
Rahul’s 
Topper’s Voice

- by -

WELL EXPERIENCED LECTURER

B.Sc.
III Year V Sem

AS PER

CBCS SYLLABUS

 Study Manual

 Lab Practicals

 FAQ’s & Important Questions

 Choose the Correct Answer

 Fill in the blanks

 One Mark Answers

 Solved Previous Question Papers

 Solved Model Papers

TM

Hyderabad. Ph : 66550071, 9391018098
Rahul Publications

All disputes are subjects to Hyderabad Jurisdiction only

Price

`. 189/-

Latest 2022 Edition

PROGRAMMING
IN JAVA

Paper - V

Price `. 189-00

Sole Distributors :  : 665500071, Cell : 9391018098

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

B.Sc.
III Year V Sem

PROGRAMMING
IN JAVA

Paper - V

C
O
N
T
E
N
T
S

PROGRAMMING
IN JAVA
STUDY MANUAL

FAQ’s & Important Questions V - VIII

Unit - I 1 - 36

Unit - II 37 - 102

Unit - III 103 - 146

Unit - IV 147 - 216

Lab Practicals 217 - 234

SOLVED MODEL PAPERS

Model Paper - I 235 - 236

Model Paper - II 237 - 238

Model Paper - III 239 - 240

SOLVED PREVIOUS QUESTION PAPERS

July - 2021 241 - 241

Oct. / Nov. - 2020 242 - 242

Nov. / Dec. - 2019 243 - 243

June / July - 2019 244 - 244

Nov. / Dec. - 2018 245 - 245

May / June - 2019 (MGU) 246 - 246

Nov. / Dec. - 2018 (MGU) 247 - 247

SYLLABUS

UNIT - I

Introduction: Java Essentials, JVM, Java Features, Creation and Execution of Programs, Data
Types, Structure of Java Program, Type Casting, Conditional Statements, Loops, Classes, Objects,
Class Declaration, Creating Objects.

UNIT - II

Method Declaration and Invocation, Method Overloading, Constructors – Parameterized
Constructors, Constructor Overloading, Cleaning-up unused Objects. Class Variables &Method-
static Keyword, this Keyword, One-Dimensional Arrays, Two-Dimensional Arrays, Command-
Line Arguments, Inner Class.

Inheritance: Introduction, Types of Inheritance, extends Keyword, Examples, Method Overriding,
super, final Keyword, Abstract classes, Interfaces, Abstract Classes Verses Interfaces.

Packages: Creating and Using Packages, Access Protection, Wrapper Classes, String Class,
StringBuffer Class.

UNIT - III

Exception: Introduction, Types, Exception Handling Techniques, User-Defined Exception.

Multithreading: Introduction, Main Thread and Creation of New Threads –By Inheriting the Thread
Class or Implementing the Runnable Interface, Thread Lifecycle, Thread Priority and
Synchronization.

Input/Output: Introduction, java.io Package, File Streams, FileInputStream Class, FileOutputStream
Class, Scanner Class, BufferedInputStream Class, BufferedOutputStream Class, RandomAccessFile
Class.

UNIT - IV

Applets: Introduction, Example, Life Cycle, Applet Class, Common Methods Used in Displaying
the Output (Graphics Class).

Event Handling: Introduction, Types of Events, Example.

AWT: Introduction, Components, Containers, Button, Label, Checkbox, Radio Buttons, Container
Class, Layouts.

Swings: Introduction, Differences between Swing and AWT, JFrame, JApplet, JPanel, Components
in Swings, Layout Managers, JTable.

I

Contents
UNIT - I

Topic Page No.

1.1 Introduction to Java .. 1

1.1.1 History of Java .. 1

1.1.2 Java Essentials ... 2

1.1.3 JVM .. 3

1.1.4 Java Features .. 5

1.1.5 Creation and Execution of Programs ..6

1.2 Data Types .. 6

1.2.1 Structure of Java Program ..9

1.3 Type Casting ..10

1.4 Conditional Statements, Loops ...13

1.5 Classes, Objects, Class Declaration ..20

1.6 Creating Objects ..23

  Short Question and Answers ... 27-32

  Choose the Correct Answers ... 33-34

  Fill in the Blanks .. 35-35

  One Mark Answers .. 36-36

UNIT - II
2.1 Method Declaration and Invocation ..37

2.1.1 Method Overloading ...38

2.2 Constructors ..41

2.2.1 Parameterized Constructors ...41

2.2.2 Constructor Overloading ...43

2.3 Cleaning-up unused Objects ...43

2.4 Class Variables & Method ...45

2.4.1 Static Keyword ..45

2.4.2 This Keyword ..47

2.5 Arrays ..49

2.5.1 One-Dimensional Arrays ...51

2.5.2 Two-Dimensional Arrays ..54

II

Topic Page No.

2.6 Command-Line Arguments ...55

2.6.1 Inner Class ..56

2.7 Inheritance ..57

2.7.1 Introduction ..57

2.7.2 Types of Inheritance ..60

2.7.2.1 Single level inheritance ..60

2.7.2.2 Multiple inheritance ...61

2.7.2.3 Multilevel inheritance ...63

2.7.2.4 Hierarchical inheritance ...63

2.7.2.5 Hybrid inheritance ...64

2.7.3 Extends Keyword ..65

2.7.4 Method Overriding ..65

2.7.5 Super Final Keyword ..68

2.8 Abstract Classes ...73

2.8.1 Interfaces ...74

2.8.2 Abstract Classes Verses Interfaces ..80

2.9 Packages ..80

2.9.1 Creating and Using Packages ...81

2.10 Access Protection ..82

2.11 Wrapper Classes in Java ..84

2.12 String Class, StringBuffer Class ..87

2.12.1 String Buffer Class ...92

  Short Question and Answers ... 95-99

  Choose the Correct Answers ... 100-100

  Fill in the Blanks .. 101-101

  One Mark Answers .. 102-102

UNIT - III
3.1 Exception ..103

3.1.1 Introduction ..103

3.1.2 Types ..104

3.1.3 Exception Handling Techniques ..108

III

Topic Page No.

3.2 User-Defined Exception ..113

3.3 Multithreading ...114

3.3.1 Introduction ..114

3.3.2 Main Thread ...115

3.3.3 Creation of New Threads ..116

3.3.3.1 By Inheriting the Thread Class or Implementing the
 Runnable Interface ...116

3.3.4 Thread Lifecycle ..118

3.3.5 Thread Priority ..121

3.3.6 Synchronization...123

3.4 Input/Output ..124

3.4.1 Introduction, java.io Package ..124

3.4.2 File Streams ..128

3.4.2.1 FileInputStream Class, FileOutputStream Class128

3.4.3 Scanner Class ..132

3.4.4 BufferedInputStream Class, BufferedOutputStream Class134

3.4.5 RandomAccessFile Class ..137

  Short Question and Answers ... 139-143

  Choose the Correct Answers ... 144-144

  Fill in the Blanks .. 145-145

  One Mark Answers .. 146-146

UNIT - IV
4.1 Applets ..147

4.1.1 Introduction, Example ..147

4.1.2 Life Cycle ..147

4.1.3 Applet Class ..148

4.1.4 Applet Implementation ..150

4.1.5 Common Methods Used in Displaying the Output (Graphics Class)152

4.2 Event Handling ...153

4.2.1 Introduction ..153

4.2.2 Types of Events, Example ...154

IV

Topic Page No.

4.3 AWT ..156

4.3.1 Introduction ..156

4.3.2 Components ...158

4.3.3 Containers ...160

4.3.4 Button ...162

4.3.5 Label ..163

4.3.6 Checkbox / Radio Buttons ..165

4.3.7 Layouts ...169

4.4 Swings ..187

4.4.1 Introduction ..187

4.4.2 Differences between Swing and AWT ..187

4.4.3 JFrame ..188

4.4.4 JApplet ..190

4.4.5 JPanel ..191

4.4.6 Components in Swings ..194

4.4.7 Layout Managers ..197

4.4.8 JTable ..207

  Short Question and Answers ... 209-213

  Choose the Correct Answers ... 214-214

  Fill in the Blanks .. 215-215

  One Mark Answers .. 216-216

FAQ’s & IMPORTANT QUESTIONS PROGRAMMING IN JAVA

V
Rahul Publications

UNIT - I

1. Write about different features of java.

Ans : (Dec.-19)

Refer Unit-I, Q.No. 5

2. Describe the Structure of a Java Program.

Ans : (Dec.-19)

Refer Unit-I, Q.No. 8

3. Explain about the type casting and type conversion in java.

Ans : (July-21)

Refer Unit-I, Q.No. 9

4. What are the various types of Control Statements in Java with a suitable examples.

Ans : (Dec.-19)

Refer Unit-I, Q.No. 10

5. Explain the Conditional statements in java with suitable examples.

Ans : (Dec.-19, June-19(MGU)

Refer Unit-I, Q.No. 11

6. What are the different looping statements in java? Explain.

Ans : (Dec.-19, Dec.-18(MGU), Dec.-18(KU)

Refer Unit-I, Q.No. 12

7. Explain the process of creating objects in java?

Ans : (Dec.-19)

Refer Unit-I, Q.No. 15

UNIT - II

1. Compare and contrast method overloading and method overriding.

Ans : (July-21, Dec.-18)

Refer Unit-II, Q.No. 5

2. Define Constructors. Explain different types of constructors in java.

Ans : (Dec.-18, KU)

Refer Unit-II, Q.No. 6

Frequently Asked & Important Questions

B.Sc. III YEAR V SEMESTER

VI
Rahul Publications

3. Explain about Command-Line Arguments. How they are useful.

Ans : (June-19, MGU)

Refer Unit-II, Q.No. 15

4. What are the different types of Inheritance?

Ans : (July-21, July-19, Dec.-18-MGU)

Refer Unit-II, Q.No. 19

5. Differentiate the use of Abstract class and Interface?

Ans : (June-19-MGU, Dec.-18-KU)

Refer Unit-II, Q.No. 32

6. What is a package in java?

Ans : (July-19)

Refer Unit-II, Q.No. 33

7. What are wrapper class? What is its use in JAVA?

Ans : (Dec.-19, Dec.-18)

Refer Unit-II, Q.No. 36

8. What is a String Buffer class?

Ans : (Dec.-18)

Refer Unit-II, Q.No. 39

UNIT - III

1. Explain the handling of exception in Java.

Ans : (June-19-(MGU), Dec.-18(MGU)

Refer Unit-III, Q.No. 3

2. Explain the Multithreading in Java.

Ans : (Dec.-19)

Refer Unit-III, Q.No. 9

3. Define Threads. List different ways of creating threads. Explain with examples.

Ans : (July-21, June-19(MGU), Dec.-18(MGU)

Refer Unit-III, Q.No. 11

4. What is java.io Package? Explain the different ways of input output methods.

Ans : (July-21)

Refer Unit-III, Q.No. 15

FAQ’s & IMPORTANT QUESTIONS PROGRAMMING IN JAVA

VII
Rahul Publications

5. Explain in detail about FileInputStream Class with an example.

Ans : (Dec.-19, July-19, Dec.-18(KU)

Refer Unit-III, Q.No. 17

6. Explain in detail about FileOutputStream Class with an example.

Ans : (Dec.-19, July-19, Dec.-18(KU)

Refer Unit-III, Q.No. 18

7. What is a RandomAccessFile Class? Write a program for reading / writing using random
access file.

Ans : (July-19)

Refer Unit-III, Q.No. 23

UNIT - IV

1. Explain applet life cycle.

Ans : (July-21, Dec.-18, Dec.-18(KU)

Refer Unit-IV, Q.No. 2

2. Explain various steps involved in even handling.

Ans : (June-19(MGU)

Refer Unit-IV, Q.No. 8

3. What are the Components of AWT?

Ans : (Dec.-19)

Refer Unit-IV, Q.No. 13

4. Discuss about various containers of AWT.

Ans : (Dec.-18(MGU)

Refer Unit-IV, Q.No. 14

5. Explain in detail about Checkbox control with example?

Ans : (Dec.-19, Dec.-18(MGU)

Refer Unit-IV, Q.No. 17

6. Explain types of layout managers with an example.

Ans : (June-19(MGU), Dec.-18, Dec.-18(MGU)

Refer Unit-IV, Q.No. 20

B.Sc. III YEAR V SEMESTER

VIII
Rahul Publications

7. Compare and contrast AWT and Swing.

Ans : (Dec.-19)

Refer Unit-IV, Q.No. 22

8. Explain about JPanel by giving an example.

Ans : (July-19)

Refer Unit-IV, Q.No. 25

9. Discuss about Layout Managers in swing.

Ans : (Imp.)

Refer Unit-IV, Q.No. 27

UNIT - I PROGRAMMING IN JAVA

1
Rahul Publications

Rahul Publications

UNIT
I

INTRODUCTION:
Java Essentials, JVM, Java Features, Creation and Execution of Programs,
Data Types, Structure of Java Program, Type Casting, Conditional Statements,
Loops, Classes, Objects, Class Declaration, Creating Objects.

1.1 INTRODUCTION TO JAVA

Q1. What is Java?

(OR)

Define Java.

Ans :
Introduction

Java is a high-level programming language
that follows object-oriented programming principle.
The main motto of Java programming language is
“write once run anywhere.” The syntax and
semantics of Java are very much similar to C and
C++ programming language.

Java is considered a programming language
and a platform. As a programming language, it is a
general-purpose, object-oriented high-level
programming language that has its own syntax and
style. As a platform, it provides an environment in
which Java applications run.

Java has four different platforms:-

(i) Java Standard Edition (Java SE): In
general, most of the programmers use Java
SE to do programming in Java. It provides
the core functionality of the Java language.
APIs that are used for database access, GUI
development, networking, etc. are present in
this platform.

(ii) Java Enterprise Edition (Java EE): This
platform is used to develop and run reliable,
secure and large-scale network applications.
It is built on the top of Java SE.

(iii) Java Micro Edition (Java ME): This
platform is suitable for small devices like
smartphones. It is a subset of Java SE and
provides API applicable for application
development on small appliances. It has small
footprint virtual machine that enables Java
applications to run smoothly on less memory
constrained devices.

(iv) JavaFX: It is used to create rich internet
applications. It helps programmers to create
applications with modern look-and-feel and
utilize hardware-accelerated graphics.

1.1.1 History of Java

Q2. Explain the Evolution of Java.

Ans

The history of Java is very interesting. Java
was originally designed for interactive television, but
it was too advanced technology for the digital cable
television industry at the time. The history of java
starts from Green Team. Java team members (also
known as Green Team), initiated this project to
develop a language for digital devices such as set-
top boxes, televisions etc. But, it was suited for
internet programming. Later, Java technology was
incorporated by Netscape.

Currently, Java is used in internet program-
ming, mobile devices, games, e-business solutions
etc. There are given the major points that describe
the history of java.

B.Sc. III YEAR V SEMESTER

2
Rahul Publications

Rahul Publications

1. James Gosling, Mike Sheridan, and Patrick
Naughton initiated the Java language project
in June 1991. The small team of sun
engineers called Green Team.

2. Originally designed for small, embedded
systems in electronic appliances like set-top
boxes.

3. Firstly, it was called “Greentalk” by James
Gosling and file extension was .gt.

4. After that, it was called Oak and was
developed as a part of the Green project.

5. Oak is a symbol of strength and choosen as a
national tree of many countries like U.S.A.,
France, Germany, Romania etc.

6. In 1995, Oak was renamed as “Java” because
it was already a trademark by Oak
Technologies.

Java Version History

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 5.0 (30th Sep, 2004)

8. Java SE 6 (11th Dec, 2006)

9. Java SE 7 (28th July, 2011)

10. Java SE 8 (18th March, 2014)

11. Java SE 9 (21st Sep, 2017).

1.1.2 Java Essentials

Q3. Write about the Java Essentials.

Ans :
The essentials of Java programming language

are as follows,

(i) High-level Language

Java is known to be high-level language that
supports unique features. It is quite similar to
C and C++.

(ii) Bytecode of Java

A bytecode is nothing but intermediate code
that the compiler generates. This code is
executed by JVM.

(iii) Java Virtual Machine (JVM)

A bytecode consists of optimized set of
instructions which are usually executed by
Java runtime system on a special machine
called Java Virtual Machine. A JVM is a
bytecode interpreter. It performs line by line
execution of bytecode.

Java has a neutral-architecture since it allows
programs to run on different platforms. The java
compiler generates the bytecode that are neutral-
architecture in order to achieve the capabilities of
cross-architecture. These instructions can be
interpreted easily on any platform translated into
machine code. Java Runtime Environment (JRE)
contains JVM, class libraries and different supporting
files.

There are many versions of JDK and differ in
case of platforms like Windows and Linux. JVM
belongs to JRE, that differs incase of OS and
computer architecture. Java cannot be run if JVM
is not available for the particular environment.

Java source code Java byte code JVM

Fig.: java Runtime Environment

Java source code contains the simple code
that is easy to develop and understand. The
bytecode can be run on any platform, therefore, it
is Write Once Run Anywhere (WORA). JVM allows
to convert the bytecode into machine code. Java
Development Kit (JDK) contains the tools like javac
java etc. They are of various versions used on
different platforms.

Java Vir tual Machine (JVM) is a Java
interpreter that executes bytecode. The interpreter
reads and translates the entire code into machine
code. This translated code is then executed by the
machine. This machine perform all the functions of
a computer. The type of Java interpreter to be ported
on the machine must be compatible with the
machine and its operating system. The virtual
machine code is different for different computers
and acts as an intermediate between the virtual

UNIT - I PROGRAMMING IN JAVA

3
Rahul Publications

Rahul Publications

machine and the actual machine SUN provides virtual machine implementations for Microsoft Windows
95, 98, NT or Solaris operating system. The process of translation of a Java program into bytecode
simplifies the execution of program in various platforms. Due to this, Java is said to be platform independent.
Execution of a Java program by JVM makes the program more secure and portable. JVM also solves the
issues related with web-based programs.

However, sometimes interpreter becomes inefficient due to the hotspots and due to the consumption
of large amount of time for interpreting. A compilation technology called JIT (Just-in-time) has been
newly introduced for virtual machine implementations. This technology provides JIT machine executable
codes. Another technology called Hot spot technology also improved the performance of JVM.

JRE
JVM

OS

Hardware

Window unit

Intel, Alpha

Fig.: JVM Handles Transiations

1.1.3 JVM

Q4. Explain the architecture of JVM.

(OR)

Explain the architecture of JVM with a neat sketch.

Ans :

Java is a high level programming language. A program written in high level language cannot be run
on any machine directly. First, it needs to be translated into that particular machine language. The javac
compiler does this thing, it takes java program (.java file containing source code) and translates it into
machine code (referred as byte code or .class file).

Java Virtual Machine (JVM) is a virtual machine that resides in the real machine (your computer)
and the machine language for JVM is byte code. This makes it easier for compiler as it has to generate byte
code for JVM rather than different machine code for each type of machine. JVM executes the byte code
generated by compiler and produce output. JVM is the one that makes java platform independent.

Class
Loader

Byte Code
Verifier

Execution
Engine

So, now we understood that the primary function of JVM is to execute the byte code produced by
compiler. Each operating system has different JVM, however the output they produce after execution of
byte code is same across all operating systems. Which means that the byte code generated on Windows
can be run on Mac OS and vice versa. That is why we call java as platform independent language. The
same thing can be seen in the diagram below:

B.Sc. III YEAR V SEMESTER

4
Rahul Publications

Rahul Publications

Interpreter
for Mac

Interpreter
for Windows

Interpreter
for LinuxJVM

JVM

JVM

Complier

(javac)

Byte code
(.class file)

Source Code
(.java file)

The Java Virtual machine (JVM) is the virtual machine that runs on actual machine (your computer)
and executes Java byte code. The JVM doesn’t understand Java source code, that’s why we need to have
javac compiler that compiles *.java files to obtain *.class files that contain the byte codes understood by
the JVM. JVM makes java portable (write once, run anywhere). Each operating system has different JVM,
however the output they produce after execution of byte code is same across all operating systems.

JVM Architecture

1. Class Loader: The class loader reads the .class file and save the byte code in the method area.

2. Method Area: There is only one method area in a JVM which is shared among all the classes. This
holds the class level information of each .class file.

3. Heap: Heap is a part of JVM memory where objects are allocated. JVM creates a Class object for
each .class file.

4. JVM language Stacks: Java language Stacks store local variables, and it’s partial results. Each
thread has its own JVM stack, created simultaneously as the thread is created. A new frame is
created whenever a method is invoked, and it is deleted when method invocation process is complete.

 Stack: Stack is a also a part of JVM memory but unlike Heap, it is used for storing temporary
variables.

5. PC Registers: This keeps the track of which instruction has been executed and which one is going
to be executed. Since instructions are executed by threads, each thread has a separate PC register.

6. Native Method stack: A native method can access the runtime data areas of the virtual machine.

7. Native Method interface: It enables java code to call or be called by native applications. Native
applications are programs that are specific to the hardware and OS of a system.

8. Garbage collection: A class instance is explicitly created by the java code and after use it is
automatically destroyed by garbage collection for memory management.

UNIT - I PROGRAMMING IN JAVA

5
Rahul Publications

Rahul Publications

1.1.4 Java Features

Q5. Explain the features of Java.

(OR)

Write about different features of java.

Ans : (Dec.-19)

As the languages like Objective C, C++ fulfills
the above four characteristics yet they are not fully
object oriented languages because they are
structured as well as object oriented languages.

In java everything is an Object. Java can be
easily extended since it is based on the Object model

 Secure: Java is Secure Language because
of its many features it enables to develop
virus-free, tamper-free systems. Authenti-
cation techniques are based on public-key
encryption. Java does not support pointer
explicitly for the memory. All Program Run
under the sandbox.

 Robust: Java was created as a strongly typed
language. Data type issues and problems are
resolved at compile-time, and implicit casts
of a variable from one type to another are
not allowed.

Memory management has been simplified
java in two ways. First Java does not support
direct pointer manipulation or arithmetic.
This make it possible for a java program to
overwrite memory or corrupt data.

Second, Java uses runtime garbage collection
instead of instead of freeing of memory. In
languages like C++, it Is necessary to delete
or free memory once the program has
finished with it.

 Platform-independent: Java Language is
platform-independent due to its hardware
and software environment. Java code can be
run on multiple platforms e.g. windows,
Linux, sun Solaris, Mac/Os etc. Java code is
compiled by the compiler and converted into
byte code. This byte code is a platform
independent code because it can be run on
multiple platforms i.e. Write Once and Run
Anywhere (WORA).

 Architecture neutral: It is not easy to write
an application that can be used on Windows,
UNIX and a Macintosh. And its getting more

complicated with the move of windows to
nonIntel CPU architectures.

Java takes a different approach. Because the
Java compiler creates byte code instructions
that are subsequently interpreted by the java
interpreter, architecture neutrality is achieved
in the implementation of the java interpreter
for each new architecture.

 Portable: Java code is portable. It was an
important design goal of Java that it be
portable so that as new architectures (due to
hardware, operating system, or both) are
developed, the java environment could be
ported to them.

In java, all primitive types (integers, longs,
floats, doubles, and so on) are of defined
sizes, regardless of the machine or operating
system on which the program is run. This is
in direct contrast to languages like C and
C++ that leave the sized of primitive types
up to the compiler and developer.

Additionally, Java is portable because the
compiler itself is written in Java.

 Dynamic: Because it is interpreted , Java is
an extremely dynamic language, At runtime,
the java environment can extends itself by
linking in classes that may be located on
remote servers on a network.

At runtime, the java interpreter performs
name resolution while linking in the necessary
classes. The Java interpreter is also
responsible for determining the placement of
object in memory. These two features of the
Java interpreter solve the problem of
changing the definition of a class used by other
classes.

 Interpreted: We all know that Java is an
interpreted language as well. With an
interpreted language such as Java, programs
run directly from the source code.

The interpreter program reads the source code
and translates it on the fly into computations.
Thus, Java as an interpreted language
depends on an interpreter program.

B.Sc. III YEAR V SEMESTER

6
Rahul Publications

Rahul Publications

The versatility of being platform independent
makes Java to outshine from other languages.
The source code to be written and distributed
is platform independent.

Another advantage of Java as an interpreted
language is its error debugging quality. Due
to this any error occurring in the program
gets traced. This is how it is different to work
with Java.

 High performance: For all but the simplest
or most infrequently used applications,
performance is always a consideration for
most applications, including graphics-intensive
ones such as are commonly found on the
world wide web, the performance of java is
more than adequate.

 Multithreaded: Writing a computer
program that only does a single thing at a
time is an artificial constraint that we’ve lived
with in most programming languages. With
java, we no longer have to live with this
limitation. Support for multiple, synchronized
threads is built directly into the Java language
and runtime environment.

Synchronized threads are extremely useful in
creating distributed, network-aware
applications. Such as application may be
communicating with a remote server in one
thread while interacting with a user in a
different thread.

 Distributed: Java facilitates the building of
distributed application by a collection of
classes for use in networked applications. By
using java?s URL (Uniform Resource Locator)
class, an application can easily access a remote
server. Classes also are provided for
establishing socket-level connections.

1.1.5 Creation and Execution of Programs

Q6. Explain the process of Creating and
Executing a Jaga Program.

Ans :
A Java program can be successfully created

and i in three steps. They are as follows,

1. Writing the source code

2. Saving the code

3. Compiling the code.

1. Writing the Source Code

The java code can be written in text editor
like notepad.

2. Saving the Code

The program can be saved using class name
followed by ‘java’ extension i.e., Simple.Java.

3. Compiling the Code

To compile the program, run the Java
compiler javac with the name of source file
on the command line

as,

javac Simple.java

If the syntax is correct and no errors have
been detected then Java compiler creates a file called
Simple, java containing byte code of the program.

Process of Executing a Java Program

Stand alone applications are run using
interpreter. For this, type the following commands
at command prompt,

java Simple

After this, the interpreter searches the main
method in the program and begins the execution.
After performing the execution it displays the desired
result as output.

1.2 DATA TYPES

Q7. Discuss in brief about various data
types.

Ans :
Variables are nothing but reserved memory

locations to store values. This means that when you
create a variable you reserve some space in memory.

Based on the data type of a variable, the
operating system allocates memory and decides
what can be stored in the reserved memory.
Therefore, by assigning different data types to
variables, you can store integers, decimals, or
characters in these variables.

UNIT - I PROGRAMMING IN JAVA

7
Rahul Publications

Rahul Publications

There are two data types available in Java:

 Primitive Data Types

 Reference/Object Data Types

Data Type

Primitive

Boolean

Boolean

Non-Primitive

Character Numberic Any Reference Variable(Sring, Array, etc.)

Char Intergers Floating-Point

byte short int long float double

I. Primitive Data Types

There are eight primitive data types supported by Java. Primitive data types are predefined by the
language and named by a key word. Let us now look into detail about the eight primitive data types.

(i) byte

 Byte data type is a 8-bit signed two’s complement integer.

 Minimum value is –128 (–27)

 Maximum value is 127 (inclusive)(27 –1)

 Default value is 0

 Byte data type is used to save space in large arrays, mainly in place of integers, since a byte is four
times smaller than an int.

 Example : byte a = 100 , byte b = -50

(ii) short

 Short data type is a 16-bit signed two’s complement integer.

 Minimum value is -32,768 (-215)

 Maximum value is 32,767(inclusive) (215 -1)

 Short data type can also be used to save memory as byte data type. A short is 2 times smaller than
an int

 Default value is 0.

 Example : short s= 10000 , short r = -20000

B.Sc. III YEAR V SEMESTER

8
Rahul Publications

Rahul Publications

(iii) int

 Int data type is a 32-bit signed two’s complement integer.

 Minimum value is - 2,147,483,648.(-231)

 Maximum value is 2,147,483,647 (inclusive). (231 -1)

 Int is generally used as the default data type for integral values unless there is a concern about
memory.

 The default value is 0.

 Example: int a = 100000, int b = -200000

(iv) long

 Long data type is a 64-bit signed two’s complement integer.

 Minimum value is -9,223, 372, 036, 854, 775, 808. (-263)

 Maximum value is 9, 223, 372, 036, 854, 775, 807 (inclusive). (263 -1)

 This type is used when a wider range than int is needed.

 Default value is 0L.

 Example : long a = 100000L, int b = -200000L

(v) float

 Float data type is a single-precision 32-bit IEEE 754 floating point.

 Float is mainly used to save memory in large arrays of floating point numbers.

 Default value is 0.0f.

 Float data type is never used for precise values such as currency.

 Example : float f1 = 234.5f

(vi) double

 double data type is a double-precision 64-bit IEEE 754 floating point.

 This data type is generally used as the default data type for decimal values. Generally the default
choice.

 Double data type should never be used for precise values such as currency.

 Default value is 0.0d.

 Example : double d1 = 123.4

(vii) boolean

 boolean data type represents one bit of information.

 There are only two possible values : true and false.

 This data type is used for simple flags that track true/false conditions.

 Default value is false.

 Example : boolean one = true

UNIT - I PROGRAMMING IN JAVA

9
Rahul Publications

Rahul Publications

(viii) char
 char data type is a single 16-bit Unicode character.
 Minimum value is ‘\u0000’ (or 0).
 Maximum value is ‘\uffff’ (or 65,535 inclusive).
 Char data type is used to store any character.
 Example: char letterA = ‘A’
II. Reference Data Types
 Reference variables are created using defined constructors of the classes. They are used to access

objects. These variables are declared to be of a specific type that cannot be changed. For example,
Employee, Puppy etc.

 Class objects, and various type of array variables come under reference data type.
 Default value of any reference variable is null.
 A reference variable can be used to refer to any object of the declared type or any compatible type.

 Example: Animal animal = new Animal (“giraffe”);

0.0d-263 to 263 - 18 bytedouble

0.0f-231 to 231 - 14 bytefloat

0L-263 to 263 - 18bytelong

0-231 to 231 - 14 byteint

'\u0000'0 to 655352 bytechar

0-32768 to 327672 byteshort

0-128 to 1271 bytebyte

falsetrue or false1 bitboolean

Default ValueRangeSizeData Type

0.0d-263 to 263 - 18 bytedouble

0.0f-231 to 231 - 14 bytefloat

0L-263 to 263 - 18bytelong

0-231 to 231 - 14 byteint

'\u0000'0 to 655352 bytechar

0-32768 to 327672 byteshort

0-128 to 1271 bytebyte

falsetrue or false1 bitboolean

Default ValueRangeSizeData Type

1.2.1 Structure of Java Program

Q8. Describe the Structure of a Java Program.

Ans : (Dec.-19)

The general structure of a Java program is shown below :

 Documentation


Package Statement


Important Statement
 

Interface Statement


 Class Definition


 Main Method class definition
 {  Mandatory

 main() method definition
 {

Figure: General Structure of a Java Program

Optional









B.Sc. III YEAR V SEMESTER

10
Rahul Publications

Rahul Publications

1. Documentation

This section consists of set of comments about the program including the name of the program.
This section basically helps in understanding the program.

2. Package Statement

This is the first statement in every Java program. It tells the compiler that the classes defined here
belongs to this package. This statement is optional.

3. Import Statement

The import statement is optional and it tells the interpreter to include the classes from the package
defined. This is the next statement after the package declaration but should be written before
defining a class. There may be a number of import statements.

4. Interface Statement

The interface statement defines method declarations without body for the subclasses to provide
implementation for them. This is optional, it is used only if multiple inheritance is required in the
program.

5. Class Definition

This section consists of number of class definitions where each class consists of data members and
methods. The number of classes required are based on the complexity of the problem.

6. Main Method Class

This is an essential section of a Java program. Every Java program must have a class definition that
defines the main() method. This is essential because mainf) is the starting point for running Java
stand-alone programs. The main() method instantiates the objects of various classes and establishes
the communication between them. The program terminates on reaching the end of the main()
method.

1.3 TYPE CASTING

Q9. Explain about the type casting and type conversion in java.

Ans : (July-21)

Type casting is an explicit conversion of a value of one type into another type. And simply, the data
type is stated using parenthesis before the value. Type casting in Java must follow the given rules,

1. Type casting cannot be performed on Boolean variables.

2. Type casting of integer datatype into any other datatype is possible. But. if the casting into smaller
type is performed, it results in loss of data.

3. Type casting of floating point types into other float types or integer type is possible, but with loss of
data.

4. Type casting of char type into integer types is possible. But, this also results in loss of data, since char
holds 16-bits the casting of it into byte that results in loss of data or mixup characters.

Syntax

(target-type) expression;

Here, target-type is the specification to convert the expression into required type.

UNIT - I PROGRAMMING IN JAVA

11
Rahul Publications

Rahul Publications

When you assign value of one data type to another, the two types might not be compatible with
each other. If the data types are compatible, then Java will perform the conversion automatically known
as Automatic Type Conversion and if not then they need to be casted or converted explicitly. For example,
assigning an int value to a long variable.

Widening or Automatic Type Conversion

Widening conversion takes place when two data types are automatically converted. This happens
when:

 The two data types are compatible.

 When we assign value of a smaller data type to a bigger data type.

For Example, in java the numeric data types are compatible with each other but no automatic
conversion is supported from numeric type to char or boolean. Also, char and boolean are not compatible
with each other.

Byte –> Short –> Int –> Long –> Float –> Double

Widening or Automatic Conversion

class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 // automatic type conversion

 long l = i;

 // automatic type conversion

 float f = l;

 System.out.println(“Int value “+i);

 System.out.println(“Long value “+l);

 System.out.println(“Float value “+f);

 }

}

Narrowing or Explicit Conversion

If we want to assign a value of larger data type to a smaller data type we perform explicit type
casting or narrowing.

 This is useful for incompatible data types where automatic conversion cannot be done.

 Here, target-type specifies the desired type to convert the specified value to.

Double –> Float –> Long –> Int –> Short –> Byte

Narrowing or Explict Conversion

char and number are not compatible with each other. Let’s see when we try to convert one into
other.

B.Sc. III YEAR V SEMESTER

12
Rahul Publications

Rahul Publications

public class Test

{

 public static void main (String[] args)

{

 char ch = ‘c’;

 int num = 88;

 ch = num;

 }

}

Type promotion in Expressions

While evaluating expressions, the intermediate value may exceed the range of operands and hence
the expression value will be promoted. Some conditions for type promotion are:

1. Java automatically promotes each byte, short, or char operand to int when evaluating an expression.

2. If one operand is a long, float or double the whole expression is promoted to long, float or double
respectively.

//Java program to illustrate Type promotion in Expressions

classTest

{

 public static void main(String args[])

 {

 byte b = 42;

 char c = ‘a’;

 shor t s = 1024;

 in ti = 50000;

 floatf = 5.67f;

 double d = .1234;

// The Expression

 double result = (f * b) + (i / c) - (d * s);

//Result after all the promotions are done

System.out.println(“result = “+ result);

 }

}

Explicit type casting in Expressions

While evaluating expressions, the result is automatically updated to larger data type of the operand.
But if we store that result in any smaller data type it generates compile time error, due to which we need
to type cast the result.

UNIT - I PROGRAMMING IN JAVA

13
Rahul Publications

Rahul Publications

Example

//Java program to illustrate type casting int to byte

class Test

{

public static void main(String args[])

{

byte b = 50;

//type casting int to byte

b = (byte)(b * 2);

System.out.println(b);

}

}

Your one stop destination for all data type conversions

byte TO short int long float double char boolean

short TO byte int long float double char boolean

int TO byte short long float double char boolean

float TO byte short Int long double char boolean

double TO byte short Int long float char boolean

char TO byte short Int long float double boolean

boolean TO byte short Int long float double char

String and data type conversions

String TO byte short int long float double char boolean

byte short int long float double char boolean TO String

1.4 CONDITIONAL STATEMENTS, LOOPS

Q10. What are the various types of Control Statements in Java with a suitable examples.

Ans : (Dec.-19)

The various types of control statements in java are as follows :

1. Conditional statement

2. Loops statements

3. Branching statements

B.Sc. III YEAR V SEMESTER

14
Rahul Publications

Rahul Publications

Q11. Explain the Conditional statements in
java with suitable examples.

Ans : (Dec.-19, June-19(MGU)

1. If Statement

A set of statements inside if block is executed
when the condition evaluates to true. Otherwise, if
block is skipped. If there is only one line in the if
block then there is no need of braces.

Syntax

if(condition)

{

//code to be executed

}

Flowchart of if statement

True False

Condition

coding in if block

coding after if
block

public class IfStatementDemo

{

public static void main(String[] args)

{

int a = 10, b = 20;

if (a > b)

System.out.println(“a > b”);

if (a < b)

System.out.println(“b < a”);

}

}

2. if-else statement in Java

If a condition evaluates to true then if block
will be executed. Otherwise, else block will be
executed.

Syntax

if(condition)

{

//code to be executed when condition is true

}

else

{

//code to be executed when condition is false

}

Flowchart of if-else statement

condition

coading in if
block

coading in else
block

True False

UNIT - I PROGRAMMING IN JAVA

15
Rahul Publications

Rahul Publications

public class IfElseStatementDemo

{

public static void main(String[] args)

{

int a = 10, b = 20;

if (a > b)

{

System.out.println(“a > b”);

}

else

{

System.out.println(“b < a”);

}

}

}

3. switch statement in Java

A switch statement enables a programmer to select one of the execution paths based on the value
of an expression. It is very much similar to if-else if statement that we studied previously.

 A switch statement has one or more case labels and a single default label.

 A default label is executed when no matching value is found in the case labels.

 The argument of switch() must be one of the following types- byte, short, char, int or enum.

 You cannot have duplicate case labels, that is the same value cannot be used twice.

 The default label does not have to be placed at the end. It can appear anywhere in the switch block.

Working of switch statement

Let’s start from the top of the switch block, each non-default case is checked. If the case gives true,
the statements in that case and the following cases are executed until a break statement is encountered. If
none of the non-default cases is true, and the execution control meets with the default case, the statements
in the default case and all the following cases are executed until a break statement is encountered.

Syntax

switch(variable)

{

case value1:

//code to be executed

break;

case value2:

B.Sc. III YEAR V SEMESTER

16
Rahul Publications

Rahul Publications

//code to be executed

break;

...

case valuen:

//code to be executed

break;

default:

//code to be executed

break;

}

Flowchart of switch statement

Expression

case-1

case-2

case-n

Match

Match

Match

Match

Unmatch

Unmatch

Unmatch

Statement-1

Statement-2

Statement-3

Statement-4

break

break

break

breakdefault

UNIT - I PROGRAMMING IN JAVA

17
Rahul Publications

Rahul Publications

public class SwitchCaseStatementDemo

{

public static void main(String[] args)

{

int a = 10, b = 20, c = 30;

int status = -1;

if (a > b && a > c)

{

status = 1;

}

else if (b > c)

{

status = 2;

}

else

{

status = 3;

}

switch (status)

{

case 1:

System.out.println(“a is the greatest”);

break;

case 2:

System.out.println(“b is the greatest”);

break;

case 3:

System.out.println(“c is the greatest”);

break;

default:

System.out.println(“Cannot be determined”);

}

}

}

B.Sc. III YEAR V SEMESTER

18
Rahul Publications

Rahul Publications

Q12. What are the different looping
statements in java? Explain.

Ans : (Dec.-19, Dec.-18(MGU), Dec.-18(KU)

Loop is very common control flow statement
in programming languages such as java. We are
going to describe the basics of “java loop”. In this
post, we will learn various ways to use loop in day-
to-day programming habits.

There may be a situation when we need to
execute a block of code several number of times,
and is often referred to as a loop

There are four types of loops:

1. For loop

2. For each loop

3. While loop

4. Do.While loop

1. For Loop

It is structured around a finite set of repetitions
of code. So if you have a particular block of code
that you want to have run over and over again a
specific number of times the For Loop is helpful.

Initialization

condition

statements

Inc/Dec

False

True

Outside for loop

Syntax

for(initilization; conditional expression; increment
expression)

{

//repetition code here

}

Example

public class ForLoopDemo

{

public static void main(String[] args)

{

System.out.println(“Printing Numbers
from 1 to 10”); for (int count = 1; count
<= 10; count++)

{

System.out.println(count);

}

}

}

2. For each Loop

This loop is supported from Java 5.

For each loop is mainly used for iterate the
Array, List etc.

Syntax

for(declaration : expression)

{

//Code Here

}

Example

import java.util.ArrayList;

class Test

{

public static void main(String args[])

{

ArrayListlang = new ArrayList();

lang.add(“Java”);

UNIT - I PROGRAMMING IN JAVA

19
Rahul Publications

Rahul Publications

lang.add(“Python”);

lang.add(“MongoDB”);

for(String i : lang)

{

System.out.println(i);

}

}

}

3. While Loop

Another looping strategy is known as the
While Loop. The While Loop is good when you
don’t want to repeat your code a specific number
of times, rather, you want to keep looping through
your code until a certain condition is met.

True

False
condition

statements

Outside while loop

Syntax

while(Boolean_expression)

{

 //Repetition Code Here

}

Example

public class Example

{

public static void main(String args[])

{

int i = 1

while(i<=10)

{

System.out.println(2*i);

i++;

}

}

}

4. Do..While Loop

This type of loop is used in very rare cases
because it does the same thing as a while loop does,
except that a do..while loop is guaranteed to execute
at least on time.

Syntax:

do

{

 //Code Here

}while(Boolean_expression);

True

False

condition

statements

B.Sc. III YEAR V SEMESTER

20
Rahul Publications

Rahul Publications

Example

public class DoWhileLoopDemo

{

public static void main(String[] args)

{

int count = 1;

System.out.println(“Printing Numbers
from 1 to 10”);

do

{

System.out.println(count++);

} while (count <= 10);

}

}

Q13. Explain about branching mechanism in
java.

Ans : (Dec.-19, Dec.-18)

Branching statements can be used to skip
over the loop by terminating a set of statements
The varic types of branching statements m Ja-a are
as follows,

(i) break statement

(ii) continue statement

(iii) return statement

(i) break Statement

The ‘break’ statement performs unconditional
jump that terminates or exits the iteration or
switch statement. It terminates the loop as
soon as the control encounters it. And then
the control is transferred to the statement that
occurs after the iteration or switch statement.
Therefore, it closes the smallest enclosing such
as do, for, switch or while statements. It is
written as,

Syntax

break;

Test
condition

with
in loop

False

True
break

Fig.: Flowchart for break Statement

(ii) continue Statement

Continue statement is a jump statement. It
tells the interpreter to continue the next
iteration of the loop. It is a keyword used for
continuing the next iteration of the loop. In
contrast to the break statement the continue
statement does not exit from the loop but
transfers the control to the testing expression
(while, do-while) and to the updating
expression (for). The while and do- while
loops can logically act as a jump statement
that transfer the control to the end of the loop
body. This is because both these statements
transfer their control to two different positions.

Syntax

continue; x

(iii) return Statement

The last control statement is return. This is
used to return from a method. When the
control reaches to return statement, it causes
the program control to transfer back to the
caller of the method.

1.5 CLASSES, OBJECTS, CLASS DECLARATION

Q14. Explain in detail about class & Objects
in JAVA?

Ans :
In object-oriented programming technique,

we design a program using objects and classes.

Object is the physical as well as logical entity
whereas class is the logical entity only.

UNIT - I PROGRAMMING IN JAVA

21
Rahul Publications

Rahul Publications

Object in Java

An entity that has state and behavior is known
as an object e.g. chair, bike, marker, pen, table, car
etc. It can be physical or logical (tangible and
intangible). The example of intangible object is
banking system.

An object has three characteristics:

 state: represents data (value) of an object.

 behavior: represents the behavior
(functionality) of an object such as deposit,
withdraw etc.

 identity: Object identity is typically
implemented via a unique ID. The value of
the ID is not visible to the external user. But,
it is used internally by the JVM to identify
each object uniquely.

For Example

Pen is an object. Its name is Reynolds, color
is white etc. known as its state. It is used to write, so
writing is its behavior.

Objects

Object is an instance of a class

Class is a template or blueprint from which
objects are created. So object is the instance (result)
of a class.

Object Definitions

 Object is a real world entity.

 Object is a run time entity.

 Object is an entity which has state and
behavior.

 Object is an instance of a class.

Class in Java

A class is a group of objects which have
common properties. It is a template or blueprint
from which objects are created. It is a logical entity.
It can’t be physical.

A class in Java can contain:

 fields

 methods

 constructors

 blocks

 nested class and interface

Syntax to declare a class:

class <class_name>

{

 field;

 method;

}

Instance variable in Java

A variable which is created inside the class
but outside the method, is known as instance
variable. Instance variable doesn’t get memory at
compile time. It gets memory at run time when
object(instance) is created. That is why, it is known
as instance variable.

Method in Java

In java, a method is like function i.e. used to
expose behavior of an object.

Advantage of Method

 Code Reusability

 Code Optimization

B.Sc. III YEAR V SEMESTER

22
Rahul Publications

Rahul Publications

public string getName (string st)

modifier return-type method-name parameter

new keyword in Java

The new keyword is used to allocate memory
at run time. All objects get memory in Heap memory
area.

Object and Class Example: main within class

In this example, we have created a Student
class that have two data members id and name. We
are creating the object of the Student class by new
keyword and printing the objects value.

Here, we are creating main() method inside
the class.

File: Student.java

class Student

{

int id;//field or data member or instance
variable

String name;

public static void main(String args[])

{

 Student s1=new Student();

//creating an object of Student

 System.out.println(s1.id);

//accessing member through reference
 variable

 System.out.println(s1.name);

 }

}

Rules for Java Class

 A class can have only public or default(no
modifier) access specifier.

 It can be either abstract, final or concrete
(normal class).

 It must have the class keyword, and class
must be followed by a legal identifier.

 It may optionally extend one parent class. By
default, it will extend java.lang.Object.

 It may optionally implement any number of
comma-separated interfaces.

