
Rahul’s 
Topper’s Voice

B.Sc.
III Year V Sem

DATA STRUCTURES AND
ALGORITHMS

DATA SCIENCE PAPER - V
 Study Manual

 Short Question & Answers

 Multiple Choice Questions

 Fill in the blanks

 One Mark Answers

 Solved Model Papers

AS PER

CBCS SYLLABUS

All disputes are subjects to Hyderabad Jurisdiction only

Price

` 169-00

TM

Hyderabad. Ph : 66550071, 9391018098
Rahul Publications

Latest 2023 Edition

- by -

WELL EXPERIENCED LECTURER

Price `. 169-00

Sole Distributors :  : 66550071, Cell : 9391018098

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

B.Sc.
III Year V Sem

DATA STRUCTURES AND
ALGORITHMS

DATA SCIENCE PAPER - V

C
O
N
T
E
N
T
S

STUDY MANUAL

Important Questions IV - VI

Unit - I 1 - 40

Unit - II 41 - 78

Unit - III 79 - 104

Unit - IV 105 - 138

SOLVED MODEL PAPERS

MODEL PAPER - I 139 - 139

MODEL PAPER - II 140 - 141

MODEL PAPER - III 142 - 142

DATA STRUCTURES AND
ALGORITHMS

DATA SCIENCE PAPER - V

SYLLABUS

UNIT - I

Performance and Complexity Analysis: Space Complexity, Time Complexity, Asymptotic Notation
(Big-Oh), Complexity AnalysisExamples. Linear List-Array Representation: Vector Representation,
Multiple Lists Single Array. Linear List-Linked Representation: Singly Linked Lists, Circular Lists,
Doubly Linked Lists, Applications (Polynomial Arithmetic). Arrays and Matrices: Row and Column
Major Representations, Sparse Matrices. Stacks: Array Representation, Linked Representation,
Applications (Recursive Calls, Infix to Postfix, Postfix Evaluation). Queues: Array Representation,
Linked Representation. Skip Lists and Hashing: Skip Lists Representation, Hash Table Representation,
Application- Text Compression.

UNIT - II

Trees: Definitions and Properties, Representation of Binary Trees, Operations, Binary
TreeTraversal. Binary Search Trees: Definitions, Operations on Binary Search Trees. Balanced
Search Trees: AVL Trees, and B-Trees

UNIT - III

Graphs: Definitions and Properties, Representation, Graph Search Methods (Depth First Search and
Breadth First Search) Application of Graphs: Shortest Path Algorithm (Dijkstra), Minimum Spanning
Tree (Prim’s and Kruskal’s Algorithms).

UNIT - IV

Searching: Linear Search and Binary Search Techniques and their complexity analysis. Sorting
and Complexity Analysis: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort,
and Heap Sort. Algorithm Design Techniques: Greedy algorithm, divide-and-conquer, dynamic
programming.

I

Contents
Topic Page No.

UNIT - I

1.1 Performance and Complexity Analysis ..1

1.1.1 Space Complexity ..2

1.1.2 Time Complexity ..3

1.1.3 Asymptotic Notations (Big-Oh) ...4

1.1.4 Complexity Analysis Examples ...5

1.2 Linear List-Array Representation ...5

1.2.1 Vector Representation ..5

1.2.2 Multiple Lists Single Array ..6

1.3 Linear List-Linked Representation ...7

1.3.1 Singly linked list ..7

1.3.2 Circular Lists ...8

1.3.3 Doubly linked list ..10

1.3.4 Application of Linked List (Polynomial Arithmetic) ...11

1.4 Linear List-Linked Representation ...16

1.4.1 Row and Column Major Representations ...16

1.4.2 Sparse Matrices ..18

1.5 Stacks ..20

1.5.1 Array Representation of Stack ..20

1.5.2 Linked list representation of stack ...21

1.5.3 Applications (Recursive Calls, Infix to Postfix, Postfix Evaluation)22

1.6 Queues ..25

1.6.1 Array Representation ...25

1.6.2 Linked Representation ...27

1.7 Skip Lists and Hashing ..28

1.7.1 Skip Lists Representation ..28

1.7.2 Hash Table Representation, Application-Text Compression29

 Short Questions and Answers ... 33 - 36

 Choose the Correct Answers .. 37 - 37

 Fill in the blanks ... 38 - 38

 Very short Answers .. 39 - 40

II

Topic Page No.

UNIT - II

2.1 Trees ..41

2.1.1 Definitions and Properties Representation of Binary Trees41

2.1.2 Operations ...45

2.1.3 Binary Tree Traversal ..51

2.2 Binary Search Trees ..53

2.2.1 Definitions, Operations on Binary Search Tress. ...53

2.3 Balanced Search Trees ..56

2.3.1 AVL Trees ...56

2.3.2 B Trees ...66

 Short Questions and Answers ... 70 - 74

 Choose the Correct Answers .. 75 - 75

 Fill in the blanks ... 76 - 76

 Very short Answers .. 77 - 78

UNIT - III

3.1 Graphs ..79

3.1.1 Definitions ..79

3.1.2 Graph Theory - Basic Properties ..80

3.1.3 Representation of Graphs ..82

3.1.4 Graph Search Methods (Depth First Search and Breadth First Search)85

3.1.4.1 Depth First Search (DFS) ..85

3.1.4.2 Breadth First Search (BFS) ...87

3.2 Application of Graphs ...89

3.2.1 Shortest Path Algorithm (Dijkstra) ..89

3.2.2 Minimum Spanning Tree (Prim’s and Kruskal’s Algorithms)93

3.2.2.1 Prim’s Algorithm ...93

3.2.2.2 Kruskal’sAlgorithm ..95

 Short Questions and Answers ... 97 - 101

 Choose the Correct Answers .. 102 - 102

 Fill in the blanks ... 103 - 103

 Very short Answers .. 104 - 104

III

Topic Page No.

UNIT - IV

4.1 Searching ..105

4.1.1 Linear Search ...105

4.1.2 Binary Search...106

4.1.3 Complexity Analysis of Linear Search ..108

4.1.4 Time Complexity Analysis of Binary Search ...109

4.2 Sorting and Complexity Analysis ...109

4.2.1 Selection Sort ...109

4.2.2 Bubble Sort ..111

4.2.3 Insertion Sort ...113

4.2.4 Quick Sort ..115

4.2.5 Merge Sort ...117

4.2.6 Heap Sort ..119

4.3 Algorithm Design Techniques ..125

4.3.1 Greedy Algorithm ..125

4.3.2 Divide and ConquerAlgorithm ...127

4.3.3 Dynamic Programming ..129

 Short Questions and Answers ... 130 - 134

 Choose the Correct Answers .. 135 - 136

 Fill in the blanks ... 137 - 137

 Very short Answers .. 138 - 138

B.Sc. III YEAR V SEMESTER

IV
Rahul Publications

UNIT - I

1. What is Performance Analysis of an algorithm?

Ans :
Refer Unit-I, Q.No. 1

2. What is Asymptotic Notation? Explain in detail about Big(O) notation.

Ans :
Refer Unit-I, Q.No. 4

3. Explain Singly Linked List and its Operations

Ans :
Refer Unit-I, Q.No. 8

4. Explain circular linked list and its operations.

Ans :
Refer Unit-I, Q.No. 9

5. What are the applications of Linked List?

Ans :
Refer Unit-I, Q.No. 11

6. How to represent Row and Column Major Representations.

Ans :
Refer Unit-I, Q.No. 12

7. Explain about Linked list Representation of stack.

Ans :
Refer Unit-I, Q.No. 15

8. Explain about Array representation of Queue

Ans :
Refer Unit-I, Q.No. 17

9. What is a skip list? Explain its Operations and Applications.

Ans :
Refer Unit-I, Q.No. 19

10. What is Hash Table? Explain its representation and Compression method

Ans :
Refer Unit-I, Q.No. 20

Important Questions

IMPORTANT QUESTIONS DATA STRUCTURES AND ALGORITHMS

V
Rahul Publications

UNIT - II

1. What is a Tree data structure and How to represent a Binary tree? Explain its applications

Ans :

Refer Unit-II, Q.No. 1

2. Explain in detail about Binary Tree Traversal Technique?

Ans :

Refer Unit-II, Q.No. 3

3. Define a Binary Search Tree? And Explain its Operations.

Ans :

Refer Unit-II, Q.No. 4

4. What is AVL tree? Explain its operations.

Ans :

Refer Unit-II, Q.No. 5

5. Give an example how to construct an AVL Tree?

Ans :

Refer Unit-II, Q.No. 7

6. What is B Tree? Explain in detail about its Operations.

Ans :

Refer Unit-II, Q.No. 8

UNIT - III

1. What is Graph? Explain in detail about Graphs.

Ans :
Refer Unit-III, Q.No. 1

2. Explain about Graph basic properties in detail with an example.

Ans :
Refer Unit-III, Q.No. 2

3. Explain about DFS Search Algorithm.

Ans :
Refer Unit-III, Q.No. 4

B.Sc. III YEAR V SEMESTER

VI
Rahul Publications

4. Explain about Dijkstra’s Shortest Path Algorithm.

Ans :
Refer Unit-III, Q.No. 6

5. Explain about prim’s Algorithm

Ans :
Refer Unit-III, Q.No. 8

6. Explain about Kruskal’s Algorithm.

Ans :
Refer Unit-III, Q.No. 9

UNIT - IV

1. Explain in detail about Linear Search with an Example?

Ans :
Refer Unit-IV, Q.No. 2

2. Explain in detail about Selection Sort with an example and its complexity.

Ans :
Refer Unit-IV, Q.No. 6

3. Explain in detail about Insertion Sort with an example and its complexly.

Ans :
Refer Unit-IV, Q.No. 8

4. Explain in detail about Quick Sort with an example and its complexity.

Ans :
Refer Unit-IV, Q.No. 9

5. Explain in detail about Heap Sort with an example and its complexity.

Ans :
Refer Unit-IV, Q.No. 11

6. Compare various Sorting Techniques with Real World Usage.

Ans :
Refer Unit-IV, Q.No. 12

7. Explain in detail about Greedy Algorithm with its applications.

Ans :
Refer Unit-IV, Q.No. 13

8. Explain in detail about Dynamic Prog-ramming with its applications.

Ans :
Refer Unit-IV, Q.No. 15

1
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

UNIT
I

Performance and Complexity Analysis: Space Complexity, Time Complexity,
Asymptotic Notation (Big-Oh), Complexity AnalysisExamples. Linear List-Array
Representation: Vector Representation, Multiple Lists Single Array. Linear List-Linked
Representation: Singly Linked Lists, Circular Lists, Doubly Linked Lists, Applications
(Polynomial Arithmetic). Arrays and Matrices: Row and Column Major Representations,
Sparse Matrices. Stacks: Array Representation, Linked Representation, Applications
(Recursive Calls, Infix to Postfix, Postfix Evaluation). Queues: Array Representation,
Linked Representation. Skip Lists and Hashing: Skip Lists Representation, Hash Table
Representation, Application- Text Compression.

1.1 PERFORMANCE AND COMPLEXITY

ANALYSIS

Q1. What is Performance Analysis of an
algorithm?

Ans: (Imp.)
Introduction

Performance of an algorithm means
predicting the resources which are required to an
algorithm to perform its task.

If we want to go from city “A” to city “B”,
there can be many ways of doing this. We can go
by flight, by bus, by train and also by bicycle.
Depending on the availability and convenience, we
choose the one which suits us. Similarly, in computer
science, there are multiple algorithms to solve a
problem. When we have more than one algorithm
to solve a problem, we need to select the best one.
Performance analysis helps us to select the best
algorithm from multiple algorithms to solve a
problem.

When there are multiple alternative algorithms
to solve a problem, we analyze them and pick the
one which is best suitable for our requirements. The
formal definition is as follows...

Performance of an algorithm is a
process of making evaluative judgement about
algorithms.

It can also be defined as follows...

Performance of an algorithm means
predicting the resources which are required
to an algorithm to perform its task.

That means when we have multiple algorithms
to solve a problem, we need to select a suitable
algorithm to solve that problem.

We compare algorithms with each other
which are solving the same problem, to select the
best algorithm. To compare algorithms, we use a
set of parameters or set of elements like memory
required by that algorithm, the execution speed of
that algorithm, easy to understand, easy to
implement, etc.,

Generally, the performance of an algorithm
depends on the following elements...

1. Whether that algorithm is providing the exact
solution for the problem?

2. Whether it is easy to understand?

3. Whether it is easy to implement?

4. How much space (memory) it requires to solve
the problem?

5. How much time it takes to solve the problem?
Etc.,

When we want to analyse an algorithm, we
consider only the space and time required by that
particular algorithm and we ignore all the remaining
elements.

Based on this information, performance
analysis of an algorithm can also be defined as
follows...

Performance analysis of an algorithm is the
process of calculating ‘space’ and ‘time’ required
by that algorithm.

Performance analysis of an algorithm is
performed by using the following measures...

1. Space required to complete the task of that
algorithm (Space Complexity). It includes
program space and data space

2. Time required to complete the task of that
algorithm (Time Complexity)

2
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

1.1.1 Space Complexity

Q2. What is Space complexity give with an
example?

Ans :

When we design an algorithm to solve a
problem, it needs some computer memory to
complete its execution. For any algorithm, memory
is required for the following purposes...

1. To store program instructions.

2. To store constant values.

3. To store variable values.

4. And for few other things like function
calls, jumping statements etc,.

Space complexity of an algorithm can be
defined as follows...

Total amount of computer memory required
by an algorithm to complete its execution is called
as space complexity of that algorithm.

Generally, when a program is under
execution it uses the computer memory for THREE
reasons. They are as follows...

1. Instruction Space: It is the amount of
memory used to store compiled version of
instructions.

2. Environmental Stack: It is the amount of
memory used to store information of partially
executed functions at the time of function call.

3. Data Space: It is the amount of memory
used to store all the variables and constants.

To calculate the space complexity, we must
know the memory required to store different data
type values (according to the compiler). For
example, the C Programming Language compiler
requires the following...

1. 2 bytes to store Integer value.

2. 4 bytes to store Floating Point value.

3. 1 byte to store Character value.

4. 6 (OR) 8 bytes to store double value.

Consider the following piece of code...

Example

int square(int a)

{

return a*a;

}

In the above piece of code, it requires 2 bytes
of memory to store variable ’a’ and another 2
bytes of memory is used for return value.

That means, totally it requires 4 bytes of
memory to complete its execution. And these 4 bytes
of memory is fixed for any input value of ‘a’. This
space complexity is said to be Constant Space
Complexity.

If any algorithm requires a fixed amount of
space for all input values then that space complexity
is said to be Constant Space Complexity.

If the amount of space required by an
algorithm is increased with the increase of input
value, then that space complexity is said to be Linear
Space Complexity.

1.1.2 Time Complexity

Q3. What is Time complexity give with an
example?

Ans :
Every algorithm requires some amount of

computer time to execute its instruction to perform
the task. This computer time required is called time
complexity.

The time complexity of an algorithm can be
defined as follows...

The time complexity of an algorithm is the
total amount of time required by an algorithm to
complete its execution.

Generally, the running time of an algorithm
depends upon the following...

1. Whether it is running on Single processor
machine or Multi processor machine.

2. Whether it is a 32 bit machine or 64 bit
machine.

3. Read and Write speed of the machine.

3
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

4. The amount of time required by an algorithm
to perform Arithmetic operations, logical
operations, return value and assignment
operations etc.,

5. Input data

Calculating Time Complexity of an algorithm
based on the system configuration is a very difficult
task because the configuration changes from one
system to another system. To solve this problem,
we must assume a model machine with a specific
configuration. So that, we can able to calculate
generalized time complexity according to that model
machine.

To calculate the time complexity of an
algorithm, we need to define a model machine. Let
us assume a machine with following configuration...

i) It is a Single processor machine

ii) It is a 32 bit Operating System machine

iii) It performs sequential execution

iv) It requires 1 unit of time for Arithmetic and
Logical operations

v) It requires 1 unit of time for Assignment and
Return value

vi) It requires 1 unit of time for Read and Write
operations

We calculate the time complexity of following
example code by using the above-defined model
machine...

Consider the following piece of code...

Example 1

int sum(int a, int b)

{

 return a+b;

}

In the above sample code, it requires 1 unit
of time to calculate a+b and 1 unit of time to return
the value. That means, totally it takes 2 units of time
to complete its execution. And it does not change
based on the input values of a and b. That means
for all input values, it requires the same amount of
time i.e. 2 units.

If any program requires a fixed amount of
time for all input values then its time complexity is
said to be Constant Time Complexity.

Consider the following piece of code...

Example 2

int sum(int A[], int n)

{

int sum = 0, i;

for(i = 0; i< n; i++)

sum = sum + A[i];

return sum;

}

For the above code, time complexity can be
calculated as follows...

In above calculation

Cost is the amount of computer time required
for a single operation in each line.

Repeatation is the amount of computer time
required by each operation for all its repetitions.

Total is the amount of computer time required
by each operation to execute.

So above code requires ’4n+4' Units of
computer time to complete the task. Here the exact
time is not fixed. And it changes based on
the n value. If we increase the n value then the
time required also increases linearly.

Totally it takes ‘4n+4’ units of time to
complete its execution and it is Linear Time
Complexity.

If the amount of time required by an
algorithm is increased with the increase of input
value then that time complexity is said to be Linear
Time Complexity.

4
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

1.1.3 Asymptotic Notations (Big-Oh)

Q4. What is Asymptotic Notation? Explain in
detail about Big(Oh) notation.

Ans : (Imp.)

Whenever we want to perform analysis of an
algorithm, we need to calculate the complexity of
that algorithm. But when we calculate the
complexity of an algorithm it does not provide the
exact amount of resource required. So instead of
taking the exact amount of resource, we represent
that complexity in a general form (Notation) which
produces the basic nature of that algorithm. We use
that general form (Notation) for analysis process.

Asymptotic notation of an algorithm is a
mathematical representation of its complexity.

For example, consider the following time
complexities of two algorithms...

 Algorithm 1 : 5n2 + 2n + 1

 Algorithm 2 : 10n2 + 8n + 3

Generally, when we analyze an algorithm, we
consider the time complexity for larger values of
input data (i.e. ’n’ value). In above two time
complexities, for larger value of ’n’ the term ’2n
+ 1' in algorithm 1 has least significance than the
term ’5n2', and the term ’8n + 3' in algorithm 2
has least significance than the term ’10n2'.

Here, for larger value of ’n’ the value of
most significant terms (5n2 and 10n2) is very
larger than the value of least significant terms (2n
+ 1 and 8n + 3). So for larger value of ’n’ we
ignore the least significant terms to represent overall
time required by an algorithm. In asymptotic
notation, we use only the most significant terms to
represent the time complexity of an algorithm.

Big - Oh Notation (O)

Big - Oh notation is used to define the upper
bound of an algorithm in terms of Time Complexity.

That means Big - Oh notation always indicates
the maximum time required by an algorithm for all
input values. That means Big - Oh notation describes
the worst case of an algorithm time complexity.

Big - Oh Notation can be defined as follows...

Consider function f(n) as time complexity of
an algorithm and g(n) is the most significant term.
If f(n) <= C g(n) for all n >= n0, C > 0 and
n0 >= 1. Then we can represent f(n) as O(g(n)).

f(n) = O(g(n))

Consider the following graph drawn for the
values of f(n) and C g(n) for input (n) value on X-
Axis and time required is on Y-Axis

In above graph after a particular input value
n0, always C g(n) is greater than f(n) which indicates
the algorithm’s upper bound.

Example

Consider the following f(n) and g(n)...

f(n) = 3n + 2

g(n) = n

If we want to represent f(n) as O(g(n)) then
it must satisfy f(n) <= C g(n) for all values of C
> 0 and n0>= 1

f(n) <= C g(n)

Ò!3n + 2 <= C n

Above condition is always TRUE for all values
of C = 4 and n >= 2.

By using Big - Oh notation we can represent
the time complexity as follows...

3n + 2 = O(n)

5
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

1.1.4 Complexity Analysis Examples

Q5. Explain about Complexity Analysis with
an Examples.

Ans :
Time complexity of any algorithm is the time

taken by the algorithm to complete. It is an
important metric to show the efficiency of the
algorithm and for comparative analysis. We tend to
reduce the time complexity of algorithm that makes
it more effective.

Example 1

Find the time complexity of the following code
snippets

for(i= 0 ; i< n; i++) {

cout<<i<< “ “ ;

i++;

}

The loop has maximum value n but the i will
be incremented twice in the for loop which will
make the time take half. So the time complexity is
O(n/2) which is equivalent to O(n).

Example 2

Find the time complexity of the following code
snippets.

for(i= 0 ; i< n; i++){

for(j = 0; j<n ;j++){

cout<<i<< “ “;

}

}

The inner loop and the outer loop both are
executing n times. So for single value of i, j is looping
n times, for n values of i, j will loop total n*n = n 2
times. So the time complexity is O(n 2).

Example 3

Find the time complexity of the following code
snippets

int i = n;

while(i){

cout<<i<< “ ”;

i = i/2;

}

In this case, after each iteration the value of i
is turned into half of its previous value. So the series
will be like: . So the time complexity is O(log n).

Example 4

Find the time complexity of the following code
snippets

if(i> j){

j>23 ?cout<<j : cout<<i;

}

There are two conditional statements in the
code. Each conditional statement has time
complexity = O(1), for two of them it is O(2) which
is equivalent to O(1) which is constant.

Example 5

Find the time complexity of the following code
snippets

for(i= 0; i< n; i++){

for(j = 1; j < n; j = j*2){

cout<<i<< “ “;

}

}

The inner loop is executing (log n) times
where the outer is executing n times. So for single
value of i, j is executing (log n) times, for n values of
i, j will loop total n*(log n) = (n log n) times. So the
time complexity is O(n log n).

1.2 LINEAR LIST-ARRAY REPRESENTATION

1.2.1 Vector Representation

Q6. How to represent the Vectors in Data
Structure with an example

Ans :
Vectors

A collection of values that all have the same
data type. The elements of a vector are all
numbers, giving a numeric vector, or all character
values, giving a character vector. A vector can be
used to represent a single variable in a data set.
Basic Vector Operations:

6
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

The vector class provides various methods to perform different operations on vectors.·

1. Add elements

2. Access elements

3. Change elements

4. Delete elements

1. Add Elements to a Vector: To add a single element into a vector, we use the push_back() function.
It inserts an element into the end of the vector.

2. Access Elements of a Vector: We use the index number to access the vector elements. Here, we
use the at() function to access the element from the specified index.

3. Change Vector Element: We can change an element of the vector using the same at() function.

4. Delete Elements from Vectors: To delete a single element from a vector, we use the pop_back()
function.

Vector Functions

The vector header file provides various functions that can be used to perform different operations
on a vector.

Function Description

size() returns the number of elements present in the vector

clear() removes all the elements of the vector

front() returns the first element of the vector

back() returns the last element of the vector

empty() returns 1 (true) if the vector is empty

capacity() check the overall size of a vector

1.2.2 Multiple Lists Single Array

Q7. Explain about Multiple Lists Single Array

Ans:
Array representation is basically wasteful of space when it is storing data that will change over time.

To store some data, we allocate some space which is large enough to store multiple values in an array.
Suppose we use the array doubling criteria to increase the size of the array. Consider the current array size
is 8192. This is full. So we need to increase it by using array doubling technique. So new array size will be
16384. Then copy 8192 elements from old array to new array, then deallocate the old array. Now we can
realize that before deallocating the space of the old array, the array size is thrice of 8192. The new array
with double size and the old array. That is not so good approach.

When we want to store several lists we can share some larger array instead of creating new array for
new lists. The multiple list in one array will be look like this.

Though the multiple list in single array is memory efficient, but it has some problem also. Here
insertion operation is more expensive. Because it may be necessary to move elements belonging to other
lists to insert some element in the current list. And the representation is also harder to implement.

7
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

1.3 LINEAR LIST-LINKED REPRESENTATION

1.3.1 Singly linked list

Q8. Explain singly linked list and its operations

Ans : (Imp.)

A singly linked list is a type of linked list that is unidirectional, that is, it can be traversed in only one
direction from head to the last node (tail).Each element in a linked list is called a node. A single node
contains data and a pointer to the next node which helps in maintaining the structure of the list.

The first node is called the head; it points to the first node of the list and helps us access every other
element in the list. The last node, also sometimes called the tail, points to NULL which helps us in
determining when the list ends.

An example of a singly Linked List

Common Singly Linked List Operations:

i) Search for a node in the List: It can determine and retrieve a specific node either from the front,
the end, or anywhere in the list. The worst case Time Complexity for retrieving a node from
anywhere in the list is O(n).

ii) Add a node to the List:It can add a node at the front, the end or anywhere in the linked list. The
worst case Time Complexity for performing these operations is as follows:· Add item to the front
of the list: O(1)· Add item to the end of the list: O(n)· Add item to anywhere in the list: O(n)

iii) Remove a node from the list: It can remove a node either from the front, the end or from
anywhere in the list.

The worst case Time Complexity for performing this operation is as follows:

 Remove item from the front of the list: O(1)

 Remove item from the end of the list: O(n)

 Remove item from anywhere in the list: O(n)

Insertion

The insertion into a singly linked list can be performed at different positions. Based on the position
of the new node being inserted, the insertion is categorized into the following categories.

S.No. Operation Description

1. Insertion at beginning It involves inserting any element at the front of the list. We just
need to a few link adjustments to make the new node as the
head of the list.

2. Insertion at end of the list It involves insertion at the last of the linked list. The new node can
be inserted as the only node in the list or it can be inserted as the
last one. Different logics are implemented in each scenario.

8
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

3. Insertion after specified It involves insertion after the specified node of the linked list. We
node need to skip the desired number of nodes in order to reach the

node after which the new node will be inserted.

Deletion and Traversing

The Deletion of a node from a singly linked list can be performed at different positions. Based on
the position of the node being deleted, the operation is categorized into the following categories.

S.No. Operation Description

1. Deletion at beginning It involves deletion of a node from the beginning of the
list. This is the simplest operation among all. It just need a
few adjustments in the node pointers.

2. Deletion at the end of the list It involves deleting the last node of the list. The list can
either be empty or full. Different logic is implemented for
the different scenarios.

3. Deletion after specified node It involves deleting the node after the specified node in the
list. we need to skip the desired number of nodes to reach
the node after which the node will be deleted. This requires
traversing through the list.

4. Traversing In traversing, we simply visit each node of the list at least
once in order to perform some specific operation on it, for
example, printing data part of each node present in the
list.

5. Searching In searching, we match each element of the list with the
given element. If the element is found on any of the location
then location of that element is returned otherwise null is.

1.3.2 Circular Lists

Q9. Explain circular linked list and its operations.

Ans: (Imp.)

Circular Linked List is a variation of Linked list in which the first element points to the last element
and the last element points to the first element. Both Singly Linked List and Doubly Linked List can be
made into a circular linked list.

Singly Linked List as Circular

In singly linked list, the next pointer of the last node points to the first node.

Doubly Linked List as Circular

In doubly linked list, the next pointer of the last node points to the first node and the previous
pointer of the first node points to the last node making the circular in both directions.

9
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

As per the above illustration, following are the important points to be considered.

 The last link’s next points to the first link of the list in both cases of singly as well as doubly linked list.

 The first link’s previous points to the last of the list in case of doubly linked list.

Basic Operations

Following are the important operations supported by a circular list.

 insert: Inserts an element at the start of the list.

 delete: Deletes an element from the start of the list.

 display: Displays the list.

Insertion Operation

Following code demonstrates the insertion operation in a circular linked list based on single linked
list.

