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IMPORTANT QUESTIONS DEEP LEARNING

UNIT - I

1. Explain the Hardware(System Requirements) for Deep Learning?

Ans:
Refer Unit-I, Q.No. 3

2. Explain the types of data and its use cases.

Ans :
Refer Unit-I, Q.No. 4

3. Explain and List out Deep Learning Algorithms?

Ans:
Refer Unit-I, Q.No. 5

4. What is Neural Networks? Explain in detail about Neural Networks and it types.

Ans :
Refer Unit-I, Q.No. 6

5. Discuss about Data representations for neural networks.

Ans :
Refer Unit-I, Q.No. 7

6. Explain Key Attributes (Essential characteristics) and real world examples of data
tensors.

Ans:
Refer Unit-I, Q.No. 8

7. What are the Real-World Examples of Tensors? Give with examples.

Ans:
Refer Unit-I, Q.No. 11

8. What is sequence data and given an example.

Ans:
Refer Unit-I, Q.No. 13

9. What is Image Data? Explain with suitable example.

Ans:
Refer Unit-I, Q.No. 14

Important Questions



IV
Rahul Publications

BSc. III YEAR  VI SEMESTER

UNIT - II

1. Define Tensor? What Does Element-Wise Operations with examples.

Ans:

Refer Unit-II, Q.No. 1

2. Write about Broadcasting in Tensors with suitable examples?

Ans:

Refer Unit-II, Q.No. 2

3. Explain about Reshaping a Tensor with suitable Examples?

Ans:

Refer Unit-II, Q.No. 4

4. Discuss about Geometric interpretation of tensor operations?

Ans:

Refer Unit-II, Q.No. 5

5. Explain briefly about Geometric Interpretation of Deep Learning.

Ans:
Refer Unit-II, Q.No. 6

UNIT - III

1. Discuss about Gradient-based optimization.

Ans :
Refer Unit-III, Q.No. 1

2. Explain about Stochastic Gradient Descent with suitable examples
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3. Explain in detail about The Backpropagation algorithm.

Ans :
Refer Unit-III, Q.No. 4

4. Write a note on Anatomy of a neural network.
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UNIT
I

Introduction: History, Hardware, Data, Algorithms Neural Networks, Data
representations for neural networks, Scalars (0D tensors), Vectors (1D tensors),
Matrices (2D tensors), 3D tensors and higher-dimensional tensors, Key
attributes, Manipulating tensors in NumPy, The notion of data batches, Real-
world examples of data tensors, Vector data, Timeseries data or sequence
data, Image data, Video data

1.1 INTRODUCTION TO DEEP LEARNING

Q1. Explain in detail about deep learning.

Ans :

Deep Learning

Deep learning is a branch of machine learning which is completely based on artificial neural net-
works, as neural network is going to mimic the human brain so deep learning is also a kind of mimic of
human brain. In deep learning, we don’t need to explicitly program everything.

“Deep learning is a collection of statistical techniques of machine learning for learning feature hier-
archies that are actually based on artificial neural networks.”

Example

In the example given above, we provide the raw data of images to the first layer of the input layer.
After then, these input layer will determine the patterns of local contrast that means it will differentiate on
the basis of colors, luminosity, etc. Then the 1st hidden layer will determine the face feature, i.e., it will
fixate on eyes, nose, and lips, etc. And then, it will fixate those face features on the correct face template.
So, in the 2nd hidden layer, it will actually determine the correct face here as it can be seen in the above
image, after which it will be sent to the output layer. Likewise, more hidden layers can be added to solve
more complex problems, for example, if you want to find out a particular kind of face having large or light
complexions. So, as and when the hidden layers increase, we are able to solve complex problems.
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1.2 HISTORY

Q2. Explain the history of Deep Learning.

(OR)

Explain the evolution of Deep Learning.

Ans :
The history of deep learning can be traced

back to 1943, when Walter Pitts and Warren
McCulloch created a computer model based on the
neural networks of the human brain.

They used a combination of algorithms and
mathematics they called “threshold logic” to mimic
the thought process. Since that time, Deep Learn-
ing has evolved steadily, with only two significant
breaks in its development. Both were tied to the
infamous Artificial Intelligence winters.

The 1960’s

Henry J. Kelley is given credit for develop-
ing the basics of a continuous Back Propagation
Model in 1960. In 1962, a simpler version based
only on the chain rule was developed by Stuart
Dreyfus. While the concept of back propagation (the
backward propagation of errors for purposes of
training) did exist in the early 1960s, it was clumsy
and inefficient, and would not become useful until
1985.

The 1970’s

During the 1970’s the first AI winter kicked
in, the result of promises that couldn’t be kept. The
impact of this lack of funding limited both DL and
AI research. Fortunately, there were individuals who
carried on the research without funding.

The first “convolutional neural networks” were
used by Kunihiko Fukushima. Fukushima designed
neural networks with multiple pooling and convo-
lutional layers. In 1979, he developed an artificial
neural network, called Neocognitron, which used a
hierarchical, multilayered design. This design allowed
the computer “learn” to recognize visual patterns.

The 1980’s and 90’s

In 1989, Yann LeCun provided the first prac-
tical demonstration of backpropagation at Bell Labs.
He combined convolutional neural networks with
back propagation onto read “handwritten” digits.
This system was eventually used to read the num-
bers of handwritten checks.

The 2000’s and 2010’s

Around the year 2000, The Vanishing Gra-
dient Problem appeared. It was discovered “fea-
tures” formed in lower layers were not being learned
by the upper layers, because no learning signal
reached these layers. This was not a fundamental
problem for all neural networks, just the ones with
gradient-based learning methods. The source of the
problem turned out to be certain activation func-
tions. A number of activation functions condensed
their input, in turn reducing the output range in a
somewhat chaotic fashion.

This produced large areas of input mapped
over an extremely small range. In these areas of
input, a large change will be reduced to a small
change in the output, resulting in a vanishing gradi-
ent. Two solutions used to solve this problem were
layer-by-layer pre-training and the development of
long short-term memory.

In 2001, a research report by META Group
(now called Gartner) described he challenges and
opportunities of data growth as three-dimensional.
The report described the increasing volume of data
and the increasing speed of data as increasing the
range of data sources and types. This was a call to
prepare for the onslaught of Big Data, which was
just starting.

In 2009, Fei-Fei Li, an AI professor at Stanford
launched ImageNet, assembled a free database of
more than 14 million labeled images. The Internet
is, and was, full of unlabeled images. Labeled im-
ages were needed to “train” neural nets. Professor
Li said, “Our vision was that big data would change
the way machine learning works. Data drives learn-
ing.”

The 2011’s and 2020

In 2011, the speed of GPUs had increased
significantly, making it possible to train convolutional
neural networks “without” the layer-by-layer pre-
training. With the increased computing speed, it
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became obvious deep learning had significant ad-
vantages in terms of efficiency and speed. One ex-
ample is AlexNet, a convolutional neural network
whose architecture won several international com-
petitions during 2011 and 2012. Rectified linear
units were used to enhance the speed and drop-
out.

In 2012, Google Brain released the results of
an unusual project known as The Cat Experiment.
The free-spirited project explored the difficulties of
“unsupervised learning.” Deep learning uses “su-
pervised learning,” meaning the convolutional neu-
ral net is trained using labeled data (think images
from ImageNet). Using unsupervised learning, a
convolutional neural net is given unlabeled data,
and is then asked to seek out recurring patterns.

The Cat Experiment used a neural net spread
over 1,000 computers. Ten million “unlabeled”
images were taken randomly from YouTube, shown
to the system, and then the training software was
allowed to run. At the end of the training, one neu-
ron in the highest layer was found to respond
strongly to the images of cats. Andrew Ng, the
project’s founder said, “We also found a neuron
that responded very strongly to human faces.” Un-
supervised learning remains a significant goal in the
field of deep learning.

1.3 HARDWARE

Q3. Explain the Hardware(System Require-
ments) for Deep Learning?

Ans: (Imp.)

System Requirements

ENVI Deep Learning 2.0 uses TensorFlow
version 2.9 and CUDA version 11.2.2, both of
which are included in the installation. System re-
quirements are as follows:

Base software

ENVI 5.6.3 and the ENVI Deep Learning 2.0
module.

Operating systems

 Windows 10 and 11 (Intel/AMD 64-bit)

 Linux (Intel/AMD 64-bit, kernel 3.10.0 or
higher, glibc 2.17 or higher)

Hardware

 NVIDIA graphics card with CUDA Compute
Capability version 3.5 to 8.6. See the list of
CUDA-enabled GPU cards. A minimum of 8
GB of GPU memory is recommended for
optimal performance, particularly when train-
ing deep learning models.

 NVIDIA GPU driver version: Windows 461.33
or higher, Linux 460.32.03 or higher.

 A CPU with the Advanced Vector Extensions
(AVX) instruction set. In general, any CPU
after 2011 will contain this instruction set.

 Intel CPUs are recommended, though not
required. They have an optimized Intel Ma-
chine Learning library that offers perfor-
mance gains for certain Machine Learning
algorithms.

To determine if your system meets the re-
quirements for ENVI Deep Learning, start the Deep
Learning Guide Map in the ENVI Toolbox. From
the Deep Learning Guide Map menu bar, select
Tools > Test Installation and Configuration.

1.4 DATA

Q4. Explain in detail about Data for Deep
Learning?

(OR)

Explain the types of data and its use
cases.

Ans : (Imp.)

Data for Deep Learning

The minimum requirements to successfully
apply deep learning depends on the problem you’re
trying to solve. In contrast to static, benchmark
datasets like MNIST and CIFAR-10, real-world data
is messy, varied and evolving, and that is the data
practical deep learning solutions must deal with.
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Types of Data

Deep learning can be applied to any data type. The data types you work with, and the data you
gather, will depend on the problem you’re trying to solve.

1. Sound (Voice Recognition)

2. Text (Classifying Reviews)

3. Images (Computer Vision)

4. Time Series (Sensor Data, Web Activity)

5. Video (Motion Detection)

Use Cases

Deep learning can solve almost any problem of machine perception, including classifying data ,
clustering it, or making predictions about it.

 Classification: This image represents a horse; this email looks like spam; this transaction is fraudulent

 Clustering: These two sounds are similar. This document is probably what user X is looking for

 Predictions: Given their web log activity, Customer A looks like they are going to stop using your
service

Deep learning is best applied to unstructured data like images, video, sound or text. An image is just
a blob of pixels, a message is just a blob of text. This data is not organized in a typical, relational database
by rows and columns. That makes it more difficult to specify its features manually.

Common use cases for deep learning include sentiment analysis, classifying images, predictive
analytics, recommendation systems, anomaly detection and more.

Data Attributes: For deep learning to succeed, your data needs to have certain characteristics.

Relevancy

The data you use to train your neural net must be directly relevant to your problem; that is, it must
resemble as much as possible the real-world data you hope to process. Neural networks are born as blank
slates, and they only learn what you teach them. If you want them to solve a problem involving certain
kinds of data, like CCTV video, then you have to train them on CCTV video, or something similar to it.
The training data should resemble the real-world data that they will classify in production.

Proper Classification

If a client wants to build a deep-learning solution that classifies data, then they need to have a
labeled dataset. That is, someone needs to apply labels to the raw data: “This image is a flower, that image
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is a panda.” With time and tuning, this training dataset can teach a neural network to classify new images
it has not seen before.

Formatting

Neural networks eat vectors of data and split out decisions about those vectors. All data needs to be
vectorized, and the vectors should be the same length when they enter the neural net. To get vectors of
the same length, it’s helpful to have, say, images of the same size (the same height and width). So some-
times you need to resize the images. This is called data pre-processing.

Accessibility

The data needs to be stored in a place that’s easy to work with. A local file system, or HDFS (the
Hadoop file system), or an S3 bucket on AWS, for example. If the data is stored in many different
databases that are unconnected, you will have to build data pipelines. Building data pipelines and per-
forming preprocessing can account for at least half the time you spend building deep-learning solutions.

Minimum Data Requirement

The minimums vary with the complexity of the problem, but 100,000 instances in total, across all
categories, is a good place to start.If you have labeled data (i.e. categories A, B, C and D), it’s preferable
to have an evenly balanced dataset with 25,000 instances of each label; that is, 25,000 instances of A,
25,000 instances of B and so forth.

1.5 ALGORITHMS

Q5. Explain and List out Deep Learning Algorithms?

Ans: (Imp.)

Deep learning is a subset of a Machine Learning algorithm that uses multiple layers of neural net-
works to perform in processing data and computations on a large amount of data. Deep learning algo-
rithm works based on the function and working of the human brain.

The deep learning algorithm is capable to learn without human supervision, can be used for both
structured and unstructured types of data. Deep learning can be used in various industries like healthcare,
finance, banking, e-commerce, etc.

Deep Learning algorithms working depends upon Neural network just like the human brain com-
putes information using millions of neurons.
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A neural network is structured like the human brain and consists of artificial neurons, also known as
nodes. These nodes are stacked next to each other in three layers:

 Input layer: The input layer has input features a dataset that is known to us.

 Hidden Layer : Hidden layer, just like we need to train the brain through hidden neurons.

 Output layer : value that we want to classify

Data provides each node with information in the form of inputs. The node multiplies the inputs with
random weights, calculates them, and adds a bias. Finally, nonlinear functions, also known as activation
functions, are applied to determine which neuron to fire.

Working of Deep Learning Algorithms

While deep learning algorithms feature self-learning representations, they depend upon ANNs that
mirror the way the brain computes information. During the training process, algorithms use unknown
elements in the input distribution to extract features, group objects, and discover useful data patterns.
Much like training machines for self-learning, this occurs at multiple levels, using the algorithms to build
the models.