 The class’s variables and methods are declared
within a set of curly braces {}.

 Each .java source file may contain only one
public class. A source file may contain any
number of default visible classes.

 Finally, the source file name must match the
public class name and it must have a .java
suffix.

Important points

 A class name starts with keyword class.

 The keyword class is case sensitive. class isn’t
same as Class.

 The file that contains your coding is called
source file, and it must have .java extension.

 A source file can have one or more classes or
interfaces. Also, a source file cannot define
more than one public class or interface.

 If there is one public class or interface in the
file, then the filename must match the name
of this public class or interface.

 When the source file is compiled , it generates
one class file corresponding to each class in
the source file. The name of the generated
class fi le matches the name of the
corresponding class in the source file.

Example

class Employee

{

int id;

String name;

public void setId(int i)

{

Id=i;

}

UNIT - I PROGRAMMING IN JAVA

23
Rahul Publications

Rahul Publications

public int getId()

{

return id;

}

public void setName(String n)

{

name=n;

}

public int getName()

{

return name;

}

public static void main(String args[])

{

Employee e = new Employee();

e.setId(1);

e.setName(“Keshav”);

System.out.println(“Employee ID =

“+e.getId());

System.out.println(“Employee Name

 = “+e.getName());

}

}

1.6 CREATING OBJECTS

Q15. Explain the process of creating objects
in java?

Ans : (Dec.-19)

Fields Declaration

Field declarations are composed of three
components, in order:

 Zero or more modifiers, such as public or
private.

 The field’stype.

 The field’s name.

In the example below fields of Rect class are
named length and breadth and are all of data type
integer (int). The public keyword identifies these
fields as public members, accessible by any object
that can access the class.

class Rect

{

public int length;

public int breadth;

}

There are several kinds of variables:

 Member variables in a class—these are
calledfields.

 Variables in a method or block of code—these
are called local variables.

 Variables in method declarations—these are
calledparameters.

Method Declaration

A class should have methods that are
necessary for manipulating the data contained in
the class. Immediately after the declaration of
instance variables inside the body of the class
methods are declared. The general form of a method
declarationis:

modifiers type method_name(parameter-list)

{

Method-body;

}

More generally, method declarations have six
components, in order:

 Modifiers: such as public, private, and
others you will learn about later

 The return type: the data type of the value
returned by the method, or void if the method
does not return a value.

 The method name: the rules for field names
apply to method names as well, but the
convention is a little different.

 The parameter list in parenthesis: a
comma-delimited list of input parameters,
preceded by their data types, enclosed by

B.Sc. III YEAR V SEMESTER

24
Rahul Publications

Rahul Publications

parentheses, (). If there are no parameters,
you must use empty parentheses.

 An exception list: to be discussed later.

 The method body, enclosed between
braces: the method’s code, including the
declaration of local variables, goeshere.

Example

class Rect

{

public int length;

public int breadth;

void getValues(int p,int q)

{

length=p;

breadth=q;

}

int area()

{

int ans=length*breadth;

return (ans);

}

}

Explanation

The method getValues() has a return type of
void because it does not return any values. Two
integer values are passed which are then assigned
to the instance variables length and breadth. This
method is added to provide values to the class
instance variables.

The method area() computes the area of a
rectangle and returns the result with the ‘return’
keyword. Note that the parameter list is empty.
Since the result would be an integer the return type
of the method is specified asint.

Creating Objects

A typical Java program creates many objects,
which as you know, interact by invoking methods.
Through these object interactions, a program can
carry out various tasks, such as implementing a GUI,
running an animation, or sending and receiving
information over a network. Once an object has

completed the work for which it was created, its
resources are recycled for use by other objects. A
class provides the blueprint for objects; you create
an object from a class. Each of the following
statements creates anobject.

RectrectOne= newRect();

RectrectTwo= newRect();

Each of the above statements has three parts
(discussed in detail below):

 Declaration: The code set in bold are all
variable declarations that associate a variable
name with an objecttype.

 Instantiation: The new keyword is a Java
operator that creates the object.

 Initialization: The new operator is followed
by a call to a constructor, which initializes the
newobject.

Declaring a Variable to Refer to an Object

Previously, you learned that to declare a
variable, you write: type name;

For example

int value;

This notifies the compiler that you will use
value to refer to data whose type is int. With a
primitive variable, this declaration also reserves the
proper amount of memory for the variable. You
can also declare a reference variable on its own line.

For example

RectrectTwo;

If you declare rect Two like this, its value will
be undetermined until an object is actually created
and assigned to it. Simply declaring a reference
variable does not create an object. For that, you
need to use the new operator. You must assign an
object to rectTwo before you use it in your code.
Otherwise, you will get a compilererror.

Instantiating a Class

The new operator instantiates a class by
allocating memory for a new object and returning
a reference to that memory. The phrase
“instantiating a class” means the same thing as
“creating an object.” When you create an object,
you are creating an “instance” of a class, therefore
“instantiating” aclass.

UNIT - I PROGRAMMING IN JAVA

25
Rahul Publications

Rahul Publications

The new operator returns a reference to the object it created. This reference is usually assigned to a
variable of the appropriate type, like:

RectrectTwo = new Rect();

Initializing anObject

After we have created an object of the class, we can initialize the object in two ways. We can use the
“.” dot operator to provide values to the instance variables. Also we can call some method of the class
which will help us in setting the values of the object variables.

Example

RectrectTwo=new Rect();

rectTwo.length=10;

rectTwo.breadth=20;

or

rectTwo.setData(10,20);

Using Objects

Once you’ve created an object, you probably want to use it for something. You may need to use
the value of one of its fields, change one of its fields, or call one of its methods to perform an action.

Referencing an Object’sFields

Object fields are accessed by their name. You must use a name that is unambiguous. You may use
a simple name for a field within its own class. For example, we can add a statement within the Rect class
that prints the length and breadth:

System.out.println(“Length and breadth are: “+ length + “, “ + breadth);

In this case, length and breadth are simple names. Code that is outside the object’s class must use
an object reference or expression, followed by the dot (.) operator, followed by a simple field name, asin:

objectReference.fieldName

For example, the code in the Rect class, we can refer to the length and breadth fields within the Rect
object named rectOne, the class must use the names rectOne.length and rectOne.breadth, respectively.
The program uses two of these names to display the length and the breadth of rectOne:

System.out.println(“Lenght of rectOne: “ + rectOne.length);

System.out.println(“Breadth of rectOne: “ + rectOne.breadth);

Calling an Object’s Methods

You also use an object reference to invoke an object’s method. You append the method’s name to
the object reference, with an dot operator (.). Also, you provide, within enclosing parentheses, any arguments
to the method. If the method does not require any arguments, use emptyparentheses.

objectReference.methodName(argumentList);

or

objectReference.methodName();

The Rect class has a method: area() to compute the rectangle’s area. Here’s the code that invokes
this method:

B.Sc. III YEAR V SEMESTER

26
Rahul Publications

Rahul Publications

System.out.println(“Area of rectOne: “ + rectOne.area());

Some methods, such as area(), return a value. For methods that return a value, you can use the
method invocation in expressions. You can assign the return value to a variable, use it to make decisions,
or control a loop. This code assigns the value returned by area() to the variable

areaOfRectangle:

int areaOfRectangle = rectOne.area();

The Garbage Collector

Managing memory explicitly is tedious and error-prone. The Java platform allows you to create as
many objects as you want, and you don’t have to worry about destroying them. The Java runtime
environment deletes objects when it determines that they are no longer being used. This process is called
garbage collection.

An object is eligible for garbage collection when there are no more references to that object.
References that are held in a variable are usually dropped when the variable goes out of scope. Remember
that a program can have multiple references to the same object; all references to an object must be
dropped before the object is eligible for garbagecollection.

The Java runtime environment has a garbage collector that periodically frees the memory used by
objects that are no longer referenced. The garbage collector does its job automatically when it determines
that the time is right.

UNIT - I PROGRAMMING IN JAVA

27
Rahul Publications

Rahul Publications

Short Question and Answers

1. Type conversion in java.

Ans
When you assign value of one data type to another, the two types might not be compatible with

each other. If the data types are compatible, then Java will perform the conversion automatically known
as Automatic Type Conversion and if not then they need to be casted or converted explicitly. For example,
assigning an int value to a long variable.

Widening or Automatic Type Conversion

Widening conversion takes place when two data types are automatically converted. This happens
when:

 The two data types are compatible.

 When we assign value of a smaller data type to a bigger data type.

For Example, in java the numeric data types are compatible with each other but no automatic
conversion is supported from numeric type to char or boolean. Also, char and boolean are not compatible
with each other.

Byte –> Short –> Int –> Long –> Float –> Double

Widening or Automatic Conversion

class Test

{

 public static void main(String[] args)

 {

 int i = 100;

 // automatic type conversion

 long l = i;

 // automatic type conversion

 float f = l;

 System.out.println(“Int value “+i);

 System.out.println(“Long value “+l);

 System.out.println(“Float value “+f);

 }

}

Narrowing or Explicit Conversion

If we want to assign a value of larger data type to a smaller data type we perform explicit type
casting or narrowing.

B.Sc. III YEAR V SEMESTER

28
Rahul Publications

Rahul Publications

 This is useful for incompatible data types where automatic conversion cannot be done.

 Here, target-type specifies the desired type to convert the specified value to.

Double –> Float –> Long –> Int –> Short –> Byte

Narrowing or Explict Conversion

char and number are not compatible with each other.

2. Explain the features of Java.

Ans :
 Secure: Java is Secure Language because of its many features it enables to develop virus-free,

tamper-free systems. Authenti-cation techniques are based on public-key encryption. Java does
not support pointer explicitly for the memory. All Program Run under the sandbox.

 Robust: Java was created as a strongly typed language. Data type issues and problems are resolved
at compile-time, and implicit casts of a variable from one type to another are not allowed.

Memory management has been simplified java in two ways. First Java does not support direct
pointer manipulation or arithmetic. This make it possible for a java program to overwrite memory
or corrupt data.

Second, Java uses runtime garbage collection instead of instead of freeing of memory. In languages
like C++, it Is necessary to delete or free memory once the program has finished with it.

 Platform-independent: Java Language is platform-independent due to its hardware and software
environment. Java code can be run on multiple platforms e.g. windows, Linux, sun Solaris, Mac/Os
etc. Java code is compiled by the compiler and converted into byte code. This byte code is a
platform independent code because it can be run on multiple platforms i.e. Write Once and Run
Anywhere (WORA).

 Architecture neutral: It is not easy to write an application that can be used on Windows, UNIX
and a Macintosh. And its getting more complicated with the move of windows to nonIntel CPU
architectures.

Java takes a different approach. Because the Java compiler creates byte code instructions that are
subsequently interpreted by the java interpreter, architecture neutrality is achieved in the
implementation of the java interpreter for each new architecture.

 Portable: Java code is portable. It was an important design goal of Java that it be portable so that
as new architectures (due to hardware, operating system, or both) are developed, the java
environment could be ported to them.

In java, all primitive types (integers, longs, floats, doubles, and so on) are of defined sizes, regardless
of the machine or operating system on which the program is run. This is in direct contrast to
languages like C and C++ that leave the sized of primitive types up to the compiler and developer.

Additionally, Java is portable because the compiler itself is written in Java.

 Dynamic: Because it is interpreted , Java is an extremely dynamic language, At runtime, the java
environment can extends itself by linking in classes that may be located on remote servers on a
network.

At runtime, the java interpreter performs name resolution while linking in the necessary classes. The
Java interpreter is also responsible for determining the placement of object in memory. These two
features of the Java interpreter solve the problem of changing the definition of a class used by other
classes.

UNIT - I PROGRAMMING IN JAVA

29
Rahul Publications

Rahul Publications

3. Structure of a Java Program.

Ans :
The general structure of a Java program is shown below :

 Documentation


Package Statement


Important Statement
 

Interface Statement


 Class Definition


 Main Method class definition
 {  Mandatory

 main() method definition
 {

Figure: General Structure of a Java Program

1. Documentation

This section consists of set of comments about the program including the name of the program.
This section basically helps in understanding the program.

2. Package Statement

This is the first statement in every Java program. It tells the compiler that the classes defined here
belongs to this package. This statement is optional.

3. Import Statement

The import statement is optional and it tells the interpreter to include the classes from the package
defined. This is the next statement after the package declaration but should be written before
defining a class. There may be a number of import statements.

4. Interface Statement

The interface statement defines method declarations without body for the subclasses to provide
implementation for them. This is optional, it is used only if multiple inheritance is required in the
program.

5. Class Definition

This section consists of number of class definitions where each class consists of data members and
methods. The number of classes required are based on the complexity of the problem.

6. Main Method Class

This is an essential section of a Java program. Every Java program must have a class definition that
defines the main() method. This is essential because mainf) is the starting point for running Java
stand-alone programs. The main() method instantiates the objects of various classes and establishes
the communication between them. The program terminates on reaching the end of the main()
method.

Optional









B.Sc. III YEAR V SEMESTER

30
Rahul Publications

Rahul Publications

4. Define Java.

Ans :
Introduction

Java is a high-level programming language that follows object-oriented programming principle.
The main motto of Java programming language is “write once run anywhere.” The syntax and semantics
of Java are very much similar to C and C++ programming language.

Java is considered a programming language and a platform. As a programming language, it is a
general-purpose, object-oriented high-level programming language that has its own syntax and style. As
a platform, it provides an environment in which Java applications run.

Java has four different platforms:-

(i) Java Standard Edition (Java SE): In general, most of the programmers use Java SE to do
programming in Java. It provides the core functionality of the Java language. APIs that are used for
database access, GUI development, networking, etc. are present in this platform.

(ii) Java Enterprise Edition (Java EE): This platform is used to develop and run reliable, secure and
large-scale network applications. It is built on the top of Java SE.

(iii) Java Micro Edition (Java ME): This platform is suitable for small devices like smartphones. It is
a subset of Java SE and provides API applicable for application development on small appliances.
It has small footprint virtual machine that enables Java applications to run smoothly on less memory
constrained devices.

(iv) JavaFX: It is used to create rich internet applications. You can think JavaFX as an alternate of
Swing. It helps programmers to create applications with modern look-and-feel and utilize hardware-
accelerated graphics.

5. Java Essentials.

Ans :
The essentials of Java programming language are as follows,

(i) High-level Language

Java is known to be high-level language that supports unique features. It is quite similar to C and
C++.

(ii) Bytecode of Java

A bytecode is nothing but intermediate code that the compiler generates. This code is executed by
JVM.

(iii) Java Virtual Machine (JVM)

A bytecode consists of optimized set of instructions which are usually executed by Java runtime
system on a special machine called Java Virtual Machine. A JVM is a bytecode interpreter. It performs
line by line execution of bytecode.

Java has a neutral-architecture since it allows programs to run on different platforms. The java
compiler generates the bytecode that are neutral-architecture in order to achieve the capabilities of cross-
architecture. These instructions can be interpreted easily on any platform translated into machine code.
Java Runtime Environment (JRE) contains JVM, class libraries and different supporting files.

UNIT - I PROGRAMMING IN JAVA

31
Rahul Publications

Rahul Publications

6. JVM

Ans
Java Virtual Machine (JVM) is a virtual machine that resides in the real machine (your computer)

and the machine language for JVM is byte code. This makes it easier for compiler as it has to generate byte
code for JVM rather than different machine code for each type of machine. JVM executes the byte code
generated by compiler and produce output. JVM is the one that makes java platform independent.

7. Type casting.

Ans :
Type casting’ is an explicit conversion of a value of one type into another type. And simply, the data

type is stated using parenthesis before the value. Type casting in Java must follow the given rules,

1. Type casting cannot be performed on Boolean variables.

2. Type casting of integer datatype into any other datatype is possible. But. if the casting into smaller
type is performed, it results in loss of data.

3. Type casting of floating point types into other float types or integer type is possible, but with loss of
data.

4. Type casting of char type into integer types is possible. But, this also results in loss of data, since char
holds 16-bits the casting of it into byte that results in loss of data or mixup characters.

8. branching mechanism in java.

Ans :
Branching statements can be used to skip over the loop by terminating a set of statements The varic

types of branching statements m Ja-a are as follows,

(i) break statement

(ii) continue statement

(iii) return statement

(i) break Statement

The ‘break’ statement performs unconditional jump that terminates or exits the iteration or switch
statement. It terminates the loop as soon as the control encounters it. And then the control is
transferred to the statement that occurs after the iteration or switch statement. Therefore, it closes
the smallest enclosing such as do, for, switch or while statements. It is written as,

Syntax

break;

Test
condition

with
in loop

False

True
break

Fig.: Flowchart for break Statement

B.Sc. III YEAR V SEMESTER

32
Rahul Publications

Rahul Publications

(ii) continue Statement

Continue statement is a jump statement. It tells the interpreter to continue the next iteration of the
loop. It is a keyword used for continuing the next iteration of the loop. In contrast to the break
statement the continue statement does not exit from the loop but transfers the control to the testing
expression (while, do-while) and to the updating expression (for). The while and do- while loops
can logically act as a jump statement that transfer the control to the end of the loop body. This is
because both these statements transfer their control to two different positions.

Syntax

continue; x

(iii) return Statement

The last control statement is return. This is used to return from a method. When the control reaches
to return statement, it causes the program control to transfer back to the caller of the method.

9. Garbage Collector.

Ans
Managing memory explicitly is tedious and error-prone. The Java platform allows you to create as

many objects as you want, and you don’t have to worry about destroying them. The Java runtime
environment deletes objects when it determines that they are no longer being used. This process is called
garbage collection.

An object is eligible for garbage collection when there are no more references to that object.
References that are held in a variable are usually dropped when the variable goes out of scope. Remember
that a program can have multiple references to the same object; all references to an object must be
dropped before the object is eligible for garbagecollection.

The Java runtime environment has a garbage collector that periodically frees the memory used by
objects that are no longer referenced. The garbage collector does its job automatically when it determines
that the time is right.

10. Object in Java.

Ans
An entity that has state and behavior is known as an object e.g. chair, bike, marker, pen, table, car

etc. It can be physical or logical (tangible and intangible). The example of intangible object is banking
system.

An object has three characteristics:

 state: represents data (value) of an object.

 behavior: represents the behavior (functionality) of an object such as deposit, withdraw etc.

 identity: Object identity is typically implemented via a unique ID. The value of the ID is not visible
to the external user. But, it is used internally by the JVM to identify each object uniquely.

UNIT - I PROGRAMMING IN JAVA

33
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Java was developed in the year [b]

(a) 1990 (b) 1991

(c) 1993 (d) 1996

2. First name of java [b]

(a) J Language (b) Oak

(c) OOPS (d) None

3. Which of the following is the smallest integer [c]

(a) Int (b) Long

(c) Byte (d) short

4. Range of byte data type is [c]

(a) -128 to 255 (b) -128 to 256

(c) -128 to 127 (d) -127 to 128

5. Which of the following is not supported in Java [c]

(a) Multi Threading (b) Reflection

(c) Operatior Overloading (d) Garbage Collection

6. Which of the following option leads to the portability and security of Java? [a]

(a) Bytecode is executed by JVM

(b) The applet makes the Java code secure and portable

(c) Use of exception handling

(d) Dynamic binding between objects

7. Which of the following is not a Java features? [c]

(a) Dynamic (b) Architecture Neutral

(c) Use of pointers (d) Object-oriented

8. is used to find and fix bugs in the Java programs. [d]

(a) JVM (b) JRE

(c) JDK (d) JDB

B.Sc. III YEAR V SEMESTER

34
Rahul Publications

Rahul Publications

9. Which of the following is a valid declaration of a char? [a]

(a) char ch = '\utea'; (b) char ca = 'tea';

(c) char cr = \u0223; (d) char cc = '\itea';

10. What is the return type of the hashCode() method in the Object class? [b]

(a) Object (b) int

(c) long (d) void

UNIT - I PROGRAMMING IN JAVA

35
Rahul Publications

Rahul Publications

Fill in the Blanks

1. are the basic runtime entities in OOPS

2. means the ability to take more tank one form.

3. A acts as a intermediately between virtual machine and real time.

4. The operator is also used for concatenating two strings.

5. The increment and decrement operator can be applied or .

6. Java is known to be that supports unique features. It is quite similar to C and C++.

7. WORA Stands for .

8. A statement enables a programmer to select one of the execution paths based on the
value of an expression.

9. is very common control flow statement in programming languages.

10. The statement performs unconditional jump that terminates or exits the iteration or
switch statement.

11. The last control statement is .

ANSWERS

1. Object

2. Polymorphism

3. Virtual Machine Code

4. Pluse(+)

5. Before,After

6. high-level language

7. Write Once and Run Anywhere

8. Switch

9. Loop

10. Break

11. Return

B.Sc. III YEAR V SEMESTER

36
Rahul Publications

Rahul Publications

One Mark Answers

1. Java.

Ans
Java is a high-level programming language that follows object-oriented programming principle.

The main motto of Java programming language is “write once run anywhere.”

2. JVM.

Ans
Java Virtual Machine (JVM) is a virtual machine that resides in the real machine (your computer)

and the machine language for JVM is byte code.

3. Type casting.

Ans
Type casting is an explicit conversion of a value of one type into another type. And simply, the data

type is stated using parenthesis before the value.

4. Object in java.

Ans
An entity that has state and behavior is known as an object e.g. chair, bike, marker, pen, table, car

etc.

5. Garbage Collector.

Ans
Managing memory explicitly is tedious and error-prone. The Java platform allows you to create as

many objects as you want, and you don’t have to worry about destroying them. The Java runtime
environment deletes objects when it determines that they are no longer being used. This process is called
garbage collection.

UNIT - II PROGRAMMING IN JAVA

37
Rahul Publications

Rahul Publications

UNIT
II

Method Declaration and Invocation, Method Overloading, Constructors –
Parameterized Constructors, Constructor Overloading, Cleaning-up unused Objects.
Class Variables &Method-static Keyword, this Keyword, One-Dimensional Arrays,
Two-Dimensional Arrays, Command-Line Arguments, Inner Class.

Inheritance: Introduction, Types of Inheritance, extends Keyword, Examples, Method
Overriding, super, final Keyword, Abstract classes, Interfaces, Abstract Classes Verses
Interfaces.

Packages: Creating and Using Packages, Access Protection, Wrapper Classes, String
Class, StringBuffer Class.

2.1 METHOD DECLARATION AND INVOCATION

Q1. What are the methods in Java? Explain
its creation?

Ans :
It is a collection of statement which is used to

perform some operation. The main benefit to use
method is that it provides code reusability. Once a
method is created, then it can be reused multiple
times as per requirements.

Creating Method

To create a method following syntax is used:

Access_modifierReturn_typeMethod_name
(Parameter_list)

{

//Body of method

}

Where,

 Access_modifier: It defines the access type
of methods like private, public, protected.

 Return_type: Specify the return type of
method.

 Method_name: It shows the name of
method.

 Parameter _list: Contains a list of
parameters with their type. A method
contains either zero parameter or more than
0 parameters.

 Body of method: Contains the statements
which perform some operation.

Example

public static int sum(int i, int j)

{

int total;

total = i + j;

return total;

}

To call the method following syntax is used:

Method_name(Parameter_list);

Example

public class Intellipaat

{

public static void main(String[] args)

{

int a = 10;

int b = 20;

int c = sum(a, b);

System.out.println(“Sum of two
numbers = “ + c);

}

public static int sum(int i, int j)

{

int total;

total = i + j;

return total;

}

}

B.Sc. III YEAR V SEMESTER

38
Rahul Publications

Rahul Publications

Q2. Explain about method declaration.

Ans :
Every method contains the name of a method

and list of parameters in a class that are unique.
The uniqueness of any parameter is considered
according to the number of parameters and order
of parameters.

The various elements involved in method
declaration are as follows,

(i) modifiers

Modifiers are optional and are used in the
method declaration. There are a number of
modifiers that can be used with a method
declaration. The following are some of the
modifiers which are optional,

 Public, Protected, Default or
Private: They are used for defining the
scope.

 Static: The class methods and variables
are declared by static. An object need
not be created to invoke/call the
method.

 Abstract: The class is declared abstract
when it has to be overridden in its
subclasses.

 Final: The method should not be
overridden in a subclass.

 Native: The method can be
implemented in different languages.

 Synchronized: The method needs a
lock or monitor before its execution.

 Throws: This method is used to throw
a number of exceptions.

(ii) datatype

The return type may be void or any other
value. When a method is declared with any
return type then it should contain return
statement before it exits.

(iii) methodname

The name of the method should be a
identifier which is valid.

(iv) parameters

The list of parameters can be zero or more.
Comma is used to separate the parameter.

(v) Curly Braces

The curly braces are used to enclose the bod}
of method. A method has a set of statements
to execute them in any order. A body of
method can be empty.

Q3. Write about method invocation.

Ans :
The instance methods or the class methods

are not run by themselves, they should be called or
invoked by their objects. A method is invoked or
called by an object then the values of it are given to
the method. The data which is given to a method is
referred to as an argument or a parameter. The
arguments which are needed for any method are
defined in the list of parameters.

There are two types of arguments of
parameters. They are as follows,

1. Actual Parameter

The parameters that are passed to a method
call are called actual parameters. These
parameters are defined in the calling method.
Actual parameters can be variables, constants
or expressions.

2. Formal Parameter

The parameters that are used in the method
definition are called formal parameters. These
parameters belong to the called method.
These can be only variables but not
expressions or constants.

2.1.1 Method Overloading

Q4. Write about Method Overloading.
(OR)

Explain different types of method
overloading.

Ans : (Dec.-19)

Whenever same method name is exiting
multiple times in the same class with different
number of parameter or different order of
parameters or different types of parameters is known
as method overloading.

UNIT - II PROGRAMMING IN JAVA

39
Rahul Publications

Rahul Publications

Suppose we have to perform addition of given number but there can be any number of arguments,
if we write method such as a(int, int)for two arguments, b(int, int, int) for three arguments then it is very
difficult for you and other programmer to understand purpose or behaviors of method they can not
identify purpose of method. So we use method overloading to easily figure out the program. For example
above two methods we can write sum(int, int) and sum(int, int, int) using method overloading concept.

Syntax

class class_Name

{

Returntype method()

{.........}

Returntype method(datatype1 variable1)

{

.........

}

Returntype method(datatype1 variable1, datatype2 variable2)

{

.........

}

Returntype method(datatype2 variable2)

{

.........

}

Returntype method(datatype2 variable2, datatype1 variable1)

{

.........

}

}

Different ways to overload the method

There are two ways to overload the method in java

 By changing number of arguments or parameters

 By changing the data type

By changing number of arguments

In this example, we have created two overloaded methods, first sum method performs addition of
two numbers and second sum method performs addition of three numbers.

B.Sc. III YEAR V SEMESTER

40
Rahul Publications

Rahul Publications

Example

public class Sum

{

// Overloaded sum(). This sum takes two int parameters

public int sum(int x, int y)

{

return(x + y);

}

// Overloaded sum(). This sum takes three int parameters

public int sum(int x, int y, int z)

{

return(x + y + z);

}

// Overloaded sum(). This sum takes two double parameters

public double sum(double x, double y)

{

return(x + y);

}

 // Driver code

public static void main(String args[])

{

Sum s = new Sum();

System.out.println(s.sum(10, 20));

System.out.println(s.sum(10, 20, 30));

System.out.println(s.sum(10.5, 20.5));

}

}

Output:

30

60

31.0

UNIT - II PROGRAMMING IN JAVA

41
Rahul Publications

Rahul Publications

Q5. Compare and contrast method overloading and method overriding.

Ans : (July-21, Dec.-18)

Return type must be same or covariant in method
overriding.

In java, method overloading can't
be performed by changing return
type of the method only. Return
type can be same or different in
method overloading. But you must
have to change the parameter.

Method overriding is the example of run time
polymorphism.

Method overloading is the example
of compile time polymorphism.

In case of method overriding, parameter must be
same.

In case of method overloading,
parameter must be different.

Method overriding occurs in two classes that have
IS-A (inheritance) relationship.

Method overloading is performed
within class.

Method overriding is used to provide the specific
implementation of the method that is already
provided by its super class.

Method overloading is used to
increase the readability of the
program.

Method OverridingMethod Overloading

Return type must be same or covariant in method
overriding.

In java, method overloading can't
be performed by changing return
type of the method only. Return
type can be same or different in
method overloading. But you must
have to change the parameter.

Method overriding is the example of run time
polymorphism.

Method overloading is the example
of compile time polymorphism.

In case of method overriding, parameter must be
same.

In case of method overloading,
parameter must be different.

Method overriding occurs in two classes that have
IS-A (inheritance) relationship.

Method overloading is performed
within class.

Method overriding is used to provide the specific
implementation of the method that is already
provided by its super class.

Method overloading is used to
increase the readability of the
program.

Method OverridingMethod OverloadingS.No.

1

2

3

4

5

2.2 CONSTRUCTORS

2.2.1 Parameterized Constructors

Q6. Define Constructors. Explain different types of constructors in java.

Ans : (Dec.-18, KU)

Constructor is a special method that creates and return an object of the class in which they are
defined. Constructor has the same name as that of class and has no return type not even void

Types of Constructor in Java

There are three types of constructor in Java-

(i) Default Constructor

(ii) Parameterized Constructor

(iii) Copy Constructor

(i) Default Constructor

This constructor takes no argument and is called when an object is created without any explicit
initialization.

Note

The compiler provides default constructor when you do not write any constructor for a class. If you
provide at least one constructor for the class, then the compiler does not provide any constructor.

Example

public class Car

{

public Car()

B.Sc. III YEAR V SEMESTER

42
Rahul Publications

Rahul Publications

{

System.out.println(“Car is created.”);

}

public static void main(String args[])

{

Car c = new Car();

}

}

Output

Car is created.

(ii) Parameterized Constructor

This constructor is called when an object is
created and it is initialized with some values at the
time of creation.

Example

public class Employee

{

int id;

String name;

public Employee(int i, String n)

{

id = i;

name = n;

}

void show()

{

System.out.println(id+” “+name);

}

public static void main(String args[])

{

Employee emp1 = new Employee(1,
“Govind”);

Employee emp2 = new Employee(2,
“Akash”);

emp1.show();

emp2.show();

}

}

Output

1 Govind

2 Akash

(iii) Copy Constructor

This constructor is called when an object is
created and it is initialized with some other object of
the same class at the time of creation.

Example

public class Employee

{

int id;

String name;

public Employee(int i, String n)

{

id = i;

name = n;

}

public Employee(Employee e)

{

id = e.id;

name = e.name;

}

void show()

{

System.out.println(id+” “+name);

}

public static void main(String args[])

{

Employee emp1 = new Employee(1,
“Govind”);

Employee emp2 = new Employee(emp1);

emp1.show();

emp2.show();

}

}

Output

1 Govind

1 Govind

UNIT - II PROGRAMMING IN JAVA

43
Rahul Publications

Rahul Publications

2.2.2 Constructor Overloading

Q7. Explain about Constructor Overloading
in java.

Ans :
 When you write more than one constructor

and each constructor has a different argument
list, this is called constructor overloading.

 It helps the programmer by providing
alternative ways for instantiating objects of a
class.

Example

public class Employee

{

int id;

String name;

int salary;

public Employee(int i, String n)

{

id=i;

name=n;

salary=0;

}

public Employee(int i, String n, int s)

{

id=i;

name=n;

salary=s;

}

void show()

{

System.out.println(id+” “+name+”
“+salary);

}

public static void main(String args[])

{

Employee emp1 = new Employee(1,

“Govind”);

Employee emp2 = new Employee(2,
“Akash”, 10000);

emp1.show();

emp2.show();

 }

}

Output

1 Govind 0

2 Akash 10000

Rules for calling a constructor

There are two rules for calling a constructor-

 Outside the class: The constructor can only
be called with the help of new operator that
is when you create an object of the class. For
example, new LinkedList() will call the default
constructor of LinkedList class

 Inside the class: The constructor can only
be invoked from within another constructor
using this or super keyword and not from
anywhere else.

2.3 CLEANING-UP UNUSED OBJECTS

Q8. Explain about Cleaning-up unused
Objects.

Ans :
Dynamic allocation of objects is done using

new keyword in java. Some times allocation of new
objects fail due to insufficient memory. In such cases
memory space consumed by unused objects is
deallocated and made available for reallocation. This
is done manually in languages such as C and C++
using delete keyword. In java, a new concept called
garbage collection is introduced for this purpose. It
is a trouble-tree approach which reclaims the objects
automatically. This is done without the interference
of the programmer. The objects which are not used
for long time and which does not have’kny
references are identified and their space is
deallocated. This recycled space can now be used
by other objects.

B.Sc. III YEAR V SEMESTER

44
Rahul Publications

Rahul Publications

Garbage Collector is a program that manages
memory automatically wherein de-allocation of
objects is handled by Java rather than the
programmer. In the Java programming language,
dynamic allocation of objects is achieved using the
new operator. An object once created uses some
memory and the memory remains allocated till there
are references for the use of the object.

When there are no references to an object, it
is assumed to be no longer needed, and the
memory, occupied by the object can be reclaimed.
There is no explicit need to destroy an object as
Java handles the de-allocation automatically.

The technique that accomplishes this is known
as Garbage Collection. Programs that do not de-
allocate memory can eventually crash when there
is no memory left in the system to allocate. These
programs are said to have memory leaks.

Garbage collection in Java happens
automatically during the lifetime of the program,
eliminating the need to de-allocate memory and
thereby avoiding memory leaks. In C language, it is
the programmer’s responsibility to de-allocate
memory allocated dynamically using free() function.
This is where Java memory management leads.

Note : All objects are created in Heap Section
of memory.

To Learn Garbage Collector Mechanism
in Java

Step 1:

Copy the following code into an editor.

class Student

{

int a;

int b;

public void setData(int c,int d)

{

a=c;

b=d;

}

public void showData()

{

System.out.println(“Value of a = “+a);

System.out.println(“Value of b = “+b);

}

public static void main(String args[])

{

Student s1 = new Student();

Student s2 = new Student();

s1.setData(1,2);

s2.setData(3,4);

s1.showData();

s2.showData();

//Student s3;

//s3=s2;

//s3.showData();

//s2=null;

//s3.showData();

//s3=null;

//s3.showData();

}

}

Step 2:

Save, Compile and Run the code. As shown
in the diagram, two objects and two reference
variables are created.

a=3 a=1

b=4 b=2

S1
S2

HEAP

Step 3:

Uncomment line # 20,21,22. Save, compile
& run the code.

UNIT - II PROGRAMMING IN JAVA

45
Rahul Publications

Rahul Publications

Step 4:

As shown in the diagram below, two reference
variables are pointing to the same object.

a=3 a=1

b=4 b=2

S2 S1
HEAP

S3

Step 5:

Uncomment line # 23 & 24. Compile, Save
& Run the code

Step 6:

As show in diagram below, s2 becomes null,

but s3 is still pointing to the object and is not eligible

for java garbage collection.

a=3 a=1

b=4 b=2

S2 S1
HEAP

S3

Pointng To null

Step 7:

Uncomment line # 25 & 26. Save, Compile

& Run the Code

Step 8:

At this point there are no references pointing

to the object and becomes eligible for garbage

collection. It will be removed from memory, and
there is no way of retrieving it back.

a=3 a=1

b=4 b=2

S2 S1
HEAP

S3

No reference variables pointing to this object.
This object can be Garbage Collected i.e,

removed from memory

2.4 CLASS VARIABLES & METHOD

Q9. What is Static Variable in Java?

Ans :
Static variable in Java is variable which belongs

to the class and initialized only once at the start of
the execution.

 It is a variable which belongs to the class and
not to object(instance)

 Static variables are initialized only once, at the
start of the execution. These variables will be
initialized first, before the initialization of any
instance variables

 A single copy to be shared by all instances of
the class

 A static variable can be accessed directly by
the class name and doesn’t need any object

Syntax:

<class-name>.<variable-name>

2.4.1 Static Keyword

Q10. Explain about static keyword.

Ans :
The static keyword is used in java mainly for

memory management. It is used with variables,
methods, blocks and nested class. It is a keyword
that are used for share the same variable or method
of a given class. This is used for a constant variable
or a method that is the same for every instance of a
class. The main method of a class is generally labeled
static.

No object needs to be created to use static

B.Sc. III YEAR V SEMESTER

46
Rahul Publications

Rahul Publications

variable or call static methods, just put the class name
before the static variable or method to use them.
Static method can not call non-static method.

In java language static keyword can be used
for following

 variable (also known as class variable)

 method (also known as class method)

 block

 nested class

Static variable

If any variable we declared as static is known
as static variable.

 Static variable is used for fulfill the common
requirement. For Example company name
of employees, college name of students etc.
Name of the college is common for all
students.

 The static variable allocate memory only once
in class area at the time of class loading.

Advantage of static variable

Using static variable we make our program
memory efficient (i.e. it saves memory).

When and why we use static variable

Suppose we want to store record of all
employee of any company, in this case employee
id is unique for every employee but company name
is common for all. When we create a static variable
as a company name then only once memory is
allocated otherwise it allocate a memory space each
time for every employee.

Syntax for declare static variable

public static variable Name;

Syntax for declare static method

public static void method Name()

{

.......

.......

}

Syntax for access static methods and static
variable

class Name.variableName=10;

class Name.methodName();

Example

public static final double PI=3.1415;

public static void main(Stringargs[])

{

......

......

}

Example

class Student

{

introll_no;

String name;

static String College_Name=”ITM”;

}

class Static Demo

{

public static void main(Stringargs[])

{

Student s1=new Student();

s1.roll_no=100;

s1.name=”abcd”;

System.out.println(s1.roll_no);

System.out.println(s1.name);
System.out.println(Student.College_

Name);

Student s2=newStudent();

s2.roll_no=200;

s2.name=”zyx”;

System.out.println(s2.roll_no);

System.out.println(s2.name);

System.out.println(Student.

UNIT - II PROGRAMMING IN JAVA

47
Rahul Publications

Rahul Publications

College_Name);

}

}

Output

100

abcd

ITM

200

zyx

ITM

Roll_no

Roll_no

Marks

Marks

Name

Name

Java Stack

Method Area

S1

add

add

S2

College_Name

JAMIA

100
65.2f
abcd

200
75.6f
xyz

In the above image static data variable are
store in method area and non static variable is store
in java stack.

2.4.2 This Keyword

Q11. Write about this Keyword in java.

Ans :
Keyword THIS is a reference variable in Java

that refers to the current object.

The various usages of ‘THIS’ keyword in Java
are as follows:

 It can be used to refer instance variable of
current class

 It can be used to invoke or initiate current
class constructor

 It can be passed as an argument in the
method call

 It can be passed as argument in the
constructor call

 It can be used to return the current class
instance

Usage of java this keyword

Here is given the 6 usage of java this keyword.

1. This can be used to refer current class instance
variable.

2. This can be used to invoke current class
method (implicitly)

3. This() can be used to invoke current class
constructor.

4. This can be passed as an argument in the
method call.

5. This can be passed as argument in the
constructor call.

6. This can be used to return the current class
instance from the method.

Suggestion

If you are beginner to java, lookup only three
usage of this keyword.

state

behaviour

object

this

reference
variable

The this keyword can be used to refer current
class instance variable. If there is ambiguity between
the instance variables and parameters, this keyword
resolves the problem of ambiguity.

Understanding the problem without this
keyword

Let’s understand the problem if we don’t use
this keyword by the example given below:

class Student

{

int rollno;

String name;

float fee;

B.Sc. III YEAR V SEMESTER

48
Rahul Publications

Rahul Publications

Student(int rollno,Stringname,float fee)

{

rollno=rollno;

name=name;

fee=fee;

}

void display()

{

S y s t e m . o u t . p r i n t l n (r o l l n o + ”
“+name+” “+fee);

}

}

class TestThis1

{

public static void main(String args[])

{

Student s1=new
Student(111,”ankit”,5000f);

Student s2=new
Student(112,”sumit”,6000f);

s1.display();

s2.display();

}

}

Output

0 null 0.0

0 null 0.0

In the above example, parameters (formal
arguments) and instance variables are same. So, we
are using this keyword to distinguish local variable
and instance variable. The solution for the above
program is….

Program

class Student

{

int rollno;

String name;

float fee;

Student(int rollno,Stringname,float fee)

{

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display()

{

S y s t e m . o u t . p r i n t l n (r o l l n o + ”
“+name+” “+fee);

}

}

class TestThis2

{

public static void main(String args[])

{

Student s1=new Student(111, “ankit”,
5000f);

Student s2=new Student(112, ”sumit”,
6000f);

s1.display();

s2.display();

}

}

Output

111 ankit 5000

112 sumit 6000

invoke current class method

You may invoke the method of the current
class by using the this keyword. If you don’t use the
this keyword, compiler automatically adds this
keyword while invoking the method. Let’s see the
example

UNIT - II PROGRAMMING IN JAVA

49
Rahul Publications

Rahul Publications

class A{ class A{

void m() {} void m() {}

void n() { void n() {

m(); this.m();

} }

publicstatic void main(sring args[]){ publicstatic void main(sring args[]){
new A().n(); new A().n();

}} }}

complier

2.5 ARRAYS

Q12. What is an Array?

Ans :
Java array is an object the contains elements of similar data type. It is a data structure where we

store similar elements. We can store only fixed set of elements in a java array.

Array in java is index based, first element of the array is stored at 0 index.

Creating Arrays

You can create an array by using the new operator with the following syntax

Syntax

arrayRefVar = new dataType[arraySize];

The above statement does two things-

 It creates an array using new dataType [arraySize].

 It assigns the reference of the newly created array to the variable arrayRefVar.

Declaring an array variable, creating an array, and assigning the reference of the array to the
variable can be combined in one statement, as shown below “

dataType[] arrayRefVar = new dataType [arraySize];

Alternatively you can create arrays as follows-

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based; that is, they start
from 0 to arrayRefVar.length-1.

Example

Following statement declares an array variable, myList, creates an array of 10 elements of double
type and assigns its reference to myList “

double[] myList=newdouble[10];

B.Sc. III YEAR V SEMESTER

50
Rahul Publications

Rahul Publications

Following picture represents array myList. Here, myList holds ten double values and the indices are
from 0 to 9.

5.6

4.5

3.3

13.2

4.0

34.33

34.0

45.45

99.993

1112.3

myList[0]

myList[1]

myList[2]

myList[3]

myList[4]

myList[5]

myList[6]

myList[7]

myList[8]

myList[9]

reference

Element value

myList

Array reference
variable

Array element at
index 5

Processing Arrays

When processing array elements, we often use either for loop or for each loop because all of the
elements in an array are of the same type and the size of the array is known.

Example

Here is a complete example showing how to create, initialize, and process arrays –

public class TestArray

{

public static void main(String[] args)

{

double[] myList={1.9,2.9,3.4,3.5};

// Print all the array elements

for(inti=0;i<myList.length; i++)

{

 System.out.println(myList[i]+””);

}

// Summing all elements

double total =0;

for(inti=0;i<myList.length; i++)

{

total +=myList[i];

}

UNIT - II PROGRAMMING IN JAVA

51
Rahul Publications

Rahul Publications

System.out.println(“Total is “+ total);

// Finding the largest element

double max =myList[0];

for(inti=1;i<myList.length; i++)

{

if(myList[i]> max)

max =myList[i];

}

System.out.println(“Max is “+ max);

}

}

Output

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

2.5.1 One-Dimensional Arrays

Q13. Discuss briefly about One-Dimensional
Arrays.

Ans :
One Dimensional Array in java is always used

with only one subscript([]). A one-dimensional
array behaves likes a list of variables. You can access
the variables of an array by using an index in square
brackets preceded by the name of that array. Index
value should be an integer.

Declaration of One-dimensional array in java

Before using the array, we must declare it.
Like normal variables, we must provide data
type of array and name of an array. Data type
means which type of elements we want to store in
Array. So, we must specify the data type of array
according to our needs. We also need to specify the
name of an array so that we can use it later by name.

datatype[] arrayName;

Or

datatype arrayName[];

Or

datatype []arrayName;

 datatype can be a primitive data type(int,
char, Double, byte etc.)or Non-primitive
data (Objects).

 arrayName is the name of an array

 [] is called subscript.

int[] number;

Or

int number[];

Or

int []number;

Construction of One-dimensional array in
java

For the creation of an array new keyword is
used with a data type of array. You must specify
the size of the array. The size should be an integer
value or a variable that contains an integer value.
How many elements you can store an array directly
depends upon the size of an array.

arrayName = new DataType[size];

new Datatype[size]: It creates an array in
heap memory. Because an array is an object, so it
stored in heap memory.

arrayName: Assignment operator assigns
the newly created array to the reference of
variable arrayName. We can access the elements
of an array by use of array names.

number = new int[10]; // allocating memory
to array

In this example new int[10] creates a new
array of int type in heap memory. The
assignment operator assigns the array object to the
reference variable number. Now you can access the
array by use of the number. You can access each
value of array by using numbers with subscript([]).
We must have to use only one subscript([]) for One
dimensional array in java We will discuss it later in
the Access of array.

B.Sc. III YEAR V SEMESTER

52
Rahul Publications

Rahul Publications
Note: When we are creating a new array the elements in the array will automatically be initialized

by their default values. For e.g. : zero (int types), false (boolean), or null (for object types).