Example

insertFirst(data):

Begin

create a new node

node ->data := data

if the list is empty, then

head := node

next of node = head

else

temp := head

while next of temp is not head, do

temp := next of temp

done

next of node := head

next of temp := node

head := node

end if

End

Deletion Operation

Following code demonstrates the deletion operation in a circular linked list based on single linked
list.deleteFirst():

10
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

deleteFirst():

Begin

if head is null, then

it is Underflow and return

else if next of head = head, then

head := null

deallocate head

else

ptr := head

while next of ptr is not head, do

ptr := next of ptr

next of ptr = next of head

deallocate head

head := next of ptr

end if

End

Display List Operation

Following code demonstrates the display list
operation in a circular linked list.

display():

Begin

if head is null, then

Nothing to print and return

else

ptr := head

while next of ptr is not head, do

display data of ptr

ptr := next of ptr

display data of ptr

end if

End

1.3.3 Doubly linked list

Q10. Explain Doubly linked list and its
operations

Ans :
Doubly linked list is a complex type of linked

list in which a node contains a pointer to the previous
as well as the next node in the sequence. Therefore,
in a doubly linked list, a node consists of three parts:
node data, pointer to the next node in sequence
(next pointer) pointer to the previous node (previous
pointer). A sample node in a doubly linked list is
shown in the figure.

A doubly linked list containing three nodes
having numbers from 1 to 3 in their data part, is
shown in the following image.

The prev part of the first node and the next
part of the last node will always contain null
indicating end in each direction. In a singly linked
list, we could traverse only in one direction, because
each node contains address of the next node and it
doesn’t have any record of its previous nodes.
However, doubly linked list overcome this limitation
of singly linked list.

Due to the fact that, each node of the list
contains the address of its previous node, we can
find all the details about the previous node as well
by using the previous address stored inside the
previous part of each node.

All the operations regarding doubly linked list
are described in the following table.

11
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

S. No. Operations Description

1 Insertion at beginning Adding the node into the linked list at beginning.

2 Insertion at end Adding the node into the linked list to the end.

3 Insertion after specified Adding the node into the linked list after the specified node.
node

4 Deletion at beginning Removing the node from beginning of the list

5 Deletion at the end Removing the node from end of the list.

6 Deletion of the node Removing the node which is present just after the node
having given data containing the given data.

7 Searching Comparing each node data with the item to be searched
and return the location of the item in the list if the item
found else return null.

8 Traversing Visiting each node of the list at least once in order to perform
some specific operation like searching, sorting, display, etc.

1.3.4 Application of Linked List (Polynomial Arithmetic)

Q11. What are the applications of Linked List?

Ans: (Imp.)

A linked list is a linear data structure consisting of elements called nodes where each node is composed
of two parts: an information part and a link part, also called the next pointer part.

Linked list is used in a wide variety of applications such as

(i) Polynomial Manipulation

(ii) Addition of long positive integers

(iii) Representation of sparse matrices

(iv) Addition of long positive integers

(v) Symbol table creation

(vi) Mailing list

(vii) Memory management

(viii) Linked allocation of files

(ix) Multiple precision arithmetic etc

Polynomial Manipulation

Polynomial manipulations are one of the most important applications of linked lists. Polynomials are
an important part of mathematics not inherently supported as a data type by most languages. A polynomial
is a collection of different terms, each comprising coefficients, and exponents. It can be represented using
a linked list. This representation makes polynomial manipulation efficient.

While representing a polynomial using a linked list, each polynomial term represents a node in the
linked list. To get better efficiency in processing, we assume that the term of every polynomial is stored
within the linked list in the order of decreasing exponents. Also, no two terms have the same exponent,
and no term has a zero coefficient and without coefficients. The coefficient takes a value of 1.

12
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Each node of a linked list representing polynomial constitute three parts:

 The first part contains the value of the coefficient of the term.

 The second part contains the value of the exponent.

 The third part, LINK points to the next term (next node).

The structure of a node of a linked list that represents a polynomial is shown below:

Coefficient Exponent Link

Node representing a term of a polynomial

Consider a polynomial P(x) = 7x2 + 15x3 - 2 x2 + 9. Here 7, 15, -2, and 9 are the coefficients,
and 4,3,2,0 are the exponents of the terms in the polynomial. On representing this polynomial using a
linked list, we have

7 4 15 3 2 2 9 0 x

HEAD

Linked representation of polynomial P(x)

Observe that the number of nodes equals the number of terms in the polynomial. So we have 4
nodes. Moreover, the terms are stored to decrease exponents in the linked list. Such representation of
polynomial using linked lists makes the operations like subtraction, addition, multiplication, etc., on
polynomial very easy.

Addition of Polynomials

To add two polynomials, we traverse the list P and Q. We take corresponding terms of the list P and
Q and compare their exponents. If the two exponents are equal, the coefficients are added to create a
new coefficient. If the new coefficient is equal to 0, then the term is dropped, and if it is not zero, it is
inserted at the end of the new linked list containing the resulting polynomial. If one of the exponents is
larger than the other, the corresponding term is immediately placed into the new linked list, and the term
with the smaller exponent is held to be compared with the next term from the other list. If one list ends
before the other, the rest of the terms of the longer list is inserted at the end of the new linked list
containing the resulting polynomial.

Let us consider an example an example to show how the addition of two polynomials is performed,

P(x) = 3x4 + 2x3 - 4 x2 + 7

Q (x) = 5x3 + 4 x2 - 5

These polynomials are represented using a linked list in order of decreasing exponents as follows:

3 4 2 3 2 3 -4 2

HEAD

P(x) = 3x4 + 2x3 – 4x2 + 7

7 20 x

13
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

5 3 4 2 -5 2

HEAD

Q(X) = 5X3 + 4X2 - 5

x

To generate a new linked list for the resulting polynomials that is formed on the addition of given
polynomials P(x) and Q(x), we perform the following steps,

1. Traverse the two lists P and Q and examine all the nodes.

2. We compare the exponents of the corresponding terms of two polynomials. The first term of
polynomials P and Q contain exponents 4 and 3, respectively. Since the exponent of the first term
of the polynomial P is greater than the other polynomial Q, the term having a larger exponent is
inserted into the new list. The new list initially looks as shown below:

3 4

HEAD

Since 4 > 3
Coefficient = 3

3 4
3x4

3 4
5x3

Term with coefficient 3, exponent 4 added

3 4

HEAD

Since 4 > 3
Coefficient = 3

3 4
3x4

3 4
5x3

Term with coefficient 3, exponent 4 added

3. We then compare the exponent of the next term of the list P with the exponents of the present term
of list Q. Since the two exponents are equal, so their coefficients are added and appended to the
new list as follows:

3 4

HEAD

3 = 3
Coefficient

=2 + 5

2 3
2x2

5 3
5x3

Term with coefficient 7, exponent 3 added

3 4 x

4. Then we move to the next term of P and Q lists and compare their exponents. Since exponents of
both these terms are equal and after addition of their coefficients, we get 0, so the term is dropped,
and no node is appended to the new list after this,

14
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

3 4

HEAD

2 = 2
Coefficient

= 4 – 4

–4 2
4x2

4 2
4x3

coefficient zero so term is dropped

7 3 X

5. Moving to the next term of the two lists, P and Q, we find that the corresponding terms have the
same exponents equal to 0. We add their coefficients and append them to the new list for the
resulting polynomial as shown below:

3 4

HEAD

0 = 0
Coefficient

= 7-5

7 0 X

-5 0 X
Linked list for resulting polynomial

7 3 2 0 X

Addition of long positive integer using linked list

Most programming languages allow restrictions on the maximum value of integers stored. The
maximum value of the largest integers is 32767, and the largest is 2147483647. Sometimes, applications
such as security algorithms and cryptography require storing and manipulating integers of unlimited size.
So in such a situation, it is desirable to use a linked list for storing and manipulating integers of arbitrary
length.

Adding long positive integers can be performed effectively using a circular linked list. As we know
that when we add two long integers, the digits of the given numbers are individually traversed from right
to left, and the corresponding digits of the two numbers along with a carry from prior digits sum are
added. So to accomplish addition, we must need to know how the digits of a long integer are stored in a
linked list.

The digits of a long integer must be stored from right to left in a linked list so that the first node on
the list contains the least significant digit, i.e., the right most digit, and the last node contains the most
significant digit, i.e., left most digit.

Example: An integer value 543467 can be represented using a linked list as

7 6 4 3 4 5 X

Head

For performing the addition of two long integers, the following steps need to be followed:

 Traverse the two linked lists in parallel from left to right.

 During traversal, corresponding digits and a carry from prior digits sum are added, then stored
in the new node of the resultant linked list.

15
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

The first positive long integer 543467 is represented using a linked list whose first node is pointed by
NUM1 pointer. Similarly, the second positive long integer 48315 is represented using the second linked
list whose first node is pointed by NUM2 pointer. These two numbers are stored in the third linked list
whose first node is pointed to by the RESULT pointer.

1 0 0 1 0Carry Carry Carry Carry Carry

7 6 4 3 4 5 X

NUM 1

543467

5 1 3 8 4 X

NUM 2

48315

2 8 7 1 9 5 X

RESULT

Polynomial of Multiple Variables

We can represent a polynomial with more than one variable, i.e., it can be two or three variables.
Below is a node structure suitable for representing a polynomial with three variables X, Y, Z using a singly
linked list.

Consider a polynomial P(x, y, z) = 10x2y2z + 17 x2y z2 - 5 xy2 z+ 21y4z2 + 7. On representing this
polynomial using linked list are:

Terms in such a polynomial are ordered accordingly to the decreasing degree in x. Those with the
same degree in x are ordered according to decreasing degree in y. Those with the same degree in x and
y are ordered according to decreasing degrees in z.

Some other applications of linked list

 Memory Management: Memory management is one of the operating system’s key features. It
decides how to allocate and reclaim storage for processes running on the system. We can use a
linked list to keep track of portions of memory available for allocation.

 Mailing List: Linked lists have their use in email applications. Since it is difficult to predict multiple
lists, maybe a mailer builds a linked list of addresses before sending a message.

 LISP: LISP is an acronym for LIST processor, an important programming language in artificial
intelligence. This language extensively uses linked lists in performing symbolic processing.

 Linked allocation of files: A file of large size may not be stored in one place on a disk. So there
must be some mechanism to link all the scattered parts of the file together. The use of a linked list
allows an efficient file allocation method in which each block of a file contains a pointer to the file’s
text block. But this method is good only for sequential access.

16
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

 Virtual Memory: An interesting application of linked lists is found in the way systems support
virtual memory.

 Support for other data structures: Some other data structures like stacks, queues, hash tables,
graphs can be implemented using a linked list.

1.4 ARRAYS AND MATRICES

1.4.1 Row and Column Major Representations

Q12. How to represent Row and Column Major Representations.

Ans : (Imp.)

Row Major Ordering in an array

Row major ordering assigns successive elements, moving across the rows and then down the columns,
to successive memory locations. In simple language, if the elements of an array are being stored in Row-
Wise fashion. This mapping is demonstrated in the below figure: The formula to compute the Address
(offset) for a two-dimension row-major ordered array as:

15 A[3, 3]
14 A[3, 2]
13 A[3, 1]
12 A[3, 0]
11 A[2, 3]
10 A[2, 2]
9 A[2, 1]
8 A[2, 0]
7 A[1, 3]
6 A[1, 2]
5 A[1, 1]
4 A[1, 0]
3 A[0, 3]
2 A[0, 2]
1 A[0, 1]
0 A[0, 0]

Memory
15 A[3, 3]
14 A[3, 2]
13 A[3, 1]
12 A[3, 0]
11 A[2, 3]
10 A[2, 2]
9 A[2, 1]
8 A[2, 0]
7 A[1, 3]
6 A[1, 2]
5 A[1, 1]
4 A[1, 0]
3 A[0, 3]
2 A[0, 2]
1 A[0, 1]
0 A[0, 0]

Memory

A1 array[0..3, 0...3] of char

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

A1 array[0..3, 0...3] of char

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Low Addresses High Addresses

0 1 2 31 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Address of A[I][J] = Base Address + W * (C * I + j)

17
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Where Base Address is the address of the first element in an array.

 W= is the weight (size) of a data type.

 C = is Total No of Columns.

 I = is the Row Number

 J = is Column Number of an element whose address is to find out.

Column Major Ordering

If the element of an array is being stored in Column Wise fashion then it is called column-major
ordering in an array. In row-major ordering, the right most index increased the fastest as you moved
through consecutive memory locations. In column-major ordering, the leftmost index increases the fastest.

Pictorially, a column-major ordered array is organized as shown below.

15 A[3, 3]
14 A[3, 2]
13 A[3, 1]
12 A[3, 0]
11 A[2, 3]
10 A[2, 2]
9 A[2, 1]
8 A[2, 0]
7 A[1, 3]
6 A[1, 2]
5 A[1, 1]
4 A[1, 0]
3 A[0, 3]
2 A[0, 2]
1 A[0, 1]
0 A[0, 0]

Memory
15 A[3, 3]
14 A[3, 2]
13 A[3, 1]
12 A[3, 0]
11 A[2, 3]
10 A[2, 2]
9 A[2, 1]
8 A[2, 0]
7 A[1, 3]
6 A[1, 2]
5 A[1, 1]
4 A[1, 0]
3 A[0, 3]
2 A[0, 2]
1 A[0, 1]
0 A[0, 0]

Memory

A1 array[0..3, 0...3] of char

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

A1 array[0..3, 0...3] of char

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

The formulae for computing the address of an array element when using column-major ordering
is very similar to that for row-major ordering. You simply reverse the indexes and sizes in the computation:

For a two-dimensional column-major array:
Address of A[I][J] = Base Address + W * (R * J + I)
Where Base Address is the address of the first element in an array.

 W= is the weight (size) of a data type.
 R = is Total No of Rows.
 I = is the Row Number
 J = is Column Number of an element whose address is to find out.

Address Calculation in single-dimensional Array
In 1-D array, there is no Row Major and no Column major concept, all the elements are stored in

contiguous memory locations. We can calculate the address of the 1-D array by using the following
formula:

Address of A[I] = Base Address + W * I.
Where I[is a location (Indexing) of element] whose address is to be found out. W (is the size of

data type).

18
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

1.4.2 Sparse Matrices

Q13. What is Sparse Matrix? Explain the
representation of Sparse Matrix.

Ans :
Matrix

A matrix can be defined as a two-dimensional
array having ‘m’ rows and ‘n’ columns. A matrix
with m rows and n columns is called m × n matrix.
It is a set of numbers that are arranged in the
horizontal or vertical lines of entries.

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
   
  

Row (m)

Columns (n)
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
   
  

Row (m)

Columns (n)

Sparse Matrix
Sparse matrices are those matrices that have

the majority of their elements equal to zero. In other
words, the sparse matrix can be defined as the
matrix that has a greater number of zero elements
than the non-zero elements. The following benefits
of using the sparse matrix.
Storage

We know that a sparse matrix contains lesser
non-zero elements than zero, so less memory can
be used to store elements. It evaluates only the non-
zero elements.
Computing time

In the case of searching in sparse matrix, we
need to traverse only the non-zero elements rather
than traversing all the sparse matrix elements. It
saves computing time by logically designing a data
structure traversing non-zero elements.
Representation of sparse matrix

Now, let’s see the representation of the sparse
matrix. The non-zero elements in the sparse matrix
can be stored using triplets that are rows, columns,
and values. There are two ways to represent the
sparse matrix that are listed as follows:

 Array representation
 Linked list representation

Array representation of the sparse matrix

Representing a sparse matrix by a 2D array
leads to the wastage of lots of memory. This is
because zeroes in the matrix are of no use, so storing

zeroes with non-zero elements is wastage of
memory. To avoid such wastage, we can store only
non-zero elements. If we store only non-zero
elements, it reduces the traversal time and the
storage space.

In 2D array representation of sparse matrix,
there are three fields used that are named as -

row column valuerow column value

 Row: It is the index of a row where a non-
zero element is located in the matrix.

 Column: It is the index of the column where
a non-zero element is located in the matrix.

 Value: It is the value of the non-zero element
that is located at the index (row, column).

Example

Let’s understand the array representation of
sparse matrix with the help of the example given
below:

Consider the sparse matrix

in the above figure, we can observe a 5x4
sparse matrix containing 7 non-zero elements and
13 zero elements. The above matrix occupies 5x4
= 20 memory space. Increasing the size of matrix
will increase the wastage space.

The tabular representation of the above
matrix is given below:

Table Structure

Row Column Value

0 1 4
0 3 5
1 2 3
1 3 6
2 2 2
3 0 2
4 0 1
5 4 7

19
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

In the above structure, first column represents the rows, the second column represents the columns,
and the third column represents the non-zero value. The first row of the table represents the triplets. The
first triplet represents that the value 4 is stored at 0th row and 1st column. Similarly, the second triplet
represents that the value 5 is stored at the 0th row and 3rd column. In a similar manner, all triplets
represent the stored location of the non-zero elements in the matrix.

The size of the table depends upon the total number of non-zero elements in the given sparse
matrix. Above table occupies 8x3 = 24 memory space which is more than the space occupied by the
sparse matrix. So, what’s the benefit of using the sparse matrix? Consider the case if the matrix is 8*8 and
there are only 8 non-zero elements in the matrix, then the space occupied by the sparse matrix would be
8*8 = 64, whereas the space occupied by the table represented using triplets would be 8*3 = 24.

Linked List representation of the sparse matrix:

In a linked list representation, the linked list data structure is used to represent the sparse matrix.
The advantage of using a linked list to represent the sparse matrix is that the complexity of inserting or
deleting a node in a linked list is lesser than the array.

Unlike the array representation, a node in the linked list representation consists of four fields. The
four fields of the linked list are given as follows:

Row: It represents the index of the row where the non-zero element is located.

Column: It represents the index of the column where the non-zero element is located.

Value: It is the value of the non-zero element that is located at the index (row, column).

Next node: It stores the address of the next node.

The node structure of the linked list representation of the sparse matrix is shown in the below
image:

Node Structure

Row Column Value Pointer to Next Node

Example

The linked list representation of sparse matrix with the help of the example given below:

Consider the sparse matrix

Sparse Matrix 0 0 0 1 0
1 3 0 0 0
2 0 4 5 0
3 0 6 0 0

0 1 2 3

in the above figure, we can observe a 4x4 sparse matrix containing 5 non-zero elements and 11
zero elements. Above matrix occupies 4 x 4 = 16 memory space. Increasing the size of matrix will increase
the wastage space.

The linked list representation of the above matrix is given below:

0 2 1 1 0 3 2 1 4 2 2 5 3 1 6 NULL

in the above figure, the sparse matrix is represented in the linked list form. In the node, the first field
represents the index of the row, the second field represents the index of the column, the third field
represents the value, and the fourth field contains the address of the next node. In the above figure, the

20
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

first field of the first node of the linked list contains 0, which means 0th row, the second field contains 2,
which means 2nd column, and the third field contains 1 that is the non-zero element. So, the first node
represents that element 1 is stored at the 0th row-2nd column in the given sparse matrix. In a similar
manner, all of the nodes represent the non-zero elements of the sparse matrix.

1.5 STACKS

1.5.1 Array Representation of Stack

Q14. Explain about Array Representation of Stack

Ans :
In array representation, the stack is formed by using the array. All the operations regarding the stack

are performed using arrays. Lets see how each operation can be implemented on the stack using array
data structure.

Adding an element onto the stack (push operation)
Adding an element into the top of the stack is referred to as push operation. Push operation involves

following two steps.
1. Increment the variable Top so that it can now refer to the next memory location.
2. Add element at the position of incremented top. This is referred to as adding new element at

the top of the stack.
Stack is overflown when we try to insert an element into a completely filled stack therefore, our

main function must always avoid stack overflow condition.
Algorithm

Begin
if top = n then stack full
top = top + 1
stack (top): = item;

End
Time Complexity : O(1)

Deletion of an element from a stack (Pop operation)
Deletion of an element from the top of the stack is called pop operation. The value of the variable

top will be incremented by 1 whenever an item is deleted from the stack. The top most element of the
stack is stored in an another variable and then the top is decremented by 1. The operation returns the
deleted value that was stored in another variable as the result. The underflow condition occurs when we
try to delete an element from an already empty stack.
Algorithm

Begin
if top = 0 then stack empty;
item := stack(top);
top = top – 1;
End;
Time Complexity : O(1)

Visiting each element of the stack (Peek operation)
Peek operation involves returning the element which is present at the top of the stack without

deleting it. Underflow condition can occur if we try to return the top element in an already empty stack.

21
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Algorithm :
PEEK (STACK, TOP)
Begin
if top = –1 then stack empty
item = stack[top]
return item
End
Time complexity: O(n)

1.5.2 Linked list representation of stack

Q15. Explain about Linked list Representation of stack.

Ans : (Imp.)

Instead of using array, we can also use linked list to implement stack. Linked list allocates the memory
dynamically. However, time complexity in both the scenario is same for all the operations i.e. push, pop
and peek.

In linked list representation of stack, the nodes are maintained non-contiguously in the memory.
Each node contains a pointer to its immediate successor node in the stack. Stack is said to be overflown if
the space left in the memory heap is not enough to create a node.

Node Datatop

Node Data Next

Node Data Next

Node Data Next

Stack

22
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Deleting a node from the stack (POP operation)

Deleting a node from the top of stack is referred to as pop operation. Deleting a node from the
linked list implementation of stack is different from that in the array implementation. In order to pop an
element from the stack, we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when we try to pop from
an already empty stack. The stack will be empty if the head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped only from one end,
therefore, the value stored in the head pointer must be deleted and the node must be freed. The
next node of the head node now becomes the head node.

Time Complexity : O(n)

Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked list organized in the
form of stack. For this purpose, we need to follow the following steps.

1. Copy the head pointer into a temporary pointer.

2. Move the temporary pointer through all the nodes of the list and print the value field attached
to every node.

Time Complexity : O(n)

1.5.3 Applications (Recursive Calls, Infix to Postfix, Postfix Evaluation)

Q16. Write short note on application of stak

(i) Recursive

(ii) Infix to Postfix

(iii) Postfix Evaluation

Ans :
(i) Recursive Calls

Recursive functions use something called “the call stack.” When a program calls a function, that
function goes on top of the call stack. This is similar to a stack of books. You add things one at a time.
Then, when you are ready to take something off, you always take off the top item.

The call stack in action with the factorial function. factorial(5) is written as 5! and it is defined like
this: 5! = 5 * 4 * 3 * 2 * 1. Here is a recursive function to calculate the factorial of a number:

function fact(x) {

 if (x == 1) {

 return 1;

 } else {

 return x * fact(x-1);

 }

}

23
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

(ii) Infix to Postfix

An infix and postfix are the expressions. An expression consists of constants, variables, and symbols.
Symbols can be operators or parenthesis. All these components must be arranged according to a set of
rules so that all these expressions can be evaluated using the set of rules.

Examples of expressions are:

5 + 6

A – B

(P * 5)

All the above expressions have a common structure, i.e., we have an operator between the two
operands. An Operand is an object or a value on which the operation is to be performed. In the above
expressions, 5, 6 are the operands while ‘+’, ‘-’, and ‘*’ are the operators.

infix notation

The operator is written in between the operands, then it is known as infix notation. Operand
does not have to be always a constant or a variable; it can also be an expression itself.

For example

(p + q) * (r + s)

In the above expression, both the expressions of the multiplication operator are the operands,
i.e., (p + q), and (r + s) are the operands.

In the above expression, there are three operators. The operands for the first plus operator are p
and q, the operands for the second plus operator are r and s. While performing the operations on the
expression, we need to follow some set of rules to evaluate the result. In the above expression, addition
operation would be performed on the two expressions, i.e., p+q and r+s, and then the multiplication
operation would be performed.

Syntax of infix notation is given below

<operand><operator><operand>

If there is only one operator in the expression, we do not require applying any rule. For example,
5 + 2; in this expression, addition operation can be performed between the two operands (5 and 2), and
the result of the operation would be 7.

If there are multiple operators in the expression, then some rule needs to be followed to evaluate
the expression.

If the expression is:

4 + 6 * 2

If the plus operator is evaluated first, then the expression would look like:

10 * 2 = 20

If the multiplication operator is evaluated first, then the expression would look like:

4 + 12 = 16

The above problem can be resolved by following the operator precedence rules. In the algebraic
expression, the order of the operator precedence is given in the below table:

24
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Operators Symbols

Parenthesis (), {}, []

Exponents ^

Multiplication and Division *, /

Addition and Subtraction + , -

The first preference is given to the parenthesis; then next preference is given to the exponents. In
the case of multiple exponent operators, then the operation will be applied from right to left.

For example

 2^2^3= 2 ^ 8

= 256

After exponent, multiplication, and division operators are evaluated. If both the operators are
present in the expression, then the operation will be applied from left to right.

The next preference is given to addition and subtraction. If both the operators are available in the
expression, then we go from left to right.

The operators that have the same precedence termed as operator associativity. If we go from left to
right, then it is known as left-associative. If we go from right to left, then it is known as right-associative.

(iii) Postfix Evaluation

The Postfix notation is used to represent algebraic expressions. The expressions written in postfix
form are evaluated faster compared to infix notation as parenthesis is not required in postfix.

Evaluation of Postfix Expression

Example

Input: str = “2 3 1 * + 9 -”

Output: -4

Explanation:

Scan 2, it’s a number, so push it to stack. Stack contains ‘2’

Scan 3, again a number, push it to stack, stack now contains ‘2 3’ (from bottom to top)

Scan 1, again a number, push it to stack, stack now contains ‘2 3 1’

Scan *, it’s an operator, pop two operands from stack, apply the * operator on operands, we get
3*1 which results in 3. We push the result 3 to stack. The stack now becomes ‘2 3’.

Scan +, it’s an operator, pop two operands from stack, apply the + operator on operands, we get
3 + 2 which results in 5. We push the result 5 to stack. The stack now becomes ‘5’.

Scan 9, it’s a number, so we push it to the stack. The stack now becomes ‘5 9’.

Scan -, it’s an operator, pop two operands from stack, apply the – operator on operands, we get
5 – 9 which results in -4. We push the result -4 to the stack. The stack now becomes ‘-4’.

There are no more elements to scan, we return the top element from the stack (which is the only
element left in a stack).

Input: str = “100 200 + 2 / 5 * 7 +”

Output: 757

25
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Evaluation of Postfix Expression Using Stack:

Follow the steps mentioned below to evaluate postfix expression using stack:

 Create a stack to store operands (or values).

 Scan the given expression from left to right and do the following for every scanned element.

 If the element is a number, push it into the stack

 If the element is an operator, pop operands for the operator from the stack. Evaluate the operator
and push the result back to the stack

 When the expression is ended, the number in the stack is the final answer

1.6 QUEUES

1.6.1 Array Representation

Q17. Explain about Array representation of Queue

Ans : (Imp.)

We can easily represent queue by using linear arrays. There are two variables i.e. front and rear,
that are implemented in the case of every queue. Front and rear variables point to the position from
where insertions and deletions are performed in a queue. Initially, the value of front and queue is -1
which represents an empty queue. Array representation of a queue containing 5 elements along with the
respective values of front and rear, is shown in the following figure.

H E L L O

0 1 2 3 4 5

front
0

rear
4Queue

The above figure shows the queue of characters forming the English word "HELLO". Since, No
deletion is performed in the queue till now, therefore the value of front remains -1 . However, the value
of rear increases by one every time an insertion is performed in the queue. After inserting an element into
the queue shown in the above figure, the queue will look something like following. The value of rear will
become 5 while the value of front remains same.

H E L L O G

0 1 2 3 4 5

front
0

rear
5Queue after inserting an element

After deleting an element, the value of front will increase from -1 to 0. however, the queue will look
something like following.

26
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

E L L O G

0 1 2 3 4 5

front
1

rear
5Queue after inserting an element

Algorithm to insert any element in a queue

Check if the queue is already full by comparing rear to max - 1. if so, then return an overflow error.

If the item is to be inserted as the first element in the list, in that case set the value of front and rear
to 0 and insert the element at the rear end.

Otherwise keep increasing the value of rear and insert each element one by one having rear as the
index.

Algorithm

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

Algorithm to delete an element from the queue

If, the value of front is -1 or value of front is greater than rear, write an underflow message and exit.

Otherwise, keep increasing the value of front and return the item stored at the front end of the
queue at each time.