Deep learning models make use of several algorithms.While no one network is considered perfect,
some algorithms are better suited to perform specific tasks. To choose the right ones, it’s good to gain a
solid understanding of all primary algorithms.

Types of Algorithms used in Deep Learning

Here is the list of top 10 most popular deep learning algorithms:

1. Convolutional Neural Networks (CNNs)

2. Long Short Term Memory Networks (LSTMs)

3. Recurrent Neural Networks (RNNs)

4. Generative Adversarial Networks (GANs)

5. Radial Basis Function Networks (RBFNs)

6. Multilayer Perceptrons (MLPs)

7. Self Organizing Maps (SOMs)

8. Deep Belief Networks (DBNs)
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1. Restricted Boltzmann Machines (RBMs)

2. Autoencoders

Deep learning algorithms work with almost any kind of data and require large amounts of comput-
ing power and information to solve complicated issues. Now, let us, deep-dive, into the top 10 deep
learning algorithms.

1. Convolutional Neural Networks (CNNs): CNN’s, also known as ConvNets, consist of multiple
layers and are mainly used for image processing and object detection. Yann LeCun developed the
first CNN in 1988 when it was called LeNet. It was used for recognizing characters like ZIP codes
and digits.

CNN’s are widely used to identify satellite images, process medical images, forecast time series, and
detect anomalies.

Working of CNNs:

CNN’s have multiple layers that process and extract features from data:

Convolution Layer

 CNN has a convolution layer that has several filters to perform the convolution operation.

Rectified Linear Unit (ReLU)

 CNN’s have a ReLU layer to perform operations on elements. The output is a rectified feature map.

Pooling Layer

 The rectified feature map next feeds into a pooling layer. Pooling is a down-sampling operation that
reduces the dimensions of the feature map. 

 The pooling layer then converts the resulting two-dimensional arrays from the pooled feature map
into a single, long, continuous, linear vector by flattening it. 

Fully Connected Layer

 A fully connected layer forms when the flattened matrix from the pooling layer is fed as an input,
which classifies and identifies the images.

Below is an example of an image processed via CNN.

2. Long Short-Term Memory Networks (LSTMs): LSTMs are a type of Recurrent Neural Network
(RNN) that can learn and memorize long-term dependencies. Recalling past information for long
periods is the default behavior. 

LSTMs retain information over time. They are useful in time-series prediction because they remem-
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ber previous inputs. LSTMs have a chain-like structure where four interacting layers communicate
in a unique way. Besides time-series predictions, LSTMs are typically used for speech recognition,
music composition, and pharmaceutical development.

Working of LSTMs

 First, they forget irrelevant parts of the previous state 

 Next, they selectively update the cell-state values

 Finally, the output of certain parts of the cell state

Below is a diagram of how LSTMs operate:

3. Recurrent Neural Networks (RNNs): RNNs have connections that form directed cycles, which
allow the outputs from the LSTM to be fed as inputs to the current phase. 

The output from the LSTM becomes an input to the current phase and can memorize previous
inputs due to its internal memory. RNNs are commonly used for image captioning, time-series
analysis, natural-language processing, handwriting recognition, and machine translation.

An unfolded RNN looks like this:
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Working of  RNNs

The output at time t-1 feeds into the input at time t. 
 Similarly, the output at time t feeds into the input at time t+1.
 RNNs can process inputs of any length. 
 The computation accounts for historical information, and the model size does not increase with the

input size.
Here is an example of how Google’s autocompleting feature works :

4. Generative Adversarial Networks (GANs): GANs are generative deep learning algorithms
that create new data instances that resemble the training data. GAN has two components: a genera-
tor, which learns to generate fake data, and a discriminator, which learns from that false informa-
tion.
The usage of GANs has increased over a period of time. They can be used to improve astronomical
images and simulate gravitational lensing for dark-matter research. Video game developers use
GANs to upscale low-resolution, 2D textures in old video games by recreating them in 4K or higher
resolutions via image training.
GANs help generate realistic images and cartoon characters, create photographs of human faces,
and render 3D objects.

Working of  GANs
 The discriminator learns to distinguish between the generator’s fake data and the real sample data.
 During the initial training, the generator produces fake data, and the discriminator quickly learns to

tell that it’s false.
 The GAN sends the results to the generator and the discriminator to update the model.

Below is a diagram of how GANs operate:
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5. Radial Basis Function Networks (RBFNs): RBFNs are special types of feedforward neural
networks that use radial basis functions as activation functions. They have an input layer, a hidden
layer, and an output layer and are mostly used for classification, regression, and time-series predic-
tion.

Working of RBFNs

RBFNs perform classification by measuring the input’s similarity to examples from the training set.

 RBFNs have an input vector that feeds to the input layer. They have a layer of RBF neurons.

 The function finds the weighted sum of the inputs, and the output layer has one node per category
or class of data.

 The neurons in the hidden layer contain the Gaussian transfer functions, which have outputs that
are inversely proportional to the distance from the neuron’s center.

 The network’s output is a linear combination of the input’s radial-basis functions and the neuron’s
parameters.

Example of an RBFN

6. Multilayer perceptron’s (MLPs): MLPs are an excellent place to start learning about deep learn-
ing technology. 

MLPs belong to the class of feedforward neural networks with multiple layers of perceptrons that
have activation functions. MLPs consist of an input layer and an output layer that are fully con-
nected. They have the same number of input and output layers but may have multiple hidden
layers and can be used to build speech-recognition, image-recognition, and machine-translation
software.

Working of MLPs

MLPs feed the data to the input layer of the network. The layers of neurons connect in a graph so
that the signal passes in one direction.

 MLPs compute the input with the weights that exist between the input layer and the hidden layers.

 MLPs use activation functions to determine which nodes to fire. Activation functions include ReLUs,
sigmoid functions, and tanh.

 MLPs train the model to understand the correlation and learn the dependencies between the inde-
pendent and the target variables from a training data set.

Below is an example of an MLP. The diagram computes weights and bias and applies suitable
activation functions to classify images of cats and dogs.
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7. Self-Organizing Maps (SOMs): Professor TeuvoKohonen invented SOMs, which enable data

visualization to reduce the dimensions of data through self-organizing artificial neural networks. 

Data visualization attempts to solve the problem that humans cannot easily visualize high-dimen-
sional data. SOMs are created to help users understand this high-dimensional information.

Working Of SOMs:SOMs initialize weights for each node and choose a vector at random from the
training data.

 SOMs examine every node to find which weights are the most likely input vector. The winning node
is called the Best Matching Unit (BMU).

 SOMs discover the  BMU’s neighborhood, and the amount of neighbors lessens over time.

 SOMs award a winning weight to the sample vector. The closer a node is to a BMU, the more its
weight changes..

 The further the neighbor is from the BMU, the less it learns. SOMs repeat step two for N iterations.

Below, see a diagram of an input vector of different colors. This data feeds to a SOM, which then
converts the data into 2D RGB values. Finally, it separates and categorizes the different colors.

8. Deep Belief Networks (DBNs): DBNs are generative models that consist of multiple layers of
stochastic, latent variables. The latent variables have binary values and are often called hidden
units.

DBNs are a stack of Boltzmann Machines with connections between the layers, and each RBM layer
communicates with both the previous and subsequent layers. Deep Belief Networks (DBNs) are
used for image-recognition, video-recognition, and motion-capture data. 
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Working of DBNs

Greedy learning algorithms train DBNs. The greedy learning algorithm uses a layer-by-layer ap-
proach for learning the top-down, generative weights.

 DBNs run the steps of Gibbs sampling on the top two hidden layers. This stage draws a sample from
the RBM defined by the top two hidden layers.

 DBNs draw a sample from the visible units using a single pass of ancestral sampling through the rest
of the model.

 DBNs learn that the values of the latent variables in every layer can be inferred by a single, bottom-
up pass.

Below is an example of DBN architecture:

9. Restricted Boltzmann Machines (RBMs): Developed by Geoffrey Hinton, RBMs are stochastic
neural networks that can learn from a probability distribution over a set of inputs. 

This deep learning algorithm is used for dimensionality reduction, classification, regression, collabo-
rative filtering, feature learning, and topic modeling. RBMs constitute the building blocks of DBNs.

RBMs consist of two layers:

 Visible units 

 Hidden units

Each visible unit is connected to all hidden units. RBMs have a bias unit that is connected to all the
visible units and the hidden units, and they have no output nodes.

Working of RBMs

RBMs have two phases: forward pass and backward pass.

 RBMs accept the inputs and translate them into a set of numbers that encodes the inputs in the
forward pass.

 RBMs combine every input with individual weight and one overall bias. The algorithm passes the
output to the hidden layer.

 In the backward pass, RBMs take that set of numbers and translate them to form the reconstructed
inputs.

 RBMs combine each activation with individual weight and overall bias and pass the output to the
visible layer for reconstruction.



UNIT - I DEEP LEARNING

13
Rahul Publications

Rahul Publications

 At the visible layer, the RBM compares the reconstruction with the original input to analyze the
quality of the result.

Below is a diagram of how RBMs function:

10. Autoencoders: Autoencoders are a specific type of feedforward neural network in which the input
and output are identical. Geoffrey Hinton designed autoencoders in the 1980s to solve unsuper-
vised learning problems. They are trained neural networks that replicate the data from the input
layer to the output layer. Autoencoders are used for purposes such as pharmaceutical discovery,
popularity prediction, and image processing.

Working of Autoencoders

An autoencoder consists of three main components: the encoder, the code, and the decoder.

 Autoencoders are structured to receive an input and transform it into a different representation.
They then attempt to reconstruct the original input as accurately as possible. 

 When an image of a digit is not clearly visible, it feeds to an autoencoder neural network. 

 Autoencoders first encode the image, then reduce the size of the input into a smaller representa-
tion.

 Finally, the autoencoder decodes the image to generate the reconstructed image.

The following image demonstrates how autoencoders operate:
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1.6 NEURAL NETWORKS

Q6. What is Neural Networks? Explain in
detail about Neural Networks and it
types.

Ans : (Imp.)

A neural network is a method in artificial in-
telligence that teaches computers to process data in
a way that is inspired by the human brain. It is a
type of machine learning process, called deep learn-
ing, that uses interconnected nodes or neurons in a
layered structure that resembles the human brain.
It creates an adaptive system that computers use to
learn from their mistakes and improve continuously.
Thus, artificial neural networks attempt to solve com-
plicated problems, like summarizing documents or
recognizing faces, with greater accuracy.

Importance of Neural Networks

Neural networks can help computers make
intelligent decisions with limited human assistance.
This is because they can learn and model the rela-
tionships between input and output data that are
nonlinear and complex. For instance, they can do
the following tasks.

Make generalizations and inferences

Neural networks can comprehend unstruc-
tured data and make general observations without
explicit training. For instance, they can recognize
that two different input sentences have a similar
meaning:

 Can you tell me how to make the payment?

 How do I transfer money?

A neural network would know that both sen-
tences mean the same thing. Or it would be able to
broadly recognize that Sardar Patel Road is a place,
but Sardar Patel is a person’s name.

Uses of Neural Networks:

Neural networks have several use cases across
many industries, such as the following:

 Medical diagnosis by medical image classifi-
cation

 Targeted marketing by social network filter-
ing and behavioral data analysis

 Financial predictions by processing historical
data of financial instruments

 Electrical load and energy demand forecast-
ing

 Process and quality control

 Chemical compound identification

We give four of the important applications of
neural networks below.

Computer vision

Computer vision is the ability of computers
to extract information and insights from images and
videos. With neural networks, computers can dis-
tinguish and recognize images similar to humans.
Computer vision has several applications, such as
the following:

 Visual recognition in self-driving cars so they
can recognize road signs and other road us-
ers

 Content moderation to automatically remove
unsafe or inappropriate content from image
and video archives

 Facial recognition to identify faces and rec-
ognize attributes like open eyes, glasses, and
facial hair

 Image labeling to identify brand logos, cloth-
ing, safety gear, and other image details

Speech recognition

Neural networks can analyze human speech
despite varying speech patterns, pitch, tone, lan-
guage, and accent. Virtual assistants like Amazon
Alexa and automatic transcription software use
speech recognition to do tasks like these:

 Assist call center agents and automatically clas-
sify calls

 Convert clinical conversations into documen-
tation in real time

 Accurately subtitle videos and meeting record-
ings for wider content reach

Natural language processing

Natural language processing (NLP) is the abil-
ity to process natural, human-created text. Neural
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networks help computers gather insights and mean-
ing from text data and documents. NLP has several
use cases, including in these functions:

 Automated virtual agents and chatbots

 Automatic organization and classification of
written data

 Business intelligence analysis of long-form
documents like emails and forms

 Indexing of key phrases that indicate senti-
ment, like positive and negative comments
on social media

 Document summarization and article genera-
tion for a given topic

Recommendation engines

Neural networks can track user activity to
develop personalized recommendations. They can
also analyze all user behavior and discover new
products or services that interest a specific user. For
example, Curalate, a Philadelphia-based startup,
helps brands convert social media posts into sales.
Brands use Curalate’s intelligent product tagging
(IPT) service to automate the collection and curation
of user-generated social content. IPT uses neural
networks to automatically find and recommend
products relevant to the user’s social media activity.
Consumers don’t have to hunt through online cata-
logs to find a specific product from a social media
image. Instead, they can use Curalate’s auto prod-
uct tagging to purchase the product with ease.

Working of Neural Networks

The human brain is the inspiration behind
neural network architecture. Human brain cells,
called neurons, form a complex, highly intercon-
nected network and send electrical signals to each
other to help humans process information. Simi-
larly, an artificial neural network is made of artificial
neurons that work together to solve a problem.
Artificial neurons are software modules, called
nodes, and artificial neural networks are software
programs or algorithms that, at their core, use com-
puting systems to solve mathematical calculations.