Memory Representation after Construction

UNIT - II PROGRAMMING IN JAVA

53
Rahul Publications

Rahul Publications

The index of an array starts from 0 and ends with length-1. The first element of an array is number[0],
second is number[1] and so on. If the length of an array is n, the last element will be arrayName[length-
1]. Since the length of the number array is 10, the last element of the array is number[9].
Initialization of One-dimensional array in java

To initialize the Array we have to put the values at each index of array. In above section we have
created a Array with size 10. So now we will see how we can add values in Array.

public class MyExample
{
public static void main(String[] args)
{
// Declaration of Array
int[] number;
// Construction of Array with given size
// Here we are giving size 10 it mean it can hold 10 values of int type
number = new int[10];
// Initialization of Array
number[0] = 11;
number[1] = 22;
number[2] = 33;
number[3] = 44;
number[4] = 55;
number[5] = 66;
number[6] = 77;
number[7] = 88;
number[8] = 99;
number[9] = 100;
//Print the values from Array
for(int i = 0; i < number.length; i++)
System.out.println(number[i]);
}
}

Output:
11
22
33
44
55
66
77
88
99
100

B.Sc. III YEAR V SEMESTER

54
Rahul Publications

Rahul Publications

2.5.2 Two-Dimensional Arrays

Q14. Discuss briefly about Two-Dimensional Arrays.

Ans :
In Java, a two-dimensional array is stored in the form of rows and columns and is represented in

the form of a matrix.

1. Declaring 2 Dimensional Array

Syntax: there are two forms of declaring an array.

Type arrayname[];

Or

type[] array name;

Look at the following examples

Example

int name[][];

or

int[][] name;

2. Creating an Object of a 2d Array

Now, it’s time to create the object of a 2d array.

name = new int[3][3]

Creating a 2-dimensional object with 3 rows and 3 columns.

3. Initializing 2d Array

After creating an array object, it is time to initialize it.

In the following code, we describe how to initialize the 2-dimensional array.

Int name[3][3] = {“a”,”b”,”c”,”a1",”b1",”c1",”a2",”b2",”c2"};

OR

int name[3][3] = {{“a”,”b”,”c”},

{“a1”,”b1",”c1"},

{“a2”,”b2",”c2"}};

Create 2D Arrays in Java

We will look at how to create 2 dimensional with the help of an example. Before that, let us look, we
have two index values for a 2d array. One is for a row, and another is for the column.

Row Size

Rows are the elements in an array that can store horizontally. For example, Row Size is equal to 4,
then the array will create with 4 rows.

Column Size

Columns are the elements in an array that can store vertically. For example, Column Size is equal
to 2, then an array that can have 2 Columns in it.

UNIT - II PROGRAMMING IN JAVA

55
Rahul Publications

Rahul Publications

public class TwoDArray{

public static void main(String[] args) {

int[][] twoDimentional = {{1,1},{2,2},{3,3},{4,4}};

for(int i = 0 ; i < 4 ; i++){

for(int j = 0 ; j < 2; j++){

System.out.print(twoDimentional[i][j] + “ “);

}

System.out.println();

}

}

}

Output:

1 1

2 2

3 3

4 4

2.6 COMMAND-LINE ARGUMENTS

Q15. Explain about Command-Line Arguments. How they are useful.

Ans : (June-19, MGU)

Command Line Argument is information passed to the program when you run the program. The
passed information is stored as a string array in the main method.

Important Points

 Command Line Arguments can be used to specify configuration information while launching your
application.

 There is no restriction on the number of java command line arguments.You can specify any number
of arguments

 Information is passed as Strings.

 They are captured into the String args of your main method

To Learn java Command Line Arguments

Step 1: Copy the following code into an editor.

class cmd

{

public static void main(String[] args)

{

B.Sc. III YEAR V SEMESTER

56
Rahul Publications

Rahul Publications

for(int i=0;i<args.length;i++)

{

System.out.println(args[i]);

}

}

}

Step 2: Save & Compile the code

Step 3: Run the code as java Demo apple orange.

Step 4: You must get an output as below.

Output

10

20

30

2.6.1 Inner Class

Q16. What is Inner Class? Explain.

Ans :
Java inner class or nested class is a class which is declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more
readable and maintainable.

Additionally, it can access all the members of outer class including private data members and methods.

Syntax

class Java_Outer_class

UNIT - II PROGRAMMING IN JAVA

57
Rahul Publications

Rahul Publications

{

//code

class Java_Inner_class

{

 //code

 }

}

There are basically three advantages of inner classes in java. They are as follows:

1. Nested classes represent a special type of relationship that is it can access all the members (data
members and methods) of outer class including private.

2. Nested classes are used to develop more readable and maintainable code because it logically
group classes and interfaces in one place only.

3. Code Optimization: It requires less code to write.

Example

class TestMemberOuter1

{

private int data=30;

class Inner

{

void msg(){System.out.println(“data is”+data);}

}

public static void main(String args[])

{

TestMemberOuter1 obj=new TestMemberOuter1();

TestMemberOuter1.Inner in=obj.new Inner();

in.msg();

}

}

2.7 INHERITANCE

2.7.1 Introduction

Q17. What is Inheritance?

(OR)

Explain the concept of Inheritance.

Ans :
Inheritance is an important pillar of OOP(Object Oriented Programming). It is the mechanism in

java by which one class is allow to inherit the features(fields and methods) of another class.

B.Sc. III YEAR V SEMESTER

58
Rahul Publications

Rahul Publications

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors
of parent object. It is an important part of OPPs(Object Oriented programming system).

The idea behind inheritance in java is that you can create new classes that are built upon existing
classes. When you inherit from an existing class, you can reuse methods and fields of parent class, and you
can add new methods and fields also.Inheritance represents the IS-A relationship, also known as parent-
child relationship.

Important terminology

 Class: A class is a group of objects which have common properties. It is a template or blueprint
from which objects are created.

 Super Class: The class whose features are inherited is known as super class(or a base class or a
parent class).

 Sub Class: The class that inherits the other class is known as sub class(or a derived class, extended
class, or child class). The subclass can add its own fields and methods in addition to the superclass
fields and methods.

 Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to create a new
class and there is already a class that includes some of the code that we want, we can derive our new
class from the existing class. By doing this, we are reusing the fields and methods of the existing
class.

Syntax of Java Inheritance

class Super

{

}

class Sub extends Super

{

}

The extends keyword indicates that you are making a new class that derives from an existing class.
The meaning of “extends” is to increase the functionality.

In the terminology of Java, a class which is inherited is called parent or super class and the new class
is called child or subclass.

class Calculation

{

int z;

public void addition(int x,int y)

{

UNIT - II PROGRAMMING IN JAVA

59
Rahul Publications

Rahul Publications

z = x + y;

System.out.println(“The sum of the given numbers:”+z);

}

public void Subtraction(int x,int y)

{

z = x - y;

System.out.println(“The difference between the given numbers:”+z);

}

}

public class My_Calculation extends Calculation

{

public void multiplication(int x,int y)

{

z = x * y;

System.out.println(“The product of the given numbers:”+z);

}

public static void main(Stringargs[])

{

int a =20, b =10;

My_Calculation demo =newMy_Calculation();

demo.addition(a, b);

demo.Subtraction(a, b);

demo.multiplication(a, b);

}

}

Output

The sum of the given numbers:30

The difference between the given numbers:10

The product of the given numbers:200

Q18. Explain the benefits of Inheritance.

Ans :
 Code sharing: Code sharing occurs at two levels. At first level many users or projects can use the

same class. In the second level sharing occurs when two or more classes developed by a single
programmer as part of a project which is being inherited from a single parent class. Here also code
is written once and reused. This is possible through inheritance.

B.Sc. III YEAR V SEMESTER

60
Rahul Publications

Rahul Publications

 Consistency of inheritance: When two or more classes inherit from the same superclass we are
assured that the behaviour they inherit will be the same in all cases. Thus we can guarantee that
interfaces to similar objects are in fact similar.

 Software components: Inheritance provides programmers the ability to construct reusable s/w
components. The goal behind these is to provide applications that require little or no actual coding.
Already such libraries and packages are commercially available.

 Rapid Prototyping: When a s/w system is constructed largely out of reusable components
development can be concentrated on understanding the new and unusual portion of the system.
Thus s/w system can be generated more quickly and easily leading to a style of programming
known as ‘Rapid Prototyping’ or ‘exploratory programming’

 Polymorphism and Framework: Generally s/w is written from the bottom up , although it may
be designed from top-down. This is like building a wall where every brick must be laid on top of
another brick i.e., the lower level routines are written and on top of these slightly higher abstraction
are produced and at last more abstract elements are generated. Polymorphism permits the
programmer to generate high level reusable components.

 Information Hiding: A Programmer who reuses a software need only to understand the nature
of the component and its interface. There is no need to have detailed information of the component
and it is information hiding.

2.7.2 Types of Inheritance

Q19. What are the different types of Inheritance?

Ans : (July-21, July-19, Dec.-18-MGU)

There are five types of inheritance in Java They are :

1. Single level inheritance

2. Multiple inheritance

3. Multilevel inheritance

4. Hierarchical inheritance

5. Hybrid inheritance

2.7.2.1 Single level inheritance

Q20. What is Single Inheritance in JAVA? Explain with an Example.

Ans :
Single inheritance is easy to understand. When a class extends another one class only then we call

it a single inheritance. The below flow diagram shows that class B extends only one class which is A. Here
A is a parent class of B and B would be a child class of A.

A

B

Single Inheritance

UNIT - II PROGRAMMING IN JAVA

61
Rahul Publications

Rahul Publications

Class A

{

public void methodA()

{

System.out.println(“Base class method”);

}

}

Class B extends A

{

public void methodB()

{

System.out.println(“Child class method”);

}

public static void main(Stringargs[])

{

B obj=new B();

obj.methodA();//calling super class method

obj.methodB();//calling local method

}

}

2.7.2.2 Multiple inheritance

Q21. What is multiple Inheritance? How is multiple inheritance achieved in java?

Ans : (Dec.-18)

“Multiple Inheritance” refers to the concept of one class extending (Or inherits) more than one base
class. The inheritance we learnt earlier had the concept of one base class or parent. The problem with
“multiple inheritance” is that the derived class will have to manage the dependency on two base classes.

A B

C

Multiple Inheritance

B.Sc. III YEAR V SEMESTER

62
Rahul Publications

Rahul Publications

Note:

i. Multiple Inheritance is very rarely used in
software projects. Using Multiple inheritance
often leads to problems in the hierarchy. This
results in unwanted complexity when further
extending the class.

ii. Most of the new OO languages like Small Talk,
Java, C# do not support Multiple inheritance.
Multiple Inheritance is supported in C++.

Multiple Inheritance (Through Interfaces)

In Multiple inheritance ,one class can have
more than one superclass and inherit features from
all parent classes. Please note that Java does not
support multiple inheritance with classes. In java,
we can achieve multiple inheritance only through
Interfaces. In image below, Class C is derived from
interface A and B.

// First Parent class

class Parent1

{

 void fun()

 {

 System.out.println(“Parent1”);

 }

}

// Second Parent Class

class Parent2

{

 void fun()

 {

 System.out.println(“Parent2”);

 }

}

// Error : Test is inheriting from multipleclasses

classTest extendsParent1, Parent2

{

 publicstaticvoidmain(String args[])

 {

 Test t = newTest();

 t.fun();

 }

}

To reduce the complexity and simplify the
language, multiple inheritance is not supported in
java.

Consider a scenario where A, B and C are
three classes. The C class inherits A and B classes. If
A and B classes have same method and you call it
from child class object, there will be ambiguity to
call method of A or B class.

Since compile time errors are better than
runtime errors, java renders compile time error if
you inherit 2 classes. So whether you have same
method or different, there will be compile time error
now.

class A

{

void msg()

{

System.out.println(“Hello”);

}

 }

class B

{

void msg()

{

System.out.println(“Welcome”);

}

}

class C extends A,B

{

//suppose if it were

public static void main(String args[])

{

C obj=new C();

obj.msg();//Now which msg() method would
be invoked?

}

}

UNIT - II PROGRAMMING IN JAVA

63
Rahul Publications

Rahul Publications

2.7.2.3 Multilevel inheritance

Q22. Explain the concept of multilevel
Inheritance with example?

Ans :
Multilevel inheritance refers to a mechanism

in OO technology where one can inherit from a
derived class, thereby making this derived class the
base class for the new class. As you can see in below
flow diagram C is subclass or child class of B and B
is a child class of A.

A

B

C

Base Class

Intermdiatory
Class

Derived Class

Multilevel Inheriatance
Example Program

Class X

{

public void methodX()

{

System.out.println(“Class X method”);

}

}

Class Y extends X

{

public void methodY()

{

System.out.println(“class Y method”);

}

}

Class Z extends Y

{

public void methodZ()

{

System.out.println(“class Z method”);

}

public static void main(Stringargs[])

{

Z obj=new Z();

obj.methodX(); //calling grand parent

 //class method

obj.methodY();//calling parent class

 //method

obj.methodZ();//calling local method

}

}

2.7.2.4 Hierarchical inheritance

Q23. What is Hierarchical Inheritance?
Explain.

Ans :

In such kind of inheritance one class is
inherited by many sub classes. In below example
class B,C and D inherits the same class A. A is parent
class (or base class) of B,C & D.

A

B C D

Hierarchical Inheritance

Example Program

class A

{

public void methodA()

{

System.out.println(“method of

B.Sc. III YEAR V SEMESTER

64
Rahul Publications

Rahul Publications

Class A”);

}

}

class B extends A

{

public void methodB()

{

System.out.println(“method of

Class B”);

}

}

class C extends A

{

public void methodC()

{

System.out.println(“method of

Class C”);

}

}

class D extends A

{

public void methodD()

{

System.out.println(“method of

Class D”);

}

}

class JavaExample

{

public static void main(Stringargs[])

{

B obj1 =new B();

C obj2 =new C();

D obj3 =new D();

//All classes can access the method of

//class A

obj1.methodA();

obj2.methodA();

obj3.methodA();

}

}

2.7.2.5 Hybrid inheritance

Q24. Discuss about Hybrid Inheritance using
Interfaces?

Ans :
It is a mix of two or more of the above types

of inheritance. Since java doesn’t support multiple
inheritances with classes, the hybrid inheritance is
also not possible with classes. In java, we can achieve
hybrid inheritance only through Interfaces.

A

B C

D

Hybrid Inheritance

Example Program

class Animal

{

void eat(){System.out.println(“eating...”);}

}

class Dog extends Animal

{

void bark(){System.out.println
(“barking...”);}

}

class Cat extends Animal

{

UNIT - II PROGRAMMING IN JAVA

65
Rahul Publications

Rahul Publications

void meow(){System.out.println(“meowing
...”);}

}

 class TestInheritance3

{

public static void main(String args[])

{

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error

}

}

2.7.3 Extends Keyword

Q25. Explain the concept of extends keyword.

Ans :
The most important and widely

used keywords in Java which is the extends
keyword. It is a reserved word that and we can’t
use it as an identifier other than the places where
we need to inherit the classes in Java. We use the
extends keyword in Inheritance in Java.

Inheritance is one of the object-oriented
concepts which defines the ability of a class to extend
or acquire the properties of another class. The
extends keyword plays a significant role in
implementing the Inheritance concept in Java. Let’s
start discussing the extends keyword with examples.

The extends keyword in Java indicates that
the child class inherits or acquires all the properties
of the parent class. This keyword basically establishes
a relationship of an inheritance among classes.

If a class extends another class, then we say
that it has acquired all the properties and behavior
of the parent class.

We use the extends keyword in Java between
two class names that we want to connect in the
Inheritance relationship.

The class that extends the properties is the
child class or the derived class which comes before

the extends keyword, while the class from which
the properties are inherited is the parent class or
super class or the base class, and this class comes
after the extends keyword.

It is not possible to extend multiple classes in
Java because there is no support for multiple
inheritances in Java. And therefore we cannot write
multiple class names after the extended keyword.

But, multiple classes can inherit from a single
class as java supports hierarchical inheritance.
Therefore we can write multiple class names before
the extended keyword.

Syntax of extends keyword in Java

Following is the syntax of using extends
keyword in java when using inheritance:

class Parent {

//code inside the parent class

}

class Child extends Parent {

//Code inside the child class

}

The two important categories are:

(a) Parent class: This is the class being inherited.
Also called super class or base class.

(b) Child class: This class inherits the
properties from the parent class. Also called
a subclass or derived class.

2.7.4 Method Overriding

Q26. Explain the method overriding with
example?

Ans :
If subclass (child class) has the same method

as declared in the parent class, it is known as method
overriding in java.

In other words, If subclass provides the specific
implementation of the method that has been
provided by one of its parent class, it is known as
method overriding.

B.Sc. III YEAR V SEMESTER

66
Rahul Publications

Rahul Publications

Usage of Java Method Overriding

 Method overriding is used to provide specific
implementation of a method that is already
provided by its super class.

 Method overriding is used for runtime
polymorphism

Rules

 The argument list should be exactly the same
as that of the overridden method.

 The return type should be the same or a
subtype of the return type declared in the
original overridden method in the superclass.

 The access level cannot be more restrictive
than the overridden method’s access level.
For example: If the superclass method is
declared public then the overridding method
in the sub class cannot be either private or
protected.

 Instance methods can be overridden only if
they are inherited by the subclass.

 A method declared final cannot be
overridden.

 A method declared static cannot be
overridden but can be re-declared.

 If a method cannot be inherited, then it
cannot be overridden.

 A subclass within the same package as the
instance’s superclass can override any
superclass method that is not declared private
or final.

 A subclass in a different package can only
override the non-final methods declared
public or protected.

 An overriding method can throw any uncheck
exceptions, regardless of whether the
overridden method throws exceptions or not.
However, the overriding method should not
throw checked exceptions that are new or
broader than the ones declared by the
overridden method. The overriding method
can throw narrower or fewer exceptions than
the overridden method.

 Constructors cannot be overridden.

The benefit of overriding is: ability to define
a behavior that’s specific to the subclass type, which
means a subclass can implement a parent class
method based on its requirement.

overloading overriding

Animal Animal
eat () eat ()

Dog Dog

eat (string) eat ()

Example

class Animal

{

Animal myType()

{

return new Animal();

}

}

class Dog extends Animal

{

Dog myType() //Legal override after Java5
//onward

{

return new Dog();

}

}

Method overriding is one of the way by which
java achieve Run Time Polymorphism. The version
of a method that is executed will be determined by
the object that is used to invoke it. If an object of a
parent class is used to invoke the method, then the
version in the parent class will be executed, but if
an object of the subclass is used to invoke the
method, then the version in the child class will be

UNIT - II PROGRAMMING IN JAVA

67
Rahul Publications

Rahul Publications

executed.In other words, it is the type of the object being referred to (not the type of the reference
variable) that determines which version of an overridden method will be executed.

Example

class Parent

{

void show()

{

System.out.println(“Parent’s show()”);

}

}

class Child extends Parent// Inherited class

{

 // This method overrides show() of Parent @Override

 void show()

{

System.out.println(“Child’s show()”);

}

}

// Driver class

class Main

{

 public static void main(String[] args)

 {

 // If a Parent type reference refers

 // to a Parent object, then Parent’s

 // show is called

Parent obj1 = newParent();

 obj1.show();

 // If a Parent type reference refers

 // to a Child object Child’s show()

 // is called. This is called RUN TIME

 // POLYMORPHISM.

 Parent obj2 = newChild();

 obj2.show();

 }

}

B.Sc. III YEAR V SEMESTER

68
Rahul Publications

Rahul Publications

2.7.5 Super Final Keyword

Q27. What is the use of super keyword in Java programming?

Ans :
Super keyword in java is a reference variable that is used to refer parent class object. Super is an

implicit keyword create by JVM and supply each and every java program for performing important role
in three places.

(i) Super keyword At Variable Level

(ii) Super keyword At Method Level

(iii) Super keyword At Constructor Level

(i) Use of super keyword with variables

This scenario occurs when a derived class and base class has same data members. In that case there
is a possibility of ambiguity for the JVM. We can understand it more clearly using this code snippet:

/* Base class vehicle */

class Vehicle

{

int maxSpeed = 120;

}

/* sub class Car extending vehicle */

class Car extends Vehicle

{

int maxSpeed = 180;

void display()

 {

/* print maxSpeed of base class (vehicle) */

System.out.println(“Maximum Speed: “+ super.maxSpeed);

 }

}

/* Driver program to test */

class Test

{

 public static void main(String[] args)

 {

 Car small = new Car();

 small.display();

 }

}

UNIT - II PROGRAMMING IN JAVA

69
Rahul Publications

Rahul Publications

(ii) Use of super keyword with methods

This is used when we want to call parent class method. So whenever a parent and child class have
same named methods then to resolve ambiguity we use super keyword.

/* Base class Person */

class Person

{

 void message()

 {

 System.out.println(“This is person class”);

 }

}

/* Subclass Student */

class Student extends Person

{

 void message()

 {

 System.out.println(“This is student class”);

 }

// Note that display() is only in Student class

 void display()

 {

// will invoke or call current class message() method

message();

// will invoke or call parent class message() method

super.message();

 }

}

/* Driver program to test */

class Test

{

public static void main(String args[])

 {

 Student s = newStudent();

 // calling display() of Student

B.Sc. III YEAR V SEMESTER

70
Rahul Publications

Rahul Publications

 s.display();

 }

}

(iii) Use of super with constructors

Super keyword can also be used to access the parent class constructor. One more important thing
is that, ‘’super’ can call both parametric as well as non parametric constructors depending upon the
situation. Following is the code snippet to explain the above concept:

/* superclass Person */

class Person

{

 Person()

 {

System.out.println(“Person class Constructor”);

 }

}

/* subclass Student extending the Person class */

class Student extends Person

{

 Student()

 {

// invoke or call parent class constructor

 super();

System.out.println(“Student class Constructor”);

 }

}

/* Driver program to test*/

class Test

{

 public static void main(String[] args)

 {

 Student s = new Student();

 }

}

Important points

1. Call to super() must be first statement in Derived(Student) Class constructor.

UNIT - II PROGRAMMING IN JAVA

71
Rahul Publications

Rahul Publications

2. If a constructor does not explicitly invoke a
superclass constructor, the Java compiler
automatically inserts a call to the no-argument
constructor of the superclass. If the superclass
does not have a no-argument constructor,
you will get a compile-time error. Object does
have such a constructor, so if Object is the
only superclass, there is no problem.

3. If a subclass constructor invokes a constructor
of its superclass, either explicitly or implicitly,
you might think that a whole chain of
constructors called, all the way back to the
constructor of Object. This, in fact, is the case.
It is called constructor chaining.

Q28. Mention the use of Final keyword in java
at different places?

Ans :
The final keyword in java is used to restrict

the user. The java final keyword can be used in many
context. First of all, final is a non-access modifier
applicable only to a variable, a method or a
class.Following are different contexts where final is
used.

1. Final variable

2. Final method

3. Final class

The final keyword can be applied with the
variables, a final variable that have no value it is
called blank final variable or uninitialized final
variable. It can be initialized in the constructor only.
The blank final variable can be static also which will
be initialized in the static block only. We will have
detailed learning of these.

1. Final variables

When a variable is declared with final
keyword, it’s value can’t be modified,essentially, a
constant. This also mean that you must initialize a
final variable. If the final variable is a reference, this
means that the variable cannot be re-bound to
reference another object, but internal state of the
object pointed by that reference variable can be
changed i.e. you can add or remove elements from
final array or final collection. It is good practice to
represent final variables in all uppercase, using
underscore to separate words.

Initializing a final variable

We must initialize a final variable, otherwise
compiler will throw compile-time error.A final
variable can only be initialized once, either via an
initializer or an assignment statement. There are
three ways to initialize a final variable:

(i) You can initialize a final variable when it is
declared.This approach is the most common.
A final variable is called blank final variable,if
it is not initialized while declaration. Below
are the two ways to initialize a blank final
variable.

(ii) A blank final variable can be initialized inside
instance-initializer block or inside constructor.
If you have more than one constructor in
your class then it must be initialized in all of
them, otherwise compile time error will be
thrown.

(iii) A blank final static variable can be initialized
inside static block.

class Bike9

{

final int speedlimit=90;//final variable

void run()

{

speedlimit=400;

}

public static void main(String args[])

{

Bike9 obj=new Bike9();

obj.run();

}

 }

2. Final methods

When a method is declared with final
keyword, it is called a final method. A final method
cannot be overridden. The Object class does this—
a number of its methods are final.We must declare
methods with final keyword for which we required
to follow the same implementation throughout all
the derived classes. The following fragment illustrates

B.Sc. III YEAR V SEMESTER

72
Rahul Publications

Rahul Publications

final keyword with a method:

class Bike

{

final void run(){System.out.println(“running”);}

}

class Honda extends Bike

{

void run()

{

System.out.println(“running safely with 100kmph”);

}

public static void main(String args[])

{

Honda honda= new Honda();

honda.run();

}

}

3. Final classes

When a class is declared with final keyword, it is called a final class. A final class cannot be
extended(inherited). There are two uses of a final class :

(i) One is definitely to prevent inheritance, as final classes cannot be extended. For example, all Wrapper
Classes like Integer,Float etc. are final classes. We can not extend them.

(ii) The other use of final with classes is to create an immutable class like the predefined Stringclass.Youcan
not make a class immutable without making it final.

final class Bike

{

}

class Honda1 extends Bike

{

void run()

{

System.out.println(“running safely with 100kmph”);

}

public static void main(String args[])

{

Honda1 honda= new Honda1();

honda.run();

}

}

UNIT - II PROGRAMMING IN JAVA

73
Rahul Publications

Rahul Publications

2.8 ABSTRACT CLASSES

Q29. What is an abstract class and method?
What is the need of abstract class?

Ans : (July-21)

Abstraction is a process of hiding the
implementation details and showing only
functionality to the user.

Another way, it shows only important things
to the user and hides the internal details for example
sending sms, you just type the text and send the
message. You don’t know the internal processing
about the message delivery.

Abstraction lets you focus on what the object
does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in
java

i. Abstract class (0 to 100%)

ii. Interface (100%)

Abstract class

If a class contain any abstract method then
the class is declared as abstract class. An abstract
class is never instantiated. It is used to provide
abstraction. Although it does not provide 100%
abstraction because it can also have concrete
method.

Syntax

abstract class class_name { }

Abstract method

Method that are declared without any body
within an abstract class are called abstract method.
The method body will be defined by its subclass.
Abstract method can never be final and static. Any
class that extends an abstract class must implement
all the abstract methods declared by the super class.

Syntax

abstract return_typefunction_name (); //
No definition

Example of Abstract class

abstract class A

{

abstract void callme();

}

class B extends A

{

void callme()

{

System.out.println(“this is callme.”);

}

public static void main(String[]args)

{

B b=newB();

b.callme();

}

}

Abstract class with concrete (normal) method

Abstract classes can also have normal methods
with definitions, along with abstract methods.

abstract class A

{

abstract void callme();

public void normal()

{

System.out.println(“this is concrete
method”);

}

}

class B extends A

{

void callme()

{

System.out.println(“this is callme.”);

}

public static void main(String[] args)

{

B.Sc. III YEAR V SEMESTER

74
Rahul Publications

Rahul Publications

B b = new B();

b.callme();

b.normal();

}

}

Points to Remember

1. Abstract classes are not Interfaces. They are
different, we will study this when we will study
Interfaces.

2. An abstract class may or may not have an
abstract method. But if any class has even a
single abstract method, then it must be
declared abstract.

3. Abstract classes can have Constructors,
Member variables and Normal methods.

4. Abstract classes are never instantiated.

5. When you extend Abstract class with abstract
method, you must define the abstract method
in the child class, or make the child class
abstract.

Use of Abstract Methods & Abstract Class

Abstract methods are usually declared where
two or more subclasses are expected to do a similar
thing in different ways through different
implementations. These subclasses extend the same
Abstract class and provide different implementations
for the abstract methods.

Abstract classes are used to define generic
types of behaviors at the top of an object-oriented
programming class hierarchy, and use its subclasses
to provide implementation details of the abstract
class.

2.8.1 Interfaces

Q30. Define Interface? Explain the declara-
tion and implementation of Interface.

Ans : (July-21)

An interface in java is a blueprint of a class. It
has static constants and abstract methods.

The interface in java is a mechanism to
achieve abstraction. There can be only abstract
methods in the java interface not method body. It

is used to achieve abstraction and multiple
inheritance in Java.

In other words, you can say that interfaces
can have methods and variables but the methods
declared in interface contain only method signature,
not body.

play() play()

play()

Media player

CD DVD

play()

play()play()

combo

Media player

CD DVD

An interface is a reference type in Java. It is
similar to class. It is a collection of abstract methods.
A class implements an interface, thereby inheriting
the abstract methods of the interface. Java Interface
also represents IS-A relationship.

Along with abstract methods, an interface may
also contain constants, default methods, static
methods, and nested types. Method bodies exist
only for default methods and static methods.

Writing an interface is similar to writing a class.
But a class describes the attributes and behaviors of
an object. And an interface contains behaviors that
a class implements.

UNIT - II PROGRAMMING IN JAVA

75
Rahul Publications

Rahul Publications

Unless the class that implements the interface
is abstract, all the methods of the interface need to
be defined in the class.

An interface is similar to a class in the following
ways -

 An interface can contain any number of
methods.

 An interface is written in a file with a .java
extension, with the name of the interface
matching the name of the file.

 The byte code of an interface appears in a
.class file.

 Interfaces appear in packages, and their
corresponding bytecode file must be in a
directory structure that matches the package
name.

However, an interface is different from a class
in several ways, including-

 You cannot instantiate an interface.

 An interface does not contain any
constructors.

 All of the methods in an interface are abstract.

 An interface cannot contain instance fields.
The only fields that can appear in an interface
must be declared both static and final.

 An interface is not extended by a class; it is
implemented by a class.

 An interface can extend multiple interfaces.

Declaring Interfaces

The interface keyword is used to declare an
interface. Here is a simple example to declare an
interface-

Example

Following is an example of an interface-

/* File name : NameOfInterface.java */

importjava.lang.*;

// Any number of import statements

publicinterfaceNameOfInterface{

// Any number of final, static fields

// Any number of abstract method
 declarations\

}

Interfaces have the following properties-

 An interface is implicitly abstract. You do not
need to use the abstract keyword while
declaring an interface.

 Each method in an interface is also implicitly
abstract, so the abstract keyword is not
needed.

 Methods in an interface are implicitly public.

Example

/* File name : Animal.java */

interface Animal

{

public void eat();

public void travel();

}

Implementing Interfaces

When a class implements an interface, you
can think of the class as signing a contract, agreeing
to perform the specific behaviors of the interface. If
a class does not perform all the behaviors of the
interface, the class must declare itself as abstract.

A class uses the implements keyword to
implement an interface. The implements keyword
appears in the class declaration following the
extends portion of the declaration.

Example

/* File name : MammalInt.java */

public class MammalIntimplements Animal

{

public void eat()

{

System.out.println(“Mammal eats”);

}

public void travel()

{

B.Sc. III YEAR V SEMESTER

76
Rahul Publications

Rahul Publications

System.out.println(“Mammal travels”);

}

public int noOfLegs()

{

return0;

}

public static void main(Strin gargs[])

{

MammalInt m =new MammalInt();

m.eat();

m.travel();

}

}

Output

Mammal eats

Mammal travels

When overriding methods defined in
interfaces, there are several rules to be followed-

 Checked exceptions should not be declared
on implementation methods other than the
ones declared by the interface method or
subclasses of those declared by the interface
method.

 The signature of the interface method and
the same return type or subtype should be
maintained when overriding the methods.

 An implementation class itself can be abstract
and if so, interface methods need not be
implemented.

When implementation interfaces, there are
several rules –

 A class can implement more than one
interface at a time.

 A class can extend only one class, but
implement many interfaces.

 An interface can extend another interface, in
a similar way as a class can extend another
class.

Extending Interfaces

An interface can extend another interface in
the same way that a class can extend another class.
The extends keyword is used to extend an interface,
and the child interface inherits the methods of the
parent interface.

The following Sports interface is extended by
Hockey and Football interfaces.

Example

// Filename: Sports.java

public interface Sports

{

public void setHomeTeam(String name);

public void set VisitingTeam(String name);

}

// Filename: Football.java

public interface Football extends Sports

{

public void homeTeamScored(int points);

public void visitingTeamScored(int points);

public void endOfQuarter(int quarter);

}

// Filename: Hockey.java

publicinterfaceHockeyextendsSports

{

public void homeGoalScored();

public void visitingGoalScored();

public void endOfPeriod(int period);

public void overtimePeriod(intot);

}

The Hockey interface has four methods, but
it inherits two from Sports; thus, a class that
implements Hockey needs to implement all six
methods. Similarly, a class that implements Football
needs to define the three methods from Football
and the two methods from Sports.

UNIT - II PROGRAMMING IN JAVA

77
Rahul Publications

Rahul Publications

Extending Multiple Interfaces

A Java class can only extend one parent class. Multiple inheritance is not allowed. Interfaces are not
classes, however, and an interface can extend more than one parent interface.

The extends keyword is used once, and the parent interfaces are declared in a comma-separated
list.

Understanding relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another
interface but a class implements an interface.

class

classclass

interface

interface

interface

extendsextends implements

Important points about interface or summary of article:

 We can’t create instance(interface can’t be instantiated) of interface but we can make reference of it
that refers to the Object of its implementing class.

 A class can implement more than one interface.

 An interface can extends another interface or interfaces (more than one interface) .

 A class that implements interface must implements all the methods in interface.

 All the methods are public and abstract. And all the fields are public, static, and final.

 It is used to achieve multiple inheritance.

 It is used to achieve loose coupling.

Q31. Write a program to implement Interfaces?

Ans :
import java.io.*;

interface Vehicle

{

 // all are the abstract methods.

 voidc hangeGear(in ta);

 void speedUp(in ta);

 voidapplyBrakes(inta);

}

class Bicycle implements Vehicle

{

 int speed;

B.Sc. III YEAR V SEMESTER

78
Rahul Publications

Rahul Publications

 int gear;

 // to change gear@Override

 public void changeGear(int new Gear)

{

 gear = new Gear;

 }

// to increase speed@Override

 public void speedUp(int increment)

{

speed = speed + increment;

 }

// to decrease speed @Override

 public void applyBrakes(int decrement)

{

 speed = speed - decrement;

 }

 public void printStates()

{

 System.out.println(“speed: “+ speed+ “ gear: “+ gear);

 }

}

class Bike implements Vehicle

{

 int speed;

 int gear;

 public void change Gear(intnewGear)// to change gear @Override

{

 gear = newGear;

 }

 public void speedUp(int increment)// to increase speed @Override

{

 speed = speed + increment;

 }

 // to decrease speed@Override

UNIT - II PROGRAMMING IN JAVA

79
Rahul Publications

Rahul Publications

public void applyBrakes(int decrement)

{

 speed = speed - decrement;

 }

 public void printStates()

{

 System.out.println(“speed: “+ speed + “ gear: “+ gear);

 }

}

class GFG

{

public static void main (String[] args)

{

 // creating an inatance of Bicycle doing some operations

Bicycle bicycle = newBicycle();

 bicycle.changeGear(2);

 bicycle.speedUp(3);

 bicycle.applyBrakes(1);

 System.out.println(“Bicycle present state :”);

 bicycle.printStates();

 // creating instance of bike.

 Bike bike = newBike();

 bike.changeGear(1);

 bike.speedUp(4);

 bike.applyBrakes(3);

 System.out.println(“Bike present state :”);

 bike.printStates();

}

}

Output

Bicycle present state :

speed: 2 gear: 2

Bike present state :

speed: 1 gear: 1

B.Sc. III YEAR V SEMESTER

80
Rahul Publications

Rahul Publications

2.8.2 Abstract Classes Verses Interfaces

Q32. Differentiate the use of Abstract class and Interface?

Ans : (June-19-MGU, Dec.-18-KU)

Abstract class and interface both are used to achieve abstraction where we can declare the abstract
methods. Abstract class and interface both can’t be instantiated.

But there are many differences between abstract class and interface that are given below.

Example:
public interface Drawable
{
void draw();
}

Example:
public abstract class Shape
{
public abstract void draw();
}

Members of a Java interface are public by default. A Javaabstractclasscan have class members like private,
protected, etc.

An interface classcan be implemented using keyword
?implements?.

An abstract classcan be extended using keyword
?extends?.

An interface can extend another Java interface only.An abstract classcan extend another Java class and
implement multiple Java interfaces.

The interface keyword is used to declare interface.The abstract keyword is used to declare abstract class.

Interface can't provide the implementation of abstract class.Abstract class can provide the implementation of
interface.

Interface has only static and final variables.Abstract class can have final, non-final, static and non-
static variables.

Interface supports multiple inheritance.Abstract class doesn't support multiple inheritance.

Interface can have only abstract methods. Since Java 8, it can have
default and static methods also.

Abstract class can have abstract and non-abstract
methods.

InterfaceAbstract class

Example:
public interface Drawable
{
void draw();
}

Example:
public abstract class Shape
{
public abstract void draw();
}

Members of a Java interface are public by default. A Javaabstractclasscan have class members like private,
protected, etc.

An interface classcan be implemented using keyword
?implements?.

An abstract classcan be extended using keyword
?extends?.

An interface can extend another Java interface only.An abstract classcan extend another Java class and
implement multiple Java interfaces.

The interface keyword is used to declare interface.The abstract keyword is used to declare abstract class.

Interface can't provide the implementation of abstract class.Abstract class can provide the implementation of
interface.

Interface has only static and final variables.Abstract class can have final, non-final, static and non-
static variables.

Interface supports multiple inheritance.Abstract class doesn't support multiple inheritance.

Interface can have only abstract methods. Since Java 8, it can have
default and static methods also.

Abstract class can have abstract and non-abstract
methods.

InterfaceAbstract class

2.9 PACKAGES

Q33. What is a package in java?
(OR)

Define package.

Ans : (July-19)

Package are used in Java, in-order to avoid name conflicts and to control access of class, interface
and enumeration etc. A package can be defined as a group of similar types of classes, interface, enumeration
or sub-package. Using package it becomes easier to locate the related classes and it also provides a good
structure for projects with hundreds of classes and other files.

Package in Java is a mechanism to encapsulate a group of classes, sub packages and interfaces.
Packages are used for:

 Preventing naming conflicts. For example there can be two classes with name Employee in two
packages, college.staff.cse.Employee and college.staff.ee.Employee

UNIT - II PROGRAMMING IN JAVA

81
Rahul Publications

Rahul Publications

 Making searching/locating and usage of
classes, interfaces, enumerations and
annotations easier

 Providing controlled access: protected and
default have package level access control. A
protected member is accessible by classes in
the same package and its subclasses. A default
member (without any access specifier) is
accessible by classes in the same package only.

 Packages can be considered as data
encapsulation (or data-hiding).

Types of Packages: Built-in and User defined

 Built-in Package: Existing Java package for
example java.lang, java.util etc.

 User-defined-Package: Java package
created by user to categorize their project’s
classes and interface.

Advantage of Java Package

1. Java package is used to categorize the classes
and interfaces so that they can be easily
maintained.

2. Java package provides access protection.

3. Java package removes naming collision.

2.9.1 Creating and Using Packages

Q34. How you can create a package?

Ans :
Creating a package in java is quite easy. Simply

include a package command followed by name of
the package as the first statement in java source file.

package mypack;

publicclassemployee

{

statement;

}

The above statement will create a package
woth name mypack in the project directory. Java
uses file system directories to store packages. For
example the .java file for any class you define to be
part of mypack package must be stored in a
directory called mypack.

Additional points about package:

 A package is always defined as a separate
folder having the same name as the package
name.

 Store all the classes in that package folder.

 All classes of the package which we wish to
access outside the package must be declared
public.

 All classes within the package must have the
package statement as its first line.

 All classes of the package must be compiled
before use (So that they are error free)

How to compile Java programs inside
packages?

This is just like compiling a normal java
program. If you are not using any IDE, you need
to follow the steps given below to successfully
compile your packages:

javac-d directory javafilename

Example

javac-d . FirstProgram.java

The -d switch specifies the destination where
to put the generated class file. You can use any
directory name like d:/abc (in case of windows) etc.
If you want to keep the package within the same
directory, you can use . (dot).

You need to use fully qualified name e.g.
learnjava.FirstProgram etc to run the class.

To Compile:

javac-d . FirstProgram.java

To Run:

java learnjava.FirstProgram

Import Keyword

Import keyword is used to import built-in and
user-defined packages into your java source file so
that your class can refer to a class that is in another
package by directly using its name.

There are 3 different ways to refer to any class
that is present in a different package:

B.Sc. III YEAR V SEMESTER

82
Rahul Publications

Rahul Publications

Using fully qualified name (But this is not a
good practice.)

If you use fully qualified name to import any
class into your program, then only that particular
class of the package will be accessible in your
program, other classes in the same package will not
be accessible. For this approach, there is no need
to use the import statement. But you will have to
use the fully qualified name every time you are
accessing the class or the interface, which can look
a little untidy if the package name is long.

This is generally used when two packages
have classes with same names. For example:
java.util and java.sql packages contain Date class.

Example :

//save by A.java

package pack;

public class A

{

public void msg()

{

System.out.println(“Hello”);

}

}

//save by B.java

package mypack;

class B

{

public static void main(String args[])

{

pack.A obj = new pack.A();

obj.msg();

}

}

2.10 ACCESS PROTECTION

Q35. What are the restrictions imposed on
java packages?

(OR)
Discuss the various levels of access
protection available.

Ans :
Java provides a number of access modifiers

to set access levels for classes, variables, methods,
and constructors. The four access levels are,

 Visible to the package, the default. No
modifiers are needed.

 Visible to the class only (private).

 Visible to the world (public).

 Visible to the package and all subclasses
(protected).

Default Access Modifier - No Keyword

Default access modifier means we do not
explicitly declare an access modifier for a class, field,
method, etc.

A variable or method declared without any
access control modifier is available to any other class
in the same package. The fields in an interface are
implicitly public static final and the methods in an
interface are by default public.

Access Protection in Packages

Access modifiers define the scope of the class
and its members (data and methods). For example,
private members are accessible within the same class
members (methods). Java provides many levels of
security that provides the visibility of members
(variables and methods) within the classes,
subclasses, and packages.

Packages are meant for encapsulating, it
works as containers for classes and other
subpackages. Class acts as containers for data and
methods. There are four categories, provided by
Java regarding the visibility of the class members
between classes and packages:

1. Subclasses in the same package

2. Non-subclasses in the same package

3. Subclasses in different packages

4. Classes that are neither in the same package
nor subclasses

UNIT - II PROGRAMMING IN JAVA

83
Rahul Publications

Rahul Publications

The three main access modifiers private, public and protected provides a range of ways to access
required by these categories.

Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same package subclass Yes Yes Yes Yes

Same package non-subclass Yes Yes Yes Yes

Different package subclass No No Yes Yes

Different package non-subclass No No No Yes

Simply remember, private cannot be seen outside of its class, public can be access from anywhere,
and protected can be accessible in subclass only in the hierarchy.

A class can have only two access modifier, one is default and another is public. If the class has
default access then it can only be accessed within the same package by any other code. But if the class has
public access then it can be access from anywhere by any other code.

Example:

//PCKG1_ClassOne.java

package pckg1;

public class PCKG1_ClassOne

{

int a = 1;

private int pri_a = 2;

protected int pro_a = 3;

public int pub_a = 4;

public PCKG1_ClassOne()

{

System.out.println(“base class constructor called”);

System.out.println(“a = “ + a);

System.out.println(“pri_a = “ + pri_a);

System.out.println(“pro_a “+ pro_a);

System.out.println(“pub_a “+ pub_a);

}

}

The above file PCKG1_ClassOne belongs to package pckg1, and contains data members with all
access modifiers.

//PCKG1_ClassTwo.java

package pckg1;

B.Sc. III YEAR V SEMESTER

84
Rahul Publications

Rahul Publications

class PCKG1_ClassTwo extends PCKG1_ClassOne
{

PCKG1_ClassTwo()
{

System.out.println(“derived class constructor called”);
System.out.println(“a = “ + a);
//accessible in same class only
//System.out.println(“pri_a = “ + pri_a);
System.out.println(“pro_a “+ pro_a);
System.out.println(“pub_a =” + pub_a);

}
}

2.11 WRAPPER CLASSES IN JAVA

Q36. What are wrapper class? What is its use in JAVA?

Ans : (Dec.-19, Dec.-18)

A Wrapper class is a class whose object wraps or contains a primitive data types. When we create an
object to a wrapper class, it contains a field and in this field, we can store a primitive data types. In other
words, we can wrap a primitive value into a wrapper class object.

Need

1. They convert primitive data types into objects. Objects are needed if we wish to modify the arguments
passed into a method (because primitive types are passed by value).

2. The classes in java.util package handles only objects and hence wrapper classes help in this case
also.

3. Data structures in the Collection framework, such as ArrayList and Vector, store only objects (reference
types) and not primitive types.

4. An object is needed to support synchronization in multithreading.

Importance

There are mainly two uses with wrapper classes.

1. To convert simple data types into objects, that is, to give object form to a data type; here constructors
are used.

2. To convert strings into data types (known as parsing operations), here methods of type parseXXX()
are used.

Features

1. Wrapper classes convert numeric strings into numeric values.

2. The way to store primitive data in an object.

3. The valueOf() method is available in all wrapper classes except Character

4. All wrapper classes have typeValue() method. This method returns the value of the object as its
primitive type.

UNIT - II PROGRAMMING IN JAVA

85
Rahul Publications

Rahul Publications

Primitive Data types and their Corresponding Wrapper class

boolean or StringBooleanboolean

charCharacterchar

double or StringDoubledouble

float, double or StringFloatfloat

long or StringLonglong

int or StringIntegerint

short or StringShortshort

byte or StringBytebyte

Constructor ArgumentsWrapper classPrimitive type

boolean or StringBooleanboolean

charCharacterchar

double or StringDoubledouble

float, double or StringFloatfloat

long or StringLonglong

int or StringIntegerint

short or StringShortshort

byte or StringBytebyte

Constructor ArgumentsWrapper classPrimitive type

Object

Number Character Boolean

Byte Short Integer Long Float Double

Fig.: Wrapper classes Hierarchy

Example
import java.util.ArrayList;

class Autoboxing
{

public static void main(String[] args)

{
char ch = ‘a’;

// Autoboxing- primitive to Character object conversion

Character a = ‘ch’;
ArrayList<Integer> arrayList = new ArrayList<Integer>();

// Autoboxing because ArrayList stores only objects

arrayList.add(25);
// printing the values from object

System.out.println(arrayList.get(0));

}
}

Output:

25

B.Sc. III YEAR V SEMESTER

86
Rahul Publications

Rahul Publications

Q37. Write a java program to implement Wrapper Class in Java?