Algorithm

Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

27
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

1.6.2 Linked Representation

Q18. Explain about Linked List Implementation of Queue

Ans :
The array implementation cannot be used for the large-scale applications where the queues are

implemented. One of the alternatives of array implementation is linked list implementation of queue.

The storage requirement of linked representation of a queue with n elements is o(n) while the time
requirement for operations is o(1).

In a linked queue, each node of the queue consists of two parts i.e. data part and the link part. Each
element of the queue points to its immediate next element in the memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear
pointer. The front pointer contains the address of the starting element of the queue while the rear pointer
contains the address of the last element of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and rear both are
NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

9 1 7 4

front rear

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linked queues. The operations
are Insertion and Deletion.

Insert operation

The insert operation append the queue by adding an element to the end of the queue. The new
element will be the last element of the queue.

Algorithm

Step 1: Allocate the space for the new node PTR
Step 2: SET PTR -> DATA = VAL
Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR
SET FRONT -> NEXT = REAR -> NEXT = NULL
ELSE
SET REAR -> NEXT = PTR
SET REAR = PTR
SET REAR -> NEXT = NULL
[END OF IF]

Step 4: END

Deletion

Deletion operation removes the element that is first inserted among all the queue elements. Firstly,
we need to check either the list is empty or not. The condition front == NULL becomes true if the list is
empty, in this case , we simply write underflow on the console and make exit.

28
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Algorithm
Step 1: IF FRONT = NULL

Write “ Underflow “
Go to Step 5
[END OF IF]

Step 2: SET PTR = FRONT
Step 3: SET FRONT = FRONT -> NEXT
Step 4: FREE PTR
Step 5: END

1.7 SKIP LISTS AND HASHING

1.7.1 Skip Lists Representation

Q19. What is a skip list? Explain its Operations and Applications.

Ans : (Imp.)
A skip list is a probabilistic data structure. The skip list is used to store a sorted list of elements or data

with a linked list. It allows the process of the elements or data to view efficiently. In one single step, it skips
several elements of the entire list, which is why it is known as a skip list.

The skip list is an extended version of the linked list. It allows the user to search, remove, and insert
the element very quickly. It consists of a base list that includes a set of elements which maintains the link
hierarchy of the subsequent elements.

Skip list structure

It is built in two layers: The lowest layer and Top layer.

The lowest layer of the skip list is a common sorted linked list, and the top layers of the skip list are
like an “express line” where the elements are skipped.

Working of the Skip list

In this example, we have 14 nodes, such that these nodes are divided into two layers, as shown in
the diagram.

The lower layer is a common line that links all nodes, and the top layer is an express line that links
only the main nodes, as you can see in the diagram.

Suppose you want to find 47 in this example. You will start the search from the first node of the
express line and continue running on the express line until you find a node that is equal a 47 or more than
47.

You can see in the example that 47 does not exist in the express line, so you search for a node of
less than 47, which is 40. Now, you go to the normal line with the help of 40, and search the 47, as shown
in the diagram.

10 40 60 70

10 16 20 31 40 42 47 56 57 60 62 65 67 70

Normal line

Express line

29
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Skip List Basic Operations

There are the following types of operations in the skip list.

 Insertion operation: It is used to add a new node to a particular location in a specific situation.

 Deletion operation: It is used to delete a node in a specific situation.

 Search Operation: The search operation is used to search a particular node in a skip list.

Applications of the Skip list

1. It is used in distributed applications, and it represents the pointers and system in the distributed
applications.

2. It is used to implement a dynamic elastic concurrent queue with low lock contention.

3. It is also used with the QMap template class.

4. The indexing of the skip list is used in running median problems.

5. The skip list is used for the delta-encoding posting in the Lucene search.

1.7.2 Hash Table Representation, Application-Text Compression

Q20. What is Hash Table? Explain its representation and Compression method

Ans : (Imp.)

Hash Table

Hash table is one of the most important data structures that uses a special function known as a hash
function that maps a given value with a key to access the elements faster.

A Hash table is a data structure that stores some information, and the information has basically two
main components, i.e., key and value. The hash table can be implemented with the help of an associative
array. The efficiency of mapping depends upon the efficiency of the hash function used for mapping.

For example, suppose the key value is John and the value is the phone number, so when we pass
the key value in the hash function shown as below:

Hash(key)= index;

When we pass the key in the hash function, then it gives the index.

Hash(john) = 3;

The above example adds the john at the index 3.

Hashing

Hashing is one of the searching techniques that uses a constant time. The time complexity in hashing
is O(1). Till now, we read the two techniques for searching, i.e., linear search and binary search.

The worst time complexity in linear search is O(n), and O(logn) in binary search. In both the
searching techniques, the searching depends upon the number of elements but we want the technique
that takes a constant time. So, hashing technique came that provides a constant time.

In Hashing technique, the hash table and hash function are used. Using the hash function, we can
calculate the address at which the value can be stored.

30
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

The main idea behind the hashing is to create the (key/value) pairs. If the key is given, then the
algorithm computes the index at which the value would be stored. It can be written as:

Index = hash(key)

0 Key

Actual Data Stored1

2

3

4

5

“

-

n

Hash Value

Hash Value
Hash

Function
Key

Actual Data to be store

There are three ways of calculating the hash function:

 Division method

 Folding method

 Mid square method

In the division method, the hash function can be defined as:

h(ki) = ki % m;

where m is the size of the hash table.

For example, if the key value is 6 and the size of the hash table is 10. When we apply the hash
function to key 6 then the index would be:

h(6) = 6%10 = 6

The index is 6 at which the value is stored.

Collision

When the two different values have the same value, then the problem occurs between the two
values, known as a collision. In the above example, the value is stored at index 6. If the key value is 26,
then the index would be:

h(26) = 26%10 = 6

Therefore, two values are stored at the same index, i.e., 6, and this leads to the collision problem.
To resolve these collisions, we have some techniques known as collision techniques.

The following are the collision techniques:

 Open Hashing: It is also known as closed addressing.

 Closed Hashing: It is also known as open addressing.

31
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Open Hashing

In Open Hashing, one of the methods used to resolve the collision is known as a chaining method.

Understand the chaining to resolve the collision.

Suppose we have a list of key values

A = 3, 2, 9, 6, 11, 13, 7, 12 where m = 10, and h(k) = 2k+3

n this case, we cannot directly use h(k) = ki/m as h(k) = 2k+3

 The index of key value 3 is:

index = h(3) = (2(3)+3)%10 = 9

The value 3 would be stored at the index 9.

 The index of key value 2 is:

index = h(2) = (2(2)+3)%10 = 7

The value 2 would be stored at the index 7.

 The index of key value 9 is:

index = h(9) = (2(9)+3)%10 = 1

The value 9 would be stored at the index 1.

 The index of key value 6 is:

index = h(6) = (2(6)+3)%10 = 5

The value 6 would be stored at the index 5.

 The index of key value 11 is:

index = h(11) = (2(11)+3)%10 = 5

The value 11 would be stored at the index 5. Now, we have two values (6, 11) stored at the same

index, i.e., 5. This leads to the collision problem, so we will use the chaining method to avoid the collision.

We will create one more list and add the value 11 to this list. After the creation of the new list, the newly

created list will be linked to the list having value 6.

 The index of key value 13 is:

32
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

index = h(13) = (2(13)+3)%10 = 9

The value 13 would be stored at index 9. Now, we have two values (3, 13) stored at the same
index, i.e., 9. This leads to the collision problem, so we will use the chaining method to avoid the collision.
We will create one more list and add the value 13 to this list. After the creation of the new list, the newly
created list will be linked to the list having value 3.

 The index of key value 7 is:

index = h(7) = (2(7)+3)%10 = 7

The value 7 would be stored at index 7. Now, we have two values (2, 7) stored at the same index,
i.e., 7. This leads to the collision problem, so we will use the chaining method to avoid the collision. We will
create one more list and add the value 7 to this list. After the creation of the new list, the newly created list
will be linked to the list having value 2.

 The index of key value 12 is:

index = h(12) = (2(12)+3)%10 = 7

According to the above calculation, the value 12 must be stored at index 7, but the value 2 exists at
index 7. So, we will create a new list and add 12 to the list. The newly created list will be linked to the list
having a value 7.

The calculated index value associated with each key value is shown in the below table:

key Location(u)

3 ((2*3)+3)%10 = 9

2 ((2*2)+3)%10 = 7

9 ((2*9)+3)%10 = 1

6 ((2*6)+3)%10 = 5

11 ((2*11)+3)%10 = 5

13 ((2*13)+3)%10 = 9

7 ((2*7)+3)%10 = 7

12 ((2*12)+3)%10 = 7

Methods for Compressing

1. The Division Method:

h(k) = |k| mod N

N, the size of the array, should be a prime number so that it spreads out the generated codes for
typical sequence of integers. Consider N=10 and sequence 10, 20 , 30, ... or 5, 10, 15, 20, ...

We want to different integers two have probability 1/N for generating a bucket value.

2. The Mad Method

Multiply-Add-Divide

h(k) = |ak + b| mod N

33
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Short Question and Answers

1. What is Space Complexity give with an Example?

Ans :

When we design an algorithm to solve a problem, it needs some computer memory to complete its
execution. For any algorithm, memory is required for the following purposes...

(a) To store program instructions.

(b) To store constant values.

(c) To store variable values.

(d) And for few other things like function calls, jumping statements etc,.

Space complexity of an algorithm can be defined as follows...

Total amount of computer memory required by an algorithm to complete its execution is called as
space complexity of that algorithm.

Generally, when a program is under execution it uses the computer memory for THREE reasons.
They are as follows...

i) Instruction Space: It is the amount of memory used to store compiled version of instructions.

ii) Environmental Stack: It is the amount of memory used to store information of partially executed
functions at the time of function call.

iii) Data Space: It is the amount of memory used to store all the variables and constants.

2. What is Time complexity give with an example?

Ans :

Every algorithm requires some amount of computer time to execute its instruction to perform the
task. This computer time required is called time complexity.

The time complexity of an algorithm can be defined as follows...

The time complexity of an algorithm is the total amount of time required by an algorithm to complete
its execution.

Generally, the running time of an algorithm depends upon the following...

i) Whether it is running on Single processor machine or Multi processor machine.

ii) Whether it is a 32 bit machine or 64 bit machine.

iii) Read and Write speed of the machine.

iv) The amount of time required by an algorithm to perform Arithmetic operations, logical operations,
return value and assignment operations etc.,

v) Input data

34
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

To calculate the time complexity of an algorithm, we need to define a model machine. Let us
assume a machine with following configuration...

i) It is a Single processor machine

ii) It is a 32 bit Operating System machine

iii) It performs sequential execution

iv) It requires 1 unit of time for Arithmetic and Logical operations

v) It requires 1 unit of time for Assignment and Return value

vi) It requires 1 unit of time for Read and Write operations.

3. What is Hash Table? Explain its Representation and Compression method

Ans:
Hash Table

Hash table is one of the most important data structures that uses a special function known as a hash
function that maps a given value with a key to access the elements faster.

A Hash table is a data structure that stores some information, and the information has basically two
main components, i.e., key and value. The hash table can be implemented with the help of an associative
array. The efficiency of mapping depends upon the efficiency of the hash function used for mapping.

For example, suppose the key value is John and the value is the phone number, so when we pass
the key value in the hash function shown as below:

Hash(key)= index;

When we pass the key in the hash function, then it gives the index.

Hash(john) = 3;

The above example adds the john at the index 3.

4. Write the Compression Methods using Hash Table

Ans :
Methods for Compressing

i) The Division Method

h(k) = |k| mod N

N, the size of the array, should be a prime number so that it spreads out the generated codes for
typical sequence of integers. Consider N=10 and sequence 10, 20 , 30, ... or 5, 10, 15, 20, ...

We want to different integers two have probability 1/N for generating a bucket value.

ii) The Mad Method

Multiply-Add-Divide

h(k) = |ak + b| mod N

35
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

5. Describe the types of Data Structures?

Ans:
The following are the types of data structures:

Lists

A collection of related things linked to the previous or/and following data items.

Arrays

A collection of values that are all the same.

Records

A collection of fields, each of which contains data from a single data type.

Trees

A data structure that organizes data in a hierarchical framework. This form of data structure follows
the ordered order of data item insertion, deletion, and modification.

Tables

The data is saved in the form of rows and columns. These are comparable to records in that the
outcome or alteration of data is mirrored across the whole table.

6. What is a Linear Data Structure? Name a few examples.

Ans:
A data structure is linear if all its elements or data items are arranged in a sequence or a linear order.

The elements are stored in a non-hierarchical way so that each item has successors and predecessors
except the first and last element in the list.

Examples of linear data structures are Arrays, Stack, Strings, Queue, and Linked List.

7. What is a Data Structure? Give Applications of Data Structures?

Ans:
The Data Structure is the way data is organized (stored) and manipulated for retrieval and access.

It also defines the way different sets of data relate to one another, establishing relationships and
forming algorithms.

Applications of Data Structures

Numerical analysis, operating system, AI, compiler design, database management,
graphics, statistical analysis, and simulation.

8. What is a linked list Data Structure?

Ans:
It’s a linear Data Structure or a sequence of data objects where elements are not stored in adjacent

memory locations. The elements are linked using pointers to form a chain. Each element is a separate
object, called a node. Each node has two items: a data field and a reference to the next node. The entry
point in a linked list is called the head. Where the list is empty, the head is a null reference and the last
node has a reference to null.

36
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

A linked list is a dynamic data structure, where the number of nodes is not fixed, and the list has the
ability to grow and shrink on demand.

9. What are the Advantages of a Linked List Over an Array?

Ans:
Advantages of a linked list over an array are:

1. Insertion and Deletion

Insertion and deletion of nodes is an easier process, as we only update the address present in the
next pointer of a node. It’s expensive to do the same in an array as the room has to be created for
the new elements and existing elements must be shifted.

2. Dynamic Data Structure

As a linked list is a dynamic data structure, there is no need to give an initial size as it can grow and
shrink at runtime by allocating and deallocating memory. However, the size is limited in an array as
the number of elements is statically stored in the main memory.

3. No Wastage of Memory

As the size of a linked list can increase or decrease depending on the demands of the program, and
memory is allocated only when required, there is no memory wasted. In the case of an array, there
is memory wastage. For instance, if we declare an array of size 10 and store only five elements in it,
then the space for five elements is wasted.

4. Implementation

Data structures like stack and queues are more easily implemented using a linked list than an array.

10. What is a stack? And where are stacks used?

Ans:
A stack is an abstract data type that specifies a linear data structure, as in a real physical stack or piles

where you can only take the top item off the stack in order to remove things. Thus, insertion (push) and
deletion (pop) of items take place only at one end called top of the stack, with a particular order: LIFO
(Last In First Out) or FILO (First In Last Out).

Stacks used:

 Stacks Expression, evaluation, or conversion of evaluating prefix, postfix, and infix expressions

 Syntax parsing

 String reversal

 Parenthesis checking

 Backtracking

37
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Choose the Correct Answers

1. Which one of the following is the process of inserting an element in the stack? [b]

(a) Add (b) Push

(c) Insert (d) None of the above

2. If the size of the stack is 10 and we try to add the 11th element in the stack then the condition is
known as [b]

(a) Garbage collection (b) Underflow

(c) Overflow (d) None of the above

3. Which data structure is mainly used for implementing the recursive algorithm? [b]

(a) Queue (b) Stack

(c) Binary tree (d) Linked list

4. Which of the following is a linear data structure? [a]

(a) Array (b) AVL Trees

(c) Binary Trees (d) Graphs

5. Which of the following is not the type of queue? [b]

(a) Priority queue (b) Single-ended queue

(c) Circular queue (d) Ordinary queue

6. From following which is not the operation of data structure? [a]

(a) Operations that manipulate data in some way

(b) Operations that perform a computation

(c) Operations that check for syntax errors

(d) Operations that monitor an object for the occurrence of a controlling event

7. Which one of the following is an application of queue data structure? [d]

(a) When a resource is shared among multiple consumers.

(b) When data is transferred asynchronously

(c) Load Balancing

(d) All of the above

8. When a pop() operation is called on an empty queue, what is the condition called? [b]

(a) Overflow (b) Under flow

(c) Syntax Error (d) Garbage Value

9. Which of the following data structures can be used to implement queues? [b,c]

(a) Stack (b) Arrays

(c) Linked List (d) All of the Above

10. Which of the following is a Divide and Conquer algorithm? [d]

(a) Bubble Sort (b) Selection Sort

(c) Heap Sort (d) Merge Sort

38
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Fill in the Blanks

1. A procedure that calls itself is called

2. What data structure is used for breadth first traversal of a graph is

3. If locality is a concern, you can use to traverse the graph.

4. When the user tries to delete the element from the empty stack then the condition is said

to be a

5. A list of elements in which enqueue operation takes place from one end, and dequeue operation
takes place from one end is

6. data structure is required to convert the infix to prefix notation

7. If the elements ‘1’, ‘2’, ‘3’ and ‘4’ are added in a stack, so what would be the order for the
removal is

8. What is the outcome of the prefix expression +, -, *, 3, 2, /, 8, 4, 1 is

9. The minimum number of stacks required to implement a stack is

10. is another name for the circular queue.

ANSWERS

1. Reccursive

2. Queue

3. Depth first search

4. Underflow

5. Queue

6. Stack

7. ‘4’, ‘3’, ‘2’ and ‘1’

8. 5

9. 2

10. Ring Buffer

39
Rahul Publications

UNIT - I DATA STRUCTURES AND ALGORITHMS

Rahul Publications

One Mark Answers

1. What is an Algorithm?

Ans:
An algorithm is a step by step method of solving a problem or manipulating data. It defines a set of

instructions to be executed in a certain order to get the desired output.

2. What is a Data Structure?

Ans:
The Data Structure is the way data is organized (stored) and manipulated for retrieval and access.

It also defines the way different sets of data relate to one another, establishing relationships and
forming algorithms.

3. Describe the types of Data Structures?

Ans:
The following are the types of data structures:

Lists, Arrays, Records, Trees and Tables

4. What is a Linear Data Structure? Name a few examples.

Ans:
A data structure is linear if all its elements or data items are arranged in a sequence or a linear order.

Examples: Arrays, Stack, Strings, Queue, and Linked List.

5. What are some applications of Data Structures?

Ans:
Numerical analysis, operating system, AI, compiler design, database management,

graphics, statistical analysis, and simulation.

6. What is a linked list Data Structure?

Ans:
It’s a linear Data Structure or a sequence of data objects where elements are not stored in adjacent

memory locations. The elements are linked using pointers to form a chain. Each element is a separate
object, called a node. Each node has two items: a data field and a reference to the next node.

7. Are linked lists considered linear or Non-linear Data Structures?

Ans:
Linked lists are considered both linear and non-linear data structures depending upon the application

they are used for. When used for access strategies, it is considered as a linear data-structure. When used
for data storage, it is considered a non-linear data structure.

40
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

8. What is a stack?

Ans:
A stack is an abstract data type that specifies a linear data structure, insertion (push) and deletion

(pop) of items take place only at one end called top of the stack, with a particular order: LIFO (Last In First
Out) or FILO (First In Last Out).

9. Where are stacks used?

Ans:
 Expression, evaluation, or conversion of evaluating prefix, postfix, and infix expressions

 Syntax parsing

 String reversal

 Parenthesis checking

 Backtracking

10. What is a Dequeue?

Ans:
It is a double-ended queue, or a data structure, where the elements can be inserted or deleted at

both ends (FRONT and REAR).

UNIT - II DATA STRUCTURES & ALGORITHMS

41
Rahul Publications

Rahul Publications

UNIT
II

2.1 TREES

2.1.1 Definitions and Properties Representation of Binary Trees

Q1. What is a Tree data structure and How to represent a Binary tree? Explain its applications

Ans : (Imp.)

A tree is non-linear and a hierarchical data structure consisting of a collection of nodes such that
each node of the tree stores a value and a list of references to other nodes (the “children”).

This data structure is a specialized method to organize and store data in the computer to be used
more effectively. It consists of a central node, structural nodes, and sub-nodes, which are connected via
edges. We can also say that tree data structure has roots, branches, and leaves connected with one
another.

Trees: Definitions and Properties, Representation of Binary Trees, Operations,

Binary TreeTraversal. Binary Search Trees: Definitions, Operations on Binary
Search Trees. Balanced Search Trees: AVL Trees, and B-Trees

B.Sc. III YEAR V SEMESTER

42
Rahul Publications

Rahul Publications

Recursive Definition

A tree consists of a root, and zero or more subtrees T1, T2, …, Tk such that there is an edge from
the root of the tree to the root of each subtree.

Fig.: Tree is considered a non-linear data structure

The data in a tree are not stored in a sequential manner i.e, they are not stored linearly. Instead,
they are arranged on multiple levels or we can say it is a hierarchical structure. For this reason, the tree is
considered to be a non-linear data structure.

Basic Terminologies In Tree Data Structure

 Parent Node: The node which is a predecessor of a node is called the parent node of that node.
{2} is the parent node of {6, 7}.

 Child Node: The node which is the immediate successor of a node is called the child node of that
node. Examples: {6, 7} are the child nodes of {2}.

 Root Node: The topmost node of a tree or the node which does not have any parent node is
called the root node. {1} is the root node of the tree. A non-empty tree must contain exactly one
root node and exactly one path from the root to all other nodes of the tree.

 Leaf Node or External Node: The nodes which do not have any child nodes are called leaf
nodes. {6, 14, 8, 9, 15, 16, 4, 11, 12, 17, 18, 19} are the leaf nodes of the tree.

 Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called
Ancestors of that node. {1, 2} are the ancestor nodes of the node {7}

 Descendant: Any successor node on the path from the leaf node to that node. {7, 14} are the
descendants of the node. {2}.

 Sibling: Children of the same parent node are called siblings. {8, 9, 10} are called siblings.

 Level of a node: The count of edges on the path from the root node to that node. The root node
has level 0.

 Internal node: A node with at least one child is called Internal Node.

 Neighbor of a Node: Parent or child nodes of that node are called neighbors of that node.

 Subtree: Any node of the tree along with its descendant.

UNIT - II DATA STRUCTURES & ALGORITHMS

43
Rahul Publications

Rahul Publications

Properties of a Tree:
 Number of edges

An edge can be defined as the connection between two nodes. If a tree has N nodes then it will
have (N-1) edges. There is only one path from each node to any other node of the tree.

 Depth of a node
The depth of a node is defined as the length of the path from the root to that node. Each edge adds
1 unit of length to the path. So, it can also be defined as the number of edges in the path from the
root of the tree to the node.

 Height of a node
The height of a node can be defined as the length of the longest path from the node to a leaf node
of the tree.

 Height of the Tree
The height of a tree is the length of the longest path from the root of the tree to a leaf node of the
tree.

 Degree of a Node
The total count of subtrees attached to that node is called the degree of the node. The degree of a
leaf node must be 0. The degree of a tree is the maximum degree of a node among all the nodes
in the tree.

Some more properties are:
 Traversing in a tree is done by depth first search and breadth first search algorithm.
 It has no loop and no circuit
 It has no self-loop
 Its hierarchical model.
Example of Binary Trees

Here,

Node A is the root node

B is the parent of D and E

D and E are the siblings

D, E, F and G are the leaf nodes

A and B are the ancestors of E

B.Sc. III YEAR V SEMESTER

44
Rahul Publications

Rahul Publications
Types

The different types of tree data structures are as follows:

1. General tree

A general tree data structure has no restriction on the number of nodes. It means that a parent
node can have any number of child nodes.

2. Binary tree

A node of a binary tree can have a maximum of two child nodes. In the given tree diagram, node
B, D, and F are left children, while E, C, and G are the right children.

3. Balanced tree

If the height of the left sub-tree and the right sub-tree is equal or differs at most by 1, the tree is
known as a balanced tree.

A

B C

D E F G

H

A

B C

D E

H

 Balanced Tree Unbalanced Tree

UNIT - II DATA STRUCTURES & ALGORITHMS

45
Rahul Publications

Rahul Publications

4. Binary search tree

As the name implies, binary search trees are used for various searching and sorting algorithms. The
examples include AVL tree and red-black tree. It is a non-linear data structure. It shows that the
value of the left node is less than its parent, while the value of the right node is greater than its
parent.

 Applications of Tree data structure:

The applications of tree data structures are as follows:

1. Spanning trees

It is the shortest path tree used in the routers to direct the packets to the destination.

2. Binary Search Tree

It is a type of tree data structure that helps in maintaining a sorted stream of data.

1. Full Binary tree

2. Complete Binary tree

3. Skewed Binary tree

4. Stickily Binary tree

5. Extended Binary tree

3. Storing hierarchical data

Tree data structures are used to store the hierarchical data, which means data is arranged in the
form of order.

4. Syntax tree

The syntax tree represents the structure of the program’s source code, which is used in compilers.

5. Trie

It is a fast and efficient way for dynamic spell checking. It is also used for locating specific keys from
within a set.

6. Heap

It is also a tree data structure that can be represented in a form of an array. It is used to implement
priority queues.

2.1.2 Operations

Q2. What are the basic operations of Binary Tree?

Ans :
Basic Operations

The basic operations that can be performed on a binary search tree data structure, are the following

 Insert - Inserts an element in a tree/create a tree.

 Search - Searches an element in a tree.

 Preorder Traversal - Traverses a tree in a pre-order manner.

 Inorder Traversal - Traverses a tree in an in-order manner.

 Postorder Traversal - Traverses a tree in a post-order manner.

B.Sc. III YEAR V SEMESTER

46
Rahul Publications

Rahul Publications

Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first
locate its proper location. Start searching from the root node, then if the data is less than the key value,
search for the empty location in the left subtree and insert the data. Otherwise, search for the empty
location in the right subtree and insert the data.

Algorithm

If root is NULL

then create root node

return

If root exists then

compare the data with node.data

while until insertion position is located

If data is greater than node.data

goto right subtree

else

goto left subtree

endwhile

insert data

endIf

Binary Search Tree Construction

Let us understand the construction of a binary search tree using the following example-

Example

Construct a Binary Search Tree (BST) for the following sequence of numbers-

50, 70, 60, 20, 90, 10, 40, 100

When elements are given in a sequence,

 Always consider the first element as the root node.

 Consider the given elements and insert them in the BST one by one.

The binary search tree will be constructed as explained below-

Insert 50-

50

UNIT - II DATA STRUCTURES & ALGORITHMS

47
Rahul Publications

Rahul Publications

Insert 70-

 As 70 > 50, so insert 70 to the right of 50.

Insert 60-

 As 60 > 50, so insert 60 to the right of 50.

 As 60 < 70, so insert 60 to the left of 70.

Insert 20-

 As 20 < 50, so insert 20 to the left of 50.

B.Sc. III YEAR V SEMESTER

48
Rahul Publications

Rahul Publications

Insert 90-

 As 90 > 50, so insert 90 to the right of 50.

As 90 > 70, so insert 90 to the right of 70.

Insert 10-

 As 10 < 50, so insert 10 to the left of 50.

 As 10 < 20, so insert 10 to the left of 20.

Insert 40-

 As 40 < 50, so insert 40 to the left of 50.

 As 40 > 20, so insert 40 to the right of 20.

UNIT - II DATA STRUCTURES & ALGORITHMS

49
Rahul Publications

Rahul PublicationsInsert 100-

 As 100 > 50, so insert 100 to the right of 50.

 As 100 > 70, so insert 100 to the right of 70.

 As 100 > 90, so insert 100 to the right of 90.

Fig.: Binary Search Tree

This is the required Binary Search Tree.

Search Operation

Whenever an element is to be searched, start searching from the root node, then if the data is less
than the key value, search for the element in the left subtree. Otherwise, search for the element in the
right subtree. Follow the same algorithm for each node.

