

y d




= y d
lim
 h(y)

from the definition of h : I   R.

g(y) – g(d) = h(y)(y – d) for y  d

for x  c, 
(gof)(x) (gof)(c)

x c



=
g(f(x) g(f(c)

x c


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=
g(y) g(d)

x c



=
h(y)(y d)

x c




= h(f(x) f(x) f(c)
x c



f is differentiable at c 
x c

f(x) f(c)
lim

x c




= f'(c)
f is continuous at ci h is continuous at f(c)

= d   hof is continuous at c

 x c
lim


(hof) (x) = h(f(c))


x c

(gof)(x) (gof)(c)
lim

x c




 = x c

f(x) f(c)
lim h(f(x))

x c

   

= h(f(c).f'(c)
= h(d).f'(c)
= g'(d) f'(c)
= g'(f(c)).f'(c)


x c

(gof)(x) (gof)(c)
lim

x c




 = g'(f(c)) f'(c)

5. Show that f(x) = sin x is derivable at every aR.

Sol.
Given that f(x) = sin x

x a

f(x) f(a)
lim

x a




 = 
x a

sinx sina
lim

x a




  = x a

x a x a2cos sin
2 2lim
x a

 



  = cos a.1

  = cos a.

 f(x) = sin x is derivable at aR

and f'(a) = cos a.

Since aR is orbitrary

f'(x) = cosx x R  .
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6. Discuss the differentiability of f(x) = |x – a| in R.

Sol.
Let C R  and c < a

Then c – a < 0

There exists a deleted nbd of ‘c’

such that x c  delected nbd    x < a

x c

f(x) f(c)
lim

x c




 = 
x c

x a c a
lim

x c

  



 =
x c

(x a) { (c a)}
lim

x c

    


 =
x c

c x
lim

x c




 =
x c
lim


(– 1) = – 1

 f(x) is derivable at c(< a) R.

and f'(c) = – 1

Let CR and c > a, then c – a > 0

There exists a delected nbd of ‘c’ such that xc deleted nbd   x > a.

   
x c

f(x) f(a)
lim

x c




=
x c

(x a) (c a)
lim

x c

  


=
x c

x c
lim

x c




 = 
x c
lim


1 = 1

 f(x) is derivable at c (> a)R.

and f'(c) = 1

Let CR and c = a.

Then f(c) = c – a = 0

for xc - left hand   x < a so that Lf'(c) = – 1

for xc- right hand   x > a so that Rf'(c) = 1

 f(x) is not deriable at c(= a)R

Hence f(x) is derivable in R – {a}

7. Discuss the derivability of f(x) = |x| + |x – a| in R.

Sol. (Imp.)

We have f(x) = 1 – 2x, x < 0

f(x) = 1 0   x   1

f(x) = 2x – 1 x > 1
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x 0

f(x) f(0)
lim

x 0




=
x 0

1 2x 1
lim

x

 

=
x 0
l im


(– 2)

= – 2

= Lf'(0)

x 0

f(x) f(0)
lim

x 0




=
x 0

1 1
lim

x


= 

x 0
lim 0



 = 0 = Rf'(0)

 Lf'(0)  Rf'(0)

and hence f'(0) does not exist.

 
x 1

f(x) f(1)
lim

x 1




 = 
x 1

1 1
lim

x 1




 = 
x 1
lim


0 = 0 = Lf'(1)

  
x 1

f(x) f(1)
lim

x 1




= 
x 1

2x 1 1
lim

x 1

 


=
x 1

2(x 1)
lim

x 1




= 2 = Rf'(1)

 Lf'(1) = Rf'(1)

and hence f'(1) does not exists.

 f is derivable at every R – {0, 1}

Also, f'(x) = – 2 for x < 0;

f'(x) = 0 for 0 < x < 1

f'(x) = 2 for x > 1

8. Let f(x) = x sin
1
x

 for x  0 and f(0) = 0

(a) Observe that f is continuous at x = 0

(b) Is f differentiable at x = 0 ? Justify your answer.

Sol. (Imp.)

(a) Given that f(x) = x sin
1
x

x  0

x 0
lim


f(x) = 
x 0
lim


x sin
1
x
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Since 
x 0
lim


 x = 0 and sin
1
x

 
 
 

is bounded in a deleted nbd of ‘0’


x 0
lim


f(x) = f(0)

 f is continuous at the origin

(b)   
x 0

f(x) f(0)
lim

x 0




= 
x 0

1
x sin 0

xlim
x

   
 

=
x 0
lim


sin
1
x

does not exists

 f is not derivable at x = 0

9. State and prove Rolle's Theorem

                                      (OR)

f : [a, b]   R is such (i) f is continuous on [a, b] (ii) f is derivable on (a, b) and
(iii) f(a) = f(b). The there exists c(a,b) such that f'(c) = 0.

Sol.
f is continuous on [a, b]

 f is bounded on [a, b] and attains the inf and sup

 There exists ,  [a, b] such that

f() = m = inf f

f() = M = sup f in [a, b]

case (i)

Let m = M, Then f(x) = m m[a, b]

 f is constant function in [a, b]

and here f'(x) = 0 for every x[a, b]

Thus the theorem is true

case (ii)

Let m  M

Since f(a) = f(b) and m  M

we have either M  f(a) and hence M  f(b) or M  f(a)

and hence M  f(b)

let us suppose that M  f(a), M  f(b)
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f() = M  f(a)     a

f() = M  f(b)     b

  <  < b  or (a, b)

f is derivable on (a, b) & (a, b)

 f is derivable at 

Now, we prove that f'() = 0

If possible, let f'() < 0

 There exists 1 0   such that f(x) > f() = M   x ( – 1, ) C[a, b]

This is a contradiction as M is supremum.

Similarly, we can prove that f'()  0

Hence f'() = 0

 There exists (a, b) such that f'() = 0

3.2  THE MEAN VALUE THEOREM

10. State and prove Mean value theorem

                                      (OR)

Let f be continuous function on [a, b] that is differentiable at (a, b). Then there exist [at

least one] c[a, b] such that 
f(b) f(a)

b a



=f'(c).

Sol.
Define the function  : [a, b]   R such that

(x) = f(x) + kx where kR is given by

(a) = (b)

(a) = (b)  f(a) + ka = f(b) + kb

f(a) – f(b) = kb – ka

– (f(b) – f(a)) = k(b – a)

– k = 
f(b) f(a)

b a



 kR  x is continuous on R  kx is continuous and derivable on R.

f is continuous on [a, b] and kx is continuous on R   is continuous on [a, b]

f is derivable on (a, b) and kx derivable on R

  is derivable on (a, b)

 Further from the definition of , (a) = (b)

 The function  satisfies all the conditions of Rolle’s theorem

 There exists c(a, b) such that '(c) = 0
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Since (x) = f(x) + kx  x[a, b]

 '(x) = f'(x) + k  x(a, b)

 '(c) = f'(c) + k  for c(a, b)

and '(c) = 0  f'(c) = – k

 f'(c) =
f(b) f(a)

b a



11. If f : [a, b]   R is such that

(i) f is continuous on [a, b]

(ii) f is differentiable on (a, b)

(iii) f'(x) = 0 for all x(a, b) then f is constant function on [a, b]

Sol.
Let x1, x2 [a, b] and x1 < x2

Then [x1, x2]   [a, b]

 f satisfies all the condition lagrange’s theorem on [x1, x2]

There exists C(x1, x2) such that

f(x2) – f(x1) = (x2 – x1) f'(c)

= (x2 – x1).0 [ f' (c) = 0 by (iii)]

= 0

 f(x2) – f(x1) = 0   f(x2) = f(x1) for x1, x2(a, b)

 f is constant function on (a, b)

Since f is continuous on [a, b]

f is constant function on [a, b]

Note :

If f : [a, b]   R,  g : [a, b]   R

Satisfy the condition of kagrange’s theorem and f'(x) = g'(x)  x   (a, b). Then f and g differ by a
real numbers (constant) i.e.,  f(x) = g(x) + c for some CR.

Definition

Let f be a red valued function defined on interval I. We say that f is strictly increasing on I if

x1, x2   I and  x1 < x2   f(x1) < f(x2)

strictly decreasing on I if

x1, x2   I  and x1 < x2   f(x1) > f(x2)

Increasing on I if

x1, x2  I and x1 < x2   f(x1)   f(x2)

Decreasing on I if

x1, x2  I and x1 < x2   f(x1)   f(x2)
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12. If f is differentiable function on an interval (a, b). Then

1. f'(x)   0 x  (a, b), Then f is increasing on (a, b).

2. f'(x)   0  x  (a, b), Then f is decreasing on (a, b).

Sol.
Let x1, x2  (a, b) and x1 < x2. Then [x1, x2]  (a, b)

f is derivable on (a, b)   f is continuous on (a, b)

Since [x1, x2]   (a, b),

f satisfies the continuous of lagrange’s theorem on [x1, x2]

 There exists C(x1, x2)   (a, b) such that

f(x2) – f(x1) = (x2 – x1) f'(c)

Case (1) :

Let f'(x)   0 x  (a, b)

Then f'(c)   0 as C(a, b)

f'(c) = 0   f(x2) = f(x1)  or  f'(c) = 0   f(x2) > f(x1) (  x2 > x1)

 for all x1, x2  (a, b), x2 > x1   f(x2)   f(x1)

 f is increasing on (a, b)

Case (2) :

Let  f'(x)   0 x  (a, b)

Then f'(c)   0 as c(a, b)

f'(c) = 0   f(x2) = f(x1) and

f'(c) < 0   f(x2) < f(x1) ( x2 > x1)

 for all x1, x2 (a, b), x2 > x1   f(x2)   f(x1)

 f is monotonically decreasing on (a, b)

13. If f is derivable at c [a, b], f'(c)  0 and f–1 is continuous at f(c). Then f–1 is derivable at

f(c)(f–1)'(f(c)) = 
1

f '(c) .

Sol.
Since f : [a, b]   [, ] is a bijection

f–1 = g is also bijection from [, ] to [a, b]

Let g = f(x) for x[a, b] and d = f(c) for c[a, b]

Since f–1 = g,  x = f–1 = g(y)

f–1 is continuous at f(c)
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 g is continuous at d   y d
lim
 g(y) = g(d)

 x   c as y   d and x   c  if y   d

y d
lim


g(y) g(d)
y d

  = x c

x c
lim

f(x) f(c)


  =  

x c

1
f(x) f(c)

lim
x c




 = 
1

f '(c)

 g is derivable at d

i.e., f–1 derivable at f(c)

Also,  (f–1)’(f(c)) = g’(d) = y d
lim


g(y) g(d)
y d

  = 

1
f '(c)

14. Determine by using mean value theorem.

(a) x2 on [–1, 2] (b)  sin x on [0, ] (c) |x| on [–1, 2]

(d)  
1
x

 on [–1, 1] (e) 
1
x

 on [1, 3] (f) sgn (x) on [–1, 2]

Sol. (Imp.)

(a) x2 on [–1, 2]

yes, let f(x) = x2 with dom(f) = [–1, 2]

Then f'(x) = 2x.

Further more, we have f(–1) = 1 & f(2) = 4

and so, 
f(2) f( 1)

2 ( 1)
 
   = 

4 1
2 1



 = 1

Now we request have to let f'(x) = 2x = 1

which implies  x = 
1
2

(b) sinx on [0, ]

Sol.
yes, let f(x) = sinx with dom(f) = [0, ]

Then f'(x) = cosx

further more, we have f(0) = 0 = f()

and so, 
f( ) f(0)

0
 
 

 = 0

Now, we let f'(x) = cos x = 0

 x = 
2

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(c) |x| on [–1, 2]

Sol.
No, Notice that

f'(x) = 
1 if x 0

0 if x 0
1 if x 0

 
 
 

But
f(2) f( 1)

2 ( 1)
 
   = 

2 1
2 1



 = 
1
3

Which is different than f'(x) for every x(–1, 2)

The hypothesis that fails is the following
f(x) is not differentiable on 0.

In effect let f(x) = |x|, with dom(f) = [–1, 2]

Then

x 0

f(x) f(0)
lim

x 0




 = 
x 0

|x| 0
lim

x 0




 = 
x 0

x
lim

x


 = –1

x 0

f(x) f(0)
lim

x 0




=
x 0

|x| 0
lim

x 0




 = 
x 0

x
lim

x
=1

and there

x 0

f(x) f(0)
lim

x 0




 f(x) f(0)
x 0



(d)
1
x

 on [–1, 1]

Sol.

No, Infact, we have f’(x) = 2

1
x


however, 
f(1) f( 1)

f ( 1)
 
   = 

1 ( 1)
1 1
 


 = 
2
2

 = 1

and there is no x(–1, 1)
such that f'(x) = 1

The hypothesis that fails is this f is

discontinuous at x = 0

Since
x 0

1
lim

x
 = –

and 
x 0

1
lim

x
 = 
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(e) 
1
x

 on [1, 3]

Sol.

yes, let f(x) = 
1
x

, with dom(f) = [1, 3]

Then f'(x) = – 
2

1
x

more over f(1) = 1 and f(3) = 
1
3

 and hence

f(3) f(1)
3 1



 = 

1 1
3
3 1




 = 

1
3


Now we put f'(x) = 2

1
x


 = 
1

3


 which results in x = 3

(f) sgn (x) on [–1, 2]

Sol.

No, sinc sgn(x) = 
x

|x|


 for  x   0

and sgn(0) = 0 we have f'(x) = 0

for x   0. while f'(x) is not defined for x = 0 on the other hand

sgn(2) sgn( 2)
2 ( 2)
 
   = 

1 ( 1)
2 ( 2)
 
   = 

1
2

The hypothesis that fails is this

sgn is discontinuous at x = 0

Since
x 0
lim


sgn(x) = – 1 and

x 0
lim


sgn(x) = 1

15. Prove that |cosx – cosy|   |x – y| for all x, yR.

Sol. (Imp.)

Let us begin with a trivial case

If x = y then

|cos x – cos y| = 0   |0| = |x – x| = |x – y|
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So, clearly the inequality holds for this case.

In what follows, we assume x  y..

let f(x) = cosx.

Since f is differentiable on R. if it is differentiable only interval (x, y)R.

By mean value theorem

These is v(x, y) such that

f'(v) = 
f(x) f(y)

x y



we know that f'(x) = – sin x .

So the equation above becomes,

– sin v = 
cos x cos y

x y

 ...(1)

Taking the absolute value on both side of equation (1)

|– sin v| = 
cos x cos y

x y



|sin v| = 
|cos x cos y|

|x y|

 ...(2)

But |sin x| | for all xR,

This fast and equation (2) implies

|cos x cos y|
1

|x y|





or.  equivalenty

|cos x – cos y|   |x – y|

which is a desired result

16. Show that  ex   ex for all xR

Sol. (Imp.)

Let f(x) = ex – ex then

f'(x) = ex – e

If x > 1, f'(x) > 0

Since f is strictly increasing

If x < 1, f'(x) < 0.
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as f is strictly decreasing.

and If x = 0, f'(x) = 0

as f is strictly decreasing for x < 1, strictly increasing for x > 1 and f is continuous on R

f(1) is minimum for f,

But f(1) = e – e = 0

 f(x) = ex – ex   0. for all xR.

which implies  ex   ex.

17. Show that sin x   x for all x   0

Sol.

Let f(x) = x – sin x

Then f'(x) = 1 – cos x

Notice that for all x   0, 1 – cosx   0

 f is increasing on [0,  )

Since f(0) = 0 – sin (0) = 0

If follows that f(x) = x – sin x   0  x   0

Hence sin x x  for all x  0.

18. Suppose that f is twice differentiable on an open interval I and that f''(x) = 0  x I.
Show that f has the form f(x) = ax + b be for suitable constants a and b.

Sol :

If f''(x) = 0,

as we know that, let f be a differentiate function on (a, b) such that f'(x) = 0 for all x(a, b)

Then f is constant function on (a, b)

f'(x) is constant function

f'(x) = a, where a I.

Let g be a function on I such that

g(x) = ax,

Then g is differentiable and g'(x) = a = f'(x)

By corollary

 f(x) = g(x) + b = a(x) + b  for

Since constant b I.
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19. Suppose f is three times differentiable on an open interval I and that f''' = 0. on I. What
form does f have ? prove your claim

Sol :

We claim that f(x) = 
a
2

x2 + bx + c

for constants a, b, cI

In effect, if f'''(x) = 0

f''' is constant function defined by f''(x) = a.

for some aI.

Let g be a function on I such that

g(x) = ax

Then g is differentiable and g'(x) = a = f''(x)

 f'(x) = g(x) + b = ax + b for some constant b I.

Finally let h be a function on I.

Definitely by h(x) = 
a
2

x2 + bx

Then h is differentiable on I.

and h'(x) = ax + b = f'(x)

 f(x) = h(x) + c = 
a
2

x2 + bx + c

for some constant c I.

Hence the claim is true.

20. Let a, bR. let f(x) = eax cos(bx) and g(x) = eax sin(bx)

(i) Compute f'(x) and g'(x)

(ii) Use (i) to compute f'' and f'''

Sol. (Imp.)

(i) We have f(x) = eax cos(bx)

g(x) = eax sin(bx)

f'(x) = – beax sin(bx) + aeax cos(bx)

and g'(x) = beax cos(bx) + aeax sin(bx)

(ii) We have

f''(x)= – b2eax cos(bx) – abeax sin(bx) – abeax sin(bx) + a2eax cos(bx)

= (a2 – b2) eax cos(bx) – 2abeax sin(bx)

f'''(x)= – b(a2 – b2) eax sin(bx) + a(a2 – b2) eax cos(bx) – 2ab2 eax cos bx – 2a2beax ain(bx)

= (a2 – b2) eax (a cos (bx) – b sin(bx) – 2abeax (b cos(bx) – a sin(bx))
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21. (i) Show that x < tan x for all x 0,
2
   

 
.