Ans : (Dec.-19)

class WrappingUnwrapping

{

public static void main(String args[])

 {

// byte data type

 byte a = 1;

 // wrapping around Byte object

 Byte byte obj = new Byte(a);

 // int data type

 intb = 10;

 //wrapping around Integer object

 Integer intobj = newInteger(b);

 // float data type

 floatc = 18.6f;

 // wrapping around Float object

 Float float obj = new Float(c);

 // double data type

 doubled = 250.5;

 // Wrapping around Double object

 Double double obj = new Double(d);

 // char data type

 char e=’a’;

 // wrapping around Character object

 Character char obj=e;

 // printing the values from objects

 System.out.println(“Values of Wrapper objects (printing as objects)”);

 System.out.println(“Byte object byteobj: “+ byteobj);

 System.out.println(“Integer object intobj: “+ intobj);

 System.out.println(“Float object floatobj: “+ floatobj);

 System.out.println(“Double object doubleobj: “+ doubleobj);

 System.out.println(“Character object charobj: “+ charobj);

 // objects to data types (retrieving data types from objects)

UNIT - II PROGRAMMING IN JAVA

87
Rahul Publications

Rahul Publications

 // unwrapping objects to primitive data types

 byte bv = byte obj;

 int iv = int obj;

 float fv = float obj;

 double dv = double obj;

 char cv = charobj;

 // printing the values from data types

 System.out.println(“Unwrapped values (printing as data types)”);

 System.out.println(“byte value, bv: “+ bv);

 System.out.println(“int value, iv: “+ iv);

 System.out.println(“float value, fv: “+ fv);

 System.out.println(“double value, dv: “+ dv);

 System.out.println(“char value, cv: “+ cv);

 }

}

Output:

Values of Wrapper objects (printing as objects)

Byte object byteobj: 1

Integer object intobj: 10

Float object floatobj: 18.6

Double object doubleobj: 250.5

Character object charobj: a

Unwrapped values (printing as data types)

byte value, bv: 1

int value, iv: 10

float value, fv: 18.6

double value, dv: 250.5

char value, cv: a

2.12 STRING CLASS, STRINGBUFFER CLASS

Q38. What is a string in java? Name few string methods with example program?

Ans :
Strings, which are widely used in Java programming, are a sequence of characters. In Java

programming language, strings are treated as objects.

The Java platform provides the String class to create and manipulate strings.

B.Sc. III YEAR V SEMESTER

88
Rahul Publications

Rahul Publications

Creating Strings

String can be created in number of ways, here are a few ways of creating string object.

a) Using a String Literal

String literal is a simple string enclosed in double quotes “ “. A string literal is treated as a String
object.

String str1 =”Hello”;

b) Using another String object:

String str2 =newString(str1);

c) Using new Keyword

String str3 =newString(“Java”);

d) Using + operator (Concatenation)

String str4 = str1 + str2;

or,

String str5 =”hello”+”Java”;

Each time you create a String literal, the JVM checks the string pool first. If the string literal already
exists in the pool, a reference to the pool instance is returned. If string does not exist in the pool, a new
string object is created, and is placed in the pool. String objects are stored in a special memory area known
as string constant pool inside the heap memory.

String Object and How they are stored

When we create a new string object using string literal, that string literal is added to the string pool,
if it is not present there already.

String str=”Hello”;

''hello''str

Heap

string object

String Methods

 int length(): Returns the number of characters in the String.

“GeeksforGeeks”.length(); // returns 13

 Char charAt(int i): Returns the character at ith index.

“GeeksforGeeks”.charAt(3); // returns ‘k’

 String substring (int i): Return the substring from the ith index character to end.

GeeksforGeeks”.substring(3); // returns “ksforGeeks”

UNIT - II PROGRAMMING IN JAVA

89
Rahul Publications

Rahul Publications

 String substring (int i, int j): Returns the substring from i to j-1 index.

“GeeksforGeeks”.substring(2, 5); // returns “eks”

 String concat(String str): Concatenates specified string to the end of this string.

String s1 = “Geeks”;

String s2 = “forGeeks”;

String output = s1.concat(s2); // returns “GeeksforGeeks”

 int indexOf (String s): Returns the index within the string of the first occurrence of the specified
string.

String s = “Learn Share Learn”;

int output = s.indexOf(“Share”); // returns 6

 int indexOf (String s, int i): Returns the index within the string of the first occurrence of the
specified string, starting at the specified index.

String s = “Learn Share Learn”;

int output = s.indexOf(‘a’,3);// returns 8

 Int lastindexOf(int ch): Returns the index within the string of the last occurrence of the specified
string.

String s = “Learn Share Learn”;

int output = s.lastindexOf(‘a’); // returns 14

 boolean equals(Object otherObj): Compares this string to the specified object.

Boolean out = “Geeks”.equals(“Geeks”); // returns true

Boolean out = “Geeks”.equals(“geeks”); // returns false

 boolean equalsIgnoreCase (String anotherString): Compares string to another string, ignoring
case considerations.

Boolean out= “Geeks”.equalsIgnoreCase(“Geeks”); // returns true

Boolean out = “Geeks”.equalsIgnoreCase(“geeks”); // returns true

 int compareTo(String anotherString): Compares two string lexicographically.

int out = s1.compareTo(s2); // where s1 ans s2 are strings to be compared

This returns difference s1-s2. If :

out < 0 // s1 comes before s2

out = 0 // s1 and s2 are equal.

out >0 // s1 comes after s2.

 int compareToIgnoreCase(String anotherString): Compares two string lexicographically,
ignoring case considerations.

int out = s1.compareToIgnoreCase(s2);

// where s1 ans s2 are

// strings to be compared

B.Sc. III YEAR V SEMESTER

90
Rahul Publications

Rahul Publications

This returns difference s1-s2. If :

out < 0 // s1 comes before s2

out = 0 // s1 and s2 are equal.

out >0 // s1 comes after s2.

Note: In this case, it will not consider case of a letter (it will ignore whether it is uppercase or lowercase).

 String toLowerCase(): Converts all the characters in the String to lower case.

String word1 = “HeLLo”;

String word3 = word1.toLowerCase(); // returns “hello”

String toUpperCase(): Converts all the characters in the String to upper case.

String word1 = “HeLLo”;

String word2 = word1.toUpperCase(); // returns “HELLO”

 String trim(): Returns the copy of the String, by removing whitespaces at both ends. It does not
affect whitespaces in the middle.

String word1 = “ Learn Share Learn “;

String word2 = word1.trim(); // returns “Learn Share Learn”

 String replace (char oldChar, char newChar): Returns new string by replacing all occurrences
of oldChar with newChar.

String s1 = “feeksforfeeks”;

String s2 = “feeksforfeeks”.replace(‘f’ ,’g’); // returns “geeksgorgeeks”

Program

import java.io.*;

import java.util.*;

class Test

{

public static void main (String[] args)

{

String s= “GeeksforGeeks”;

// or S tring s= new String (“GeeksforGeeks”);

// Returns the number of characters in the String.

System.out.println(“String length = “+ s.length());

// Returns the character at ith index.

System.out.println(“Character at 3rd position = “+ s.charAt(3));

 // Return the substring from the ith index character // to end of string

System.out.println(“Substring “+ s.substring(3));

// Returns the substring from i to j-1 index.

UNIT - II PROGRAMMING IN JAVA

91
Rahul Publications

Rahul Publications

System.out.println(“Substring = “+ s.substring(2,5));

// Concatenates string2 to the end of string1.

String s1 = “Geeks”;

String s2 = “forGeeks”;

System.out.println(“Concatenated string = “+s1.concat(s2));

// Returns the index within the string // of the first occurrence of the specified string.

String s4 = “Learn Share Learn”;

System.out.println(“Index of Share “+s4.indexOf(“Share”));

// Returns the index within the string of the // first occurrence of the specified string,

// starting at the specified index.

System.out.println(“Index of a = “+ s4.indexOf(‘a’,3));

// Checking equality of Strings

Boolean out = “Geeks”.equals(“geeks”);

System.out.println(“Checking Equality “+ out);

out = “Geeks”.equals(“Geeks”);

System.out.println(“Checking Equality “+ out);

out = “Geeks”.equalsIgnoreCase(“gEeks “);

System.out.println(“Checking Equality”+ out);

intout1 = s1.compareTo(s2);

System.out.println(“If s1 = s2”+ out);

// Converting cases

String word1 = “GeeKyMe”;

System.out.println(“Changing to lower Case “+word1.toLowerCase());

// Converting cases

String word2 = “GeekyME”;

System.out.println(“Changing to UPPER Case “+ word1.toUpperCase());

// Trimming the word

String word4 = “ Learn Share Learn “;

System.out.println(“Trim the word “+ word4.trim());

// Replacing characters

String str1 = “feeksforfeeks”;

System.out.println(“Original String “+ str1);

String str2 = “feeksforfeeks”.replace(‘f’,’g’) ;

System.out.println(“Replaced f with g -> “+ str2);

 }

}

B.Sc. III YEAR V SEMESTER

92
Rahul Publications

Rahul Publications

Output :

String length = 13

Character at 3rd position = k

Substring ksforGeeks

Substring = eks

Concatenated string = GeeksforGeeks

Index of Share 6

Index of a = 8

Checking Equality false

Checking Equality true

Checking Equalityfalse

If s1 = s2false

Changing to lower Case geekyme

Changing to UPPER Case GEEKYME

Trim the word Learn Share Learn

Original String feeksforfeeks

Replaced f with g -> geeksgorgeeks

2.12.1 String Buffer Class

Q39. What is a String Buffer class?

(OR)

Explain the usage of string buffers class.

Ans : (Dec.-18)

String Buffer class is used to create a mutable string object i.e its state can be changed after it is
created. It represents growable and writable character sequence. As we know that String objects are
immutable, so if we do a lot of changes with String objects, we will end up with a lot of memory leak.

So StringBuffer class is used when we have to make lot of modifications to our string. It is also
thread safe i.e multiple threads cannot access it simultaneously. StringBuffer defines 4 constructors. They
are,

1. StringBuffer ()

2. StringBuffer (int size)

3. StringBuffer (String str)

4. StringBuffer (charSequence []ch)

 StringBuffer() creates an empty string buffer and reserves room for 16 characters.

 stringBuffer(int size) creates an empty string and takes an integer argument to set capacity of the
buffer.

UNIT - II PROGRAMMING IN JAVA

93
Rahul Publications

Rahul Publications

Methods

Some of the most used methods are:

 length() and capacity(): The length of a StringBuffer can be found by the length() method,
while the total allocated capacity can be found by the capacity() method.

 append(): It is used to add text at the end of the existence text. Here are a few of its forms:

StringBuffer append(String str)

StringBuffer append(int num)

 insert(): It is used to insert text at the specified index position. These are a few of its forms:

StringBuffer insert(int index, String str)

StringBuffer insert(int index, char ch)

 reverse(): It can reverse the characters within a StringBuffer object using reverse().This method
returns the reversed object on which it was called.

 delete() and deleteCharAt(): It can delete characters within a StringBuffer by using the methods
delete()and deleteCharAt (). The delete()method deletes a sequence of characters from the
invoking object. Here, start Index specifies the index of the first character to remove, and end
Index specifies an index one past the last character to remove. Thus, the substring deleted runs
from start Index to endIndex–1. The resulting StringBuffer object is returned. The deleteCharAt(
)method deletes the character at the index specified by loc. It returns the resulting StringBuffer
object.These methods are shown here:

String Buffer delete(int startIndex, int endIndex)

StringBuffer deleteCharAt(int loc)

 replace(): It can replace one set of characters with another set inside a StringBuffer object by
calling replace(). The substring being replaced is specified by the indexes start Index and endIndex.
Thus, the substring at start Index through endIndex–1 is replaced. The replacement string is passed
in str.The resulting StringBuffer object is returned.Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

 ensureCapacity(): It is used to increase the capacity of a StringBuffer object. The new capacity
will be set to either the value we specify or twice the current capacity plus two (i.e. capacity+2),
whichever is larger. Here, capacity specifies the size of the buffer.

void ensureCapacity(int capacity)

 capacity():This method returns the current capacity of StringBuffer object.

StringBuffer str =newStringBuffer();

System.out.println(str.capacity());

B.Sc. III YEAR V SEMESTER

94
Rahul Publications

Rahul Publications

Some Interesting Facts

1. java.lang.StringBuffer extends (or inherits from) Object class.

2. All Implemented Interfaces of StringBuffer class:Serializable, Appendable, CharSequence.

3. public final class StringBuffer extends Object implements Serializable, CharSequence

4. String buffers are safe for use by multiple threads. The methods can be synchronized wherever
necessary so that all the operations on any particular instance behave as if they occur in some serial
order.

5. Whenever an operation occurs involving a source sequence (such as appending or inserting from a
source sequence) this class synchronizes only on the string buffer performing the operation, not on
the source.

6. It inherits some of the methods from Object class which are clone, equals, finalize, getClass, hashCode,
notify, notifyAll.

String Builder class

String Builder is identical to StringBuffer except for one important difference that it is not synchronized,
which means it is not thread safe. Its because StringBuilder methods are not synchronised.

StringBuilder Constructors

1. StringBuilder (), creates an empty StringBuilder and reserves room for 16 characters.

2. StringBuilder (int size), create an empty string and takes an integer argument to set capacity of
the buffer.

3. StringBuilder (String str), create a StringBuilder object and initialize it with string str.

UNIT - II PROGRAMMING IN JAVA

95
Rahul Publications

Rahul Publications

1. Define Constructors.

Ans :
Constructor is a special method that creates

and return an object of the class in which they are
defined. Constructor has the same name as that of
class and has no return type not even void

Types of Constructor in Java

There are three types of constructor in Java-

(i) Default Constructor

(ii) Parameterized Constructor

(iii) Copy Constructor

2. Discuss constructors overloading with
super keyword.

Ans :
A constructor is a special member function

that gets executed on the object creation
automatically. It is responsible to initialize the objects
of its class and to allocate memory space for them.
Constructors have same name as the class name.
But they does not have return type and void. They
does not even return any values. The constructor
will be executed whenever the objects are created.
When a class object is created, the instance variables
for it must be initialized with some values using the
initializer. There are two types of constructors, they
are,

(i) Default constructor

(ii) Parameterized constructor.

3. What is an abstract class?

Ans :
If a class contain any abstract method then

the class is declared as abstract class. An abstract
class is never instantiated. It is used to provide
abstraction. Although it does not provide 100%
abstraction because it can also have concrete
method.

Syntax

abstract class class_name { }

Short Question and Answers

4. Define Interface?

Ans :
An interface in java is a blueprint of a class.

It has static constants and abstract methods.

The interface in java is a mechanism to
achieve abstraction. There can be only abstract
methods in the java interface not method body. It
is used to achieve abstraction and multiple
inheritance in Java.

In other words, you can say that interfaces
can have methods and variables but the methods
declared in interface contain only method signature,
not body.

5. Protection access

Ans :
Java provides many levels of protections to

the variables and methods to be visible which are
present inside classes, subclasses and packages. The
classes and packages both encapsulates the name
space, scope of variables and methods. A class
consist of data and code whereas package consist
of related classes and sub packages. Because of the
interaction between classes and packages,

Java offers the following four categories of
visibility for accessing class members. They are,

(i) Subclasses in the same package

(ii) Non-sub classes in the same package

(iii) Sub classes in different packages

6. What is a package in java?

Ans :
Package are used in Java, in-order to avoid

name conflicts and to control access of class, interface
and enumeration etc. A package can be defined as
a group of similar types of classes, interface,
enumeration or sub-package. Using package it
becomes easier to locate the related classes and it
also provides a good structure for projects with
hundreds of classes and other files.

B.Sc. III YEAR V SEMESTER

96
Rahul Publications

Rahul Publications

Package in Java is a mechanism to encapsulate
a group of classes, sub packages and interfaces.
Packages are used for:

 Preventing naming conflicts. For example
there can be two classes with name Employee
in two packages, college.staff.cse.Employee
and college.staff.ee.Employee

 Making searching/locating and usage of
classes, interfaces, enumerations and
annotations easier

 Providing controlled access: protected and
default have package level access control. A
protected member is accessible by classes in
the same package and its subclasses. A default
member (without any access specifier) is
accessible by classes in the same package only.

 Packages can be considered as data
encapsulation (or data-hiding).

Types of Packages: Built-in and User defined

 Built-in Package: Existing Java package for
example java.lang, java.util etc.

 User-defined-Package: Java package
created by user to categorize their project’s
classes and interface.

7. What is the major difference between
an interface and a class.

Ans :
The major difference between an interface

and a class is that interface contains the methods
that are abstract in nature and it does not include
any code where as the class contains methods with
some code. The members of interface are always
constant where as the members of a class are either
variable or constant.

8. When do we decide a method

Ans :
Java defines abstract classes and methods

using the keyword “abstract”. The class that doesn’t
have body is called abstract class. Whereas the

method that does not have body is called abstract
method. An abstract class can contain subclasses in
addition to abstract methods. If the method
containing in the subclasses does not override the
methods of the baseclass then they will be
considered as abstract classes. So, all the subclass
must provide an implementation for all the base
class’s abstract methods. Abstract classes cannot be
instantiated.

9. What are wrapper class?

Ans :
A Wrapper class is a class whose object wraps

or contains a primitive data types. When we create
an object to a wrapper class, it contains a field and
in this field, we can store a primitive data types. In
other words, we can wrap a primitive value into a
wrapper class object.

Need

(i) They convert primitive data types into objects.
Objects are needed if we wish to modify the
arguments passed into a method (because
primitive types are passed by value).

(ii) The classes in java.util package handles only
objects and hence wrapper classes help in this
case also.

(iii) Data structures in the Collection framework,
such as ArrayList and Vector, store only
objects (reference types) and not primitive
types.

(iv) An object is needed to support synchroni-
zation in multithreading.

10. What is multiple Inheritance?

Ans :
“Multiple Inheritance” refers to the concept

of one class extending (Or inherits) more than one
base class. The inheritance we learnt earlier had the
concept of one base class or parent. The problem
with “multiple inheritance” is that the derived class
will have to manage the dependency on two base
classes.

UNIT - II PROGRAMMING IN JAVA

97
Rahul Publications

Rahul Publications

A B

C

Multiple Inheritance

Note:

(i) Multiple Inheritance is very rarely used in
software projects. Using Multiple inheritance
often leads to problems in the hierarchy. This
results in unwanted complexity when further
extending the class.

(ii) Most of the new OO languages like Small Talk,
Java, C# do not support Multiple inheritance.
Multiple Inheritance is supported in C++.

11. Command-Line Arguments

Ans :
Command Line Argument is information

passed to the program when you run the program.
The passed information is stored as a string array in
the main method.

Important Points

 Command Line Arguments can be used to
specify configuration information while
launching your application.

 There is no restriction on the number of java
command line arguments.You can specify
any number of arguments

 Information is passed as Strings.

 They are captured into the String args of your
main method

12. Parameterized Constructor

Ans :
This constructor is called when an object is

created and it is initialized with some values at the
time of creation.

Example

public class Employee
{

int id;
String name;
public Employee(int i, String n)
{

id = i;
name = n;

}
void show()
{

System.out.println(id+” “+name);
}
public static void main(String args[])
{

Employee emp1 = new Employee(1,
“Govind”);
Employee emp2 = new Employee(2,
“Akash”);
emp1.show();
emp2.show();

}
}

Output

1 Govind

2 Akash

13. Explain the usage of string buffers class.

Ans :
String Buffer class is used to create a mutable

string object i.e its state can be changed after it is
created. It represents growable and writable
character sequence. As we know that String objects
are immutable, so if we do a lot of changes with
String objects, we will end up with a lot of memory
leak.

So StringBuffer class is used when we have
to make lot of modifications to our string. It is also
thread safe i.e multiple threads cannot access it
simultaneously. StringBuffer defines 4 constructors.
They are,

B.Sc. III YEAR V SEMESTER

98
Rahul Publications

Rahul Publications

(i) StringBuffer ()

(ii) StringBuffer (int size)

(iii) StringBuffer (String str)

(iv) StringBuffer (charSequence []ch)

14. Compare and contrast method overloading and method overriding.

Ans :

Method overriding is the example of run time
polymorphism.

Method overloading is the example
of compile time polymorphism.

In case of method overriding, parameter must be
same.

In case of method overloading,
parameter must be different.

Method overriding occurs in two classes that have
IS-A (inheritance) relationship.

Method overloading is performed
within class.

Method overriding is used to provide the specific
implementation of the method that is already
provided by its super class.

Method overloading is used to
increase the readability of the
program.

Method OverridingMethod Overloading

Method overriding is the example of run time
polymorphism.

Method overloading is the example
of compile time polymorphism.

In case of method overriding, parameter must be
same.

In case of method overloading,
parameter must be different.

Method overriding occurs in two classes that have
IS-A (inheritance) relationship.

Method overloading is performed
within class.

Method overriding is used to provide the specific
implementation of the method that is already
provided by its super class.

Method overloading is used to
increase the readability of the
program.

Method OverridingMethod OverloadingS.No.

1

2

3

4

15. What is Static Variable in Java?

Ans :
Static variable in Java is variable which belongs to the class and initialized only once at the start of

the execution.

 It is a variable which belongs to the class and not to object(instance)

 Static variables are initialized only once, at the start of the execution. These variables will be initialized
first, before the initialization of any instance variables

 A single copy to be shared by all instances of the class

 A static variable can be accessed directly by the class name and doesn’t need any object

Syntax:

<class-name>.<variable-name>

16. What is an Array?

Ans :
Java array is an object the contains elements of similar data type. It is a data structure where we

store similar elements. We can store only fixed set of elements in a java array.

Array in java is index based, first element of the array is stored at 0 index.

Creating Arrays

You can create an array by using the new operator with the following syntax

Syntax

arrayRefVar = new dataType[arraySize];

UNIT - II PROGRAMMING IN JAVA

99
Rahul Publications

Rahul Publications

17. Inheritance

Ans :
Inheritance is an important pillar of OOP(Object Oriented Programming). It is the mechanism in

java by which one class is allow to inherit the features(fields and methods) of another class.

Inheritance in java is a mechanism in which one object acquires all the properties and behaviors of
parent object. It is an important part of OPPs(Object Oriented programming system).

The idea behind inheritance in java is that you can create new classes that are built upon existing
classes. When you inherit from an existing class, you can reuse methods and fields of parent class, and you
can add new methods and fields also.Inheritance represents the IS-A relationship, also known as parent-
child relationship.

18. Explain the benefits of Inheritance.

Ans :
 Code sharing: Code sharing occurs at two levels. At first level many users or projects can use the

same class. In the second level sharing occurs when two or more classes developed by a single
programmer as part of a project which is being inherited from a single parent class. Here also code
is written once and reused. This is possible through inheritance.

 Consistency of inheritance: When two or more classes inherit from the same superclass we are
assured that the behaviour they inherit will be the same in all cases. Thus we can guarantee that
interfaces to similar objects are in fact similar.

 Software components: Inheritance provides programmers the ability to construct reusable s/w
components. The goal behind these is to provide applications that require little or no actual coding.
Already such libraries and packages are commercially available.

 Rapid Prototyping: When a s/w system is constructed largely out of reusable components
development can be concentrated on understanding the new and unusual portion of the system.
Thus s/w system can be generated more quickly and easily leading to a style of programming
known as ‘Rapid Prototyping’ or ‘exploratory programming’

 Polymorphism and Framework: Generally s/w is written from the bottom up , although it may
be designed from top-down. This is like building a wall where every brick must be laid on top of
another brick i.e., the lower level routines are written and on top of these slightly higher abstraction
are produced and at last more abstract elements are generated. Polymorphism permits the
programmer to generate high level reusable components.

B.Sc. III YEAR V SEMESTER

100
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. JDK Stands for [d]

(a) Java Data Kit (b) Java Definition Kit

(c) Java Design Kit (d) Java Development Kit

2. Which type of inheritance is not supported by java [a]

(a) Multiple (b) Multilevel

(c) Single (d) None

3. Multiple inheritance is supported by [b]

(a) Classes (b) Interfaces

(c) Objects (d) Abstract classes

4. Java arrays are [b]

(a) classes (b) Objects

(c) Variables (d) none

5. Which of these have highest precedence [a]

(a) () (b) ++

(c) * (d) >>

6. Which of this keyword must be used to inherit a class? [d]

(a) super (b) this

(c) extent (d) extends

7. A class member declared protected becomes a member of subclass of which type? [b]

(a) public member (b) private member

(c) protected member (d) static member

8. Which of these is correct way of inheriting class A by class B? [c]

(a) class B + class A {} (b) class B inherits class A {}

(c) class B extends A {} (d) class B extends class A {}

9. What is not type of inheritance? [b]

(a) Single inheritance (b) Double inheritance

(c) Hierarchical inheritance (d) Multiple inheritance

10. Using which of the following, multiple inheritance in Java can be implemented? [a]

(a) Interfaces (b) Multithreading

(c) Protected methods (d) Private methods

UNIT - II PROGRAMMING IN JAVA

101
Rahul Publications

Rahul Publications

Fill in the blanks

1. The statement allows number of possible execution paths.

2. An is structure that hold multiple values of same data type.

3. A class contains only or .

4. is extends one class to one class.

5. is a keyword used for implementing interface.

6. Java is a class which is declared inside the class or interface.

7. It is a collection of which is used to perform some operation.

8. are optional and are used in the method declaration.

9. is a special method that creates and return an object of the class in which they are
defined.

10. can be used to specify configuration information while launching your application.

ANSWERS

1. Switch

2. Array

3. Methods ,Data

4. Single Inheritance

5. Implements

6. Inner Class

7. statement

8. Modifiers

9. Constructor

10. Command Line Arguments

B.Sc. III YEAR V SEMESTER

102
Rahul Publications

Rahul Publications

One Mark Answers

1. Modifiers

Ans :
Modifiers are optional and are used in the method declaration. There are a number of modifiers

that can be used with a method declaration.

2. Default Constructor

Ans :
This constructor takes no argument and is called when an object is created without any explicit

initialization.

3. Copy Constructor

Ans :
This constructor is called when an object is created and it is initialized with some other object of the

same class at the time of creation.

4. Static keyword.

Ans :
The static keyword is used in java mainly for memory management. It is used with variables,

methods, blocks and nested class.

5. Arrays

Ans :
Java array is an object the contains elements of similar data type. It is a data structure where we

store similar elements. We can store only fixed set of elements in a java array.

6. Single Inheritance

Ans :
Single inheritance is easy to understand. When a class extends another one class only then we call

it a single inheritance.

7. Extends keyword.

Ans :
The most important and widely used keywords in Java which is the extends keyword. It is a reserved

word that and we can’t use it as an identifier other than the places where we need to inherit the classes in
Java.

8. Super keyword

Ans :
Super keyword in java is a reference variable that is used to refer parent class object.

UNIT - III PROGRAMMING IN JAVA

103
Rahul Publications

Rahul Publications

UNIT
III

Exception: Introduction, Types, Exception Handling Techniques, User-Defined
Exception. Multithreading: Introduction, Main Thread and Creation of New Threads–
By Inheriting the Thread Class or Implementing the Runnable Interface, Thread
Lifecycle, Thread Priority and Synchronization.

Input/Output: Introduction, java.io Package, File Streams, FileInputStream Class,
FileOutputStream Class, Scanner Class, BufferedInputStream Class,
BufferedOutputStream Class, RandomAccessFile Class.

3.1 EXCEPTION

3.1.1 Introduction

Q1. What is exception?

(OR)

Define exception.

Ans : (June-19, MGU, Dec.-18, MGU)

The exception handling in java is one of the powerful mechanism to handle the runtime errors so
that normal flow of the application can be maintained.

In exception (or exceptional event) is a problem that arises during the execution of a program.
When an Exception occurs the normal flow of the program is disrupted and the program/Application
terminates abnormally, which is not recommended, therefore, these exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an exception
occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has run out of
memory.

Some of these exceptions are caused by user error, others by programmer error, and others by
physical resources that have failed in some manner.

Based on these, we have three categories of Exceptions. You need to understand them to know
how exception handling works in Java.

 Checked exceptions: A checked exception is an exception that occurs at the compile time, these
are also called as compile time exceptions. These exceptions cannot simply be ignored at the time of
compilation, the programmer should take care of (handle) these exceptions.

Note: Since the methods read() and close() of FileReader class throws IOException, you can observe
that the compiler notifies to handle IOException, along with FileNotFoundException.

 Unchecked exceptions: An unchecked exception is an exception that occurs at the time of
execution. These are also called as Runtime Exceptions. These include programming bugs, such as
logic errors or improper use of an API. Runtime exceptions are ignored at the time of compilation.

B.Sc. III YEAR V SEMESTER

104
Rahul Publications

Rahul Publications

3.1.2 Types

Q2. Explain various types of exceptions.

Ans :
Java defines several types of exceptions that relate to its various class libraries. Java also allows users

to define their own exceptions.

Java Exceptions

Built-in Exceptions User-defined Exceptions

Java Exceptions

Built-in Exceptions User-defined Exceptions

I. Built-in Exceptions

Built-in exceptions are the exceptions which are available in Java libraries. These exceptions are
suitable to explain certain error situations. Below is the list of important built-in exceptions in Java.

1. Arithmetic Exception: It is thrown when an exceptional condition has occurred in an
arithmetic operation.

2. Array Index Out Of Bound Exception: It is thrown to indicate that an array has been
accessed with an illegal index. The index is either negative or greater than or equal to the size
of the array.

3. Class Not Found Exception: This Exception is raised when we try to access a class whose
definition is not found

4. File Not Found Exception: This Exception is raised when a file is not accessible or does not
open.

5. IO Exception: It is thrown when an input-output operation failed or interrupted

6. Interrupted Exception: It is thrown when a thread is waiting , sleeping, or doing some
processing , and it is interrupted.

7. No Such Field Exception: It is thrown when a class does not contain the field (or variable)
specified

8. No Such Method Exception: It is thrown when accessing a method which is not found.

9. Null Pointer Exception: This exception is raised when referring to the members of a null
object. Null represents nothing.

10. Number Form at Exception: This exception is raised when a method could not convert a
string into a numeric format.

11. Runtime Exception: This represents any exception which occurs during runtime.

12. String Index Out Of Bounds Exception: It is thrown by String class methods to indicate
that an index is either negative than the size of the string.

Programs :

StringIndexOutOfBound Exception
class StringIndexOutOfBound_Demo
{
 public static void main(String args[])

UNIT - III PROGRAMMING IN JAVA

105
Rahul Publications

Rahul Publications

 {
 try

{
 String a = “This is like chipping “; // length is 22
 charc = a.charAt(24); // accessing 25th element
 System.out.println(c);
 }
 catch(StringIndexOutOfBoundsException e)

{
 System.out.println(“StringIndexOutOfBoundsException”);
 }
 }
}
NumberFormat Exception
class NumberFormat_Demo
{
 public static void main(String args[])
 {

try
{

 // “akki” is not a number
 intnum = Integer.parseInt (“akki”) ;
 System.out.println(num);
 }

catch(NumberFormatException e)
{

 System.out.println(“Number format exception”);
 }
 }
}
ArrayIndexOutOfBounds Exception
class ArrayIndexOutOfBound_Demo
{
 public static void main(String args[])
 {

try
{

 inta[] = newint[5];
 a[6] = 9; // accessing 7th element in an array of
 // size 5
 }

B.Sc. III YEAR V SEMESTER

106
Rahul Publications

Rahul Publications

 catch(ArrayIndexOutOfBoundsException e)
{

system.out.println (“Array Index is Out Of Bounds”);
 }
 }
}

II. User-Defined Exceptions

Sometimes, the built-in exceptions in Java are not able to describe a certain situation. In such cases,
user can also create exceptions which are called ‘user-defined Exceptions’.

Following steps are followed for the creation of user-defined Exception.

 The user should create an exception class as a subclass of Exception class. Since all the exceptions
are subclasses of Exception class, the user should also make his class a subclass of it. This is
done as:

 class MyException extends Exception

 We can write a default constructor in his own exception class.

MyException(){}

 We can also create a parameterized constructor with a string as a parameter.

We can use this to store exception details. We can call super class(Exception) constructor from this
and send the string there.

MyException(String str)

{

super(str);

}

 To raise exception of user-defined type, we need to create an object to his exception class and
throw it using throw clause, as:

 MyException me = new MyException(“Exception details”);

 throw me;
 In main() method, the details are displayed using a for-loop. At this time, check is done if in any

account the balance amount is less than the minimum balance amount to be ept in the account.
 If it is so, then MyException is raised and a message is displayed “Balance amount is less”.

class MyException extends Exception
{

//store account information
private static int accno[] = {1001, 1002, 1003, 1004};
private static String name[] ={“Nish”, “Shubh”, “Sush”, “Abhi”, “Akash”};
private static double bal[] ={10000.00, 12000.00, 5600.0, 999.00, 1100.55};
// default constructor
MyException()
{
}

UNIT - III PROGRAMMING IN JAVA

107
Rahul Publications

Rahul Publications

// parametrized constructor
MyException(String str)
{

super(str);
}
// write main()
public static void main(String[] args)
{

try
{

// display the heading for the table
System.out.println(“ACCNO”+ “\t”+ “CUSTOMER”+ ”\t”+ “BALANCE”);
// display the actual account information
for(int i = 0; i < 5; i++)
{

System.out.println(accno[i] + “\t”+ name[i] +”\t”+ bal[i]);
// display own exception if balance < 1000
if(bal[i] < 1000)

{
MyException me =newMyException(“Balance is less than 1000”);
throwme;

}
}

}
catch(MyException e)
{

e.printStackTrace();
}

 }

}
MyException: Balance is less than 1000

at MyException.main(fileProperty.java:36)

Output:

ACCNO CUSTOMER BALANCE

1001 Nish 10000.0

1002 Shubh 12000.0

1003 Sush 5600.0

1004 Abhi 999.0

B.Sc. III YEAR V SEMESTER

108
Rahul Publications

Rahul Publications

3.1.3 Exception Handling Techniques

Q3. Explain the handling of exception in Java.

Ans : (June-19-MGU, Dec.-18-MGU)

Exception handling can be defined as a mechanism of handling exceptions that can be occurred at
run-time. This mechanism is commonly used to prevent the malfunctions such as computer deadlock or
computer hanging. Some examples of run-time exception are divide by zero, array out of bounds exceptions.

The run-time exception can be handled by using five keywords namely try, catch, throw, throws
and finally. The code that can generate exception is usually placed in try block. If an exception is occurred,
execution flow finds the similar catch block and leaves the try block. The catch block handles the exception
and generates a message specifying the type of exception. Some of these exception types are as follows,

(i) ArithmeticException

(ii) ArraylndexOutOfBoundsException.

However, there is no rule that the try block must contain corresponding catch block. Each try block
may contain zero or multiple catch blocks.

When an exception is thrown and if it is matched with any of the catch block, then the statements
of corresponding catch block can be executed. Otherwise, the catch block can be skipped and the statements
present next to the catch block will be executed. The finally block is declared after all the catch blocks
whose code can be executed irrespective to the occurrence of exception. Note that, the finally block is
optional.

If a method throw an exception, then it can be handled by catch block. This exception can be
thrown using ‘throws’ clause. When control leaves the throws block, then it cannot return back to the
‘throws’ clause. If the thrown exception cannot be handled by any catch block, then it can be handled by
default handler called as ‘Termination Model Of Exception Handler’.

Syntax for Exception Handling

try

{

//Block of code to check exception
}

catch (Exception Typel exception object)

{
//code to handle exceptions

}

catch (Exception Type2 exception object)
{

//code to handle exceptions

}
finally

{

// code to be executed before/after try-catch block
}

UNIT - III PROGRAMMING IN JAVA

109
Rahul Publications

Rahul Publications

Q4. State the Benefits of Exception Handling.

Ans :
The benefits of exception handling are as a follows,

(i) It can control run-time errors that occurs in the program.

(ii) It can avoid abnormal termination of the program and also shows the behavior of program to
users.

(iii) It can provide a facility to handle exceptions, throws message regarding exception and completes
the execution of program by catching the exception.

(iv) It can separate the error handling code and normal code by using try-catch block.

(v) It can produce the normal execution flow for a program.

(vi) Its mechanism can implement a clean way to propagate error. That is when an invoking method
cannot manage a particular situation, then it throws an exception and asks the invoking method to
deal with such situation.

(vii) Its mechanism develops a powerful coding that ensures that the exceptions can be prevented.

Q5. What are the different ways to handle exceptions.

Ans :
In java, exception handling is done using five keywords,

1. try

2. catch

3. throw

4. throws

5. finally

Exception handling is done by transferring the execution of a program to an appropriate exception
handler when exception occurs.

try and catch block in Java

When your program performs an operation that generates an exception, an exception will be
thrown. You can catch that exception and handle it with the help of try and catch blocks.

try block in Java

 In try block, we place the line of codes that may cause an exception.

 A try block must be followed by a catch block or a finally block.

catch block in Java

 The catch block is used to write the code that handles the exception.

 A catch block is only executed if it catches the exception coming from the try block.

B.Sc. III YEAR V SEMESTER

110
Rahul Publications

Rahul Publications

If no exception is generated from the try block, then all the catch blocks are skipped.

Syntax of java try-catch
try
{

//code that may throw exception
}

catch(Exception_class_Name ref)
{
}
Program
class Exceptions
{

public static void main(String[] args)
{

String languages[] = { “C”, “C++”, “Java”, “Perl”, “Python” };
try
{

for (int c = 1; c <= 5; c++)
{

System.out.println(languages[c]);
}

}
catch (Exception e)
{

System.out.println(e);
}

}
}

UNIT - III PROGRAMMING IN JAVA

111
Rahul Publications

Rahul Publications

Points to remember

 In a method, there can be more than one statements that might throw exception, So put all these
statements within its own try block and provide separate exception handler within own catch block
for each of them.

 If an exception occurs within the try block, that exception is handled by the exception handler
associated with it. To associate exception handler, we must put catch block after it. There can be
more than one exception handlers. Each catch block is a exception handler that handles the exception
of the type indicated by its argument. The argument, ExceptionType declares the type of the exception
that it can handle and must be the name of the class that inherits from Throwable class.

 For each try block there can be zero or more catch blocks, but only one finally block.

 The finally block is optional. It always gets executed whether an exception occurred in try block or
not . If exception occurs, then it will be executed after try and catch blocks. And if exception does
not occur then it will be executed after the try block. The finally block in java is used to put
important codes such as clean up code e.g. closing the file or closing the connection.

Q6. Explain the use of Multiple Catch statements in exceptions?

Ans :
Java Multi catch block

If you have to perform different tasks at the occurrence of different Exceptions, use java multi catch
block.

A try can have multiple catch block. The catch block that catches the exception is executed while all
others are skipped. If no exception arises from the try block, all the catch blocks are skipped.

Syntax

try
{

//code that may generate exception.

}
catch(ExceptionClass1 obj)

{

//code to handle the exception.
}

catch(ExceptionClass2 obj)

{
//code to handle the exception.

}

...
catch(ExceptionClassn obj)

{

//code to handle the exception.
}

B.Sc. III YEAR V SEMESTER

112
Rahul Publications

Rahul Publications

Program
class ExceptionHandling
{

public static void main(String args[])
{

try
{

int a[] = new int[3];
a[4] = 30;

}
catch(IndexOutOfBoundsException i){

System.out.println(i);
}
catch(ArrayIndexOutOfBoundsException ai){

System.out.println(ai);
}

}
}

Q7. Write a short note on :

(a) throw

(b) throws

(c) finally

Ans :
(a) throw

‘throw’ is a Java keyword used in exception handling. Generally, a try block checks if any exceptions
are raised and when an error occurs, it throws the error which is caught by the catch statement.
Basically, the exceptions thrown by the Java run-time system are being caught, but throw statement
allows a program to throw an exception explicitly.

Syntax

throw Throwablelnstance;

The Throwablelnstance should be an object of either Throwable class or any of its subclass

(b) throws

throws clause handles the unhandled exceptions that are generated by a method. This clause list
the types of exceptions that can be thrown by a method. The throws clause can be used for specifying
any exception except the exception belonging to error class or any of its subclass.

Syntax

return-type method-name (arg-list) throws exception-list

{

//body

}

UNIT - III PROGRAMMING IN JAVA

113
Rahul Publications

Rahul Publications

In the above syntax, exception-list is the list of exception separated by comma. The throws
keyword is used to list the exceptions that can be thrown by a method. If the possible exceptions are
not listed in the method of throws clauses, the compile time error is generated.

(c) finally

Every try block should be associated with atleast one catch or finally block. However, it is optional
to have a finally block within a program. If a finally block is included in a program, then it will be
executed after the try/ catch block but before the code following this try/catch block. The finally
block will be executed irrespective of the occurrence of exceptions. A finally block helps in closing
opened files, deallocating the allocated memories etc.

The syntax of the finally block is,

try

{

// Statements

}

catch(...)

{

// Statements

}

catch(...)

{

// Statements

}

finally

{

// Statements

}

// statement/code following try/catch block.

3.2 USER-DEFINED EXCEPTION

Q8. Define User-Defined Exception.

Ans :
An exception which can be created by the user manually are called as user-defined exception.

These exceptions are handled by Java. While creating user-defined exceptions, user must satisfy the
below steps,

Step 1: The user-defined exceptions must be created as child exceptions of throwable class.

Step 2: If the user-defined exception is a checked exception, the exception class must be extended.

Step 3: When the runtime exception is declared as user-defined exception, then the
RuntimeException class mm be extended.

B.Sc. III YEAR V SEMESTER

114
Rahul Publications

Rahul Publications

Constructors

A user-defined exception can be created using the following constructors,

(a) MyException()

(b) MyException(String error)

(c) MyException(String error, Exception ex).

3.3 MULTITHREADING

3.3.1 Introduction

Q9. Explain the Multithreading in Java.

(OR)

Write about Multithreading in Java.

Ans : (Dec.-19)

Multithreading in java is a process of executing multiple threads simultaneously.

Java is a multi-threaded programming language which means we can develop multi-threaded
program using Java. A multi-threaded program contains two or more parts that can run concurrently and
each part can handle a different task at the same time making optimal use of the available resources
specially when your computer has multiple CPUs.

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and
multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area.
They don’t allocate separate memory area so saves memory, and context-switching between the threads
takes less time than process.

Java Multithreading is mostly used in games, animation etc.

Multitasking

By definition, multitasking is when multiple processes share common processing resources such as
a CPU. Multi-threading extends the idea of multitasking into applications where you can subdivide specific
operations within a single application into individual threads. Each of the threads can run in parallel. The
OS divides processing time not only among different applications, but also among each thread within an
application.

Multi-threading enables you to write in a way where multiple activities can proceed concurrently in
the same program.

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to utilize the
CPU. Multitasking can be achieved by two ways:

 Process-based Multitasking(Multiprocessing)

 Thread-based Multitasking(Multithreading)

Process-based Multitasking (Multiprocessing)

 Each process have its own address in memory i.e. each process allocates separate memory
area.

 Process is heavy weight.

UNIT - III PROGRAMMING IN JAVA

115
Rahul Publications

Rahul Publications

 Cost of communication between the process is high.

 Switching from one process to another require some time for saving and loading registers,
memory maps, updating lists etc.

Thread-based Multitasking (Multithreading)

 Threads share the same address space.

 Thread is lightweight.

 Cost of communication between the thread is low.

3.3.2 Main Thread

Q10. Explain in detail about Main Thread.

Ans :
The main thread is the first thread that will begin its execution immediately when the Java program

starts up. The main thread is important for two reasons. First, it allows the other child threads to be
created. Second, reason is that the thread perform various shutdown actions. Therefore, it must be the
last thread to finish execution.

Eventhough the main thread starts executing immediately, it can be controlled using an object of
Thread class. The object of Thread is created by using its static method currentThread().

General Format

public static Thread currentThread()

This method when called will returns a reference to currently executing thread. After a reference to
the main thread is obtained it can be controlled like any other threads. For example, the methods such as
getName(), setNamef), sleep() etc., can be invoked on the main thread.

Program
import java.io.*;
class MainThread
{
public static void main(String args[])
{
Thread thd = Thread.currentThread();
System.out.println(“Running thread:” + thd);
// change the name of the thread
thd.setName(“First Thread”);
System.out.println(“Running Thread is:” + thd);
try {
for(int i=5;i> 0;i—)
{
System.out.println(i);
Thread. sleep(1000);
}
} catch (InterruptedException e)

B.Sc. III YEAR V SEMESTER

116
Rahul Publications

Rahul Publications

{
System.out.println(“Main thread got interrupted”);
}
}
}

3.3.3 Creation of New Threads

3.3.3.1 By Inheriting the Thread Class or Implementing the Runnable Interface

Q11. Define Threads. List different ways of creating threads. Explain with examples.

Ans : (July-21, June-19, MGU, Dec.-18, MGU)

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and
multithreading, both are used to achieve multitasking.

There are two ways to create a thread:

1. By extending Thread class

2. By implementing Runnable interface.

Thread class

 Thread class provide constructors and methods to create and perform operations on a thread.

 Thread class extends Object class and implements Runnable interface.

Commonly used Constructors of Thread class:

 Thread()

 Thread(String name)

 Thread(Runnable r)

 Thread(Runnable r,String name)

Commonly used methods of Thread class:

1. public void run(): is used to perform action for a thread.