B.Sc. III YEAR V SEMESTER

50
Rahul Publications

Rahul Publications

Algorithm

If root.data is equal to search.data

return root

else

while data not found

If data is greater than node.data

goto right subtree

else

goto left subtree

If data found

return node

endwhile

return data not found

endif

Illustration to search 6 in below tree:

1. Start from the root.

2. Compare the searching element with root, if less than root, then recursively call left subtree, else
recursively call right subtree.

3. If the element to search is found anywhere, return true, else return false.

8

3 10

1 6 14

4 7 13

UNIT - II DATA STRUCTURES & ALGORITHMS

51
Rahul Publications

Rahul Publications

2.1.3 Binary Tree Traversal

Q3. Explain in detail about Binary Tree Traversal Technique?

Ans : (Imp.)

Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all nodes
are connected via edges (links) we always start from the root (head) node. That is, we cannot randomly
access a node in a tree. There are three ways which we use to traverse a tree -

1. In-order Traversal

2. Pre-order Traversal

3. Post-order Traversal

Generally, we traverse a tree to search or locate a given item or key in the tree or to print all the
values it contains.

1. In-order Traversal

In this traversal method, the left subtree is visited first, then the root and later the right sub-tree. We
should always remember that every node may represent a subtree itself.

If a binary tree is traversed in-order, the output will produce sorted key values in an ascending
order.

We start from A, and following in-order traversal, we move to its left subtree B. B is also traversed
in-order. The process goes on until all the nodes are visited. The output of inorder traversal of this
tree will be-

D  B  E  A  F  C  G

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.

Step 2 - Visit root node.

Step 3 - Recursively traverse right subtree.

B.Sc. III YEAR V SEMESTER

52
Rahul Publications

Rahul Publications

2. Pre-order Traversal
In this traversal method, the root node is visited first, then the left subtree and finally the right
subtree.

We start from A, and following pre-order traversal, we first visit A itself and then move to its left
subtree B. B is also traversed pre-order. The process goes on until all the nodes are visited. The
output of pre-order traversal of this tree will be -

A  B  D  E  C  F  G
Algorithm
Until all nodes are traversed -
Step 1 - Visit root node.
Step 2 - Recursively traverse left subtree.
Step 3 - Recursively traverse right subtree.

3. Post-order Traversal
In this traversal method, the root node is visited last, hence the name. First we traverse the left
subtree, then the right subtree and finally the root node.

UNIT - II DATA STRUCTURES & ALGORITHMS

53
Rahul Publications

Rahul Publications

We start from A, and following Post-order traversal, we first visit the left subtree B. B is also
traversed post-order. The process goes on until all the nodes are visited. The output of post-order traversal
of this tree will be -

D  E  B  F  G  C  A

Algorithm

Until all nodes are traversed -

Step 1 - Recursively traverse left subtree.

Step 2 - Recursively traverse right subtree.

Step 3 - Visit root node.

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical
way to traverse them, trees can be traversed in different ways. Following are the generally used ways for
traversing trees.

1

2 3

4 5

Depth First Traversals:

(a) Inorder (Left, Root, Right) : 4 2 5 1 3

(b) Preorder (Root, Left, Right) : 1 2 4 5 3

(c) Postorder (Left, Right, Root) : 4 5 2 3 1

Breadth-First or Level Order Traversal: 1 2 3 4 5

2.2 BINARY SEARCH TREES

2.2.1 Definitions, Operations on Binary Search Tress.

Q4. Define a Binary Search Tree? And Explain its Operations.

Ans : (Imp.)

Definitions:

Tree:

A tree is a kind of data structure that is used to represent the data in hierarchical form. It can be
defined as a collection of objects or entities called as nodes that are linked together to simulate a hierarchy.
Tree is a non-linear data structure as the data in a tree is not stored linearly or sequentially.

B.Sc. III YEAR V SEMESTER

54
Rahul Publications

Rahul Publications

Binary Search tree:
A binary search tree follows some order to arrange the elements. In a Binary search tree, the value

of left node must be smaller than the parent node, and the value of right node must be greater than the
parent node. This rule is applied recursively to the left and right subtrees of the root.

Fig.: Binary search tree with an example.

In the above figure, we can observe that the root node is 40, and all the nodes of the left subtree
are smaller than the root node, and all the nodes of the right subtree are greater than the root node.

Similarly, we can see the left child of root node is greater than its left child and smaller than its right
child. So, it also satisfies the property of binary search tree. Therefore, we can say that the tree in the
above image is a binary search tree.

Suppose if we change the value of node 35 to 55 in the above tree, check whether the tree will be
binary search tree or not.

40

30 50

25 55 45 60

Root

In the above tree, the value of root node is 40, which is greater than its left child 30 but smaller than
right child of 30, i.e., 55. So, the above tree does not satisfy the property of Binary search tree. Therefore,
the above tree is not a binary search tree.

Advantages of Binary search tree
 Searching an element in the Binary search tree is easy as we always have a hint that which subtree

has the desired element.

UNIT - II DATA STRUCTURES & ALGORITHMS

55
Rahul Publications

Rahul Publications

 As compared to array and linked lists, insertion and deletion operations are faster in BST.
Binary Search Tree Operations

The basic operations that can be performed on a binary search tree data structure, are the following
 Insert d Inserts an element in a tree/create a tree.
 Search d Searches an element in a tree.
Insert Operation

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted, first
locate its proper location. Start searching from the root node, then if the data is less than the key value,
search for the empty location in the left subtree and insert the data. Otherwise, search for the empty
location in the right subtree and insert the data.

Algorithm
If root is NULL
then create root node
return
If root exists then
compare the data withnode.data
whileuntil insertion position is located
If data is greater than node.data
goto right subtree
else
goto left subtree
endwhile
insert data
endIf

Search Operation
Whenever an element is to be searched, start searching from the root node, then if the data is less

than the key value, search for the element in the left subtree. Otherwise, search for the element in the
right subtree. Follow the same algorithm for each node.
Algorithm

If root.datais equal to search.data
return root
else
while data not found
If data is greater than node.data
goto right subtree
else
goto left subtree
If data found
return node
endwhile
return data not found
endif

B.Sc. III YEAR V SEMESTER

56
Rahul Publications

Rahul Publications

2.3 BALANCED SEARCH TREES

2.3.1 AVL Trees

Q5. What is AVL tree? Explain its operations.

Ans : (Imp.)

AVL Tree is invented by GM Adelson - Velsky and EM Landis in 1962. The tree is named AVL in
honour of its inventors.

AVL Tree can be defined as height balanced binary search tree in which each node is associated
with a balance factor which is calculated by subtracting the height of its right sub-tree from that of its left
sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1 to 1, otherwise, the tree
will be unbalanced and need to be balanced.

Balance Factor (k) = height (left(k)) - height (right(k))

 If balance factor of any node is 1, it means that the left sub-tree is one level higher than the right
sub-tree.

 If balance factor of any node is 0, it means that the left sub-tree and right sub-tree contain equal
height.

 If balance factor of any node is -1, it means that the left sub-tree is one level lower than the right
sub-tree.

An AVL tree is given in the following figure. We can see that, balance factor associated with each
node is in between -1 and +1. therefore, it is an example of AVL tree.

Fig.: AVL Tree

UNIT - II DATA STRUCTURES & ALGORITHMS

57
Rahul Publications

Rahul Publications

Complexity

Algorithm Average case Worst case

Space o(n) o(n)

Search o(log n) o(log n)

Insert o(log n) o(log n)

Delete o(log n) o(log n)

Operations on AVL tree

AVL tree is also a binary search tree therefore, all the operations are performed in the same way as
they are performed in a binary search tree. Searching and traversing do not lead to the violation in
property of AVL tree. However, insertion and deletion are the operations which can violate this property
and therefore, they need to be revisited.

S.No. Operation Description

1 Insertion Insertion in AVL tree is performed in the same way as it
is performed in a binary search tree. However, it may
lead to violation in the AVL tree property and therefore
the tree may need balancing. The tree can be balanced
by applying rotations.

2 Deletion Deletion can also be performed in the same way as it is
performed in a binary search tree. Deletion may also
disturb the balance of the tree therefore, various types of
rotations are used to rebalance the tree.

Use of AVL Tree is:

AVL tree controls the height of the binary search tree by not letting it to be skewed. The time taken
for all operations in a binary search tree of height h is O(h). However, it can be extended to O(n) if the
BST becomes skewed (i.e. worst case). By limiting this height to log n, AVL tree imposes an upper bound
on each operation to be O(log n) where n is the number of nodes.

B.Sc. III YEAR V SEMESTER

58
Rahul Publications

Rahul Publications

Q6. Explain in detail about AVL Rotations

Ans :
AVL Rotations

AVL Tree can be defined as height balanced binary search tree in which each node is associated
with a balance factor which is calculated by subtracting the height of its right sub-tree from that of its left
sub-tree.

Tree is said to be balanced if balance factor of each node is in between -1 to 1, otherwise, the tree
will be unbalanced and need to be balanced.

We perform rotation in AVL tree only in case if Balance Factor is other than -1, 0, and 1. There are
basically four types of rotations which are as follows:

1. L L rotation: Inserted node is in the left subtree of left subtree of A

2. R Rrotation : Inserted node is in the right subtree of right subtree of A

3. L R rotation : Inserted node is in the right subtree of left subtree of A

4. R L rotation : Inserted node is in the left subtree of right subtree of A

Where node A is the node whose balance Factor is other than -1, 0, 1.

The first two rotations LL and RR are single rotations and the next two rotations LR and RL are
double rotations. For a tree to be unbalanced, minimum height must be at least 2, Let us understand each
rotation.

1. RR Rotation

When BST becomes unbalanced, due to a node is inserted into the right subtree of the right subtree
of A, then we perform RR rotation, RR rotation is an anticlockwise rotation, which is applied on the
edge below a node having balance factor -2

In above example, node A has balance factor -2 because a node C is inserted in the right subtree of
A right subtree. We perform the RR rotation on the edge below A.

2. LL Rotation

When BST becomes unbalanced, due to a node is inserted into the left subtree of the left subtree of
C, then we perform LL rotation, LL rotation is clockwise rotation, which is applied on the edge
below a node having balance factor 2.

UNIT - II DATA STRUCTURES & ALGORITHMS

59
Rahul Publications

Rahul Publications
In above example, node C has balance factor 2 because a node A is inserted in the left subtree of
C left subtree. We perform the LL rotation on the edge below A.

3. LR Rotation

Double rotations are bit tougher than single rotation which has already explained above. LR rotation
= RR rotation + LL rotation, i.e., first RR rotation is performed on subtree and then LL rotation is
performed on full tree, by full tree we mean the first node from the path of inserted node whose
balance factor is other than -1, 0, or 1.

Let us understand each and every step very clearly:

State Action

A node B has been inserted into the right subtree of A the left

subtree of C, because of which C has become an unbalanced node

having balance factor 2. This case is L R rotation where: Inserted node

is in the right subtree of left subtree of C

As LR rotation = RR + LL rotation, hence RR (anticlockwise) on subtree

rooted at A is performed first. By doing RR rotation, node A, has become the

left subtree of B.

After performing RR rotation, node C is still unbalanced, i.e., having

balance factor 2, as inserted node A is in the left of left of C

Now we perform LL clockwise rotation on full tree, i.e. on node C. node

C has now become the right subtree of node B, A is left subtree of B

Balance factor of each node is now either -1, 0, or 1, i.e. BST is balanced now.

B.Sc. III YEAR V SEMESTER

60
Rahul Publications

Rahul Publications

4. RL Rotation

As already discussed, that double rotations are bit tougher than single rotation which has already
explained above. R L rotation

= LL rotation + RR rotation, i.e., first LL rotation is performed on subtree and then RR rotation is
performed on full tree, by full tree we mean the first node from the path of inserted node whose
balance factor is other than -1, 0, or 1.

State Action

A node B has been inserted into the left subtree of C the right

subtree of A, because of which A has become an unbalanced node

having balance factor - 2. This case is RL rotation where: Inserted node

is in the left subtree of right subtree of A

As RL rotation = LL rotation + RR rotation, hence, LL (clockwise) on

subtree rooted at C is performed first. By doing RR rotation, node C has

become the right subtree of B.

After performing LL rotation, node A is still unbalanced, i.e. having balance

factor -2, which is because of the right-subtree of the right-subtree node A.

Now we perform RR rotation (anticlockwise rotation) on full tree, i.e. on

node A. node C has now become the right subtree of node B, and node

A has become the left subtree of B.

Balance factor of each node is now either -1, 0, or 1, i.e., BST is balanced now.

UNIT - II DATA STRUCTURES & ALGORITHMS

61
Rahul Publications

Rahul Publications

Q7. Give an example how to construct an AVL Tree?

Ans : (Imp.)

Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L

1. Insert H, I, J

H

I

J

RR Rotation

-2

-1

0

On inserting the above elements, especially in the case of H, the BST becomes unbalanced as the
Balance Factor of H is -2. Since the BST is right-skewed, we will perform RR Rotation on node H.

The resultant balance tree is:

I

H J

(Balanced)

2. Insert B, A

B.Sc. III YEAR V SEMESTER

62
Rahul Publications

Rahul Publications

On inserting the above elements, especially in case of A, the BST becomes unbalanced as the
Balance Factor of H and I is 2, we consider the first node from the last inserted node i.e. H. Since the BST
from H is left-skewed, we will perform LL Rotation on node H.

The resultant balance tree is:

0

I

B J

A H

1

0 0

0
(Balanced)

3. Insert E

I

B

A

J

H

E

RR + LL Rotation

2

0-1

1

0

RR Rotation

LR Rotation

On inserting E, BST becomes unbalanced as the Balance Factor of I is 2, since if we travel from E to
I we find that it is inserted in the left subtree of right subtree of I, we will perform LR Rotation on node I.
LR = RR + LL rotation

3a) We first perform RR rotation on node B

The resultant tree after RR rotation is:

UNIT - II DATA STRUCTURES & ALGORITHMS

63
Rahul Publications

Rahul Publications

J

I

H

B

A E

LL Rotation

3b) We first perform LL rotation on the node I

The resultant balanced tree after LL rotation is:

B

A E J

I

H
0

0

0 0
0

-1

(Balanced)

4. Insert C, F, D

I

JE

F

H

B

A

C

D

-2

-1

0

-2

1

00 -1

0

B.Sc. III YEAR V SEMESTER

64
Rahul Publications

Rahul Publications

On inserting C, F, D, BST becomes unbalanced as the Balance Factor of B and H is -2, since if we
travel from D to B we find that it is inserted in the right subtree of left subtree of B, we will perform
RL Rotation on node I. RL = LL + RR rotation.

4a) We first perform LL rotation on node E

The resultant tree after LL rotation is:

0

LL Rotation

RL Rotation

LL + RR

H

B

A

I

JC

E

D F

4b) We then perform RR rotation on node B

The resultant balanced tree after RR rotation is:

RR Rotation

H

I

J

C

B

A

E

D F

1

1

-1

00

0 0

(Balanced)

5. Insert G

UNIT - II DATA STRUCTURES & ALGORITHMS

65
Rahul Publications

Rahul Publications

On inserting G, BST become unbalanced as the Balance Factor of H is 2, since if we travel from G
to H, we find that it is inserted in the left subtree of right subtree of H, we will perform LR Rotation
on node I. LR = RR + LL rotation.

5 a) We first perform RR rotation on node C

The resultant tree after RR rotation is:

5b) We then perform LL rotation on node H

The resultant balanced tree after LL rotation is:

D

F

G

E

HC

B

A

I

J
0

1

1

0

0

-1-1

0

0

-1

(Balanced)

6. Insert K

B.Sc. III YEAR V SEMESTER

66
Rahul Publications

Rahul Publications

On inserting K, BST becomes unbalanced as the Balance Factor of I is -2. Since the BST is right-
skewed from I to K, hence we will perform RR Rotation on the node I.

The resultant balanced tree after RR rotation is:

E

H

F

G

J

I K

C

B

A

D

0

0

0

000

0

1

1

0 -1

(Balanced)

7. Insert L

On inserting the L tree is still balanced as the Balance Factor of each node is now either, -1, 0, +1.
Hence the tree is a Balanced AVL tree

(Balanced)

E

C

D

H

J

I K

L

F

G

B

A Final AVL Tree

1

1

-1

-1

-1

-1
0

0 0
0

0 -1

2.3.2 B Trees

Q8. What is B Tree? Explain in detail about its Operations.

Ans : (Imp.)

B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can
have at most m-1 keys and m children. One of the main reasons of using B tree is its capability to store
large number of keys in a single node and large key values by keeping the height of the tree relatively
small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains the
following properties.

UNIT - II DATA STRUCTURES & ALGORITHMS

67
Rahul Publications

Rahul Publications

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each node must
have m/2 number of nodes.

A B tree of order 4 is shown in the following image.

While performing some operations on B Tree, any property of B Tree may violate such as number
of minimum children a node can have. To maintain the properties of B Tree, the tree may split or join.

Operations

Searching :

Searching in B Trees is similar to that in Binary search tree. For example, if we search for an item 49
in the following B Tree. The process will something like following:

1. Compare item 49 with root node 78. since 49 < 78 hence, move to its left sub-tree.

2. Since, 40<49<56, traverse right sub-tree of 40.

3. 49>45, move to right. Compare 49.

4. match found, return.

Searching in a B tree depends upon the height of the tree. The search algorithm takes O(log n) time
to search any element in a B tree.

Inserting

Insertions are done at the leaf node level. The following algorithm needs to be followed in order to
insert an item into B Tree.

1. Traverse the B Tree in order to find the appropriate leaf node at which the node can be inserted.

2. If the leaf node contain less than m-1 keys then insert the element in the increasing order.

3. Else, if the leaf node contains m-1 keys, then follow the following steps.

B.Sc. III YEAR V SEMESTER

68
Rahul Publications

Rahul Publications

 Insert the new element in the increasing order of elements.

 Split the node into the two nodes at the median.

 Push the median element upto its parent node.

 If the parent node also contain m-1 number of keys, then split it too by following the same steps.

Example:

Insert the node 8 into the B Tree of order 5 shown in the following image.

8 will be inserted to the right of 5, therefore insert 8.

The node, now contain 5 keys which is greater than (5 -1 = 4) keys. Therefore split the node from
the median i.e. 8 and push it up to its parent node shown as follows.

Deletion

Deletion is also performed at the leaf nodes. The node which is to be deleted can either be a leaf
node or an internal node. Following algorithm needs to be followed in order to delete a node from
a B tree.

1. Locate the leaf node.

2. If there are more than m/2 keys in the leaf node then delete the desired key from the node.

3. If the leaf node doesn’t contain m/2 keys then complete the keys by taking the element from eight
or left sibling.

 If the left sibling contains more than m/2 elements then push its largest element up to its parent
and move the intervening element down to the node where the key is deleted.

UNIT - II DATA STRUCTURES & ALGORITHMS

69
Rahul Publications

Rahul Publications

 If the right sibling contains more than m/2 elements then push its smallest element up to the
parent and move intervening element down to the node where the key is deleted.

4. If neither of the sibling contain more than m/2 elements then create a new leaf node by joining two
leaf nodes and the intervening element of the parent node.

5. If parent is left with less than m/2 nodes then, apply the above process on the parent too.

If the node which is to be deleted is an internal node, then replace the node with its in-order
successor or predecessor. Since, successor or predecessor will always be on the leaf node hence, the
process will be similar as the node is being deleted from the leaf node.

Example 1

Delete the node 53 from the B Tree of order 5 shown in the following figure.

53 is present in the right child of element 49. Delete it.

Now, 57 is the only element which is left in the node, the minimum number of elements that must
be present in a B tree of order 5, is 2. it is less than that, the elements in its left and right sub-tree are also
not sufficient therefore, merge it with the left sibling and intervening element of parent i.e. 49.

The final B tree is shown as follows.

Application of B tree

B tree is used to index the data and provides fast access to the actual data stored on the disks since,
the access to value stored in a large database that is stored on a disk is a very time-consuming process.

Searching an un-indexed and unsorted database containing n key values needs O(n) running time in
worst case. However, if we use B Tree to index this database, it will be searched in O(log n) time in worst
case.

B.Sc. III YEAR V SEMESTER

70
Rahul Publications

Rahul Publications

Short Question & Answers

1. What is a Tree data structure and How to represent a Binary tree?

Ans :
A tree is non-linear and a hierarchical data structure consisting of a collection of nodes such that

each node of the tree stores a value and a list of references to other nodes (the “children”).

This data structure is a specialized method to organize and store data in the computer to be used more
effectively. It consists of a central node, structural nodes, and sub-nodes, which are connected via edges.
We can also say that tree data structure has roots, branches, and leaves connected with one another.

2. What are theProperties of a BST Tree

Ans :
Properties of a Tree:

 Number of edges

An edge can be defined as the connection between two nodes. If a tree has N nodes then it will
have (N-1) edges. There is only one path from each node to any other node of the tree.

 Depth of a node

The depth of a node is defined as the length of the path from the root to that node. Each edge adds
1 unit of length to the path. So, it can also be defined as the number of edges in the path from the
root of the tree to the node.

 Height of a node

The height of a node can be defined as the length of the longest path from the node to a leaf node
of the tree.

UNIT - II DATA STRUCTURES & ALGORITHMS

71
Rahul Publications

Rahul Publications

 Height of the Tree

The height of a tree is the length of the longest path from the root of the tree to a leaf node of the
tree.

 Degree of a Node

The total count of subtrees attached to that node is called the degree of the node. The degree of a
leaf node must be 0. The degree of a tree is the maximum degree of a node among all the nodes
in the tree.

Some more properties are:

 Traversing in a tree is done by depth first search and breadth first search algorithm.

 It has no loop and no circuit

 It has no self-loop

 Its hierarchical model.

3. What are theApplications of Tree data structure.

Ans :
The applications of tree data structures are as follows:

1. Spanning trees

It is the shortest path tree used in the routers to direct the packets to the destination.

2. Binary Search Tree

It is a type of tree data structure that helps in maintaining a sorted stream of data.

1. Full Binary tree

2. Complete Binary tree

3. Skewed Binary tree

4. Stickily Binary tree

5. Extended Binary tree

3. Storing hierarchical data

Tree data structures are used to store the hierarchical data, which means data is arranged in the
form of order.

4. Syntax tree

The syntax tree represents the structure of the program’s source code, which is used in compilers.

5. Trie

It is a fast and efficient way for dynamic spell checking. It is also used for locating specific keys from
within a set.

6. Heap

It is also a tree data structure that can be represented in a form of an array. It is used to implement
priority queues.

B.Sc. III YEAR V SEMESTER

72
Rahul Publications

Rahul Publications

4. Write tree traversal techniques with example.

Ans :
Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical

way to traverse them, trees can be traversed in different ways. Following are the generally used ways for
traversing trees.

1

2 3

4 5

(a) Inorder (Left, Root, Right) : 4 2 5 1 3

(b) Preorder (Root, Left, Right) : 1 2 4 5 3

(c) Postorder (Left, Right, Root) : 4 5 2 3 1

5. Explain AVL Tree operations.

Ans :
Operations on AVL tree

AVL tree is also a binary search tree therefore, all the operations are performed in the same way as
they are performed in a binary search tree. Searching and traversing do not lead to the violation in
property of AVL tree. However, insertion and deletion are the operations which can violate this property
and therefore, they need to be revisited.

SNo. Operation Description

1 Insertion Insertion in AVL tree is performed in the same way as it is performed

in a binary search tree. However, it may lead to violation in the AVL

tree property and therefore the tree may need balancing. The tree can

be balanced by applying rotations.

2 Deletion Deletion can also be performed in the same way as it is performed in a

binary search tree. Deletion may also disturb the balance of the tree
therefore, various types of rotations are used to rebalance the tree.

UNIT - II DATA STRUCTURES & ALGORITHMS

73
Rahul Publications

Rahul Publications

6. What is B Tree? Explain about its Operations.

Ans :
B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can

have at most m-1 keys and m children. One of the main reasons of using B tree is its capability to store
large number of keys in a single node and large key values by keeping the height of the tree relatively
small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains the
following properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each node must
have m/2 number of nodes.

Operations

Searching: in B Trees searching is similar to Binary search tree

Inserting: Insertions are done at the leaf node level

Deletion:Deletion is also performed at the leaf nodes. The node which is to be deleted can either be a
leaf node or an internal node.

7. How can AVL Tree be useful in all the operations as compared to Binary search tree?

Ans :
AVL tree controls the height of the binary search tree by not letting it be skewed. The time taken for

all operations in a binary search tree of height h is O(h). However, it can be extended to O(n) if the BST
becomes skewed (i.e. worst case). By limiting this height to log n, AVL tree imposes an upper bound on
each operation to be O(log n) where n is the number of nodes.

8. What are the applications of Graph data structure?

Ans :
The graph has the following applications:

 Graphs are used in circuit networks where points of connection are drawn as vertices and component
wires become the edges of the graph.

 Graphs are used in transport networks where stations are drawn as vertices and routes become the
edges of the graph.

 Graphs are used in maps that draw cities/states/regions as vertices and adjacency relations as edges.

 Graphs are used in program flow analysis where procedures or modules are treated as vertices and
calls to these procedures are drawn as edges of the graph.

B.Sc. III YEAR V SEMESTER

74
Rahul Publications

Rahul Publications

Q9. What are the various operations that can be performed on different Data Structures?

Ans :
 Insertion: Add a new data item in the given collection of data items.

 Deletion: Delete an existing data item from the given collection of data items.

 Traversal: Access each data item exactly once so that it can be processed.

 Searching: Find out the location of the data item if it exists in the given collection of data items.

 Sorting: Arranging the data items in some order i.e. in ascending or descending order in case of
numerical data and in dictionary order in case of alphanumeric data.

Q10. What is B Tree?

Ans :
B Tree is a specialized m-way tree that can be widely used for disk access. A B-Tree of order m can

have at most m-1 keys and m children. One of the main reasons of using B tree is its capability to store
large number of keys in a single node and large key values by keeping the height of the tree relatively
small.

A B tree of order m contains all the properties of an M way tree. In addition, it contains the
following properties.

1. Every node in a B-Tree contains at most m children.

2. Every node in a B-Tree except the root node and the leaf node contain at least m/2 children.

3. The root nodes must have at least 2 nodes.

4. All leaf nodes must be at the same level.

It is not necessary that, all the nodes contain the same number of children but, each node must
have m/2 number of nodes.

An example of B Tree

UNIT - II DATA STRUCTURES & ALGORITHMS

75
Rahul Publications

Rahul Publications

Choose the Correct Answers
1. What is the time complexity of the binary search algorithm? [c]

(a) O(n) (b) O(1)
(c) O(log2n) (d) O(n^2)

2. Kruskal’s Algorithm for finding the Minimum Spanning Tree of a graph is a kind of a? [b]
(a) DP Problem (b) Greedy Algorithm
(c) Adhoc Problem (d) None of the above

3. Which of the following statements is false? [b]
(a) Every tree is a bipartite graph (b) A tree contains a cycle
(c) A tree with n nodes contains n-1 edges (d) A tree is a connected graph

4. If this tree is used for sorting, then new no 8 should be placed as the [d]

6

12

10 30

11

4

1 5

(a) Left child of the node labelled 30 (b) Right child of the node labelled 5
(c) bright child of the node labelled 30 (d) Left child of the node labelled 10

5. Traversing a binary tree first root and then left and right subtrees call traversal. [b]
(a) Postorder (b) Preorder
(c) Inorder (d) None of these

6. A complete binary tree with the property that the value at each node is at least as large as the values
at its children is called [d]
(a) Binary search tree (b) Binary Tree
(c) Completely balanced tree (d) Heap

7. Which algorithm is used in the top tree data structure? [a]
(a) Divide and Conquer (b) Greedy
(c) Backtracking (d) Branch

8. The number of edges from the node to the deepest leaf is called of the tree. [a]
(a) Height (b) Depth
(c) Length (d) Width

9. What is a full binary tree? [a]
(a) Each node has exactly zero or two children
(b) Each node has exactly two children
(c) All the leaves are at the same level
(d) Each node has exactly one or two children

10. The number of edges from the root to the node is called of the tree. [b]
(a) Height (b) Depth
(c) Length (d) Width

B.Sc. III YEAR V SEMESTER

76
Rahul Publications

Rahul Publications

Fill in the Blanks

1. A data structure is a logical method of representing .

2. In the algorithm, the deletion procedure is complex.

3. is the process of visiting every node in a tree at least once.