Sol.
Let f(x) = tan x – x

Then f'(x) = sec2x – 1 > 0 for all x 0,
2
   

 

Therefore f is strictly increasing on 0,
2
 

 
 

That is,

f(x1) < f(x2) whenever 0 < x1 < x2 < 
2


Now let x1   0

Since f(x1) is decreasing as x1   0,

0 = f(0) = 
1x 0
lim
 f(x1) < f(x2)

That is f(x) > 0 for all  x 0,
2
 

 
 

 x < tan x.

22. Show that 
x

sin x
 is a strictly increasing function on 0,

2
 

 
 

.

Sol. (Imp.)

If f(x) = 
x

sinx

Then f'(x) = 
2

sinx x cos x
sin x


Since sin x > x cos x
So,  f'(x) > 0

 f  is strictly increasing on 0,
2
 

 
 

23. Show that x
2


 sin x for x 0,
2
 

  
 .

Sol.

Equality holds at the end point 0,
2


 and 
x

sinx
 is increasing on 0,

2
 

 
 

 [by (ii)]
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Hence if 0 < x < y < 
2


we have

x
sinx

 < 
y

siny  and 
x

sinx
 <  

y
2

y
lim

siny

= 2
1



 = 
2


24. Suppose that f is differentiable on R that  i   f'(x)   2 for  xR, and that f(0) = 0 prove
that x f(x) 2x for all x > 0.

Sol. (Imp.)

let g(x) = 2x – f(x)

So that g'(x) = 2 – f'(x) > 0

 g is increasing on R

Since g(0) = 0, g(x)  0, for x   0

Thus, f(x)   2x for x   0.

Let h(x) = f(x) – x

So that h'(x) = f'(x) – 1   0

 h is increasing on R.

Since h(0) = 0, h(x)   0 for x   0

Thus x   f(x) for all x   0.

25. Let f be a differentiable function on an interval (a, b) then (i) f is strictly decreasing if
f'(x) < 0 for all x (a, b).

(i) f is increasing if f'(x)   0 for all x (a, b)

(iii) f is decreasing if f'(x)   0 all x  (a, b)

Sol. (Imp.)

Given that f is differentiable function on an interval (a, b)
(i) If a < x1 < x2 < b then

2 1

2 1

[f(x ) f(x )]
x x


  = f'(c) < 0 for some c(x1, x2)

 x1 < x2  x2 – x1 > 0

 f(x2) – f(x1) < 0

 f(x1) > f(x2)
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(ii) If  a < x1 < x2 < b

Then,
2 1

2 1

[f(x ) f(x )]
x x


  = f'(c)   0 for some c(a, b)

Therefore, x1 < x2    x2 – x1 > 0

   f(x2) – f(x1)   0

   f(x1)   f(x2)

(iii) if  a < x1 < x2 < b

Then, 2 1

2 1

[f(x ) f(x )]
x x




 = f'(c)   0 for some c(x)

Therefore, x1 < x2    x2 – x1 > 0

   f(x1) – f(x1)   0

   f(x1)   f(x2)

3.3  L – HOSPITAL RULE

If 
x a
lim


f(x) = l and 
x a
lim


g(x) = m((  0)

Then by Quotient theorem of limits we have x a

f(x)
lim

g(x)  = 
l

m
. However, if 

x a
lim


f(x) = 0 and 
x a
lim


g(x)

= 0.

Then x a

f(x)
lim

g(x) takes the form 
0
0

.

In this case lim(f/g) is said to be indeterminate. Depending on that particular functions f, g the limit
may be a real number or may not exist.

Also,  if 
x 0
lim


f(x) =   and  
x 0
lim


 g(x) = 

Then x a

f(x)
lim

g(x)  takes the form 


.

The forms 
0
0

 and 



 taken by the above limits are called indeterminate forms.

26. State and prove L - Hospital Rule I
                                   (OR)

Let f, g are derivable on (a, a + h) such that
(i) g'(x)   0   x   (a, a + h),

(ii)
x a
lim


f(x) = 0 = 

x a
lim


g(x)
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(a) If 
x a

f '(x)
lim

g '(x)
 = l, a real number the 

x a

f '(x)
lim

g '(x)
 = l.

(b) If 
x a

f '(x)
lim

g '(x)
=     then 

x a

f(x)
lim

g(x)
 =   

Sol. (Imp.)

Let a <  <  < a + h

g'(x)   0,  x (a, a + h)   g()   g()
Using Cauchy mean value theorem,
for f, g in [, ]
we have that there exists u (, )

Such that 
f( ) f( )
g( ) g( )
  
    = 

f '(u)
g '(u) ...(1)

Case (i)

x a

f '(x)
lim

g '(x)  = l  given >0

There exists 0   such that

f '(x)
l

g '(x)
    for a < x < a +  < a + h

 l  –  < 
f '(u)
g '(u)  < l + 

for a < u < a + 

 l –  < 
f( ) f( )
g( ) g( )
  
   < l +  for a <  <  < a + 

keeping  fixed
proceeding to the limit as    a+  to the above inequality

we have,

l –  < 
f( )
g( )

  < l +  for a <  < a + 

Since  > 0 is arbitrary x a

f(x)
lim

g(x)  = l

Case (ii)

x a

f '(x)
lim

g '(x)  =   for G > 0

There exists  > 0 such that
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f '(x)
g '(x)  > G for a < x < a + 


f '(u)
g '(u)  > G for a < u < a < a + 


f( ) f( )
g( ) g( )
  
    .  G for a <  <  < a + 

keeping  fixed, proceeding to the limit as    a +, we have 
f( )
g( )

  > G for a <  < a + 

Since G > 0 is arbitrary

x a

f(x)
lim

g(x)  = + 

The argument is similar for

x a

f '(x)
lim

g '(x)  = – 

27. State and prove L - Hospital Rule II :

(OR)

If f, g are derivable in a deleted nbd of ‘a’

x a
lim


f(x) =   , 

x a
lim


g(x) =    and 

x a

f '(x)
lim

g '(x)
 = l , then 

x a

f(x)
lim

g(x)
 = l

Sol. (Imp.)

x a

f '(x)
lim

g '(x)  = l   for a given  > 0

There exists

 > 0 such that 
f '(y)

l
g '(y) 3


 

whenever a < y < a + 

Let a + 2
 

 
 

 = x0 so that a < x < x0 < a + 

clearly f, g are continuous on [x, x0] and derivable on (x, x0)

Also,  g'(t)   0,   t  (x, x0)
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By Cauchy mean value theorem

There exists y(x, x0)

Such that 
f '(y)
g '(y)  = 

0

0

f(x ) f(x)
g(x ) g(x)




= 
f(x)
g(x)

0

0

f(x )
1

f(x)
g(x )

1
g(x)

 
  

 
 
  


f(x)
g(x) = 

f '(y)
g '(y)

0

0

g(x )
1

g(x)
f(x )

1
f(x)

   
 
 
  

But
0

x a

g(x )
lim

g(x)
 = g(x0) x a

1
lim

g(x)

= 0

and 
0

x a

f(x )
lim

f(x)
 = 0

 x a

f(x)
lim

g(x)  = 
x a

f '(y)
lim

g '(y)
 × 

0

x a 0

g(x )
1

g(x)lim
f(x )

1
f(x)



   
 
 
  

= l × 1 = l

28. Calculate 
x 0

sin x
lim

x
 by using L'Hospital

Rule.

Sol. (Imp.)

Given 
x 0

sinx
lim

x

Note that f(x) = sinx and g(x) = x

x 0

sinx sin0
lim

x c




 = 
x 0

sinx
lim 1

x


29. Calculate 2x 0

cos x 1
lim

x


 By L'Hospitals

Rule.

Sol.

Given that 
2x 0

cos x 1
lim

x



f(x) = cosx – 1    f'(x) = – sinx

g(x) = x2   f'(x) = 2x

 x 0

f '(x)
lim

g '(x) = 
x 0

sinx
lim

2x



=
x 0

1 sinx
lim

2 x



=
x 0

1 sin x
lim

2 x



=
1

2


(1)

=
1

2



2x 0

cos x 1
lim

x


 = 

1
2


30. Find the limit for 2x 0

1 cos x
lim

x



Sol.

Given that x 0

f(x)
lim

g(x)  = 
2x 0

1 cosx
lim

x



Hence f(x) = 1 – cosx

g(x) = x2

f(0) = 1 – cos(1) = 1 – 1 = 0

g(0) = 02 = 0

x 0

f(x)
lim

g(x)  = 
0

form
0

 
 
 
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f(x), g(x) are derivable in a nbd of ‘0’ and
f'(x) = sinx

g'(x) = 2x

again f'(0) = 0,  g'(0) = 0

 x 0

f '(x)
lim

g '(x)  is in 
0
0

 form.

f'(x), g'(x) are differentiable in nbd of ‘0’ and
f''(x) = cosx,  g''(x) = 2

= x 0

f ''(x)
lim

g ''(x)  = 
x 0

cos x
lim

2
 = 

1
2

31. Find the limit for 3x 0

tan x x
lim

x


.

Sol. (Imp.)

Given that x 0

f(x)
lim

g(x)  = 3x 0

tanx x
lim

x



Here, f(x) = tanx – x

g(x) = x3

f(0) = tan(0) – 0 = 0

g(0) = 0

x 0

f(x)
lim

g(x)  = 
0

form
0

 
 
 

f(x), g(x) are differentiable in a nbd of ‘0’
and

f'(x) = sec2x – 1

g'(x) = 3x2

f'(0) = sec2(0) – 1 = 0

g'(0) = 0

x 0

f(x)
lim

y(x)  = 
2

2x 0

tan x
lim

3x

= 
1
3

2

x 0

tanx
lim

x

 
 
 

= 
1
3

(1)2

= 
1
3

32. Find the limit for 
2x

x 0

e cos x
lim

x

 .

Sol.

Given that x 0

f(x)
lim

g(x)  = 
2x

x 0

e cos x
lim

x



f(x) = e2x – cosx   f'(x) = 2e2x – (– sinx)

g(x) = x   g'(x) = 1

f(0) = e2(0) – cos(0)

= 1 – 1 = 0

g(0) = 0

x 0

f(x)
lim

g(x)  = 
0
0

(form)

and x 0

f '(x)
lim

g '(x)  = 
2x2e sinx

1


f'(0) = 2e2(0) + sin (0) = 2(1) + 0 = 2

g'(0) = 1

x 0

f '(x)
lim

g '(x)  = 
2
y  = 2

33. Find the limit for 
3

2xx 0

x
lim

e
.

Sol.

Given that 
3

2xx 0

x
lim

e

f(x) = x3   f(0) = 0

g(x) = e2x   g(0) = e2(0) = e0 = 1

x 0

f(x)
lim

g(x)  = 
0
1

 = 0

34. Find 
3

x 0

x
lim

sin x x 
.

Sol.

Given that 
3

x 0

x
lim

sinx x 
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f(x) = x3   f(0) = 0

g(x) = sinx – x   g(0) = sin(0) – 0 = 0

x 0

f(x)
lim

g(x)  = 
0

form
0

 
 
 

f(x), g(x) are derivable in a nbd of ‘0’

and f'(x) = = 3x2

g'(x) = cosx – 1

again, f'(0) = 3(0)2 = 0

g'(0) = cos(0) – 1 = 1 – 1 = 0

f'(x), g'(x) are differentiable is a nbd of ‘0’

and f''(x) = 2x

g''(x) = – sin x

again f''(0) = 2(0) = 0

g''(0) = – sin(0) = 0

f''(x), g''(x) are differentiable in a nbd of

and f'''(x) = 2

g'''(x) = – cosx

again f'''(0) = 2

g'''(0) = – cos(0) = – 1

x 0

f '''(x)
lim

g '''(x)  = 
2
1

 = – 2.

35. Find limit 
x

x

1
lim 1

x

  
 

.

Sol. (Imp.)

The limit 
x

x

1
lim 1

x

  
 

 is indeterminate of the form 1 .

Since 
x

1
1

x
  
 

 = ex log
1

1
x

  
 

evaluate

x
lim


x log
1

1
x

  
 

 = 
x

1
log 1

xlim
1
x



  
 



B.Sc. II YEAR  III SEMESTER

134
Rahul Publications

Rahul Publications

= 

1
2

2x

11 x
xlim
x






  
 



= 
1

x

1
lim 1

x





   
 

 = – 1

We have = 
x

x

1
lim 1

x

  
 

 = e–1

3.4  TAYLOR’S THEOREM

Let f be a function defined on some open interval containing 0. If f possess derivatives of all orders

at 0, then the series 
(k)

k 0

f (0)
k!




 xk is called the taylor’s series for f about 0.

The remainder Rn(x) is defined by

Rn(x) = f(x) – 
n 1 (k)

k

k 0

f (0)
x

k!






for any x,

f(x) = 
(k)

k 0

f (0)
k!




 xk if and only if

x
lim


Rn(x) = 0

36. State and prove Taylor’s Theorem

Let [a, b]   R such that

(i) f and its sucessive derivative f', f'',....f(n) (nN) are continuous on [a, b] and

(ii) f(n+1) exist on (a, b). If x0 [a, b]

Then for any x[a, b]. There exits a point ‘c’ between x and x0 such that

f(x) = f(x0) + 0(x x )
1!


f'(x0) + 
2

0(x x )
2!


f''(x0) +...+
n

0(x x )
n!


f(n) (x0) + 
n 1

0(x x )
(n 1)!




f(x+1)(c)

Sol.
for a given  x0, x [a, b]

let I = [x0, x] or [x, x0] according a x0 < x or x0 > x.

Define F : I   R as

F(t) = f(x) – f(t) – 
(x t)

1!


f'(t)....
n(x t)

n!


f(n)(t) – A

n 1

0

x t
x x


 
  

  t I ...(1)
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where A is a real numbers choosen that F(x0) = F(x).

F(x0) = F(x)   f(x) – f(x0) – 0(x x )
1!


f'(x0)...
n

0(x x )
n!


f(n)(x0) – A = 0 ...(2)

from (1) & (2) f, f', f''...f(n) are continuous on [a, b]   f, f', f'''...f(n) are continuous on I [a, b]

f(n + 1) exist on [a, b]   f(n + 1) exists on I

further,

The polynomial in t,

namely, (x – t), (x – t)....(x – t)n and 

n 1

0

x 1
x x


 
  

 are continuous and derivable on I

 F(t) is continuous and derivable on I further F(x0) = F(x).

By Rolle’s Theorem,
There exits ‘c’ between x and x0 such that F' (c) = 0

But for t  I, F'(t) = – f'(t) – {(– 1) f'(t) + (x – t) f''(t)}....
n 1 n

(n) (n+1)
n(x t) (x t)

f (t) + f (t)
n! n!

   
 
 

– 
n

n 1
0

A( 1)(n 1)(x t)
(x x ) 

  


 F'(t) = 
n(x t)

n!
 

f(n+1) (t) + 
n

n 1
0

A(n 1)(x t)
(x x ) 

 


F(c) = 0    
n(x c)

n!
 

f(n+1) (c) + 
n

n 1
0

A(n 1)(x c)
(x x ) 

 


 = 0

 A = 
n 1

0(x x )
(n 1)!


 f(n+1) (c)

from (2)

f(x) = f(x0) + (x – x0) f'(x0) +...+
n

0(x x )
n!


f(n)x0 + 
n 1

0(x x )
(n 1)!


 f(n) (c)

Notation :

We denote pn(x) = f(x0) + (x – x0) f'(x0) +...+ 0(x x )
n!


f(n) (x0) and

Rn(x) = 
n 1

0(x x )
(n 1)!


 f(n+1) (c), where ‘C’ is a point between x and x0

Then f(x) = Pn(x) + Rn(x)   f(x) – Pn(x) = Rn(x)

Pn(x) is called the nth Taylor polynomial for f at x0.

Rn(x) is called the Lagranges form of Remainder.
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37. Let f be defined on (a, b) where a < 0 < b, and suppose the nth derivative f(n) exists and
is continuous on (a, b) then for x(a, b) we have

Rn(x) = 
x n 1

0

(x t)
(n 1)!


 f(n)(t)dt

Sol.
for n = 1, equation (1) assets

R1 (x) = f(x) – f(0) = 
x

0
  f'(t) dt

for n   2

we repeatedly apply integration by parts

i.e., we use mathematical induction assume (1) holds for some n.

n   1

we evaluate the integral in (1) using u(t) = f(n)(t), v'(t) = 
n 1(x t)

(n 1)!




So that u'(t) = f(n+1) (t) and v(t) = – 
n(x t)

n!


we obtain

Rn(x) = u(x)v(x) – u(0) v(0) – 
x

0
 v(t) u'(t) dt

= f(n)(x).0 + f(n)(0)
nx

n!
 + 

x n

0

(x t)
n!


 f(n+1) dt ...(2)

Hence from (2) we see that (1) holds for n + 1.

38. If f is defined on (a, b) then for each x in (a, b) different from 0 there is some y between
0 and x such that

Rn(x) = 
n 1(x y)

(n 1)!


 f(n)(y)x . This form of Rn is known as cauchy’s form of the remainder..

Sol.
Suppose x < 0

The case x > 0

The intermediate value theorem for integrals show that

0 n 1

x

(x t)
(n 1)!


 f(n) (t) dt = [0 – x]

n 1(x y)
(n 1)!




f(n) y ...(2)
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for some y in (x, 0)

Since the integral in (2) equals – Rn(x) and formula (1) holds.

The Binomial theorem tells us that (a + b)n = 
n

k 0

n
k

 
 
 

 ak bn–k

where

n
k
 
 
 

 = 
n!

k !(n k)!  = 
n(n 1)...(n k 1)

k!
  

 for 1   k   n

Let a = x and b = 1

Then

(1 + x)n = 1 + 
n

k

k 1

n(n 1)...(n k 1)
x

k!

  


39. State and prove Binomial Series Theorem :

If R  and |x| < 1  Then

(1 + x) = 1 + k

k 1

( 1)...( k 1)
x

k !