Simple neural network architecture

A basic neural network has interconnected
artificial neurons in three layers:

Input Layer

Information from the outside world enters the
artificial neural network from the input layer. Input
nodes process the data, analyze or categorize it, and
pass it on to the next layer.

Hidden Layer

Hidden layers take their input from the input
layer or other hidden layers. Artificial neural net-
works can have a large number of hidden layers.
Each hidden layer analyzes the output from the
previous layer, processes it further, and passes it on
to the next layer.

Output Layer

The output layer gives the final result of all
the data processing by the artificial neural network.
It can have single or multiple nodes. For instance, if
we have a binary (yes/no) classification problem,
the output layer will have one output node, which
will give the result as 1 or 0. However, if we have a
multi-class classification problem, the output layer
might consist of more than one output node.

Types of Neural Networks

Artificial neural networks can be categorized
by how the data flows from the input node to the
output node. Below are some examples:

Feedforward neural networks

Feedforward neural networks process data in
one direction, from the input node to the output
node. Every node in one layer is connected to ev-
ery node in the next layer. A feedforward network
uses a feedback process to improve predictions over
time.

Backpropagation algorithm

Artificial neural networks learn continuously
by using corrective feedback loops to improve their
predictive analytics. In simple terms, you can think
of the data flowing from the input node to the out-
put node through many different paths in the neu-
ral network. Only one path is the correct one that
maps the input node to the correct output node.
To find this path, the neural network uses a feed-
back loop, which works as follows:

Each node makes a guess about the next node
in the path.
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It checks if the guess was correct. Nodes assign higher weight values to paths that lead to more correct
guesses and lower weight values to node paths that lead to incorrect guesses.

For the next data point, the nodes make a new prediction using the higher weight paths and then
repeat Step 1.

Convolutional neural networks

The hidden layers in convolutional neural networks perform specific mathematical functions, like
summarizing or filtering, called convolutions. They are very useful for image classification because they
can extract relevant features from images that are useful for image recognition and classification. The new
form is easier to process without losing features that are critical for making a good prediction. Each hidden
layer extracts and processes different image features, like edges, color, and depth.

Training of Neural Networks

Neural network training is the process of teaching a neural network to perform a task. Neural
networks learn by initially processing several large sets of labeled or unlabeled data. By using these ex-
amples, they can then process unknown inputs more accurately.

Supervised learning

In supervised learning, data scientists give artificial neural networks labeled datasets that provide the
right answer in advance. For example, a deep learning network training in facial recognition initially
processes hundreds of thousands of images of human faces, with various terms related to ethnic origin,
country, or emotion describing each image.

The neural network slowly builds knowledge from these datasets, which provide the right answer in
advance. After the network has been trained, it starts making guesses about the ethnic origin or emotion
of a new image of a human face that it has never processed before.

1.7 DATA REPRESENTATIONS FOR NEURAL NETWORKS

Q7. Discuss about Data representations for neural networks.

Ans : (Imp.)

A deep learning task typically entails analyzing an image, text, or table of data (cross-sectional and
time-series) to produce a number, label, additional text, additional images, or a mix of these. Simple
examples include:

 Identifying a dog or cat in a picture.

 Guess the word that will come next in a sentence.

 Creating captions for images.

 Changing the style of a picture (like the Prisma app on iOS/Android).

A tensor can be a generic structure that can be used for storing, representing, and changing
data.Tensors are the fundamental data structure used by all machine and deep learning algorithms. The
term “TensorFlow” was given to Google’s TensorFlow because tensors are essential to the discipline.

Tensor

A tensor is just a container for data, typically numerical data. It is, therefore, a container for num-
bers. Tensors are a generalization of matrices to any number of dimensions. You may already be familiar
with matrices, which are 2D tensors (note that in the context of tensors, a dimension is often called an
axis).
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Fig.: Different types of Tensors

A scalar, vector, and matrix can all be represented as tensors in a more generalized fashion. An n-
dimensional matrix serves as the definition of a tensor. A scalar is a zero-dimensional tensor (i.e., a single
number), a vector is a one-dimensional tensor, a matrix is a two-dimensional tensor, a cube is a three-
dimensional tensor, etc. The rank of a tensor is another name for a matrix’s dimension.

The simplest method is to create a tensor in Python via lists. The experiment that follows will show
a variety of tensor functions that are frequently employed in creating deep learning applications.

1. Scalars (0 D tensors)  

The term “scalar” (also known as “scalar-tensor,” “0-dimensional tensor,” or “0D tensor”) refers to
a tensor that only holds a single number. A float32 or float64 number is referred to as a scalar-tensor (or
scalar array) in Numpy. The “ndim” feature of a Numpy tensor can be used to indicate the number of
axes; a scalar-tensor has no axes (ndim == 0). A tensor’s rank is another name for the number of its
axes. Here is a Scalar in Numpy:

>>> import numpy as np

>>> x = np.array(10)

>>> x

array(10)

>>>x.ndim

0

2.  Vectors (1 D tensors)

A vector, often known as a 1D tensor, is a collection of numbers. It is claimed that a 1D tensor has
just one axis. A NumPy vector can be written as:
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>>> x = np.array([12, 3, 6, 14, 8])

>>> x

array([12, 3, 6, 14, 8])

>>>x.ndim

1

This vector is referred to as a 5D vector since
it has five elements. A 5D tensor is not the same as
a 5D vector. A 5D tensor will have five axes, whereas
a 5D vector has just only one axis and five dimen-
sions along it (and may have any number of di-
mensions along each axis). Dimensionality can re-
fer to the number of axes in a tensor, such as a 5D
tensor, or the number of entries along a particular
axis, as in the case of our 5D vector. Although using
the ambiguous notation 5D tensor is widespread,
using a tensor of rank 5 (the rank of a tensor being
the number of axes) is mathematically more accu-
rate in the latter situation.

3.  Matrices (2D tensors)

A matrix, or 2D tensor, is a collection of vec-
tors. Two axes constitute a matrix (often referred to
as rows and columns). A matrix can be visualized as
a square box of numbers. The NumPy matrix can
be written as:

>>> x = np.array([[5, 8, 2, 34, 0],

[6, 79, 30, 35, 1],

[9, 80, 49, 6, 2]])

>>>x.ndim

2

Rows and columns are used to describe the
elements from the first and second axes. The first
row of x in the example is [5, 8, 2, 34, 0], while the
first column is [5, 6, 9].

4.  3D tensors or higher dimensional ten-
sors

These matrices can be combined into a new
array to create a 3D tensor, which can be seen as a
cube of integers. Listed below is a Numpy 3D ten-
sor:

>>> x = np.array([[[5, 8, 20, 34, 0],

[6, 7, 3, 5, 1],

[7, 80, 4, 36, 2]],

[[5, 7, 2, 34, 0],

[6, 79, 3, 35, 1],

[7, 8, 4, 36, 2]],

[[5, 78, 2, 3, 0],

[6, 19, 3, 3, 1],

[7, 8, 4, 36, 24]]])

>>>x.ndim

3

A 4D tensor can be produced by stacking 3D
tensors in an array, and so on. In deep learning,
you typically work with tensors that range from 0
to 4D, though if you’re processing video data, you
might go as high as 5D.

1.8 KEY ATTRIBUTES

Q8. Explain Key Attributes (Essential char-
acteristics) and real world examples of
data tensors.

Ans: (Imp.)

Key Attributes

Three essential characteristics are used to de-
scribe tensors:

1.  Number of axes (rank): A matrix contains
two axes, while a 3D tensor possesses three.
In Python libraries like Numpy, this is addi-
tionally referred to as the tensor’s ndim.

2.  Shape: The number of dimensions the ten-
sor contains across each axis is specified by a
tuple of integers. For instance, the 3D tensor
example has shape (3, 5) while the prior
matrix example has shape (3, 3, 5). A scalar
has an empty shape as (), but a vector has a
shape with a single element, like (5,).

3.  Date type (sometimes abbreviated as
“dtype” in Python libraries): The format
of the data which makes up the tensor; ex-
amples include float32, uint8, float64, and
others. A ‘char’ tensor might appear in ex-
ceptional cases. Due to the string’s change-
able duration and the fact that tensors reside
well before shared memory sections, string
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tensors are not present in Numpy (or in the
majority of other libraries).

Real-world examples of data tensors:

With some situations that are representative
of what you’ll see later, let’s give data tensors addi-
tional context. Nearly all of the time, the data you
work with will belong to one of the following groups:

1.  Vector data: 2D tensors (samples, features).

2.  Sequence or time-series data: 3D ten-
sors of shape (samples, timesteps, character-
istics)

3.  Images: 4D tensors of shape (samples,
height, width, channels) or (samples, chan-
nels, height, width)

4.  Video: 5D shape tensors of shapes (samples,
frames, height, width, channels) or (samples,
frames, channels, height, width)

Vector Data

The most typical scenario is this. A batch of
data in a dataset will be stored as a 2D tensor (i.e.,
an array of vectors), in which the first axis is the
samples axis and the second axis is the features axis.
Each individual data point in such a dataset is stored
as a vector. Let’s focus on two instances:

 A statistical dataset of consumers, where each
individual’s age, height, and gender are taken
into account. Since each individual may be
represented as a vector of three values, the
full dataset of 100 individuals can be stored
in a 2D tensor of the shape (100, 3).

 A collection of textual information in which
each article is represented by the number of
times each word occurs in it (out of a dictio-
nary of 2000 common words). A full dataset
of 50 articles can be kept in a tensor of shape
(50, 2000) since each article can be repre-
sented as a vector of 20,00 values (one count
per word in the dictionary).

Time series data or sequence data

It’s imperative to store data in a 3D tensor
with an explicit time axis whenever time (or the idea
of sequence order) is important. A batch of data
will be encoded as a 3D tensor because each in-
stance can be represented as a series of vectors (a
2D tensor).

Fig.: 3D time-series data tensor

The time axis has always been the second axis
(axis of index 1) by convention. Let’s examine a
couple of instances:

 A stock price dataset: We keep track of
the stock’s current market price as well as its
peak and lowest prices from the previous
hour. Since there are 390 minutes in a trad-
ing day, each minute is encoded as a 3D vec-
tor, a trading day may be represented as a
2D tensor of the form (390, 3), and 250
day’s worth of data can be kept in a 3D ten-
sor of shape (250, 390, 3). Each sample, in
this case, corresponds to a day’s worth of
data.

 Tweets dataset: let’s 300 characters be used
to represent each tweet in a dataset of tweets,
with a total of 125 different characters in the
alphabet. Each character in this scenario can
be represented as a binary vector of size 125
that is all zeros with the exception of a single
item at the character-specific index. Then, a
dataset of 10 million tweets can be kept in a
tensor of shape by encoding each tweet as a
2D tensor of shape (300, 125). (10000000,
300, 125).

Image Data

Height, width, and colour depth are the three
dimensions that most images have. By definition,
image tensors are always 3D, with a one-dimen-
sional colour channel for grayscale images. Even
though grayscale images (like our MNIST digits) only
have a single colour channel and may therefore be
stored in 2D tensors. Thus, a tensor of shape (32,
64, 64, 1) might be used to save a batch of 32
grayscale photos of size 64 x 64, while a tensor of
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shape (32, 64, 64, 1) could be used to store a batch
of 32 colour images (32, 64, 64, 3).

Fig.: 4D image data tensor

The channels-last format (used by
TensorFlow) and the channels-first format are the
two standards for the shapes of image tensors (used
by Theano). The colour-depth axis is located at the
end of the list of dimensions in the Google
TensorFlow: (samples, height, width, colour-depth).
The batch axis is placed first, followed by the
samples, colour-depth, height, and width axes by
Theano. The previous instances would be trans-
formed into (32, 1, 64, 64) and (32, 3, 64, 64).
Both file types are supported by the Keras frame-
work.

Video data

Among the few real-world datasets for which
you’ll require 5D tensors is video data. A video could
be viewed as a set of colored images called frames.
A batch of various movies can be saved in a 5D
tensor of shape (samples, frames, height, width, and
colour-depth) since each frame can be kept in a 3D
tensor (height, width, and colour-depth). A series
of frames can also be saved in a 4D tensor (frames,
height, width, and colour-depth).

For instance, 240 frames would be present
in a 60-second, 144 x 256 YouTube video clip
sampled at 4 frames per second. Four of these video
clips would be saved in a tensor shape as a batch
(4, 240, 144, 256, 3). There are 106,168,320 val-
ues in all. The tensor could store 405 MB if the
dtype of the tensor was float32 since each value
would be recorded in 32 bits. Heavy! Because they
aren’t saved in float32 and are often greatly com-
pressed, videos you see in real life are significantly
lighter (such as in the MPEG format).

1.9 MANIPULATING TENSORS IN NUMPY

Q9. Explain in detail about Manipulating
Tensors in NumPy with suitable ex-
amples.

Ans:
Tensor is a generalization of vectors and ma-

trices and is easily understood as a multidimensional
array.In the general case, an array of numbers ar-
ranged on a regular grid with a variable number of
axes is known as a “tensor”.

 Tensors are a type of data structure used in
linear algebra, and like vectors and matrices,
you can calculate arithmetic operations with
tensors.

 A vector is a one-dimensional or first order
tensor and a matrix is a two-dimensional or
second order tensor.

 Tensor notation is much like matrix notation
with a capital letter representing a tensor and
lowercase letters with subscript integers rep-
resenting scalar values within the tensor.

 Many of the operations that can be per-
formed with scalars, vectors, and matrices can
be reformulated to be performed with ten-
sors.

Tensors in Python

Like vectors and matrices, tensors can be rep-
resented in Python using the N-dimensional array
(ndarray).