4. In traversal, the root node is visited last.

5. Children of the same parent are called .

6. Nodes which are subtrees of another node are called .

7. The values in the left most child of a node must be smaller than the value of that node.

8. The B-tree is derived from trees.

9. In the shortest path can be found.

10. in algorithm, a sorted array of edges is required in order to construct a minimal spanning
tree

ANSWERS

1. Data in memory

2. Binary tree

3. Traversal

4. Postorder

5. Siblings.

6. Children.

7. First

8. Multiway search

9. BFS

10. Dijkstra’s

UNIT - II DATA STRUCTURES & ALGORITHMS

77
Rahul Publications

Rahul Publications

One Mark Answers

1. List the types of tree.

Ans:
There are six types of tree given as follows.

 General Tree

 Forests

 Binary Tree

 Binary Search Tree

 Expression Tree

 Tournament Tree

2. What are Binary trees?

Ans:
A binary Tree is a special type of generic tree in which, each node can have at most two children.

Binary tree is generally partitioned into three disjoint subsets, i.e. the root of the node, left sub-tree and
Right binary sub-tree.

3. List some applications of Tree-data structure?

Ans:
Applications of Tree- data structure:

 The manipulation of Arithmetic expression,

 Symbol Table construction,

 Syntax analysis

 Hierarchal data model

4. Define the graph data structure?

Ans:
A graph G can be defined as an ordered set G(V, E) where V(G) represents the set of vertices and

E(G) represents the set of edges which are used to connect these vertices. A graph can be seen as a cyclic
tree, where the vertices (Nodes) maintain any complex relationship among them instead of having parent-
child relations.

5. Which data structures are used in BFS and DFS algorithm?

Ans:
 In BFS algorithm, Queue data structure is used.

 In DFS algorithm, Stack data structure is used.

B.Sc. III YEAR V SEMESTER

78
Rahul Publications

Rahul Publications

6. What are the advantages of Selecetion Sort?

Ans:
 It is simple and easy to implement.

 It can be used for small data sets.

 It is 60 per cent more efficient than bubble sort.

7. List Some Applications of Multilinked Structures?

Ans:
 Sparse matrix,

 Index generation.

8. What is a leaf node?

Ans:
Any node in a binary tree or a tree that does not have any children is called a leaf node.

9. What is a root node?

Ans:
The first node or the top node in a tree is called the root node.

10. What is a Self-Balanced Tree?

Ans:
Self-balanced binary search trees automatically keep their height as small as possible when operations

like insertion and deletion take place.

UNIT - III DATA STRUCTURES & ALGORITHMS

79
Rahul Publications

Rahul Publications

UNIT
III

Graphs: Definitions and Properties, Representation, Graph Search Methods (Depth

First Search and Breadth First Search) Application of Graphs: Shortest Path Algorithm

(Dijkstra), Minimum Spanning Tree (Prim’s and Kruskal’s Algorithms).

3.1 GRAPHS

3.1.1 Definitions

Q1. What is Graph? Explain in detail about
Graphs.

Ans : (Imp.)

Meaning

A graph can be defined as group of vertices
and edges that are used to connect these vertices.
A graph can be seen as a cyclic tree, where the
vertices (Nodes) maintain any complex relationship
among them instead of having parent child
relationship.

Definition

A graph G can be defined as an ordered set
G(V, E) where V(G) represents the set of vertices
and E(G) represents the set of edges which are used
to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C,
D, E) and six edges ((A,B), (B,C), (C,E), (E,D),
(D,B), (D,A)) is shown in the following figure.

A B C

ED

A B C

ED

Fig.: Undirected Graph

Directed and Undirected Graph

A graph can be directed or undirected.
However, in an undirected graph, edges are not
associated with the directions with them. An
undirected graph is shown in the above figure since
its edges are not attached with any of the directions.

If an edge exists between vertex A and B then the
vertices can be traversed from B to A as well as A
to B.

In a directed graph, edges form an ordered
pair. Edges represent a specific path from some
vertex A to another vertex B. Node A is called initial
node while node B is called terminal node.

A directed graph is shown in the following
figure.

A B C

ED

A B C

ED

Fig.: Directed Graph

Graph Terminology Definitions

1. Path

A path can be defined as the sequence of
nodes that are followed in order to reach
some terminal node V from the initial
node U.

2. Closed Path

A path will be called as closed path if the initial
node is same as terminal node. A path will
be closed path if V0=VN.

3. Simple Path

If all the nodes of the graph are distinct with
an exception V0=VN, then such path P is
called as closed simple path.

B.Sc. III YEAR V SEMESTER

80
Rahul Publications

Rahul Publications

4. Cycle

A cycle can be defined as the path which has
no repeated edges or vertices except the first
and last vertices.

5. Connected Graph

A connected graph is the one in which some
path exists between every two vertices (u, v)
in V. There are no isolated nodes in connected
graph.

6. Complete Graph

A complete graph is the one in which every
node is connected with all other nodes. A
complete graph contain n(n-1)/2 edges
where n is the number of nodes in the graph.

7. Weighted Graph

In a weighted graph, each edge is assigned
with some data such as length or weight. The
weight of an edge e can be given as w(e)
which must be a positive (+) value indicating
the cost of traversing the edge.

8. Digraph

A digraph is a directed graph in which each
edge of the graph is associated with some
direction and the traversing can be done only
in the specified direction.

9. Loop

An edge that is associated with the similar end
points can be called as Loop.

10. Adjacent Nodes

If two nodes u and v are connected via an
edge e, then the nodes u and v are called as
neighbors or adjacent nodes.

11. Degree of the Node

A degree of a node is the number of edges
that are connected with that node. A node
with degree 0 is called as isolated node.

3.1.2 Graph Theory - Basic Properties

Q2. Explain about Graph basic properties in
detail with an example.

Ans : (Imp.)
Graphs come with various properties which

are used for characterization of graphs depending

on their structures. These properties are defined in
specific terms pertaining to the domain of graph
theory. In this chapter, we will discuss a few basic
properties that are common in all graphs.

Distance between Two Vertices

It is number of edges in a shortest path
between Vertex U and Vertex V. If there are multiple
paths connecting two vertices, then the shortest path
is considered as the distance between the two
vertices.

Notation - d(U, V)

There can be any number of paths present
from one vertex to other. Among those, you need
to choose only the shortest one.

Example

Take a look at the following graph -

a b

g

ec

f

d

a b

g

ec

f

d

Here, the distance from vertex ‘d’ to vertex
‘e’ or simply ‘de’ is 1 as there is one edge between
them. There are many paths from vertex ‘d’ to
vertex ‘e’ -

 da, ab, be

 df, fg, ge

 de (It is considered for distance between
the vertices)

 df, fc, ca, ab, be

 da, ac, cf, fg, ge

Eccentricity of a Vertex

The maximum distance between a vertex to
all other vertices is considered as the eccentricity of
vertex.

Notation - e(V)

The distance from a particular vertex to all
other vertices in the graph is taken and among those
distances, the eccentricity is the highest of distances.

UNIT - III DATA STRUCTURES & ALGORITHMS

81
Rahul Publications

Rahul Publications

Example

In the above graph, the eccentricity of ‘a’
is 3.

The distance from ‘a’ to ‘b’ is 1 (‘ab’),

from ‘a’ to ‘c’ is 1 (‘ac’),

from ‘a’ to ‘d’ is 1 (‘ad’),

from ‘a’ to ‘e’ is 2 (‘ab’–‘be’) or (‘ad’–‘de’),

from ‘a’ to ‘f’ is 2 (‘ac’–‘cf’) or (‘ad’–‘df’),

from ‘a’ to ‘g’ is 3 (‘ac’–‘cf’–‘fg’) or (‘ad’–
‘df’–‘fg’).

So the eccentricity is 3, which is a maximum
from vertex ‘a’ from the distance between ‘ag’ which
is maximum.

In other words,

e(b) = 3

e(c) = 3

e(d) = 2

e(e) = 3

e(f) = 3

e(g) = 3

Radius of a Connected Graph

The minimum eccentricity from all the vertices
is considered as the radius of the Graph G. The
minimum among all the maximum distances
between a vertex to all other vertices is considered
as the radius of the Graph G.

Notation - r(G)

From all the eccentricities of the vertices in a
graph, the radius of the connected graph is the
minimum of all those eccentricities.

Example

In the above graph r(G) = 2, which is the
minimum eccentricity for ‘d’.

Diameter of a Graph

The maximum eccentricity from all the vertices
is considered as the diameter of the Graph G. The
maximum among all the distances between a vertex
to all other vertices is considered as the diameter of
the Graph G.

Notation - d(G): From all the eccentricities
of the vertices in a graph, the diameter of the
connected graph is the maximum of all those
eccentricities.

Example

In the above graph, d(G) = 3; which is the
maximum eccentricity.

Central Point

If the eccentricity of a graph is equal to its
radius, then it is known as the central point of the
graph. If

e(V) = r(V),

then ‘V’ is the central point of the Graph ’G’.

Example

In the example graph, ‘d’ is the central point
of the graph.

e(d) = r(d) = 2

Centre

The set of all central points of ‘G’ is called the
centre of the Graph.

Example

In the example graph, {‘d’} is the centre of
the Graph.

Circumference

The number of edges in the longest cycle of
‘G’ is called as the circumference of ‘G’.

Example

In the example graph, the circumference
is 6, which we derived from the longest cycle a-c-f-
g-e-b-a or a-c-f-d-e-b-a.

Girth

The number of edges in the shortest cycle of
‘G’ is called its Girth.

Notation

g(G).

Example:

In the example graph, the Girth of the graph
is 4, which we derived from the shortest cycle a-c-f-
d-a or d-f-g-e-d or a-b-e-d-a

B.Sc. III YEAR V SEMESTER

82
Rahul Publications

Rahul Publications

3.1.3 Representation of Graphs

Q3. Explain in detail about how to represent
a Graph.

Ans :
Graph Representation

A graph is a data structure that consist a set
of vertices (called nodes) and edges. There are two
ways to store Graphs into the computer’s memory:

 Sequential representation (or, Adjacency
matrix representation)

 Linked list representation (or, Adja-
cency list representation)

In sequential representation, an adjacency
matrix is used to store the graph. Whereas in linked
list representation, there is a use of an adjacency list
to store the graph.

Sequential representation

In sequential representation, there is a use of
an adjacency matrix to represent the mapping
between vertices and edges of the graph. We can
use an adjacency matrix to represent the undirected
graph, directed graph, weighted directed graph, and
weighted undirected graph.

If adj[i][j] = w, it means that there is an edge
exists from vertex i to vertex j with weight w.

An entry A ij in the adjacency matrix
representation of an undirected graph G will be 1 if
an edge exists between Vi and Vj. If an Undirected
Graph G consists of n vertices, then the adjacency
matrix for that graph is n × n, and the matrix
A = [aij] can be defined as -

aij = 1 {if there is a path exists from

 Vi to Vj}

aij = 0 {Otherwise}

It means that, in an adjacency matrix, 0
represents that there is no association exists between
the nodes, whereas 1 represents the existence of a
path between two edges.

If there is no self-loop present in the graph, it
means that the diagonal entries of the adjacency
matrix will be 0.

The adjacency matrix representation of an
undirected graph.

A B C

ED

A B C

ED

Fig.: Undirected Graph

 A B C D E

A 0 1 0 1 0

B 1 0 1 1 0

C 0 1 0 0 1
D 1 1 0 0 1

E 0 0 1 1 0

 
 
 
 
 
 
 
 

Adjacency Matrix

In the above figure, an image shows the
mapping among the vertices (A, B, C, D, E), and
this mapping is represented by using the adjacency
matrix.

There exist different adjacency matrices for
the directed and undirected graph. In a directed
graph, an entry Aij will be 1 only when there is an
edge directed from Vi to Vj.

Adjacency matrix for a directed graph

In a directed graph, edges represent a specific
path from one vertex to another vertex. Suppose a
path exists from vertex A to another vertex B; it
means that node A is the initial node, while node B
is the terminal node.

Consider the below-directed graph and try
to construct the adjacency matrix of it.

A B C

ED

A B C

ED

Directed Graph

UNIT - III DATA STRUCTURES & ALGORITHMS

83
Rahul Publications

Rahul Publications

 A B C D E

A 0 1 0 0 0
B 0 0 1 1 0

 C 0 0 0 0 1
D 1 0 0 0 0
E 0 0 0 1 0

 
 
 
 
 
 
 
 

Adjacency Matrix

In the above graph, we can see there is no
self-loop, so the diagonal entries of the adjacent
matrix are 0.

Adjacency matrix for a weighted directed
graph

It is similar to an adjacency matrix
representation of a directed graph except that
instead of using the ‘1’ for the existence of a path,
here we have to use the weight associated with the
edge. The weights on the graph edges will be
represented as the entries of the adjacency matrix.
We can understand it with the help of an example.
Consider the below graph and its adjacency matrix
representation. In the representation, we can see
that the weight associated with the edges is
represented as the entries in the adjacency matrix.

A B C

ED

4 2

8

10

5
1

A B C

ED

4 2

8

10

5
1

Fig.: Weighted Directed Graph

 A B C D E

A 0 4 0 0 0
B 0 0 2 1 0

 C 0 0 0 0 8
D 5 0 0 0 0
E 0 0 0 10 0

 
 
 
 
 
 
 
 
Adjacency Matrix

In the above image, we can see that the
adjacency matrix representation of the weighted

directed graph is different from other represen-
tations. It is because, in this representation, the non-
zero values are replaced by the actual weight
assigned to the edges.

Adjacency matrix is easier to implement and
follow. An adjacency matrix can be used when the
graph is dense and a number of edges are large.

Though, it is advantageous to use an
adjacency matrix, but it consumes more space. Even
if the graph is sparse, the matrix still consumes the
same space.

Linked List Representation

An adjacency list is used in the linked
representation to store the Graph in the computer’s
memory. It is efficient in terms of storage as we only
have to store the values for edges.

Let’s see the adjacency list representation of
an undirected graph.

In the above figure, we can see that there is a
linked list or adjacency list for every node of the
graph. From vertex A, there are paths to vertex B
and vertex D. These nodes are linked to nodes A in
the given adjacency list.

An adjacency list is maintained for each node
present in the graph, which stores the node value
and a pointer to the next adjacent node to the
respective node. If all the adjacent nodes are
traversed, then store the NULL in the pointer field
of the last node of the list.

The sum of the lengths of adjacency lists is
equal to twice the number of edges present in an
undirected graph.

A B C

ED

A B C

ED

Fig.: Undirected Graph

B.Sc. III YEAR V SEMESTER

84
Rahul Publications

Rahul Publications

A B D X

B A D

C B E X

D A B

E D C X

C X

E X

A B D X

B A D

C B E X

D A B

E D C X

C X

E X

Adjacency List

In the above figure, we can see that there is a linked list or adjacency list for every node of the
graph. From vertex A, there are paths to vertex B and vertex D. These nodes are linked to nodes A in the
given adjacency list.

An adjacency list is maintained for each node present in the graph, which stores the node value and
a pointer to the next adjacent node to the respective node. If all the adjacent nodes are traversed, then
store the NULL in the pointer field of the last node of the list.

The sum of the lengths of adjacency lists is equal to twice the number of edges present in an
undirected graph.

A B C

ED

A B C

ED

A B

B C

C E

D A

E D

X

X

X

X

D X

A B

B C

C E

D A

E D

X

X

X

X

D X

 Directed Graph Adjacency List

For a directed graph, the sum of the lengths of adjacency lists is equal to the number of edges
present in the graph.

Now, consider the weighted directed graph, and let’s see the adjacency list representation of that
graph.

A B C

ED

5 2

4

10

7
8

A B C

ED

5 2

4

10

7
8

A B

B C

C E

D A

E D

D X

X

X

X

X

5

2

4

7

10

8

A B

B C

C E

D A

E D

D X

X

X

X

X

5

2

4

7

10

8

Weighted Directed Graph Adjacency List

In the case of a weighted directed graph, each node contains an extra field that is called the weight
of the node.

In an adjacency list, it is easy to add a vertex. Because of using the linked list, it also saves space.

UNIT - III DATA STRUCTURES & ALGORITHMS

85
Rahul Publications

Rahul Publications

3.1.4 Graph Search Methods (Depth First Search and Breadth First Search)

3.1.4.1 Depth First Search (DFS)

Q4. Explain about DFS Search Algorithm.

Ans : (Imp.)

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses a stack to
remember to get the next vertex to start a search, when a dead end occurs in any iteration.

8

B

E

G

C

F

A

D

1

2 5 7

63

4

8

B

E

G

C

F

A

D

1

2 5 7

63

4

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then
to F and lastly to C. It employs the following rules.

Rule 1: Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

Rule 2: If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices
from the stack, which do not have adjacent vertices.)

Rule 3: Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description

1. Initialize the slack

2. Mark S as visited and put it onto the
stack. Explore any unvisited adjacent
node from S. We have three nodes
and we can pick any of them. For
this example, we shall take the node
in an alphabetical order

S

D

BA C

Slack

S

D

BA C

Slack

Stop

S

D

BA C

Slack

B.Sc. III YEAR V SEMESTER

86
Rahul Publications

Rahul Publications

3. Mark A as visited and put it onto the
stack. Explore any unvisited adjacent
node from A. Both S and D are
adjacent to A but we are concerned
for unvisited nodes only.

4. Visit D and mark it as visited and put
onto the stack. Here, we have B and
C nodes, which are adjacent to D and
both are unvisited. However, we shall
again choose in an alphabetical order.

5. We choose B, mark it as visited and
put onto the stack. Here B does not
have any unvisited adjacent node. So,
we pop B from the stack.

6. We check the stack top for return to
the previous node and check if it has
any unvisited nodes. Here, we find
D to be on the top of the stack.

7. Only unvisited adjacent node is from
D is C now. So we visit C, mark it as
visited and put it onto the stack.

S

top

S

D

BA C

Slack

A

S

top

S

D

BA C

Slack

A

D

S

top
S

D

BA C

Slack

A

D

D

S

top

S

D

BA C

Slack

A

D

S

top
S

D

BA C

Slack

A

D

C

UNIT - III DATA STRUCTURES & ALGORITHMS

87
Rahul Publications

Rahul Publications

As C does not have any unvisited adjacent node so we keep popping the stack until we find a node
that has an unvisited adjacent node. In this case, there’s none and we keep popping until the stack is
empty.

3.1.4.2 Breadth First Search (BFS)

Q5. Explain about DFS Search Algorithm.

Ans :
Breadth First Search (BFS) algorithm traverses a graph in a breadth ward motion and uses a queue

to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

S

B

E

G

C

F

A

D

1

4 5 6

7

3

2

S

B

E

G

C

F

A

D

1

4 5 6

7

3

2

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C and G
lastly to D. It employs the following rules.

Rule 1: Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue.

Rule 2: If no adjacent vertex is found, remove the first vertex from the queue.

Rule 3: Repeat Rule 1 and Rule 2 until the queue is empty.

Step Traversal Description

1. Initialize the queue.

2. We start from visiting S (starting
node), and mark it as visited.

S

D

BA C

Queue

S

D

BA C

Queue

B.Sc. III YEAR V SEMESTER

88
Rahul Publications

Rahul Publications

3. We then see an unvisited adjacent
node from S. In this example, we
have three nodes but alphabetically
we choose A, mark it as visited and
enqueue it.

4. Next, the unvisited adjacent node
from S is B. We mark it as visited and
enqueue it.

5. Next, the unvisited adjacent node
from S is C. We mark it as visited and
enqueue it.

6. Now, S is left with no unvisited
adjacent nodes. So, we dequeue and
find A.

7. From A we have D as unvisited
adjacent node. We mark it as visited
and enqueue it.

A

S

D

BA C

Queue

B

S

D

BA C

Queue

A

B

S

D

BA C

Queue

AC

B

S

D

BA C

Queue

C

C

S

D

BA C

Queue

D B

UNIT - III DATA STRUCTURES & ALGORITHMS

89
Rahul Publications

Rahul Publications

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm we keep on
dequeuing in order to get all unvisited nodes.

3.2 APPLICATION OF GRAPHS

3.2.1 Shortest Path Algorithm (Dijkstra)

Q6. Explain about Dijkstra’s Shortest Path Algorithm.

Ans : (Imp.)

Given a graph and a source vertex in the graph, find the shortest paths from the source to all
vertices in the given graph.

Examples:

Input: src = 0, the graph is shown below

1 2 3

67 5

40 8

1

7

4

8

2

9

10

11

7 6

2
4

14

8
1 2 3

67 5

40 8

1

7

4

8

2

9

10

11

7 6

2
4

14

8

Output: 0 4 12 19 21 11 9 8 14

Explanation

The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0 -> 1 -> 2

The minimum distance from 0 to 3 = 19. 0 -> 1 -> 2 -> 3

The minimum distance from 0 to 4 = 21. 0 -> 7 -> 6 -> 5 -> 4

The minimum distance from 0 to 5 = 11. 0 ->7->6->5

The minimum distance from 0 to 6 = 9. 0 -> 7 -> 6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree.

Like Prim’s MST, generate a SPT (shortest path tree) with a given source as a root. Maintain two
sets, one set contains vertices included in the shortest-path tree, other set includes vertices not yet included
in the shortest-path tree. At every step of the algorithm, find a vertex that is in the other set (set not yet
included) and has a minimum distance from the source.

B.Sc. III YEAR V SEMESTER

90
Rahul Publications

Rahul Publications

Follow the steps below to solve the problem:

 Create a set sptSet shortest path tree set) that keeps track of vertices included in the shortest-path
tree, i.e., whose minimum distance from the source is calculated and finalized. Initially, this set is
empty.

 Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE.
Assign the distance value as 0 for the source vertex so that it is picked first.

 While sptSet doesn’t include all vertices

 Pick a vertex u which is not there in sptSet and has a minimum distance value.

 Include u to sptSet.

 Then update distance value of all adjacent vertices of u.

 To update the distance values, iterate through all adjacent vertices.

 For every adjacent vertex v, if the sum of the distance value of u (from source) and
weight of edge u-v, is less than the distance value of v, then update the distance value
of v.

Below is the illustration of the above approach:

Illustration :

To understand the Dijkstra’s Algorithm let’s take a graph and find the shortest path from source to
all nodes.

Consider below graph and src = 0

1 2 3

67 5

40 8

1

7

4

8

2

9

10

11

7 6

2
4

14

8
1 2 3

67 5

40 8

1

7

4

8

2

9

10

11

7 6

2
4

14

8

Step 1:

 The set sptSet is initially empty and distances assigned to vertices are {0, INF, INF, INF, INF, INF, INF,
INF} where INF indicates infinite.

 Now pick the vertex with a minimum distance value. The vertex 0 is picked, include it in sptSet.
So sptSet becomes {0}. After including 0 to sptSet, update distance values of its adjacent vertices.

 Adjacent vertices of 0 are 1 and 7. The distance values of 1 and 7 are updated as 4 and 8.

The following subgraph shows vertices and their distance values, only the vertices with finite distance
values are shown. The vertices included in SPT are shown in green colour.

1

7

0

4

8

1

7

0

4

8

UNIT - III DATA STRUCTURES & ALGORITHMS

91
Rahul Publications

Rahul Publications

Step 2:

 Pick the vertex with minimum distance value and not already included in SPT (not in sptSET). The
vertex 1 is picked and added to sptSet.

 So sptSet now becomes {0, 1}. Update the distance values of adjacent vertices of 1.

 The distance value of vertex 2 becomes 12.

1 2

7

0

0

8

4 12

1 2

7

0

0

8

4 12

Step 3:

 Pick the vertex with minimum distance value and not already included in SPT (not in sptSET).
Vertex 7 is picked. So sptSet now becomes {0, 1, 7}.

 Update the distance values of adjacent vertices of 7. The distance value of vertex 6 and 8 becomes
finite (15 and 9 respectively).

1 2

67

0 8

0

8

15

4 12

9

1 2

67

0 8

0

8

15

4 12

9

Step 4:

 Pick the vertex with minimum distance value and not already included in SPT (not in sptSET).
Vertex 6 is picked. So sptSet now becomes {0, 1, 7, 6}.

 Update the distance values of adjacent vertices of 6. The distance value of vertex 5 and 8 are
updated.

1 2

67 5

0 8

4 12

15

8 9 11

0

1 2

67 5

0 8

4 12

15

8 9 11

0

B.Sc. III YEAR V SEMESTER

92
Rahul Publications

Rahul Publications

We repeat the above steps until sptSet includes all vertices of the given graph. Finally, we get the
following Shortest Path Tree (SPT).

1 2 3

67 5

40 8

4 12 19

8 9 11

14 21

0

1 2 3

67 5

40 8

4 12 19

8 9 11

14 21

0

Implementing Dijkstra Algorithm

Given a weighted, undirected and connected graph of V vertices and E edges, Find the shortest
distance of all the vertex’s from the source vertex S.

Example 1:

Input:

V = 2, E = 1

u = 0, v = 1, w = 9

adj [] ={{{1, 9}}, {{0, 9}}}

S = 0

Output:

0 9

1

0

9

Source

1

0

9

Source

Explanation:

The source vertex is 0. Hence, the shortest

distance of node 0 is 0 and the shortest

distance from node 9 is 9 – 0 = 9.

Example 2:

Input:

V = 3, E = 3

u = 0, v = 1, w = 1

u = 1, v = 2, w = 3

u = 0, v = 2, w = 6

adj = {{{1, 1}, {2, 6}}, {{2, 3}, {0, 1}}, {{1, 3}, {0, 6}}}

S = 2

UNIT - III DATA STRUCTURES & ALGORITHMS

93
Rahul Publications

Rahul Publications

Output:

4 3 0

1 Source

0

2
3

61

1 Source

0

2
3

61

Explanation:

For nodes 2 to 0, we can follow the path - 2 – 1 – 0. This has a distance of 1 + 3 = 4,

whereas the path 2 – 0 has a distance of 6. So,the Shortest path from 2 to 0 is 4.

3.2.2 Minimum Spanning Tree (Prim’s and Kruskal’s Algorithms)

Q7. Discuss about Minimum Spanning Tree.

Ans :
Spanning Tree

Spanning tree can be defined as a sub-graph of connected, undirected graph G that is a tree
produced by removing the desirednumber of edges from a graph. In other words, spanning tree is a non-
cyclic sub-graph of a connected and undirected graph Gthatconnects all thevertices together. Agraph G
canhave multiple spanningtrees.

Minimum Spanning Tree

There can be weights assigned to every edge in a weighted graph. However, A minimum spanning
tree is a spanning tree whichhas minimal total weight. In other words, minimum spanning tree is the one
which contains the least weight among all otherspanningtree of someparticular graph.

Shortest path algorithms

Thereare two algorithms which are being used for this purpose.

 Prim’s Algorithm

 Kruskal’s Algorithm

3.2.2.1 Prim’s Algorithm

Q8. Explain about prim’s Algorithm

Ans : (Imp.)

Prim’s Algorithm is used to find the minimum spanning tree from a graph. Prim’s algorithm finds
the subset of edges that includes every vertex of the graph such that the sum of the weights of the edges
can be minimized.

Prim’s algorithm starts with the single node and explore all the adjacent nodes with all the connecting
edges at every step. The edges with the minimal weights causing no cycles in the graph got selected.

The algorithm is given as follows.

B.Sc. III YEAR V SEMESTER

94
Rahul Publications

Rahul Publications

Algorithm

Step 1: Select a starting vertex

Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edgee connecting the tree vertex and fringe vertexthathasminimumweight

Step 4: Add the selected edge and the vertex to the minimum spanning tree T[ENDOF LOOP]

Step 5: EXIT

Example:

Construct a minimum spanning tree of the graph given in the following figure by using prim’s
algorithm.