     


Sol. (Imp.)

for k = 1, 2, 3 ...

let ak = 
( 1)...( k 1)

k!
     

...(1)

If  is a non negative integer then ak = 0  for k > .

and (1) holds for all x as noted in our discussion prior to this theorem.

Hence forth we assume  is not a

non negative integer so that ak   0

for all k

Since,

k
lim


k 1

k

a
a
 = 

k

k
lim

k 1

 
  = 1

The series in (1) has radius of convengence.

Likewise kak x
k – 1 = 0 convenges for |x| < 1

Hence 
x
lim


nan x
n–1  = 0 for |x| < 1

let f(x) = (1 + x) for |x| < 1  for  n = 1, 2 ...
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we have

f(n)(x) = ( – 1) ...( – n + 1) (1 + x) –n

= n! an (1 + x)–n

Thus  f(n) (0) = n! an for all n  1 and the series in(1) is the taylor series for f

Rn(x) = 
x n 1

0

(x t)
(n 1)!


 n! an(1 + t)–n dt

  = 
n 1x

n
0

x t
na

1 t


 

  
 (1 + t)–1 dt ...(3)

for |x| < 1

It is easy to show that

x t
x

x t



  if –1 < x   t   0  or 0   t   x < 1

To see this, note that t = xy for some y[0, 1], So

x t
1 t

  = 

x xy
1 xy

  = |x|

1 y
1 xy



  |x|

Since 1 + xy   1 – y

Thus the integrade in (3) is bounded by n|an|.|x|n–1.(1 + t)–1

 |Rn(x)|   n|an|.|x|n–1 
|x|

|x|
 (1 + t)–1 dt

Applying (2), we now see that 
x
lim


Rn(x)

for |x| < 1  equation (1) holds good

40. Expassion of ex.

Sol. (Imp.)

domain of ex is R.

let f(x) = ex  x  R

we know that f(n) (x) = eX

 f(n) (0) = e0 = 1   n   N

Further f(n) (x) = ex   x   R and r  N

 f has continuous derivative of every order on [–h, h]

Lagrange’s form of remainder
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Rn(x) = 
nx

n!
f(n) ( x) where 0 <  < 1

= 
n

xx
e

n!
 ; 0 <  < 1

But
n

x

x
lim

n!
 = 0   x   R


n
lim


Rn(n) = 
n

n

x
lim

n!
 = x

n
lim e


= 0.ex

= 0

 f(x) = ex has maclarian series expassion  x[– h, h]

 for all xR, ex = f(0) + x f'(0) + 
2x

2!
f''(0) + ....+

nx
n!

f(n) (0) + ...

= 1 + x + 
2x

2!
 + ...+

nx
n!

    ex = 
n

n 0

x
n!





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1. f(x) is strictly increasing at x = a then [ a ]

(a) f'(a) > 0 (b) f'(a) < 0

(c) f'(a)   0 (d) f'(a) = 0

2. If 
h 0

f(a b) f(a)
lim

h

 
 = 

h 0

f(a h) f(a)
lim

h

 
 then at x = a, f(x) [ d ]

(a) is continuous (b) exists

(c) is a constant (d) is differentiable

3.
d
dx

tan–1
2

2x
1 x
 
  

 = [ b ]

(a) 2 (b)
2

2
1 x

(c)
2

1
1 x

(d) none

4. f(x) = tanx is differentiable at every point in[ b ]

(a) R (b) R – (2n 1) / n z
2
   

 

(c) R – 
n

n z
 

  
(d) R+

5. The derivative of x|x| for x   R is [ c ]

(a) 2x (b) – 2x

(c) 2|x| (d) none

6. If f and g are functions that are differentiable at point ‘a’ (f + g)' (a) = [ b ]

(a) f'(a) g'(a) (b) f(a) + g'(a)

(c) f'(a) – g'(a) (d)
f '(a)
g '(a)

7. The function ex on R is [ b ]

(a) increasing (b) strictly increasing

(c) strictly decreasing (d) continuous

Choose the Correct Answer
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8. The function cosx on [0, ] is [ b ]

(a) increasing (b) continuous

(c) differentiable (d) strictly decreasing

9. If f(x) = x3. Then f'(x) = [ a ]

(a) 3x2 (b) 3x

(c) 3 (d) none

10. k
x a
lim x


 = [ c ]

(a) k (b) a

(c) ak (d) k2
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Fill in the blanks

1.
x
lim


x tan
1
x

 =  .

2. If f is continuous on [a, b] and differentiable on (a, b) and f'(x) = 0 for a < x < b  then f is 
on [a, b].

3. If 
x a
lim


f(x).g(x) exits then both 
x a
lim


f(x) and 
x a
lim


g(x) =  .

4. If f(x) =  x2 – 4x – 2 then f(x) is increasing on  and decreasing on  .

5. In Taylor’s Theorem, Lagrange’s form of remainder is  .

6. The 
x 0
lim


 xx is of the indeterminate form   .

7. The derivative of f(x) = x + 2 at x = a is  .

8. The  domain of ‘f’ is set of points at which f is  .

9. If f is differentiable at a point as then f is  at ‘a’.

10. If f is differentiable function on an interval  (a, b) then strictly increasing if  .

ANSWERS

1. 1

2. constant

3. need not exist

4. (2,  ), (– , 2)

5.
1
3

6. e–1

7. 1

8. differentiable

9. continuous

10. f'(x) > 0
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UNIT
IV

4.1 INTEGRATION

4.1.1 Partition of a Closed Interval

Let I = [ab] be a finite closed interval. If
a = x0 < x1 < x2 < ..... < xn = b, then the finite set
p = {x0, x1, x2, ....., xn} is called a partition of [ab].

The n + 1 points x0, x1, x2, ....., xn are called
partition points of p.

The n sub-intervals [x0, x1], [x1, x2], ..... [xr–1,
xr] ..... [xn–1, xn] are called the segments of the
partition p and the union of these n subintervals is
equal to the closed interval [a, b].

The rth subinterval [xr–1, xr] is denoted by Ir

and its length = xr – xr–1 is denoted by r.

A closed interval [ab] can be partitioned in
infinitely many ways. The set of all partitions of [ab]
is denoted by [ab].

4.1.2 Norm of a Partition

The maximum of the lengths of the sub
intervals of a partition p is called the norm of the

partition p and is denoted by p .

Thus norm p = p  = max. {1, 2, ....., r,

..... n}

where  1, 2, ....., r, ..... n are the length of
the n-subintervals

4.1.3  Refinement of a Partition

If P1, P2 be two partitions of [ab] and P1
  P2,

then the partition P2 is called a refinement of partition
P1 on [ab]  (or)  P2 is finer than P1

Thus, if P2 is finer than P1, then every point of
P1 is a point of P2 and P2 has some more points.

Integration : The Riemann Integral - Properties of Riemann Integral-Fundamental
Theorem of Calculus.

If P1, P2  [ab]  and  P1
  P2 then 2P

  1P

Note :

n

r 1
  r = 1 + 2 + ..... + n = (x1 – x0) +

(x2 – x1) + ..... + (xn – xn–1) = xn – x0 = b – a.

4.1.4  Upper and Lower Riemann Sums

Let  f : [ab]   R be a bounded function and
P = {a = x0, x1, x2, ..... xn = b} be a partition of
[ab].

Since f is bounded on [ab], f is also bounded
on each of the subintervals.

Let M and m be the supremum and infimum
of in [ab] and Mr, mr be the supremum and infimum
of f in the rth subinterval. Ir = [xr–r, xr]   r = 1, 2, 3,
....., n. The sums M11 + M22 + ..... + Mrr + .....

+ Mnn + = 
n

r 1
  Mrr is called the upper Riemann

Sum and is denoted by U(P, f) and read as upper
Riemann sum for the f w.r.t partition P.

Similarly, the sums m11 + m22 + ..... + mrr

+ ..... + mnn = 
n

r 1
  mrr is called the lower

Riemann sum and is denoted by L(P, f) and read as
lower Riemann sum for the function function and
w.r.t partition P.

4.1.5 Oscillatory Sum

Let  f : [ab]   R be a bounded function and
P = {a = x0, x1, x2, ....., xn = b} be a partition of
[ab].

Let  mr and Mr be the infimum and supremum
of on Ir = [xr–1, xr]   r = 1, 2, 3, ....., n then U(p,
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f) – L(p, f) = 
n

r 1
  Mrr – 

n

r 1
  Mrr = 

n

r 1
  (Mr – mr) r

is called the oscillatory sum of f w.r.t partition P and
is denoted by W(p, f).

 W(p, f) = U(p, f) – L(p, t)

   = 
n

r 1
  (Mr – mr) r.

Note :

1. If f : [a, b]   R be a bounded function and
p    [ab] then

(i) U(p, f)   L(p, f)

(ii) U(p, –f) = –L(p, f)

(iii) L(p, –f) = –U(p, f)

4.1.6 Lower and Upper Riemann Integrals

Let  f : [ab]   R be a bounded function and
p = {a = x0, x1, x2, ....., xn = b} be a partition of
[ab].

Then the lower Riemann integral of f on [ab]
is defined as sup {L(p, f) | p    [ab]} and is

denoted by 
b

a
  f(x) dx  i.e., 

b

a
 f(x) dx = sup {L(p, f)

| p    [ab]}.

Similarly, the upper Riemann integral of f on
[ab] is defined as infimum {U(p, f) | p    [ab]}

and is denoted by 
b

a
  f(x) dx.

i.e.,  
b

a
  f(x) dx = infimum {U(p, f) | p   

[ab]}.

Note :

Let  f : [ab]   R be a bounded function
then for every p    [ab] we have m(b – a)   L(p,
f)   U(p, f)   M(b – a) where m and M are infimum
and supremum of f on [ab].

Since  L(p, f)   M(b – a)


b

a
  f(x) dx = sup {L(p, f) | p   [ab]} 

M(b – a)

Since  U(p, f)   m(b – a)


b

a
  f(x) dx = infimum {U(p, f) | p 

[ab]}   m(b – a)

4.2  RIEMANN INTEGRAL

Let  f : [ab]   R be a bounded function and
p = {a = x0, x1, ....., xn = b} be a partition of [ab].

If 
b

a
  f(x) dx = then f is said to be Riemann integral

on [ab].

i.e.,  
b

a
  f(x) dx = 

b

a
  f(x) dx = 

b

a
  f(x) dx

1. If  f : [ab]   R is a bounded function

then 
b

a
 f(x) dx 

b

a
  f(x) dx.

Sol. (Dec.-17)

Let  P1, P2    [ab].

 L (p1, f)   U(p2, f) which is true for each
p1    [ab]

 The set of lower sums has an upper
bound U(p2, f) we know that

b

a
  f(x) dx = sup {L(p, f) | p1    [ab]}

But supremum   Any upper bound


b

a
  f(x) dx    U(p2 f)

 U(p2, f)   
b

a
 f(x) dx   p2   [ab]
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
b

a
  f(x) dx is a lower bounded of the set of all upper sums.


b

a
  f(x) dx =  infimum {U(p2, f) | p2    [ab]}

But any lower bound   Infimum, we get

b

a
  f(x) dx   

b

a
  f(x) dx

Note :

By definition of lower and upper Riemann integral   p    [ab], L(p, f) 
b

a
  f(x) dx and 

b

a
  f(x) dx

  U(p, f)

 L(p, f)
b

a
 f(x) dx 

b

a
 f(x) dx  U(p, f)   p    [ab]

Also  m(b – a) 
b

a
 f(x) dx 

b

a
 f(x) dx   M(b – a).

2. A constant Function is Riemann Integrable on [ab].

Sol.

Let  f(x) = K   x  [ab]

Where  K is a constant function.

Clearly f is bounded on [a, b] and infimum f = K and Sup. f = K

Let  P = {a = x0, x1, x2, ....., xn = b} be a partition on [ab].

Let  mr, Mr be the infimum and sup. of f on Ir = [xr–1, xr]

 f(x) = K   x   [a b],  mr = Mr = K

Now consider

L(p, f) = 
n

r 1
  Mr r = K 

n

r 1
  r = K(b – a)

and  U(p, f) = 
n

r 1
  Mr r = K 

n

r 1
  r = K(b – a)

 L(p, f) = U(p, f) = K (b – a) which is a constant.
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Consider

b

a
  f(x) dx = Sup. {L(p, f) | p   [ab]}

       = K(b – a)

Similarly

b

a
  f(x) dx = infimum {U(p, f)|p [ab]}

       = K(b – a)


b

a
  f(x) dx = 

b

a
  f(x) dx = K(b – a)

 f is Riemann integrable on [a b].

3. If f R [a b] and m, M are the infimum and Supremum of f on [a b], then m(b – a) 
b

a
  f(x)

dx   M(b – a).

Sol.
Let  f   R [a b]


b

a
 f(x) dx =

b

a
 f(x) dx =

b

a
  f(x) dx     ... (1)

Let  p = {a = x0, x1, x2, ....., xn = b} be a partition on [ab] and m2, M2 be the infimum and
supremum of f on [xr–1, xr].

Then we have

m   mr   Mr   M    r = 1, 2, 3, ... n

 mr   mrr   Mrr   Mr   r = 1, 2, 3, ... n

Adding these n inequalities


n

r 1
  m r   

n

r 1
  mr r   

n

r 1
  Mr r          

n

r 1
  Mr

 m(b – a)   L(p, f)   U(p, f)   M(b – a)


b

a
 f(x) dx = sup {L(p, f) | p    [ab]}

and
b

a
 f(x) dx   L(p, f)
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Similarly

b

a
  f(x) dx = infimum {U(p, f)|p [ab]}

and
b

a
  f(x) dx   U(p, f)

 m(b – a)   L(p, f)   
b

a
 f(x) dx   

b

a
  f(x) dx   U(p, f)   M(b – a)

 m(b – a)   
b

a
  f(x) dx   M(b – a)

   f   R [a b],  from (1)

4. If ‘f’ is a bounded function on [a, b]. Then prove that L(f) U(f)

Sol. (Dec.-17)

P, Q,[a, b]

Since L(f, p) U(f, Q)

Keeping P fixed,

The set {L(f, p)/ p is partition of [a, b] / has on upper bound U(f, Q)

also sup{L(f, p)/ p is a partion of [a, b]} = L(f)

Since sup   any upper bound.

L(f)   U(f, Q)

 Now, the set {U(f, Q)/ Q is partition of [a, b]} = U(f)

lower bound   Inf

L(f, p)   U(f)

we know that L(f, p)   U(f, Q)

L(f)   U(f)

5. Prove that every monotonic function on [a, b] is integrable.

Sol. (May /June-18)

Given that ‘f’ is monotonic on [a, b]

Suppose that f is monotic increasing on [a, b]

 a   x   b  f(a)   f(x)   f(b)

 f(x) is bounded function

 f is bounded on [a, b]
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Suppose f(a)   f(b)

0  ,  let P = {a = t0 < t1 < ...< tk–1 < tk < ...< tn = b| be a partition of [a, b], where mesh p.

mesh  P < f(b) f(a)

 ...(1)

To prove that f is integrable

we consider

U(f, p) – L(f, p) = 
n

k 1
M(f, [kk–1, tk]) (tk – tk–1) – 

n

k 1
m(f, [tk–1, tk]) (tk – tk–1)

= 
n

k 1
 [M(f, [tk-1, tk]) – m (f, [tk–1, tk]) (tk – tk–1)

 = 
n

k 1
 [f(tk) – f(tk–1)] (tk – tk–1) f is increasing f

< 
n

k 1
 f(tk) – f(tk–1). f(b) f(a)


 mesh(p) < f(b) f(a)




< 
f(b) f(a)




 
n

k 1
 f(tk) – f(tk–1)

< 
f(b) f(a)




f(b) f(a)

=    U(f, p) – L(f, p) < 

f is integrable

6. Prove that every continuous function defined on [a, b] is integrable.

Sol. (May /June-18)

Since f(x) is continuous function on [a, b]

 f(x) is uniformly continuous.

By def: 0    0  |f(x) – f(y)|< 
b a



 whenever |x – y| <  ...(1)

Let P = {a = t0 < t1 <...< tk–1 < tk ... < tn = b} be a partition of [a, b] with mesh ||p|| < 

i.e., max (tk – tk–1) < 

 Since ‘f’ is continuous on [tk–1, tk]

‘f’ is continuous on [tk–1, tk]
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 f attains its sup & inf in [tk–1, tk]

  Mk.mk   [tk–1, tk]

Sup of f Mk = f(Mk) = M(f, [tk–1, tk]) ...(2)

inf of f mk = f(mk) = m (f,[tk–1, tk])

Now, to prove that ‘f’ is integrable

consider U(f, p) – L (f, p)

= 
n

k 1
 [M(f, [tk–1, tk]) – m(f, [tk–1, tk])] (tk – tk–1)

= 
n

k 1
 [f(Mk) – f(mk)] (tk – tk–1)

  
n

k 1
 |f(Mk) – f(mk)| (tk – tk–1)

< 
n

k 1
  

b a



(tk – tk–1)

< 
b a



 
n

k 1
 (tk – tk–1)  < b a




(b a)

U(f, p) – L(f, p) < 

 f  is integrable on [a, b]

7. By the definition Let f: [a, b]   R is a bounded function.

Sol.

(i) U(p, f) < 
b

a

f(x)dx  and

(ii) L(p, f) > 
b

a

f(x)dx  for each p [a, b] with ||P|| < .

Given f(x) = x for rational x = and f(x) = 0 for international x interval [0, b].


b

0

f(x) dx = Infimum {U(P, F)| p [0, b]}

 For each  0,  a partition P1 ={0 = x0, x1, x2 .... xn = b} 

U(P, f) < 
b

0

f(x)dx
2


 ...(1)
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The partition P1 has (P – 1) points excluding the end points 0 and b choose

 > 0   2k (P – 1)  = 
2


... (2)

Let P be any partition with ||P|| < . Thus P may contain some an none of the partition points.

xr, r = 1, 2 .... P – 1 belonging to P1

If P2 = P U P1 then P2 is finer than P and contains.