 A tensor can be defined in-line to the con-
structor of array() as a list of lists.

The example below defines a 3x3x3 tensor
as a NumPy ndarray. Three dimensions is easier to
wrap your head around. Here, we first define rows,
then a list of rows stacked as columns, then a list of
columns stacked as levels in a cube.
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# create tensor

from numpy import array

T = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

print(T.shape)

print(T)

Running the example first prints the shape of the tensor, then the values of the tensor itself.

The Output shows that at least in three-dimensions, the tensor is printed as a series of matrices, one
for each layer. For this 3D tensor, axis 0 specifies the level, axis 1 specifies the row, and axis 2 specifies the
column.

OUTPUT:

(3, 3, 3)

[[[ 1  2  3]

[ 4  5  6]

[ 7  8  9]]

[[11 12 13]

[14 15 16]

[17 18 19]]

[[21 22 23]

[24 25 26]

[27 28 29]]]

Element-Wise Tensor Operations

As with matrices, we can perform element-wise arithmetic between tensors.

We will work through the four main arithmetic operations.

Tensor Addition

The element-wise addition of two tensors with the same dimensions results in a new tensor with the
same dimensions where each scalar value is the element-wise addition of the scalars in the parent tensors.

a111, a121, a131, a112, a122, a132

A = (a211, a221, a231), (a112, a122, a132) b111, b121, b131, b112, b122, b132

B = (b211, b221, b231), (b112, b122, b132)

C = A + B

     a111 + b111, a121 + b121, a131 + b131,  a112 + b112, a122 + b122, a132 + b132
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C = (a211 + b211, a221 + b221, a231 + b231), (a112 + b112, a122 + b122, a132 + b132)

In NumPy, we can add tensors directly by adding arrays.

# tensor addition

from numpy import array

A = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

B = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

C = A + B

print(C)

Running the example prints the addition of the two parent tensors.

[[[ 2  4  6]

  [ 8 10 12]

  [14 16 18]]

[[22 24 26]

    [28 30 32]

    [34 36 38]]

[[42 44 46]

    [48 50 52]

    [54 56 58]]]

Tensor Subtraction

The element-wise subtraction of one tensor from another tensor with the same dimensions results
in a new tensor with the same dimensions where each scalar value is the element-wise subtraction of the
scalars in the parent tensors.

a111, a121, a131     a112, a122, a132

A = (a211, a221, a231),  (a112, a122, a132)

     b111, b121, b131     b112, b122, b132

B = (b211, b221, b231),  (b112, b122, b132)

C = A - B
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     a111 - b111, a121 - b121, a131 - b131     a112 - b112, a122 - b122, a132 - b132

C = (a211 - b211, a221 - b221, a231 - b231),  (a112 - b112, a122 - b122, a132 - b132)

In NumPy, we can subtract tensors directly by subtracting arrays.

# tensor subtraction

from numpy import array

A = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

B = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

C = A - B

print(C)

Running the example prints the result of subtracting the first tensor from the second.

OUTPUT:

[[[0 0 0]

     [0 0 0]

     [0 0 0]]

[[0 0 0]

    [0 0 0]

    [0 0 0]]

[[0 0 0]

    [0 0 0]

    [0 0 0]]]

Tensor Hadamard Product

The element-wise multiplication of one tensor from another tensor with the same dimensions re-
sults in a new tensor with the same dimensions where each scalar value is the element-wise multiplication
of the scalars in the parent tensors.

As with matrices, the operation is referred to as the Hadamard Product to differentiate it from
tensor multiplication. Here, we will use the “o” operator to indicate the Hadamard product operation
between tensors.
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a111, a121, a131     a112, a122, a132

A = (a211, a221, a231),  (a112, a122, a132)

     b111, b121, b131     b112, b122, b132

B = (b211, b221, b231),  (b112, b122, b132)

C = A o B

     a111 * b111, a121 * b121, a131 * b131     a112 * b112, a122 * b122, a132 * b132

C = (a211 * b211, a221 * b221, a231 * b231),  (a112 * b112, a122 * b122, a132 * b132)

In NumPy, we can multiply tensors directly by multiplying arrays.

# tensor Hadamard product

from numpy import array

A = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

B = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

C = A * B

print(C)

Running the example prints the result of multiplying the tensors.

[[[  1   4   9]

     [ 16  25  36]

     [ 49  64  81]]

[[121 144 169]

    [196 225 256]

    [289 324 361]]

[[441 484 529]

    [576 625 676]

    [729 784 841]]]

Tensor Division:

The element-wise division of one tensor from another tensor with the same dimensions results in a
new tensor with the same dimensions where each scalar value is the element-wise division of the scalars in
the parent tensors.
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a111, a121, a131     a112, a122, a132

A = (a211, a221, a231),  (a112, a122, a132)

     b111, b121, b131     b112, b122, b132

B = (b211, b221, b231),  (b112, b122, b132)

C = A / B

     a111 / b111, a121 / b121, a131 / b131     a112 / b112, a122 / b122, a132 / b132

C = (a211 / b211, a221 / b221, a231 / b231),  (a112 / b112, a122 / b122, a132 / b132)

In NumPy, we can divide tensors directly by dividing arrays.

# tensor division

from numpy import array

A = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

B = array([

   [[1,2,3],    [4,5,6],    [7,8,9]],

   [[11,12,13], [14,15,16], [17,18,19]],

   [[21,22,23], [24,25,26], [27,28,29]],

   ])

C = A / B

print(C)

Running the example prints the result of dividing the tensors.

[[[ 1.  1.  1.]

    [ 1.  1.  1.]

 [ 1.  1.  1.]]

[[ 1.  1.  1.]

    [ 1.  1.  1.]

    [ 1.  1.  1.]]

 [[ 1.  1.  1.]

 [ 1.  1.  1.]

 [ 1.  1.  1.]]]
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1.10 THE NOTION OF DATA BATCHES

Q10. What is the notion of data batches? Explain with an example.

Ans:
The batch size is a hyperparameter that defines the number of samples to work through before

updating the internal model parameters.

Think of a batch as a for-loop iterating over one or more samples and making predictions. At the end of
the batch, the predictions are compared to the expected output variables and an error is calculated. From
this error, the update algorithm is used to improve the model, e.g. move down along the error gradient.

A training dataset can be divided into one or more batches.

When all training samples are used to create one batch, the learning algorithm is called batch
gradient descent. When the batch is the size of one sample, the learning algorithm is called stochastic
gradient descent. When the batch size is more than one sample and less than the size of the training
dataset, the learning algorithm is called mini-batch gradient descent.

 Batch Gradient Descent. Batch Size = Size of Training Set

 Stochastic Gradient Descent. Batch Size = 1

 Mini-Batch Gradient Descent. 1 < Batch Size < Size of Training Set

In the case of mini-batch gradient descent, popular batch sizes include 32, 64, and 128 samples.

The notion of data batches

In general, the first axis (axis 0, because indexing starts at 0) in all data tensors you’ll come across in
deep learning will be the samples axis (sometimes called the samples dimension). In the MNIST example,
samples are images of digits. In addition, deep-learning models don’t process an entire dataset at once;
rather, they break the data into small batches. Concretely, here’s one batch of our MNIST digits, with
batch size of 128:

batch = X_train_images[:128]

And here’s the next batch:

batch = X_train_images[128:256]

And the n th batch:

batch = X_train_images[128 * n:128 * (n + 1)]

When considering such a batch tensor, the first axis (axis 0) is called the batch axis or batch dimen-
sion. This is a term we will frequently encounter when using Keras and other deep-learning libraries.

1.11 REAL-WORLD EXAMPLES OF TENSORS

Q11. What are the Real-World Examples of Tensors? Give with examples.

Ans: (Imp.)

Real-World Examples of (0D, 1D, 2D, 3D, 4D and 5D) Tensors:

 Tensors are the basic data structure in machine learning and deep learning models.

 Tensors are nothing but multi-dimensional NumPy arrays.
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A tensor can be considered as a container for numerical data (numbers). In neural networks, data
is represented by using tensors. The input layer of a neural network holds text, speech, audio, images,
videos or any other kind of data as tensors that takes numbers. We perform tensor operations (tensor
addition, multiplication, reshaping, etc.) throughout the network with these tensors of numerical data.

Dimensions, axes and rank of a tensor:

Dimensions

A tensor can contain an arbitrary number of dimensions. Therefore, a tensor can be 0D (no dimen-
sion!), 1D, 2D, 3D, 4D, 5D and so on. Specific names are given to tensors depending on the number of
dimensions they have.

Therefore, a 0D tensor is specifically known as a Scalar. A 1D tensor is specifically known as a Vector.
A 2D tensor is specifically known as a Matrix. 3D and higher-dimensional arrays are just tensors!In some
contexts, only the 3D and higher-dimensional arrays are considered as tensors. But in deep learning,
“tensor” is a general term that is used to refer to an array of any dimension.

Axes:The term ”axis” (plural: axes) is another way to refer to a dimension of a tensor. For ex-
ample, a 1D tensor (i.e. a vector) has a single axis. Likewise, a 2D tensor (i.e. a matrix) has two axes and
so on.Rank:The number of axes (dimensions) of a tensor is called its rank. For example, a 0D tensor (i.e.
scalar) is a rank-0 tensor. Likewise, a 1D tensor (i.e. a vector) is a rank-1 tensor and so on.

Top takeaway: The dimensionality or rank denotes the number of axes in a tensor.

Real-world examples of tensors

We can start with rank-0 tensors and end up with rank-5 tensors. The  real-world examples for each
type of tensor along with what each axis means in the case of rank-2 and higher tensors.

Rank-0 tensors (scalars or 0D tensors)

A rank-0 tensor contains only one number. It is just a scalar!

Example: A pixel value in a grayscale image.

Consider a pixel value of 10 that represents a color close to black.

Grayscale pixel value: An example of a rank-0 tensor.

Rank-1 tensors (vectors or 1D tensors):

A rank-1 tensor contains a set of numbers in a single axis.

Example 1: 

A pixel value in an RGB image.

Let’s consider an RGB pixel value of [255, 255, 0] that represents the yellow color.

consider an RGB pixel value of [255, 255, 0] that represents the yellow color.

RGB pixel value: An example of a rank-1 tensor
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Example 2: 

A flattened grayscale image.
A grayscale image can be flattened into a rank-1 tensor as in the following diagram.

Flattened grayscale image: An example of a rank-1 tensor
Rank-2 tensors (matrices or 2D tensors):
A rank-2 tensor is an array of vectors. It has two axes.

Example 1: 
A tabular dataset with rows and columns.

Tabular dataset: An example of a rank-2 tensor
In this case, the two axes denote (samples, features) which is equivalent to rows and columns. For

example, (5, 4) means that the dataset has 5 observations (rows or samples) and 4 variables (columns or
features).
Example 2: 

A single non-flattened grayscale image.

Non-flattened grayscale image: An example of a rank-2 tensor
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In this case, the two axes denote (height, width) which is equivalent to the height and width of an
image in pixels. For example, (28, 28) means that the array holds a single grayscale image of size 28 x 28
in pixels.

Example 3: 

A batch of flattened grayscale images.

A batch of flattened grayscale images: An example of a rank-2 tensor

In this case, the two axes denote (samples, features) which is equivalent to the number of flattened
grayscale images and pixel values of each image. For example, (3, 9) means that the array contains 3
flattened grayscale images each having 9 pixels.

Rank-3 tensors (3D tensors)

A rank-3 tensor is an array of several matrices. It has 3 axes.

Example 1: 

A batch of grayscale images.

A batch of grayscale images: An example of a rank-3 tensor

In this case, the three axes denote (samples, height, width). For example, (1000, 28, 28) means
that the array contains 1000 grayscale images of size 28 x 28 in pixels.
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Example 2: 

A single RGB image.

RGB image: An example of a rank-3 tensor (Image by author)

In this case, the three axes denote (height, width, color_channels). For example, (28, 28, 3) means
that the array contains a single RGB image of size 28 x 28. The color_channels axis always takes the
value 3 in the case of an RGB (Red, Green, Blue) image.

Rank-4 tensors (4D tensors):

A rank-4 tensor is created by arranging several 3D tensors into a new array. It has 4 axes.

Example 1: 

A batch of RGB images.

A batch of RGB images: An example of a rank-4 tensor

In this case, the four axes denote (samples, height, width, color_channels). For example, (1000,
28, 28, 3) means that the array holds 1000 RGB images of size 28 x 28 in pixels. The color_channels axis
always takes the value 3 in the case of an RGB (Red, Green, Blue) image.
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Example 2: A single video.

In this case, the four axes denote (frames, height, width, color_channels). For example, (240, 720,
1280, 3) means that the array holds a 240-frame HD (720 x 1280) video. Each frame in a video is a color
image. Therefore, a frame is denoted by (height, width, color_channels). A video can be considered as a
sequence of frames. A 240-frame video is sampled at 4 (240/60) frames per second. In an HD video,
each frame is 720 x 1280 size in pixels.

Rank-5 tensors (5D tensors):

A rank-5 tensor is created by arranging several 4D tensors into a new array. It has 5 axes.

Example: 

A batch of videos.

In this case, the five axes denote (samples, frames, height, width, color_channels). For example,
(5, 240, 720, 1280, 3) means that the array holds a batch of five 240-frame HD (720 x 1280) videos.

The samples axis (samples dimension)

In the above notations such as (samples, features) , (samples, height, width) , (samples, height,
width, color_channels) , (samples, frames, heights, width, color_channels) , the first axis (i.e. the axis 0
in index notation) is always the samples axis. In a tabular dataset, the term “samples” means observations.
In image data, the term “samples” means the number of images. In video data, the term “samples” means
the number of videos.