2. public void start(): starts the execution of the thread.JVM calls the run() method on the thread.

3. public void sleep(long milliseconds): Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long miliseconds): waits for a thread to die for the specified miliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

UNIT - III PROGRAMMING IN JAVA

117
Rahul Publications

Rahul Publications

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public void yield(): causes the currently executing thread object to temporarily pause and allow
other threads to execute.

15. public void suspend(): is used to suspend the thread(depricated).

16. public void resume(): is used to resume the suspended thread(depricated).

17. public void stop(): is used to stop the thread(depricated).

18. public boolean isDaemon(): tests if the thread is a daemon thread.

19. public void setDaemon(boolean b): marks the thread as daemon or user thread.

20. public void interrupt(): interrupts the thread.

21. public boolean isInterrupted(): tests if the thread has been interrupted.

22. public static boolean interrupted(): tests if the current thread has been interrupted.

Runnable Interface

The Runnable interface should be implemented by any class whose instances are intended to be
executed by a thread. Runnable interface have only one method named run().

public void run(): is used to perform action for a thread.

Starting a thread

start() method of Thread class is used to start a newly created thread. It performs following tasks:

 A new thread starts(with new callstack).

 The thread moves from New state to the Runnable state.

When the thread gets a chance to execute, its target run() method will run.

class Multi extends Thread

{

public void run()

{

System.out.println(“thread is running...”);

}

public static void main(String args[]){

Multi t1=new Multi();

t1.start();

}

 }

Output

thread is running...

B.Sc. III YEAR V SEMESTER

118
Rahul Publications

Rahul Publications

Java Thread By Implementing Runnable Interface

 A Thread can be created by extending Thread class also. But Java allows only one class to extend,
it wont allow multiple inheritance. So it is always better to create a thread by implementing Runnable
interface. Java allows you to implement multiple interfaces at a time.

 By implementing Runnable interface, you need to provide implementation for run() method.

 To run this implementation class, create a Thread object, pass Runnable implementation class object
to its constructor. Call start() method on thread class to start executing run() method.

 Implementing Runnable interface does not create a Thread object, it only defines an entry point for
threads in your object. It allows you to pass the object to the Thread(Runnable implementation)
constructor.

class Multi3 implements Runnable

{

public void run()

{

System.out.println(“thread is

running...”);

}

public static void main(String args[])

{

Multi3 m1=new Multi3();

Thread t1 =new Thread(m1);

t1.start();

}

}

3.3.4 Thread Lifecycle

Q12. Describe the life cycle of thread.

Ans :
Every thread has a lifecycle, which consists of following states,

(a) Bom state

(b) Runnable state

(c) Running state

(d) Blocked state

(e) Dead state

A thread can be present in any one of these states at an instance. It can switch from one state to
another state using various methods. The following figure depicts the life cycle of thread,

UNIT - III PROGRAMMING IN JAVA

119
Rahul Publications

Rahul Publications
Fig. : Life Cycle of a Thread

(a) Born State

In this state, a new thread can be bom by creating a thread object. This new thread can be used to
perform the following task,

(i) It can be scheduled to running state using start() method, thereby changing its state from bom
to runnable.

(ii) It can be killed by using stop() method, thereby changing its state from bom to dead.

Fig. : Block Diagram of Schedule Born Thread

(b) Runnable State

In this state, the thread is ready for execution and waits for the availability of processor. The thread
which is in runnable state joins the queue of thread that are waiting for processor. Once, the processor
is empty, next waiting thread with highest priority gets executed. If multiple threads in the queue
have equal priority, then the threads can be scheduled (allocating time slots) using round-robin
algorithm (first-come, first-serve manner). However in runnable state, there is a facility of executing
a thread before its turn using yield() method.

B.Sc. III YEAR V SEMESTER

120
Rahul Publications

Rahul Publications
Fig. : Block Diagram of Relinquish Control Using yield)) Method

(c) Running State

In this state, the execution of a thread starts. The executing thread can leave the control by its own
or by preempting with the thread that have highest priority. The running thread can leave (relinquish)
the control in following situations.

Case 1: If running thread is suspended by using suspend() method. A thread can be suspended
whenever there is a requirement to keep the thread idle for sometime due to which the running
thread moves to block state. This suspended thread can be resumed to its execution using resume()
method.

Fig. : Block Diagram of Relinquish Control Using resume!) Method

Case 2: If running thread is made to sleep for specified time using sleep (time) method then the
thread will enter into the suspend state. It resides out of the queue until the time period is completed.
After the completion of time period, the thread automatically enters into the runnable state.

Fig. : Block Diagram To Relinquish Control Using sleepl) Method

UNIT - III PROGRAMMING IN JAVA

121
Rahul Publications

Rahul Publications

Case 3: If running is made to wait thread using wait() method then the thread must wait until an
event is occurred. The waiting thread can be resumed to its execution using notify() method.

Fig. : Block Diagram of Relinquish Control Using waitf) Method

(d) Blocked State

In this state, the thread can be blocked until it gets resumed. A thread which is suspended can be
prevented from runnable state and running state. Any thread can be suspended using suspend(),
sleep() and wait() methods to satisfy various needs. The blocked thread will be in non-runnable
mode (i.e., in idle mode) in dead state. The suspended thread can be resumed to execution using
resume() and notify() methods.

(e) Dead State

In this state, the thread can be killed. After the successful completion of execution, thread will
undergo natural death. However if a thread is killed in bom state, runnable state, running state and
suspended state using stop() method then this sort of death is be called as premature death.

3.3.5 Thread Priority

Q13. Discuss the Priority of threads used in JAVA?

Ans :
Each thread have a priority. Priorities are represented by a number between 1 and 10. In most

cases, thread schedular schedules the threads according to their priority (known as preemptive scheduling).
But it is not guaranteed because it depends on JVM specification that which scheduling it chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY

2. public static int NORM_PRIORITY

3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the
value of MAX_PRIORITY is 10.

Get and Set Thread Priority:

1. public final int getPriority(): java.lang.Thread.getPriority() method returns priority of given
thread.

2. public final void setPriority(int newPriority): java.lang.Thread.setPriority() method changes
the priority of thread to the value newPriority. This method throws IllegalArgumentException if
value of parameter newPriority goes beyond minimum(1) and maximum(10) limit.

B.Sc. III YEAR V SEMESTER

122
Rahul Publications

Rahul Publications

// Java program to demonstrate getPriority() and setPriority()
importjava.lang.*;
class ThreadDemo extendsThread
{
 public voidrun()
 {

System.out.println(“Inside run method”);
 }
 public static void main(String[] args)
 {
 ThreadDemo t1 = newThreadDemo();
 ThreadDemo t2 = newThreadDemo();
 ThreadDemo t3 = newThreadDemo();
 System.out.println(“t1 thread priority : “+t1.getPriority()); // Default 5
 System.out.println(“t2 thread priority : “+t2.getPriority()); // Default 5
 System.out.println(“t3 thread priority : “+t3.getPriority()); // Default 5
 t1.setPriority(2);
 t2.setPriority(5);
 t3.setPriority(8);

// t3.setPriority(21); will throw IllegalArgumentException
 System.out.println(“t1 thread priority : “+t1.getPriority()); //2
 System.out.println(“t2 thread priority : “+t2.getPriority()); //5
 System.out.println(“t3 thread priority : “+t3.getPriority());//8

 System.out.print(Thread.currentThread().getName());
 System.out.println(“Main thread priority : “+ Thread.currentThread().getPriority());
 Thread.currentThread().setPriority(10);
 System.out.println(“Main thread priority : “+ Thread.currentThread().getPriority());
 }
}

Output:

t1 thread priority : 5

t2 thread priority : 5

t3 thread priority : 5

t1 thread priority : 2

t2 thread priority : 5

t3 thread priority : 8

Main thread priority : 5

Main thread priority : 10

UNIT - III PROGRAMMING IN JAVA

123
Rahul Publications

Rahul Publications

Tips

 Thread with highest priority will get execution chance prior to other threads. Suppose there are 3
threads t1, t2 and t3 with priorities 4, 6 and 1. So, thread t2 will execute first based on maximum
priority 6 after that t1 will execute and then t3.

 Default priority for main thread is always 5, it can be changed later. Default priority for all other
threads depends on the priority of parent thread.

 If two threads have same priority then we can’t expect which thread will execute first. It depends on
thread scheduler’s algorithm(Round-Robin, First Come First Serve, etc)

If we are using thread priority for thread scheduling then we should always keep in mind that
underlying platform should provide support for scheduling based on thread priority.

3.3.6 Synchronization

Q14. What are the synchronized methods and statements?

Ans :
Synchronization of threads ensures that if two or more threads need to access a shared resource

then that resource is used by only one thread at a time. You can synchronize your code using the
synchronized keyword. You can invoke only one synchronized method for an object at any given time.

Synchronization is based on the concept of monitor. A monitor, also known as a semaphore, is an
object that is used as a mutually exclusive lock. All objects and classes are associated with a monitor and
only one thread can won a monitor at a given time.

The monitor controls the way in which synchronized methods access an object or class. When a
thread acquires a lock, it is said to have entered the monitor. The monitor ensures that only one thread
has access to the resources at any given time. To enter an object’s monitor, you need to call a synchronized
method.

When a thread is within a synchronized method, all the other threads that try to call it on the same
instance have to wait. During the execution of a synchronized method, the object is locked so that no
other synchronized method can be invoked. The monitor is automatically released when the method
completes its execution. The monitor can also be released when the synchronized method executes the
wait() method. When a thread calls the wait() method, it temporarily releases the locks that it holds.

The Synchronized Statement

Synchronization among threads is achieved by using synchronized statements. The synchronized
statements are used where the synchronization methods are not used in a class and you do not have
access to the source code. You can synchronize the access to an object of this class by placing the calls to
the methods defined by it inside a synchronized block .

Syntax:
synchronized(obj)
{

// statements;

}
Inter-thread communication

Java supports inter-thread communication using wait(), notify(), notifyAll() methods. These methods
are implemented as final methods in Object. So all classes have them. all three methods can be called
only from within a synchronized context.

B.Sc. III YEAR V SEMESTER

124
Rahul Publications

Rahul Publications

 wait() tells the calling thread to give up the monitor and go to sleep until some other thread enters
the same monitor and calls notify()

 notify() wakes up the first thread that called wait() on the same object.

 notifyAll() wakes up all the threads that called wait() on the same object. The highest priority
thread will run first.

3.4 INPUT/OUTPUT

3.4.1 Introduction, java.io Package

Q15. What is java.io Package? Explain the different ways of input output methods.

Ans : (July-21)

Java I/O (Input and Output) is used to process the input and produce the output.

Java uses the concept of stream to make I/O operation fast. The java.io package contains all the
classes required for input and output operations.

We can perform file handling in java by Java I/O API.

IO Stream

Java performs I/O through Streams. A Stream is linked to a physical layer by java I/O system to
make input and output operation in java. In general, a stream means continuous flow of data. Streams
are clean way to deal with input/output without having every part of your code understand the physical.

Java encapsulates Stream under java.io package. Java defines two types of streams. They are,

1. Byte Stream : It provides a convenient means for handling input and output of byte.

2. Character Stream : It provides a convenient means for handling input and output of characters.
Character stream uses Unicode and therefore can be internationalized.

Byte Stream Classes

Byte stream is defined by using two abstract class at the top of hierarchy, they are InputStream and
OutputStream.

These two abstract classes have several concrete classes that handle various devices such as disk
files, network connection etc.

UNIT - III PROGRAMMING IN JAVA

125
Rahul Publications

Rahul Publications

Some important Byte stream Classes

Output Stream that contain print() and println() methodPrintStream

Abstract class that describe stream output.OutputStream

Abstract class that describe stream input.InputStream

Output stream that write to a file.FileOutputStream

Input stream that reads from a fileFileInputStream

An output stream that contain method for writing java standard data
type

DataOutputStream

Contains method for reading java standard datatypeDataInputStream

Used for Buffered Output Stream.BufferedOutputStream

Used for Buffered Input Stream.BufferedInputStream

DescriptionStream class

Output Stream that contain print() and println() methodPrintStream

Abstract class that describe stream output.OutputStream

Abstract class that describe stream input.InputStream

Output stream that write to a file.FileOutputStream

Input stream that reads from a fileFileInputStream

An output stream that contain method for writing java standard data
type

DataOutputStream

Contains method for reading java standard datatypeDataInputStream

Used for Buffered Output Stream.BufferedOutputStream

Used for Buffered Input Stream.BufferedInputStream

DescriptionStream class

These classes define several key methods. Two most important are

1. read() : reads byte of data.

2. write() : Writes byte of data.

Character Stream Classes

Character stream is also defined by using two abstract class at the top of hierarchy, they are Reader
and Writer.

These two abstract classes have several concrete classes that handle unicode character.

Some Important Charcter Stream Classes

Abstract class that define character stream outputWriter

Abstract class that define character stream inputReader

Output Stream that contain print() and println() method.PrintWriter

Output stream that translate character to byte.OutputStreamReader

Input stream that translate byte to characterInputStreamReader

Output stream that writes to file.FileWriter

Input stream that reads from file.FileReader

Handles buffered output stream.BufferedWriter

Handles buffered input stream.BufferedReader

DescriptionStream class

Abstract class that define character stream outputWriter

Abstract class that define character stream inputReader

Output Stream that contain print() and println() method.PrintWriter

Output stream that translate character to byte.OutputStreamReader

Input stream that translate byte to characterInputStreamReader

Output stream that writes to file.FileWriter

Input stream that reads from file.FileReader

Handles buffered output stream.BufferedWriter

Handles buffered input stream.BufferedReader

DescriptionStream class

B.Sc. III YEAR V SEMESTER

126
Rahul Publications

Rahul Publications

Q16. What is File class? Explain in detail?

Ans :
Files are a common source or destination of data in Java applications. Therefore this text will give

you a brief overview of working with files in Java. It is not the intention to explain every technique in detail
here, but rather to provide you with enough knowledge to decide on a file access method. Separate
pages will describe each of these methods or classes in more detail, including examples of their usage etc.

Reading Files via Java IO

If you need to read a file from one end to the other you can use a FileInputStream or
a FileReaderdepending on whether you want to read the file as binary or textual data. These two classes
lets you read a file one byte or character at a time from the start to the end of the file, or read the bytes
into an array of byte or char, again from start towards the end of the file. You don’t have to read the
whole file, but you can only read bytes and chars in the sequence they are stored in the file.

If you need to jump around the file and read only parts of it from here and there, you can use
aRandomAccessFile.

If you need to jump around the file and read only parts of it from here and there, you can use
aRandomAccessFile.

Writing File via Java IO

If you need to write a file from one end to the other you can use a FileOutputStream or
a FileWriterdepending on whether you need to write binary data or characters. You can write a byte or
character at a time from the beginning to the end of the file, or write arrays of byte and char. Data is
stored sequentially in the file in the order they are written.

If you need to skip around a file and write to it in various places, for instance appending to the end
of the file, you can use a RandomAccessFile.

Random Access to Files via Java IO

As I have already mentioned, you can get random access to files with Java IO via
the RandomAccessFileclass.

Random access doesn’t mean that you read or write from truly random places. It just means that
you can skip around the file and read from or write to it at the same time in any way you want. No
particular access sequence is enforced. This makes it possible to overwrite parts of an existing file, to
append to it, delete from it, and of course read from the file from wherever you need to read from it.

File and Directory Info Access

Sometimes you may need access to information about a file rather than its content. For instance, if
you need to know the file size or the file attributes of a file. The same may be true for a directory. For
instance, you may want to get a list of all files in a given directory. Both file and directory information is
available via the File class.

Java IO: InputStream

he InputStream class is the base class (superclass) of all input streams in the Java IO
API. InputStreamSubclasses include the FileInputStream, BufferedInputStream and
thePushbackInputStream among others. To see a full list of InputStream subclasses, go to the bottomtable
of the Java IO Overview page.

UNIT - III PROGRAMMING IN JAVA

127
Rahul Publications

Rahul Publications

InputStreams and Sources

An InputStream is typically always connected to some data source, like a file, network connection,
pipe etc. This is also explained in more detail in the Java IO Overview text.

Java InputStream Example

Java InputStream’s are used for reading byte based data, one byte at a time.

This example creates a new FileInputStream instance. FileInputStream is a subclass of InputStream
so it is safe to assign an instance of FileInputStream to an InputStream variable (the inputstream variable).

Note: The proper exception handling has been skipped here for the sake of clarity. To learn more
about correct exception handling, go to Java IO Exception Handling.

From Java 7 you can use the try-with-resources construct to make sure the InputStream is properly
closed after use.

Once the executing thread exits the try block, the inputstream variable is closed.

read()

The read() method of an InputStream returns an int which contains the byte value of the byte read.
Here is an InputStream read()

Example:

int data = inputstream.read();

You can case the returned int to a char like this:

char aChar = (char) data;

Subclasses of InputStream may have alternative read() methods. For instance,
theDataInputStream allows you to read Java primitives like int, long, float, double, boolean etc. with its
corresponding methods readBoolean(), readDouble() etc.

End of Stream

If the read() method returns -1, the end of stream has been reached, meaning there is no more
data to read in the InputStream. That is, -1 as int value, not -1 as byte or short value. There is a difference
here!

When the end of stream has been reached, you can close the InputStream.

read(byte[])

The InputStream class also contains two read() methods which can read data from
the InputStream’s source into a byte array. These methods are:

 int read(byte[])

 int read(byte[], int offset, int length)

Reading an array of bytes at a time is much faster than reading one byte at a time, so when you can,
use these read methods instead of the read() method.

The read(byte[]) method will attempt to read as many bytes into the byte array given as parameter
as the array has space for. The read(byte[]) method returns an int telling how many bytes were actually
read. In case less bytes could be read from the InputStream than the byte array has space for, the rest
of the bytearray will contain the same data as it did before the read started. Remember to inspect the
returned int to see how many bytes were actually read into the byte array.

B.Sc. III YEAR V SEMESTER

128
Rahul Publications

Rahul Publications

The read(byte[], int offset, int length) method also reads bytes into a byte array, but starts
at offsetbytes into the array, and reads a maximum of length bytes into the array from that position.
Again, the read(byte[], int offset, int length) method returns an int telling how many bytes were actually
read into the array, so remember to check this value before processing the read bytes.

For both methods, if the end of stream has been reached, the method returns -1 as the number of
bytes read.

First this example create a byte array. Then it creates an int variable named bytesRead to hold
the number of bytes read for each read(byte[]) call, and immediately assigns bytesRead the value returned
from the first read(byte[]) call.

Inside the while loop the do SomethingWithData() method is called, passing along
the data byte array as well as how many bytes were read into the array as parameters. At the end of
the while loop data is read into the byte array again.

It should not take much imagination to figure out how to use the read(byte[], int offset, int
length)method instead of read(byte[]). You pretty much just replace the read(byte[]) calls with
read(byte[], int offset, int length) calls.

mark() and reset()

The InputStream class has two methods called mark() and reset() which subclasses
of InputStream may or may not support.

If an InputStream subclass supports the mark() and reset() methods, then that subclass should
override the markSupported() to return true. If the markSupported() method returnsfalsethenmark()and
reset() are not supported.

The mark() sets a mark internally in the InputStream which marks the point in the stream to
which data has been read so far. The code using the InputStream can then continue reading data from
it. If the code using the InputStream wants to go back to the point in the stream where the mark was set,
the code calls reset()on the InputStream. The InputStream then “rewinds” and go back to the mark,
and start returning (reading) data from that point again. This will of course result in some data being
returned more than once from the InputStream.

The methods mark() and reset() methods are typically used when implementing parsers.
Sometimes a parser may need to read ahead in the InputStream and if the parser doesn’t find what it
expected, it may need to rewind back and try to match the read data against something else.

3.4.2 File Streams

3.4.2.1 FileInputStream Class, FileOutputStream Class

Q17. Explain in detail about FileInputStream Class with an example.

Ans : (Dec.-19, July-19, Dec.-18, KU)

The FileInputStream class makes it possible to read the contents of a file as a stream of bytes.

The FileInputStream class is a subclass of InputStream. This means that you use theFileInputStream
as an InputStream (FileInputStream behaves like an InputStream).

FileInputStream Constructors

The FileInputStream class has a three different constructors you can use to create
a FileInputStreaminstance. I will cover the first two here.

UNIT - III PROGRAMMING IN JAVA

129
Rahul Publications

Rahul Publications

The first constructor takes a String as parameter. This String should contain the path in the file
system to where the file to read is located.

Notice the path String. It needs double backslashes (\\) to create a single backslash in the String,
because backslash is an escape character in Java Strings. To get a single backslash you need to use the
escape sequence \\.

Notice the use of the for-slash (the normal slash character) as directory separator. That is how you
write file paths on unix. Actually, in my experience Java will also understand if you use a / as directory
separator on Windows (e.g. c:/user/data/thefile.txt), but don’t take my word for it. Test it on your own
system!

Which of the constructors you should use depends on what form you have the path in before
opening the FileInputStream. If you already have a String or File, just use that as it is. There is no
particular gain in converting a String to a File, or a File to a String first.

read()

The read() method of a FileInputStream returns an int which contains the byte value of the byte
read. If the read() method returns -1, there is no more data to read in the FileInputStream, and it can
be closed. That is, -1 as int value, not -1 as byte value. There is a difference here!

You use the read() method just like the read() method of an InputStream.

read(byte[])

Being an InputStream the FileInputStream also has two read() methods which can read data into
a bytearray. You can read more about them in my tutorial about the InputStream (see link elsewhere in
this text).

close()

Just like any other InputStream a FileInputStream needs to be closed properly after use. You do
that by calling the FileInputStream’s close() method. You can see that in the FileInputStream example
further up this text, and remember to check the Java IO exception handling tutorial for more information
about proper exception handling (link below the example further up the page).

Java FileInputStream class methods

It is used to closes the stream.void close()

It is used to ensure that the close method is call when there is no more
reference to the file input stream.

protected void finalize()

It is used to return the FileDescriptor object.FileDescriptor getFD()

It is used to return the unique FileChannel object associated with the file input
stream.

FileChannel getChannel()

It is used to skip over and discards x bytes of data from the input stream.long skip(long x)

It is used to read up to len bytes of data from the input stream.int read(byte[] b, int off, int len)

It is used to read up to b.length bytes of data from the input stream.int read(byte[] b)

It is used to read the byte of data from the input stream.int read()

It is used to return the estimated number of bytes that can be read from the
input stream.

int available()

DescriptionMethod

It is used to closes the stream.void close()

It is used to ensure that the close method is call when there is no more
reference to the file input stream.

protected void finalize()

It is used to return the FileDescriptor object.FileDescriptor getFD()

It is used to return the unique FileChannel object associated with the file input
stream.

FileChannel getChannel()

It is used to skip over and discards x bytes of data from the input stream.long skip(long x)

It is used to read up to len bytes of data from the input stream.int read(byte[] b, int off, int len)

It is used to read up to b.length bytes of data from the input stream.int read(byte[] b)

It is used to read the byte of data from the input stream.int read()

It is used to return the estimated number of bytes that can be read from the
input stream.

int available()

DescriptionMethod

B.Sc. III YEAR V SEMESTER

130
Rahul Publications

Rahul Publications

Program
import java.io.FileInputStream;
public class DataStreamExample
{

public static void main(String args[])
{
Try

{
FileInputStream fin=new FileInputStream(“D:\\testout.txt”);
int i=fin.read();
System.out.print((char)i);
fin.close();
}
catch(Exception e)
{

System.out.println(e);
}

}
}
Q18. Explain in detail about FileOutputStream Class with an example.

Ans : (Dec.-19, July-19, Dec.-18, KU)

The FileOutputStream class makes it possible to write a file as a stream of bytes.
The FileOutputStreamclass is a subclass of OutputStream meaning you can use a FileOutputStream as
an OutputStream.

Note: The proper exception handling has been skipped here for the sake of clarity. To learn more
about correct exception handling, go to Java IO Exception Handling.

FileOutputStream Constructors

The FileOutputStream class contains a set of different useful constructors. I will cover the most
commonly used constructors here.

The first constructor takes a String which contains the path of the file to write to. Here is
anNoticethe path String. It needs double backslashes (\\) to create a single backslash in the String, because
backslash is an escape character in Java Strings. To get a single backslash you need to use the escape
sequence \\.

Overwriting vs. Appending the File

When you create a FileOutputStream pointing to a file that already exists, you can decide if you
want to overwrite the existing file, or if you want to append to the existing file. You decide that based on
which of the FileOutputStream constructors you choose to use.

This constructor which takes just one parameter, the file name, will overwrite any existing file:

OutputStream output = new FileOutputStream(“c:\\data\\output-text.txt”);

There is a constructor that takes 2 parameters too: The file name and a boolean. The boolean
indicates whether to append or overwrite an existing file. Here are two examples:

UNIT - III PROGRAMMING IN JAVA

131
Rahul Publications

Rahul Publications

OutputStream output = new FileOutputStream(“c:\\data\\output-text.txt”, true); //appends to file
OutputStream output = new FileOutputStream(“c:\\data\\output-text.txt”, false); //overwrites file

write()
The write() method of a FileOutputStream takes an int which contains the byte value of the

byte to write.

The FileOutputStream has other constructors too, letting you specify the file to write to in different
ways. Look in the official JavaDoc for more detailed info.

Writing Byte Arrays

Since the FileOutputStream is a subclass of OutputStream, you can write arrays of bytes to
the FileOutputStream too, instead of just a single byte at a time. See my tutorial about
the OutputStream classfor more information about how to write arrays of bytes.

flush()

When you write data to a FileOutputStream the data may get cached internally in the memory of
the computer and written to disk at a later time. For instance, every time there is X amount of data to
write, or when the FileOutputStream is closed.

If you want to make sure that all written data is written to disk without having to close
the FileOutputStreamyou can call its flush() method. Calling flush() will make sure that all data which
has been written to the FileOutputStream so far, is fully written to disk too.

close()

Like any other OutputStream a FileOutputStream instance needs to be closed after use. You do so
by calling its close() method as shown in the example earlier in this text.

FileOutputStream class methods

It is used to closes the file output stream.void close()

It is used to return the file descriptor associated with the stream.FileDescriptor getFD()

It is used to return the file channel object associated with the file
output stream.

FileChannel getChannel()

It is used to write the specified byte to the file output stream.void write(int b)

It is used to write len bytes from the byte array starting at
offset off to the file output stream.

void write(byte[] ary, int off,
int len)

It is used to write ary.length bytes from the byte array to the file
output stream.

void write(byte[] ary)

It is sued to clean up the connection with the file output stream.protected void finalize()

DescriptionMethod

It is used to closes the file output stream.void close()

It is used to return the file descriptor associated with the stream.FileDescriptor getFD()

It is used to return the file channel object associated with the file
output stream.

FileChannel getChannel()

It is used to write the specified byte to the file output stream.void write(int b)

It is used to write len bytes from the byte array starting at
offset off to the file output stream.

void write(byte[] ary, int off,
int len)

It is used to write ary.length bytes from the byte array to the file
output stream.

void write(byte[] ary)

It is sued to clean up the connection with the file output stream.protected void finalize()

DescriptionMethod

Program
import java.io.FileOutputStream;
public class FileOutputStreamExample
{

public static void main(String args[])
{
 try

B.Sc. III YEAR V SEMESTER

132
Rahul Publications

Rahul Publications

{
FileOutputStream fout=new FileOutputStream(“D:\\testout.txt”);
fout.write(65);
fout.close();
System.out.println(“success...”);
}
catch(Exception e){System.out.println(e);}

}
}

3.4.3 Scanner Class

Q19. What is a scanner class? What is it used for?

Ans :
There are various ways to read input from the keyboard, the java.util.Scanner class is one of them.

The Java Scanner class breaks the input into tokens using a delimiter that is whitespace bydefault. It
provides many methods to read and parse various primitive values.

Java Scanner class is widely used to parse text for string and primitive types using regular expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

Commonly used methods of Scanner class

There is a list of commonly used Scanner class methods:

Method Description

public String next() it returns the next token from the scanner.

public String nextLine() it moves the scanner position to the next line and
returns the value as a string.

public byte nextByte() it scans the next token as a byte.

public short nextShort() it scans the next token as a short value.

public int nextInt() it scans the next token as an int value.

public long nextLong() it scans the next token as a long value.

public float nextFloat() it scans the next token as a float value.

public double nextDouble() it scans the next token as a double value.

Java Scanner Example to get input from console

Let’s see the simple example of the Java Scanner class which reads the int, string and double value
as an input:

Program
import java.util.Scanner;
class ScannerTest
{

public static void main(String args[])

UNIT - III PROGRAMMING IN JAVA

133
Rahul Publications

Rahul Publications

{
Scanner sc=new Scanner(System.in);
System.out.println(“Enter your rollno”);
int rollno=sc.nextInt();
System.out.println(“Enter your name”);
String name=sc.next();
System.out.println(“Enter your fee”);
double fee=sc.nextDouble();
System.out.println(“Rollno:”+rollno+” name:”+name+” fee:”+fee);
sc.close();

}
}
Output:

Enter your rollno
111
Enter your name
Ratan
Enter
450000
Rollno:111 name:Ratan fee:450000

Q20. Write a program to implement Scanner Class?

Ans :
import java.util.*;
public class ScannerTest2
{

public static void main(String args[])
{

String input = “10 tea 20 coffee 30 tea biscuits”;
Scanner s = new Scanner(input).useDelimiter(“\\s”);
System.out.println(s.nextInt());
System.out.println(s.next());
System.out.println(s.nextInt());
System.out.println(s.next());
s.close();

}
}
Output:
10
tea
20
coffee

B.Sc. III YEAR V SEMESTER

134
Rahul Publications

Rahul Publications

3.4.4 BufferedInputStream Class, BufferedOutputStream Class

Q21. Explain about BufferedInputStream Class with an example.

Ans :
The BufferedInputStream class provides buffering to your input streams. Buffering can speed up

IO quite a bit. Rather than read one byte at a time from the network or disk, the BufferedInput Stream reads
a larger block at a time into an internal buffer. When you read a byte from the BufferedInputStream you
are therefore reading it from its internal buffer. When the buffer is fully read, the BufferedInputStream reads
another larger block of data into the buffer. This is typically much faster than reading a single byte at a
time from an InputStream, especially for disk access and larger data amounts.

BufferedInputStream Example

To add buffering to an InputStream simply wrap it in a BufferedInputStream. Here is how that
looks:

InputStream input = new BufferedInput Stream(new FileInputStream(“c:\\data\\input-file.txt”));

As you can see, using a Buffered InputStream to add buffering to a non-buffered InputStream is
pretty easy. The BufferedInputStream creates a byte array internally, and attempts to fill the array by
calling the InputStream.read(byte[]) methods on the underlying InputStream.

Setting Buffer Size of a BufferedInputStream

You can set the buffer size to use internally by the BufferedInputStream. You provide the buffer
size as a parameter to the Buffered Input Stream constructor, like this:

int bufferSize = 8 * 1024;

InputStreaminput = new BufferedInput Stream (new FileInputStream(“c:\\data\\input-file.txt”),
bufferSize);

This example sets the internal buffer used by the BufferedInputStream to 8 KB. It is best to use
buffer sizes that are multiples of 1024 bytes. That works best with most built-in buffering in hard disks etc.

Except for adding buffering to your input streams, BufferedInputStream behaves exactly like
an InputStream.

Optimal Buffer Size for a BufferedInput Stream

You should make some experiments with different buffer sizes to find out which buffer size seems to
give you the best performance on your concrete hardware. The optimal buffer size may depend on
whether you are using the BufferedInput Stream with a disk or network InputStream.

With both disk and network streams, the optimal buffer size may also depend on the concrete
hardware in the computer. If the hard disk is anyways reading a minimum of 4KB at a time, it’s stupid to
use less than a 4KB buffer. It is also better to then use a buffer size that is a multiple of 4KB. For instance,
using 6KB would be stupid too.

Even if your disk reads blocks of e.g. 4KB at a time, it can still be a good idea to use a buffer that is
larger than this. A disk is good at reading data sequentially - meaning it is good at reading multiple blocks
that are located after each other. Thus, using a 16KB buffer, or a 64KB buffer (or even larger) with
a BufferedInputStream may still give you a better performance than using just a 4KB buffer.

Also keep in mind that some hard disks have a read cache of some mega bytes. If your hard disk
anyways reads, say 64KB, of your file into its internal cache, you might as well get all of that data into

UNIT - III PROGRAMMING IN JAVA

135
Rahul Publications

Rahul Publications

your BufferedInputStream using one read operation, instead of using multiple read operations. Multiple
read operations will be slower, and you risk that the hard disk’s read cache gets erased between read
operations, causing the hard disk to re-read that block into the cache.

To find the optimal BufferedInputStream buffer size, find out the block size your hard disk reads in,
and possibly also its cache size, and make the buffer a multiple of that size. You will definitely have to
experiment to find the optimal buffer size. Do so by measuring read speeds with different buffer sizes.

mark() and reset()

An interesting aspect to note about the BufferedInputStream is that is supports
the mark() and reset()methods inherited from the InputStream. Not all InputStream subclasses support
these methods. In general you can call the markSupported() method to find out if mark() and reset() are
supported on a given InputStream or not, but the BufferedInputStream supports them.

Java BufferedInputStream class methods

It tests for the input stream to support the mark and reset methods.boolean markSupported()

It skips over and discards x bytes of data from the input stream.long skip(long x)

It sees the general contract of the mark method for the input stream.void mark(int readlimit)

It repositions the stream at a position the mark method was last called on this
input stream.

void reset()

It closes the input stream and releases any of the system resources associated
with the stream.

void close()

It read the bytes from the specified byte-input stream into a specified byte array,
starting with the given offset.

int read(byte[] b, int off, int
ln)

It read the next byte of data from the input stream.int read()

It returns an estimate number of bytes that can be read from the input stream
without blocking by the next invocation method for the input stream.

int available()

DescriptionMethod

It tests for the input stream to support the mark and reset methods.boolean markSupported()

It skips over and discards x bytes of data from the input stream.long skip(long x)

It sees the general contract of the mark method for the input stream.void mark(int readlimit)

It repositions the stream at a position the mark method was last called on this
input stream.

void reset()

It closes the input stream and releases any of the system resources associated
with the stream.

void close()

It read the bytes from the specified byte-input stream into a specified byte array,
starting with the given offset.

int read(byte[] b, int off, int
ln)

It read the next byte of data from the input stream.int read()

It returns an estimate number of bytes that can be read from the input stream
without blocking by the next invocation method for the input stream.

int available()

DescriptionMethod

Program
import java.io.*;
public class BufferedInputStreamExample
{

public static void main(String args[])
{

try
{

FileInputStream fin=new FileInputStream(“D:\\testout.txt”);
BufferedInputStream bin=new BufferedInputStream(fin);
int i;
while((i=bin.read())!=-1)
{

System.out.print((char)i);
}

B.Sc. III YEAR V SEMESTER

136
Rahul Publications

Rahul Publications

bin.close();
fin.close();

}
catch(Exception e)
{

System.out.println(e);
}

}
}

Q22. Explain about BufferedOutputStream Class with an example.

Ans :
The BufferedOutputStream class provides buffering to your output streams. Buffering can speed

up IO quite a bit. Rather than write one byte at a time to the network or disk, you write a larger block at
a time. This is typically much faster, especially for disk access and larger data amounts.

To add buffering to your OutputStream’s simply wrap them in a BufferedOutputStream. Here is how
that looks:

OutputStream output = new BufferedOutputStream(new FileOutputStream(“c:\\data\\output-
file.txt”));

Setting Buffer Size of a BufferedOutputStream

You can set the buffer size to use internally by the BufferedOutputStream. You provide the size as
a constructor parameter, like this:

int bufferSize = 8 * 1024;

OutputStream output = new BufferedOutputStream(new FileOutputStream(“c:\\data\\output-
file.txt”),bufferSize);

Except for adding buffering to your input streams, BufferedOutputStream behaves exactly like
an OutputStream. The only difference is that you may need to call flush() if you need to be absolutely
sure that the data written until now is flushed out of the buffer and onto the network or disk.

Optimal Buffer Size for a BufferedOutputStream

You should make some experiments with different buffer sizes to find out which buffer size seems to
give you the best performance on your concrete hardware. The optimal buffer size may depend on
whether you are using the BufferedOutputStream with a disk or networkOutputStream.

With both disk and network streams, the optimal buffer size may also depend on the concrete
hardware in the computer. If the hard disk is anyways writing a minimum of 4KB at a time, it’s stupid to
use less than a 4KB buffer. It is also better to then use a buffer size that is a multiple of 4KB. For instance,
using 6KB would be stupid too.

Even if your disk writes blocks of e.g. 4KB at a time, it can still be a good idea to use a buffer that is
larger than this. A disk is good at writing data sequentially - meaning it is good at writing multiple blocks
that are located after each other. Thus, using a 16KB buffer, or a 64KB buffer (or even larger) with
a BufferedOutputStream may still give you a better performance than using just a 4KB buffer.

To find the optimal BufferedOutputStream buffer size, find out the block size your hard disk writes
in, and make the buffer a multiple of that size. You will definitely have to experiment to find the optimal
buffer size. Do so by measuring write speeds with different buffer sizes.

UNIT - III PROGRAMMING IN JAVA

137
Rahul Publications

Rahul Publications

Java BufferedOutputStream class methods

It flushes the buffered output stream.void flush()

It write the bytes from the specified byte-input stream into
a specified byte array, starting with the given offset

void write(byte[] b,
int off, int len)

It writes the specified byte to the buffered output stream.void write(int b)

DescriptionMethod

It flushes the buffered output stream.void flush()

It write the bytes from the specified byte-input stream into
a specified byte array, starting with the given offset

void write(byte[] b,
int off, int len)

It writes the specified byte to the buffered output stream.void write(int b)

DescriptionMethod

Program
import java.io.*;
public class BufferedOutputStreamExample
{

public static void main(String args[])throws Exception
{

FileOutputStream fout=new FileOutputStream(“D:\\testout.txt”);
BufferedOutputStream bout=new BufferedOutputStream(fout);
String s=”Welcome to Rahul Publication.”;
byte b[]=s.getBytes();
bout.write(b);
bout.flush();
bout.close();
fout.close();
System.out.println(“success”);

}
}
Output

Welcome to Rahul Publication.

3.4.5 RandomAccessFile Class

Q23. What is a RandomAccessFile Class? Write a program for reading / writing using random
access file.

Ans : (July-19)

The RandomAccessFile class in the Java IO API allows you to move around a file and read from it
or write to it as you please. You can replace existing parts of a file too. This is not possible with
the FileInputStreamor FileOutputStream.

Creating a RandomAccessFile

Before you can work with the RandomAccess File class you must instantiate it. Here is how that
looks:

RandomAccessFile file = new RandomAccessFile(“c:\\data\\file.txt”, “rw”);

Notice the second input parameter to the constructor: ''rw''. This is the mode you want to open file
in. ''rw'' means read/write mode. Check the JavaDoc for more details about what modes you can open
a RandomAccessFile in.

B.Sc. III YEAR V SEMESTER

138
Rahul Publications

Rahul Publications

Moving Around a RandomAccessFile

To read or write at a specific location in a RandomAccessFile you must first position the file pointer
at the location to read or write. This is done using the seek() method. The current position of the file
pointer can be obtained by calling the getFilePointer() method.

Here is a simple example:

RandomAccessFile file = new RandomAccessFile(“c:\\data\\file.txt”, “rw”);

file.seek(200);

long pointer = file.getFilePointer();

file.close();

Reading from a RandomAccessFile

Reading from a RandomAccessFile is done using one of its many read() methods. Here is a
simple

The read() method reads the byte located a the position in the file currently pointed to by the file
pointer in the RandomAccessFile instance.

Here is a thing the JavaDoc forgets to mention: The read() method increments the file pointer to
point to the next byte in the file after the byte just read! This means that you can continue to
call read() without having to manually move the file pointer.

Writing to a RandomAccessFile

Writing to a RandomAccessFile can be done using one it its many write() methods.

Just like with the read() method the write() method advances the file pointer after being called.
That way you don’t have to constantly move the file pointer to write data to a new location in the file.

close()

The RandomAccessFile has a close() method which must be called when you are done using
the RandomAccessFile instance. You can see example of calls to close() in the examples above.

RandomAccessFile Exception Handling

The proper exception handling of a RandomAccessFile is left out of this text for clarity. However,
a RandomAccessFile must be closed properly after use, just like with a stream or reader / writer. This
requires proper exception handling around the close() call.

UNIT - III PROGRAMMING IN JAVA

139
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is exception?

Ans :
The exception handling in java is one of the powerful mechanism to handle the runtime errors so

that normal flow of the application can be maintained.

In exception (or exceptional event) is a problem that arises during the execution of a program.
When an Exception occurs the normal flow of the program is disrupted and the program/Application
terminates abnormally, which is not recommended, therefore, these exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an exception
occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has run out
of memory.

Some of these exceptions are caused by user error, others by programmer error, and others by
physical resources that have failed in some manner.

Based on these, we have three categories of Exceptions. You need to understand them to know
how exception handling works in Java.

2. User-Defined Exceptions

Ans :
Sometimes, the built-in exceptions in Java are not able to describe a certain situation. In such cases,

user can also create exceptions which are called ‘user-defined Exceptions’.

Following steps are followed for the creation of user-defined Exception.

 The user should create an exception class as a subclass of Exception class. Since all the exceptions
are subclasses of Exception class, the user should also make his class a subclass of it. This is
done as:

 class MyException extends Exception

 We can write a default constructor in his own exception class.

3. Write about Multithreading in Java.

Ans :
Multithreading in java is a process of executing multiple threads simultaneously.

Java is a multi-threaded programming language which means we can develop multi-threaded
program using Java. A multi-threaded program contains two or more parts that can run concurrently and
each part can handle a different task at the same time making optimal use of the available resources
specially when your computer has multiple CPUs.

B.Sc. III YEAR V SEMESTER

140
Rahul Publications

Rahul Publications

Thread is basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and
multithreading, both are used to achieve multitasking.

But we use multithreading than multiprocessing because threads share a common memory area.
They don’t allocate separate memory area so saves memory, and context-switching between the threads
takes less time than process.

Java Multithreading is mostly used in games, animation etc.

4. FileInputStream

Ans :
The FileInputStream class has a three different constructors you can use to create

a FileInputStreaminstance. I will cover the first two here.

The first constructor takes a String as parameter. This String should contain the path in the file
system to where the file to read is located.

Notice the path String. It needs double backslashes (\\) to create a single backslash in the String,
because backslash is an escape character in Java Strings. To get a single backslash you need to use the
escape sequence \\.

Notice the use of the for-slash (the normal slash character) as directory separator. That is how you
write file paths on unix. Actually, in my experience Java will also understand if you use a / as directory
separator on Windows (e.g. c:/user/data/thefile.txt), but don’t take my word for it. Test it on your own
system!

Which of the constructors you should use depends on what form you have the path in before
opening the FileInputStream. If you already have a String or File, just use that as it is. There is no
particular gain in converting a String to a File, or a File to a String first.

5. FileOutputStream Class

Ans :
The FileOutputStream class makes it possible to write a file as a stream of bytes.

The FileOutputStreamclass is a subclass of OutputStream meaning you can use a FileOutputStream as
an OutputStream.

FileOutputStream Constructors

The FileOutputStream class contains a set of different useful constructors. I will cover the most
commonly used constructors here.

The first constructor takes a String which contains the path of the file to write to. Here is
anNoticethe path String. It needs double backslashes (\\) to create a single backslash in the String, because
backslash is an escape character in Java Strings. To get a single backslash you need to use the escape
sequence \\.

Overwriting vs. Appending the File

When you create a FileOutputStream pointing to a file that already exists, you can decide if you
want to overwrite the existing file, or if you want to append to the existing file. You decide that based on
which of the FileOutputStream constructors you choose to use.

UNIT - III PROGRAMMING IN JAVA

141
Rahul Publications

Rahul Publications

6. Define thread.

Ans :
Thread can be defined as a set of executable instructions that are executed independently. A program

can be divided into multiple subprograms and each subprogram is called a thread. Every individual
thread is executed separately, thereby decreasing the execution time of a program.

7. How do we set priorities for threads?

Ans :
The priority of a thread can be set by making use of setPriority() method. This method is a member

of instead class. The syntax for setPriority() is as follows :

final void setPriority(int priority)

Here,

final is a keyword

void is the return type

setPriority is the method name used for setting the priority

priority is an integer value which can store the priority of thread.

8. Synchronization

Ans :
Synchronization of threads ensures that if two or more threads need to access a shared resource

then that resource is used by only one thread at a time. You can synchronize your code using the
synchronized keyword. You can invoke only one synchronized method for an object at any given time.

Synchronization is based on the concept of monitor. A monitor, also known as a semaphore, is an
object that is used as a mutually exclusive lock. All objects and classes are associated with a monitor and
only one thread can won a monitor at a given time.

The monitor controls the way in which synchronized methods access an object or class. When a
thread acquires a lock, it is said to have entered the monitor. The monitor ensures that only one thread
has access to the resources at any given time. To enter an object’s monitor, you need to call a synchronized
method.

When a thread is within a synchronized method, all the other threads that try to call it on the same
instance have to wait. During the execution of a synchronized method, the object is locked so that no
other synchronized method can be invoked. The monitor is automatically released when the method
completes its execution. The monitor can also be released when the synchronized method executes the
wait() method. When a thread calls the wait() method, it temporarily releases the locks that it holds.

9. Benefits of Exception Handling.

Ans :
(i) It can control run-time errors that occurs in the program.

(ii) It can avoid abnormal termination of the program and also shows the behavior of program to
users.

(iii) It can provide a facility to handle exceptions, throws message regarding exception and completes
the execution of program by catching the exception.