At the most (P – 1) additional points

 U(P, f) – 2k(P – 1)    U(P2, f) 

U(P1, f) < 
b

0

f(x)dx
2


 [ from (1)]

 U(p, f) < 2k (P – 1)  + 
b

0

f(x)dx
2




 U(p, f) < 
2


 + 
b

0

f(x)dx
2


 [ form (2)]

 U(p, f) < 
b

0

f(x)dx  for any partition P with ||P|| < 

i)
b

0

f(x)dx  = Sup{L(P, f)/P[0, b]}

For each 0, a  partition

P1 = {0, x0, x1, ... xn = b} 

L(P1, f) > 

b

0

f(x)dx
2


 ... (3)

The partition P1 has (P – 1) points excluding the end points 0 and b choose  > 0   2k(P – K)

 = /2 ... (4)

Let P be any partition with ||P|| < . Thus P may contain some or none of the partition xr,
r = 1, 2, 3, ... P – 1 belonging to P1.

If P2 = P U P1 thus P2 is finer than P and contains at most P – 1 additional points.
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 L(p, f) + 2k(P – 1)    L(P2, f)   L(P1, f) > 
b

0

f(x)dx
2


 [  from(3)]

 L(p, f) > 

b

0

f(x)dx
2 2
 

  [  from(4)]

 L(p, f) > 
b

0

f(x)dx  for any partition P with ||P|| < .

b) If f integrable on [0, b]?


b

0

f(x)dx

 b
0[x]    0 – b = – b

Integrable.

8. Given that f is a bounded function on [a, b] their exist sequence (Un) and (Ln) upper and
lower darboux.

Sol.

Suppose first that f is Darboux integral on [a, b] in the sense that

For each 0  and let  > 0 be chosen so that

b

a

s f  ... (1)

For every ricmann sum

  = 
n

k k k 1k 1
f(x )(t t )

 

associated with a partition P having (P) < .

Clearly we have L(f, P)    U(f, P), so (1) follows from the inequalities.

U(f, p) < L(f, P) +    L(f)  = 
b

a

f

and

L(f, P) > U(f, P) –  U(f) –  = 
b

a

f
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Hence f is integrable

 (Un) and (Ln) upper and lower darboux sum

 Lt(Un – Ln) = 0


b

a

f(x)dx  = 
n
Lt


(Un – Ln) = 0

b

a

f(x)dx  = 
n
Lt


Un = 
n
Lt


Ln

9. A function f on [a, b] is called a step function   a partition P ={a = u0 < u1 < ... um = b}
of [a, b] such that f is constant on each interval (uj –1, uj).

Say f(x) = cj for x in (uj – 1, uj)

(a) Partition P = {a = u0 < u1 < ... um = b}

Sol.

Show that step function is f is integrable


b

a

f(x)dx = 
b

a

f(x)dx  is increasing

b

a

f(x)dx  < 

 f is integrable

(b) 
4

0

P(x)dx

Sol.

4

0

P(x)dx  = 
b

a

P(x)dx  = 4
0[x]  = 4A

= 4A + 6B

A & B two 
1 2 3 4

0 1 2 3

     

Constant function 1 + 1 + 1 + 1 + 2 = 6B
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4.3  PROPERTIES OF RIEMANN INTEGRAL

10. If  f   R [ab] then – f   R [ab] and 
b

a
 (–f) (x) dx = –

b

a
 f(x) dx.

Sol.

Let  f   R [ab]


b

a
 f(x) dx =

b

a
 f(x) dx =

b

a
 f(x) dx    ... (1)

Let  p = {a = x0, x1, x2, ....., xn = b} be a partition of [ab].

Let  mr, Mr be the infimum and sup. of f on            Ir = [xr–1, xr]

 f is bounded on [ab], –f is also bounded on [ab]

 Infimum (–f) = –sup f = –Mr   Ir where r = 1 to n.

and  sup (–f) = –Infimum f = –mr   Ir where r = 1 to n.

 U(p, f) = 
n

r 1
  (–mr) r = –

n

2 1
  mr r =  – L(p, f) and

L(p, f) = 
n

2 1
  (–Mr) r = –

n

2 1
  Mr r =  – U(p, f)


b

a
 (–f) (x) dx

= inf. {U(p, –f) |  p    [ab]}

= inf. {–L(p, f) | p    [ab]}

= –sup {L(p, f) | p    [ab]}

= 
b

a
  f(x) dx

= –
b

a
  f(x) dx   ... (2)     from (1)

Similarly

b

a
  (–f) (x) dx

= –sup {L(p, –f) | p    [ab]}
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= sup {–U(p, –f) | p    [ab]}

= –inf {U(p, –f) | p    [ab]}

= –
b

a
  f(x) dx

= –
b

a
 f(x) dx       ... (3)   from (1)

    from (2) and (3) we get

b

a
 (–f) (x) dx =

b

a
 (–f) (x) dx =–

b

a
 f(x) dx.

Hence (–f)   R [ab] and 
b

a
 (–f) (x) dx

= –
b

a
  f(x) dx

11. If f   R [a b] and K   R, then K f   [a b]

and  
b

a
 (K f) (x) dx = K 

b

a
  f(x) dx.

Sol.
Let  f   R [a b]


b

a
 f(x) dx =

b

a
 f(x) dx =

b

a
 f(x) dx)  ... (1)

Since  K   R   K   0 and K < 0.

Case (i)

Let  K   0

Let  p = {a = x0, x1, x2, ....., xn = b} be a
partition of [a b]

Let  inf. f = mr and sup. of f = Mr   Ir where
r = 1 to n.

    f is bounded on [a b]

 Kf is bounded on [a b]

    Inf. (K f) = K inf. f = Kmr  r = 1 to n.

and  sup. (K f) = K sup. f = KMr  r = 1 to n.

Consider

U(p, K f) = 
n

r 1
  (KMr) r = K U(p, f)

and

L(p, K f) = 
n

r 1
  (Kmr) r = K L(p, f)

 
b

a
 (K f) (x) dx

= inf. {U(p, K f) | p    [ab]}

= K inf. {U(p, f) | p    [ab]}

= K 
b

a
  f(x) dx

= K 
b

a
  f(x) dx    ... (2)   from (1)

Similarly,

b

a
 (K f) (x) dx

= sup. {L(p, K f) | p    [ab]}

= K sup. {L(p, f) | p    [ab]}

= K 
b

a
  f(x) dx

= K 
b

a
  f(x) dx    ... (3)   from (1)

 From (2) and (3) we get.

b

a
 (K f) (x) dx = 

b

a
 (K f) (x) dx = K

b

a
 f(x) dx

 K f   R  [a b] and  
b

a
  (K f) (x) dx

    = K
b

a
 f(x) dx.

Case (ii)

Let  K < 0,  put K = –l  where  l > 0

 K f = f(–l)
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 f   R [a b]       –f   R [a b]

By Case (i)

l > 0   –fR [a b]   l(–f)  R [a b]

 K f   R [a b]

Also 
b

a
 (K f) (x) dx=

b

a
 l(–f) (x) dx = l

b

a
 f(x) dx

 l(–1)
b

a
 f(x) dx=–l

b

a
 f(x) dx =K

b

a
 f(x) dx

12. If  f   R [a b] then |f|  R [a b]

Sol.
Let  f   R [a b]

 for a given  > 0,   a partition

p = {a = x0, x1, x2, ....., xn = b}

  0   U(p, f) – L(p, f) <  ... (1)

 f is bounded on [a, b]

 |f(x)| < K   K   R+ and x   [a, b]

 |f| is bounded on [a, b]

Let mr, Mr be the inf. and sup. of f on Ir and rm , rM  be the inf. and sup. of |f| on Ir

Now for each  ,    Ir,

|f() – f()| = ||f() – |f()||   |f() – f()|

 rM  – rm    Mr – mr   r = 1 to n.

Now

U(|p|, f) – L(|p|, f)

= 
n

r 1
  ( rM  – rm ) r

  
n

r 1
  (Mr – mr) r

  U(p, f) – L(p, f)

<  from (1)

 U(|p|, f) – L(|p|, f) < 

 |f|   R [a b].
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13. If  f, g   R [a b], then f + g   R [a b] and 
b

a
 (f + g) (x) dx = 

b

a
 f(x) dx +

b

a
 g(x) dx.

Sol.
Let  f, g are bounded on [a b]

 f + g is bounded on [a b]

Let    > 0

f   R [a b]     1 > 0   U(p1, f) –L(p1, f) < 
2


 with p  < 1  ... (1)

and  g   R [a b]     2 > 0   U(p2, f) – L(p2, f) < 
2


 with 2p  < 2 ... (2)

Let  p = p1   p2

Then  p    1p  or 2p

 p  < 1 and p  < 2

 (1) and (2) conditions holds for the partition p we know that

W(p, f + g) = U(p, f + g) – L(p, f + g)

    {U(p, f) – L(p, f)}

+ {U(p, g) – L(p, g)}

  < 
2


 + 
2


  < 

 For each   > 0,    = max {1, 2}   0   W(p, f + g) <   with p  < .

 f + g   R [a b]

 f   R [a b]   
b

a
 f(x) dx

 p 0
Lim

  
n

r 1
  f(r) r

Similarly

g   R [a b]   
b

a
 g(x) dx
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 p 0
Lim

  
n

r 1
  g(r) r

 p 0
Lim

  
n

r 1
  (f + g) (r) r

= p 0
Lim

  
n

r 1
  {f(r) + g(r)} r

 p 0
Lim

  
n

r 1
  f(r) r + p 0

Lim
  

n

r 1
  g(r) r


b

a
 (f + g) (x) dx =

b

a
 f(x) dx +

b

a
 g(x) dx

14. If  f   R [a b] then f2   R [a b]

Sol.
Let  f   R [a b]

 |f|   R [a b]

 f is bounded on [a b]

 |f| is bounded on [a b]

 |f|2 = f2 is bounded on [a b]

 f2 = |f|2   f   0

Let sup. f in [a b] = M > 0

Let  >0  and  f   R [a b]

   a p    [a b] 

n

r 1
 (Mr–mr) r = U(p, f) – L(p, f)<

2M


... (1)

Let inf. (f2) = 2
rm  and sup. (f2) = 2

rM  in Ir   r = 1 to n.

 U(p, f2) – L(p, f2)

= 
n

r 1
  ( 2

rM  – 2
rm ) r

= 
n

r 1
  (Mr – mr) (Mr – mr) r

  
n

r 1
  (Mr – mr) (M – M) r
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  2M 
n

r 1
  (Mr – mr) r

< 2M 
2M


 U(p, f2) – L(p, f2) < 

 For each >0 we can find p [a b] 

U(p, f2) – L(p, f2) < 

 f2 is integrable on [a, b].

15. If  f   R [a b]  and  a < c < b then f   R [a c], f   R [c, b] and 
b

a
 f(x) dx = 

c

a
 f(x) dx + 

b

c
 f(x)

dx.

Sol.
Let  f   R [a b]

 f is bounded on [a, b]

 f is bounded on [a, c] and [c, b]

 a < c < b.

 f   R [a b], for a given >0,   a partition p of [a b] such that U(p, f) – L(p, f) < 

Let  p' = p   {C} then L(p, f)   L(p', f)   U(p', f)   U(p, f)

 U(p', f) – L(p', f)   U(p, f) – L(p, f) <  ... (1)

Let  p1, p2 denote the set of points of p' on  [a, c], [c, b] respectively, then p1, p2 are partitions on [a,
c] and [c, b] respectively and p' = p1   p2.

 U(p', f) = U(p1, f) + U(p2, f) and ... (2)

L(p', f) = L(p1, f) + L(p2, f)  ... (3)

Subtracting (3) from (2), we get

U(p', f) – L(p', f) = [U(p1, f) – L (p1, f)] + [(U(p2, f) – L (p2, f)]

 U(p', f) – L(p', f) <      from (1)

 For partitions p1, p2 of [a, c] and [c, b] respectively U(p1, f) – L(p1, f) <   and U(p2, f) – L(p2,
f) < 

Hence  f   R [a, c]  and  f   R [c, b]

Now consider

U(p', f) = U(p1, f) + U(p2, f)

 inf. U(p', f) = inf. U(p1, f) + inf. U(p2, f)
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
b

a
 f(x) dx = 

c

a
 f(x) dx + 

b

c
 f(x) dx


b

a
 f(x) dx = 

c

a
 f(x) dx + 

b

c
 f(x) dx

 f  R [a b], f  R [a, c] and f  R [c, b]

16. If  f   R [a b]  and  f(x)   0   x   [a, b] then 
b

a
 f(x) dx   0.

Sol.
Let  m, M be the inf. and sup. of f in [a b].

 f(x)   0   x  [a, b]   m   0

 For  p    [a b],  L(p, f)   m(b – a)

 L(p, f)   0


b

a
 f(x) dx = sup {L(p, f)|p [ab]} 0


b

a
 f(x) dx = 

b

a
 f(x) dx   0

17. If,  f, g   R [a b] and f(x)   g(x)   x   [a, b]  then 
b

a
 f(x) dx 

b

a
 g(x) dx

Sol. (May/June-18, June/July-19)

f, g   R [a, b]   f – g   R [a b]

  x   [a, b], f(x)   g(x)

 f(x) – g(x)   0   x   [a b]

 (f – g) (x)   0

Consider

b

a
 (f – g) (x) dx = 

b

a
 [f(x) – g(x)] dx   0


b

a
 f(x) dx – 

b

a
 g(x) dx   0


b

a
 f(x) dx   

b

a
 g(x) dx
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18. If  f   R [a b] then 
b

a

f(x) dx  
b

a
 |f(x)| dx

Sol.
Let  f   R [a b]

 |f|  R [a b]

 –|f|   R [a b]

 –|f| (x)   f(x)   |f| (x)   x   [a b]


b

a
 –|f| (x) dx 

b

a
 f(x) dx 

b

a
 |f| (x) dx


b

a

f(x) dx 
b

a
 |f(x)| dx

19. If  f   R [a b] and m, M are the inf. and sup. of f in [a b] then m(b – a) 
b

a
 f(x) dx   M

(b – a) and 
b

a
 f(x) dx = (b – a)  where     [m, M].

Sol. (June/July-19), (Imp.)

Let  g : [a, b]   R and h : [a b]   R be defined by g(x) = m and h(x) = M   x   [a, b]

 m, M are inf. and sup. of f in [a, b]

 m   f(x)   M   x   [a b]

 g(x)   f(x)   h(x)   x   [a b]


b

a
 g(x) dx   

b

a
 f(x) dx   

b

a
 h(x) dx


b

a
 m dx   

b

a
 f(x) dx   

b

a
 M dx

 m(b – a)   
b

a
 f(x) dx   M(b – a)

Now   a real number    [m, M]   
b

a
 f(x) dx = (b – a)
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20. If  f   R [a b] and |f(x)|   K   x   [a, b] where K   R+, then 
b

a
f(x) dx   K (b – a).

Sol.

Given  |f(x)|   K   x  [a, b]

 –K   f(x)   K   x   [a, b]

If  m, M are the inf. and sup. of f in [a, b] then –K   m   f(x)   M   K   x  [a, b]

Bu we have m(b – a)   
b

a
 f(x) dx   M(b – a)

 –K (b – a)   m(b – a)   
b

a
 f(x) dx   M(b – a)   K(b – a)

 –K(b – a)   
b

a
 f(x) dx   K(b – a)


b

a

f(x) dx   K (b – a)

21. If f and g are integrable on [a, b] and if f(x)   g(x) for x   [a, b], then 
b b

a a
f g  .

Sol.

Given that f(x)   g(x) x [a,b] 

f(x) – g(x)   0

g(x) – f(x)   0

(g – f)   0

Given that f is integrable on [a, b] & g is integrable on [a, b]

i.e., U(f) = L(f) = 
b

a

f(x)dx & U(g) = L(g) = 
b

a

g(x)dx

if (g – f)   0  
b

a
 (g – f) (x) dx   0

b

a
 g(x) dx – 

b

a
 f(x) dx   0
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b

a
 g(x) dx   

b

a
 f(x) dx

i.e.,
b

a
 f 

b

a
 g

22. If f is integrable on [a, b]; then |f| is integrable and 
b b

a a
f f 

Sol. (May/June-18)

Given that f is integrable in [a, b]

Since |f|   f   |f|

– 
b

a
 |f|   

b

a
 f   

b

a
 |f|

b

a

f   
b

a

|f|

Now, to to Show that |f| is integrable on [a, b]

i.e., to show that U(|f|, p) – L(|f|, p) < 

Since |(f(x)| – |f(y)|   |f(x) – f(y)|

taking supremum of on both sides

M(|f(x)|, [tk–1, tk]) – m |f|, [tk–1, tk])

  M((f, [tk–1, tk]) – m (f, [tk–1, tk])

multiply (tk – tk–1)

[M(|f|, [tk–1, tk]) – m(|f|, [tk–1, tk])] (tk – tk–1)   [M(f, [tk–1, tk]) – m(f, [tk–1, tk])] (tk – tk–1)

Now, taking   on both side.

n

k 1
M(|f|, [tk–1, tk]) (tk – tk–1) – 

n

k 1
m(|f|, [tk–1, tk]) (tk – tk–1)   

n

k 1
 (f, [tk–1, tk] (tk – tk–1)

– 
n

k 1
m(f, [tk–1, tk]) (tk – tk–1)

U(|f|, p) – L (|f|, p)   U (f, p) – L(f, p)

U(|f|, p) – L(|f| – p) < 

 |f| is integrable on [a, b]
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4.3.1 Darboux’s Theorem

23. If  f : [a b]   R is a bounded function, then for each   > 0,    > 0 such that

(i) U(p, f) < 
b

a
 f(x) dx +   and

(ii) L(p, f) > 
b

a
 f(x) dx –   for each p    [a b] with p  < .

Sol.