The batch axis (batch dimension)

When we consider a small batch (part) of the dataset instead of considering the whole dataset, the
sample axis is referred to as the batch axis. This is just a technical term often found in the context of deep
learning.

1.12 VECTOR DATA

Q12. Define vector? Explain about Vector Data with an example.

Ans:
A vector is a mathematical object that encodes a length and direction.  Conceptually they can be

thought of as representing a position or even a change in some mathematical framework or space.  More
formally they are elements of a vector space:  a collection of objects that is closed under an addition rule
and a rule for multiplication by scalars.   

A vector is often represented as a 1-dimensional array of numbers, referred to as components and
is displayed either in column form or row form. Represented geometrically, vectors typically represent
coordinates within a n-dimensional space, where n is the number of dimensions. A simplistic representa-
tion of a vector might be a arrow in a vector space, with an origin, direction, and magnitude (length).

Working of Vectors

As basic units for computational arithmetic, vectors can be transformed utilizing basic mathematics.
For example, vectors can be added, subtracted and multiplied by. For instance, vector addition can be
denoted as:

a + b = (a1 + b1, a2 + b2, a3 + b3)
Furthermore, several rules vector multiplication can be defined.  One such is the pointwise product

and is denoted in a similar way:
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a * b = (a1 * b1, a2 * b2, a3 * b3)

Additionally, a vector dot product can calculate the sum of the multiplied elements of two vectors of
the same length to give a scalar:

a . b = (a1 * b1 + a2 * b2 + a3 * b3)

Other vector products such as the cross product or outer product can be defined in other ways.

Example of Vector data:

This is the most common case. In such a dataset, each single data point can be encoded as a vector,
and thus a batch of data will be encoded as a 2D tensor (that is, an array of vectors), where the first axis
is the samples axis and the second axis is the features axis.

Let’s take a look at two examples:

An actuarial dataset of people, where we consider each person’s age, ZIP code, and income. Each
person can be characterized as a vector of 3 values, and thus an entire dataset of 100,000 people can be
stored in a 2D tensor of shape (100000, 3).

A dataset of text documents, where we represent each document by the counts of how many times
each word appears in it (out of a dictionary of 20,000 common words). Each document can be encoded
as a vector of 20,000 values (one count per word in the dictionary), and thus an entire dataset of 500
documents can be stored in a tensor of shape (500, 20000).

1.13 TIMESERIES DATA OR SEQUENCE DATA

Q13. What is Timeseries data and give an example?
(OR)

What is sequence data and given an example.

Ans: (Imp.)
Time series is a machine learning technique that forecasts target value based solely on a known

history of target values. It is a specialized form of regression, known in the literature as auto-regressive
modeling.

The input to time series analysis is a sequence of target values. A case id column specifies the order
of the sequence. The case id can be of type NUMBER or a date type (date, datetime, timestamp with
time zone, or timestamp with local time zone). Regardless of case id type, the user can request that the
model include trend, seasonal effects or both in its forecast computation. When the case id is a date type,
the user must specify a time interval (for example, month) over which the target values are to be aggre-
gated, along with an aggregation procedure (for example, sum). Aggregation is performed by the algo-
rithm prior to constructing the model.

The time series model provide estimates of the target value for each step of a time window that can
include up to 30 steps beyond the historical data. Like other regression models, time series models com-
pute various statistics that measure the goodness of fit to historical data.

Forecasting is a critical component of business and governmental decision making. It has applica-
tions at the strategic, tactical and operation level. The following are the applications of forecasting:
 Projecting return on investment, including growth and the strategic effect of innovations

 Addressing tactical issues such as projecting costs, inventory requirements and customer satisfaction

 Setting operational targets and predicting quality and conformance with standards



UNIT - I DEEP LEARNING

33
Rahul Publications

Rahul Publications

Example of Timeseries data or sequence data:

Whenever time matters in your data (or the notion of sequence order), it makes sense to store it in
a 3D tensor with an explicit time axis. Each sample can be encoded as a sequence of vectors (a 2D
tensor), and thus a batch of data will be encoded as a 3D tensor

The time axis is always the second axis (axis of index 1), by convention.

Let’s look at few examples:

 A dataset of stock prices. Every minute, we store the current price of the stock, the highest price
in the past minute, and the lowest price in the past minute. Thus every minute is encoded as a 3D
vector, an entire day of tradingencoded as a 2D tensor of shape (390, 3) (there are 390 minutes in
a trading day), and 250 days’ worth of data can be stored in a 3D tensor of shape (250, 390, 3).
Here, each sample would be one day’s worth of data.

 A dataset of tweets, where we encode each tweet as a sequence of 280 characters out of an
alphabet of 128 unique characters. In this setting, each character can be encoded as a binary vector
of size 128 (an all-zeros vector except for a 1 entry at the index corresponding to the character).
Then each tweet can be encoded as a 2D tensor of shape (280, 128), and a dataset of 1 million
tweets can be stored in a tensor of shape (1000000, 280, 128).

1.14 IMAGE DATA

Q14. What is Image Data? Explain with suitable example.

Ans: (Imp.)

Image classification is one of the most important applications of deep learning and Artificial Intelli-
gence. Image classification refers to assigning labels to images based on certain characteristics or features
present in them.

Animage dataset is a collection of data curated for a machine learning project. An image dataset
includes digital images curated for testing, training, and evaluating the performance of machine learning
and artificial intelligence (AI) algorithms, commonly computer vision algorithms.

Example of Image data:

Images typically have three dimensions: height, width, and color depth. Although grayscale images
(like our MNIST digits) have only a single color channel and could thus be stored in 2D tensors, by
convention image tensors are always 3D, with a one-dimensional color channel for grayscale images. A
batch of 128 grayscale images of size 256 × 256 could thus be stored in a tensor of shape (128, 256,
256, 1), and batch of 128 color images could be stored in a tensor of shape (128, 256, 256, 3)
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The above is a A 4D image data tensor

There are two conventions for shapes of images tensors: the channels-last convention (used by
TensorFlow) and the channels-first convention (used by Theano). TensorFlow, places the color-depth axis
at the end: (samples, height, width, color_depth). Meanwhile, Theano places the color depth axis right
after the batch axis: (samples, color_depth, height, width). With the Theano convention, the previous
examples would become (128, 1, 256, 256) and (128, 3, 256, 256). The Keras framework provides
support for both formats.

1.15 VIDEO DATA

Q15. Explain about video data with an example.

Ans:
Video data contains a rich amount of information, and has a more complex and large structure

than image data. Being able to classify videos in a memory-efficient way using deep learning can help us
better understand the contents within the data. On tensorflow.org, we have published a series of tutorials
on how to load, preprocess, and classify video data.

1. Load video data

 Read sequences of frames out of the video files.

 Visualize the video data.

 Wrap the frame-generator tf.data.Dataset.

2. Video classification with a 3D convolutional neural network

 Build an input pipeline

 Build a 3D convolutional neural network model with residual connections using Keras func-
tional API

 Train the model

 Evaluate and test the model

3. MoViNet for streaming action recognition

4. Transfer learning for video classification with MoViNet
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Example of Video data

Video data is one of the few types of real-world data for which you’ll need 5D tensors.

A video can be understood as a sequence of frames, each frame being a color image. Because each
frame can be stored in a 3D tensor (height, width, color_depth), a sequence of frames can be stored in a
4D tensor (frames, height, width, color_depth), and thus a batch of different videos can be stored in a 5D
tensor of shape (samples, frames, height, width, color_depth).

For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per second would
have 240 frames. A batch of four such video clips would be stored in a tensor of shape (4, 240, 144, 256,
3). That’s a total of 106,168,320 values! If the dtype of the tensor was float32, then each value would be
stored in 32 bits, so the tensor would represent 405 MB. Heavy! Videos we encounter in real life are much
lighter, because they aren’t stored in float32, and they’re typically compressed by a large factor (such as in
the MPEG format).
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1. Write note on Deep Learning?

Ans :
Deep Learning:Deep learning is a branch of machine learning which is completely based on

artificial neural networks, as neural network is going to mimic the human brain so deep learning is also a
kind of mimic of human brain. In deep learning, we don’t need to explicitly program everything.

“Deep learning is a collection of statistical techniques of machine learning for learning feature hier-
archies that are actually based on artificial neural networks.”

Example of Deep Learning:

In the example given above, we provide the raw data of images to the first layer of the input layer.
After then, these input layer will determine the patterns of local contrast that means it will differentiate on
the basis of colors, luminosity, etc. Then the 1st hidden layer will determine the face feature, i.e., it will
fixate on eyes, nose, and lips, etc. And then, it will fixate those face features on the correct face template.
So, in the 2nd hidden layer, it will actually determine the correct face here as it can be seen in the above
image, after which it will be sent to the output layer. Likewise, more hidden layers can be added to solve
more complex problems, for example, if you want to find out a particular kind of face having large or light
complexions. So, as and when the hidden layers increase, we are able to solve complex problems.

2. Explain the Hardware (System Requirements) for Deep Learning?

Ans :
System Requirements(Software & Hardware)

ENVI Deep Learning 2.0 uses TensorFlow version 2.9 and CUDA version 11.2.2, both of which are
included in the installation. System requirements are as follows:

Base software: ENVI 5.6.3 and the ENVI Deep Learning 2.0 module

Operating systems

 Windows 10 and 11 (Intel/AMD 64-bit)

 Linux (Intel/AMD 64-bit, kernel 3.10.0 or higher, glibc 2.17 or higher)

Short Question and Answers
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Hardware

 NVIDIA graphics card with CUDA Compute Capability version 3.5 to 8.6. See the list of CUDA-
enabled GPU cards. A minimum of 8 GB of GPU memory is recommended for optimal perfor-
mance, particularly when training deep learning models.

 NVIDIA GPU driver version: Windows 461.33 or higher, Linux 460.32.03 or higher.

 A CPU with the Advanced Vector Extensions (AVX) instruction set. In general, any CPU after 2011
will contain this instruction set.

 Intel CPUs are recommended, though not required. They have an optimized Intel Machine Learn-
ing library that offers performance gains for certain Machine Learning algorithms.

To determine if your system meets the requirements for ENVI Deep Learning, start the Deep Learn-
ing Guide Map in the ENVI Toolbox. From the Deep Learning Guide Map menu bar, select Tools > Test
Installation and Configuration.

3. Differences between ML and DL?

Ans :
Key comparisons between Machine Learning and Deep Learning

The key differences between these two terms based on different parameters:

The problem-solving approach of a 
deep learning model is different from 
the traditional ML model, as it takes 
input for a given problem, and 
produce the end result. Hence it 
follows the end-to-end approach.

To solve a given problem, the 
traditional ML model breaks the 
problem in sub-parts, and after 
solving each part, produces the final 
result.

Problem-
solving 
approach

Deep learning is the enhanced 
version of machine learning, so it 
does not need to develop the feature 
extractor for each problem; instead, it 
tries to learn high-level features from 
the data on its own.

Machine learning models need a 
step of feature extraction by the 
expert, and then it proceeds further.

Feature 
Engineering

The deep learning model needs a 
huge amount of data to work 
efficiently, so they need GPU's and 
hence the high-end machine.

Since machine learning models do 
not need much amount of data, so 
they can work on low-end 
machines.

Hardware 
Dependencies

Deep Learning takes a long execution 
time to train the model, but less time 
to test the model.

Machine learning algorithm takes 
less time to train the model than 
deep learning, but it takes a long-
time duration to test the model.

Execution time

Deep Learning algorithms highly 
depend on a large amount of data, so 
we need to feed a large amount of 
data for good performance.

Although machine learning depends 
on the huge amount of data, it can 
work with a smaller amount of data.

Data 
Dependency

Deep LearningMachine LearningParameter

The problem-solving approach of a 
deep learning model is different from 
the traditional ML model, as it takes 
input for a given problem, and 
produce the end result. Hence it 
follows the end-to-end approach.

To solve a given problem, the 
traditional ML model breaks the 
problem in sub-parts, and after 
solving each part, produces the final 
result.

Problem-
solving 
approach

Deep learning is the enhanced 
version of machine learning, so it 
does not need to develop the feature 
extractor for each problem; instead, it 
tries to learn high-level features from 
the data on its own.

Machine learning models need a 
step of feature extraction by the 
expert, and then it proceeds further.

Feature 
Engineering

The deep learning model needs a 
huge amount of data to work 
efficiently, so they need GPU's and 
hence the high-end machine.

Since machine learning models do 
not need much amount of data, so 
they can work on low-end 
machines.

Hardware 
Dependencies

Deep Learning takes a long execution 
time to train the model, but less time 
to test the model.

Machine learning algorithm takes 
less time to train the model than 
deep learning, but it takes a long-
time duration to test the model.

Execution time

Deep Learning algorithms highly 
depend on a large amount of data, so 
we need to feed a large amount of 
data for good performance.

Although machine learning depends 
on the huge amount of data, it can 
work with a smaller amount of data.

Data 
Dependency

Deep LearningMachine LearningParameter
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Deep learning models are suitable for 
solving complex problems.

Machine learning models are 
suitable for solving simple or bit-
complex problems.

Suitable for

Deep Learning models can work with 
structured and unstructured data both 
as they rely on the layers of the 
Artificial neural network.

Machine learning models mostly 
require data in a structured form.

Type of data

The interpretation of the result for a 
given problem is very difficult. As 
when we work with the deep learning 
model, we may get a better result for 
a given problem than the machine 
learning model, but we cannot find 
why this particular outcome occurred, 
and the reasoning.

The interpretation of the result for a 
given problem is easy. As when we 
work with machine learning, we can 
interpret the result easily, it means 
why this result occur, what was the 
process.