B.Sc. III YEAR V SEMESTER

142
Rahul Publications

Rahul Publications

(iv) It can separate the error handling code and normal code by using try-catch block.

(v) It can produce the normal execution flow for a program.

(vi) Its mechanism can implement a clean way to propagate error. That is when an invoking method
cannot manage a particular situation, then it throws an exception and asks the invoking method to
deal with such situation.

(vii) Its mechanism develops a powerful coding that ensures that the exceptions can be prevented.

10. Exception Handling

Ans :
Exception handling can be defined as a mechanism of handling exceptions that can be occurred at

run-time. This mechanism is commonly used to prevent the malfunctions such as computer deadlock or
computer hanging. Some examples of run-time exception are divide by zero, array out of bounds exceptions.

The run-time exception can be handled by using five keywords namely try, catch, throw, throws
and finally. The code that can generate exception is usually placed in try block. If an exception is occurred,
execution flow finds the similar catch block and leaves the try block. The catch block handles the exception
and generates a message specifying the type of exception. Some of these exception types are as follows,

(i) ArithmeticException

(ii) ArraylndexOutOfBoundsException.

However, there is no rule that the try block must contain corresponding catch block. Each try block
may contain zero or multiple catch blocks.

When an exception is thrown and if it is matched with any of the catch block, then the statements
of corresponding catch block can be executed. Otherwise, the catch block can be skipped and the statements
present next to the catch block will be executed. The finally block is declared after all the catch blocks
whose code can be executed irrespective to the occurrence of exception. Note that, the finally block is
optional.

11. Multitasking

Ans :
By definition, multitasking is when multiple processes share common processing resources such as

a CPU. Multi-threading extends the idea of multitasking into applications where you can subdivide specific
operations within a single application into individual threads. Each of the threads can run in parallel. The
OS divides processing time not only among different applications, but also among each thread within an
application.

Multi-threading enables you to write in a way where multiple activities can proceed concurrently in
the same program.

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to utilize the
CPU. Multitasking can be achieved by two ways:

 Process-based Multitasking(Multiprocessing)

 Thread-based Multitasking(Multithreading)

Process-based Multitasking (Multiprocessing)

 Each process have its own address in memory i.e. each process allocates separate memory
area.

UNIT - III PROGRAMMING IN JAVA

143
Rahul Publications

Rahul Publications

 Process is heavy weight.

 Cost of communication between the process is high.

 Switching from one process to another require some time for saving and loading registers,
memory maps, updating lists etc.

Thread-based Multitasking (Multithreading)

 Threads share the same address space.

 Thread is lightweight.

 Cost of communication between the thread is low.

12. What is a scanner class?

Ans :
There are various ways to read input from the keyboard, the java.util.Scanner class is one of them.

The Java Scanner class breaks the input into tokens using a delimiter that is whitespace bydefault. It
provides many methods to read and parse various primitive values.

Java Scanner class is widely used to parse text for string and primitive types using regular expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

B.Sc. III YEAR V SEMESTER

144
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Which of the following stores all the standard java classes [b]

(a) lang (b) java

(c) util (d) java package

2. Which of these keyword is used to define package [c]

(a) pkg (b) pack age

(c) package (d) None

3. Access specifier of the package [a]

(a) Public (b) Private

(c) Protected (d) All

4. Which of the following is correct [c]

(a) import package_name (b) import package

(c) Import package_name.* (d) Import package.*

5. When does exception occur in java [a]

(a) Runtime (b) Compile Time

(c) Any Time (d) None

6. Which of these is not a part of Exception [c]

(a) try (b) catch

(c) throw (d) throws

7. What is the MIN_PRIORITY and MAX _PRIORITY in threads [b]

(a) 0 to 256 (b) 1 & 10

(c) 0 to 10 (d) 10 to 0

8. Which of these interfaces is implemented by threads class [a]

(a) runnable (b) connections

(c) set (d) map

9. Which of these class is superclass of StringBuffer class [b]

(a) java.util (b) java.lang

(c) Arraylist (d) String class

10. Which data type value is returned by equal()of string class [c]

(a) char (b) int

(c) boolean (d) none

UNIT - III PROGRAMMING IN JAVA

145
Rahul Publications

Rahul Publications

Fill in the blanks

1. A is defined as a group of related classes and interfaces.

2. Once is created a string object cannot be changed.

3. is a mechanism to convert primitive into object and vice versa.

4. is abnormal condition in Java.

5. Each catch block is an .

6. is small piece of code that execute in a sequence.

7. ensure that same resource is shared by each thread (one or more).

8. Java performs input/output operations through .

9. is the predefined class used for reading data dynamically..

10. method is used to read character in BufferedReader..

11. The priority values ranges from .

12. A thread runs in the background of a program.

ANSWERS

1. Package

2. String class

3. Wrapper class

4. Exception

5. Exception Handling

6. Thread

7. Synchronization

8. Streams

9. Scanner Class

10. read()

11. 1 to 10

12. Daemon

B.Sc. III YEAR V SEMESTER

146
Rahul Publications

Rahul Publications

One Mark Answers

1. Exception.

Ans :
The exception handling in java is one of the powerful mechanism to handle the runtime errors so

that normal flow of the application can be maintained.

2. User-Defined Exception.

Ans :
An exception which can be created by the user manually are called as user-defined exception.

3. Multithreading in Java.

Ans :
Multithreading in java is a process of executing multiple threads simultaneously. Java is a multi-

threaded programming language which means we can develop multi-threaded program using Java.

4. Main Thread.

Ans :
The main thread is the first thread that will begin its execution immediately when the Java program

starts up.

5. Synchronization

Ans :
Synchronization of threads ensures that if two or more threads need to access a shared resource

then that resource is used by only one thread at a time.

6. FileOutputStream Class

Ans :
The FileOutputStream class makes it possible to write a file as a stream of bytes.

The FileOutputStreamclass is a subclass of OutputStream meaning you can use a FileOutputStream as
an OutputStream.

7. What is a scanner class

Ans :
The Java Scanner class breaks the input into tokens using a delimiter that is whitespace bydefault. It

provides many methods to read and parse various primitive values.

UNIT - IV PROGRAMMING IN JAVA

147
Rahul Publications

Rahul Publications

UNIT
IV

Applets: Introduction, Example, Life Cycle, Applet Class, Common Methods
Used in Displaying the Output (Graphics Class).
Event Handling: Introduction, Types of Events, Example.
AWT: Introduction, Components, Containers, Button, Label, Checkbox, Radio
Buttons, Container Class, Layouts.
Swings: Introduction, Differences between Swing and AWT, JFrame, JApplet,
JPanel, Components in Swings, Layout Managers, JTable.

4.1 APPLETS

4.1.1 Introduction, Example

Q1. Explain the concept of Applets with an
example.

Ans :
An applet is a Java program that runs in a

Web browser. An applet can be a fully functional
Java application because it has the entire Java API
at its disposal.

There are some important differences
between an applet and a standalone Java
application, including the following.

 An applet is a Java class that extends the
java.applet.Applet class.

 A main() method is not invoked on an applet,
and an applet class will not define main().

 Applets are designed to be embedded within
an HTML page.

 When a user views an HTML page that
contains an applet, the code for the applet is
downloaded to the user’s machine.

 A JVM is required to view an applet. The JVM
can be either a plug-in of the Web browser
or a separate runtime environment.

 The JVM on the user’s machine creates an
instance of the applet class and invokes
various methods during the applet’s lifetime.

 Applets have strict security rules that are
enforced by the Web browser. The security
of an applet is often referred to as sandbox
security, comparing the applet to a child

playing in a sandbox with various rules that
must be followed.

 Other classes that the applet needs can be
downloaded in a single Java Archive (JAR)
file.

Example
import j ava.awt. *;

import java.applet.*;

/*

<applet code=”Demo” width=500 height
=500>

</applet>

*/

public class Demo extends Applet

{

public void paint(Graphics g)

{

g.drawString(“Welcome”, 20, 30);

}

}

4.1.2 Life Cycle

Q2. Explain applet life cycle.

(OR)

Explain the sequence of applet’s life
cycle.

(OR)

Write about applet’s life cycle.

Ans : (July-21, Dec.-18, Dec.-18, KU)

Four methods in the Applet class gives you
the framework on which you build any serious
applet.

B.Sc. III YEAR V SEMESTER

148
Rahul Publications

Rahul Publications

 init - This method is intended for whatever initialization is needed for your applet. It is called after
the param tags inside the applet tag have been processed.

 start - This method is automatically called after the browser calls the init method. It is also called
whenever the user returns to the page containing the applet after having gone off to other pages.

 stop - This method is automatically called when the user moves off the page on which the applet
sits. It can, therefore, be called repeatedly in the same applet.

 destroy - This method is only called when the browser shuts down normally. Because applets are
meant to live on an HTML page, you should not normally leave resources behind after a user
leaves the page that contains the applet.

 paint - Invoked immediately after the start() method, and also any time the applet needs to
repaint itself in the browser. The paint() method is actually inherited from the java.awt.

paint () start ()

start () stop ()

Running Idle Dead

destroy ()

Born
init ()

4.1.3 Applet Class

Q3. Write about Applet Classes?

Ans :
Every applet is an extension of the java.applet.Applet class. The base Applet class provides methods

that a derived Applet class may call to obtain information and services from the browser context.

These include methods that do the following

 Get applet parameters

 Get the network location of the HTML file that contains the applet

 Get the network location of the applet class directory

 Print a status message in the browser

 Fetch an image

 Fetch an audio clip

 Play an audio clip

 Resize the applet

UNIT - IV PROGRAMMING IN JAVA

149
Rahul Publications

Rahul Publications

Additionally, the Applet class provides an interface by which the viewer or browser obtains information
about the applet and controls the applet’s execution. The viewer may-

 Request information about the author, version, and copyright of the applet

 Request a description of the parameters the applet recognizes

 Initialize the applet

 Destroy the applet

 Start the applet’s execution

 Stop the applet’s execution

The Applet class provides default implementations of each of these methods. Those implementations
may be overridden as necessary.

The “Hello, World” applet is complete as it stands. The only method overridden is the paint method.

Most applets override these four methods. These four methods forms Applet lifecycle.

 init() : init() is the first method to be called. This is where variable are initialized. This method is
called only once during the runtime of applet.

 start() : start() method is called after init(). This method is called to restart an applet after it has
been stopped.

 stop() : stop() method is called to suspend thread that does not need to run when applet is not
visible.

 destroy() : destroy() method is called when your applet needs to be removed completely from
memory.

Syntax

import java.awt.*;

import java.applet.*;

public class AppletTest extends Applet

{

public void init()

{

//initialization

}

public void start ()

{

//start or resume execution

B.Sc. III YEAR V SEMESTER

150
Rahul Publications

Rahul Publications

}

public void stop()

{

//suspend execution

}

public void destroy()

{

//perform shutdown activity

}

public void paint (Graphics g)

{

//display the content of window

4.1.4 Applet Implementation

Q4. How to run an Applet Program? (Or) Explain how to implement an Applet?

Ans
An Applet program is compiled in the same way as you have been compiling your console programs.

However there are two ways to run an applet.

 Executing the Applet within Java-compatible web browser.

 Using an Applet viewer, such as the standard tool, applet viewer. An applet viewer executes your
applet in a window

For executing an Applet in an web browser, create short HTML file in the same directory. Inside
body tag of the file, include the following code. (applet tag loads the Applet class)

UNIT - IV PROGRAMMING IN JAVA

151
Rahul Publications

Rahul Publications

<applet code = “MyApplet” width=400 height=400 >< /applet > Run the HTML file

Running Applet using Applet Viewer

To execute an Applet with an applet viewer, write short HTML file as discussed above. If you name
it as run.htm, then the following command will run your applet program.

f:/>appletviewer run.htm

B.Sc. III YEAR V SEMESTER

152
Rahul Publications

Rahul Publications

Q5. How does Applet differ form Application?

Ans :
Although both the Applets and stand-alone
applications are Java programs, there are
certain restrictions are imposed on Applets
due to securityconcerns.

There are some important differences
between an applet and a standalone Java
application, including the following-

 An applet is a Java class that extends the
java.applet.Applet class.

 A main() method is not invoked on an applet,
and an applet class will not define main().

 Applets are designed to be embedded within
an HTML page.

 When a user views an HTML page that
contains an applet, the code for the applet is
downloaded to the user’s machine.

 A JVM is required to view an applet. The JVM
can be either a plug-in of the Web browser
or a separate runtime environment.

 The JVM on the user’s machine creates an
instance of the applet class and invokes
various methods during the applet’s lifetime.

 Applets have strict security rules that are
enforced by the Web browser. The security
of an applet is often referred to as sandbox
security, comparing the applet to a child
playing in a sandbox with various rules that
must be followed.

 Other classes that the applet needs can be
downloaded in a single Java Archive (JAR)
file.

4.1.5 Common Methods Used in Displaying
the Output (Graphics Class)

Q6. What are the Common Methods Used in
Displaying the Output (Graphics Class)

Ans :
The common methods used in displaying the

output are as follows,

1. public abstract void drawString(String
str, int x, int y): This method is used to draw
the given string.

2. public void drawRect(int x, int y, int
width, int height): This method is used to
draw a rectangle with the given width and
height.

3. public abstract void fillRect(int x, int y,
int width, int height): This method is used
to fill rectangle with the default color and the
given width and height.

4. public abstract void drawOval(int x, int
y, int width, int height): This method is
used to draw oval with the given width and
height.

5. public abstract void fillOval(int x, int y,
int width, int height): This method is used
to fill oval with the default color and the given
width and height.

6. public abstract void drawLinefint xl, int
yl, int x2, int y2): This method is used to
draw line between the given points i.e., (xl,
yl) and (x2, y2).

7. public abstract boolean
drawlmage(lmage img, int x, int y,
ImageObserver observer): This method
is used draw a particular image.

8. public abstract void drawArc(int x, int
y, int width, int height, int startAngle, int
arcAngle): This method is used draw a
circular or elliptical arc.

9. public abstract void filLArc(int x, int y,
int width, int height, int startAngle, int
arcAngle): This method is used to fill a
circular or elliptical arc with a default color.

10. public abstract void setColor(Color c):
This method is used to set the graphics current
color to the given color

11. public abstract void setFont(Font font):
This method is used to set the graphics current
font to the given font

UNIT - IV PROGRAMMING IN JAVA

153
Rahul Publications

Rahul Publications

4.2 EVENT HANDLING

4.2.1 Introduction

Q7. Define the terms :

(a) Event

(b) Event Handling

Ans :
(a) Event

Change in the state of an object is known as
event i.e. event describes the change in state of
source. Events are generated as result of user
interaction with the graphical user interface
components. For example, clicking on a button,
moving the mouse, entering a character through
keyboard,selecting an item from list, scrolling the
page are the activities that causes an event to
happen.

(b) Event Handling

Event Handling is the mechanism that
controls the event and decides what should happen
if an event occurs. This mechanism has the code
which is known as event handler that is executed
when an event occurs. Java Uses the Delegation
Event Model to handle the events. This model
defines the standard mechanism to generate and
handle the events.Let’s have a brief introduction to
this model.

The Delegation Event Model has the following
key participants namely:

 Source - The source is an object on which
event occurs. Source is responsible for
providing information of the occurred event
to it’s handler. Java provide as with classes
for source object.

 Listener - It is also known as event
handler.Listener is responsible for generating
response to an event. From java implemen-

tation point of view the listener is also an
object. Listener waits until it receives an event.
Once the event is received , the listener
process the event an then returns.

The benefit of this approach is that the user
interface logic is completely separated from the logic
that generates the event. The user interface element
is able to delegate the processing of an event to the
separate piece of code. In this model ,Listener needs
to be registered with the source object so that the
listener can receive the event notification. This is an
efficient way of handling the event because the event
notifications are sent only to those listener that want
to receive them.

Q8. Explain various steps involved in even
handling.

Ans : (June-19(MGU)

 The User clicks the button and the event is
generated.

 Now the object of concerned event class is
created automatically and information about
the source and the event get populated with
in same object.

 Event object is forwarded to the method of
registered listener class.

 The method is now getting executed and
returns.

 Points to remember about listener

 In order to design a listener class we have to
develop some listener interfaces.These
Listener interfaces forecast some public
abstract callback methods which must be
implemented by the listener class.

 If you do not implement the any if the
predefined interfaces then your class can not
act as a listener class for a source object.

B.Sc. III YEAR V SEMESTER

154
Rahul Publications

Rahul Publications

4.2.2 Types of Events, Example

Q9. Explain the various types of event classes.

Ans :

FocusListenergenerated when component gains or loses keyboard focusFocusEvent

AdjustmentListenergenerated when scroll bar is manipulatedAdjustmentEvent

ContainerListenergenerated when component is added or removed from
container

ContainerEvent

ComponentEventListe
ner

generated when component is hidden, moved, resized or set
visible

ComponentEvent

WindowListenergenerated when window is activated, deactivated,
deiconified, iconified, opened or closed

WindowEvent

MouseWheelListenergenerated when mouse wheel is movedMouseWheelEvent

TextListenergenerated when value of textarea or textfield is changedTextEvent

ItemListenergenerated when check-box or list item is clickedItemEvent

KeyListenergenerated when input is received from keyboardKeyEvent

MouseListenergenerated when mouse is dragged, moved,clicked,pressed
or released.

MouseEvent

ActionListenergenerated when button is pressed, menu-item is selected,
list-item is double clicked

ActionEvent

Listener InterfaceDescriptionEvent Classes

FocusListenergenerated when component gains or loses keyboard focusFocusEvent

AdjustmentListenergenerated when scroll bar is manipulatedAdjustmentEvent

ContainerListenergenerated when component is added or removed from
container

ContainerEvent

ComponentEventListe
ner

generated when component is hidden, moved, resized or set
visible

ComponentEvent

WindowListenergenerated when window is activated, deactivated,
deiconified, iconified, opened or closed

WindowEvent

MouseWheelListenergenerated when mouse wheel is movedMouseWheelEvent

TextListenergenerated when value of textarea or textfield is changedTextEvent

ItemListenergenerated when check-box or list item is clickedItemEvent

KeyListenergenerated when input is received from keyboardKeyEvent

MouseListenergenerated when mouse is dragged, moved,clicked,pressed
or released.

MouseEvent

ActionListenergenerated when button is pressed, menu-item is selected,
list-item is double clicked

ActionEvent

Listener InterfaceDescriptionEvent Classes

Q10. Write a program to implement Event Handling?

Ans :
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.applet.*;

import java.awt.event.*;

zimport java.awt.*;

public class Test extends Applet implements KeyListener

{

String msg=””;

public void init()

{

addKeyListener(this);

}

public void keyPressed(KeyEvent k)

UNIT - IV PROGRAMMING IN JAVA

155
Rahul Publications

Rahul Publications

{

showStatus(“KeyPressed”);

}

public void keyReleased(KeyEvent k)

{

showStatus(“KeyRealesed”);

}

public void keyTyped(KeyEvent k)

{

msg = msg+k.getKeyChar();

repaint();

}

public void paint(Graphics g)

{

g.drawString(msg, 20, 40);

}

}

HTML code

<applet code=”Test” width=300, height=100 >

B.Sc. III YEAR V SEMESTER

156
Rahul Publications

Rahul Publications

4.3 AWT

4.3.1 Introduction

Q11. What are AWT’s? Explain AWT Hierarchy in JAVA?

Ans : (July-21)

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in
java. Java AWT components are platform-dependent i.e. components are displayed according to the
view of operating system. AWT is heavyweight i.e. its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea, RadioButton,
CheckBox, Choice, List etc.

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

Button

DialogFrame

Applet

Window Panel

Container

List

Choice

Checkbox

Label

Object

Component

 Container: The Container is a component in AWT that can contain another components like
buttons, textfields, labels etc. The classes that extends Container class are known as container such
as Frame, Dialog and Panel.

 Window: The window is the container that have no borders and menu bars. You must use frame,
dialog or another window for creating a window.

 Panel: The Panel is the container that doesn’t contain title bar and menu bars. It can have other
components like button, textfield etc.

UNIT - IV PROGRAMMING IN JAVA

157
Rahul Publications

Rahul Publications

 Frame :The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size (width and height) of the
component.

public void setLayout(LayoutManager
m)

defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by
default false.

Java AWT Example
To create simple awt example, you need a frame. There are two ways to create a frame in AWT.

 By extending Frame class (inheritance)

 By creating the object of Frame class (association)

AWT Example by Inheritance

import java.awt.*;

class First extends Frame

{

First()

{

Button b=new Button(“click me”);

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[])

{

First f=new First();

}

}

AWT Example by Association

import java.awt.*;

class First2

B.Sc. III YEAR V SEMESTER

158
Rahul Publications

Rahul Publications

{
First2()
{
Frame f=new Frame();
Button b=new Button(“click me”);
b.setBounds(30,50,80,30);
f.add(b);
f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);
}
public static void main(String args[])
{
First2 f=new First2();
}

 }
Q12. What is the purpose of AWT?

Ans : (July-21)

Unlike C/C++, Java also supports GUI environment. Through the use of GUI (Graphical User
Interface) environments it is possible to take user input into a running program or it can display some
message to the user dynamically. The user interfaces can either be command line or GUI. All the classes
and interfaces required for developing GUI components and drawing graphics are provided by two
packages i.e., java, awt and java.awt.event.
4.3.2 Components
Q13. What are the Components of AWT?

(OR)
Explain various AWT classes used in java.

Ans : (Dec.-19)

The class Component is the abstract base class for the non menu user-interface controls of AWT.
Component represents an object with graphical representation.
Class declaration

Following is the declaration for java. awt. Component class:
public abstract class Component extends
ObjectimplementsImage Observer, Menu Container, Serializable

Field
Following are the fields for java. awt. Component class:

 static float BOTTOM_ALIGNMENT — Ease-of-use constant for getAlignmentY.
 static float CENTER_ALIGNMENT — Ease-of-use constant for getAlignmentY and

getAlignmentX.
 static float LEFT_ALIGNMENT — Ease-of-use constant for getAlignmentX.
 static float RIGHT_ALIGNMENT — Ease-of-use constant for getAlignmentX.
 static float TOP_ALIGNMENT — Ease-of-use constant for getAlignmentY().

UNIT - IV PROGRAMMING IN JAVA

159
Rahul Publications

Rahul Publications

Class constructors

S.No. Cnstructor & Description

 1 Protected Componen(): This creates a new Component.

Methods inherited

This class inherits methods from the following classes: java.lang.Object

After having the basic idea of GUI, let us know how many Java AWT Components classes exist
with java.awt package.

Label

Button

Chechbox

List

Choice

Scrollbar

Canvas

TexComponent

Window

DialogApplet

Panel

Container

ComponentObject

CheckboxGroup

TextArea

TextField

Frame

FileDialog

Fig.: Component Hierachy

As you can observe from the above hierarchy, Component is the super class of all Java components
and is declared as abstract. That is, we cannot create objects of Component class directly.

Following is the class signature

public abstract class Component extends Object implements ImageObserver, Menu Container,
Serializable

Properties of Java AWT Components

1. A Component object represents a graphical interactive area displayable on the screen that can be
used by the user.

2. Any subclass of a Component class is known as a component. For example, button is a component.

3. Only components can be added to a container, like frame.

B.Sc. III YEAR V SEMESTER

160
Rahul Publications

Rahul Publications

Important methods of Component class

Following are the important methods, practiced very often, of Component class that can be used
by all the sub classes (components).

1. setEnabled(boolean): The parameter false makes the component disabled so that it does not
respond to user interactions (say, clicks).

2. setBounds(): Using this method, the programmer can give his own size to the component in
terms of width and height and also the location where he can place the component in the container.
This method is not used often as the programmer prefers to place the component in the container
using layout managers.

3. getWidth(): The programmer can obtain the width of the component.

4. getHeight(): The programmer can obtain the height of the component.

5. paint(): Used very extensively to draw graphics. This method is called implicitly when the frame is
created or resized.

6. repaint(): Used by the programmer to call the paint() method explicitly anywhere in the program.

7. setBackground(): Used to give a background color to a component.

8. setForeground(): Used to give a foreground color to a component.

9. setFont(): Used to give a font to a component to display the text.

10. getSize(): Returns the size of the component.

11. setSize(): Used to give the size to the component.

12. update(): The is method is called implicitly by the repaint(). A call to this method clears the earlier
drawings existing on the container.

4.3.3 Containers

Q14. Discuss about various containers of AWT.

Ans : (Dec.-18(MGU)

The class Container is the super class for the containers of AWT. Container object can contain
other AWT components.

Class declaration

Following is the declaration for java. awt. Container class:

public class Container extends Component

Class constructors

S.No. Constructor & Description

 1 Container(): This creates a new Container

After knowing what a component is, let us go to the list of containers Java supports. For this, the
container hierarchy is separated from the earlier component hierarchy and displayed here.

Infact, the Container is a component as it is a subclass of Component class. It can use all the
methods of Component class and an extra added feature is components can be added to this component
(container).

UNIT - IV PROGRAMMING IN JAVA

161
Rahul Publications

Rahul Publications

1. Any class subclass of a Container class is known as a container.
2. Only components can be added to container.
3. Every container comes with a default layout manager that can be changed explicitly with setLayout()

method.

Panel

Container Hierarchy

Applet

Frame

Window

Dialog File Dialog

ContainerComponentObject

As you can observe from the above hierarchy, Container is the super class of all Java containers.
Following is the class signature

public class Container extends Component
Following are the important methods of the Container class.
1. add(): This method is overloaded with which a component can be added to the container.

2. invalidate(): Used to invalidate the present set up of components in the container.

3. validate(): Used to revalidate the current set up of components after calling invalidate().
The important containers used very often are applets, frames and panels. Rare are dialog

boxes. Panels work very differently. Panel behaves both as component and container. As component
panel can be added to a container and as container we can add components to panel.

Types of containers
The AWT provides four container classes. They are class Window and its two subtypes — class

Frame and class Dialog — as well as the Panel class. In addition to the containers provided by the AWT, the
Applet class is a container — it is a subtype of the Panel class and can therefore hold components. Brief
descriptions of each container class provided by the AWT are provided below.

A generic container for holding components. An
instance of the Panel class provides a container
to which to add components.

Panel

A top-level display surface (a window) with a
border and title. An instance of the Dialog class
cannot exist without an associated instance of
the Frame class.

Dialog

A top-level display surface (a window) with a
border and title. An instance of the Frame class
may have a menu bar. It is otherwise very much
like an instance of the Window class.

Frame

A top-level display surface (a window). An
instance of the Window class is not attached to
nor embedded within another container. An
instance of the Window class has no border and
no title.

Window

A generic container for holding components. An
instance of the Panel class provides a container
to which to add components.

Panel

A top-level display surface (a window) with a
border and title. An instance of the Dialog class
cannot exist without an associated instance of
the Frame class.

Dialog

A top-level display surface (a window) with a
border and title. An instance of the Frame class
may have a menu bar. It is otherwise very much
like an instance of the Window class.

Frame

A top-level display surface (a window). An
instance of the Window class is not attached to
nor embedded within another container. An
instance of the Window class has no border and
no title.

Window

B.Sc. III YEAR V SEMESTER

162
Rahul Publications

Rahul Publications

4.3.4 Button
Q15. Explain about buttons.

Ans :
Button is a control component that has a label and generates an event when pressed. When a

button is pressed and released, AWT sends an instance of ActionEvent to the button, by calling processEvent
on the button. The button’s processEvent method receives all events for the button; it passes an action
event along by calling its own processActionEvent method. The latter method passes the action event on
to any action listeners that have registered an interest in action events generated by this button.

If an application wants to perform some action based on a button being pressed and released, it
should implement ActionListener and register the new listener to receive events from this button, by
calling the button’s addActionListener method. The application can make use of the button’s action
command as a messaging protocol.
Class declaration

Following is the declaration for java.awt.Button class:
public class Button extends Component implements Accessible

Class constructors

Button(String text): Constructs a new button with specified label.2

Button(): Constructs a button with an empty string for its label.1

Constructor & DescriptionS.
N.

Button(String text): Constructs a new button with specified label.2

Button(): Constructs a button with an empty string for its label.1

Constructor & DescriptionS.
N.

Class methods

void setLabel(String label): Sets the button's label to be the specified
string.

13

void setActionCommand(String command): Sets the command name
for the action event fired by this button.

12

void removeActionListener(ActionListener l): Removes the specified
action listener so that it no longer receives action events from this button.

11

protected void processEvent(AWTEvent e): Processes events on this
button.

10

protected void processActionEvent(ActionEvent e): Processes action
events occurring on this button by dispatching them to any registered
ActionListener objects.

9

protected String paramString(): Returns a string representing the state of
this Button.

8

<T extends EventListener>T[] getListeners(Class<T> listenerType):
Returns an array of all the objects currently registered as FooListeners upon
this Button.

7

String getLabel(): Gets the label of this button.6

ActionListener[] getActionListeners(): Returns an array of all the action
listeners registered on this button.

5

String getActionCommand(): Returns the command name of the action
event fired by this button.

4

AccessibleContext getAccessibleContext(): Gets the AccessibleContext
associated with this Button.

3

void addNotify(): Creates the peer of the button.2

void addActionListener(ActionListener l): Adds the specified action
listener to receive action events from this button.

1

Method & DescriptionS.No
.

void setLabel(String label): Sets the button's label to be the specified
string.

13

void setActionCommand(String command): Sets the command name
for the action event fired by this button.

12

void removeActionListener(ActionListener l): Removes the specified
action listener so that it no longer receives action events from this button.

11

protected void processEvent(AWTEvent e): Processes events on this
button.

10

protected void processActionEvent(ActionEvent e): Processes action
events occurring on this button by dispatching them to any registered
ActionListener objects.

9

protected String paramString(): Returns a string representing the state of
this Button.

8

<T extends EventListener>T[] getListeners(Class<T> listenerType):
Returns an array of all the objects currently registered as FooListeners upon
this Button.

7

String getLabel(): Gets the label of this button.6

ActionListener[] getActionListeners(): Returns an array of all the action
listeners registered on this button.

5

String getActionCommand(): Returns the command name of the action
event fired by this button.

4

AccessibleContext getAccessibleContext(): Gets the AccessibleContext
associated with this Button.

3

void addNotify(): Creates the peer of the button.2

void addActionListener(ActionListener l): Adds the specified action
listener to receive action events from this button.

1

Method & DescriptionS.No
.

UNIT - IV PROGRAMMING IN JAVA

163
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:
· java.awt.Component
· java.lang.Object

Program
import java.awt.*;
public class ButtonExample
{
public static void main(String[] args)
{

 Frame f=new Frame(“Button Example”);
 Button b=new Button(“Click Here”);
 b.setBounds(50,100,80,30);
 f.add(b);
 f.setSize(400,400);
 f.setLayout(null);
 f.setVisible(true);

}
}

Output

4.3.5 Label
Q16. Explain the API of Label Class?

Ans :
Label is a passive control because it does not create any event when accessed by the user. The

label control is an object of Label. A label displays a single line of read-only text. However the text can be
changed by the application programmer but cannot be changed by the end user in any way.
Class declaration

Following is the declaration for java.awt.Label class:

public class Label extends Component implements Accessible

B.Sc. III YEAR V SEMESTER

164
Rahul Publications

Rahul Publications

Field

Following are the fields for java.awt.Component class:

 static int CENTER — Indicates that the label should be centered.

 static int LEFT — Indicates that the label should be left justified.

 static int RIGHT — Indicates that the label should be right justified.

Class constructors

Label(String text, int alignment): Constructs a new label that presents the
specified string of text with the specified alignment.

3

Label(String text): Constructs a new label with the specified string of text, left
justified.

2

Label(): Constructs an empty label.1

Constructor & DescriptionS.No.

Label(String text, int alignment): Constructs a new label that presents the
specified string of text with the specified alignment.

3

Label(String text): Constructs a new label with the specified string of text, left
justified.

2

Label(): Constructs an empty label.1

Constructor & DescriptionS.No.

Class methods

void setText(String text): Sets the text for this label to the specified text.7

void setAlignment(int alignment): Sets the alignment for this label to the
specified alignment.

6

protected String paramString(): Returns a string representing the state of
this Label.

5

String getText(): Gets the text of this label.4

int getAlignment(): Gets the current alignment of this label.3

AccessibleContext getAccessibleContext(): Gets the AccessibleContext
associated with this Label.

2

void addNotify(): Creates the peer for this label.1

Method & DescriptionS.No.

void setText(String text): Sets the text for this label to the specified text.7

void setAlignment(int alignment): Sets the alignment for this label to the
specified alignment.

6

protected String paramString(): Returns a string representing the state of
this Label.

5

String getText(): Gets the text of this label.4

int getAlignment(): Gets the current alignment of this label.3

AccessibleContext getAccessibleContext(): Gets the AccessibleContext
associated with this Label.

2

void addNotify(): Creates the peer for this label.1

Method & DescriptionS.No.

Methods inherited

This class inherits methods from the following classes:

 java.awt.Component

 java.lang.Object

Program

import java.awt.*;

class LabelExample

{

UNIT - IV PROGRAMMING IN JAVA

165
Rahul Publications

Rahul Publications

public static void main(String args[])

{

 Frame f= new Frame(“Label Example”);

 Label l1,l2;

 l1=new Label(“First Label.”);

 l1.setBounds(50,100, 100,30);

 l2=new Label(“Second Label.”);

 l2.setBounds(50,150, 100,30);

 f.add(l1); f.add(l2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

}

Output:

4.3.6 Checkbox / Radio Buttons

Q17. Explain in detail about Checkbox control with example?

Ans : (Dec.-19, Dec.-18(MGU)

Checkbox control is used to turn an option on(true) or off(false). There is label for each checkbox
representing what the checkbox does.The state of a checkbox can be changed by clicking on it.

Class declaration

Following is the declaration for java.awt.Checkbox class:

public class Checkboxe xtends Component implementsItem Selectable, Accessible

B.Sc. III YEAR V SEMESTER

166
Rahul Publications

Rahul Publications

Class constructors

Checkbox(String label, CheckboxGroup group, boolean state)
Creates a check box with the specified label, in the specified check box group, and set
to the specified state.

5

Checkbox(String label, boolean state, CheckboxGroup group)
Constructs a Checkbox with the specified label, set to the specified state, and in the
specified check box group.

4

Checkbox(String label, boolean state): Creates a check box with the specified
label and sets the specified state.

3

Checkbox(String label): Creates a check box with the specified label.2

Checkbox(): Creates a check box with an empty string for its label.1

Constructor & DescriptionS.No
.

Checkbox(String label, CheckboxGroup group, boolean state)
Creates a check box with the specified label, in the specified check box group, and set
to the specified state.

5

Checkbox(String label, boolean state, CheckboxGroup group)
Constructs a Checkbox with the specified label, set to the specified state, and in the
specified check box group.

4

Checkbox(String label, boolean state): Creates a check box with the specified
label and sets the specified state.

3

Checkbox(String label): Creates a check box with the specified label.2

Checkbox(): Creates a check box with an empty string for its label.1

Constructor & DescriptionS.No
.

Class methods

void setState(boolean state)
Sets the state of this check box to the specified state.

16

void setLabel(String label)
Sets this check box's label to be the string argument.

15

void setCheckboxGroup(CheckboxGroup g)
Sets this check box's group to the specified check box group.

14

void removeItemListener(ItemListener l)
Removes the specified item listener so that the item listener no longer receives item events from this
check box.

13

protected void processItemEvent(ItemEvent e)
Processes item events occurring on this check box by dispatching them to any registered
ItemListener objects.

12

protected void processEvent(AWTEvent e)
Processes events on this check box.

11

protected String paramString()
Returns a string representing the state of this Checkbox.

10

boolean getState()
Determines whether this check box is in the on or off state.

9

Object[] getSelectedObjects()
Returns an array (length 1) containing the checkbox label or null if the checkbox is not selected.

8

<T extends EventListener>T[] getListeners(Class<T> listenerType)
Returns an array of all the objects currently registered as FooListeners upon this Checkbox.

7

String getLabel()
Gets the label of this check box.

6

ItemListener[] getItemListeners()
Returns an array of all the item listeners registered on this checkbox.

5

CheckboxGroup getCheckboxGroup()
Determines this check box's group.

4

AccessibleContext getAccessibleContext()
Gets the AccessibleContext associated with this Checkbox.

3

void addNotify()
Creates the peer of the Checkbox.

2

void addItemListener(ItemListener l)
Adds the specified item listener to receive item events from this check box.

1

Method & DescriptionS.No.

void setState(boolean state)
Sets the state of this check box to the specified state.

16

void setLabel(String label)
Sets this check box's label to be the string argument.

15

void setCheckboxGroup(CheckboxGroup g)
Sets this check box's group to the specified check box group.

14

void removeItemListener(ItemListener l)
Removes the specified item listener so that the item listener no longer receives item events from this
check box.

13

protected void processItemEvent(ItemEvent e)
Processes item events occurring on this check box by dispatching them to any registered
ItemListener objects.

12

protected void processEvent(AWTEvent e)
Processes events on this check box.

11

protected String paramString()
Returns a string representing the state of this Checkbox.

10

boolean getState()
Determines whether this check box is in the on or off state.

9

Object[] getSelectedObjects()
Returns an array (length 1) containing the checkbox label or null if the checkbox is not selected.

8

<T extends EventListener>T[] getListeners(Class<T> listenerType)
Returns an array of all the objects currently registered as FooListeners upon this Checkbox.

7

String getLabel()
Gets the label of this check box.

6

ItemListener[] getItemListeners()
Returns an array of all the item listeners registered on this checkbox.

5

CheckboxGroup getCheckboxGroup()
Determines this check box's group.

4

AccessibleContext getAccessibleContext()
Gets the AccessibleContext associated with this Checkbox.

3

void addNotify()
Creates the peer of the Checkbox.

2

void addItemListener(ItemListener l)
Adds the specified item listener to receive item events from this check box.

1

Method & DescriptionS.No.

UNIT - IV PROGRAMMING IN JAVA

167
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:

 java.awt.Component

 java.lang.Object

Program
public class CheckboxExample

{

CheckboxExample()
{

Frame f= new Frame(“Checkbox Example”);

Checkbox checkbox1 = new Checkbox(“C++”);
checkbox1.setBounds(100,100, 50,50);

Checkbox checkbox2 = new Checkbox(“Java”, true);

checkbox2.setBounds(100,150, 50,50);
f.add(checkbox1);

f.add(checkbox2);

f.setSize(400,400);
f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])
{

new CheckboxExample();

}

}

Out put

B.Sc. III YEAR V SEMESTER

168
Rahul Publications

Rahul Publications

Q18. Explain the elements and methods used to group the set of CheckBox?

Ans :
The CheckboxGroup class is used to group the set of checkbox.

Class declaration

Following is the declaration for java.awt.CheckboxGroup class:

public class Checkbox Groupex tends Objectimplements Serializable

Class constructors

CheckboxGroup() (): Creates a new instance of CheckboxGroup.1

Constructor & DescriptionS.No.

CheckboxGroup() (): Creates a new instance of CheckboxGroup.1

Constructor & DescriptionS.No.

Class methods

String toString(): Returns a string representation of this check box group,
including the value of its current selection.

5

void setSelectedCheckbox(Checkbox box): Sets the currently selected
check box in this group to be the specified check box.

4

void setCurrent(Checkbox box): Deprecated. As of JDK version 1.1,
replaced by setSelectedCheckbox(Checkbox).

3

Checkbox getSelectedCheckbox(): Gets the current choice from this
check box group.

2

Checkbox getCurrent(): Deprecated. As of JDK version 1.1, replaced by
getSelectedCheckbox().

1

Method & DescriptionS.No
.

String toString(): Returns a string representation of this check box group,
including the value of its current selection.

5

void setSelectedCheckbox(Checkbox box): Sets the currently selected
check box in this group to be the specified check box.

4

void setCurrent(Checkbox box): Deprecated. As of JDK version 1.1,
replaced by setSelectedCheckbox(Checkbox).

3

Checkbox getSelectedCheckbox(): Gets the current choice from this
check box group.

2

Checkbox getCurrent(): Deprecated. As of JDK version 1.1, replaced by
getSelectedCheckbox().

1

Method & DescriptionS.No
.

Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

Program

import java.awt.*;

public class CheckboxGroupExample

{

CheckboxGroupExample()

{

Frame f= new Frame(“CheckboxGroup Example”);

CheckboxGroup cbg = new CheckboxGroup();

UNIT - IV PROGRAMMING IN JAVA

169
Rahul Publications

Rahul Publications

Checkbox checkBox1 = new Checkbox(“C++”, cbg, false);
checkBox1.setBounds(100,100, 50,50);
Checkbox checkBox2 = new Checkbox(“Java”, cbg, true);
checkBox2.setBounds(100,150, 50,50);
f.add(checkBox1);
f.add(checkBox2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
public static void main(String args[])
{
new CheckboxGroupExample();
}
}

Output:

4.3.7 Layouts

Q19. What is Layout Manager?

 (OR)

What is the Purpose of Layouts?

Ans : (Dec,-18)

Layout means the arrangement of components within the container. In other way we can say that
placing the components at a particular position within the container. The task of layouting the controls is
done automatically by the Layout Manager.

B.Sc. III YEAR V SEMESTER

170
Rahul Publications

Rahul Publications

Layout Manager

The layout manager automatically positions all the components within the container. If we do not
use layout manager then also the components are positioned by the default layout manager. It is possible
to layout the controls by hand but it becomes very difficult because of the following two reasons.

 It is very tedious to handle a large number of controls within the container.

 Oftenly the width and height information of a component is not given when we need to arrange
them.

Java provide us with various layout manager to position the controls. The properties like size,shape
and arrangement varies from one layout manager to other layout manager. When the size of the applet
or the application window changes the size, shape and arrangement of the components also changes in
response i.e. the layout managers adapt to the dimensions of appletviewer or the application window.

The layout manager is associated with every Container object. Each layout manager is an object of
the class that implements the LayoutManager interface.

Following are the interfaces defining functionalities of Layout Managers.

LayoutManager2 -The LayoutManager2 is the sub-interface of the LayoutManager.This
interface is for those classes that know how to layout containers based on layout constraint
object.

2

Layout Manager -The LayoutManager interface declares those methods which need to be
implemented by the class whose object will act as a layout manager.

1

Interface & DescriptionS.No.

LayoutManager2 -The LayoutManager2 is the sub-interface of the LayoutManager.This
interface is for those classes that know how to layout containers based on layout constraint
object.

2

Layout Manager -The LayoutManager interface declares those methods which need to be
implemented by the class whose object will act as a layout manager.

1

Interface & DescriptionS.No.

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. LayoutManager is
an interface that is implemented by all the classes of layout managers. There are following classes that
represents the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. javax.swing.SpringLayout etc.

AWT Layout Manager Classes:

Following is the list of commonly used controls while designed GUI using AWT.

UNIT - IV PROGRAMMING IN JAVA

171
Rahul Publications

Rahul Publications

S.No. LayoutManager & Description

1 BorderLayout - The borderlayout arranges the components to fit in the
five regions: east, west, north, south and center.

2 CardLayout - The CardLayout object treats each component in the
container as a card. Only one card is visible at a time.

3 FlowLayout - The FlowLayout is the default layout.It layouts the
components in a directional flow.

4 GridLayout - The GridLayout manages the components in form of a
rectangular grid.

5 GridBagLayout - This is the most flexible layout manager class.The
object of GridBagLayout aligns the component vertically,horizontally or
along their baseline without requiring the components of same size.

Q20. Explain types of layout managers with an example.
(OR)

Explain different layout managers in java with examples.
Ans : (June-19(MGU), Dec.-18, Dec.-18(MGU)
1. BorderLayout Manager

The class BorderLayout arranges the components to fit in the five regions: east, west, north,
south and center. Each region is can contain only one component and each component in each region
is identified by the corresponding constant NORTH, SOUTH, EAST, WEST, and CENTER.
Class declaration

Following is the declaration for java.awt.BorderLayout class:
public class BorderLayout extends Object implements LayoutManager2,Serializable

Field
Following are the fields for java.awt.BorderLayout class:

 static String AFTER_LAST_LINE — Synonym for PAGE_END.

 static String AFTER_LINE_ENDS — Synonym for LINE_END.

 static String BEFORE_FIRST_LINE — Synonym for PAGE_START.

 static String BEFORE_LINE_BEGINS — Synonym for LINE_START.

 static String CENTER — The center layout constraint (middle of container).

 static String EAST — The east layout constraint (right side of container).

 static String LINE_END — The component goes at the end of the line direction for the layout.

 static String LINE_START — The component goes at the beginning of the line direction for
the layout.

 static String NORTH — The north layout constraint (top of container).

 static String PAGE_END — The component comes after the last line of the layout’s content.

 static String PAGE_START — The component comes before the first line of the layout’s content.

 static String SOUTH — The south layout constraint (bottom of container).

 static String WEST — The west layout constraint (left side of container).

B.Sc. III YEAR V SEMESTER

172
Rahul Publications

Rahul Publications

Class constructors

BorderLayout(int hgap, int vgap) - Constructs a border layout with the specified gaps
between components.

2

BorderLayout() - Constructs a new border layout with no gaps between components.1

Constructor & DescriptionS.N.

BorderLayout(int hgap, int vgap) - Constructs a border layout with the specified gaps
between components.

2

BorderLayout() - Constructs a new border layout with no gaps between components.1

Constructor & DescriptionS.N.

Class methods

S .N . M eth o d & D escrip tio n

1 v o id addLay o utC om p o n ent (Co m po ne nt co m p, Ob ject c on s train ts) -
A d d s th e s p e ci fi ed com p one nt to the la yout , u sing th e s pe c if ie d
c on st ra int ob je c t.