B C A

D E
1

10 3

4
2 6

B C A

D E
1

10 3

4
2 6

Sol :
Step 1: Choose a starting vertex B.

Step 2: Add the vertices that are adjacent to A. the edges that connecting the vertices are shown by
dotted lines.

Step 3: Choose the edge with the minimum weight among all. i.e. B D and addittoMST. Add the
adjacent vertices of D i.e. C and E.

Step 3: Choose the edge with the minimum weight among all. In this case, the edges DE and CD
are such edges. Add the mtoMST and explore the adjacent of C i.e. E and A.

Step4 : Choose the edge with the minimum weight i.e. CA. We can’t choose C E as it would cause
cycle in the graph.

The graph produces in the step 4 is the minimum spanning tree of the graph shown in the above
figure. The cost of MST will be calculated as,

cost(MST) = 4 + 2 + 1 + 3 = 10 units.

B C

ED

B C

B D

4

10

4

10

2

1

Step 1 Step 2 Step 3

B C

ED

B C

B D

4

10

4

10

2

1

Step 1 Step 2 Step 3

UNIT - III DATA STRUCTURES & ALGORITHMS

95
Rahul Publications

Rahul Publications

B C

ED

A B C

ED

A

4

1

2
6

3

1

2
4

Step 4 Step 5

B C

ED

A B C

ED

A

4

1

2
6

3

1

2
4

Step 4 Step 5

3.2.2.2 Kruskal’sAlgorithm

Q9. Explain about Kruskal’s Algorithm.

Ans : (Imp.)

Kruskal’s Algorithm is used to find the minimum spanning tree for a connected weighted graph.
The main target of the algorithm is to find the subset of edges by using which, we can traverse every
vertex of the graph. Kruskal’s algorithm follows greedy approach which finds an optimum solution at
every stage instead of focusing on a global optimum.

The Kruskal’s algorithm is given as follows.

Algorithm

Step 1: Create a forest in such a way that each graphis a separate tree.

Step 2: Create a priority queue Q that contains all the edges of the graph.

Step 3: Repeat Steps 4 and 5 while Q is NOTEMPTY

Step 4: Remove an edge from Q

Step 5: IF the edge obtained in Step 4 connects two different trees, then Add it to the forest (for
combining two treesintoone tree).

ELSE

Discard the edge

Step 6: END

Example:

Apply the Kruskal’s algorithm on the graph given as follows.

A

CB

E

D
3 4

5

2
10

71

A

CB

E

D
3 4

5

2
10

71

Sol :
The weight of the edges given as:

B.Sc. III YEAR V SEMESTER

96
Rahul Publications

Rahul Publications

Edge AE AD AC AB BC CD DE
 Weight 5 10 7 1 3 4 2

Sort the edges according to their weights.

Edge AB DE BC CD AE AC AD
 Weight 1 2 3 4 5 7 10

Start constructing the tree, Add AB to the MST.

A

B

1

Add DE to the MST;

A

B

1

E

D

2

Add BC to the MST;

The next step is to add AE, but we can’t add that as it will cause a cycle.

A

B

1

E

D

2

A

B C
3

1

A

B C
3

1

E

D

2

The next edge to be added is AC, but it can’t be added as it will cause a cycle.

The next edge to be added is AD, but it can’t be added as it will contain a cycle. Hence, the final
MST is the one which is shown in the step 4.

The cost of MST = 1 + 2 + 3 + 4 = 10.

UNIT - III DATA STRUCTURES & ALGORITHMS

97
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is Graph? Give an example

Ans:
A graph G can be defined as an ordered set G(V, E) where V(G) represents the set of vertices and

E(G) represents the set of edges which are used to connect these vertices.

A Graph G(V, E) with 5 vertices (A, B, C, D, E) and six edges ((A,B), (B,C), (C,E), (E,D), (D,B),
(D,A)) is shown in the following figure

A B C

ED

A B C

ED

Fig.: Undirected Graph

2. Difference between Prim’s Algorithm and Kruskal’s Algorithm.

Ans :

Kruskal’s AlgorithmPrim’s Algorithm

Kruskal’s algorithm prefer heap data structures.Prim’s algorithm prefer list data structures.

Applications of Kruskal algorithm are LAN
connection, TV Network etc.

Applications of prim’s algorithm are Travelling
Salesman Problem, Network for roads and Rail
tracks connecting all the cities etc.

It generates the minimum spanning tree starting
from the least weighted edge.

It generates the minimum spanning tree starting from
the root vertex.

Kruskal’s algorithm runs faster in sparse graphs.Prim’s algorithm runs faster in dense graphs.

Kruskal’s algorithm can generate
forest(disconnected components) at any instant
as well as it can work on disconnected
components

Prim’s algorithm gives connected component as well
as it works only on connected graph.

Kruskal’s algorithm’s time complexity is O(E log
V), V being the number of vertices.

Prim’s algorithm has a time complexity of O(V2), V
being the number of vertices and can be improved
up to O(E log V) using Fibonacci heaps.

It traverses one node only once.It traverses one node more than one time to get the
minimum distance.

It starts to build the Minimum Spanning Tree
from the vertex carrying minimum weight in the
graph.

It starts to build the Minimum Spanning Tree from
any vertex in the graph.

Kruskal’s AlgorithmPrim’s Algorithm

Kruskal’s algorithm prefer heap data structures.Prim’s algorithm prefer list data structures.

Applications of Kruskal algorithm are LAN
connection, TV Network etc.

Applications of prim’s algorithm are Travelling
Salesman Problem, Network for roads and Rail
tracks connecting all the cities etc.

It generates the minimum spanning tree starting
from the least weighted edge.

It generates the minimum spanning tree starting from
the root vertex.

Kruskal’s algorithm runs faster in sparse graphs.Prim’s algorithm runs faster in dense graphs.

Kruskal’s algorithm can generate
forest(disconnected components) at any instant
as well as it can work on disconnected
components

Prim’s algorithm gives connected component as well
as it works only on connected graph.

Kruskal’s algorithm’s time complexity is O(E log
V), V being the number of vertices.

Prim’s algorithm has a time complexity of O(V2), V
being the number of vertices and can be improved
up to O(E log V) using Fibonacci heaps.

It traverses one node only once.It traverses one node more than one time to get the
minimum distance.

It starts to build the Minimum Spanning Tree
from the vertex carrying minimum weight in the
graph.

It starts to build the Minimum Spanning Tree from
any vertex in the graph.

B.Sc. III YEAR V SEMESTER

98
Rahul Publications

Rahul Publications

3. Differences between BFS and DFS.

Ans :
The following are the differences between the BFS and DFS:

Time Complexity of DFS is also
O(V+E) where V is vertices and E is
edges.

Time Complexity of BFS =
O(V+E) where V is vertices and
E is edges.

Time
Complexity6

DFS is faster than BFS.BFS is slower than DFS.Speed5

DFS is more suitable for decision
tree. As with one decision, we need
to traverse further to augment the
decision. If we reach the conclusion,
we won.

As BFS considers all neighbour
so it is not suitable for decision
tree used in puzzle games.

Suitablity for
decision tree

4

DFS is better when target is far from
source.

BFS is better when target is
closer to Source.

Source
3

DFS uses Stack to find the shortest
path.

BFS uses Queue to find the
shortest path.

Data structure2

DFS, stands for Depth First Search.BFS, stands for Breadth First
Search.

Definition
1

DFSBFSKeySr.
No.

Time Complexity of DFS is also
O(V+E) where V is vertices and E is
edges.

Time Complexity of BFS =
O(V+E) where V is vertices and
E is edges.

Time
Complexity6

DFS is faster than BFS.BFS is slower than DFS.Speed5

DFS is more suitable for decision
tree. As with one decision, we need
to traverse further to augment the
decision. If we reach the conclusion,
we won.

As BFS considers all neighbour
so it is not suitable for decision
tree used in puzzle games.

Suitablity for
decision tree

4

DFS is better when target is far from
source.

BFS is better when target is
closer to Source.

Source
3

DFS uses Stack to find the shortest
path.

BFS uses Queue to find the
shortest path.

Data structure2

DFS, stands for Depth First Search.BFS, stands for Breadth First
Search.

Definition
1

DFSBFSKeySr.
No.

4. What is Minimum Spanning Tree?

Ans :
Spanning Tree

Spanning tree can be defined as a sub-graph of connected, undirected graph G that is a tree
produced by removing the desirednumber of edges from a graph. In other words, spanning tree is a non-
cyclic sub-graph of a connected and undirected graph Gthatconnects all thevertices together. Agraph G
canhave multiple spanningtrees.

MinimumSpanningTree

There can be weights assigned to every edge in a weighted graph. However, A minimum spanning
tree is a spanning tree which has minimal total weight. In other words, minimum spanning tree is the one
which contains the least weight among all other spanning tree of some particular graph.

5. What are the components of a Graph

Ans:
Components of a Graph

 Vertices

Vertices are the fundamental units of the graph. Sometimes, vertices are also known as vertex or
nodes. Every node/vertex can be labeled or unlabelled.

UNIT - III DATA STRUCTURES & ALGORITHMS

99
Rahul Publications

Rahul Publications

 Edges

Edges are drawn or used to connect two nodes of the graph. It can be ordered pair of nodes in a
directed graph. Edges can connect any two nodes in any possible way. There are no rules. Sometimes,
edges are also known as arcs. Every edge can be labeled/unlabelled.

V = {1, 2, 3, 4, 5, 6 }

E = {(1, 4), (1, 6), (2, 6), (4, 5), (5, 6)}

6. What is the difference between directed graph and non-directed graph?

Ans:
Directed graphs are graphs in which the edges have a direction. i.e. you can go from vertex A to

vertex B, but you cannot go from vertex B to vertex A. An example of a directed graph is a one-way street
city map. You can go only one direction on the edge (street) but not the other direction.

Non-directed graphs are graphs in which the edges do not have a direction. i.e. you can go from
vertex A to vertex B and vice versa. An example of a non-directed graph is a freeway map connecting
cities. You can go both directions on the edge

Directed Graph

A B

C D E

F G

IH

Non-Directed Graph

Directed vs Non-Directed Graph

7. What are weighted graphs?

Ans:
Weighted graphs are graphs in which edges are given weights to represent the value of a variable.

For example, in a graph of cities and freeways, the weight of an edge could represent the time it takes to
drive from one city to the other. Similarly, in an airline routes graph, the weight of an edge could represent
the cost of travel from one city to another.

B.Sc. III YEAR V SEMESTER

100
Rahul Publications

Rahul Publications

8. What is the difference between Connected Graph and Non-Connected Graph?

Ans:
In a connected graph there is at-least one path from every vertex to every other vertex.

In a non-connected graph every vertex may not be connected to every other vertex.

9. Explain about BFS Search Algorithm

Ans:
Breadth First Search (BFS) algorithm traverses a graph in a breadth ward motion and uses a queue

to remember to get the next vertex to start a search, when a dead end occurs in any iteration.

UNIT - III DATA STRUCTURES & ALGORITHMS

101
Rahul Publications

Rahul Publications

As in the example given above, BFS algorithm traverses from A to B to E to F first then to C and G
lastly to D. It employs the following rules.

 Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue.

 Rule 2 - If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 - Repeat Rule 1 and Rule 2 until the queue is empty.

10. Explain about DFS Search Algorithm.

Ans:
Depth First Search (DFS) algorithm traverses a graph in a depth ward motion and uses a stack to

remember to get the next vertex to start a search, when a dead end occurs in any iteration.

As in the example given above, DFS algorithm traverses from S to A to D to G to E to B first, then
to F and lastly to C. It employs the following rules.

 Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

 Rule 2 - If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the
vertices from the stack, which do not have adjacent vertices.)

 Rule 3 - Repeat Rule 1 and Rule 2 until the stack is empty.

B.Sc. III YEAR V SEMESTER

102
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. A graph in which all vertices have equal degree is known as [a]
(a) Complete graph (b) Regular graph
(c) Multi graph (d) Simple graph

2. A graph is a tree if and only if graph is [b]
(a) Directed graph (b) Contains no cycles
(c) Planar (d) Completely connected

3. Which of the following data structure is required to convertarithmetic expression in infix to its
equivalent postfix notation? [d]
(a) Queue (b) Linked list
(c) Binary search tree (d) None of above

4. If two trees have same structure and but different node content, then they are called
[d]

(a) Synonyms trees (b) Joint trees
(c) Equivalent trees (d) Similar trees

5. If two trees have same structure and node content, then they are called [c]
(a) Synonyms trees (b) Joint trees
(c) Equivalent trees (d) Similar trees

6. The operation of processing each element in the list is known as [d]
(a) Sorting (b) Merging
(c) Inserting (d) Traversal

7. Which of the following is non-liner data structure? [d]
(a) Stacks (b) List
(c) Strings (d) Trees

8. To represent hierarchical relationship between elements, which data structure is suitable? [c]
(a) Dequeue (b) Priority
(c) Tree (d) Graph

9. What would be the DFS traversal of the given Graph? [a]

(a) ABCED (b) AEDCB
(c) EDCBA (d) ADECB

10. Which of the following properties does a simple graph not hold? [a]

(a) Must be connected (b) Must be unweighted

(c) Must have no loops or multiple edges (d) Must have no multiple edges

UNIT - III DATA STRUCTURES & ALGORITHMS

103
Rahul Publications

Rahul Publications

Fill in the Blanks

1. The process where two rotations are required to balance a tree is called

2. When the height of the left subtree and right subtree of a node in an AVL Tree are equal the
balancing factor is

3. An Example of non-linear Data structure is

4. In RDBMS, the efficient data structure used in the Internal storage representation is

5. is the most suitable data structure to represent a dictionary of word.

6. Depth First Search is equivalent to which of the traversal in the Binary Trees

7. The Data structure used in standard implementation of Breadth First Search is

8. The Depth First Search traversal of a graph will result into a

9. A person wants to visit some places. He starts from a vertex and then wants to visit every vertex till
it finishes from one vertex, backtracks and then explore other vertex from same vertex. What
algorithm he should use

10. In Depth First Search, how many times a node is visited

ANSWERS

1. Double rotation.

2. 0 (Zero)

3. Graph

4. B+Tree

5. Binary Search Tree

6. Pre-order

7. Stack

8. Tree

9. DFS

10. Equivalent to number of indegree of the node

B.Sc. III YEAR V SEMESTER

104
Rahul Publications

Rahul Publications

One Mark Answers
1. What is the difference between connected graph and non-connected graph?

Ans:
In a connected graph there is at-least one path from every vertex to every other vertex.
In a non-connected graph every vertex may not be connected to every other vertex.

2. What is DFS?

Ans:
Depth–first search is a simple preorder or postorder traversal for a tree, and it contains only tree

edges
3. What is Dijkstra’s Algorithm?

Ans:
It Finds the shortest path from one node to all other nodes in a weighted graph.

4. What is Topological Sort?

Ans:
It Arranges the nodes in a directed, acyclic graph in a special order based on incoming edges.

5. What is Minimum Spanning Tree?

Ans:

It Finds the cheapest set of edges needed to reach all nodes in a weighted graph.
6. Diameter of a Graph.

Ans:
The maximum eccentricity from all the vertices is considered as the diameter of the Graph G. The

maximum among all the distances between a vertex to all other vertices is considered as the diameter of
the Graph G.
7. List out the DFS applications

Ans:
Artificial intelligence and machine learning. These two algorithms are very common.

8. List out the Dijkstra Applications

Ans:
Google Maps uses Dijkstra to find the shortest path in navigation and IP Routing.

9. Which data structures are used in BFS and DFS algorithm?

Ans:
 Ans: In BFS algorithm, Queue data structure is used.
 In DFS algorithm, Stack data structure is used.
10. What are the applications of Graph data structure?

Ans:
Graphs are used in maps that draw cities/states/regions as vertices and adjacency relations as edges.

105
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

UNIT
IV

Searching: Linear Search and Binary Search Techniques and their complexity
analysis. Sorting and Complexity Analysis: Selection Sort, Bubble Sort,
Insertion Sort, Quick Sort, Merge Sort, and Heap Sort. Algorithm Design
Techniques: Greedy algorithm, divide-and-conquer, dynamic programming.

4.1 SEARCHING

Q1. Explain about searching.

Ans:
Searching

 Searching is a process of finding a particular
element among several given elements.

 The search is successful if the required element
is found.

 Otherwise, the search is unsuccessful.

Searching Algorithms

Searching Algorithms are a family of
algorithms used for the purpose of searching. The
searching of an element in the given array may be
carried out in the following two ways:

Searching Algorithms

Linear Search Binary Search

 Linear Search

 Binary Search

4.1.1 Linear Search

Q2. Explain in detail about Linear Search
with an Example?

Ans: (Imp.)

 Linear Search is the simplest searching
algorithm.

 It traverses the array sequentially to locate the
required element.

 It searches for an element by comparing it
with each element of the array one by one.

 So, it is also called as Sequential Search.

Linear Search Algorithm is applied when-

 No information is given about the array.

 The given array is unsorted or the elements
are unordered.

 The list of data items is smaller.

Linear Search Algorithm

Consider

 There is a linear array ‘a’ of size ‘n’.

 Linear search algorithm is being used to
search an element ‘item’ in this linear array.

 If search ends in success, it sets loc to the index
of the element otherwise it sets loc to -1.

Linear Search Algorithm is as follows-
Linear_Search (a , n , item , loc)

Begin

for i = 0 to (n - 1) by 1 do
if (a[i] = item) then

set loc = i

Exit
endif

endfor

set loc = -1
End

106
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Linear Search Example

Consider

 We are given the following linear array.

 Element 15 has to be searched in it using
Linear Search Algorithm.

92 87 53 10 15 23 67

0 1 2 3 4 5 6
Linear Search Example

92 87 53 10 15 23 67

0 1 2 3 4 5 6
Linear Search Example

Now,

 Linear Search algorithm compares element
15 with all the elements of the array one by
one.

 It continues searching until either the element
15 is found or all the elements are searched.

 Linear Search Algorithm works in the
following steps:

Step - 01

 It compares element 15 with the 1st element
92.

 Since 15  92, so required element is not
found.

 So, it moves to the next element.

Step - 02

 It compares element 15 with the 2nd element
87.

 Since 15  87, so required element is not
found.

 So, it moves to the next element

Step - 03

 It compares element 15 with the 3rd element
53.

 Since 15  53, so required element is not
found.

 So, it moves to the next element.

St ep - 04

 It compares element 15 with the 4th element

10.

 Since 15  10, so required element is not

found.

 So, it moves to the next element.

Step - 05

 It compares element 15 with the 5th element

15.

 Since 15 = 15, so required element is found.

 Now, it stops the comparison and returns

index 4 at which element 15 is present.

Application of Linear Search Algorithm

The linear search algorithm has the following

applications:

 Linear search can be applied to both single-

dimensional and multi-dimensional arrays.

 Linear search is easy to implement and

effective when the array contains only a few

elements.

 Linear Search is also efficient when the search

is performed to fetch a single search in an

unordered-List.

4.1.2 Binary Search

Q3. Explain in detail about Binary Search

with an example?

Ans :

Binary Search is a searching algorithm used

in a sorted array by repeatedly dividing the search

interval in half. The idea of binary search is to use

the information that the array is sorted and reduce
the time complexity to O(Log n).

107
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Binary Search

 Binary Search is one of the fastest searching
algorithms.

 It is used for finding the location of an element
in a linear array.

 It works on the principle of divide and
conquer technique.

 Binary Search Algorithm can be applied only
on Sorted arrays.

 So, the elements must be arranged in-

 Either ascending order if the elements are
numbers.

 Or dictionary order if the elements are strings.

 To apply Binary Search on an unsorted array,

 First, sort the array using some sorting
technique.

 Then, use binary search algorithm.

Binary Search Algorithm

Consider

 There is a linear array ‘a’ of size ‘n’.

 Binary search algorithm is being used to
search an element ‘item’ in this linear array.

 If search ends in success, it sets loc to the index
of the element otherwise it sets loc to -1.

 Variables beg and end keeps track of the index
of the first and last element of the array or
sub array in which the element is being
searched at that instant.

 Variable mid keeps track of the index of the
middle element of that array or sub array in
which the element is being searched at that
instant.

Binary Search Algorithm is as follows

Begin

Set beg = 0

Set end = n-1

Set mid = (beg + end) / 2

while ((beg <= end) and (a[mid] item)) do

if (item < a[mid]) then

Set end = mid - 1

else

Set beg = mid + 1

endif

Set mid = (beg + end) / 2

endwhile

if (beg > end) then

Set loc = -1

else

Set loc = mid

endif

End

Explanation

Binary Search Algorithm searches an element
by comparing it with the middle most element of
the array.

Then, following three cases are possible:

Case - 01

If the element being searched is found to be
the middle most element, its index is returned.

Case - 02

If the element being searched is found to be
greater than the middle most element, then its
search is further continued in the right sub array of
the middle most element.

Case - 03

If the element being searched is found to be
smaller than the middle most element, then its
search is further continued in the left sub array of
the middle most element.

 This iteration keeps on repeating on the sub
arrays until the desired element is found (or) size of
the sub array reduces to zero.

Binary Search Example

Consider

 We are given the following sorted linear array.

 Element 15 has to be searched in it using
Binary Search Algorithm.

108
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

3 10 15 20 35 40 60

a[0] a[1] a[2] a[3] a[4] a[5] a[6]
Binary Search Example

Binary Search Algorithm works in the
following steps:

Step - 01

 To begin with, we take beg=0 and end=6.

 We compute location of the middle element
as- mid

= (beg + end) / 2

= (0 + 6) / 2

= 3

 Here, a[mid] = a[3] = 20  15 and beg <
end.

 So, we start next iteration.

Step - 02

 Since a[mid] = 20 > 15, so we take end =
mid – 1 = 3 – 1 = 2 whereas beg remains
unchanged.

 We compute location of the middle element
as-mid

= (beg + end) / 2

= (0 + 2) / 2

= 1

 Here, a[mid] = a[1] = 10  15 and beg <
end.

 So, we start next iteration.

Step - 03

 Since a[mid] = 10 < 15, so we take beg =
mid + 1 = 1 + 1 = 2 whereas end remains
unchanged.

 We compute location of the middle element
as- mid

= (beg + end) / 2

= (2 + 2) / 2

= 2

 Here, a[mid] = a[2] = 15 which matches to
the element being searched.

 So, our search terminates in success and index
2 is returned.

4.1.3 Complexity Analysis of Linear Search

Q4. Discuss in detail about Complexity
Analysis of Linear Search.

Ans:
Time Complexity Analysis

Linear Search time complexity analysis is done
below-

Best case

In the best possible case,

 The element being searched may be found
at the first position.

 In this case, the search terminates in success
with just one comparison.

 Thus in best case, linear search algorithm
takes O(1) operations.

Worst Case

 In the worst possible case,

 The element being searched may be present
at the last position or not present in the array
at all.

 In the former case, the search terminates in
success with n comparisons.

 In the later case, the search terminates in
failure with n comparisons.

 Thus in worst case, linear search algorithm
takes O(n) operations.

Thus, we have-

Time Complexity of Linear Search
Algorithm is O(n)

Here, n is the number of elements in the linear
array.

Space Complexity Analysisof Linear Search:

In Linear Search, we are creating a Boolean
variable to store if the element to be searched is
present or not.

109
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

The variable is initialized to false and if the
element is found, the variable is set to true. This
variable can be used in other processes or returned
by the function.

In Linear Search function, we can avoid using
this Boolean variable as well and return true or false
directly.

The input to Linear Search involves:

 A list/ array of N elements

 A variable storing the element to be searched.

As the amount of extra data in Linear Search
is fixed, the Space Complexity is O(1).

Therefore, Space Complexity of Linear
Search is O(1).

 Best Case Time Complexity of Linear Search:
O(1)

 Average Case Time Complexity of Linear
Search: O(N)

 Worst Case Time Complexity of Linear
Search: O(N)

 Space Complexity of Linear Search: O(1)

 Number of comparisons in Best Case: 1

 Number of comparisons in Average Case: N/
2 + N/(N+1)

 Number of comparisons in Worst Case: N

4.1.4 Time Complexity Analysis of Binary
Search

Q5. Discuss in detail about Complexity
Analysis of Binary Search.

Ans :
Binary Search time complexity analysis

is done below:

 In each iteration or in each recursive call, the
search gets reduced to half of the array.

 So for n elements in the array, there are log2n
iterations or recursive calls.

Thus, we have

Time Complexity of Binary Search
Algorithm is O(log2n):

Here, n is the number of elements in the
sorted linear array.

This time complexity of binary search remains
unchanged irrespective of the element position even
if it is not present in the array.

Space Complexity Analysis of Binary Search:

In an iterative implementation of Binary
Search, the space complexity will be O(1).

This is because we need two variables to keep
track of the range of elements that are to be checked.
No other data is needed.

In a recursive implementation of Binary
Search, the space complexity will be O(logN).

This is because in the worst case, there will be
logN recursive calls and all these recursive calls will
be stacked in memory. In fact, if I comparisons are
needed, then I recursive calls will be stacked in
memory and from our analysis of average case time
complexity, we know that the average memory will
be O(logN) as well.

Time and Space Complexity analysis of Binary
Search is as follows:

 Best Case Time Complexity of Binary Search:
O(1)

 Average Case Time Complexity of Binary
Search: O(logN)

 Worst Case Time Complexity of Binary
Search: O(logN)

 Space Complexity of Binary Search: O(1) for
iterative, O(logN) for recursive.

4.2 SORTING AND COMPLEXITY ANALYSIS

4.2.1 Selection Sort

Q6. Explain in detail about Selection Sort
with an example and its complexity.

Ans: (Imp.)

In selection sort, the smallest value among
the unsorted elements of the array is selected in
every pass and inserted to its appropriate position
into the array. It is also the simplest algorithm. It is
an in-place comparison sorting algorithm. In this
algorithm, the array is divided into two parts, first is

110
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

sorted part, and another one is the unsorted part.
Initially, the sorted part of the array is empty, and
unsorted part is the given array. Sorted part is placed
at the left, while the unsorted part is placed at the
right.

In selection sort, the first smallest element is
selected from the unsorted array and placed at the
first position. After that second smallest element is
selected and placed in the second position. The
process continues until the array is entirely sorted.

The average and worst-case complexity of
selection sort is O(n2), where n is the number of
items. Due to this, it is not suitable for large data
sets.

Working of Selection Sort

Follow the below steps to solve the problem:

 Initialize minimum value(min_idx) to location
0.

 Traverse the array to find the minimum
element in the array.

 While traversing if any element smaller
than min_idx is found then swap both the
values.

 Then, increment min_idx to point to the
next element.

 Repeat until the array is sorted.

Let’s consider the following array as an
example: arr[] = {64, 25, 12, 22, 11}.

First pass

 For the first position in the sorted array, the
whole array is traversed from index 0 to 4
sequentially. The first position where 64 is
stored presently, after traversing whole array
it is clear that 11 is the lowest value.

64 25 12 22 11

 Thus, replace 64 with 11. After one
iteration 11, which happens to be the least
value in the array, tends to appear in the first
position of the sorted list.

11 25 12 22 64

Second Pass

 For the second position, where 25 is present,
again traverse the rest of the array in a
sequential manner.

 11 25 12 22 64

 After traversing, we found that 12 is the
second lowest value in the array and it should
appear at the second place in the array, thus
swap these values.

 11 12 25 22 64

Third Pass

 Now, for third place, where 25 is present
again traverse the rest of the array and find
the third least value present in the array.

11 12 25 22 64

 While traversing, 22 came out to be the third
least value and it should appear at the third
place in the array, thus swap 22 with element
present at third position.

11 12 22 25 64

Fourth pass

 Similarly, for fourth position traverse the rest
of the array and find the fourth least element
in the array

 As 25 is the 4th lowest value hence, it will
place at the fourth position.

11 12 22 25 64

Fifth Pass

 At last the largest value present in the array
automatically get placed at the last position
in the array

 The resulted array is the sorted array.