Interpretation 
of result

Deep learning models are suitable for 
solving complex problems.

Machine learning models are 
suitable for solving simple or bit-
complex problems.

Suitable for

Deep Learning models can work with 
structured and unstructured data both 
as they rely on the layers of the 
Artificial neural network.

Machine learning models mostly 
require data in a structured form.

Type of data

The interpretation of the result for a 
given problem is very difficult. As 
when we work with the deep learning 
model, we may get a better result for 
a given problem than the machine 
learning model, but we cannot find 
why this particular outcome occurred, 
and the reasoning.

The interpretation of the result for a 
given problem is easy. As when we 
work with machine learning, we can 
interpret the result easily, it means 
why this result occur, what was the 
process.

Interpretation 
of result

4. Applications of Deep Learning?

Ans :

Applications of Deep Learning Algorithms

Here are some ways where deep learning is being used in diverse industries.

(i) Computer Vision: Computer Vision is mainly depending on image processing methods. Before
deep learning, the best computer vision algorithm depending on conventional l machine learning
and image processing obtained a 25% error rate. But, when a deep neural network used for image
processing, the error rate dropped to 16 per cent, and now with advancement in deep learning
algorithms, the error rate dropped to less than 4 %.

(ii) Text Analysis & Understanding: Text analysis consists of the classification of documents, senti-
ment analysis, automatic translation, etc. Recurrent neural networks are the most useful deep learning
algorithm here, because of the sequential type of textual data.

(iii) Speech Recognition: Speech Recognition enables to process of human speech into text by com-
puters. Traditionally, Speech recognition mainly relies upon a hefty feature extraction process but
deep learning is directly working on raw data and training done on a large dataset of audio record-
ing.

(iv) Pattern Recognition: Pattern recognition is the automated identification of patterns and regulari-
ties in data. The data type can vary anything from text, images to sounds or audio.

PayPal is using deep learning via H2O, a predictive analytics platform, to help prevent payment
transactions and fraudulent purchases and

(v) Autonomous vehicles: The autonomous vehicle accomplished to collect data on its surrounding
from various sensors, explain it, and based on explanation choose what actions need to be taken.
Deep learning enables us to learn how to perform the work as effectively as humans.

Thanks for reading! In my next article, I will be explaining various activation functions with applica-
tions.
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5. Write short note on Deep Learning Al-
gorithms?

Ans :
Types of Algorithms used in Deep Learning

Here is the list of top 10 most popular deep
learning algorithms:
(i) Convolutional Neural Networks (CNNs)

CNN’s are widely used to identify satellite
images, process medical images, forecast time
series, recognizing characters like ZIP codes
and digits. And detect anomalies.

(ii) Long Short-Term Memory Networks
(LSTMs)
LSTMs are typically used for speech recogni-
tion, music composition, and pharmaceuti-
cal development.

(iii) Recurrent Neural Networks (RNNs)
RNNs are commonly used for image
captioning, time-series analysis, natural-lan-
guage processing, handwriting recognition,
and machine translation.

(iv) Generative Adversarial Networks
(GANs)
GANs help generate realistic images and car-
toon characters, create photographs of hu-
man faces, and render 3D objects.

(v) Radial Basis Function Networks
(RBFNs)
RBFNs mostly used for classification, regres-
sion, and time-series prediction.

(vi) Multilayer Perceptron’s (MLPs)
MLPs used to build speech-recognition, im-
age-recognition, and machine-translation
software.

(vii) Self-Organizing Maps (SOMs)
SOMs which enable data visualization to re-
duce the dimensions of data through self-or-
ganizing artificial neural networks.

(viii) Deep Belief Networks (DBNs)
(DBNs) are used for image-recognition, video-
recognition, and motion-capture data.

(ix) Restricted Boltzmann Machines (RBMs)

RBMs used for dimensionality reduction, clas-
sification, regression, collaborative filtering,
feature learning, and topic modeling.

(x) Autoencoders

Autoencoders are used for purposes such as
pharmaceutical discovery, popularity predic-
tion, and image processing.

6. Explain about Simple neural network
architecture.

Ans :
A basic neural network has interconnected

artificial neurons in three layers:

Input Layer

Information from the outside world enters the
artificial neural network from the input layer. Input
nodes process the data, analyze or categorize it, and
pass it on to the next layer.

Hidden Layer

Hidden layers take their input from the input
layer or other hidden layers. Artificial neural net-
works can have a large number of hidden layers.
Each hidden layer analyzes the output from the
previous layer, processes it further, and passes it on
to the next layer.

Output Layer

The output layer gives the final result of all
the data processing by the artificial neural network.
It can have single or multiple nodes. For instance, if
we have a binary (yes/no) classification problem,
the output layer will have one output node, which
will give the result as 1 or 0. However, if we have a
multi-class classification problem, the output layer
might consist of more than one output node.

7. Discuss about Data representations for
neural networks?

Ans :
Tensor

A tensor is just a container for data, typically
numerical data. It is, therefore, a container for num-
bers.

(i) Scalars (0D tensors): The term “scalar”
(also known as “scalar-tensor,” “0-dimen-
sional tensor,” or “0D tensor”) refers to a ten-
sor that only holds a single number. A float32
or float64 number is referred to as a scalar-
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tensor (or scalar array) in Numpy. The “ndim” feature of a Numpy tensor can be used to indicate
the number of axes; a scalar-tensor has no axes (ndim == 0).

(ii) Vectors (1D tensors): A vector, often known as a 1D tensor, is a collection of numbers. It is
claimed that a 1D tensor has just one axis.

(iii) Matrices (2D tensors): A matrix, or 2D tensor, is a collection of vectors. Two axes constitute a
matrix (often referred to as rows and columns). A matrix can be visualized as a square box of
numbers.

(iv) 3D tensors or higher dimensional tensors: These matrices can be combined into a new array
to create a 3D tensor, which can be seen as a cube of integers.

8. What is the use of Deep learning in today’s age, and how is it adding data scientists?

Ans :
Deep learning has brought significant changes or revolution in the field of machine learning and

data science. The concept of a complex neural network (CNN) is the main center of attention for data
scientists. It is widely taken because of its advantages in performing next-level machine learning opera-
tions. The advantages of deep learning also include the process of clarifying and simplifying issues based
on an algorithm due to its utmost flexible and adaptable nature. It is one of the rare procedures which
allow the movement of data in independent pathways. Most of the data scientists are viewing this particu-
lar medium as an advanced additive and extended way to the existing process of machine learning and
utilizing the same for solving complex day to day issues.

9. What do you understand by Boltzmann Machine?

Ans :
A Boltzmann machine (also known as stochastic Hopfield network with hidden units) is a type of

recurrent neural network. In a Boltzmann machine, nodes make binary decisions with some bias. Boltzmann
machines can be strung together to create more sophisticated systems such as deep belief networks.
Boltzmann Machines can be used to optimize the solution to a problem.

Some important points about Boltzmann Machine :

 It uses a recurrent structure.

 It consists of stochastic neurons, which include one of the two possible states, either 1 or 0.

 The neurons present in this are either in an adaptive state (free state) or clamped state (frozen
state).

If we apply simulated annealing or discrete Hopfield network, then it would become a Boltzmann
Machine.
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Choose the Correct Answer
1. Which of the following is a subset of machine learning? [ c ]

(a) NumPy (b) SciPy

(c) Deep Learning (d) All

2. How many layers Deep learning algorithms are constructed? [ b ]

(a) 2 (b) 3

(c) 4 (d) 5

3. The first layer is called the? [ a ]

(a) inner layer (b) outer layer

(c) hidden layer (d) None of the above

4. RNNs stands for? [ d ]

(a) Receives neural networks (b) Report neural networks

(c) Recording neural networks (d) Recurrent neural networks

5. Which of the following is/are Common uses of RNNs? [ d ]

(a) Businesses Help securities traders to generate analytic reports

(b) Detect fraudulent credit-card transaction

(c) Provide a caption for images

(d) All of the above

6. Which of the following is well suited for perceptual tasks? [ c ]

(a) Feed-forward neural networks (b) Recurrent neural networks

(c) Convolutional neural networks (d) Reinforcement Learning

7. CNN is mostly used when there is an? [ b ]

(a) structured data (b) unstructured data

(c) Both A and B (d) None of them

8. Which neural network has only one hidden layer between the input and output? [ a ]

(a) Shallow neural network (b) Deep neural network

(c) Feed-forward neural networks (d) Recurrent neural networks

9. Which of the following is/are Limitations of deep learning? [ c ]

(a) Data labeling (b) Obtain huge training datasets

(c) Both A and B (d) None of them

10. Deep learning algorithms are _______ more accurate than machine learning algorithm in image
classification. [ d ]

(a) 33% (b) 37%

(c) 40% (d) 41%
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Fill in the blanks

1 The amount of output of one unit received by another unit depends on .

2. The process of adjusting the weight is known as .

3. Learning is a .

4.   is a branch of machine learning which is completely based on artificial neural networks.

5. RLU stands for 

6.  are generative deep learning algorithms that create new data instances that resemble the
training data.

7. BMU stands for 
8.  networks can comprehend unstructured data and make general observations without

explicit training.

9. In Neural Networks learning processes, learning with a teacher is also referred to as 
learning

10. The  is used to control the amount of weight adjustment at each step of training.

ANSWERS

1. Weight

2. Learning

3. Slow process

4. Deep learning

5. Rectified Linear Unit (ReLU)

6. GANs 
7. Best Matching Unit
8. Neural

9. Supervised

10. Learning rate
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One Mark Answers

1. Define Deep Learning?

Ans :
Deep Learning is a part of Machine Learning, which involves mimicking the human brain in terms

of structures called neurons, thereby, forming neural networks.

2. What is a perceptron?

Ans :
A perceptron is similar to the actual neuron in the human brain. It receives inputs from various

entities and applies functions to these inputs, which transform them to be the output.

3. What are some of the most used applications of Deep Learning?

Ans :
 Sentiment Analysis

 Computer Vision

 Automatic Text Generation

 Object Detection

 Natural Language Processing

 Image Recognition

4. What is the meaning of overfitting?

Ans :
Overfitting is a very common issue when working with Deep Learning. It is a scenario where the

Deep Learning algorithm vigorously hunts through the data to obtain some valid information.

5. What are activation functions?

Ans :
Activation functions are entities in Deep Learning that are used to translate inputs into a usable

output parameter.

6. Why is Fourier transform used in Deep Learning?

Ans :
Fourier transform is an effective package used for analyzing and managing large amounts of data

present in a database.

7. What is the use of the loss function?

Ans :
The loss function is used as a measure of accuracy to see if a neural network has learned accurately

from the training data or not. This is done by comparing the training dataset to the testing dataset.
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8. What are some of the Deep Learning frameworks or tools that you have used?

Ans :
 Keras

 PyTorch

 Caffe2

 CNTK

 MXNet

 Theano

 TensorFlow

9. What are autoencoders?

Ans :
Autoencoders are artificial neural networks that learn without any supervision. Here, these net-

works have the ability to automatically learn by mapping the inputs to the corresponding outputs.

10. Define Encoder and Decoder?

Ans :
 Encoder: Used to fit the input into an internal computation state.

 Decoder: Used to convert the computational state back into the output.
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UNIT
II

Tensor operations

Element-wise operations, Broadcasting, Tensor dot, Tensor reshaping, Geometric
interpretation of tensor operations, A geometric interpretation of deep learning

2.1 TENSOR OPERATIONS

2.1.1 Element-wise operations

Q1. Define Tensor? What Does Element-
Wise Operations with examples.

Ans: (Imp.)

A tensor is a generalization of vector matrices
and is  easily understood as a multidimensional ar-
ray. In the general ease, an array of numbers ar-
ranged on a regular grid with a variable number of
axes is known as a ‘tensor’.

Element-wise operations are extremely com-
mon operations with tensors in neural network pro-
gramming.

An element-wise operation is an operation
between two tensors that operates on correspond-
ing elements within the respective tensors.

An element-wise operation operates on cor-
responding elements between tensors.

Two elements are said to be corresponding if
the two elements occupy the same position within
the tensor. The position is determined by the in-
dexes used to locate each element.

Suppose we have the following two tensors:

> t1 = torch.tensor([

[1,2],

[3,4]

], dtype=torch.float32)

> t2 = torch.tensor([

[9,8],

 [7,6]

], dtype=torch.float32)

Both of these tensors are rank-2 tensors with
a shape of 2 × 2.

This means that we have two axes that both
have a length of two elements each. The elements
of the first axis are arrays and the elements of the
second axis are numbers.

# Example of the first axis

> print(t1[0])

tensor([1., 2.])

# Example of the second axis

> print(t1[0][0])

tensor(1.)

We know that two elements are said to be
corresponding if the two elements occupy the same
position within the tensor, and the position is deter-
mined by the indexes used to locate each element.
Let’s see an example of corresponding elements.

> t1[0][0]

tensor(1.)

> t2[0][0]

tensor(9.)

This allows us to see that the corresponding
element for the 1 in t1 is the 9 in t2.

The correspondence is defined by the indexes.
This is important because it reveals an important
feature of element-wise operations. We can deduce
that tensors must have the same number of ele-
ments in order to perform an element-wise opera-
tion.

Two tensors must have the same shape in
order to perform element-wise operations on them.
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Addition is An Element-Wise Operation:

Let’s look at our first element-wise operation,
addition. Don’t worry. It will get a more interesting.

> t1 + t2

tensor([[10., 10.],

        [10., 10.]])

This allow us to see that addition between
tensors is an element-wise operation. Each pair of
elements in corresponding locations are added to-
gether to produce a new tensor of the same shape.

So, addition is an element-wise operation, and
in fact, all the arithmetic operations, add, subtract,
multiply, and divide are element-wise operations.