2 v o id a ddLay o utCo m p o ne nt(Strin g n am e , Co m pon en t c o m p) - I f th e
l ayou t m ana ge r u s es a p e r- com p one nt s tr in g, ad d s the com p one nt com p
t o th e la yout , a s soc ia tin g it w ith the str ing s p ec i fie d b y n am e.

3 in t getH g ap () - Re t urns t h e ho ri zont al gap b e tw ee n c om p one n ts .

4 f lo at g etLay o utA lign m en tX (C o nt aine r pa ren t) - Retu rns th e al ignm e nt
a lon g the x a x is .

5 f lo at g etLa yo u tAlign m en tY (C o n tain er pare nt) - R etu rn s the al ignm e nt
a lon g the y ax is .

6 in t getV g ap () - R e tu rns th e v e rti c al gap b e tw ee n c om p one nt s.

7 v o id in v alidateLa y ou t(Co n tain er targe t) - Inv al id ate s th e layou t,
i nd ic atin g tha t if th e la yout m ana ge r h a s c ac he d in form at ion it sho uld b e
d i sc ard e d .

8 v o id la y ou tC o nta iner(Co nta ine r targe t) - L ays o ut the co ntaine r
a rgum en t u sing th is b ord e r la yo ut.

9 D im en sion m ax im um Lay o utSiz e(Con tain er ta rget) - Re t urns th e
m axim u m d im en si ons for th is la yout g iv en th e co m p one nts i n th e
s p e ci fie d targe t c on taine r.

1 0 D im en sion m in im um Lay o utS ize(Con tain er targ et) - D e te rm in es th e
m in i m um s iz e o f the targe t con tain er us in g th i s la yout m a nage r.

1 1 D im en sion p ref erredLa y ou tSize (C o n taine r targ et) - D et erm ine s th e
p re fe r red s ize o f th e ta rget c ont aine r us in g t h is layou t m a nage r , b as ed on
t he c om p one n ts in the co n taine r.

1 2 v o id rem o ve Lay o utC o m po ne nt(Co m p o nen t co m p) - Re m oves th e
s p e ci fie d co m p one nt from th is b ord e r la yo ut.

1 3 v o id se tH gap (int h ga p) - S e ts the horiz ontal ga p b et wee n c om po ne nts .

1 4 v o id se tV gap (int v gap) - S e ts the ve rtic al ga p b e twe e n c om p one nts .

1 5 S tring toS tring () - R e tu rn s a s tr in g r e pre se n tati on of the s tate o f th i s
b ord er la yout .

UNIT - IV PROGRAMMING IN JAVA

173
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

Program

import java.awt.*;

import javax.swing.*;

public class Border

{

JFrame f;

Border()

{

f=new JFrame();

JButton b1=new JButton(“NORTH”);;

JButton b2=new JButton(“SOUTH”);;

JButton b3=new JButton(“EAST”);;

JButton b4=new JButton(“WEST”);;

JButton b5=new JButton(“CENTER”);;

f.add(b1,BorderLayout.NORTH);

f.add(b2,BorderLayout.SOUTH);

f.add(b3,BorderLayout.EAST);

f.add(b4,BorderLayout.WEST);

f.add(b5,BorderLayout.CENTER);

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args)

{

 new Border();

}

}

B.Sc. III YEAR V SEMESTER

174
Rahul Publications

Rahul Publications

Output:

2. CardLayout Manager

The class CardLayout arranges each component in the container as a card. Only one card is
visible at a time, and the container acts as a stack of cards.

Class declaration

Following is the declaration for java.awt.CardLayout class:

publicclassCardLayout

extends Objectimplements Layout Manager 2,Serializable

Class constructors

S.N. Constructor & Description

1 CardLayout() - Creates a new card layout with gaps of size zero.

2 CardLayout(int hgap, int vgap) - Creates a new card layout with the
specified horizontal and vertical gaps.

UNIT - IV PROGRAMMING IN JAVA

175
Rahul Publications

Rahul Publications

Class methods

S.N . M eth od & De sc ription

1 v o id addLa you tCom pon en t(Com pon en t com p , O bjec t co nstra ints) -
A dds th e spe ci fied comp one n t to th is card layou t's i nte rnal tab le of
na m e s .

2 v o id addLa youtC om pon en t(S tring n am e , C om po n en t co m p) - If th e
layou t m an ager uses a pe r- com p one nt s tring , add s the c om ponent co m p
to the layo ut, a ss oc ia ting it wi th the s trin g sp ec if ie d by nam e .

3 v o id f irst(Conta ine r pa ren t) - F lip s t o th e fi rst c ard o f t he cont aine r.

4 in t g etH g ap () - G ets the ho rizont al gap be tw een comp one nt s.

5 float getLa you tA lig nm e ntX (C on tain er pa ren t) - Ret urns the al ignm e nt
a long the x a x is .

6 float get Layo utA lignm e ntY (Contain er pare nt) - R etu rns the al ignm e nt
a long the y ax is.

7 in t g etVg ap () - G ets t he verti cal gap be tw ee n c om ponents .

8 v o id inv alidate Layout(Co ntain er ta rge t) - Inv al id ates the layou t,
ind icatin g th at if th e layo ut m a nager h as cache d i nfo rm ation it sh ould be
d iscard ed.

9 v o id last(Co nta ine r pa ren t) - F lips to th e las t card of t he c onta iner .

10 v o id layo utCo n tain er(Conta in er pare nt) - L ays ou t the s pec if ied
cont ainer us ing this ca rd la yout.

11 D im en sion m ax im um La you tS ize(Conta ine r targ et) - R e tu rn s the
m a xim um d im ens ions for thi s layou t g iven the c om po nents in the
spe ci fie d t arget conta ine r.

12 D im en sion m inim u m Layo utSize (C on tain er pa ren t) - Ca lc ula te s the
m in im um s ize for the s peci fied pa ne l.

13 v o id nex t(C onta ine r paren t) - Fli ps to th e n ex t ca rd o f the s pe c if ied
cont ainer.

14 D im en sion pr eferr edLa you tSize(Conta iner pa ren t) - D eterm ine s the
p re fe rred size of th e conta iner a rgu m ent us in g th is c ard l ayou t.

15 v o id p re vio u s(Conta iner pa ren t) - Flips to the prev iou s c ard of t he
spe ci fie d c on tain er.

16 v o id rem ov eLayo utC om pon en t(Com po ne nt c om p) - R em ov es t he
spe ci fie d c om po nent from the layou t.

17 v o id set H gap(int hg ap) - Set s the h or izon tal gap be tw e en com pon en ts .

18 v o id set Vgap(int v gap) - Se t s the ve rtic al gap be tw e en com pon en ts .

19 v o id sh ow (Conta ine r paren t, Strin g n am e) - F lips to the com pone nt
th at wa s ad ded to th is layou t w ith the s pe c if ied na m e, us in g
a dd L ayou tCom po nent.

20 St ring toString () - R et urns a s trin g re p rese nta tion of th e s ta te o f th is
card layou t.

B.Sc. III YEAR V SEMESTER

176
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

Program

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class CardLayoutExample extends JFrame implements ActionListener

{

CardLayout card;

JButton b1,b2,b3;

Container c;

CardLayoutExample()

{

c=getContentPane();

card=new CardLayout(40,30);

//create CardLayout object with 40 hor space and 30 ver space

c.setLayout(card);

b1=new JButton(“Apple”);

b2=new JButton(“Boy”);

b3=new JButton(“Cat”);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

c.add(“a”,b1);c.add(“b”,b2);c.add(“c”,b3);

}

public void actionPerformed(ActionEvent e)

{

card.next(c);

}

public static void main(String[] args)

{

CardLayoutExample cl=new CardLayoutExample();

UNIT - IV PROGRAMMING IN JAVA

177
Rahul Publications

Rahul Publications

cl.setSize(400,400);

cl.setVisible(true);

cl.setDefaultCloseOperation(EXIT_ON_CLOSE);

}

}

Output:

3. FlowLayout Manager

The class FlowLayout components in a left-to-right flow.

Class declaration

Following is the declaration for java.awt.FlowLayout class:

public class FlowLayout extends Object implements LayoutManager,Serializable

Field

Following are the fields for java.awt.BorderLayout class:

 static int CENTER — This value indicates that each row of components should be centered.

 static int LEADING — This value indicates that each row of components should be justified to
the leading edge of the container’s orientation, for example, to the left in left-to-right orientations.

 static int LEFT — This value indicates that each row of components should be left-justified.

 static int RIGHT — This value indicates that each row of components should be right-justified.

 static int TRAILING — This value indicates that each row of components should be justified to
the trailing edge of the container’s orientation, for example, to the right in left-to-right orientations.

B.Sc. III YEAR V SEMESTER

178
Rahul Publications

Rahul Publications

Class constructors

S.N. Constructor & Description

1 FlowLayout() - Constructs a new FlowLayout with a centered
alignment and a default 5-unit horizontal and vertical gap.

2 FlowLayout(int align) - Constructs a new FlowLayout with the
specified alignment and a default 5-unit horizontal and vertical gap.

3 FlowLayout(int align, int hgap, int vgap) - Creates a new flow layout
manager with the indicated alignment and the indicated horizontal and
vertical gaps.

Class methods

S.N. Method & Description

1 void addLayoutComponent(String name, Component comp) - Adds
the specified component to the layout.

2 int getAlignment() - Gets the alignment for this layout.

3 int getHgap() - Gets the horizontal gap between components.

4 int getVgap() - Gets the vertical gap between components.

5 void layoutContainer(Container target) - Lays out the container.

6 Dimension minimumLayoutSize(Container target) - Returns the
minimum dimensions needed to layout the visible components
contained in the specified target container.

7 Dimension preferredLayoutSize(Container target) - Returns the
preferred dimensions for this layout given the visible components in the
specified target container.

8 void removeLayoutComponent(Component comp) - Removes the
specified component from the layout.

9 void setAlignment(int align) - Sets the alignment for this layout.

10 void setHgap(int hgap) - Sets the horizontal gap between components.

11 void setVgap(int vgap) - Sets the vertical gap between components.

12 String toString() - Returns a string representation of this FlowLayout
object and its values.

UNIT - IV PROGRAMMING IN JAVA

179
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:

java.lang.Object

Program

import java.awt.*;

import javax.swing.*;

public class MyFlowLayout

{

JFrame f;

MyFlowLayout()

{

f=new JFrame();

JButton b1=new JButton(“1”);

JButton b2=new JButton(“2”);

JButton b3=new JButton(“3”);

JButton b4=new JButton(“4”);

JButton b5=new JButton(“5”);

f.add(b1);

f.add(b2);

f.add(b3);

f.add(b4);

f.add(b5);

f.setLayout(new FlowLayout(FlowLayout.RIGHT));

//setting flow layout of right alignment

f.setSize(300,300);

f.setVisible(true);

}

public static void main(String[] args)

{

B.Sc. III YEAR V SEMESTER

180
Rahul Publications

Rahul Publications

new MyFlowLayout();

}

}

Output:

4. GridLayout Manager

The class GridLayout arranges components in a rectangular grid.

Class declaration

Following is the declaration for java.awt.GridLayout class:

public class GridLayout extends Object implements LayoutManager,Serializable

Class constructors

S.N. Constructor & Description

1 GridLayout() - Creates a grid layout with a default o f one column per
component, in a single row.

2 GridLayout(int rows, int cols) - Creates a grid layout with the specified
number of rows and co lumns.

3 GridLayout(int rows, int cols, int hgap, int vgap) - Creates a grid
layout with the specified number of rows and columns.

UNIT - IV PROGRAMMING IN JAVA

181
Rahul Publications

Rahul Publications

Class methods

S.N. Method & Description

1 void addLayoutComponent(String name, Component comp) - Adds the
specified component with the specified name to the layout.

2 int getColumns() - Gets the number of columns in this layout.

3 int getHgap() - Gets the horizontal gap between components.

4 int getRows() - Gets the number of rows in this layout.

5 int getVgap() - Gets the vertical gap between components.

6 void layoutContainer(Container parent) - Lays out the specified container
using this layout.

7 Dimension minimumLayoutSize(Container parent) - Determines the
minimum size of the container argument using this grid layout.

8 Dimension preferredLayoutSize(Container parent) - Determines the
preferred size of the container argument using this grid layout.

9 void removeLayoutComponent(Component comp) - Removes the specified
component from the layout.

10 void setColumns(int cols) - Sets the number of columns in this layout to
the specified value.

11 void setHgap(int hgap) - Sets the horizontal gap between components to the
specified value.

12 void setRows(int rows) - Sets the number of rows in this layout to the
specified value.

13 void setVgap(int vgap) - Sets the vertical gap between components to the
specified value.

14 String toString() - Returns the string representation of this grid layout's
values.

Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

Program

import java.awt.*;

B.Sc. III YEAR V SEMESTER

182
Rahul Publications

Rahul Publications

import javax.swing.*;

public class MyGridLayout

{

JFrame f;

MyGridLayout()

{

f=new JFrame();

 JButton b1=new JButton(“1”);

 JButton b2=new JButton(“2”);

 JButton b3=new JButton(“3”);

 JButton b4=new JButton(“4”);

 JButton b5=new JButton(“5”);

 JButton b6=new JButton(“6”);

 JButton b7=new JButton(“7”);

 JButton b8=new JButton(“8”);

 JButton b9=new JButton(“9”);

 f.add(b1);

f.add(b2);

f.add(b3);

f.add(b4);

f.add(b5);

 f.add(b6);

f.add(b7);

f.add(b8);

f.add(b9);

 f.setLayout(new GridLayout(3,3));

f.setSize(300,300);//setting grid layout of 3 rows and 3 columns

 f.setVisible(true);

}

public static void main(String[] args)

{

 new MyGridLayout();

}

}

UNIT - IV PROGRAMMING IN JAVA

183
Rahul Publications

Rahul Publications

Output:

5. GridBagLayout Manager

The class GridBagLayout arranges components in a horizontal and vertical manner.
Class declaration

Following is the declaration for java.awt.GridBagLayout class:
public class GridBagLayout extends Objec timplements LayoutManager2, Serializable

Field
Following are the fields for java.awt.BorderLayout class:

 double[] columnWeights — This field holds the overrides to the column weights.
 int[] columnWidths — This field holds the overrides to the column minimum width.
 protected Hashtable comptable — This hashtable maintains the association between a

component and its gridbag constraints.
 protected GridBagConstraints defaultConstraints — This field holds a gridbag constraints

instance containing the default values, so if a component does not have gridbag constraints associated
with it, then the component will be assigned a copy of the defaultConstraints.

 protected java.awt.GridBagLayoutInfo — This field holds the layout information for the gridbag.

 protected static int MAXGRIDSIZE — The maximum number of grid positions (both
horizontally and vertically) that can be laid out by the grid bag layout.

 protected static int MINSIZE — The smallest grid that can be laid out by the grid bag layout.
 protected static int PREFERREDSIZE — The preferred grid size that can be laid out by the

grid bag layout.
 int[] rowHeights — This field holds the overrides to the row minimum heights.

 double[] rowWeights — This field holds the overrides to the row weights.
Class constructors

S.No. Constructor & Description

1 GridBagLayout() - Creates a grid bag layout
manager.

B.Sc. III YEAR V SEMESTER

184
Rahul Publications

Rahul Publications

Class methods

String toString() - Returns a string representation of this grid bag layout's values.26

void setConstraints(Component comp, GridBagConstraints constraints) - Sets the constraints for the specified component in
this layout.

25

void removeLayoutComponent(Component comp) - Removes the specified component from this layout.24

Dimension preferredLayoutSize(Container parent) - Determines the preferred size of the parent container using this grid bag
layout.

23

Dimension minimumLayoutSize(Container parent) - Determines the minimum size of the parent container using this grid bag
layout.

22

Dimension maximumLayoutSize(Container target) -Returns the maximum dimensions for this layout given the components in
the specified target container.

21

protected GridBagConstraints lookupConstraints(Component comp) - Retrieves the constraints for the specified component.20

Point location(int x, int y) - Determines which cell in the layout grid contains the point specified by (x, y).19

void layoutContainer(Container parent) - Lays out the specified container using this grid bag layout.18

void invalidateLayout(Container target) - Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

17

protected Dimension GetMinSize(Container parent, java.awt.GridBagLayoutInfo info) - This method is obsolete and
supplied for backwards compatability only; new code should call getMinSize instead.

16

protected Dimension getMinSize(Container parent, java.awt.GridBagLayoutInfo info) - Figures out the minimum size of the
master based on the information from getLayoutInfo().

15

double[][] getLayoutWeights() - Determines the weights of the layout grid's columns and rows.14

Point getLayoutOrigin() - Determines the origin of the layout area, in the graphics coordinate space of the target container.13

protected java.awt.GridBagLayoutInfo GetLayoutInfo(Container parent, int sizeflag) - This method is obsolete and supplied
for backwards compatability only; new code should call getLayoutInfo instead.

12

protected java.awt.GridBagLayoutInfo getLayoutInfo(Container parent, int sizeflag) - Fills in an instance of
GridBagLayoutInfo for the current set of managed children.

11

int[][] getLayoutDimensions() - Determines column widths and row heights for the layout grid.10

float getLayoutAlignmentY(Container parent) - Returns the alignment along the y axis.9

float getLayoutAlignmentX(Container parent) - Returns the alignment along the x axis.8

GridBagConstraints getConstraints(Component comp) - Gets the constraints for the specified component.7

protected void ArrangeGrid(Container parent) - This method is obsolete and supplied for backwards compatability only; new
code should call arrangeGrid instead.

6

protected void arrangeGrid(Container parent) - Lays out the grid.5

protected void AdjustForGravity(GridBagConstraints constraints, Rectangle r) - This method is obsolete and supplied for
backwards compatability only; new code should call adjustForGravity instead.

4

protected void adjustForGravity(GridBagConstraints constraints, Rectangle r) - Adjusts the x, y, width, and height fields to
the correct values depending on the constraint geometry and pads.

3

void addLayoutComponent(String name, Component comp) - Adds the specified component with the specified name to the
layout.

2

void addLayoutComponent(Component comp, Object constraints) - Adds the specified component to the layout, using the
specified constraints object.

1

Method & DescriptionS.No
.

String toString() - Returns a string representation of this grid bag layout's values.26

void setConstraints(Component comp, GridBagConstraints constraints) - Sets the constraints for the specified component in
this layout.

25

void removeLayoutComponent(Component comp) - Removes the specified component from this layout.24

Dimension preferredLayoutSize(Container parent) - Determines the preferred size of the parent container using this grid bag
layout.

23

Dimension minimumLayoutSize(Container parent) - Determines the minimum size of the parent container using this grid bag
layout.

22

Dimension maximumLayoutSize(Container target) -Returns the maximum dimensions for this layout given the components in
the specified target container.

21

protected GridBagConstraints lookupConstraints(Component comp) - Retrieves the constraints for the specified component.20

Point location(int x, int y) - Determines which cell in the layout grid contains the point specified by (x, y).19

void layoutContainer(Container parent) - Lays out the specified container using this grid bag layout.18

void invalidateLayout(Container target) - Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

17

protected Dimension GetMinSize(Container parent, java.awt.GridBagLayoutInfo info) - This method is obsolete and
supplied for backwards compatability only; new code should call getMinSize instead.

16

protected Dimension getMinSize(Container parent, java.awt.GridBagLayoutInfo info) - Figures out the minimum size of the
master based on the information from getLayoutInfo().

15

double[][] getLayoutWeights() - Determines the weights of the layout grid's columns and rows.14

Point getLayoutOrigin() - Determines the origin of the layout area, in the graphics coordinate space of the target container.13

protected java.awt.GridBagLayoutInfo GetLayoutInfo(Container parent, int sizeflag) - This method is obsolete and supplied
for backwards compatability only; new code should call getLayoutInfo instead.

12

protected java.awt.GridBagLayoutInfo getLayoutInfo(Container parent, int sizeflag) - Fills in an instance of
GridBagLayoutInfo for the current set of managed children.

11

int[][] getLayoutDimensions() - Determines column widths and row heights for the layout grid.10

float getLayoutAlignmentY(Container parent) - Returns the alignment along the y axis.9

float getLayoutAlignmentX(Container parent) - Returns the alignment along the x axis.8

GridBagConstraints getConstraints(Component comp) - Gets the constraints for the specified component.7

protected void ArrangeGrid(Container parent) - This method is obsolete and supplied for backwards compatability only; new
code should call arrangeGrid instead.

6

protected void arrangeGrid(Container parent) - Lays out the grid.5

protected void AdjustForGravity(GridBagConstraints constraints, Rectangle r) - This method is obsolete and supplied for
backwards compatability only; new code should call adjustForGravity instead.

4

protected void adjustForGravity(GridBagConstraints constraints, Rectangle r) - Adjusts the x, y, width, and height fields to
the correct values depending on the constraint geometry and pads.

3

void addLayoutComponent(String name, Component comp) - Adds the specified component with the specified name to the
layout.

2

void addLayoutComponent(Component comp, Object constraints) - Adds the specified component to the layout, using the
specified constraints object.

1

Method & DescriptionS.No
.

UNIT - IV PROGRAMMING IN JAVA

185
Rahul Publications

Rahul Publications

Methods inherited

This class inherits methods from the following classes:

Program

import java.awt.Button;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import javax.swing.*;

public class GridBagLayoutExample extends JFrame

{

public static void main(String[] args)

{

GridBagLayoutExample a = new GridBagLayoutExample();

}

public GridBagLayoutExample()

{

GridBagLayoutgrid = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(grid);

setTitle(“GridBag Layout Example”);

GridBagLayout layout = new GridBagLayout();

this.setLayout(layout);

gbc.fill = GridBagConstraints.HORIZONTAL;

gbc.gridx = 0;

gbc.gridy = 0;

this.add(new Button(“Button One”), gbc);

gbc.gridx = 1;

gbc.gridy = 0;

this.add(new Button(“Button two”), gbc);

gbc.fill = GridBagConstraints.HORIZONTAL;

gbc.ipady = 20;

B.Sc. III YEAR V SEMESTER

186
Rahul Publications

Rahul Publications

gbc.gridx = 0;

gbc.gridy = 1;

this.add(new Button(“Button Three”), gbc);

gbc.gridx = 1;

gbc.gridy = 1;

this.add(new Button(“Button Four”), gbc);

gbc.gridx = 0;

gbc.gridy = 2;

gbc.fill = GridBagConstraints.HORIZONTAL;

gbc.gridwidth = 2;

this.add(new Button(“Button Five”), gbc);

setSize(300, 300);

setPreferredSize(getSize());

setVisible(true);

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

}

Output:

UNIT - IV PROGRAMMING IN JAVA

187
Rahul Publications

Rahul Publications

4.4 SWINGS

4.4.1 Introduction

Q21. What are swings? State the features of Swings?

Ans :
Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-based

applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in java.Unlike
AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField, JTextArea,
JRadioButton, JCheckbox, JMenu, JColorChooser etc.
Features
(i) Light Weight

Swing components are independent of native Operating System's API as Swing API controls are
rendered mostly using pure JAVA code instead of underlying operating system calls.

(ii) Rich Controls
Swing provides a rich set of advanced controls like Tree, TabbedPane, slider, colorpicker, and table
controls.

(iii) Highly Customizable
Swing controls can be customized in a very easy way as visual apperance is independent of internal
representation.

(iv) Pluggable look-and-feel
SWING based GUI Application look and feel can be changed at run-time, based on available
values.

4.4.2 Differences between Swing and AWT
Q22. Compare and contrast AWT and Swing.

(OR)
What are the differences between AWT and Swing?

Ans : (Dec.-19)

Swing provides more powerful components.
AWT provides comparatively less
powerful components.7.

MVC pattern is supported by Swing.MVC pattern is not supported by AWT.6.

The components of Java Swing are platform
independent.

The components of Java AWT are
platform dependent.5.

The execution time of Swing is less than AWT.
The execution time of AWT is more than
Swing.4.

Java Swing has more functionality as
compared to AWT.

Java AWT has comparatively less
functionality as compared to Swing.3.

The components of Java Swing are light
weighted.

The components of Java AWT are heavy
weighted.2.

Swing is a part of Java Foundation Classes and
is used to create various applications.

Java AWT is an API to develop GUI
applications in Java1.

SwingAWTS.No

Swing provides more powerful components.
AWT provides comparatively less
powerful components.7.

MVC pattern is supported by Swing.MVC pattern is not supported by AWT.6.

The components of Java Swing are platform
independent.

The components of Java AWT are
platform dependent.5.

The execution time of Swing is less than AWT.
The execution time of AWT is more than
Swing.4.

Java Swing has more functionality as
compared to AWT.

Java AWT has comparatively less
functionality as compared to Swing.3.

The components of Java Swing are light
weighted.

The components of Java AWT are heavy
weighted.2.

Swing is a part of Java Foundation Classes and
is used to create various applications.

Java AWT is an API to develop GUI
applications in Java1.

SwingAWTS.No

B.Sc. III YEAR V SEMESTER

188
Rahul Publications

Rahul Publications

4.4.3 JFrame
Q23. Explain about JFrame by giving an example.

Ans : (July-19)

The javax.swing.JFrame class is a type of container which inherits the java.awt.Frame class. JFrame
works like the main window where components like labels, buttons, textfields are added to create a GUI.
Unlike Frame, JFrame has the option to hide or close the window with the help of set Default Close
Operation(int) method.
Nested Class

Modifier and
Type

Class Description

protected class JFrame.AccessibleJFrame This class implements accessibility
support for the JFrame class.

Fields

Modifier and
Type

Field Description

protected
AccessibleContext

accessibleContext The accessible context property.

static int EXIT_ON_CLOSE The exit application default window
close operation.

protected
JRootPane

rootPane The JRootPane instance that manages
the contentPane and optional menuBar
for this frame, as well as the glassPane.

protected boolean rootPaneCheckingEnabled If true then calls to add and setLayout
will be forwarded to the contentPane.

Constructors

Constructor Description

JFrame() It constructs a new frame that is initially invisible.

JFrame(GraphicsConfiguration
gc)

It creates a Frame in the specified Graphics
Configuration of a screen device and a blank title.

JFrame (String title) It creates a new, initially invisible Frame with the
specified title.

JFrame (String title, Graphics
Configuration gc)

It creates a JFrame with the specified title and the
specified GraphicsConfiguration of a screen device.

UNIT - IV PROGRAMMING IN JAVA

189
Rahul Publications

Rahul Publications

Useful Methods

Modifier and Type Method Description

protected void addImpl(Component comp,
Object constraints, int index)

Adds the specified child
Component.

protected JRootPane createRootPane()
Called by the constructor
methods to create the default
rootPane.

protected void frameInit() Called by the constructors to init
the JFrame properly.

Void setContentPane(Containe
contentPane) It sets the contentPane property

static void
setDefaultLookAndFeelDecorate
d(boolean
defaultLookAndFeelDecorated)

Provides a hint as to whether or
not newly created JFrames
should have their Window
decorations (such as borders,
widgets to close the window,
title...) provided by the current
look and feel.

Void setIconImage(Image image) It sets the image to be displayed
as the icon for this window.

Void setJMenuBar(JMenuBar
menubar)

It sets the menubar for this
frame.

Void setLayeredPane(JLayeredPane
layeredPane) It sets the layeredPane property.

JRootPane getRootPane() It returns the rootPane object for
this frame.

TransferHandler getTransferHandler() It gets the transferHandler
property.

Program

import java.awt.FlowLayout;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.Jpanel;

public class JFrameExample

{

public static void main(String s[])

{

JFrame frame = new JFrame(“JFrame Example”);

JPanel panel = new JPanel();

panel.setLayout(new FlowLayout());

JLabel label = new JLabel(“JFrame By Example”);

JButton button = new JButton();

B.Sc. III YEAR V SEMESTER

190
Rahul Publications

Rahul Publications

button.setText(“Button”);

panel.add(label);

panel.add(button);

frame.add(panel);

frame.setSize(200, 300);

frame.setLocationRelativeTo(null);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

}

}

Output:

4.4.4 JApplet

Q24. Explain about JApplet by giving an example.

Ans : (July-19)

JApplet is a class that represents the Swing applet. It is a subclass of Applet class and must be
extended by all the applets that use Swing. It provides all the functionalities of the AWT applet as well as
support for menubars and layering of components. Whenever we require to add a component to it, the
component is added to the content pane. The JApplet class extends the Applet class.

import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

public class EventJApplet extends

JApplet implements ActionListener

UNIT - IV PROGRAMMING IN JAVA

191
Rahul Publications

Rahul Publications

{

JButton b;

JTextField tf;

public void init()

{

tf=new JTextField();

tf.setBounds(30,40,150,20);

b=new JButton(“Click”);

b.setBounds(80,150,70,40);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void action Performed (ActionEvent e)

{

tf.setText(“Welcome”);

}

}

HTML CODE

<html>

<body>

<applet code=”EventJApplet.class” width=”300" height=”300">

</applet>

</body>

</html>

4.4.5 JPanel

Q25. Explain about JPanel by giving an example.

Ans : (July-19)

The JPanel is a simplest container class. It provides space in which an application can attach any
other component. It inherits the JComponents class.

It doesn’t have title bar.

Class Declaration

Following is the declaration

 for javax.swing.JPanel class “

public class JPanel extends JComponent implements Accessible

B.Sc. III YEAR V SEMESTER

192
Rahul Publications

Rahul Publications

Class Constructors

S.No. Constructor & Description

1 JPanel()
Creates a new JPanel with a double buffer and a flow layout.

2
JPanel(boolean isDoubleBuffered)
Creates a new JPanel with FlowLayout and the specified buffering
strategy.

3 JPanel(LayoutManager layout)
Creates a new buffered JPanel with the specified layout manager.

4
JPanel(LayoutManager layout, boolean isDoubleBuffered)
Creates a new JPanel with the specified layout manager and buffering
strategy.

Class Methods

Sr.No. Method & Description

1 AccessibleContext getAccessibleContext()
Gets the AccessibleContext associated with this JPanel.

2 PanelUI getUI()
Returns the look and feel (L&F) object that renders this component.

3
String getUIClassID()
Returns a string that specifies the name of the L&F class which
renders this component.

4 protected String paramString()
Returns a string representation of this JPanel.

5 void setUI(PanelUI ui)
Sets the look and feel (L&F) object that renders this component.

6 void updateUI()
Resets the UI property with a value from the current look and feel.

Methods Inherited

This class inherits methods from the following classes “

 javax.swing.JComponent

 java.awt.Container

 java.awt.Component

 java.lang.Object

Program

import java.awt.*;

import javax.swing.*;

public class PanelExample

UNIT - IV PROGRAMMING IN JAVA

193
Rahul Publications

Rahul Publications

{

PanelExample()

{

JFrame f= new JFrame(“Panel Example”);

JPanel panel=new JPanel();

panel.setBounds(40,80,200,200);

panel.setBackground(Color.gray);

JButton b1=new JButton(“Button 1”);

b1.setBounds(50,100,80,30);

b1.setBackground(Color.yellow);

JButton b2=new JButton(“Button 2”);

b2.setBounds(100,100,80,30);

b2.setBackground(Color.green);

panel.add(b1); panel.add(b2);

f.add(panel);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new PanelExample();

}

}

Output:

B.Sc. III YEAR V SEMESTER

194
Rahul Publications

Rahul Publications

4.4.6 Components in Swings

Q26. Describe about various components in swings.

Ans :
Swing components are the basic building blocks of an application. We know that Swing is a GUI

widget toolkit for Java. Every application has some basic interactive interface for the user. For example, a
button, check-box, radio-button, text-field, etc. These together form the components in Swing. So, to
summarise, Swing components are the interactive elements in a Java application.

Components

1. JButton

JButton class is used to create a push-button on the UI. The button can contain some display text or
image. It generates an event when clicked and double-clicked. A JButton can be implemented in the
application by calling one of its constructors.

Example:

JButton okBtn = new JButton(“Ok”);

This constructor returns a button with text Ok on it.

JButton homeBtn = new JButton(homeIcon);

It returns a button with a homeIcon on it.

JButton btn2 = new JButton(homeIcon, “Home”);

It returns a button with the home icon and text Home.

2. JLabel

JLabel class is used to render a read-only text label or images on the UI. It does not generate any
event.

Example:

JLabel textLbl = new JLabel(“This is a text label.”);

This constructor returns a label with text.

JLabel imgLabel = new JLabel(homeIcon);

It returns a label with a home icon.

3. JTextField

JTextField renders an editable single-line text box. A user can input non-formatted text in the box.
To initialize the text field, call its constructor and pass an optional integer parameter to it. This parameter
sets the width of the box measured by the number of columns. It does not limit the number of characters
that can be input in the box.

Example:

JTextField txtBox = new JTextField(20);

It renders a text box of 20 column width.

4. JTextArea

JTextArea class renders a multi-line text box. Similar to the JTextField, a user can input non-formatted
text in the field. The constructor for JTextArea also expects two integer parameters which define the height
and width of the text-area in columns. It does not restrict the number of characters that the user can input
in the text-area.

UNIT - IV PROGRAMMING IN JAVA

195
Rahul Publications

Rahul Publications

Example:

JTextArea txtArea = new JTextArea(“This text is default text for text area.”, 5, 20);

The above code renders a multi-line text-area of height 5 rows and width 20 columns, with default
text initialized in the text-area.

5. JPasswordField

JPasswordField is a subclass of JTextField class. It renders a text-box that masks the user input text
with bullet points. This is used for inserting passwords into the application.

Example:

JPasswordField pwdField = new JPasswordField(15);

var pwdValue = pwdField.getPassword();

It returns a password field of 15 column width. The getPassword method gets the value entered by
the user.

6. JCheckBox

JCheckBox renders a check-box with a label. The check-box has two states – on/off. When selected,
the state is on and a small tick is displayed in the box.

Example:

CheckBox chkBox = new JCheckBox(“Show Help”, true);

It returns a checkbox with the label Show Help. Notice the second parameter in the constructor. It
is a boolean value that indicates the default state of the check-box. True means the check-box is defaulted
to on state.

7. JRadioButton

JRadioButton is used to render a group of radio buttons in the UI. A user can select one choice
from the group.

Example:

ButtonGroup radioGroup = new ButtonGroup();

JRadioButton rb1 = new JRadioButton(“Easy”, true);

JRadioButton rb2 = new JRadioButton(“Medium”);

JRadioButton rb3 = new JRadioButton(“Hard”);

radioGroup.add(rb1);

radioGroup.add(rb2);

radioGroup.add(rb3);

The above code creates a button group and three radio button elements. All three elements are
then added to the group. This ensures that only one option out of the available options in the group can
be selected at a time. The default selected option is set to Easy.

8. JList

JList component renders a scrollable list of elements. A user can select a value or multiple values
from the list. This select behavior is defined in the code by the developer.

B.Sc. III YEAR V SEMESTER

196
Rahul Publications

Rahul Publications

Example:

DefaultListItem cityList = new DefaultListItem();

cityList.addElement(“Mumbai”):

cityList.addElement(“London”):

cityList.addElement(“New York”):

cityList.addElement(“Sydney”):

cityList.addElement(“Tokyo”):

JList cities = new JList(cityList);

cities.setSelectionModel(ListSelectionModel.SINGLE_SELECTION);

The above code renders a list of cities with 5 items in the list. The selection restriction is set to
SINGLE_SELECTION. If multiple selections is to be allowed, set the behavior to
MULTIPLE_INTERVAL_SELECTION.

9. JComboBox
JComboBox class is used to render a dropdown of the list of options.

Example:
String[] cityStrings = { "Mumbai", "London", "New York", "Sydney", "Tokyo" };

JComboBox cities = new JComboBox(cityList);

cities.setSelectedIndex(3);

The default selected option can be specified through the setSelectedIndex method. The above
code sets Sydney as the default selected option.

10. JFileChooser
JFileChooser class renders a file selection utility. This component lets a user select a file from the

local system.

Example:
JFileChooser fileChooser = new JFileChooser();

JButton fileDialogBtn = new JButton(“Select File”);

fileDialogBtn.AddEventListner(new ActionListner(){

fileChooser.showOpenDialog();

})

var selectedFile = fileChooser.getSelectedFile();

The above code creates a file chooser dialog and attaches it to the button. The button click would
open the file chooser dialog. The selected file is returned through the getSelectedFile method.

11. JTabbedPane

JTabbedPane is another very useful component that lets the user switch between tabs in an application.
This is a highly useful utility as it lets the user browse more content without navigating to different pages.

Example:
JTabbedPane tabbedPane = new JTabbedPane();

tabbedPane.addTab(“Tab 1”, new JPanel());

tabbedPane.addTab(“Tab 2”, new JPanel());

The above code creates a two tabbed panel with headings Tab 1 and Tab 2.

UNIT - IV PROGRAMMING IN JAVA

197
Rahul Publications

Rahul Publications

12. JSlider

JSlider component displays a slider which the user can drag to change its value. The constructor
takes three arguments – minimum value, maximum value, and initial value.

Example:

JSlider volumeSlider = new JSlider(0, 100, 50);

var volumeLevel = volumeSlider.getValue();

The above code creates a slider from 0 to 100 with an initial value set to 50. The value selected by
the user is returned by the getValue method.

4.4.7 Layout Managers

Q27. Discuss about Layout Managers in swing.

Ans : (Imp.)

A swing contents two different layout managers. They are :

1. Box Layout

2. Spring Layout

1. BoxLayout

The Java BoxLayout class is used to arrange the components either vertically or horizontally. For
this purpose, the BoxLayout class provides four constants. They are as follows:

Fields of BoxLayout Class

(i) public static final int X_AXIS: Alignment of the components are horizontal from left to right.

Example of BoxLayout class with Y-AXIS:

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample1 extends Frame {

Button buttons[];

public BoxLayoutExample1 () {

buttons = new Button [5];

for (int i = 0;i<5;i++) {

buttons[i] = new Button ("Button " + (i + 1));

// adding the buttons so that it can be displayed

add (buttons[i]);

}

// the buttons will be placed horizontally

setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

setSize(400,400);

setVisible(true);

B.Sc. III YEAR V SEMESTER

198
Rahul Publications

Rahul Publications

}

// main method

public static void main(String args[]){

BoxLayoutExample1 b=new BoxLayoutExample1();

}

}

download this example

Output:

(ii) public static final int Y_AXIS: Alignment of the components are vertical from top to bottom.

Example of BoxLayout class with X-AXIS

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample2 extends Frame {

 Button buttons[];

public BoxLayoutExample2() {

buttons = new Button [5];

for (int i = 0;i<5;i++) {

buttons[i] = new Button ("Button " + (i + 1));

UNIT - IV PROGRAMMING IN JAVA

199
Rahul Publications

Rahul Publications

// adding the buttons so that it can be displayed

add (buttons[i]);

}

// the buttons in the output will be aligned vertically

setLayout (new BoxLayout(this, BoxLayout.X_AXIS));

setSize(400,400);

setVisible(true);

}

 // main method

public static void main(String args[]){

BoxLayoutExample2 b=new BoxLayoutExample2();

}

}

download this example

Output:

(iii) public static final int LINE_AXIS: Alignment of the components is similar to the way words are
aligned in a line, which is based on the ComponentOrientation property of the container. If the
ComponentOrientation property of the container is horizontal, then the components are aligned
horizontally; otherwise, the components are aligned vertically. For horizontal orientations, we have
two cases: left to right, and right to left. If the value ComponentOrientation property of the container

B.Sc. III YEAR V SEMESTER

200
Rahul Publications

Rahul Publications

is from left to right, then the components are rendered from left to right, and for right to left, the
rendering of components is also from right to left. In the case of vertical orientations, the components
are always rendered from top to bottom.

Example

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample3 extends Frame

{

Button buttons[];

// constructor of the class

public BoxLayoutExample3()

{

buttons = new Button[5];

setComponentOrientation(ComponentOrientation.RIGHT_TO_LEFT); // line 11

for (int i = 0; i < 5; i++)

{

buttons[i] = new Button ("Button " + (i + 1));

// adding the buttons so that it can be displayed

add (buttons[i]);

}

// the ComponentOrientation is set to RIGHT_TO_LEFT. Therefore,

// the added buttons will be rendered from right to left

setLayout (new BoxLayout(this, BoxLayout.LINE_AXIS));

setSize(400, 400);

setVisible(true);

}

// main method

public static void main(String argvs[])

{

// creating an object of the class BoxLayoutExample3

BoxLayoutExample3 obj = new BoxLayoutExample3();

}

}

UNIT - IV PROGRAMMING IN JAVA

201
Rahul Publications

Rahul Publications

Output:

(iv) public static final int PAGE_AXIS: Alignment of the components is similar to the way text lines
are put on a page, which is based on the ComponentOrientation property of the container. If the
ComponentOrientation property of the container is horizontal, then components are aligned
vertically; otherwise, the components are aligned horizontally. For horizontal orientations, we have
two cases: left to right, and right to left. If the value ComponentOrientation property of the container
is also from left to right, then the components are rendered from left to right, and for right to left,
the rendering of components is from right to left. In the case of vertical orientations, the components
are always rendered from top to bottom.

Example

import java.awt.*;

import javax.swing.*;

public class BoxLayoutExample4 extends Frame

{

Button buttons[];

// constructor of the class

B.Sc. III YEAR V SEMESTER

202
Rahul Publications

Rahul Publications

public BoxLayoutExample4()

{

JFrame f = new JFrame();

JPanel pnl = new JPanel();

buttons = new Button[5];

GridBagConstraints constrntObj = new GridBagConstraints();

constrntObj.fill = GridBagConstraints.VERTICAL;

for (int i = 0; i < 5; i++)

{

buttons[i] = new Button ("Button " + (i + 1));

// adding the buttons so that it can be displayed

add(buttons[i]);

}

// the components will be displayed just like the line is present on a page

setLayout (new BoxLayout(this, BoxLayout.PAGE_AXIS));

setSize(400, 400);

setVisible(true);

}

// main method

public static void main(String argvs[])

{

// creating an object of the class BoxLayoutExample4

BoxLayoutExample4 obj = new BoxLayoutExample4();

}

}

UNIT - IV PROGRAMMING IN JAVA

203
Rahul Publications

Rahul Publications

Output:

2. Spring Layout

A SpringLayout arranges the children of its associated container according to a set of constraints.
Constraints are nothing but horizontal and vertical distance between two-component edges. Every constraint
is represented by a SpringLayout.Constraint object.

Each child of a SpringLayout container, as well as the container itself, has exactly one set of constraints
associated with them.

Each edge position is dependent on the position of the other edge. If a constraint is added to create
a new edge, than the previous binding is discarded. SpringLayout doesn't automatically set the location of
the components it manages.

Constructor

SpringLayout(): The default constructor of the class is used to instantiate the SpringLayout class.

B.Sc. III YEAR V SEMESTER

204
Rahul Publications

Rahul Publications

Nested Classes

Modifier and Type Class Description

static class SpringLayout.Constraints It is a Constraints object helps to govern

component's size and position change in

a container that is controlled by Spring Layout

SpringLayout Fields

Modifier and Type Field Description

static String BASELINE It specifies the baseline of a component.

static String EAST It specifies the right edge of a component's

bounding rectangle.

static String HEIGHT It specifies the height of a component's bounding

rectangle.

static String HORIZONTAL_CENTER It specifies the horizontal center of a

component's bounding rectangle.

static String NORTH It specifies the top edge of a component's

bounding rectangle.

static String SOUTH It specifies the bottom edge of a component's

bounding rectangle.

static String VERTICAL_CENTER It specifies the vertical center of a component's

bounding rectangle.

static String WEST It specifies the left edge of a component's

bounding rectangle.

static String WIDTH It specifies the width of a component's bounding

rectangle.

SpringLayout Methods

Modifier and Method Description

Type

void addLayoutComponent(Component If constraints is an instance of

component, Object constraints) SpringLayout. Constraints, associates

the constraints with the specified

component.

void addLayoutComponent(String name, Has no effect, since this layout

Component c) manager does not use a per-component

 string.

UNIT - IV PROGRAMMING IN JAVA

205
Rahul Publications

Rahul Publications

Spring getConstraint(String edgeName, It returns the spring controlling the

Component c) distance between the specified edge

of the component and the top or left

edge of its parent.

SpringLayout. getConstraints(Component c) It returns the constraints for the

Constraints specified component.

float getLayoutAlignmentX(Container p) It returns 0.5f (centered).

float getLayoutAlignmentY(Container p) It returns 0.5f (centered).

void invalidateLayout(Container p) It Invalidates the layout, indicating that

if the layout manager has cached

information it should be discarded.

void layoutContainer(Container parent) It lays out the specified container.

Dimension maximumLayoutSize(Container It is used to calculates the maximum

parent) size dimensions for the specified

container, given the components

it contains.

Dimension minimumLayoutSize(Container It is used to calculates the minimum

parent) size dimensions for the specified

container, given the components

it contains.

Dimension preferredLayoutSize(Container It is used to calculates the preferred size

parent) dimensions for the specified container,

given the components it contains.

Example

import java.awt.Container;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTextField;

import javax.swing.SpringLayout;

public class MySpringDemo {

 private static void createAndShowGUI() {

 JFrame frame = new JFrame("MySpringDemp");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Container contentPane = frame.getContentPane();

B.Sc. III YEAR V SEMESTER

206
Rahul Publications

Rahul Publications

 SpringLayout layout = new SpringLayout();

 contentPane.setLayout(layout);

 JLabel label = new JLabel("Label: ");

 JTextField textField = new JTextField("My Text Field", 15);

 contentPane.add(label);

 contentPane.add(textField);

 layout.putConstraint(SpringLayout.WEST, label,6,SpringLayout.WEST, contentPane);

 layout.putConstraint(SpringLayout.NORTH, label,6,SpringLayout.NORTH, contentPane);

 layout.putConstraint(SpringLayout.WEST, textField,6,SpringLayout.EAST, label);

 layout.putConstraint(SpringLayout.NORTH, textField,6,SpringLayout.NORTH, contentPane);

 layout.putConstraint(SpringLayout.EAST, contentPane,6,SpringLayout.EAST, textField);

 layout.putConstraint(SpringLayout.SOUTH, contentPane,6,SpringLayout.SOUTH, textField);

 frame.pack();

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

 }

Output:

UNIT - IV PROGRAMMING IN JAVA

207
Rahul Publications

Rahul Publications

4.4.8 JTable

Q28. Write a short notes on JTable.