Let  f is bounded on [a, b], then   a real number K > 0   |f(x)|   K   x   [a b].

(i) By definition we have

b

a
  f(x) dx = infimum {U(p, f) | p    [ab]}

 For each   > 0,   a partition p1 =  {a = x0, x1, x2, ....., xn = b}   U(p, f) < 
b

a
 f(x) dx  + 

2


... (1)

The partition p1 has (p – 1) points excluding the end points a and b. Choose

  > 0   2K (p – 1)  = 
2


... (2)

Let p be any partition with p  < . Thus p may contain some or none of the partition points
xr, r = 1, 2, ..., p – 1 belonging to p1.

If  p2 = p   p1 then p2 is finer than p and contains.

At the most (p – 1) additional points

 U(p, f) – 2K (p – 1)    U(p2, f)   U(p1, f) < 
b

a
  f(x) dx  + 

2


 from (1)

 U(p, f) < 2K (p – 1)  + 
b

a
  f(x) dx  + 

2


 U(p, f) < 
2


 + 
b

a
  f(x) dx  + 

2


 from (2)

 U(p, f) < 
b

a
  f(x) dx +   for any partition p with p  < .
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(ii) By definition we have

b

a
  f(x) dx = sup {L(p, f) | p    [ab]}

 For each > 0,   a partition p1 = {a = x0, x1, x2, ....., xn = b}   L(p1, f) > 
b

a
  f(x) dx – 

2


... (3)

The partition p1 has (p – 1) points excluding the end points a and b choose  > 0   2K (p – 1)

  = 
2


... (4)

Let p be any partition with p  < . Thus p may contain some or none of the partition points
xr, r = 1, 2, 3, ..... p – 1 belonging to p1.

If  p2 = p   p1 thus p2 is finer than p and contains atmost p – 1 additional points.

 L(p, f) + 2K (p – 1)    L(p2, f)  L(p1, f) > 
b

a
  f(x) dx – 

2


  from (3)

 L(p, f) > 
b

a
  f(x) dx – 

2


 – 2K (p – 1) 

 L(p, f) > 
b

a
  f(x) dx – 

2


 – 
2


   from (4)

 L(p, f) > 
b

a
  f(x) dx –   for any partition p with p  < .

24. Prove that




2

2 8 x

–2

x sin (e )dx
316

3




Sol. (May/June-18, Nov/Dec.-18), (Imp.)

2
2 8 x

2

|x sin (e )|dx


 

 

2 23
8 x 8 x

22

x
cos (e sin (e ).2x dx

3

 

  

 
  
 



3 3
8 2 2( 2 ) (2 )

cos (e e ]
3 3

     
   
 

 –
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2
2x

2

2

8 x 8 x

2

cos (e ) 2 sin e


 

 
 

 

3 38 8
(i)

3 3
 

   [(2)2+(2)2 cos8(2 – 2) – 2 sin8(e2/2)

3 38 8
0

3 3
 

  

316
3




25. Let f be a bounded function on [a, b], so that there exists B > 0 such that |f(x)| B for all
x  [a, b]

(a) For any set S  [a, b] and x0, y0 S,

Sol.
We have f(x0)2 – f(y0)2 

  |f(x0) + f(y0)| . |f(x0) – f(y0)|

  2B|f(x0) – f(y0)|

  2B[M(f,S) – m(f, S)]

It follows that M(f2, S) – m(f2, S) 

  2B[M(f, S) – m(f, S)

   U(f2, P) – L[f2, P]   2B [U(f, P) – L(f, P)]

(b) Suppose that f is integrable and consider > 0   partitions P1 and P2 of [a, b] satisfying.

Sol.

    L(f1 P1) > L(f) = 
2


 and U(f1 P2) < U(f) +
2


For P = P1 U P2

U(f1 P) – L(f1 P)U(f1 P2) – L(f1 P1)

< U(f) + 
2


 – L(f)
2
   

<U(f) – L(f) +

U(f) = L(f)

 f is integrable

 f is integrable
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f2 = f .f

b b
2

a a

f dx (f.f)dx 


b

a

fdx   [ using part (a)]


b

2

a

f dx  

 f2 also integrable on [a, b]

26. (a)
 

2
x

t

x 0
0

1
Lt e dt

x

Sol.

     I = 
2

x
( t )

0

e dt 

    I2 = 
2

x
t

0

e dt

    I2 = 
2 2

x x
t y 2 2 2

0 0

e e dy dt (t y ) r     

= 
2

x x
r

0 0

e r.d .dr  

x
2

2

x
x r

r

0 0

e
e r.dr x

2




 
  

  


    I2 = x

2xe
2

 
 
  

 substitute given

x
Lt


 

2x1 e
.x

x 2

 
 
  

= 
1

2


(b)  
2

3+h
t

h 0
3

1
Lt e dt

h

Sol.

Consider 
2

3 h
t

3

e dt




Let I = 
2

3 h
( t )

3

e dt


 

    I2 = 
2 2

3 h 3 h
( t ) y

3 3

e dt e dy
 

   

= 
2 2

3 h 3 h
t y

3 3

e dy dt
 

  

  
2

3 h 3 h
r

3 3

e .r .d .dr
 

  


2

3 h
r

3

e r.dr




h
2 3 h

r

3

e
2


 

 
  

Substitute in given equation

2 2(3 h) (3)

h 0

1 e e
Lt .h

h 2 2

  



 
  
  

h 0
Lt


 

2 2(3 h) (3)e e
2 2

   
  
  

23e
2

 2(3)e
2




 
 
  

= 0
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27. Let f(x) & g(x) is continuous real valued function on [a, b].

Sol.

For each 0 m z     |f(x) – g(x)| < 

f(x) is continous and g(x) is continous

 f(x) g(x) also continuous function


b

a

f(x)g(x)dx 0

For every continuous function g on [a, b]


b

a

f(x)g(x)dx 0

b

a

f(x)dx 0

 f(x) = 0 for all x in [a, b]

4.4  FUNDAMENTAL THEOREM OF CALCULUS

4.4.1 Necessary and Sufficient Condition for Integrability

28. A bounded function f is integrable on [ab] if and only if for each > 0,    a partition p of
[ab]. Such that U(p, f) – L(p, f) <  .

Sol. (Nov/Dec.-18, June/July-19, Dec.-17)

Let  f be Riemann integrable on [ab].


b

a
 f(x) dx =

b

a
 f(x) dx =

b

a
 f(x) dx ... (1)

Let  > 0

By Darboux’s theorem,    > 0   U(p, f) < 
b

a
 f(x) dx + 

2


... (2)

and L(p, f) > 
b

a
  f(x) dx – 

2


... (3)

For each p    [a b] with p  < .

 From (1) and (2) and from (1) and (3) we get.
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U(p, f) < 
b

a
 f(x) dx + 

2


 and L(p, f) > 
b

a
 f(x) dx – 

2


 U(p, f) < 
b

a
 f(x) dx + 

2


 and 
b

a
 f(x) dx < L(p, f) +  

2


 U(p, f) < L(p, f) + 
2


 + 
2


 U(p, f) – L(p, f) < 

Also we have  U(p, f) – L(p, f)   0

 0   U(p, f) – L(p, f) < 

Conversely :

Let for each > 0,   a partition p of [a, b]   0   U(p, f) – L(p, f) < 

By definition we have

b

a
 f(x) dx = infimum {U(p, f) | p    [ab]}


b

a
 f(x) dx   U(p, f) ... (4)

Similarly

b

a
 f(x) dx = Sup. {L(p, f) | p    [ab]}


b

a
 f(x) dx   L(p, f)

 –
b

a
 f(x) dx   –L(p, f) ... (5)

Adding (4) and (5)


b

a
 f(x) dx–

b

a
 f(x) dx U(p, f) – L(p, f)<

Also we have

b

a
 f(x) dx – 

b

a
 f(x) dx   0
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 0   
b

a
 f(x) dx – 

b

a
 f(x) dx < 

 >0 is arbitrary


b

a
 f(x) dx – 

b

a
 f(x) dx = 0


b

a
 f(x) dx = 

b

a
 f(x) dx

 f is Riemann integrable on [a b].

29. Show that f(x) = 3x + 1 is integrable on [1, 2] and 
2

1

(3x + 1) dx = 
11
2

Sol.
Let  f(x) = 3x + 1 is bounded on [0, 2]

Consider the partition

p = 
1 2 r

1, 1+ , 1+ ,  ... 1+ ,  ... 2
n n n

 
 
 

Let rth subinterval Ir = 
r 1 r

1 ,  1+
n n
   

 and length of each subinterval r = 
1
n

.

 f(x) = 3x + 1 is increasing on [1, 2].

 Mr = sup. of f in Ir = 3 
r

1
n

  
 

 + 1 =  4 + 
3r
n

 and mr = inf. of f in

Ir =  3
r 1

1
n
  

 
 + 1 = 4 + 

3(r 1)
n


 U(p, f)=
n

r 1
Mr r = 

n

r 1
  

3r
4

n
  
 

 
1
n

= 
n

r 1
  

4
n

 + 2

3
n

 
n

r 1
  r

= 
4
n

(n) + 2

3
n

 . 
n(n 1)

2


= 4 + 2

3
2n

 n2 
1

1
n

  
 

= 4 + 
3
2

 
1

1
n

  
 
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Similarly

      L(p, f) = 
n

r 1
  mr r

= 
n

r 1
  

3(r 1)
4

n
  

 
 

1
n

= 
4
n

n

r 1
  (1)+ 2

3
n

n

r 1
  (r – 1)

= 
4
n

(n) + 2

3
n

 
(n 1) n

2


= 4 + 
2

2

3n
2n

 
1

1
n

  
 

= 4 + 
3
2

 
1

1
n

  
 


2

1
  f(x) dx = 

n
Lim


 L(p, f)

= 
n
Lim


 
3 1

4  1
2 n

     
  

= 4 + 
3
2

 = 
11
2

Similarly

2

1
  f(x) dx = 

n
Lim


 U(p, f)

= 
n
Lim


 
3 1

4  1
2 n

     
  

= 4 + 
3
2

 = 
11
2


2

1
  f(x) dx  = 

2

1
  f(x) dx = 

11
2

 f(x) = 3x + 1 is integrable on [1, 2]

and 
2

1
  (3x +1) dx = 

11
2

30. Prove that f(x) = x2 is integrable on [0,

a] and 
a

0

 x2 dx = 
3a

3
.

Sol.
Let  f(x) = x2 is bounded on [0, a]

Consider the partition

p = 
a 2a ra

0,  ,  ,  ....., ,  ..... a
n n n

 
 
 

Let  rth subinterval  Ir = 
(r 1)a ra

,  
n n
 

  

Length of each subinterval = r = 
a
n

 f(x)=x2 is an increasing function in [0,a]

Let Mr = sup. of f in  Ir = 
2

ra
n

 
 
 

 = 
2 2

2

r a
n

and mr = infimum of f in

      Ir = 
2

(r 1) a
n
 

 
 

 = 
2 2

2

(r 1)  a
n



Now

      U(p, f)= 
n

r 1
  Mr r = 

n

r 1
  

2 2

2

r  a
n

 . 
a
n

=
n

r 1


3 2

3

a  r
n

=
3

3

a
n

n

r 1
  r2

= 
3

3

a
6n

 × 
n(n 1)(2n 1)

6
 

= 
3

3

a
6n

 n3 
1

1
n

  
 

 
1

2
n

  
 

= 
3a

6
 

1
1

n
  
 

 
1

2
n

  
 

Similarly

      L(p, f) = 
n

r 1
  mrr = 

n

r 1


2 2

2

(r 1) a
n


×
a
n

= 
3

3

a
n

 
n

r 1
  (r – 1)2
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= 
3

3

a
n

 × 
(n 1) n(2n 1)

6
 

= 
3

3

a
6n

 n3 
1

1
n

  
 

 
1

2
n

  
 

= 
3a

6
 

1
1

n
  
 

 
1

2
n

  
 

Consider

  
a

0
 f(x) dx = 

n
Lim


 L(p, f)

= 
n
Lim


 
3a

6
 

1
1

n
  
 

 
1

2
n

  
 

= 
32a

6
 = 

3a
3

Similarly

a

0
 f(x) dx = 

n
Lim


 U(p, f)  = 
n
Lim


 
3a

6
 

1
1

n
  
 

 
1

2
n

  
 

  = 
32a

6
 = 

3a
3


a

0
 f(x) dx = 

a

0
 f(x) dx = 

3a
3

 f(x) = x2 is integrable on [0, 4] and 
a

0
  x2 dx = 

3a
3

31. Prove that f(x) = sinx is integrable on  
 0, 2  and 




2

0

 sinx dx = 1.

Sol.

Let  f(x) = sinx is bounded on 0, 2
 

 

Consider the partition

p =  2 3 2 n0,  ,  , ..... .....2n 2n 2n 2n 2n
    

Let  rth subinterval  Ir = 
(r 1) r

,  
2n 2n
   

  
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and  Length of each subinterval r = 
2n


 f(x) = sinx is increasing in 0, 2
 

 

Let  Mr = sup. of f in Ir = sin 
r
2n


and  mr = Infimum of f in Ir = sin 
(r 1)

2n
 

Now consider

U(p, f) = 
n

r 1
  Mrr = 

n

r 1
  sin 

r
2n


 × 
2n


 = 
2n


 
2 n

sin sin ..... sin
2n 2n 2
       

We know that sina + sin(a + d) + ..... + sin (a + (n – 1) d) = 

(n 1) nd
sin a  d  sin

2 2
d

sin
2

  
 

 
 
 

 U(p, f) = 
2n


 

n 1 nsin .  sin
2n 2 2n 4n

sin  
4n

         
  

    

  = 

(n 1)
sin .sin

2n 4n 4

sin
4n

    
  

 
 
 

  = 
sin cos cos sin

4 4n 4 4n2 2n

sin
4n

      
 

 
 
 

  = 
2 2n


 . 

1

2
 cos 1

4n
  

 
 = 

4n


 cot 1
4n
  

 

Similarly we can prove that  L(p, f) = 
4n


 cot 1
4n
  

 
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
2

0



  f(x) dx = 
n 0
Lim


 L(p, f) = 
n 0
Lim


 
 
 
4n

tan  4n




 – 

n 0
Lim


 
4n


       = 1 – 0 = 1 0

tan
 Lim  1



   


Similarly

2

0



  f(x) dx = 
n 0
Lim


 U(p, f) = 1


2

0



  f(x) dx = 
2

0



  f(x) dx = 1

 f(x) = sinx is integrable on 0, 2
 

   and 
2

0



  sinx dx = 1.

4.4.2 Another Definition of Riemann Integral

Let  f : [ab]   R be a function and p = {a = x0, x1, x2, ....., xn = b} be a partition of [ab]. Let
{1, 2, .....,n}   [ab] be such xr–1   r   xr   r = 1, 2, 3, ..... n. The function f is said to be Riemann

integrable over [ab], if to each >0,    > 0 and a number I such that 
n

r r
r 1

f( ) I


    <   for p   

[ab] with p  <  and r
  [xr–1, xr]. The number I is the Riemann integral of f over [a, b]   

b

a
  f(x) dx

= 
n 0
Lim


 
n

r r
r 1

f( ) 


   
 
 .

4.4.3 Primitive (Definition)

If  f   R [a b] and if    : [a b]   R   '(x) = f(x)   x   [a, b] then  is called a primitive or
antiderivature of f.

4.5  FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

32. If  f   R [a b] and  is a primitive of  then 
b

a
 f(x) dx = (b) – (a).

Sol.
 is a primitive of f on [a, b]
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 '(x) = f(x)   x   [a, b] ... (1)

Consider the partition  p = {a = x0, x1, x2, ....., xn = b} of [a b]

 f   R [a, b]

 xr–1   r   xr   r = 1, 2, ..... n

 p 0
Lim

  
n

r 1
  f(r) r = 

b

a
 f(x) dx ... (2)

  is derivable on [a b]

  is continuous and derivable on [xr–1, xr]   r = 1 to n

 By lagrange’s mean value theorem we have

'(r) = r r 1

r r 1

(x ) (x )
x x





  


   r
  (xr–1, xr), r = 1 to n.

 (xr) – (xr–1) = (xr – xr–1) '(r)   r = 1 to n.

Adding these n equalities we get

n

r 1
  [(xr) – (xr–1)] =

n

r 1
  '(r) r


n

r 1
 [(xr) – (xr–1)]=

n

r 1
 f(r) r  from (1)


n

r 1
  f(r) r = (x1) – (x0) + (x2)

– (x1) + ..... + (xn) – (xn–1)


n

r 1
  f(r) r = (xn) – (x0)

 p 0
Lim

  
n

r 1
  f(r) r = p 0

Lim
  [(xn) – (x0)]


b

a
 f(x) dx = (b) – (a) from (2)

33. Show that 
1

0
 x4 dx = 

1
5

Sol.
Let  f(x) = x4 is continuous on R

 Continuous on [0, 1]
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
1

0
  x4 dx exists.

Let  (x) = 
5x

5
 defined on [0, 1]

Clearly  is derivable on [0, 1] and

'(x) = x4 = f(x)   x   [0, 1]

  is primitive of f on [0, 1]

 By fundamental theorem

1

0
  x4 dx = (1) – (0) = 

1
5

 – 0 = 
1
5


1

0
  x4 dx  = 

1
5

34. Show that 
b

a

 cosx dx = sinb – sina.

Sol.
Let  f(x) = cosx is continuous on R.

 f(x) is continuous on [a, b]


b

a
  cosx dx exists.

Let  (x) = sinx defined on [a, b]

  is derivable on [a, b] and

'(x) = cosx = f(x)

  is primitive of f on [a, b]

 By fundamental theorem

b

a
  cosx dx = (b) – (a)


b

a
  cosx dx = sinb – sina

35. Prove that 
b

a

 ex dx = eb – ea.