Arithmetic Operations Are Element-Wise Op-
erations:

An operation we commonly see with tensors
are arithmetic operations using scalar values. There
are two ways we can do this:

(1) Using these symbolic operations:

>print(t + 2)

tensor([[3., 4.],

        [5., 6.]])

>print(t - 2)

tensor([[-1.,  0.],

        [ 1.,  2.]])

>print(t * 2)

tensor([[2., 4.],

        [6., 8.]])

>print(t / 2)

tensor([[0.5000, 1.0000],

        [1.5000, 2.0000]])

(or) equivalently, to these built-in tensor ob-
ject methods:

> print(t1.add(2))

tensor([[3., 4.],

        [5., 6.]])

> print(t1.sub(2))

tensor([[-1.,  0.],

        [ 1.,  2.]])

> print(t1.mul(2))

tensor([[2., 4.],

        [6., 8.]])

> print(t1.div(2))

tensor([[0.5000, 1.0000],

        [1.5000, 2.0000]])

Both of these options work the same. We can
see that in both cases, the scalar value, 2, is ap-
plied to each element with the corresponding arith-
metic operation.

Something seems to be wrong here. These
examples are breaking the rule we established that
said element-wise operations operate on tensors of
the same shape.

Scalar values are Rank-0 tensors, which
means they have no shape, and our tensor t1 is a
rank-2 tensor of shape 2×2.

So how does this fit in, Let’s break it down.

 The first solution that may come to mind is
that the operation is simply using the single
scalar value and operating on each element
within the tensor.

 This logic kind of works. However, it’s a bit
misleading, and it breaks down in more gen-
eral situations where we’re note using a sca-
lar.

 To think about these operations differently,
we need to introduce the concept of tensor
broadcasting or broadcasting.

2.2 BROADCASTING

Q2. Write about Broadcasting in Tensors
with suitable examples?

Ans: (Imp.)

“Broadcasting describes how tensors with dif-
ferent shapes are treated during arithmetic opera-
tions.”

Tensor broadcasting is about bringing the tensors
of different dimensions/shape to the compatible
shape such that arithmetic operations can be per-
formed on them. In broadcasting, the smaller array
is found, the new axes are added as per the larger
array, and data is added appropriately to the trans-
formed array.
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Broadcasting Example 1: Same Shapes

For example, it might be relatively easy to
look at these two rank-2 tensors and figure out what
the sum of them would be.

Tensor 1:

[[1, 2, 3],]

rank: 2

shape: (1,3)

Tensor 2:

[[4, 5, 6],]

rank: 2

shape: (1,3)

They have the same shape, so we just take
the element-wise sum of the two tensors, where we
calculate the sum element-by-element, and our re-
sulting tensor looks like this.

Tensor 1 + Tensor 2:

[[1, 2, 3],]

+

[[4, 5, 6],]

   ------------------------

    [[5, 7, 9],]

    rank: 2

    shape: (1,3)

Now, since these two tensors have the same
shape, (1, 3), no broadcasting is happening here.
Remember, broadcasting comes into play when we
have tensors with different shapes.

Example 2: Same Rank, Different Shapes

So, what would happen if our two rank-2 ten-
sors looked like this, and we wanted to sum them

Tensor 1:

[[1, 2, 3],]

rank: 2

shape: (1,3)

Tensor 2:

[[4],

 [5],

 [6]]

rank: 2

shape: (3,1)

We have one tensor with shape (1, 3), and
the other with shape (3, 1). Well, here is where
broadcasting will come into play.

Before we cover how this is done, go ahead
and pause and see just intuitively, what comes to
mind as the resulting tensor from adding these two
together. Give it a go, write it down, and keep what
you write handy because we’ll circle back around
to what you wrote later.

We’re first going to look at the result, and
then we’ll go over how we arrived there.

Our result from summing these two tensors
is this (3, 3) tensor.

Tensor 1 + Tensor 2:

[[1, 2, 3],]

+

 [[4],

 [5],

 [6]]

  --------------------

    [[5, 6, 7],

     [6, 7, 8],

     [7, 8, 9]]

rank: 2

shape: (3,3)

Here’s how broadcasting works.

We have two tensors with different shapes.
The goal of broadcasting is to make the tensors have
the same shape so we can perform element-wise
operations on them.

First, we have to see if the operation we’re
trying to do is even possible between the given ten-
sors. Based on the tensors’ original shapes, there
may not be a way to reshape them to force them to
be compatible, and if we can’t do that, then we
can’t use broadcasting.
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Tensor 1 Broadcast to Shape (3,3):

Before:

    [[1, 2, 3],]

After:

    [[1, 2, 3],

     [1, 2, 3],

     [1, 2, 3]]

The values in our (3, 1) tensor will now be
broadcast to this (3, 3) tensor.

Tensor 2 Broadcast to Shape (3,3):

Before:

    [[4],

     [5],

     [6]]

After:

    [[4, 4, 4],

     [5, 5, 5],

     [6, 6, 6]]

We can now easily take the element-wise sum
of these two to get this resulting (3, 3) tensor.

[[1, 2, 3],

[1, 2, 3],

[1, 2, 3]]

+

[[4, 4, 4],

[5, 5, 5],

[6, 6, 6]]

------------------

[[5, 6, 7],

[6, 7, 8],

[7, 8, 9]]

Broadcasting Example 3: Different Ranks

What if we wanted to multiply this rank-2 ten-
sor of shape (1, 3) with this rank-0 tensor, better
known as a scalar?

Tensor 1:
[[1, 2, 3],]

rank: 2
shape: (1,3)
Tensor 2:

5
rank: 0
shape: ()

2.3 TENSOR DOT

Q3. Discuss about Tensor dot with suitable
examples?

Ans:
numpy.tensordot

numpy.tensordot(a,b, axes=2)

Compute tensor dot product along specified
axes.

Given two tensors, a and b, and an
array_like object containing two array _ like
objects, (a_axes, b_axes), sum the products of a’s
and b’s elements (components) over the axes speci-
fied by a_axes and b_axes. The third argument
can be a single non-negative integer_like scalar, N;
if it is such, then the last N dimensions of a and
the first N dimensions of b are summed over.

Parameters:

a, barray_like

Tensors to “dot”.

axesint or (2,) array_like

 integer_like If an int N, sum over the last N
axes of a and the first N axes of b in or-
der. The sizes of the corresponding axes must
match.

 (2,) array_like Or, a list of axes to be summed
over, first sequence applying to a, second
to b. Both elements array_like must be of
the same length.

Returns:

Output ndarray

The tensor dot product of the input.



UNIT - II DEEP LEARNING

49
Rahul Publications

Rahul Publications

Notes:

Three common use cases are:

 axes  = 0 : tensor product a b

 axes  = 1 : tensor dot product a.b

 axes = 2 : (default) tensor double contraction a : b

When axes isinteger_like, the sequence for evaluation will be: first the -Nth axis in a and 0th axis
in b, and the -1th axis in a and Nth axis in b last.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the
argument axes should consist of two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.

The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-
contracted axes of the second.

Examples

A “traditional” example:

a = np.arange(60.).reshape(3,4,5)

b = np.arange(24.).reshape(4,3,2)

c = np.tensordot(a,b, axes=([1,0],[0,1]))

c. shape

(5, 2)

c

array([[4400., 4730.],

[4532., 4874.],

[4664., 5018.],

[4796., 5162.],

[4928., 5306.]])

# A slower but equivalent way of computing the same...

d = np.zeros((5,2))

for i in range(5):

for j in range(2):

for k in range(3):

for n in range(4):

d[i,j] += a[k,n,i] * b[n,k,j]

c == d

array([[ True,  True],

 [ True,  True],

 [ True,  True],

 [ True,  True],

 [ True,  True]])
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An extended example taking advantage of the overloading of + and *:

a = np.array(range(1, 9))

a.shape = (2, 2, 2)

A = np.array((‘a’, ‘b’, ‘c’, ‘d’), dtype=object)

A.shape = (2, 2)

a; A

array([[[1, 2],

        [3, 4]],

       [[5, 6],

        [7, 8]]])

array([[‘a’, ‘b’],

       [‘c’, ‘d’]], dtype=object)

np.tensordot(a, A) # third argument default is 2 for double-contraction

array([‘abbcccdddd’, ‘aaaaabbbbbbcccccccdddddddd’], dtype=object)

np.tensordot(a, A, 1)

array([[[‘acc’, ‘bdd’],

        [‘aaacccc’, ‘bbbdddd’]],

       [[‘aaaaacccccc’, ‘bbbbbdddddd’],

        [‘aaaaaaacccccccc’, ‘bbbbbbbdddddddd’]]], dtype=object)

np.tensordot(a, A, 0) # tensor product (result too long to incl.)

array([[[[[‘a’, ‘b’],

          [‘c’, ‘d’]],

          ...

np.tensordot(a, A, (0, 1))

array([[[‘abbbbb’, ‘cddddd’],

        [‘aabbbbbb’, ‘ccdddddd’]],

       [[‘aaabbbbbbb’, ‘cccddddddd’],

        [‘aaaabbbbbbbb’, ‘ccccdddddddd’]]], dtype=object)

np.tensordot(a, A, (2, 1))

array([[[‘abb’, ‘cdd’],

        [‘aaabbbb’, ‘cccdddd’]],

       [[‘aaaaabbbbbb’, ‘cccccdddddd’],

        [‘aaaaaaabbbbbbbb’, ‘cccccccdddddddd’]]], dtype=object)

np.tensordot(a, A, ((0, 1), (0, 1)))

array([‘abbbcccccddddddd’, ‘aabbbbccccccdddddddd’], dtype=object)

np.tensordot(a, A, ((2, 1), (1, 0)))

array([‘acccbbdddd’, ‘aaaaacccccccbbbbbbdddddddd’], dtype=object)
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2.4 TENSOR RESHAPING

Q4. Explain about Reshaping a Tensor with
suitable Examples?

Ans: (Imp.)

Reshaping allows us to change the shape with
the same data and number of elements as self but
with the specified shape, which means it returns the
same data as the specified array, but with different
specified dimension sizes.

Creating Tensor for demonstration:

Python code to create a 1D Tensor and dis-
play it.

# import torch module

import torch

# create an 1 D etnsor with 8 elements

a = torch.tensor([1,2,3,4,5,6,7,8])

# display tensor shape

print(a.shape)

# display tensor

a

Output:

torch.Size([8])

tensor([1, 2, 3, 4, 5, 6, 7, 8])

Method 1: Using reshape() Method

This method is used to reshape the given ten-
sor into a given shape (Change the dimensions)

Syntax: tensor.reshape([row,column])

where,

 Tensor is the input tensor

 Row represents the number of rows in the
reshaped tensor

 Column represents the number of columns
in the reshaped tensor

Example 1: Python program to reshape a 1 D ten-
sor to a two-dimensional tensor.

# import torch module

import torch

# create an 1 D etnsor with 8 elements

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])

# display tensor shape

print(a.shape)

# display actual tensor

print(a)

# reshape tensor into 4 rows and 2 columns

print(a.reshape([4, 2]))

# display shape of reshaped tensor

print(a.shape)

Output:

torch.Size([8])

tensor([1, 2, 3, 4, 5, 6, 7, 8])

tensor([[1, 2],

        [3, 4],

        [5, 6],

        [7, 8]])

torch.Size([8])

Example 2: Python code to reshape tensors into
4 rows and 2 columns

# import torch module

import torch

# create an 1 D etnsor with 8 elements

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])

# display tensor shape

print(a.shape)

# display actual tensor

print(a)

# reshape tensor into 4 rows and 2 columns

print(a.reshape([4, 2]))

# display shape

print(a.shape)

Output:

torch.Size([8])

tensor([1, 2, 3, 4, 5, 6, 7, 8])
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tensor([[1, 2],

       [3, 4],

       [5, 6],

       [7, 8]])

torch.Size([8])

Example 3: Python code to reshape tensor into 8
rows and 1 column.

# import torch module

import torch

# create an 1 D etnsor with 8 elements

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])

# display tensor shape

print(a.shape)

# display actual tensor

print(a)

# reshape tensor into 8 rows and 1 column

print(a.reshape([8, 1]))

# display shape

print(a.shape)

# import torch module

import torch

# create an 1 D etnsor with 8 elements

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])

# display tensor shape

print(a.shape)

# display actual tensor

print(a)

# reshape tensor into 8 rows and 1 column

print(a.reshape([8, 1]))

# display shape

print(a.shape)

Method 2 : Using flatten() method

flatten() is used to flatten an N-Dimensional
tensor to a 1D Tensor. 

Syntax: torch.flatten(tensor)

Where, tensor is the input tensor

Example 1: Python code to create a tensor with
2 D elements and flatten this vector

# import torch module

import torch

# create an 2 D tensor with 8 elements each

a = torch.tensor([[1,2,3,4,5,6,7,8],

[1,2,3,4,5,6,7,8]])

# display actual tensor

print(a)

# flatten a tensor with flatten() function

print(torch.flatten(a))

Example 2: Python code to create a tensor  with
3 D elements and flatten this vector

# import torch module

import torch

# create an 3 D tensor with 8 elements each

a = torch.tensor([[[1,2,3,4,5,6,7,8],

[1,2,3,4,5,6,7,8]],

[[1,2,3,4,5,6,7,8],

[1,2,3,4,5,6,7,8]]])

# display actual tensor

print(a)

# flatten a tensor with flatten() function

print(torch.flatten(a))

Output:

tensor ([[[1, 2, 3, 4, 5, 6, 7, 8],

       [1, 2, 3, 4, 5, 6, 7, 8]],

       [[1, 2, 3, 4, 5, 6, 7, 8],

       [1, 2, 3, 4, 5, 6, 7, 8]]])

tensor ([1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6,
7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8])

Method 3: Using view() method

view() is used to change the tensor in two-
dimensional format IE rows and columns. We have
to specify the number of rows and the number of
columns to be viewed.
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Syntax: tensor.view(no_of_rows,no_of_columns)

where,

 tensor is an input one dimensional tensor

 no_of_rowsis the total number of the rows
that the tensor is viewed

 no_of_columns is the total number of the
columns  that the tensor is viewed.