Ans : (July-19)

JTable is a flexible Swing component which is very well-suited at displaying data in a tabular
format. Sorting rows by columns is a nice feature provided by the JTable class. In this tutorial, you will
learn some fundamental techniques for sorting rows in JTable, from enable sorting, sort a column
programmatically to listen to sorting event.

JTable class declaration

Let’s see the declaration for javax.swing.JTable class.

Commonly used Constructors

Creates a table with the specified data.JTable (Object[][] rows,Object [] columns)

Creates a table with empty cells.JTable()

DescriptionConstructor

Creates a table with the specified data.JTable (Object[][] rows,Object [] columns)

Creates a table with empty cells.JTable()

DescriptionConstructor

Program

import javax.swing.*;

public class TableExample

{

JFrame f;

TableExample()

{

f=new JFrame();

String data[][]={{“101”,”Amit”,”670000"}, { “102”,”Jai”,”780000"}, { “101”,”Sachin”,”700000"}

};

String column[]={“ID”,”NAME”,”SALARY”};

JTable jt=new JTable(data,column);

jt.setBounds(30,40,200,300);

JScrollPane sp=new JScrollPane(jt);

f.add(sp);

f.setSize(300,400);

f.setVisible(true);

}

public static void main(String[] args)

{

new TableExample();

}

}

B.Sc. III YEAR V SEMESTER

208
Rahul Publications

Rahul Publications

Output

UNIT - IV PROGRAMMING IN JAVA

209
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is purpose of layouts?

Ans :
The layout manager automatically positions

all the components within the container. If we do
not use layout manager then also the components
are positioned by the default layout manager. It is
possible to layout the controls by hand but it
becomes very difficult because of the following two
reasons.

 It is very tedious to handle a large number
of controls within the container.

 Oftenly the width and height information of
a component is not given when we need to
arrange them.

Java provide us with various layout manager
to position the controls. The properties like
size,shape and arrangement varies from one layout
manager to other layout manager. When the size
of the applet or the application window changes
the size, shape and arrangement of the components
also changes in response i.e. the layout managers
adapt to the dimensions of appletviewer or the
application window.

The layout manager is associated with every
Container object. Each layout manager is an object
of the class that implements the LayoutManager
interface.

2. Write about applet life cycle.

Ans :
Four methods in the Applet class gives you

the framework on which you build any serious
applet.

 init - This method is intended for whatever
initialization is needed for your applet. It is
called after the param tags inside the applet
tag have been processed.

 start - This method is automatically called
after the browser calls the init method. It is
also called whenever the user returns to the

page containing the applet after having gone
off to other pages.

 stop - This method is automatically called
when the user moves off the page on which
the applet sits. It can, therefore, be called
repeatedly in the same applet.

 destroy - This method is only called when
the browser shuts down normally. Because
applets are meant to live on an HTML page,
you should not normally leave resources
behind after a user leaves the page that
contains the applet.

 paint - Invoked immediately after the start()
method, and also any time the applet needs
to repaint itself in the browser. The paint()
method is actually inherited from the
java.awt.

3. Java applet.

Ans :
An applet is a Java program that runs in a

Web browser. An applet can be a fully functional
Java application because it has the entire Java API
at its disposal.

There are some important differences
between an applet and a standalone Java
application, including the following.

 An applet is a Java class that extends the
java.applet.Applet class.

 A main() method is not invoked on an applet,
and an applet class will not define main().

 Applets are designed to be embedded within
an HTML page.

 When a user views an HTML page that
contains an applet, the code for the applet is
downloaded to the user’s machine.

 A JVM is required to view an applet. The JVM
can be either a plug-in of the Web browser
or a separate runtime environment.

B.Sc. III YEAR V SEMESTER

210
Rahul Publications

Rahul Publications

4. Write short notes on Dialog box.

Ans :
(i) showConfirmationDialog(): It asks for the user confirmation.

(ii) showMessageDialog() : It is used to display a message and then allow the user to press OK
button.

(iii) showInputDialog() :It is used to accept the input from user.

(iv) showOptionDialog(): It is used to create a dialog that contains the elements specified by the user.

5. What is the purpose of AWT?

Ans :
Unlike C/C++, Java also supports GUI environment. Through the use of GUI (Graphical User

Interface) environments it is possible to take user input into a running program or it can display some
message to the user dynamically. The user interfaces can either be command line or GUI. All the classes
and interfaces required for developing GUI components and drawing graphics are provided by two
packages i.e., java, awt and java.awt.event.

6. Compare and contrast AWT and Swing.

Ans :

Swing provides more powerful components.
AWT provides comparatively less
powerful components.7.

MVC pattern is supported by Swing.MVC pattern is not supported by AWT.6.

The components of Java Swing are platform
independent.

The components of Java AWT are
platform dependent.5.

The execution time of Swing is less than AWT.
The execution time of AWT is more than
Swing.4.

Java Swing has more functionality as
compared to AWT.

Java AWT has comparatively less
functionality as compared to Swing.3.

The components of Java Swing are light
weighted.

The components of Java AWT are heavy
weighted.2.

Swing is a part of Java Foundation Classes and
is used to create various applications.

Java AWT is an API to develop GUI
applications in Java1.

SwingAWTS.No

Swing provides more powerful components.
AWT provides comparatively less
powerful components.7.

MVC pattern is supported by Swing.MVC pattern is not supported by AWT.6.

The components of Java Swing are platform
independent.

The components of Java AWT are
platform dependent.5.

The execution time of Swing is less than AWT.
The execution time of AWT is more than
Swing.4.

Java Swing has more functionality as
compared to AWT.

Java AWT has comparatively less
functionality as compared to Swing.3.

The components of Java Swing are light
weighted.

The components of Java AWT are heavy
weighted.2.

Swing is a part of Java Foundation Classes and
is used to create various applications.

Java AWT is an API to develop GUI
applications in Java1.

SwingAWTS.No

7. Write a short notes on JTable.

Ans :
JTable is a flexible Swing component which is very well-suited at displaying data in a tabular

format. Sorting rows by columns is a nice feature provided by the JTable class. In this tutorial, you will
learn some fundamental techniques for sorting rows in JTable, from enable sorting, sort a column
programmatically to listen to sorting event.

JTable class declaration

Let’s see the declaration for javax.swing.JTable class.

UNIT - IV PROGRAMMING IN JAVA

211
Rahul Publications

Rahul Publications

Commonly used Constructors

Creates a table with the specified data.JTable (Object[][] rows,Object [] columns)

Creates a table with empty cells.JTable()

DescriptionConstructor

Creates a table with the specified data.JTable (Object[][] rows,Object [] columns)

Creates a table with empty cells.JTable()

DescriptionConstructor

Program

import javax.swing.*;

public class TableExample

{

JFrame f;

TableExample()

{

f=new JFrame();

String data[][]={{“101”,”Amit”,”670000"}, { “102”,”Jai”,”780000"}, { “101”,”Sachin”,”700000"}

};

String column[]={“ID”,”NAME”,”SALARY”};

JTable jt=new JTable(data,column);

jt.setBounds(30,40,200,300);

JScrollPane sp=new JScrollPane(jt);

f.add(sp);

f.setSize(300,400);

f.setVisible(true);

}

public static void main(String[] args)

{

new TableExample();

}

}

8. Event.

Ans :
Change in the state of an object is known as event i.e. event describes the change in state of source.

Events are generated as result of user interaction with the graphical user interface components. For example,
clicking on a button, moving the mouse, entering a character through keyboard,selecting an item from
list, scrolling the page are the activities that causes an event to happen.

B.Sc. III YEAR V SEMESTER

212
Rahul Publications

Rahul Publications

9. Event Handling.

Ans :
Event Handling is the mechanism that controls the event and decides what should happen if an

event occurs. This mechanism has the code which is known as event handler that is executed when an
event occurs. Java Uses the Delegation Event Model to handle the events. This model defines the standard
mechanism to generate and handle the events.Let’s have a brief introduction to this model.

The Delegation Event Model has the following key participants namely:

 Source - The source is an object on which event occurs. Source is responsible for providing
information of the occurred event to it’s handler. Java provide as with classes for source object.

 Listener - It is also known as event handler.Listener is responsible for generating response to an
event. From java implemen- tation point of view the listener is also an object. Listener waits until it
receives an event. Once the event is received , the listener process the event an then returns.

10. What are swings?

Ans :
Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-based

applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in java.Unlike
AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField, JTextArea,
JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Features
(i) Light Weight

Swing components are independent of native Operating System's API as Swing API controls are
rendered mostly using pure JAVA code instead of underlying operating system calls.

(ii) Rich Controls
Swing provides a rich set of advanced controls like Tree, TabbedPane, slider, colorpicker, and table
controls.

(iii) Highly Customizable
Swing controls can be customized in a very easy way as visual apperance is independent of internal
representation.

(iv) Pluggable look-and-feel
SWING based GUI Application look and feel can be changed at run-time, based on available
values.

11. Explain about JPanel by giving an example.

Ans :
The JPanel is a simplest container class. It provides space in which an application can attach any

other component. It inherits the JComponents class.

It doesn’t have title bar.
Class Declaration

Following is the declaration

 for javax.swing.JPanel class
public class JPanel extends JComponent implements Accessible

UNIT - IV PROGRAMMING IN JAVA

213
Rahul Publications

Rahul Publications

Program

import java.awt.*;

import javax.swing.*;

public class PanelExample

{
PanelExample()

{

JFrame f= new JFrame(“Panel Example”);
JPanel panel=new JPanel();

panel.setBounds(40,80,200,200);

panel.setBackground(Color.gray);
JButton b1=new JButton(“Button 1”);

b1.setBounds(50,100,80,30);

b1.setBackground(Color.yellow);
JButton b2=new JButton(“Button 2”);

b2.setBounds(100,100,80,30);

b2.setBackground(Color.green);
panel.add(b1); panel.add(b2);

f.add(panel);

f.setSize(400,400);
f.setLayout(null);

f.setVisible(true);

}
public static void main(String args[])

{

new PanelExample();
}

}

12. Spring Layout

Ans :
A SpringLayout arranges the children of its associated container according to a set of constraints.

Constraints are nothing but horizontal and vertical distance between two-component edges. Every constraint
is represented by a SpringLayout. Constraint object.

Each child of a SpringLayout container, as well as the container itself, has exactly one set of constraints
associated with them.

Each edge position is dependent on the position of the other edge. If a constraint is added to create
a new edge, than the previous binding is discarded. SpringLayout doesn't automatically set the location of
the components it manages.

B.Sc. III YEAR V SEMESTER

214
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Which is used to run an applet [c]
(a) An HTML File (b) Applet viewer Tool

(c) Both a& b (d) None

2. AWT Stands for . [a]

(a) Abstract Window Tool Kit (b) All window tools

(c) Abstract Writing Tools (d) All Writing Tools

3. Which of these functions is called to display the output in applets [a]

(a) display() (b) print()

(c) displayapplet() (d) printapplet()

4. Event class is defined in which of these package [d]

(a) io (b) lang

(c) net (d) util

5. Which of these events is generated when button is pressed? [a]

(a) Action Event (b) Key Event

(c) Window Event (d) None

6. Which is the container containing title bar [a]

(a) panel (b) frame

(c) window (d) container

7. AWT is used for GUI Programming in java [a]

(a) True (b) False

(c) maybe (d) none

8. Which of these functions is called to display the output of an applet? [b]

(a) display() (b) paint()

(c) displayApplet() (d) PrintApplet()

9. Which of these methods can be used to output a string in an applet? [c]

(a) display() (b) print()

(c) drawString() (d) transient()

10. Which of these methods is a part of Abstract Window Toolkit (AWT)? [b]

(a) display() (b) paint()

(c) drawString() (d) transient()

UNIT - IV PROGRAMMING IN JAVA

215
Rahul Publications

Rahul Publications

Fill in the Blanks
1. is a java program that runs in a web browser..

2. The applet is started with a method .

3. AWT stands for .

4. is used to turn an option on/off.

5. display a single line of read only text.

6. A border layout arranges/ fits the components in regions.

7. Data is arranged in left to right in lay out.

8. lay out is used to arrange the data in vertical and horizontal positions.

9. are light weighted components in java.

10. lay out is default layout for dialog box.

ANSWERS

1. Applet

2. init()

3. Abstract Window Toolkit

4. Checkbox

5. Label

6. Five(5)

7. Flow

8. Gridbag

9. Swing Components

10. Border

B.Sc. III YEAR V SEMESTER

216
Rahul Publications

Rahul Publications

One Mark Answers

1. Applets

Ans :
An applet is a Java class that extends the java.applet.Applet class.

 A main() method is not invoked on an applet, and an applet class will not define main().

 Applets are designed to be embedded within an HTML page.

2. AWT

Ans :
Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based applications in

java. Java AWT components are platform-dependent i.e. components are displayed according to the
view of operating system.

3. Swings.

Ans :
Java Swing is a part of Java Foundation Classes (JFC) that is used to create window-based

applications. It is built on the top of AWT (Abstract Windowing Toolkit) API and entirely written in java.Unlike
AWT, Java Swing provides platform-independent and lightweight components.

4. JApplet.

Ans :
JApplet is a class that represents the Swing applet. It is a subclass of Applet class and must be

extended by all the applets that use Swing.

5. BoxLayout.

Ans :
The Java BoxLayout class is used to arrange the components either vertically or horizontally.

LAB PRACTICALS PROGRAMMING IN JAVA

217
Rahul Publications

Lab Practicals
1. Write a program to find the largest of n natural numbers.

Ans :
Largest of given three numbers

import java.util.Scanner;

classLargestOfThreeNumbers

{

public static void main(String args[])

{

int x, y, z;

System.out.println(“Enter three integers “);

 Scanner in = new Scanner(System.in);

 x = in.nextInt();

 y = in.nextInt();

 z = in.nextInt();

if (x > y && x > z)

System.out.println(“First number is largest.”);

else if (y > x && y > z)

System.out.println(“Second number is largest.”);

else if (z > x && z > y)

System.out.println(“Third number is largest.”);

else

System.out.println(“Entered numbers are not distinct.”);

}

}
Output

B.Sc III YEAR V SEMESTER

218
Rahul Publications

2. Write a program to find whether a given number is prime or not.

Ans :
import java.util.Scanner;

public class PrimeNumber

{

public static void main(String args[])

{

int num,b,c;

Scanner s=new Scanner(System.in);

System.out.println(“Enter A Number”);

num =s.nextInt();

b=1;

c=0;

while(b<= num)

{

if((num%b)==0)

c=c+1;

b++;

}

if(c==2)

System.out.println(num +” is a prime number”);

else

System.out.println(num +” is not a prime number”);

}

}

Output

LAB PRACTICALS PROGRAMMING IN JAVA

219
Rahul Publications

3. Write a menu driven program for following:

(a) Display a Fibonacci series

(b) Compute Factorial of a number

Ans :
(a) Display a Fibonacci series

For answer refer to Unit-I, Q.No. 12 (While loop)

(b) Compute Factorial of a number

For answer refer to Unit-I, Q.No. 12 (Do.While loop)

4. Write a program to check whether a given number is odd or even.

Ans :
import java.util.Scanner;

public class Odd_Even

{

public static void main(String[] args)

{

int n;

Scanner s = new Scanner(System.in);

System.out.print("Enter the number you want to check:");

n = s.nextInt();

if(n % 2 == 0)

{

System.out.println("The given number "+n+" is Even ");

}

else

{

System.out.println("The given number "+n+" is Odd ");

}

 }

}

Output

javac Odd_Even.java

java Odd_Even

Enter the number you want to check:15

The given number 15 is Odd

B.Sc III YEAR V SEMESTER

220
Rahul Publications

5. Write a program to check whether a given string is palindrome or not.

Ans :
import java.io.*;

class Palindromedemo

{

public static void main(String []args) throws Exception

{

int i,j;

InputStreamReaderisr=new InputStreamReader(System.in);

BufferedReaderbr=new BufferedReader(isr);

System.out.println(“Enter the string to check”);

String str=br.readLine();

for(i=0,j=str.length();i<str.length();i++,j—)

{

if(str.charAt(i)!=str.charAt(j-1))

 {

System.out.println(“\n Entered String is not palindrome”);

break;

}

}

if(i==str.length())

System.out.println(“\n Entered String is Palindrome”);

 }

}

Output

LAB PRACTICALS PROGRAMMING IN JAVA

221
Rahul Publications

6. Write a program to print the sum and product of digits of an Integer and reverse the
Integer

Ans :
import java.util.Scanner;
public class Use_Do_While
{
 public static void main(String[] args)
 {
 int n, a, m = 0, sum = 0;
 Scanner s = new Scanner(System.in);
 System.out.print("Enter any number:");
 n = s.nextInt();
 do
 {

a = n % 10;
m = m * 10 + a;
sum = sum + a;
n = n / 10;

}
while(n > 0);

System.out.println("Reverse:"+m);
System.out.println("Sum of digits:"+sum);

}
}
Output
javac Use_Do_While.java
java Use_Do_While
Enter any number:456
Reverse:654
Sum of digits:15
7. Write a program to create an array of 10 integers. Accept values from the user in that

Array. Input another number from the user and find out how many numbers are equal to
the number passed, how many are greater and how many are less than the number passed.

Ans :
import j ava.util. Scanner;

public class Array_Ex
{

public static void main(String[] args)
{

int i,n;

B.Sc III YEAR V SEMESTER

222
Rahul Publications

int equal_count=0, greater_count=0, less_count=0;
Scanner sc=new Scanner(System.in);
int[] arr = new int[10];
System.out.println(“Please enter 10 integer values: “);
for(i=0; i<10; i++)
{

arr[i]=sc.nextlnt();
}
System.out.println(“Enter Another Value: “);
n=sc.nextlnt();
for(i=0; i<10; i++)
{

if(arr[i]==n)
{

equal_count++;
}
else if(arr[i]>n)
{

greater_count++;
{
else
{

less_count++;
}

}
System.out.println(“The count of numbers that are equal to the number passed is:
“+equal_count);
System.out.println(“The count of numbers that are greater than the number passed is:
“+greater_count);
System.out.println(“The count of numbers that are less than the number passed is:
“+less_count);

}
}
Output

LAB PRACTICALS PROGRAMMING IN JAVA

223
Rahul Publications

8. Write a program that will prompt the user for a list of 5 prices. Compute the average of
the prices and find out all the prices that are higher than the calculated average.

Ans :
import java.util.Scanner;
public class Average
{

public static void main(String[] args)
{

Scanner sc=new Scanner(System.in);
int[] arr = new int[5];
float total = 0, avg;
System.out.println(“Please enter 5 prices: “);
for(int i=0; i<5; i++)
{

arr[i]=sc.nextlnt();
}
for (int i=0; i<5; i++)
{

total = total+ arr[i];
}
avg = total/5;
System.out.println(“The average of 5 prices is: “+ avg);
System.out.println(“The Prices that are higher than the calculated average are: “);
for (int i=0; i<5; i++)
{

if(arr[i]>avg)
System.out.print(arr[i]+” “);

else
continue;

}
}

}
Output

B.Sc III YEAR V SEMESTER

224
Rahul Publications

9. Write a program in java to input N numbers in an array and print out the Armstrong
numbers from the set.

Ans :
public class Armstrong
{

public static void main(String[] args)
{

int n, count = 0, a, b, c, sum = 0;
System.out.print("Armstrong numbers from 1 to 1000:");
for(int i = 1; i <= 1000; i++)

{
n = i;
while(n > 0)

{
b = n % 10;
sum = sum + (b * b * b);
n = n / 10;

}
if(sum == i)

{
System.out.print(i+" ");

}
sum = 0;
}

 }
}
Output
javac Armstrong.java
java Armstrong
Armstrong numbers from 1 to 1000:1 153 370 371 407
10. Write java program for the following matrix operations:

(a) Addition of two matrices

(b) Transpose of a matrix

Ans :
(a) Addition of two matrices

class AddMatrix
{
public static void main(String args[])
{
int row, col,i,j;

LAB PRACTICALS PROGRAMMING IN JAVA

225
Rahul Publications

Scanner in = new Scanner(System.in);

System.out.println("Enter the number of rows");

row = in.nextInt();

System.out.println("Enter the number columns");

col = in.nextInt();

int mat1[][] = new int[row][col];

int mat2[][] = new int[row][col];

int res[][] = new int[row][col];

System.out.println("Enter the elements of matrix1");

for (i= 0 ; i < row ; i++)

{

for (j= 0 ; j < col ;j++)

mat1[i][j] = in.nextInt();

System.out.println();

}

System.out.println("Enter the elements of matrix2");

for (i= 0 ; i < row ; i++)

{

for (j= 0 ; j < col ;j++)

mat2[i][j] = in.nextInt();

System.out.println();

}

for (i= 0 ; i < row ; i++)

for (j= 0 ; j < col ;j++)

res[i][j] = mat1[i][j] + mat2[i][j] ;

System.out.println("Sum of matrices:-");

for (i= 0 ; i < row ; i++)

{

for (j= 0 ; j < col ;j++)

System.out.print(res[i][j]+"\t");

System.out.println();

}

 }

}

B.Sc III YEAR V SEMESTER

226
Rahul Publications

Output

(b) Transpose of a matrix
public static void main(String args[]){
//creating a matrix
int original[][]={{1,3,4},{2,4,3},{3,4,5}};
//creating another matrix to store transpose of a matrix
int transpose[][]=new int[3][3]; //3 rows and 3 columns
//Code to transpose a matrix
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
transpose[i][j]=original[j][i];
}

}
System.out.println("Printing Matrix without transpose:");
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
System.out.print(original[i][j]+" ");

}
System.out.println();//new line
}

System.out.println("Printing Matrix After Transpose:");
for(int i=0;i<3;i++){
for(int j=0;j<3;j++){
System.out.print(transpose[i][j]+" ");

}
System.out.println();//new line

}
 }
}
Test it Now

LAB PRACTICALS PROGRAMMING IN JAVA

227
Rahul Publications

Output

11. Write a java program that computes the area of a circle, rectangle and a Cylinder using
function overloading.

Ans :
class OverloadDemo

{

void area(float x)
{

System.out.println("the area of the square is "+Math.pow(x, 2)+" sq units");

}
void area(float x, float y)

{

System.out.println("the area of the rectangle is "+x*y+" sq units");
}

void area(double x)

{
double z = 3.14 * x * x;

System.out.println("the area of the circle is "+z+" sq units");

}
}

class Overload
{

public static void main(String args[])
{

OverloadDemo ob = new OverloadDemo();

ob.area(5);
ob.area(11,12);

ob.area(2.5);

}
}

B.Sc III YEAR V SEMESTER

228
Rahul Publications

Output
javac OverloadDemo.java
java OverloadDemo
the area of the square is 25.0 sq units
the area of the rectangle is 132.0 sq units
the area of the circle is 19.625 sq units

12. Write a Java program for the implementation of multiple inheritance using interfaces to
calculate the area of a rectangle and triangle.

Ans :
For answer refer to Unit-II, Q.No. 21 (Multiple Inheritance)

13. Write a java program to create a frame window in an Applet.

Ans :
// Create a child frame window from within an applet.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*

<applet code="AppletFrame" width=400 height=60>
</applet>

*/
// Create a subclass of Frame.

class SampleFrame extends Frame {
SampleFrame(String title) {
super(title);

// create an object to handle window events
MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events
addWindowListener(adapter);

}
public void paint(Graphics g) {
g.drawString("This is in frame window", 10, 40);
}
}
class MyWindowAdapter extends WindowAdapter
{
SampleFrame sampleFrame;
public MyWindowAdapter(SampleFrame sampleFrame)
{
this.sampleFrame = sampleFrame;
}

LAB PRACTICALS PROGRAMMING IN JAVA

229
Rahul Publications

public void windowClosing(WindowEvent we) {
sampleFrame.setVisible(false);
}

}
// Create frame window.

public class AppletFrame extends Applet {
Frame f;
public void init() {
f = new SampleFrame("A Frame Window");
f.setSize(150, 150);
f.setVisible(true);

}
public void start() {
f.setVisible(true);
}
public void stop() {
f.setVisible(false);
}

public void paint(Graphics g) {
g.drawString("This is in applet window", 15, 30);

}
}

OUTPUT

14. Write a java program to draw a line between two coordinates in a window.

Ans :
import java.applet.Applet;
import java.awt.Graphics;

public class DrawLineExample extends Applet
{
public void paint(Graphics g)
{

 /*

B.Sc III YEAR V SEMESTER

230
Rahul Publications

 * to draw line in an applet window use,
 * void drawLine(int x1,int y1, int x2, int y2)
 * method.
 *
 * This method draws a line between (x1,y1) and (x2,y2)
 * coordinates in a current color.
*/
 //this will draw a line between (10,10) and (50,50) coordinates.
g.drawLine(10,10,50,50);
//draw vertical line
g.drawLine(10,50,10,100);
//draw horizontal line
g.drawLine(10,10,50,10);
}
}

Example Output

15. Write a java program to display the following graphics in an applet window.

(a) Rectangles

(b) Circles

(c) Ellipses

(d) Arcs

(e) Polygons

Ans :
import java.applet. Applet;

import java.awt.Graphics;

/*

<applet code=”Graphics_Ex” width=400 height=400>

LAB PRACTICALS PROGRAMMING IN JAVA

231
Rahul Publications

</applet>

*/

import java.awt.*;

import j ava. applet. *;

public class GraphicsEx extends Applet

{

public void paint(Graphics g)

{

g.setFont(new Font(“Cambria”, Font.BOLD,15));

g.drawString(“Drawing different shapes in Applet window”, 15, 15);

g.drawRect(10,20,60,40); //drawing rectangle

g.drawOval(70, 70, 70, 70); //drawing circle

g.drawOval(120, 160, 100, 50);//drawing ellipse

g.drawArc(60, 125, 80, 40, 180,180); //drawing arc

int x[] = { 210,230, 240, 250, 310, 340 };

int y[] = { 310, 340, 150, 140, 130, 110 };

int n = 6;

Polygon pg = new Polygon(x, y, n);

g.drawPolygon(pg); //drawing polygon

}

}

Output:

B.Sc III YEAR V SEMESTER

232
Rahul Publications

16. Write a program that reads two integer numbers for the variables a and b. If any other
character except number (0-9) is entered then the error is caught by
NumberFormatException object. After that ex.getMessage () prints the information about
the error occurring causes.

Ans :
import java.io.*;
public class exceptionHandle

{
public static void main(String[] args) throws Exception{
try
{
int a, b;
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));
a = Integer.parseInt(in.readLine());
b = Integer.parseInt(in.readLine());
}

catch (NumberFormatException ex){
System.out.println(ex.getMessage() + " is not a numeric value.");
System.exit(0);

}
 }
}

Output

17. Write a program for the following string operations:

(a) Compare two strings

(b) Concatenate two strings

(c) Compute length of a string

Ans :
import java.io.*;

import java.util.*;

class StringOperations

{

LAB PRACTICALS PROGRAMMING IN JAVA

233
Rahul Publications

public static void main (String[] args)

{

boolean flag;

String strl= “Hello”;

String str2 = “World”;

//String Concatenation

System.out.println(“The concatenated string is: “ +strl .concat(str2));

//String Comparison

flag = strl.equals(str2);

System.out.println(“strl is equal to str2: “+flag);

//String Length

System.out.println(“The length of strl is: “ + strl.length/));

System.out.println(“The length of str2 is: “ + str2.1ength());

}

}

Output

18. Create a class called Fraction that can be used to represent the ratio of two integers.
Include appropriate constructors and methods. If the denominator becomes zero, throw
and handle an exception.

Ans :
import java.util.Scanner; class Fraction

{

public Fraction() throws ArithmeticException

{

Scanner sc=new Scanner(System.in);

System.out.println(“Please enter two numbers: “);

int numerator = sc.nextlnt();

B.Sc III YEAR V SEMESTER

234
Rahul Publications

int denominator = sc.nextlnt();

int result = numerator/denominator;

System.out.println(“The result is: “ +result);

}

void display()

{

System.out.println(“Divided by Zero Exception Example”);

}

public static void main(String args[])

{

try

{

Fraction f = new Fraction(); f.display();

}

catch(ArithmeticException e)

{

System.out.println (“Can’t be divided by Zero “ + e);

}

 }

}

Output

235
Rahul Publications

SOLVED MODEL PAPERS PROGRAMMING IN JAVA

FACULTY OF SCIENCE
B.Sc. III Year V-Semester(CBCS) Examination

Model Paper - I
Paper - V : PROGRAMMING IN JAVA

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 Marks)

ANSWERS

Note : Answer any Eight of the following questions

1. Type conversion in java. (Unit-I, SQA-1)

2. JVM (Unit-I, SQA-6)

3. Type casting. (Unit-I, SQA-7)

4. What are wrapper class? (Unit-II, SQA-9)

5. What is the major difference between an interface and a class? (Unit-II, SQA-7)

6. Discuss constructors overloading with super keyword. (Unit-II, SQA-2)

7. FileOutputStream Class. (Unit-III, SQA-5)

8. Multitasking. (Unit-III, SQA-11)

9. Exception Handling. (Unit-III, SQA-10)

10. Write about applet life cycle. (Unit-IV, SQA-2)

11. Write short notes on Dialog box. (Unit-IV, SQA-4)

12. What is purpose of layouts? (Unit-IV, SQA-1)

SECTION - B (4 × 12 = 48 Marks)

Note : Answer ALL the following questions

13. Explain the architecture of JVM. (Unit-I, Q.No.4)

(OR)

14. Explain about the type casting and type conversion in java. (Unit-I, Q.No.9)

15. Define Constructors. Explain different types of constructors in java. (Unit-II, Q.No.6)

(OR)

16. What are the different types of Inheritance? (Unit-II, Q.No.19)

236
Rahul Publications

B.Sc. III YEAR V SEMESTER

17. Define Threads. List different ways of creating threads. Explain with examples. (Unit-III, Q.No.11)

(OR)

18. What is java.io Package? Explain the different ways of input output methods. (Unit-III, Q.No.15)

19. Explain the sequence of applet’s life cycle. (Unit-IV, Q.No.2)

(OR)

20. Explain different layout managers in java with examples. (Unit-IV, Q.No.20)

237
Rahul Publications

SOLVED MODEL PAPERS PROGRAMMING IN JAVA

FACULTY OF SCIENCE
B.Sc. III Year V-Semester(CBCS) Examination

Model Paper - II
Paper - V : PROGRAMMING IN JAVA

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 Marks)
ANSWERS

Note : Answer any Eight of the following questions

1. Explain the features of Java. (Unit-I, SQA-2)

2. Object in Java. (Unit-I, SQA-10)

3. Garbage Collector. (Unit-I, SQA-9)

4. Define Constructors. (Unit-II, SQA-1)

5. What is an abstract class? (Unit-II, SQA-3)

6. Protection access. (Unit-II, SQA-5)

7. Write about Multithreading in Java. (Unit-III, SQA-3)

8. What is exception? (Unit-III, SQA-1)

9. Synchronization (Unit-III, SQA-8)

10. Java applet. (Unit-IV, SQA-3)

11. Event Handling. (Unit-IV, SQA-9)

12. Explain about JPanel by giving an example. (Unit-IV, SQA-11)

SECTION - B (4 × 12 = 48 Marks)

Note : Answer ALL the following questions

13. Explain the features of Java. (Unit-I, Q.No.5)

(OR)

14. What are the various types of Control Statements in Java with a suitable

examples. (Unit-I, Q.No.10)

15. Explain about Command-Line Arguments. How they are useful. (Unit-II, Q.No.15)

(OR)

16. Differentiate the use of Abstract class and Interface? (Unit-II, Q.No.32)

238
Rahul Publications

B.Sc. III YEAR V SEMESTER

17. Explain the handling of exception in Java. (Unit-III, Q.No.3)

(OR)

18. Explain in detail about FileInputStream Class with an example. (Unit-III, Q.No.17)

19. What are AWT’s? Explain AWT Hierarchy in JAVA? (Unit-IV, Q.No.11)

(OR)

20. What are the differences between AWT and Swing? (Unit-IV, Q.No.22)

239
Rahul Publications

SOLVED MODEL PAPERS PROGRAMMING IN JAVA

FACULTY OF SCIENCE
B.Sc. III Year V-Semester(CBCS) Examination

Model Paper - III
Paper - V : PROGRAMMING IN JAVA

Time : 3 Hours] [Max. Marks : 80

PART- A (8 × 4 = 32 Marks)

ANSWERS

Note : Answer any Eight of the following questions

1. Explain the features of Java. (Unit-I, SQA-2)

2. Define Java. (Unit-I, SQA-4)

3. Java Essentials. (Unit-I, SQA-5)

4. Define Interface? (Unit-II, SQA-4)

5. What is a package in java? (Unit-II, SQA-6)

6. What is multiple Inheritance? (Unit-II, SQA-10)

7. Define thread. (Unit-III, SQA-6)

8. Benefits of Exception Handling. (Unit-III, SQA-9)

9. What is a scanner class? (Unit-III, SQA-12)

10. What is the purpose of AWT? (Unit-IV, SQA-5)

11. Compare and contrast AWT and Swing. (Unit-IV, SQA-6)

12. What are swings? (Unit-IV, SQA-10)

SECTION - B (4 × 12 = 48 Marks)

Note : Answer ALL the following questions

13. Describe the Structure of a Java Program. (Unit-I, Q.No.8)

(OR)

14. What are the different looping statements in java? Explain. (Unit-I, Q.No.12)

15. What is Single Inheritance in JAVA? Explain with an Example. (Unit-II, Q.No.20)

(OR)

16. Explain the usage of string buffers class. (Unit-II, Q.No.39)

240
Rahul Publications

B.Sc. III YEAR V SEMESTER

17. Discuss the Priority of threads used in JAVA? (Unit-III, Q.No.13)

(OR)

18. Explain in detail about FileOutputStream Class with an example. (Unit-III, Q.No.18)

19. What are the Components of AWT? (Unit-IV, Q.No.13)

(OR)

20. Discuss about Layout Managers in swing. (Unit-IV, Q.No.27)

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN JAVA

241
Rahul Publications

FACULTY OF SCIENCE
B.Sc V-Semester (CBCS) Examination

July - 2021

COMPUTER SCIENCE (PROGRAMMING IN JAVA)
Paper - V

Time : 2 Hrs] [Max. Marks : 60

PART - A (4 × 5 = 20 Marks)
Note : Answer any FOUR questions

Answers

1. What is constructor? Discuss constructor overloading with super keyword. (Unit-II, SQA- 1, 2)

2. Write about abstract classes and interfaces. (Unit-II, SQA- 3, 4)

3. What is exception? Discuss user-defined exception. (Unit-III, SQA- 1, 2)

4. Write about protection access. (Unit-II, SQA- 5)

5. What is the purpose of layouts? (Unit-IV, SQA- 1)

6. Write about applet life cycle. (Unit-IV, SQA- 2)

7. Define thread. List the methods in thread class. (Unit-III, SQA- 6)

8. Write a note on type conversion in java. (Unit-I, SQA- 1)

Part - B (2 × 20 = 40 Marks)
Note: Answer any TWO questions.

9. Compare and contrast method overloading and method overriding in java (Unit-II, Q.No. 5)
by giving an example for each.

10. What is inheritance? Explain types of inheritance by giving an example for (Unit-II, Q.No. 19, 20,
each. 21, 22, 23, 24)

11. Define thread. List different ways of creating threads explain them with (Unit-III, Q.No. 11)
example.

12. What is the purpose of java to package? Explain any two different ways (Unit-IV, Q.No. 15)
of input output methods with example.

13. What is the purpose of AWT? Explain the controls supported by AWT by (Unit-IV, Q.No. 11, 12)
giving an example.

14. Explain the different steps for database handling using JDBC. (Out of Syllabus)

B.Sc III YEAR V SEMESTER

242
Rahul Publications

FACULTY OF SCIENCE
B.Sc V-Semester (CBCS) Examination

October/November - 2020
COMPUTER SCIENCE (PROGRAMMING IN JAVA)

Paper - V

Time : 2 Hours] [Max. Marks : 60

PART - A - (4 × 5 = 20 Marks)

Note : Answer any four questions.

ANSWERS

1. Define class. Write an example for class in Java (Unit - I, Q.No. 14)

2. Briefly explain about abstract class. (Unit - II, SQA-3)

3. Write briefly about exception handling. (Unit - III, SQA-10)

4. Write short notes on output streams. (Unit - III, Q.No. 22)

5. Write about any three types of events. (Unit - IV, Q.No. 9)

6. Write briefly about types of JDBC drivers. (Out of Syllabus)

7. Write short note on one dimensional array. (Unit - II, Q.No. 13)

8. Write briefly about synchronization. (Unit - III, SQA-8)

PART - B (2 × 20 = 40 Marks)

Note : Answer any two questions

9. Explain in detail the various date types in Java. (Unit - I, Q.No. 7)

10. Explain the various types of inheritance with examples. (Unit - II, Q.No. 20, 21, 22, 23, 24, 25)

11. Explain in detail about packages. Write a program to (Unit - II, Q.No. 33, 34)
implement user defined package.

12. Explain with an example Buffered Input stream and Buffered Output (Unit - III, Q.No. 21, 22)
stream.

13. Define Applet. Explain life cycle of an applet with an example program. (Unit - IV, Q.No. 1, 2)

14. Explain JDBC in detail. Write the steps to establish JDBC-ODBC (Out of Syllabus)
connection.

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN JAVA

243
Rahul Publications

FACULTY OF SCIENCE
B.Sc V-Semester (CBCS) Examination

November / December - 2019

COMPUTER SCIENCE (PROGRAMMING IN JAVA)
Paper - V

Time : 3 Hrs] [Max. Marks : 60

PART - A (5 × 3 = 15 Marks)
Note : Answer any FIVE of the following questions

Answers

1. Write about different features of Java. (Unit-I, SQA- 5)

2. Write short notes on Interfaces. (Unit-II, SQA- 4)

3. Write briefly on multi threading. (Unit-III, SQA- 3)

4. What is a package? Write few inbuilt packages of Java. (Unit-II, SQA- 6)

5. Write short notes on Java Applet. (Unit-IV, SQA- 3)

6. Write short notes on Dialog Box. (Unit-IV, SQA- 4)

7. Write the structure of a Java program. (Unit-I, SQA- 3)

8. Write any three differences between Swing and AWT. (Unit-IV, SQA- 6)

Part – B (3 ×15 = 45 Marks)
Note: Answer ALL the following questions.

9. (a) Explain the various types of control statements in Java with an (Unit-I, Q.No. 11, 12, 13)
example for each.

OR

(b) Explain different types of method overloading with examples. (Unit-II, Q.No. 4)

10. (a) Explain wrapper classes in detail. Write a Java program to demonstrate (Unit-II, Q.No. 36)
wrapper class in Java.

OR

(b) Explain in detail about File Input Stream and File Output Stream (Unit-IV, Q.No. 17, 18)
class with an example.

11. (a) Explain about various AWT classes used in Java. Write a program (Unit-IV, Q.No. 12, 16)
using checkboxes.

OR

(b) Define ResultSet. Explain in detail about various ResultSet objects (Out of Syllabus)
in Java.

B.Sc III YEAR V SEMESTER

244
Rahul Publications

FACULTY OF SCIENCE
B.Sc V-Semester (CBCS) Examination

June / July - 2019

COMPUTER SCIENCE (PROGRAMMING IN JAVA)
Paper - V

Time : 3 Hrs] [Max. Marks : 60

PART - A (5 × 3 = 15 Marks)
Note : Answer any FIVE of the following questions

Answers

1. What is the major difference between an interface and a class? (Unit-II, SQA- 7)

2. When do we declare a method or class abstract? (Unit-II, SQA- 8)

3. How do we set priorities for threads? (Unit-III, SQA- 7)

4. Define package. Write the syntax to create and import a package. (Unit-II, SQA- 6)

5. Explain JTable in swings with an example program. (Unit-IV, SQA- 7)

6. What are the types of JDBC drivers? (Out of Syllabus)

7. Define thread. How do we start a thread? (Unit-III, SQA- 6)

8. Write about File Input Stream and File Output Stream class. (Unit-III, SQA- 4, 5)

Part – B (3 × 15 = 45 Marks)
Note: Answer ALL the questions.

9. (a) Define class. Explain about class declaration, creating objects, (Unit-I, Q.No. 14, 15)
methods declaration and invocation with syntax and an example.

OR
(b) Define inheritance. Explain the different types of inheritance. (Unit-II, Q.No. 19, 20, 21,

Write a program to demonstrate multiple inheritance in java. 22, 23, 24)

10. (a) Define package. How do we add a class to package? Discuss the (Unit-II, Q.No. 33, 34, 35)
various levels of access protection available with an example.

OR
(b) What is a random access file? Why do we need a random access (Unit-III, Q.No. 23)

file? Write a program for reading/writing using random access file.

11. (a) Explain about JFrame, JApplet and JPanel by giving an example (Unit-III, Q.No. 23, 24, 25)
for each.

OR
(b) Explain the basic steps in developing a JDBC application. (Out of Syllabus)

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN JAVA

245
Rahul Publications

FACULTY OF SCIENCE
B.Sc V-Semester (CBCS) Examination

November / December - 2018

COMPUTER SCIENCE (PROGRAMMING IN JAVA)
Paper - V

Time : 3 Hrs] [Max. Marks : 60

PART - A (5 × 3 = 15 Marks)
Note : Answer any FIVE of the following questions

Answers

1. Write about constructors. (Unit-II, SQA-1)

2. Write a note on type conversion in java. (Unit-I, SQA-1)

3. Define thread. List the methods in thread class. (Unit-III, SQA-6)

4. What are wrapper classes? (Unit-II, SQA-9)

5. Why layouts are needed? (Unit-IV, SQA-1)

6. What is the purpose of AWT? List the controls supported by AWT. (Unit-IV, SQA-5)

7. How java supports multiple inheritance? (Unit-II, SQA-10)

8. Write about thread synchronization. (Unit-III, SQA-8)

Part – B (3 ×15 = 45 Marks)
Note: Answer ALL the following questions.

9. (a) Explain about branching mechanisms in java by giving an (Unit-I, Q.No. 13)
example.

OR

(b) Compare and contrast method overloading and method (Unit-II, Q.No. 5)
overriding in java by giving an example for each.

10. (a) What is an exception? Explain the handling exception in Java. (Unit-III, Q.No. 1, 3)
OR

(b) Define thread. Explain the different ways we can create (Unit-III, Q.No. 11)
thread by giving an example for each.

11. (a) Explain the sequence of applet’s life cycle methods in (Unit-IV, Q.No. 2)
which they are called with an example program.

OR

(b) What is layout manager? Explain types of layout managers (Unit-IV, Q.No. 18, 19)
with an example.

B.Sc III YEAR V SEMESTER

246
Rahul Publications

MAHATMA GANDHI UNIVERSITY
FACULTY OF SCIENCE

B.Sc (CBCS) III-Year (V-Semester) Backlog Examination
May / June - 2019

PROGRAMMING IN JAVA
Paper - V

Time : 2½ Hrs] [Max. Marks : 60

PART - A (5 × 3 = 15 Marks)
Answer all the questions

Answers

1. Explain Command-line arguments in Java. (Unit-II, SQA- 11)

2. What is Synchronization? (Unit-III, SQA- 8)

3. Explain the differences between Swing and AWT. (Unit-IV, SQA- 6)

Part - B (3 × 15 = 45 Marks)
Note: Answer ALL the questions.

4. (a) Explain the Conditional Statements in Java with examples. (Unit-I, Q.No. 11)

OR

(b) Differentiate the use of Abstract Classes and Interfaces. (Unit-II, Q.No. 32)

5. (a) Define Exception. Explain the Handling of Exceptions in Java. (Unit-III, Q.No. 1, 3)

OR

(b) What is a Thread? Explain the implementation of Thread with (Unit-III, Q.No. 11)
Runnable Interface.

6. (a) Explain the Event Handling mechanism in Java. (Unit-IV, Q.No. 8)

OR

(b) Explain different Layout Managers in Java with examples. (Unit-IV, Q.No. 19)

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN JAVA

247
Rahul Publications

MAHATMA GANDHI UNIVERSITY
FACULTY OF SCIENCE

B.Sc (CBCS) III-Year V-Semester Regular Examinations
November / December - 2018

PROGRAMMING IN JAVA
Paper - V

Time : 2½ Hrs] [Max. Marks : 60

PART - A (5 × 3 = 15 Marks)
Answer all the questions

Answers

1. Explain Parameterized Constructors with examples. (Unit-II, SQA- 12)

2. Explain the usage of StringBuffer Class. (Unit-II, SQA- 13)

3. Explain the differences between Swing and AWT. (Unit-IV, SQA- 6)

Part - B (3 × 15 = 45 Marks)
Answer ALL the questions.

4. (a) Explain the Loops in Java with examples. (Unit-I, Q.No. 12)

OR

(b) What is Inheritance? Explain different types of Inheritance (Unit-II, Q.No. 19, 20, 21,
with examples. 22, 23, 24)

5. (a) Define Exception. Explain the Handling of Exceptions in Java. (Unit-III, Q.No. 1, 3)

OR

(b) What is Thread? Explain the implementation of Thread with (Unit-III, Q.No. 11)
Runnable Interface.

6. (a) Write a program in Java to implement Radio buttons and (Unit-IV, Q.No. 16, 13)
Container class.

OR

(b) Explain different Layout Managers in Java with examples. (Unit-IV, Q.No. 19)