Sol.
Let  f(x) = ex is continuous on R

 f(x) is continuous on [a, b]


b

a
  ex dx exists

Let  (x) = ex defined on [a, b] and
'(x) = ex = f(x)

   is primitive of f on [a, b]


b

a
  ex dx = (b) – (a)


b

a
  ex dx = eb – ea

36. Evaluate 



4

0

 (sec4x – tan4x) dx

Sol.
Let  f(x) = sec4x – tan4x

     = (sec2x – tan2x) (sec2x + tan2x)

     = (1) (sec2x + tan2x)

f(x) = 2 sec2x – 1

 tan2x = sec2x – 1 and sec2x – tan2 = 1

which is continuous on 0, 4
 

   and

Hence 
4

0



  f(x) dx exists.

Let  (x) = 2 tanx – x defines on 0, 4
 

 

and '(x) = 2 sec2 x – 1 = f(x)

  is primitive of f on 0, 4
 

 
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 By fundamental theorem

4

0



  (sec4x – tan4x) dx

=   4
  – (0)

=  2 4
  – 0


4

0



  (sec4x – tan4x) dx = 2 – 4


37. f(x) = n

1
2

 ; n+1

1
2

 < x   n

1
2

   n = 0, 1, 2, ....., f(0) = 0

Sol.
Let  f   R [0, 1]

We have

 n

1

1
2

  f(x) dx = 
 

 n 1

n

1
2

1
2



  f(x) dx + 
 

 n 2

n 1

1
2

1
2




  f(x) dx

+ ..... + 
 n

1

1
2

  f(x) dx


 

 n 1

n

1
2

1
2



  n 1

1
2   dx + 

 

 n 2

n 1

1
2

1
2




   n 2

1
2   dx  + ..... + 

1

1
2

  1 dx

 n 1

1
2   n 1 n

1 1
2 2

   
 + n 1

1
2 

n 2 n 1

1 1
2 2 

   
 + ..... + 

1
1

2
   

 n 1

1
2  n

1
2
 
  

+ n 2

1
2   n 1

1
2 

 
  

+ ... +
1
2
 
  


1
2

 n 1 n 2

1 1
..... 1

4 4 

     
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
1
2

 

n
1

1
4
1

1
4

    
  

 
 

  

which is a geometric series

with CR 
1
4

 < 1


2
3

 

n1
1

4

       


1

0
  f(x) dx = 

n
Lim


 
 n

1

1
2

  f(x) dx

= 
n
Lim


 
2
3

 n

1
1

4
  
 

 = 
2
3

38. Show that 
b

a

xn dx = 
1

n+1
 (bn+1 – an+1) where n   N.

Sol.
Let  f(x) = xn is continuous on R

 f(x) is continuous on [a, b]

and
b

a
  xn dx exists.

Let  (x) = 
n 1x

n 1




 defined on [a, b]

 (x) is derivable on [a, b] and

'(x) = xn = f(x)   x   [a, b]

  is a primitive of f on [a, b]

 By fundamental theorem

b

a
  xn dx = (b) – (a) = 

n 1b
n 1




 – 

n 1a
n 1






b

a
  xn dx = 

1
n 1

 (bn+1 – an+1)   n   N
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39. Intermediate value theorem for integrability

Statement : If ‘f’ is continuous on [a, b]. Then prove that for atleast x in [a, b],

f(x) = 
1

b a
|f(x)dx

Sol. (May/June-18)
Let M = Sup {f(x) / x [a, b]}

m = inf {f(x) / x[a, b]}

 m   M
Case (i)

Let m – M
f(x) = k,
i.e., a constant function

R.H.S = 
1

b a  f(x)dx – 
1

b a

b

a

kdx  = 
1

b a
 bakx

    = 
1

b a
b a  k

    = k
    = f(x)

Case (ii)
m < M
 f  is continuous on [a, b]
it attains its sup & inf on [a, b]
  , x0, y0 [a, b]   f(x0) = M, f(y0) = m ...(1)
  m < f(x) < M
Integrating throughout with respect to ‘x’ between the limits a & b

b

a
mdx < 

b

a
 f(x)dx < 

b

a
Mdx

m(b – a) < 
b

a
 fdx < M(b – a)

m < 
1

b a

b

a
 fdx < M

f(y0) < 
1

b a

b

a
 fdx < f(x0)

1
b a

b

a
 f = f(x) x[x0, y0]

1
b a

b

a
 f = f(x)
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40. if ‘g’ is integrable on [a, b] & g is a continuous function on [a, b] which is differentiable
on [a, b].

Then prove that 
b

a
g ' = g(b) – g(a)

Sol. (Imp.)

Since g' is integrable on [a, b]

by cauchy criteria

U(g', p) – L(g'.p) < 

where P = {a = t0 < tk ...<tk–1 < tk ... < tn = b} is partition of [a, b]

since g is continuous & differentiable

 g is continuous in [tk–1, tk]

g is differentiable in [tk–1, tk]

By Legrange’s mean value theorem

x(tk–1, tk),   k k 1

k k 1

g(t ) g(t )
t t








 = g' xk

g(tk) – g(tk–1) = g'(xk) (tk – tk–1)

n

k 1
 [g(tk) – g(tk–1) = 

n

k 1
 g'(xk) (tk – tk–1)

g(b) – g(a) = 
n

k 1
 g'(xk) (tk – tk–1) ...(1)

 L(f, p)   L(f)   U(f)   U (f, p)

 L(g', p)   L(g')   U(g')   U(g', p) ...(2)

 g' is integrable  by differentiable, L(g') = U(g') = 
b

a

g '

(2)  L(g', (p))   
b

a

g '    U(g', p) ...(3)

m(g', [tk–1, tk])   g'(xk)   M(g', [tk–1, tk])

multiply (tk – tk–1) & taking 
n

k 1


n

k 1
m(g', [tk–1, tk]) (tk – tk–1)   

n

k 1
 g'(xk) (tk – tk–1)   

n

k 1
M(g', [tk–1, tk]) (tk – tk–1)
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L(g', p)   
n

k 1
 g(tk) – g(tk–1)   U(g', p)

L(g', p)   g(b) – g(a)   U(g', p) ...(4)

Using (3) & (4)

b

a

g ' (g(b) g(a))
 

    
 


  > 0 is arbitrary

b

a
 g' = g(b) – g(a)

41. If U and V are continuous function on [a, b] that are differentiable on (a, b) and if U' and

V' are integrable on [a, b] then 
b

a
 U(x) V'(x) dx + 

b

a
 U'(x) V(x)dx = U(b) V(b) – U(a)V(a)

Sol. (Imp.)

Suppose that g(x) = u(x) v(x)

u & v are differentiable

Since every differentiable function is continuous

 U, V are continuous on [a, b]

Since every continuous function  is integrable

i.e., U & V are Integrable on [a, b]
Since g(x) = U(x) V(x)

g'(x) = U(x) V'(x) + V(x)U'(x)

 U', V' [a, b]
By  Fundamental Theorem of Integral Calculus

b

a
 g'(x)dx = g(b) – g(a)

b

a
 g'(x)dx = 

b

a
 [U(x) V'(x) + U'(x)V(x)]dx

 bag(x)  = 
b

a
U(x) V'(x) dx + 

b

a
U'(x)V(x)dx

 baU(x)V(x)  = 
b

a
U(x)V'(x)dx + 

b

a
U'(x) V(x)dx

U(b)V(b) – U(a)V(a) = 
b

a
U(x)V'(x)dx + 

b

a
U'(x)V(x)dx
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42. Fundamental Theorem of Integrate Calculus - II

Let f be an integrable function on [a, b] for x in [a, b]

Let f(x) = 
x

a
 f(t)dt, then F is continuous in [a, b]

if f is continuous at x0 in (a, b) then F is differentiable at x0 and f'(x0) = f(x0)

Sol.

Select B > 0 such that |f(x)|   B x  [a, b]

If x, y   [a, b] where |x – y| < 
B


 then

|F(y) – F(x)| = |
y

x
 f(t)dt|   

y

x
 |f(t)|dt

  
y

x
  B dt

= B (y – x)

< B
B


|F(g) – F(x)| < 

 F is uniformly continuous on [a, b]

 F is continuous on [a, b]

Suppose f is continuous at x0 in (a, b)

Then
0

0

F(x) F(x )
x x

  = 

0

1
x x

0

x

x
 f(t)dt where x  x0

f(x0) = 
0

1
x x

0

x

x
 f(x0) dt

43. Let f be a function defined on [a, b] if a < c < b and f in integrable on [a, b] and [c, b]

then f in integrable on [a, b] and 
b

a
 f(x)dx = 

c

a
 f(x)dx + 

b

c
 (x)dx

Sol. (June/July-19)

f   R[a, b]   f is bounded on [a, b]

 f is bounded on [a, b] & [c, b]
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Since  fR[a, b]

for a given   > 0,   a partition O of [a, b]   U(f, p) – L(f, p) < 

[p C p' C p' in refinement of p

Then L(f, p)   L(f, p')   U(f, p')   U(f, p)

 U(f, p') – L(f, p') <  ...(1)

Let P1, P2 denote the set of points of p' on [a, b] & [c, b] respectively.

Then  P1, P2 are partition on [a, b] & [c, b] respectively.

P ' = P1 U P2

 U(f, P') = U (f, p1) + U(f, p2)

L(f, p') = L(f, p1) + L(f, p2)

U(f, p') – L(f, p') = U(f, p1) + U(f, p2) – (L(f, p2) + L (f, p2) < 

= [U(f, p1) – L(f, p1)] + [U(f, p2) – L(f, p2)] <    by (1)

Since each of [U(f, p1) – L(f, p1)] and [U(f, p2) – L (f, p2)] are non negative, each of these is less then
 .

i.e., U(f, p1) – L(f, p1) <   and U(f, p2) – L(f, p2) < 

for partition on [a, b] & [c, b] respectively.

Hence fR[a, c] and fR[c, b]

Now U(f, p') = U (f, p1) + U(f, p2)

inf U(f, p') = inf U(f, p1) + inf U (f, p2)

b

a
 f(x)dx = 

c

a
 f(x)dx + 

b

c
 f(x)dx

b

a
 f(x)dx = 

c

a
 f(x)dx + 

b

a
 f(x)dx

Since fR [a, b], f[a, c] and fR[c, b]

44 Let u be a differentiable function on an open interval J such that U is continuous and let
I be can open interval such that u(x)I  xJ. If f is continuous on I, then f0 u is continuous

on J and 
b

a
 fou(x)u'(x)dx=

u(b)

u(a)
 f(u)dx. a,b J

Sol.

Let F(x) = 
x

a
 f(u)du

Since f is continuous on I

 F is differentiable in J with F'(u) = f(u)  uT
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Let g(x) = Fou(x)  g'(x) = [F(ux)]'

   = F'(u(x))u'(x)

g'(x) = f(u(x))u'(x)

U' is continuous on I and fou is continuous on J

By fundamental theorem on integral continous

b

a
 g'(x)dx = g(b) – g(a)

b

a
 f(u(x)u'(x)dx = 

b

a
 (fou)'dx    

b

a
 g'(x)dx

= g(b) – g(a)

 F(U(b)) – F(U(a))

= 
U(b)

c
 f(u)du – 

U(a)

c
 f(u)du

= 
U(b)

c
 f(u)du + 

c

U(a)
 f(u)du


b

a
 fou(x)u'(x)dx = 

U(b)

U(a)
 f(u)du

45. If f is bounded function on [a, b] and if ‘p’ and ‘Q’ are two partitions of [a, b] such that P
 Q then prove that L(f, p)   L(f, Q)   U(f, Q)   U(f, p)

Sol. (Nov/Dec.-18)

We  have prove that

L(f, p)   L((f, Q)   U(f, Q)   U(f, p)

To prove that

i.e., L(f,p)   L(f, Q) ...(1)

L(f, Q)   U(f, Q) ...(2)

L(f, Q)   U(f, p) ...(3)

here (2) i.e., L(f, Q)   U(f, Q) is obivous

Now we prove (1) L(f, p)   L(f, Q)

let  p = {a = t0 < t1 <....<tk–1 < tk < ....<tn = b} be partition on [a, b]

let Q be the partition which continuous one more point (say U) more then of P because P  Q

i.e., Q = {Q = t0 < t1 < ...<tk–1 < U < tk <...<tn = b} be the partition of [a, b]
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By differentiable,

L(f, p) = 
n

k 1
 m(f, [tk–1, tk]) (tk – tk–1)

= m(f, [t0, t1]) 1 0(t t )  + m(f, 1 0[t t ] ) (t1 – t2) +...+m(f, [tk–2, tk–1]) (tk–1 – tk–2)

m(f(tk–1, tk]) (tk – tk–1) +...+m(f, [tn–1, tn]) (tn – tn–1)

L(f, (Q) = m[f, [t0 – t1]) (t1 – t0) + m[f, 1 2[t , t ] ) (t2 – t1) +...+m[f, [tk–2, tk–1]) k 1 k 2(t t ) 

   + m[f, [tk–1, tk]) (U – tk–1) + ...+ m(f, n 1 n[t , t ] ) (tn – tn–1)

L(f, Q) – L(f, P) = m(f, [tk–1, U]) (U – tk–1) + m[f, [U, tk]) (tk – tu) – m(f,[tk–1, tk]) (tk – tk–1)  ..(1)

Since U  [tk–1, tk]

[tk–1, U] [tk–1, tk]

m(f, [tk–1, U])  m(f, [fk–1, tk])

Similarly [U, tk] [tk–1, tk]

 m(f, [U, tk])   m(f, [tk–1, tk]) by note

Consider

m(f, [tk–1, tk]) (tk – tk–1)

= m(f, [tk–1, tk]) (tk – U + U – tk–1)

= m(f, [tk–1, tk]) (tk – U) + m(f, [tk–1, tk]) (U – tk–1)

  m(f, [U, tk]) (tk – U) + m(f, [tk–1, U]) (U – tk–1)      by (2)

 we have

m(f, [tk–1, tk]) (tk – tk–1)   m(f, [U, tk]) (tk – U) + m(f, [tk–1, U]) (U – tk–1) ...(3)

 (1)   m(f, [tk–1, tk]) (U – tk–1) + m(f, [U, tk]) (tk – U) – m(f, [tk–1, tk]) (tk – tk–1)   0    by (3)

L(f, Q) – L(f, p)   0

 L(f, p)   L(f, Q)

Similarly we can prove that U(f, Q)   U(f, p)

L(f, p)   L(f, Q)   L(f, Q)   U(f, Q)

L(f, Q) – L (f, p)   0

L(f, Q)   L(f, Q)

L(f, Q) – L(f, p)   m(f, k 1 k[t , t ] ) (tk – tk–1) – m(f, k 1 k[t , t ] ) (tk – tk–1)

L(f, Q) – L(f, P)   0

L(f, Q)   L(f, p)

L(f, p)   L(f, Q)
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Choose the Correct Answer

1. U(p, f) = [ a ]

(a)
n

r 1
  Mr r (b)

n

r 1
  mr r

(c)
n

r 1
  p r (d) None

2. L(p, f) = [ b ]

(a)
n

r 1
  Mr r (b)

n

r 1
  mr r

(c)
n

r 1
  r (d) p

3.
b

a
  f(x) dx = [ d ]

(a) Inf. {L(p, f) | p    [ab]} (b) Inf {U(p, f) | p    [ab]}
(c) Sup. {U(p, f) | p    [ab]} (d) Sup. {L(p, f) | p    [ab]}

4.
b

a
  f(x) dx = [ b ]

(a) Inf. {L(p, f) | p    [ab]} (b) Inf {U(p, f) | p    [ab]}

(c) Sup. {U(p, f) | p    [ab]} (d) Sup. {L(p, f) | p    [ab]}

5. Necessary and sufficient condition for integrability is [ a ]
(a) U(p, f) – L(p, f) <  (b) L(p, f) – U(p, f) < 

(c) U(p, f) < L(p, f) (d) U(p, f) – L(p, f)

6. If  f   R [a b] then 
b

a
  f(x) dx = [ a ]

(a) p 0
Lim

  
n

r 1
  f(r) r (b) p 0

Lim
  f(r) r

(c)
n

r 1
  f(r) r (d) None

7. f(x) = 
0,     x is rational
1,   x is irrational




  then 
b

a
  f(x) dx = [ a ]

(a) 0 (b) –a

(c) a – b (d) –1
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8. f(x) is defined in (0, 1) as f(x) = 
1
n

 for 
1
n

   x > 
1

n 1
 and f(0) = 0. Then f(x) in (0, 1) is [ b ]

(a) R - Integrable (b) Not R - Integrable

(c) Totally discontinuous (d) None of these

9. If  f : [a b]   R is bounded function and P1, P2   [a b]   P1   P2 then [ c ]

(a) U(p1, f)   U(p2, f) (b) L(p1, f)   L(p2, f)

(c) W(p1, f)   W(P2, f) (d) None

10. If  f is bounded on [a b] and p be a partition of [a b] then L(p, f) is [ c ]

(a)   m (b – a) (b)   m (b – a)

(c)   M (b – a) (d)   M (b – a)

11. A bounded function f is R – integrable on [a b] iff [ a ]

(a)
b

a
  f(x) dx = 

b

a
  f(x) dx (b)

b

a
  f(x) dx

(c) f is continuous (d) None

12. If  
n
Lim


 
1
n

 
n

r 1
  

2

2 2

n
n r

 = 
K


 then K = [ c ]

(a) 0 (b) 5

(c) 4 (d) 1

13. A bounded function f is R - integrable on [a b] and M, m are bounds of f(x) on [a b] then 
b

a
  f(x) dx

lies between [ d ]

(a) m (b – a) and M (b + a) (b) m (b + a) and M (b – a)

(c) m (b + a) and M (b + a) (d) m (b – a) and M (b – a)

14. For f(x) = x2, the lower R - integral on [2, 4] is [ b ]

(a)
1
3

(b)
56
3

(c)
1
2

(d) 0

15. The set of ordered pairs p = {(I1, t1) (I2, t2) ..... (Ir, tr) ..... (In, tn)} is called [ b ]

(a) Sub intervals of partition (b) Tagged partition of I

(c) Partition of [a b] (d) None
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Fill in the blanks
1. If f be a bounded function defined on [a, b] and p1, p2 be two partitions of [a. b] such that p2 is

refinement of p1 then .