11 12 22 25 64

Selection sort complexity

The time complexity of selection sort in best
case, average case, and in worst case. We will also
see the space complexity of the selection sort.

111
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

1. Time Complexity

Case Time Complexity

Best Case O(n2)

Average Case O(n2)

Worst Case O(n2)

 Best Case Complexity: It occurs
when there is no sorting required, i.e.
the array is already sorted. The best-case
time complexity of selection sort
is O(n2).

 Average Case Complexity : It occurs
when the array elements are in jumbled
order that is not properly ascending and
not properly descending. The average
case time complexity of selection sort
is O(n2).

 Worst Case Complexity: It occurs
when the array elements are required
to be sorted in reverse order. That
means suppose you have to sort the
array elements in ascending order, but
its elements are in descending order. The
worst-case time complexity of selection
sort is O(n2).

2. Space Complexity

Space Complexity

O(1)

Stable

YES

The space complexity of selection sort is O(1).
It is because, in selection sort, an extra variable is
required for swapping.

4.2.2 Bubble Sort

Q7. Explain in detail about Bubble Sort with
an example and its complexity.

Ans :
Bubble sort works on the repeatedly

swapping of adjacent elements until they are not in
the intended order. It is called bubble sort because
the movement of array elements is just like the
movement of air bubbles in the water. Bubbles in
water rise up to the surface; similarly, the array
elements in bubble sort move to the end in each
iteration.

Although it is simple to use, it is primarily used
as an educational tool because the performance of
bubble sort is poor in the real world. It is not suitable
for large data sets. The average and worst-case
complexity of Bubble sort is O(n2), where n is a
number of items.

Algorithm

In the algorithm given below, suppose arr is
an array of n elements. The assumed swap
function in the algorithm will swap the values of
given array elements.

Begin BubbleSort(arr)

for all array elements

if arr[i] > arr[i+1]

swap(arr[i], arr[i+1])

end if

 end for

return arr

End BubbleSort

Working of Bubble sort Algorithm

The working of Bubble sort Algorithm.

To understand the working of bubble sort
algorithm, let’s take an unsorted array. We are taking
a short and accurate array, as we know the
complexity of bubble sort is O(n2).

Let the elements of array are:

13 32 26 35 10

First Pass

Sorting will start from the initial two elements.
Let compare them to check which is greater.

13 32 26 35 10

Here, 32 is greater than 13 (32 > 13), so it is
already sorted. Now, compare 32 with 26.

13 32 26 35 10

112
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Here, 26 is smaller than 36. So, swapping is
required. After swapping new array will look like -

13 26 32 35 10

Now, compare 32 and 35.

13 26 32 35 10

Here, 35 is greater than 32. So, there is no
swapping required as they are already sorted.

Now, the comparison will be in between 35
and 10.

13 26 32 35 10

Here, 10 is smaller than 35 that are not
sorted. So, swapping is required. Now, we reach at
the end of the array. After first pass, the array will
be -

13 26 32 10 35

Now, move to the second iteration.

Second Pass

The same process will be followed for second
iteration.

13 26 32 10 35

13 26 32 10 35

13 26 32 10 35

Here, 10 is smaller than 32. So, swapping is
required. After swapping, the array will be -

13 26 10 32 35

13 26 10 32 35

Now, move to the third iteration.

Third Pass

The same process will be followed for third
iteration.

13 26 10 32 35

13 26 10 32 35

Here, 10 is smaller than 26. So, swapping is
required. After swapping, the array will be -

13 10 26 32 35

13 10 26 32 35

13 10 26 32 35

Now, move to the fourth iteration.

Fourth pass

Similarly, after the fourth iteration, the array
will be:

10 13 26 32 35

Hence, there is no swapping required, so the
array is completely sorted.

Bubble sort complexity

Now, let’s see the time complexity of bubble
sort in the best case, average case, and worst case.
We will also see the space complexity of bubble sort.

1. Time Complexity

Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

Best Case Complexity: It occurs when
there is no sorting required, i.e. the array is
already sorted. The best-case time complexity
of bubble sort is O(n).

113
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Average Case Complexity: It occurs when
the array elements are in jumbled order that
is not properly ascending and not properly
descending. The average case time complexity
of bubble sort is O(n2).

Worst Case Complexity: It occurs when
the array elements are required to be sorted
in reverse order. That means suppose you
have to sort the array elements in ascending
order, but its elements are in descending
order. The worst-case time complexity of
bubble sort is O(n2).

2. Space Complexity

Space Complexity O(1)

The space complexity of bubble sort is O(1).
It is because, in bubble sort, an extra variable
is required for swapping.

The space complexity of optimized bubble sort
is O(2). It is because two extra variables are
required in optimized bubble sort.

4.2.3 Insertion Sort

Q8. Explain in detail about Insertion Sort
with an example and its complexly.

Ans : (Imp.)

Insertion sort works similar to the sorting of
playing cards in hands. It is assumed that the first
card is already sorted in the card game, and then
we select an unsorted card. If the selected unsorted
card is greater than the first card, it will be placed at
the right side; otherwise, it will be placed at the left
side. Similarly, all unsorted cards are taken and put
in their exact place.

The same approach is applied in insertion sort.
The idea behind the insertion sort is that first take
one element, iterate it through the sorted array.
Although it is simple to use, it is not appropriate for
large data sets as the time complexity of insertion
sort in the average case and worst case is O(n2),
where n is the number of items. Insertion sort is less
efficient than the other sorting algorithms like heap
sort, quick sort, merge sort, etc.

Algorithm

The simple steps of achieving the insertion
sort are listed as follows:

Step 1

If the element is the first element, assume that
it is already sorted. Return 1.

Step 2

Pick the next element, and store it separately
in a key.

Step 3

Now, compare the key with all elements in
the sorted array.

Step 4

If the element in the sorted array is smaller
than the current element, then move to the next
element. Else, shift greater elements in the array
towards the right.

Step 5

Insert the value.

Step 6

Repeat until the array is sorted.

Working of Insertion sort Algorithm

Now, let’s see the working of the insertion
sort Algorithm.

To understand the working of the insertion
sort algorithm, let’s take an unsorted array. It will
be easier to understand the insertion sort via an
example.

Let the elements of array are:

12 31 25 8 32 1712 31 25 8 32 17

Initially, the first two elements are compared
in insertion sort.

12 31 25 8 32 17

Here, 31 is greater than 12. That means both
elements are already in ascending order. So, for now,
12 is stored in a sorted sub-array.

114
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

12 31 25 8 32 17

Now, move to the next two elements and
compare them.

12 31 25 8 32 17

12 31 25 8 32 17

Here, 25 is smaller than 31. So, 31 is not at
correct position. Now, swap 31 with 25. Along with
swapping, insertion sort will also check it with all
elements in the sorted array.

For now, the sorted array has only one
element, i.e. 12. So, 25 is greater than 12. Hence,
the sorted array remains sorted after swapping.

12 24 31 8 32 17

Now, two elements in the sorted array are 12
and 25. Move forward to the next elements that
are 31 and 8.

12 25 31 8 32 17

12 25 31 8 32 17

Both 31 and 8 are not sorted. So, swap them.

12 25 8 31 32 17

After swapping, elements 25 and 8 are
unsorted.

12 25 8 31 32 17

So, swap them.

12 8 25 31 32 17

Now, elements 12 and 8 are unsorted.

12 8 25 31 32 17

So, swap them too.

8 12 25 31 32 17

Now, the sorted array has three items that
are 8, 12 and 25. Move to the next items that are
31 and 32.

8 12 25 31 32 17

Hence, they are already sorted. Now, the
sorted array includes 8, 12, 25 and 31.

8 12 25 31 32 17

Move to the next elements that are 32 and
17.

8 12 25 31 32 17

17 is smaller than 32. So, swap them.

8 12 25 31 17 32

8 12 25 31 17 32

Swapping makes 31 and 17 unsorted. So,
swap them too.

8 12 25 17 31 32

8 12 25 17 31 32

Now, swapping makes 25 and 17 unsorted.
So, perform swapping again.

8 12 17 25 31 32

Now, the array is completely sorted.

Insertion sort complexity

The time complexity of insertion sort in best
case, average case, and in worst case. We will also
see the space complexity of insertion sort.

1. Time Complexity

Case Time Complexity

Best Case O(n)

Average Case O(n2)

Worst Case O(n2)

115
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

 Best Case Complexity: It occurs when
there is no sorting required, i.e. the array is
already sorted. The best-case time complexity
of insertion sort is O(n).

 Average Case Complexity: It occurs when
the array elements are in jumbled order that
is not properly ascending and not properly
descending. The average case time complexity
of insertion sort is O(n2).

 Worst Case Complexity: It occurs when
the array elements are required to be sorted
in reverse order. That means suppose you
have to sort the array elements in ascending
order, but its elements are in descending
order. The worst-case time complexity of
insertion sort is O(n2).

2. Space Complexity

Space Complexity O(1)

The space complexity of insertion sort is O(1).
It is because, in insertion sort, an extra variable is
required for swapping.

4.2.4 Quick Sort

Q9. Explain in detail about Quick Sort with
an example and its complexity.

Ans :
Sorting is a way of arranging items in a

systematic manner. Quicksort is the widely used
sorting algorithm that makes n log n comparisons
in average case for sorting an array of n elements.
It is a faster and highly efficient sorting algorithm.
This algorithm follows the divide and conquer
approach. Divide and conquer is a technique of
breaking down the algorithms into subproblems,
then solving the subproblems, and combining the
results back together to solve the original problem.

Divide

In Divide, first pick a pivot element. After that,
partition or rearrange the array into two sub-arrays
such that each element in the left sub-array is less
than or equal to the pivot element and each element
in the right sub-array is larger than the pivot
element.

Conquer

Recursively, sor t two subarrays with
Quicksort.

Combine

Combine the already sorted array.

Quicksort picks an element as pivot, and then
it partitions the given array around the picked pivot
element. In quick sort, a large array is divided into
two arrays in which one holds values that are smaller
than the specified value (Pivot), and another array
holds the values that are greater than the pivot.

After that, left and right sub-arrays are also
partitioned using the same approach. It will continue
until the single element remains in the sub-array.

Pivot

Quick Sort

Choosing the pivot

Picking a good pivot is necessary for the fast
implementation of quicksort. However, it is typical
to determine a good pivot. Some of the ways of
choosing a pivot are as follows -

 Pivot can be random, i.e. select the random
pivot from the given array.

 Pivot can either be the rightmost element of
the leftmost element of the given array.

 Select median as the pivot element.

Working of Quick Sort Algorithm

Let the elements of array are -

24 9 29 14 19 27

In the given array, we consider the leftmost
element as pivot. So, in this case, a[left] = 24,
a[right] = 27 and a[pivot] = 24.

Since, pivot is at left, so algorithm starts from
right and move towards left.

116
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

24 9 29 14 19 27

Left

Pivot Right

Now, a[pivot] < a[right], so algorithm moves
forward one position towards left, i.e. -

24 9 29 14 19 27

Left

Pivot Right

Now, a[left] = 24, a[right] = 19, and a[pivot]
= 24.

Because, a[pivot] > a[right], so, algorithm will
swap a[pivot] with a[right], and pivot moves to right,
as -

19 9 29 14 24 27

pivot

Left Right

19 9 29 14 24 27

pivot

Left Right

Now, a[left] = 19, a[right] = 24, and a[pivot]
= 24. Since, pivot is at right, so algorithm starts
from left and moves to right.

As a[pivot] > a[left], so algorithm moves one
position to right as -

19 9 29 14 24 27

pivot

Left Right

Now, a[left] = 9, a[right] = 24, and a[pivot]
= 24. As a[pivot] > a[left], so algorithm moves
one position to right as -

19 9 29 14 24 27

pivot

Left Right

Now, a[left] = 29, a[right] = 24, and a[pivot]
= 24. As a[pivot] < a[left], so, swap a[pivot] and
a[left], now pivot is at left, i.e. -

19 9 24 14 29 27

pivot

Left Right

Since, pivot is at left, so algorithm starts from
right, and move to left. Now, a[left] = 24, a[right]
= 29, and a[pivot] = 24. As a[pivot] < a[right], so
algorithm moves one position to left, as -

19 9 24 14 29 27

pivot

Left Right

Now, a[pivot] = 24, a[left] = 24, and a[right]
= 14. As a[pivot] > a[right], so, swap a[pivot] and
a[right], now pivot is at right, i.e. -

19 9 14 24 29 27

pivot

Left Right

117
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Now, a[pivot] = 24, a[left] = 14, and a[right]
= 24. Pivot is at right, so the algorithm starts from
left and move to right.

19 9 14 24 29 27

pivot

Left Right

Now, a[pivot] = 24, a[left] = 24, and a[right]
= 24. So, pivot, left and right are pointing the same
element. It represents the termination of procedure.

Element 24, which is the pivot element is
placed at its exact position.

Elements that are right side of element 24
are greater than it, and the elements that are left
side of element 24 are smaller than it.

19 9 14 24 29 27

Left sub array Right sub array

Now, in a similar manner, quick sort algorithm
is separately applied to the left and right sub-arrays.
After sorting gets done, the array will be -

9 14 19 24 27 29

Quicksort complexity

Now, let’s see the time complexity of quicksort
in best case, average case, and in worst case. We
will also see the space complexity of quicksort.

1. Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n2)

 Best Case Complexity - In Quicksort, the
best-case occurs when the pivot element is
the middle element or near to the middle
element. The best-case time complexity of
quicksort is O(n*logn).

 Average Case Complexity: It occurs when
the array elements are in jumbled order that
is not properly ascending and not properly
descending. The average case time complexity
of quicksort is O(n*logn).

 Worst Case Complexity: In quick sort,
worst case occurs when the pivot element is
either greatest or smallest element. Suppose,
if the pivot element is always the last element
of the array, the worst case would occur when
the given array is sorted already in ascending
or descending order. The worst-case time
complexity of quicksort is O(n2).

2. Space Complexity

Space Complexity O(n*logn)

 The space complexity of quicksort is
O(n*logn).

4.2.5 Merge Sort

Q10. Explain in detail about Merge Sort with
an example and its complexity.

Ans :
Merge sort is similar to the quick sort algorithm

as it uses the divide and conquer approach to sort
the elements. It is one of the most popular and
efficient sorting algorithm. It divides the given list
into two equal halves, calls itself for the two halves
and then merges the two sorted halves. We have to
define the merge() function to perform the
merging.

The sub-lists are divided again and again into
halves until the list cannot be divided further. Then
we combine the pair of one element lists into two-
element lists, sorting them in the process. The sorted
two-element pairs is merged into the four-element
lists, and so on until we get the sorted list.

Algorithm

In the following algorithm, arr is the given
array, beg is the starting element, and end is the
last element of the array.

1. MERGE_SORT(arr, beg, end)
2.
3. if beg < end
4. set mid = (beg + end)/2

118
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

5. MERGE_SORT(arr, beg, mid)

6. MERGE_SORT(arr, mid + 1, end)

7. MERGE (arr, beg, mid, end)

8. end of if

9.

10. END MERGE_SORT

The important part of the merge sort is the MERGE function. This function performs the merging of
two sorted sub-arrays that are A[beg…mid] and A[mid+1…end], to build one sorted array A[beg…end].
So, the inputs of the MERGE function are A[], beg, mid, and end.

Working of Merge sort Algorithm:

The working of merge sort Algorithm.

To understand the working of the merge sort algorithm, let’s take an unsorted array. It will be easier
to understand the merge sort via an example.

Let the elements of array are:

12 31 25 8 32 17 40 42

According to the merge sort, first divide the given array into two equal halves. Merge sort keeps
dividing the list into equal parts until it cannot be further divided.

As there are eight elements in the given array, so it is divided into two arrays of size 4.

12 31 25 8 32 17 40 42divide

Now, again divide these two arrays into halves. As they are of size 4, so divide them into new arrays
of size 2.

12 31 25 8 32 17 40 42divide

Now, again divide these arrays to get the atomic value that cannot be further divided.

12 31 25 8 32 17 40 42divide

Now, combine them in the same manner they were broken.

In combining, first compare the element of each array and then combine them into another array
in sorted order.

So, first compare 12 and 31, both are in sorted positions. Then compare 25 and 8, and in the list of
two values, put 8 first followed by 25. Then compare 32 and 17, sort them and put 17 first followed by
32. After that, compare 40 and 42, and place them sequentially.

12 31 8 25 17 32 40 42merge

In the next iteration of combining, now compare the arrays with two data values and merge them
into an array of found values in sorted order.

119
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

8 12 25 31 17 32 40 42merge

Now, there is a final merging of the arrays. After the final merging of above arrays, the array will
look like -

8 12 17 24 31 32 40 42

Now, the array is completely sorted.

Merge sort complexity

Now, let’s see the time complexity of merge sort in best case, average case, and in worst case. We
will also see the space complexity of the merge sort.

1. Time Complexity

Case Time Complexity

Best Case O(n*logn)

Average Case O(n*logn)

Worst Case O(n*logn)

 Best Case Complexity: It occurs when there is no sorting required, i.e. the array is already
sorted. The best-case time complexity of merge sort is O(n*logn).

 Average Case Complexity: It occurs when the array elements are in jumbled order that is
not properly ascending and not properly descending. The average case time complexity of
merge sort is O(n*logn).

 Worst Case Complexity: It occurs when the array elements are required to be sorted in
reverse order. That means suppose you have to sort the array elements in ascending order,
but its elements are in descending order. The worst-case time complexity of merge sort
is O(n*logn).

2. Space Complexity

Space Complexity O(n)

 The space complexity of merge sort is O(n). It is because, in merge sort, an extra variable is
required for swapping.

4.2.6 Heap Sort

Q11. Explain in detail about Heap Sort with an example and its complexity.

Ans : (Imp.)

Heap sort processes the elements by creating the min-heap or max-heap using the elements of the
given array. Min-heap or max-heap represents the ordering of array in which the root element represents
the minimum or maximum element of the array.

Heap sort basically recursively performs two main operations -

 Build a heap H, using the elements of array.

 Repeatedly delete the root element of the heap formed in 1st phase.

Before knowing more about the heap sort, let’s first see a brief description of Heap.

120
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Heap

A heap is a complete binary tree, and the binary tree is a tree in which the node can have the
utmost two children. A complete binary tree is a binary tree in which all the levels except the last level, i.e.,
leaf node, should be completely filled, and all the nodes should be left-justified.

Heap Sort

Heapsort is a popular and efficient sorting algorithm. The concept of heap sort is to eliminate the
elements one by one from the heap part of the list, and then insert them into the sorted part of the list.

Working of Heap sort Algorithm

The working of the Heapsort Algorithm.

In heap sort, basically, there are two phases involved in the sorting of elements. By using the heap
sort algorithm, they are as follows -

 The first step includes the creation of a heap by adjusting the elements of the array.

 After the creation of heap, now remove the root element of the heap repeatedly by shifting it to the
end of the array, and then store the heap structure with the remaining elements.

81 89 9 11 14 76 54 22

 First, we have to construct a heap from the given array and convert it into max heap.

81

89 9

11 14 76 54

22

89

81 76

22 14 9 54

11

Heapify

Heap Max Heap

 After converting the given heap into max heap, the array elements are -

89 81 76 22 14 9 54 11

 Next, we have to delete the root element (89) from the max heap. To delete this node, we have
to swap it with the last node, i.e. (11). After deleting the root element, we again have to heapify
it to convert it into max heap.

11

81 76

22 14 9 54

81

22 76

11 14 9 54

Heapify

Heap after deleting 89 Max Heap

121
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

 After swapping the array element 89 with 11, and converting the heap into max-heap, the
elements of array are -

81 22 76 11 14 9 54 89

 In the next step, again, we have to delete the root element (81) from the max heap. To delete this
node, we have to swap it with the last node, i.e. (54). After deleting the root element, we again
have to heapify it to convert it into max heap.

54

22 76

11 14 9

76

22 54

11 14 9

Heapify

Heap after deleting 81 Max Heap

54

22 76

11 14 9

76

22 54

11 14 9

Heapify

Heap after deleting 81 Max Heap

 After swapping the array element 81 with 54 and converting the heap into max-heap, the
elements of array are -

76 22 54 11 14 9 81 89

 In the next step, we have to delete the root element (76) from the max heap again. To delete this
node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again
have to heapify it to convert it into max heap.

9

22 54

11 14

54

22 9

11 14

Heapify

Heap after deleting 76 Max Heap

 After swapping the array element 76 with 9 and converting the heap into max-heap, the elements
of array are -

54 22 9 11 14 76 81 89

 In the next step, again we have to delete the root element (54) from the max heap. To delete this
node, we have to swap it with the last node, i.e. (14). After deleting the root element, we again
have to heapify it to convert it into max heap.

14

22 9

11

22

14 9

11

Heapify

Heap after deleting 54 Max Heap

122
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

 After swapping the array element 54 with 14 and converting the heap into max-heap, the
elements of array are -

22 14 9 11 54 76 81 89

 In the next step, again we have to delete the root element (22) from the max heap. To delete this
node, we have to swap it with the last node, i.e. (11). After deleting the root element, we again
have to heapify it to convert it into max heap.

11

14 9

14

11 9
Heapify

Heap after deleting 22 Max Heap

 After swapping the array element 22 with 11 and converting the heap into max-heap, the
elements of array are -

14 11 9 22 54 76 81 89

 In the next step, again we have to delete the root element (14) from the max heap. To delete this
node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again
have to heapify it to convert it into max heap.

9

11

11

9
Heapify

Heap after deleting 14 Max Heap

 After swapping the array element 14 with 9 and converting the heap into max-heap, the elements
of array are -

11 9 14 22 54 76 81 89

 In the next step, again we have to delete the root element (11) from the max heap. To delete this
node, we have to swap it with the last node, i.e. (9). After deleting the root element, we again
have to heapify it to convert it into max heap.

11 9
Heapify

Heap after deleting 11 Max Heap

 After swapping the array element 11 with 9, the elements of array are -

9 11 14 22 54 76 81 899 11 14 22 54 76 81 89

 Now, heap has only one element left. After deleting it, heap will be empty.

9
Remove 9

Empty

123
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

 After completion of sorting, the array elements are -

9 11 14 22 54 76 81 899 11 14 22 54 76 81 89

 Now, the array is completely sorted.

Heap sort complexity

 Now, let’s see the time complexity of Heap sort in the best case, average case, and worst case. We
will also see the space complexity of Heapsort.

1. Time Complexity

Case Time Complexity

Best Case O(n logn)

Average Case O(n log n)

Worst Case O(n log n)

 Best Case Complexity - It occurs when there is no sorting required, i.e. the array is already
sorted. The best-case time complexity of heap sort is O(n logn).

 Average Case Complexity - It occurs when the array elements are in jumbled order that is
not properly ascending and not properly descending. The average case time complexity of
heap sort is O(n log n).

 Worst Case Complexity - It occurs when the array elements are required to be sorted in
reverse order. That means suppose you have to sort the array elements in ascending order,
but its elements are in descending order. The worst-case time complexity of heap sort is O(n
log n).

The time complexity of heap sort is O(n logn) in all three cases (best case, average case, and worst
case). The height of a complete binary tree having n elements is logn.

2. Space Complexity

Space Complexity O(1)

 The space complexity of Heap sort is O(1).

Q12. Compare various sorting techniques with real world usage.

Ans : (Imp.)

Selection sort

Selection sort is an exception in our list. This is considered an academic sorting algorithm. Because
the time efficiency is always O(n2) which is not acceptable. There is no real world usage for selection sort
except passing the data structure course exam.

Pros

 Nothing

cons

 Always run at O(n2) even at best case scenario

Bubble sort

This is the other exception in the list because bubble sort is too slow to be practical. Unless the
sequence is almost sorted feasibility of bubble sort is zero and the running time is O(n2). This is one of the
three simple sorting algorithms alongside selection sort and insertion sort but like selection sort falls short
of insertions sort in terms of efficiency even for small sequences.

124
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Pros

 Again nothing, maybe just “catchy name”

Cons

 With polynomial O(n2) it is too slow

Insertion sort

Insertion sort is definitely not the most efficient
algorithm out there but its power lies in its simplicity.
Since it is very easy to implement and adequately
efficient for small number of elements, it is useful
for small applications or trivial ones. The definition
of small is vague and depends on a lot of things but
a safe bet is if under 50, insertion sort is fast enough.
Another situation that insertion sort is useful is when
the sequence is almost sorted. Such sequences may
seem like exceptions but in real world applications
often you encounter almost sorted elements. The
run time of insertions sort is O(n2) at worst case
scenario. So far we have another useless alternative
for selection sort. But if implemented well the run
time can be reduced to O(n+k). n is the number of
elements and k is the number of inversions (the
number of pair of elements out of order). With this
new run time in mind you can see if the sequence is
almost sorted (k is small) the run time can be almost
linear which is a huge improvement over the
polynomial n2.

Pros

 Easy to implement

 The more the sequence is ordered the closer
is run time to linear time O(n)

Cons

 Not suitable for large data sets

 Still polynomial at worst case

Heap sort

This is the first general purpose sorting
algorithm we are introducing here. Heap sort runs
at O(nlogn) which is optimal for comparison based
sorting algorithms. Though heap sort has the same
run time as quick sort and merge sort but it is usually
outperformed in real world scenarios. If you are
asking then why should anyone use it, the answer
lies in space efficiency. Nowadays computers come
with huge amount of memory, enough for many
applications. Does this mean heap sort is losing its
shine? No, stil l when writing programs for
environments with limited memory, such as

embedded systems or space efficiency is much more
important than time efficiency. A rule of thumb is if
the sequence is small enough to easily fit in main
memory then heap sort is good choice.

Pros

 Runs at O(nlogn)

 Can be easily implemented to be executed
in place

Cons

 Not as fast as other comparison based
algorithms in large data sets

 It doesn’t provide stable sorting

Quick sort

One of the most widely used sorting
algorithms in computer industry. Surprisingly quick
sort has a running time of O(n2) that makes it
susceptible in real-time applications. Having a
polynomial worst case scenario still quick sort usually
outperforms both quick sort and merge sort
(coming next). The reason behind the popularity
of quick sort despite the short comings is both being
fast in real world scenarios (not necessarily worst
case) and the ability to be implemented as an in
place algorithm.

Pros

 Most often than not runs at O(nlogn)

 Quick sort is tried and true, has been used
for many years in industry so you can be
assured it is not going to fail you

 High space efficiency by executing in place

Cons

 Polynomial worst case scenario makes it
susceptible for time critical applications

 Provides non stable sort due to swapping of
elements in partitioning step

Merge sort

Having a O(nlogn) worst case scenario run
time makes merge sort a powerful sorting algorithm.
The main drawback of this algorithm is its space
inefficiency. That is in the process of sorting lots of
temporary arrays have to be created and many
copying of elements is involved. This doesn’t mean

125
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

merge sort is not useful. When the data to be sorted is distributed across different locations like cache,
main memory etc then copying data is inevitable. Merge sort mainly owes its popularity to Tim Peters who
designed a variant of it which is in essence a bottom-up merge sort and is known as Tim sort.

Pros
 Excellent choice when data is fetched from resources other than main memory
 Having a worst case scenario run time of O(nlogn) which is optimal
 Tim sort variant is really powerful
Cons
 Lots of overhead in copying data between arrays and making new arrays
 Extremely difficult to implement it in place for arrays
 Space inefficiency
Special purpose sorting algorithms

Though currently O(nlogn) seems like an unbreakable cap for sorting algorithms, this just holds
true for general purpose sorts. If the entities to be sorted are integers, strings or d-tuples then you are not
limited by the sorting algorithms above. Radix sort and Bucket sort are two of most famous special
purpose sorting algorithms. Their worst case scenario run time is O(f(n+r)). [0, r-1] is the range of
integers and f=1 for bucket sort. All in all this means if f(n+r) is significantly below nlogn function then
these methods are faster than three powerful general purpose sorting algorithms, merge sort, quick sort
and heap sort.
pros
 They can run faster than nlogn
cons
 Cannot be used for every type of data
 Not necessarily always run faster than general purpose algorithms
Comparison table:

worst case time average case time best case time worst case space
Selection sort O(n2) O(n2) O(n2) O(n)
Bubble sort O(n2) O(n2) O(n) O(1)
Insertion sort O(n2) O(n2) O(n) O(n)
Heap sort O(nlogn) O(nlogn) O(nlogn) O(1)
Quick sort O(n2) O(nlogn) O(nlogn) O(logn)
Merge sort O(nlogn) O(nlogn) O(nlogn) O(n)

4.3 ALGORITHM DESIGN TECHNIQUES

4.3.1 Greedy Algorithm

Q13. Explain in detail about Greedy Algorithm with its applications.