2. For Riemann integrability condition of continuity is .

3. If  f is Riemann integrable on [a, b] then 
b

a

f(x) dx   .

4. If the function f(x) is bounded and integrable on [a, b] such that f(x)   0   x   [a, b] where b 

a then 
b

a
 f(x) dx is .

5. If f(x) = x   x   [0, 3] and p = {0, 1, 2, 3} be a partition of p then L(p, f) and U(p, f) are
 and .

6. Length of the rth subinterval Ir = 
(r 1)a ra

,  
n n
 

  
 is .

7. If p = {x0, x1, x2, ....., xn} is a partition of [a b] then the n + 1 points are called as .

8. p   = .

9.
n

r 1
  r = .

10. For every partition p of [a b] L(p, f)   .

11. U(p, f) and L(p, f) are known as  and .

12. If  P1, P2   f [a b] and p1 < p2, then the partition p2 is called as a  of p1.

13. If f is bounded on [a b] then M and m are known as  and  of f in [a b].

14. If  f : [a b]   R is a bounded function and p    [a b] then U(p, f) – L(p, f) is called the 
of f w.r.t partition p.

15. If 
b

a
  f(x) dx = 

b

a
  f(x) dx = 

b

a
  f(x) dx then f is known as .
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ANSWERS

1. L(p2, f)   U(p1, f)

2. Sufficient

3. 
b

a

|f(x)| dx

4.   0

5. 3 and 6

6.
a
n

7. Partition points

8. max {1, 2, ....., n}

9. b – a

10. U(p, f)

11. Upper and Lower Riemann sums

12. Refinement

13. Supremum and Infimum

14. Oscillatory Sum

15. Riemann Integrable
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FACULTY OF SCIENCE
B.Sc.  III - Semester, (CBCS) Examination

DECEMBER - 2017

MATHEMATICS  (REAL ANALISYS)
Time : 3 Hours] [Max. Marks : 80

PART - A  (5 × 4 = 20 Marks)
Answer any Five of the following questions.

ANSWERS

1. Prove that 
1
n

n
lim n 1


 
  
 
 

. (Unit-I, Q.No. 7)

2. Prove that every convergent sequence is a Cauchy sequence. (Unit-I, Q.No. 49)

3. Let {sn} be a sequence converging to s. Then prove (Unit-I, Q.No. 45)

that n
n
lim s,


   where n
1
n

   (s1+s2+....+sn).  

4. If a series  an converges, then show that 
n
lim


 an = 0. (Unit-I, Q.No. 71)

5. Find the radius of convergence of 
n

n
n

n 1

3
x .

n 4





 
   

 (Out of Syllabus)

6. Let  {fn} be a sequence of continuous functions on [a, b] and suppose (Out of Syllabus)

that  fn  f uniformly on [a,b]. Then prove that 
n
lim


b b

n
a a

f (x)dx f(x)dx. 
7. If  f  is a bounded function on [a, b] and if  P  and  Q  are partitions (Unit-IV, Q.No. 1)

of [a, b] then prove that L(f,P) U(f,Q).

8. Let  f(x) = x  for rational  x  and  f(x) = 0  for  irrational x.  Calculate  the upper and lower Darboux
integrals for  f  on  the interval [a, b].

Ans :
Given f(x) = x   for rational  x

f(x) = 0  for irrational x

By Daraboux theorem of lower integral.

L(P, F) >
b

a

f(x)dx ...(1)

Darboux theorem of upper integral

U(P, f)   
b

a

f(x)dx ...(2)

   The upper and lower integrals far  f(x) = x  for rational  x  and  f(x) = 0 for irrational ‘x’ on the
internal [0, 1]
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PART - B  (4 × 15 = 60 Marks)
[Essay Answer Type]

Note : Answer ALL the questions.

9. a) i) If {sn} converges to  s  and  {tn}  converges to  t  then prove (Unit-I, Q.No. 25)
that  sn+tn  converges to s+t.

ii)  Prove that a bounded monotone sequence converges. (Unit-I, Q.No. 40)

(OR)

b) i) Prove that every Cauchy sequence is bounded. (Unit-IV, Q.No. 50)

ii) Prove that every Cauchy sequence of real numbers is convergent. (Unit-IV, Q.No. 51)

10. a) Let {sn}  be a sequence, t IR.  Then prove that there is a  subsequence of {sn} converging to

t  if  and only if the set n{n IN : s t }    is infinite for each 0.

Ans :

Let  {Sn} be a sequence,  t IR

and  Let  {Sn} be a sequence

We shall prove that  {Sn} is converges to  t

i.e.   |Sn – t| 

Suppose the set  nn N : S t   is infinite

Then there are subsequences   kn k N
S


 

knS t k  

Subsequence of  {sn}  converging to  t.

We assume   nn N : S t   is finite

then   nn N : 0 |S t|     is infinite far  0 

  nn N : t S t      nn N : t S t ,      as  0,   we have

 nn N : t S t     is infinite for all  0    ...(1)

 nn N : t S t      is infinite for all  0    ...(2)

Both  (1) & (2) finite

Now we will show subsequence  knS k N

nt 1 S , t   and

Max 
k 1n ,

1
S t

k

  
 

    
knS <t   far  k 2 ...(3)

We assume  n1, n2 ..... nk–1  satisfying
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This will give us an infinite inceasing sequence  {nK} k N  and subsequence

 nS k  of {Sn} satisfied (3)

We have nk 1 nkS S k  

 knS  is monitonically increasing

  (3)     kn
1

t S t k
k

   

kn
k

LimS t

1 2 k 1n n .... n    ...(4)

max  j 1
1

sn , t
j

 
 

 
 jSn t    far  j = 2 .... k – 1 ...(5)

Using (1) with 
k 1n

1
max S , t

k

    
 

We can choose  k k 1n n   satisfies (5) for  j=k,

So that (3) holds for  k

The sequence  {nk} k N   for  nS t 

Hence the proof.

(OR)

b) i) If the sequence  {sn}  converges, then prove that every subsequence converges to the same
limit.

Ans :
Let the sequence {Sn} converges t  l  and
Let the subsequence {S2n} of sequence {Sn}

   {Sn} converges to  l

   Given  0  a  positive integer nm s l   n m  ...(1)

We can find a natural number  02n m

If   02n 2n   then  2n m

 from equation (1) we get,

|Sn – l| 2n m 

 {Sn} converges to  l

 Every subsequence converges to the same limit.
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ii) Prove that every sequence has monotone subsequence. (Unit-I, Q.No. 54)

11. a) i) Find the radius of convergence of the series n!

n 1

x .



 (Out of Syllabus)

ii) Prove that the uniform limit of continuous functions is continuous. (Out of Syllabus)

(OR)

b) i) State and prove Weierstrass M-test. (Unit - III, Page No. 71)
ii) Show that if the series gn  converges uniformly on a set s, (Out of Syllabus)

then 
n
lim


 sup {|gn(x)| : x s} 0. 

12. a) Define Riemann integral  
b

a

f(x)dx.  If  f  is a bounded function (Unit - IV, Q.No. 4)

on [a, b] then prove that  L(f) U(f).
(OR)

b) Prove that a bounded function  f  on [a, b]  is integrable if (Unit - IV, Q.No. 28)

and only if for each 0  there exists a partition P of [a,b]

such that U(f, P) – L(f, P) .
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FACULTY OF SCIENCE
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ANSWERS

PART - A  (5 × 4 = 20 Marks)
Answer any Five of the following questions

1. Let {sn} be a sequence of non-negative real numbers converging to  s.  Prove that n
n

n lim s s.




Sol :
Case(i) :

Given {sn} be the sequence & sn   0
If s = 0, then  lim Sn = 0

0 m N    such that  2
ns 0 n m   

   2
n0 s 0  

   n0 s   n m 

Case (ii) :

Let  S > 0  then  s 0

ns s  = 
n n

n

( s s)( s s)

s s

 

  = 
n

n

s s

s s





    
n

1 1

s s s



        ns s n

1
s s

s

 
  
 

Since  lim Sn = s  we have lim ns s .

2. Prove that convergent sequences are bounded. (Unit - I, Q.No.2)

3. If the sequence  {sn}  converges, prove that every subsequence of it (Unit - II, Q.No.1)
converges to the same limit.

4. If  an = sin
n

,
3
 

 
 

 then find lim sup  an  and  lim inf  an.

Ans :

Given  an = 
n

sin
3
 

 
 

 n z 
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But we know that n z 

n
1 sin 1

3


  

n
sin 1

3


 

 {sn}  is bonded.
 lim  inf  fsn = –1  and  lim  sup sn = 1

5. Check whether the power series 
n

n

n 0

2
x

n!





 
  
 

  converges for every  x R. (Out of Syllabus)

6. If fn(x) = 
1
n

 sin nx, x   R, then prove that fn   0 uniformly on R. (Out of Syllabus)

7. Define Riemann integral  
b

a

f(x)dx.

Ans :
Definition :

Let f : [a, b] R  be a bounded function and  P = {a = x0, x1, .... xn = b} be a partition of [a,b]

If  
b

a

f(x)dx sup   L(p,f) / P [a,b]  is equal to 
b

a

f(x)dx inf   U(p, f)/P [a,b]

then  f  is Riemann integrable over  [a, b].

8. Prove that every monotonic function  f  on  [a, b]  is integrable. (Unit-IV, Q.No. 5)

PART - B  (4 × 5 = 60 Marks)
[Essay Answer Type]

Note : Answer ALL the questions

9. a) (i) Let  {sn} be an increasing sequence of positive numbers. (Unit-I, Q.No. 45)

Define n = 
1
n

 (s1 + s2 + ... + sn). Prove that {n} is also

an increasing sequence.

(ii) Prove that Cauchy sequences are bounded. (Unit - I, Q.No. 50)

(OR)

b) (i) Let  t1 = 1  and  tn+1 = 
2

1
1

(n 1)

 
   

tn  for  n 1.  Prove by (Unit - I, Q.No. 47)

induction that  tn=
n 1
2n


 and hence find the lim tn.

(ii) Prove that Cauchy sequences are convergent. (Unit-I, Q.No. 51)
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10. a) (i) If  {sn}  converges to  s  and  {tn}  converges  to (Unit - I, Q.No. 26)
t, then prove that  {sn tn} converges to st.

(ii) Calculate 
1
n

n
lim (n!) .


Sol. :

Let  y =  
1
nn!

Applying logoritham on both sides

log y = 
1
n

  log n!

Applying 
n
Lt


 on both sides

n
Lt


  log y = 
n
Lt


 
log  n!

n

= 
n
Lt


 
1
n

 × 
n
Lt


 log n!

= 
1


 × 
n
Lt


 log n!

= 0 × 
n
Lt


 log n! = 0

n
Lt


 log y = 0

log 
n
Lt


 y = 0

n
Lt


 y = e0 = 1

(OR)

b) (i) Prove that a series converges if and only if it satisfies the Cauchy criterion.

Ans :
Let  sn  be the  nth partial sum of  Un

Sq = u1 + u2 +....+up + up+1 +....+ uq

Sq = u1 + u2 +....+up

Sq – sp = Up+1 + Up+2 + ....+ Uq

The series  Un  converges   the sequence {sn} converges

  For each  0 m z .     such that  p qs s q p m     

  for each  0 m z     such that

P 1 P 2 q|U U .... U |     q p m    
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(ii) Check whether the series 
n( 1) n

n 0
2


 


 converges.

Ans :

Given 
n 1

n 1
n 1

( 1) n

2









which is an alternating series

Un = 
n

2n 1
 then

Un – Un+1 = 
n

2n 1
– 

n 1
2n 1



= 
1

(2n 1)(2n 1)   Un>Un+1 n N 

Also n
n n

n
lim U lim

2n 1 




    = 
n

1
lim

1
2

n
    

 

 = 
1

0
2


By Leibnitz’s Test

(–1)n–1 Un  is not convergent.

11. a) (i) Let  
2

n
1 2cos nx

f (x) .
n


  Prove that  {fn}  converges (Out of Syllabus)

uniformly to  ‘a’ on R.

(ii) If  g  and  h are integrable on [a, b]  and  if  g(x) h(x) (Unit - I, Q.No. 17)

for all  x [a,b]  then prove that 
b b

a a

g(x)dx h(x)dx. 

(OR)

b) Let {fn} be a sequence of continuous functions on [a, b] and (Out of Syllabus)

suppose that nf f  uniformly on [a, b]. Then prove that

b b

n
n a a

lim f (x)dx f(x)dx.


 

12. a) (i) Prove that every continuous function  f  on  [a, b] is integrable. (Unit - IV, Q.No. 6)

(ii) If  f  is integrable on [a, b] then prove that  |f| is integrable (Unit - IV, Q.No. 22)

on [a,b] and 
b b

a a

f f . 
(OR)

b) (i) State and prove intermediate value theorem for integrals. (Unit - IV, Q.No. 19)

(ii) Prove that 
2

2 8 x

2

x sin (e )dx


 
   

316
.

3
 (Unit - IV, Q.No. 24)
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FACULTY OF SCIENCE
B.Sc.  III - Semester (CBCS) Examination
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MATHEMATICS
REAL ANALYSIS

Time : 3 Hours] [Max. Marks : 80

PART - A  (5 × 4 = 20 Marks)
(Short Answer Type)

Note : Answer any FIVE of the following questions.

1. Determine the limit of the sequence {sn}, where sn = 2n 1 n 

Sol :

Given, Sn = 2n 1 n 

= 
2

2

2

n 1 n
n 1 n

n 1 n

 
  

 

= 
 22 2

2

n 1 n

n 1 n

 

 

= 
2 2

2

n 1 n

n 1 n

 

 

          Sn = 2

1

n 1 n 

    n 2n n

1
lim S lim

n 1 n 


 

= 
1


= 0

 Sn = 2n 1 n  is converges to ‘0’
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2. Let t1 = 1 and tn+1 = 
2
n

n

t 2
2t


 for n   1. Find the lim tn.

Sol :
Given that,

t1 = 1, tn+1 = 
2

n

tn 2
2t


Let us assume that {tn} converges to t i.e., lim tn = t

lim tn+1 = lim 
2

n

n

t 2
2t

 
  
 

 = 
2
n

n

lim t 2
2lim t



lim tn+1 = 
2tn 2
2t


To find the limit , tn+1 = 
2

n

tn 2
2t


 for n 1

If n =1, t2 = 
2
1

1

t 2
2t


=  
1 2
2 1


 =
3
2

 = 1.5

If n = 2, t3 = 
2
2

2

t 2
2t


=  

23
2

2
32 2

   
 

= 
9 8
12


= 
17
12

=1.416.....

If n = 3, t4 = 
2

3

3

t 2
2t


 = 

217
2

12
17

2
12

   
 

 
 
 

= 
289 288

144


×
6

17

= 
577
408

 = 1.4142156

 The given sequence, is converges to   1.414

i.e., t = 2
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3. If an = sin 
n
3
 

 
 

 then find lim sup an and lim inf an.

Sol :

an = sin
n
3
 

 
 

  n = 1, 2, 3......

a1 = sin 3
 

 
 

 = 
3

2

a3 = sin 
3
3
 

 
 

 = 0

a4 = sin 
4
3
 

 
 

 = 
3

2


a5 = sin 
5
3
 

 
 

 = 
3

2


a6 = sin 
6
3
 

 
 

=0 ........

 The set 
3 3

,0,
2 2

   
  

 is a subsequential limit

hence the lim sup an = 
3

2

lim inf an = 
3

2


4. Show that 
n 2




  p

1
n(log n)

 converges if and only if p > 1. (Unit-I, Q.No. 68(c))

5. For  n = 0, 1, 2, 3, ..., let an = 

nn4 2( 1)
5

  
 
 

. Find lim (Out of Syllabus)

sup  
1
n

na  lim inf  
1
n

na

6. Let fn(x) = 
21 2cos nx

.
n


 Prove that {fn} converges uniformly (Out of Syllabus)

to  0  on  R.
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7. Prove that every contiuous function  f  on  [a, b] is integrable.

Sol :
Given that,n f is continuous  on [a, b]

for each 0   a partition P on [a, b]     r r 1f x f x
b a


  


&  r r 1 rI x ,x

Ir =  r 1 rx ,x

sup of f= Mr = f(Mr)
Inf of f = mr = f(mr)

Consider U(P, f) – L (P,f) = 
n n

r r r r
r 1 r 1

M m
 

   

=  
n

r r r
r 1

M m


 

=     
n

r r r
r 1

f M f m


 

=     
n

r r 1
r 1

f x f x r


 

<
n

r 1
r

b a 







<  
n

r r 1
r 1

x x
b a 









<        1 0 2 1 n 1 n 2 n n 1x x x x ..... x x x x
b a   
          

1x
b a

 0 2x x  1x n 1..... x   n 2x  n n 1x x    

< 
b a



(xn– x0)

< 
b a



(b – a)

 U (P,f) – L (P, f) < 
 f is Reimann integrable  on [a, b]

8. Show that 
2 3

8 x

2

16
sin (e )dx .

3



 


 (Unit-IV, Q.No. 24)
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PART - B  (4 × 15 = 20 Marks)
(Essay Answer Type)

Note : Answer  ALL  the following questions.

9. (a) (i) If (Sn) converges to s, (tn) converges to t, then prove that (Unit-I, Q.No. 26)

(sn tn) converges to s t.

(ii) If (Sn) converges to s and ns 0  for all n, and if s 0 , then (Unit-I, Q.No. 27)

show that 
n

1
s

 
 
 

 converges to 
1
s

.

(OR)

(b) (i) Prove that n
n
lim a 0


  of na 1

(ii) Prove that 
1

n
n
lim n 1


 (Unit-I, Q.No. 7)

10. (a) (i) If the sequence (sn) converges, then prove that every (Unit-I, Q.No. 49)
subsequence converges to the same limit.

(ii) State and prove Bolzano - Weierstrass theorem. (Unit-I, Q.No. 55)

(OR)

(b) If (sn) converges to a positive real number s and (tn) is (Unit-I, Q.No. 60)

any sequence then prove that lim sup sn tn = s lim sup tn
11. (a) Let (fn) be a sequence of functions defined and uniformly (Out of Syllabus)

Cauchy on a set S R.  Then prove that there exists

a function f on S such that nf f uniformly on S.

(OR)

(b) Derive an explicit formula for 
2 n

n 1
n x




 for |x|<| and hence (Out of Syllabus)

evaluate 
2

n
n 1

n

3




 .

12. (a) Let f be a bounded function on [a, b]. If P and Q are partitions (Unit-IV, Q.No. 45)

of [a, b] and P R, then prove that L(f, P) L(f, Q) U(f,Q) U(f,P)

(OR)

(b) Prove that a bounded function f on [ a, b] in Riemann integrable on [a, b] it is Darboux
integrable, in which case the values of the integrals agree.

Sol :
Suppose first that f is Darboux integrable on [a,b]

Let  > 0, and Let  > 0 be choosen
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We know that 
b

a

s f  

for everuy Riemann sum S =   
n

k k k 1
k 1

f x t t 




associated with a partition P having mesh (P) < 

Clearly, we have L(f,P)   S   U (f, P)

U(f,P) < L (f,P) +    L (f) +  = 
b

a

f    and L(f,P) > U (f,P) –   U(f) –  = 
b

a

f  

Hence f is Riemann Integrable

R
b b

a a

f f 

Now suppose that f is Riemann Integrable  and consider  > 0. Let   > 0 and r be as given

P = {a = t0 < t1 < .....< tn = b} with mesh (P) < 

for each k =1, 2 .....n select xn in [tk-1, tk]
so that

f(xk) < m(f[tk-1, tk]) + 

The Riemann sums for this choice of  kx ' s satisfies

S  L (f, P)+  (b – a) as well as |s – r|< 

It followes that L (f) L(f,P) S –  (b – a) >r –  – (b – a)

Since  is arbitary

We have L(f)   r

Similarly U(f)   r

Since L(f)   U(f)

as we see that L (f) = U(f) = r

This showes that f is integrable and 
b

a

f  = r = R 
b

a

f
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FACULTY OF SCIENCE
B.Sc.  III - Semester (CBCS) Examination

JUNE / JULY - 2019
MATHEMATICS

REAL ANALYSIS
Time : 3 Hours] [Max. Marks : 80

PART - A  (5 × 4 = 20 Marks)
(Short Answer Type)

Note : Answer any FIVE of the following questions.

1. Compute 
n
lim


 2( 4n n) 2n.  (Out of Syllabus)

2. Computer nn

1 1 1 1
lim 1 .... .

3 9 27 3

     
 

(Unit-I, Q.No. 35)

3. Does the series 
n 4

1
n(log n)(log log n)




  converge ? Justify your answer.. (Unit-I, Q.No. 68(c))

4. Find the set of subsequential limits of the sequence (sn), where (Out of Syllabus)

sn = cos
n

.
3
 

 
 

5. For  n = 0, 1, 2, ....,  let  an =

nn4 2( 1)
.

5

  
 
 

 Find lim sup 
n 1

n

a
a


 and (Out of Syllabus)

lim inf 
n 1

n

a
.

a


6. Let  fn(x) = 
nx

,
1 nx

 x (0, ).   Find  f(x) = nn
lim f (x).


(Out of Syllabus)

7. If  f  and  g  are integrable on  [a, b]  then prove that  
b b

a a

f g  (Unit-IV, Q.No. 21)

wherever for all  x  in  [a, b].
8. State and prove intermediate value theorem for integrals. (Unit-IV, Q.No. 39)

PART - B  (4 × 15 = 60 Marks)
(Essay Answer Type)

Note : Answer ALL  the questions.

9. a) i) Prove that all bounded monotone sequences converge. (Unit-I, Q.No. 40)

ii) Let (sn) be an increasing sequence of positive numbers and (Unit-I, Q.No. 45)

define n 1 2 n
1

(s s ...s ).
n

     Prove that (n) is also an

increasing sequence.
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(OR)

b) i) Let  s1 = 1  and  sn+1 = 
1
3

(sn+1). Prove that n
1

s
2

  for all (Unit-I, Q.No. 48)

n, by using induction.

ii) Let  t1 = 1  and  n 1 n2

1
t 1 t

(n 1)
 

  
 

 for  n>1, prove that (Unit-I, Q.No. 47)

tn = 
n 1

.
2n


10. a) i) Prove that every sequence  (sn) has a monotonic subsequence. (Unit-I, Q.No. 54)

ii) Prove that every bounded sequence has a convergent sequence. (Unit-I, Q.No. 55)

(OR)

b) i) Let  (sn) be a sequence of non-zero real numbers. Prove that (Unit-I, Q.No. 61)

   lim inf 
n 1

n

s
s


1
n

nlim inf|s |  
1
n

nlim sup|a |  n 1

n

s
lim sup .

s


11. a) Let (fn) be a sequence of continuous functions on  [a, b], and (Out of Syllabus)

suppose that  nf f  uniformly on [a, b]. Then prove that

b b

nn a a

lim f (x)dx f(x)dx.


 

(OR)

b) For |x|< 1, derive an explicit formula for  
2 n

n 1
n x




  and hence (Out of Syllabus)

evaluate 
2

n
n 1

n
.

2






12. a) Prove  that a bounded function  f  on  [a, b] is integrable if (Unit-IV, Q.No. 28)

and only if for each 0.  there exists a partition P  of  [a, b]

such that U(f,P) L(f,P) . 

(OR)

b) Let  f  be a function defined on  [a, b]. If a<c<b  and  f  is (Unit-IV, Q.No. 43)

integrable on  [a, c] and on [c, b], then prove that

i) f  is integrable on  [a, b] and

ii)
b c b

a a c

f f f.   
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MODEL PAPER - I

REAL ANALYSIS
(MATHEMATICS)

Time : 3 Hours] [Max. Marks : 80

PART - A  (8 × 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

1. Every convergent sequence is bounded. (Unit-I, Q.No. 2)

2. Every Convergent Sequence is a Cauchy Sequence. (Unit-I, Q.No. 49)

3. Does series converge? Justify your answer. (Unit-I, Q.No. 68(a))

1

n log n

n=2



4. Prove that x = cos(x) for some x in 0,
2
 

 
 

. (Unit-II, Q.No. 15)

5. Let f(x) = x2 sin 
1
x

 
 
 

for x  0, f(0) = 0 Prove that f is continuous at 0. (Unit-II, Q.No. 3)

6. Is the function f(x) = x2 Uniformly continuous on [–7, 7]? (Unit-II, Q.No. 23)

7. Show that sin x   x for all x   0. (Unit-III, Q.No. 17)

8. Let f(x) = x sin
1
x

 for x  0 and f(0) = 0. (Unit-III, Q.No. 8)

(a) Observe that f is continuous at x = 0

(b) Is f differentiable at x = 0 ? Justify your answer.

9. Find the limit for
2x 0

1 – cosx
lim

x
. (Unit-III, Q.No. 30)

10. If  f   R [a b] and m, M are the inf. and sup. of f in [a b] then (Unit-IV, Q.No. 19)

m(b – a) 
b

a
 f(x) dx   M (b – a) and

b

a
 f(x) dx = (b – a)

where     [m, M].

11. If,  f, g   R [a b] and f(x)   g(x)   x   [a, b]  then
b

a
 f(x) dx 

b

a
 g(x) dx (Unit-IV, Q.No. 17)

12. Prove that every continuous function defined on [a, b] is integrable. (Unit-IV, Q.No. 6)
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PART - B  (4 × 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL  the questions.

13. a) All bounded monotone sequence converge. (Unit-I, Q.No. 40)

(i) Every monotonically increasing sequence which is bounded
above is convergent.

(ii) Every monotonically decreasing sequence which is bounded
below is convergent.

OR

b) (i) Let s denote the set of subsequential limit of sequence {sn}. (Unit-I, Q.No. 57)
Suppose {tn} is a sequence in S R and that t = lim tn then
t s.

(ii) If the sequence {sn} converges to   prove that it is subsequence         (Unit-I, Q.No. 53)
also converges to  .

14. a) Verify f is continuous on set S  dom(f) if an only if for each (Unit-II, Q.No. 20)

 x0s and >0 there is  > 0 so that xdom(f) and |x – x0|

<   |f(x) – f(x0)|< for the function f(x) = 2

1
x

 on (0,  ).

OR

b) i) If f and g are real valued functions at x0 then, (Unit-II, Q.No. 5)

(1) f + g is continuous at x0

(2) fg is continuous at x0

(3) f/g is continuous at x0 if g(x0)  0.

ii) A real valued function f on (a, b) is uniformly continuous on (Unit-II, Q.No. 27)
(a, b) if and only if it can be extended to a continuous function
on [a, b].

15. a) Let a, bR. let f(x) = eax cos(bx) and g(x) = eax sin(bx) (Unit-III, Q.No. 20)

(i) Compute f'(x) and g'(x)

(ii) Use (i) to compute f'' and f'''

OR
b) Let f be continuous function on [a, b] that is differentiable (Unit-III, Q.No. 10)

at (a, b). Then there exist [at least one] c[a, b] such that

f(b) – f(a)
b – a

=f'(c).

16. a) If  f, g   R [a b], then f + g   R [a b] and
b

a
 (f + g) (x) dx =

b

a
 f(x) (Unit-IV, Q.No. 13)

dx +
b

a
 g(x) dx.

OR

b) Prove that every monotonic function on [a, b] is integrable. (Unit-IV, Q.No. 5)
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Time : 3 Hours] [Max. Marks : 80

PART - A  (8 × 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

1. If a series an converges them lim an = 0. (Unit-I, Q.No. 71)

2. Let {sn} be sequence in R prove that the lim sn = 0 iff lim |sn| = 0. (Unit-I, Q.No. 23)

3. Calculate, 
n
lim


n

1 1 1 1
1+ + + +....+

3 9 27 3
 
 
 

. (Unit-I, Q.No. 35)

4. Let f and g be continuous function, on [a, b] such that f(a)  g(a) (Unit-II, Q.No. 17)

and f(b)  g(b) prove that f(x0) = g(x0) for at lest one x0 in [a, b].

5. Show that the function f defined by f(x) = x3 is uniformly continous (Unit-II, Q.No. 28)

in [–2, 2].
6. Prove that f : R R given by f(x) = x2 is a continous function on (Unit-II, Q.No. 26)

R but not Uniformly continous on R.

7. Find limit 
x

x

1
lim 1 –

x

 
 
 

. (Unit-III, Q.No. 35)

8. If f is differentiable at a and g is differentiable at f(a), then the composite (Unit-III, Q.No. 4)

function gof is differentiable at a and (gof)'(a) = g'(f(a)).f'(a).

9. Show that ex   ex for all xR. (Unit-III, Q.No. 16)

10. Show that f(x) = 3x + 1 is integrable on [1, 2] and 
2

1

(3x + 1) dx =
11
2

. (Unit-IV, Q.No. 29)

11. If  f   R [a b] then |f|  R [a b] (Unit-IV, Q.No. 12)

12. Prove that
2

2 8 x

–2

x sin (e )dx





316
3




(Unit-IV, Q.No. 24)

PART - B  (4 × 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL  the questions.

13. a) (i) Every bounded sequence has convergent subsequence. (Unit-I, Q.No. 55)

(ii) Let an = 3 + 2(–1)n for nN. (Unit-I, Q.No. 58)

a) List the first eight terms of the sequence (an).
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b) Give a subsequence that is constant {takes a single
values specify the selection function .

OR

b) (i) If {sn} is converges to s, and {tn} is converges to ‘t’. Then (Unit-I, Q.No. 25)

{sn + tn} converges to s + t that is lim {sn + tn} = lim sn + lim tn.

(ii) Let (Sn) be an increasing sequence of positive number and (Unit-I, Q.No. 45)

define n = 
1
n

(S1+S2+....+Sn) prove (n) is an increasing

sequence.
14. a) Let f be a real valued function whose domain is a subset of R. (Unit-II, Q.No. 1)

Then f is continuous at x0 in dom(f) if and only if for each
e>0d>0  xdom(f) and |x – x0|<d  |f(x) – f(x0)|<.

OR

b) (i) If f is continuous on a closed interval [a, b] then f is (Unit-II, Q.No. 24)
uniformly continous on [a, b].

(ii) Find the limit 
x b

x – b
lim

x – b
, b > 0. (Unit-II, Q.No. 43)

15. a) f : [a, b]   R is such (i) f is continuous on [a, b] (ii) f is derivable (Unit-III, Q.No. 9)

on (a, b) and (iii) f(a) = f(b). The there exists c(a,b) such that
f'(c) = 0.

OR

b) Let f(x) = x sin
1
x

 for x  0 and f(0) = 0. (Unit-III, Q.No. 8)

(a) Observe that f is continuous at x = 0

(b) Is f differentiable at x = 0 ? Justify your answer.

16. a) If U and V are continuous function on [a, b] that are differentiable (Unit-IV, Q.No. 41)

on (a, b) and if U' and V' are integrable on [a, b] then 
b

a
 U(x) V'(x) dx

+ 
b

a
 U'(x) V(x)dx = U(b) V(b) – U(a)V(a)

OR

b) If  f   R [a b] and m, M are the inf. and sup. of f in [a b] then (Unit-IV, Q.No. 19)

m(b – a) 
b

a
 f(x) dx   M (b – a) and

b

a
 f(x) dx = (b – a)

 where     [m, M].
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Time : 3 Hours] [Max. Marks : 80

PART - A  (8 × 4 = 32 Marks)
(Short Answer Type)

Note : Answer any Eight of the following questions.

1. State and prove Sandwich Theorem or Squeeze Theorem. (Unit-I, Q.No. 5)
2. Every convergent sequence is bounded. (Unit-I, Q.No. 2)

3. If {sn} converges to s, if sn  0 n and if s  0, then
n

1
s

 
 
 

converges to 
1
s

. (Unit-I, Q.No. 27)

4. If f is uniformly continous on an aggregate s and {sn} is a Cauchy (Unit-II, Q.No. 29)
sequence in s, then prove that {f(sn)} is also Cauchy sequence.

5. Let f(x) = 2x2 + 1 for x R, Prove f is continuous on R, by.. (Unit-II, Q.No. 2)
(a) Using the definition
(b) Using the  –  property

6. Final 
2

x 2

x – 4
lim

x – 2
. (Unit-II, Q.No. 40)

7. Find the limit for 3x 0

tanx - x
lim

x
. (Unit-III, Q.No. 31)

8. If f is differentiable at a point ‘a’. Then ‘f’ is continuous at a. (Unit-III, Q.No. 1)
9. Expassion of ex. (Unit-III, Q.No. 40)

10. If f   R [a b] and K   R, then K f   [a b] and
b

a
 (K f)(x) dx = K 

b

a
 f(x) dx. (Unit-IV, Q.No. 11)

11. Given that f is a bounded function on [a, b] their exist sequence (Unit-IV, Q.No. 8)
(Un) and (Ln) upper and lower darboux.

12. If  f : [ab]   R is a bounded function then 
b

a
 f(x) dx 

b

a
 f(x) dx. (Unit-IV, Q.No. 1)

PART - B  (4 × 12 = 48 Marks)
(Essay Answer Type)

Note : Answer ALL  the questions.

13. a) (i) Every sequence {sn} has a monotonic subsequence. (Unit-I, Q.No. 54)

(ii) Let s denote the set of subsequential limit of sequence {sn}. (Unit-I, Q.No. 57)
Suppose {tn} is a sequence in S R and that t = lim tn then t s.

OR
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b) (i) If {sn} is converges to s and {tn} is converges to t, then (Unit-I, Q.No. 26)

{sn  tn} converges to st i.e., lim (sn tn) = (lim sn) (lim tn).

(ii) Prove that an = 0 for |a|<| (Unit-I, Q.No. 7)

(a)
1/n

n
lim n =1
 

(b) 1/n

n
lim a =1
 

 for a > 0

14. a) Show f(x) = 2

1
x

 is uniformly continous on [0,  ). (Unit-II, Q.No. 32)

OR

b) Let f1 and f2 be function for which the limits L1 = sx a
lim


f1(x) (Unit-II, Q.No. 45)

and L2 = sx a
lim


f2(x) exist and are finite. Then

(i) sx a
lim


(f1+f2) (x) exists and equals L1 + L2

(ii) sx a
lim


(f1 f2) (x) exits and equals L1 L2

(iii) sx a
lim


(f1 / f2) (x) exits and equals L1/L2 provides L2  0

and f2(x)  0  for xs
15. a) Discuss the differentiability of f(x) = |x – a| in R. (Unit-III, Q.No. 6)

OR

b) Let f and of be functions that are differentiable at the (Unit-III, Q.No. 2)

points each of the functions cf [c a constant], f+g, fg and

f/g is also differentiable at a, except f/g if g(a) = 0 since f/g

is not defined at a in this case.

The formulas are

1. (cf)'(a) = c f'(a)

2. (f + g)'(a) = f'(a) + g'(a)

3. (fg)'(a) = f(a)g'(a) + f'(a)g(a)

4. (f/g)'(a) = [g(a)f'(a) – f(a) g'(a)]/g2(a) if g(a)  0.

16. a) Prove that every continuous function defined on [a, b] is integrable. (Unit-IV, Q.No. 6)

OR

b) If f R [a b] and m, M are the infimum and Supremum of f on (Unit-IV, Q.No. 3)

[a b], then m(b – a) 
b

a
  f(x) dx   M(b – a).