Ans: (Imp.)

The greedy method is one of the strategies like Divide and conquer used to solve the problems. This
method is used for solving optimization problems. An optimization problem is a problem that demands
either maximum or minimum results. Let’s understand through some terms.

126
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

The Greedy method is the simplest and straightforward approach. It is not an algorithm, but it is a
technique. The main function of this approach is that the decision is taken on the basis of the currently
available information. Whatever the current information is present, the decision is made without worrying
about the effect of the current decision in future.

This technique is basically used to determine the feasible solution that may or may not be optimal.
The feasible solution is a subset that satisfies the given criteria. The optimal solution is the solution which is
the best and the most favorable solution in the subset. In the case of feasible, if more than one solution
satisfies the given criteria then those solutions will be considered as the feasible, whereas the optimal
solution is the best solution among all the solutions.
Characteristics of Greedy method

The following are the characteristics of a greedy method:
 To construct the solution in an optimal way, this algorithm creates two sets where one set contains all

the chosen items, and another set contains the rejected items.
 A Greedy algorithm makes good local choices in the hope that the solution should be either feasible

or optimal.
Components of Greedy Algorithm

The components that can be used in the greedy algorithm are:
 Candidate set: A solution that is created from the set is known as a candidate set.
 Selection function: This function is used to choose the candidate or subset which can be added

in the solution.
 Feasibility function: A function that is used to determine whether the candidate or subset can

be used to contribute to the solution or not.
 Objective function: A function is used to assign the value to the solution or the partial solution.
 Solution function: This function is used to intimate whether the complete function has been

reached or not.
Applications of Greedy Algorithm
 It is used in finding the shortest path.
 It is used to find the minimum spanning tree using the prim’s algorithm or the Kruskal’s algorithm.
 It is used in a job sequencing with a deadline.

This algorithm is also used to solve the fractional knapsack problem.
Understand through an example.

Suppose there is a problem ‘P’. I want to travel from A to B shown as below:
P : A  B

The problem is that we have to travel this journey from A to B. There are various solutions to go
from A to B. We can go from A to B by walk, car, bike, train, aeroplane etc. There is a constraint in the
journey that we have to travel this journey within 12 hrs. If I go by train or aeroplane then only, I can
cover this distance within 12 hrs. There are many solutions to this problem but there are only two solutions
that satisfy the constraint.

If we say that we have to cover the journey at the minimum cost. This means that we have to travel
this distance as minimum as possible, so this problem is known as a minimization problem. Till now, we
have two feasible solutions, i.e., one by train and another one by air. Since travelling by train will lead to
the minimum cost so it is an optimal solution. An optimal solution is also the feasible solution, but providing
the best result so that solution is the optimal solution with the minimum cost. There would be only one
optimal solution.

127
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

The problem that requires either minimum
or maximum result then that problem is known as
an optimization problem. Greedy method is one of
the strategies used for solving the optimization
problems.

Disadvantages of using Greedy algorithm

Greedy algorithm makes decisions based on
the information available at each phase without
considering the broader problem. So, there might
be a possibility that the greedy solution does not
give the best solution for every problem.

It follows the local optimum choice at each
stage with a intend of finding the global optimum.
Let’s understand through an example.

Consider the graph which is given below:

20

10

5
Source

(S)

Destination
(D)

We have to travel from the source to the
destination at the minimum cost. Since we have
three feasible solutions having cost paths as 10, 20,
and 5. 5 is the minimum cost path so it is the optimal
solution. This is the local optimum, and in this way,
we find the local optimum at each stage in order to
calculate the global optimal solution.

4.3.2 Divide and ConquerAlgorithm

Q14. Explain in detail about Divide and
ConquerAlgorithm with its applications.

Ans :
Divide and Conquer is an algorithmic pattern.

In algorithmic methods, the design is to take a
dispute on a huge input, break the input into minor
pieces, decide the problem on each of the small
pieces, and then merge the piecewise solutions into
a global solution. This mechanism of solving the
problem is called the Divide & Conquer Strategy.

Divide and Conquer algorithm consists of a
dispute using the following three steps.

1. Divide the original problem into a set of
subproblems.

2. Conquer: Solve every subproblem individ-
ually, recursively.

3. Combine: Put together the solutions of the
subproblems to get the solution to the whole
problem.

Problem

subproblem subproblem

Solution to
subproblem

Solution to
subproblem

Solution to
problem

combine

solve
subproblem

solve
subproblemconquer

Generally, we can follow the divide-and-
conquer approach in a three-step process.

Examples

The specific computer algorithms are based
on the Divide & Conquer approach:

1. Maximum and Minimum Problem

2. Binary Search

3. Sorting (merge sort, quick sort)

4. Tower of Hanoi.

Fundamental of Divide & Conquer Strategy:

There are two fundamentals of Divide &
Conquer Strategy:

1. Relational Formula

2. Stopping Condition

1. Relational Formula: It is the formula that
we generate from the given technique. After
generation of Formula we apply D&C
Strategy, i.e. we break the problem
recursively & solve the broken subproblems.

2. Stopping Condition: When we break the
problem using Divide & Conquer Strategy,
then we need to know that for how much
time, we need to apply divide & Conquer.
So the condition where the need to stop our
recursion steps of D&C is called as Stopping
Condition.

128
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Applications of Divide and Conquer
Approach:

Following algorithms are based on the
concept of the Divide and Conquer Technique:

1. Binary Search: The binary search algorithm
is a searching algorithm, which is also called
a half-interval search or logarithmic search.
It works by comparing the target value with
the middle element existing in a sorted array.
After making the comparison, if the value
differs, then the half that cannot contain the
target will eventually eliminate, followed by
continuing the search on the other half. We
will again consider the middle element and
compare it with the target value. The process
keeps on repeating until the target value is
met. If we found the other half to be empty
after ending the search, then it can be
concluded that the target is not present in
the array.

2. Quicksort: It is the most efficient sorting
algorithm, which is also known as partition-
exchange sort. It starts by selecting a pivot
value from an array followed by dividing the
rest of the array elements into two sub-arrays.
The partition is made by comparing each of
the elements with the pivot value. It
compares whether the element holds a greater
value or lesser value than the pivot and then
sort the arrays recursively.

3. Merge Sort: It is a sorting algorithm that
sorts an array by making comparisons. It starts
by dividing an array into sub-array and then
recursively sorts each of them. After the
sorting is done, it merges them back.

4. Closest Pair of Points: It is a problem of
computational geometry. This algorithm
emphasizes finding out the closest pair of
points in a metric space, given n points, such
that the distance between the pair of points
should be minimal.

5. Strassen’s Algorithm: It is an algorithm for
matrix multiplication, which is named after
Volker Strassen. It has proven to be much
faster than the traditional algorithm when
works on large matrices.

6. Cooley-Tukey Fast Fourier Transform
(FFT) algorithm: The Fast Fourier Trans-
form algorithm is named after J. W. Cooley
and John Turkey. It follows the Divide and
Conquer Approach and imposes a
complexity of O(nlogn).

7. Karatsuba algorithm for fast multipli-
cation: It is one of the fastest multiplication
algorithms of the traditional time, invented
by Anatoly Karatsuba in late 1960 and got
published in 1962. It multiplies two n-digit
numbers in such a way by reducing it to at
most single-digit.

Advantages of Divide and Conquer

 Divide and Conquer tend to successfully solve
one of the biggest problems, such as the Tower
of Hanoi, a mathematical puzzle. It is
challenging to solve complicated problems for
which you have no basic idea, but with the
help of the divide and conquer approach, it
has lessened the effort as it works on dividing
the main problem into two halves and then
solve them recursively. This algorithm is much
faster than other algorithms.

 It efficiently uses cache memory without
occupying much space because it solves
simple subproblems within the cache memory
instead of accessing the slower main memory.

 It is more proficient than that of its counterpart
Brute Force technique.

 Since these algorithms inhibit parallelism, it
does not involve any modification and is
handled by systems incorporating parallel
processing.

Disadvantages of Divide and Conquer

 Since most of its algorithms are designed by
incorporating recursion, so it necessitates high
memory management.

 An explicit stack may overuse the space.

 It may even crash the system if the recursion
is performed rigorously greater than the stack
present in the CPU.

129
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

4.3.3 Dynamic Programming:

Q15. Explain in detail about Dynamic Prog-
ramming with its applications.

Ans :
Dynamic programming approach is similar to

divide and conquer in breaking down the problem
into smaller and yet smaller possible sub-problems.
But unlike, divide and conquer, these sub-problems
are not solved independently. Rather, results of these
smaller sub-problems are remembered and used
for similar or overlapping sub-problems.

Dynamic programming is used where we
have problems, which can be divided into similar
sub-problems, so that their results can be re-used.
Mostly, these algorithms are used for optimization.
Before solving the in-hand sub-problem, dynamic
algorithm will try to examine the results of the
previously solved sub-problems. The solutions of
sub-problems are combined in order to achieve the
best solution.

So we can say that.,

 The problem should be able to be
divided into smaller overlapping sub-
problem.

 An optimum solution can be achieved
by using an optimum solution of smaller
sub-problems.

 Dynamic algorithms use Memoization.

Comparison

In contrast to greedy algorithms, where local
optimization is addressed, dynamic algorithms are
motivated for an overall optimization of the
problem.

In contrast to divide and conquer algorithms,
where solutions are combined to achieve an overall
solution, dynamic algorithms use the output of a
smaller sub-problem and then try to optimize a
bigger sub-problem. Dynamic algorithms use
Memoization to remember the output of already
solved sub-problems.

Example

The following computer problems can be
solved using dynamic programming approach:

 Fibonacci number series

 Knapsack problem

 Tower of Hanoi

 All pair shortest path by Floyd-Warshall

 Shortest path by Dijkstra

 Project scheduling

Dynamic programming can be used in both
top-down and bottom-up manner. And of course,
most of the times, referring to the previous solution
output is cheaper than recomputing in terms of CPU
cycles.

The various applications of Dynamic
Programming are:

 Longest Common Subsequence.

 Finding Shortest Path.

 Finding Maximum Profit with other Fixed
Constraints.

 Job Scheduling in Processor.

 Bioinformatics.

 Optimal search solutions.

130
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

1. What is searching? Explain its types?

Ans :
Searching

 Searching is a process of finding a particular element among several given elements.

 The search is successful if the required element is found.

 Otherwise, the search is unsuccessful.
Searching Algorithms

Searching Algorithms are a family of algorithms used for the purpose of searching.

The searching of an element in the given array may be carried out in the following two ways-
Searching Algorithms

Linear Search Binary Search

 Linear Search
 Binary Search

2. Differences between Divide and Conquer Method and Dynamic Programming.

Ans :
 Divide and Conquer Method Dynamic Programming

1. It deals (involves) three steps at each level 1. It involves the sequence of four steps:
of recursion:
Divide the problem into a number of  Characterize the structure of optimal
subproblems. solutions.

Conquer the subproblems by solving them  Recursively defines the values of optimal
recursively. solutions.

Combine the solution to the subproblems  Compute the value of optimal solutions
into the solution for original subproblems. in a Bottom-up minimum.

 Construct an Optimal Solution from
computed information.

2. It is Recursive. 2. It is non Recursive.

3. It does more work on subproblems and 3. It solves subproblems only once and then
hence has more time consumption. stores in the table.

4. It is a top-down approach. 4. It is a Bottom-up approach.

5. In this subproblems are independent of 5. In this subproblems are interdependent.
each other.

6. For example: Merge Sort & Binary 6. For example: Matrix Multiplication.
Search etc.

Short Question and Answers

131
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

3. Write the advantages and disadvantages.

Ans :
Binary Search Algorithm Advantages

The advantages of binary search algorithm are:

 It eliminates half of the list from further searching by using the result of each comparison.

 It indicates whether the element being searched is before or after the current position in the list.

 This information is used to narrow the search.

 For large lists of data, it works significantly better than linear search.

Binary Search Algorithm Disadvantages

The disadvantages of binary search algorithm are:

 It employs recursive approach which requires more stack space.

 Programming binary search algorithm is error prone and difficult.

 The interaction of binary search with memory hierarchy i.e. caching is poor.

4. Write the comparison between Bubble sort and Selection sort

Ans :
Comparison Chart

Basis for Bubble sort Selection sort
comparison

Basic Adjacent element is compared Largest element is selected and swapped
and swapped with the last element (in case of ascending

order).

Best case time O(n) O(n2)
complexity

Efficiency Inefficient Improved efficiency as compared to

bubble sort

Stable Yes No

Method Exchanging Selection

Speed Slow Fast as compared to bubble sort

5. Differences between Linear search and Binary search

Ans :
Basis of comparison Linear search Binary search

Definition The linear search starts searching It finds the position of the searched
from the first element and com- element by finding the middle
pares each element with a searched element of the array.
element till the element is not found.

Sorted data In a linear search, the elements don’t The pre-condition for the binary
need to be arranged in sorted order. search is that the elements must

be arranged in a sorted order.

132
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Implementation The linear search can be implemen- The implementation of binary search
ted on any linear data structure is limited as it can be implemented
such as an array, linked list, etc. only on those data structures that

have two-way traversal.

Approach It is based on the sequential It is based on the divide and conquer
approach. approach.

Size It is preferrable for the small-sized It is preferrable for the large-size
data sets. data sets.

Efficiency It is less efficient in the case of large- It is more efficient in the case of
size data sets. large-size data sets.

Worst-case In a linear search, the worst-case In a binary search, the worst-case
scenario scenario for finding the element is scenario for finding the element

O(n). is O(log2n).

Best-case In a linear search, the best-case In a binary search, the best-case
scenario scenario for finding the first element scenario for finding the first

in the list is O(1). element in the list is O(1).

Dimensional It can be implemented on both a It can be implemented only on a
array single and multidimensional array. multidimensional array.

6. Discuss about Linear search complexities

Ans:
The linear search algorithm iteratively searches all elements of the array. It has the best execution

time of one and the worst execution time of n, where n is the total number of items in the search array.

It is the simplest search algorithm in data structure and checks each item in the set of elements until
it matches the searched element till the end of data collection. When the given data is unsorted, a linear
search algorithm is preferred over other search algorithms.

Complexities in linear search are given below:

Space Complexity

Since linear search uses no extra space, its space complexity is O(n), where n is the number of
elements in an array.

Time Complexity

Best-case complexity = O(1) occurs when the searched item is present at the first element in the
search array.

Worst-case complexity = O(n) occurs when the required element is at the tail of the array or not
present at all.

Average- case complexity = average case occurs when the item to be searched is in somewhere
middle of the Array.

7. Discuss about Linear search complexities

Ans :
Binary Search

This algorithm locates specific items by comparing the middlemost items in the data collection.
When a match is found, it returns the index of the item. When the middle item is greater than the search

133
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

item, it looks for a central item of the left sub-array. If, on the other hand, the middle item is smaller than
the search item, it explores for the middle item in the right sub-array. It keeps looking for an item until it
finds it or the size of the sub-arrays reaches zero.

Binary search needs sorted order of items of the array. It works faster than a linear search algorithm.
The binary search uses the divide and conquers principle.

Run-time complexity = O(log n)

Complexities in binary search are given below:

The worst-case complexity in binary search is O(n log n).

The average case complexity in binary search is O(n log n)

Best case complexity = O (1).

8. What is sorting?

Ans:
Sorting refers to the operation or technique of arranging and rearranging sets of data in some

specific order. A collection of records called a list where every record has one or more fields. The fields
which contain a unique value for each record is termed as the key field. For example, a phone number
directory can be thought of as a list where each record has three fields - ‘name’ of the person, ‘address’ of
that person, and their ‘phone numbers’. Being unique phone number can work as a key to locate any
record in the list.

Sorting is the operation performed to arrange the records of a table or list in some order according
to some specific ordering criterion. Sorting is performed according to some key value of each record.

The records are either sorted either numerically or alphanumerically. The records are then arranged
in ascending or descending order depending on the numerical value of the key. Here is an example,
where the sorting of a lists of marks obtained by a student in any particular subject of a class.

9. List the categories of sorting

Ans :
The techniques of sorting can be divided into two categories. These are:

 Internal Sorting

 External Sorting

Internal Sorting

If all the data that is to be sorted can be adjusted at a time in the main memory, the internal sorting
method is being performed.

External Sorting

When the data that is to be sorted cannot be accommodated in the memory at the same time and
some has to be kept in auxiliary memory such as hard disk, floppy disk, magnetic tapes etc, then external
sorting methods are performed.

134
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

10. List out the sorting techniques? And How to calculate the complexities of sorting
techniques?

Ans :
Sorting techniques:

 Bubble Sort

 Selection Sort

 Merge Sort

 Insertion Sort

 Quick Sort

 Heap Sort

The complexity of sorting algorithm calculates the running time of a function in which ‘n’ number of
items are to be sorted. The choice for which sorting method is suitable for a problem depends on several
dependency configurations for different problems. The most noteworthy of these considerations are:

 The length of time spent by the programmer in programming a specific sorting program.

 Amount of machine time necessary for running the program.

 The amount of memory necessary for running the program.

135
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Choose the Correct Answers

1. What is an external sorting algorithm? [a]

(a) Algorithm that uses tape or disk during the sort

(b) Algorithm that uses main memory during the sort

(c) Algorithm that involves swapping

(d) Algorithm that are considered ‘in place’

2. What is an internal sorting algorithm? [b]

(a) Algorithm that uses tape or disk during the sort

(b) Algorithm that uses main memory during the sort

(c) Algorithm that involves swapping

(d) Algorithm that are considered ‘in place’

3. What is the worst-case complexity of bubble sort? [d]

(a) O(nlogn) (b) O(logn)

(c) O(n) (d) O(n2)

4. The given array is arr = {1, 2, 4, 3}. Bubble sort is used to sort the array elements. How many
iterations will be done to sort the array? [a]

(a) 4 (b) 2

(c) 1 (d) 0

5. Which of the following is not a stable sorting algorithm? [b]

(a) Insertion sort (b) Selection sort

(c) Bubble sort (d) Merge sort

6. If the given input array is sorted or nearly sorted, which of the following algorithm gives the best
performance? [a]

(a) Insertion sort (b) Selection sort

(c) Quick sort (d) Merge sort

7. Which of the following is not an in-place sorting algorithm? [d]

(a) Selection sort (b) Heap sort

(c) Quick sort (d) Merge sort

8. Which of the following algorithm pays the least attention to the ordering of the elements in the
input list? [b]

(a) Insertion sort (b) Selection sort

(c) Quick sort (d) None

136
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

9. If the given input array is sorted or nearly sorted, which of the following algorithm gives the best
performance? [a]

(a) Insertion sort (b) Selection sort

(c) Quick sort (d) Merge sort

10. Consider the situation in which assignment operation is very costly. Which of the following sorting
algorithm should be performed so that the number of assignment operations is minimized in general?

[b]

(a) Insertion sort (b) Selection sort

(c) Heap sort (d) None

137
Rahul Publications

UNIT - IV DATA STRUCTURES AND ALGORITHMS

Rahul Publications

Fill in the Blanks
1. is a stable sorting algorithm.

2. is not a stable sorting algorithm.

3. is not an in-place sorting algorithm.

4. is not a non-comparison sort.

5. algorithm pays the least attention to the ordering of the elements in the input list.

6. Time complexity of bubble sort in best case is .

7. algorithms have lowest worst-case time complexity..

8. sorting algorithms is stable.

9. Counting sort performs Numbers of comparisons between input elements.

10. sorting algorithm has the running time that is least dependant on the initial ordering of
the input.

ANSWERS

1. Merge sort

2. Selection sort

3. Merge sort

4. Shell sort

5. Selection sort

6. (n)

7. Heap sort

8. Counting sort (or) Bucket sort (or) Radix sort

9. 0(Zero)

10. Selection sort

138
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

One Mark Answers

1. What are the advantages of Selecetion Sort?

Ans:
It is simple and easy to implement and It can be used for small data sets.

2. List out sorting techniques

Ans:
Bubble Sort, Selection Sort, Merge Sort, Insertion Sort, Quick Sort and Heap Sort.

3. Define internal sorting

Ans:
If all the data that is to be sorted can be adjusted at a time in the main memory, the internal sorting

method is being performed.
4. Define external sorting.

Ans :
When the data that is to be sorted cannot be accommodated in the memory at the same time and

some has to be kept in auxiliary memory such as hard disk, floppy disk, magnetic tapes etc.
5. What is sorting?

Ans :
Sorting refers to the operation or technique of arranging and rearranging sets of data in some

specific order.
6. List Some Applications of Multilinked Structures?

Ans:
Sparse matrix and Index generation.

7. List out some of the examples of sorting in real-life scenarios

Ans :
Telephone Directory: The telephone directory stores the telephone numbers of people sorted by

their names, so that the names can be searched easily.
Dictionary: The dictionary stores words in an alphabetical order so that searching of any word

becomes easy.
8. Why is sorting important?

Ans:
Efficient sorting is important for optimizing the efficiency of algorithms.

9. What is searching

Ans :
Searching is a process of finding a particular element among several given elements

10. What is bubble sort?

Ans:
Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements

if they are in the wrong order.

SOLVED MODEL PAPERS DATA STRUCTURES & ALGORITHMS

139
Rahul Publications

FACULTY OF SCIENCE
B.Sc. III-Year V-Semester (CBCS) Examination

Model Paper - I
DATA STRUCTURES & ALGORITHMS

PAPER - V : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)
[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.
1. What is a Data Structure? Give applications of Data Structures? (Unit-I, SQA-7)

2. What is Time complexity give with an example? (Unit-I, SQA-3)

3. What is a linked list Data Structure? (Unit-I, SQA-8)

4. What is a Tree data structure and How to represent a Binary tree? (Unit-II, SQA-1)

5. What are the Properties of a BST Tree. (Unit-II, SQA-2)

6. Write tree traversal techniques with example. (Unit-II, SQA-4)

7. What is Graph? Give an example. (Unit-III, SQA-1)

8. Differences between BFS and DFS. (Unit-III, SQA-3)

9. What are the components of a Graph (Unit-III, SQA-5)

10. What is searching? Explain its types? (Unit-IV, SQA-1)

11. Write the advantages and disadvantages of Binary search. (Unit-IV, SQA-3)

12. What is sorting? (Unit-IV, SQA-8)

SECTION – B (4 × 12 = 48 Marks)
[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) What is Performance Analysis of an algorithm? (Unit-I, Q.No. 1)

(OR)

(b) Explain about Linked List implementation of Queue. (Unit-I, Q.No. 18)

14. (a) What are the basic operations And Traversal Techniques of Binary Tree? (Unit-II, Q.No. 2)

(OR)

(b) What is a Tree data structure and How to represent a Binary tree? Explain
its applications. (Unit-II, Q.No. 1)

15. (a) What is Graph? Explain in detail about Graphs (Unit-III, Q.No. 1)

(OR)

(b) Explain about DFS Search Algorithm. (Unit-III, Q.No. 4)

16. (a) Explain in detail about Linear Search with an example? (Unit-IV, Q.No. 1)

(OR)

(b) Explain in detail about Dynamic Programming with its applications. (Unit-IV, Q.No. 13)

BSc. III YEAR V SEMESTER

140

FACULTY OF SCIENCE
B.Sc. III-Year V-Semester (CBCS) Examination

Model Paper - II
DATA STRUCTURES & ALGORITHMS

PAPER - V : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)

[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.

1. What is Space complexity give with an example? (Unit-I, SQA-1)

2. What is Hash Table? (Unit-I, SQA-3)

3. Describe the types of Data Structures? (Unit-I, SQA-5)

4. What are the Properties of a BST Tree. (Unit-II, SQA-2)

5. What are the Applications of Tree data structure. (Unit-II, SQA-3)

6. Write tree traversal techniques with example. (Unit-II, SQA-4)

7. Difference between Prim’s Algorithm and Kruskal’s Algorithm. (Unit-III, SQA-2)

8. What is Minimum Spanning tree? (Unit-III, SQA-4)

9. What is the difference between directed graph and non-directed graph? (Unit-III, SQA-6)

10. List the categories of sorting. (Unit-IV, SQA-9)

11. Write the comparison between Bubble sort and Selection sort. (Unit-IV, SQA-4)

12. List out the sorting techniques? And How to calculate the complexities of sorting
techniques? (Unit-IV, SQA-10)

SECTION – B (4 × 12 = 48 Marks)
[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) What is Space complexity give with an example? (Unit-I, Q.No. 2)

(OR)

(b) What is Hash Table? Explain its representation and Compression method. (Unit-I, Q.No. 20)

14. (a) Explain in detail about Binary Tree Traversal techniques. (Unit-II, Q.No. 3)

(OR)

(b) Give an example how to construct an AVL Tree?

Construct an AVL tree having the following elements

H, I, J, B, A, E, C, F, D, G, K, L (Unit-II, Q.No. 6)

SOLVED MODEL PAPERS DATA STRUCTURES & ALGORITHMS

141
Rahul Publications

15. (a) Explain about BFS Search Algorithm. (Unit-III, Q.No. 5)

(OR)

(b) Explain about Dijkstra’s Shortest Path Algorithm. (Unit-III, Q.No. 10)

16. (a) Explain in detail about Merge Sort with an example and its complexity. (Unit-IV, Q.No. 9)

(OR)

(b) Explain in detail about Greedy Algorithm with its applications. (Unit-IV, Q.No. 11)

BSc. III YEAR V SEMESTER

142

FACULTY OF SCIENCE
B.Sc. III-Year V-Semester (CBCS) Examination

Model Paper - III
DATA STRUCTURES & ALGORITHMS

PAPER - V : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)
[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.

1. Write the compression methods using Hash Table. (Unit-I, SQA-4)

2. Describe the types of Data Structures? (Unit-I, SQA-5)

3. What is a Data Structure? Give applications of Data Structures? (Unit-I, SQA-7)

4. What are the Applications of Tree data structure. (Unit-II, SQA-3)

5. What is B Tree? Explain about its operations. (Unit-II, SQA-6)

6. What are the applications of Graph data structure? (Unit-II, SQA-8)

7. What are weighted graphs? (Unit-III, SQA-7)

8. What is Graph? Give an example? (Unit-III, SQA-1)

9. What are the components of a Graph? (Unit-III, SQA-5)

10. What are weighted graphs?. (Unit-IV, SQA-7)

11. Explain about BFS Search Algorithm. (Unit-IV, SQA-9)

12. Explain about DFS Search Algorithm. (Unit-IV, SQA-10)

SECTION – B (4 × 12 = 48 Marks)
[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) Explain singly linked list and its operations. (Unit-I, Q.No. 8)

(OR)

(b) What is Sparse Matrix? Explain the representation of Sparse Matrix. (Unit-I, Q.No. 13)

14. (a) What are the basic operations and Traversal Techniques of Binary Tree? (Unit-II, Q.No. 2)

(OR)

(b) What is B Tree? Explain in detail about its operations. (Unit-II, Q.No. 6)

15. (a) What is Spanning Tree? Explain about prim’s Algorithm. (Unit-III, Q.No. 7)

(OR)

(b) What is Spanning Tree? Explain about Kruskal’s Algorithm. (Unit-III, Q.No. 8)

16. (a) Explain in detail about Quick Sort with an example and its complexity. (Unit-IV, Q.No. 8)

(OR)

(b) Explain in detail about Divide and Conquer Algorithm with its applications. (Unit-IV, Q.No. 12)