Example 1: Python program to create a tensor
with 12 elements and view with 3 rows and 4 col-
umns and vice versa.

# importing torch module

import torch

# create one dimensional tensor 12 elements

a=torch.FloatTensor([24, 56, 10, 20, 30,

40, 50, 1, 2, 3, 4, 5])

# view tensor in 4 rows and 3 columns

print(a.view(4, 3))

# view tensor in 3 rows and 4 columns

print(a.view(3, 4))

Out put:

tensor([[24., 56., 10.],

       [20., 30., 40.],

       [50.,  1.,  2.],

       [ 3.,  4.,  5.]])

tensor([[24., 56., 10., 20.],

       [30., 40., 50.,  1.],

       [ 2.,  3.,  4.,  5.]])

Example 2: Python code to change the view of a
tensor into 10 rows and one column and vice versa.

# importing torch module

import torch

# create one dimensional tensor 10 elements

a = torch.FloatTensor([24, 56, 10, 20, 30,

40, 50, 1, 2, 3])

# view tensor in 10 rows and 1 column

print(a.view(10, 1))

# view tensor in 1 row and 10 columns

print(a.view(1, 10))

Output:

tensor([[24.],

       [56.],

       [10.],

       [20.],

       [30.],

       [40.],

       [50.],

       [ 1.],

       [ 2.],

       [ 3.]])

tensor([[24., 56., 10., 20., 30., 40., 50., 1., 2.,  3.]])

Method 4: Using resize() method

This is used to resize the dimensions of the
given tensor.

Syntax :  tensor. resize _ (no _ of _ tensors, no _
of_rows,no_of_columns)

where:

 tensor is the input tensor

 no_of_tensorsrepresents the total number of
tensors to be generated

 no_of_rowsrepresents the total number of
rows in the new resized tensor

 no_of_columnsrepresents the total number
of columns in the new resized tensor

Example 1: Python code to create an empty one
D tensor and create 4 new tensors with 4 rows and
5 columns

# importing torch module

import torch

# create one dimensional tensor

a = torch.Tensor()

# resize the tensor to 4 tensors.

# each tensor with 4 rows and 5 columns

print(a.resize_(4, 4, 5))
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Output:

2.5 GEOMETRIC INTERPRETATION OF TENSOR OPERATIONS

Q5. Discuss about Geometric interpretation of tensor operations?

Ans: (Imp.)

The contents of the tensors manipulated by tensor operations can be interpreted as coordinates of
points in some geometric space, all tensor operations have a geometric interpretation. For instance, let’s
consider addition. We’ll start with the following vector

A = [0.5, 1]
It’s a point in a 2D space. It’s common to picture a vector as an arrow linking the origin to the point,

as shown in figure.
Figure. A point in a 2D space

1

1

A =[0.5, 1]

Fig.: A point in a 2D space pictured as an arrow

1

1

[0.5, 1]

1

A
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Consider a new point, B = [1, 0.25], which we’ll add to the previous one. This is done geometri-
cally by chaining together the vector arrows, with the resulting location being the vector representing sum
of the previous two vectors (see figure below).

Fig.: Geometric interpretation of the sum of two vectors

In general, elementary geometric operations such as affine transformations, rotations, scaling, and
so on can be expressed as tensor operations. For instance, a rotation of a 2D vector by an angle theta can
be achieved via a dot product with a 2 × 2 matrix R = [u, v], where u and v are both vectors of the plane:
u = [cos(theta), sin(theta)] and v = [-sin(theta), cos(theta)].

2.6 A GEOMETRIC INTERPRETATION OF DEEP LEARNING

Q6. Explain briefly about Geometric Interpretation of Deep Learning.

Ans:
Neural networks consist entirely of chains of tensor operations and that all of these tensor opera-

tions are just geometric transformations of the input data. It follows that you can interpret a neural net-
work as a very complex geometric transformation in a high-dimensional space, implemented via a long
series of simple steps.

In 3D, the following mental image may prove useful. Imagine two sheets of colored paper: one red
and one blue. Put one on top of the other. Now crumple them together into a small ball. That crumpled
paper ball is your input data, and each sheet of paper is a class of data in a classification problem. What a
neural network (or any other machine-learning model) is meant to do is figure out a transformation of the
paper ball that would uncrumple it, so as to make the two classes cleanly separable again. With deep
learning, this would be implemented as a series of simple transformations of the 3D space, such as those
you could apply on the paper ball with your fingers, one movement at a time.

   

Uncrumpling paper balls is what machine learning is about: finding neat representations for com-
plex, highly folded data manifolds. At this point, you should have a pretty good intuition as to why deep
learning excels at this: it takes the approach of incrementally decomposing a complicated geometric trans-
formation into a long chain of elementary ones, which is pretty much the strategy a human would follow
to uncrumple a paper ball. Each layer in a deep network applies a transformation that disentangles the
data a little and a deep stack of layers makes tractable an extremely complicated disentanglement process.
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Short Question and Answers

1. Write about Broadcasting in Tensors with suitable examples?

Ans :
“Broadcasting describes how tensors with different shapes are treated during arithmetic operations.”

Tensor broadcasting is about bringing the tensors of different dimensions/shape to the compatible
shape such that arithmetic operations can be performed on them. In broadcasting, the smaller array is
found, the new axes are added as per the larger array, and data is added appropriately to the transformed
array.

Broadcasting Example 1: Same Shapes

For example, it might be relatively easy to look at these two rank-2 tensors and figure out what the
sum of them would be.

Tensor 1:
[[1, 2, 3],]

rank: 2
shape: (1,3)
Tensor 2:
[[4, 5, 6],]

rank: 2
shape: (1,3)

They have the same shape, so we just take the element-wise sum of the two tensors, where we
calculate the sum element-by-element, and our resulting tensor looks like this.

Tensor 1 + Tensor 2:
    [[1, 2, 3],]
+
    [[4, 5, 6],]
——————————
    [[5, 7, 9],]
    rank: 2
    shape: (1,3)

2. Discuss about Tensor dot with suitable examples?

Ans :
numpy.tensordot

numpy.tensordot(a, b, axes=2)

Compute tensor dot product along specified axes.

Given two tensors, a and b, and an array_like object containing two array_like
objects, (a_axes, b_axes), sum the products of a’s and b’s elements (components) over the axes specified
by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar, N; if it is
such, then the last N dimensions of a and the first N dimensions of b are summed over.
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Three common use cases are:

 axes = 0 : tensor product a—”b

 axes = 1 : tensor dot product aÅ”b

 axes = 2 : (default) tensor double contraction a:b

When axes isinteger_like, the sequence for evaluation will be: first the -Nth axis in a and 0th axis
in b, and the -1th axis in a and Nth axis in b last.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the
argument axes should consist of two sequences of the same length, with the first axis to sum over given
first in both sequences, the second axis second, and so forth.

The shape of the result consists of the non-contracted axes of the first tensor, followed by the non-
contracted axes of the second.

Examples

A “traditional” example:

a = np.arange(60.).reshape(3,4,5)
b = np.arange(24.).reshape(4,3,2)
c = np.tensordot(a,b, axes=([1,0],[0,1]))
c.shape
(5, 2)
c.array([[4400., 4730.],
[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

3. Explain about Reshaping a Tensor with suitable examples?

Ans :
Reshaping allows us to change the shape with the same data and number of elements as self but

with the specified shape, which means it returns the same data as the specified array, but with different
specified dimension sizes.

Method 1: Using reshape() Method

This method is used to reshape the given tensor into a given shape (Change the dimensions)

Syntax: tensor.reshape([row,column])

where,

 tensor is the input tensor

 row represents the number of rows in the reshaped tensor

 column represents the number of columns in the reshaped tensor

Example 1: Python program to reshape a 1 D tensor to a two-dimensional tensor.

# import torch module
import torch
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# create an 1 D etnsor with 8 elements

a = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])

# display tensor shape

print(a.shape)

# display actual tensor

print(a)

# reshape tensor into 4 rows and 2 columns

print(a.reshape([4, 2]))

# display shape of reshaped tensor

print(a.shape)

Output:

torch.Size([8])

tensor([1, 2, 3, 4, 5, 6, 7, 8])

tensor([[1, 2],

        [3, 4],

        [5, 6],

        [7, 8]])

torch.Size([8])

4. Discuss about geometric interpretation of deep learning?

Ans :

Neural networks consist entirely of chains of tensor operations and that all of these tensor operations
are just geometric transformations of the input data. It follows that you can interpret a neural network as
a very complex geometric transformation in a high-dimensional space, implemented via a long series of
simple steps.

In 3D, the following mental image may prove useful. Imagine two sheets of colored paper: one red
and one blue. Put one on top of the other. Now crumple them together into a small ball. That crumpled
paper ball is your input data, and each sheet of paper is a class of data in a classification problem. What a
neural network (or any other machine-learning model) is meant to do is figure out a transformation of the
paper ball that would uncrumple it, so as to make the two classes cleanly separable again. With deep
learning, this would be implemented as a series of simple transformations of the 3D space, such as those
you could apply on the paper ball with your fingers, one movement at a time.



UNIT - II DEEP LEARNING

59
Rahul Publications

Rahul Publications

Uncrumpling paper balls is what machine learning is about: finding neat representations for complex,
highly folded data manifolds. At this point, you should have a pretty good intuition as to why deep
learning excels at this: it takes the approach of incrementally decomposing a complicated geometric
transformation into a long chain of elementary ones, which is pretty much the strategy a human would
follow to uncrumple a paper ball. Each layer in a deep network applies a transformation that disentangles
the data a little—and a deep stack of layers makes tractable an extremely complicated disentanglement
process.

5. What are the three steps to developing the necessary assumption structure in Deep
learning?

Ans :
The procedure of developing an assumption structure involves three specific actions.

 The first step contains algorithm development. This particular process is lengthy.

 The second step contains algorithm analyzing, which represents the in-process methodology.

 The third step is about implementing the general algorithm in the final procedure. The entire
framework is interlinked and required for throughout the process.

6. What are the main differences between AI, Machine Learning, and Deep Learning?

Ans :
 AI stands for Artificial Intelligence. It is a technique which enables machines to mimic human behavior.

 Machine Learning is a subset of AI which uses statistical methods to enable machines to improve
with experiences.

 Deep learning is a part of Machine learning, which makes the computation of multi-layer neural
networks feasible. It takes advantage of neural networks to simulate human-like decision making.

7. How can hyperparameters be trained in neural networks?

Ans :
Hyperparameters can be trained using four components as shown below:

 Batch size: This is used to denote the size of the input chunk. Batch sizes can be varied and cut
into sub-batches based on the requirement.

 Epochs: An epoch denotes the number of times the training data is visible to the neural network so
that it can train. Since the process is iterative, the number of epochs will vary based on the data.

 Momentum: Momentum is used to understand the next consecutive steps that occur with the
current data being executed at hand. It is used to avoid oscillations when training.

 Learning rate: Learning rate is used as a parameter to denote the time required for the network
to update the parameters and learn.



BSc. III YEAR  VI SEMESTER

60
Rahul Publications

Rahul Publications

8. What are some of the examples of supervised learning and unsupervised learning
algorithms in Deep Learning?

Ans :
There are three main supervised learning algorithms in Deep Learning:

 Artificial neural networks

 Convolutional neural networks

 Recurrent neural networks

There are three main unsupervised learning algorithms in Deep Learning:

 Autoencoders

 Boltzmann machines

 Self-organizing maps

9. What Will Happen If the Learning Rate Is Set Too Low or Too High?

Ans :
When you’re learning rate is too low, training of the model will progress very slowly as we are

making minimal updates to the weights. It will take many updates before reaching the minimum point.

If the learning rate is set too high, this causes undesirable divergent behavior to the loss function
due to drastic updates in weights. It may fail to converge (model can give a good output) or even diverge
(data is too chaotic for the network to train).

10. Explain about resize() method with an example?

Ans :
This is used to resize the dimensions of the given tensor.

Using resize() method

Syntax: tensor.resize_(no_of_tensors,no_of_rows,no_of_columns)

Where:

 tensor is the input tensor

 no_of_tensorsrepresents the total number of tensors to be generated

 no_of_rowsrepresents the total number of rows in the new resized tensor

 no_of_columnsrepresents the total number of columns in the new resized tensor
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Example 1:

Python code to create an empty one D tensor and create 4 new tensors with 4 rows and 5 columns

# importing torch module

import torch

# create one dimensional tensor

a = torch.Tensor()

# resize the tensor to 4 tensors.

# each tensor with 4 rows and 5 columns

print(a.resize_(4, 4, 5))

Output:
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Choose the Correct Answer
1. Which of the following would have a constant input in each epoch of training a Deep Learning

model? [ a ]

(a) Weight between input and hidden layer (b) Weight between hidden and output layer

(c) Biases of all hidden layer neurons (d) Activation function of output layer

2. The number of nodes in the input layer is 10 and the hidden layer is 5. The maximum number of
connections from the input layer to the hidden layer are [ a ]

(a) 50 (b) less than 50

(c) more than 50 (d) It is an arbitrary value

3. In a simple MLP model with 8 neurons in the input layer, 5 neurons in the hidden layer and 1
neuron in the output layer. What is the size of the weight matrices between hidden output layer and
input hidden layer? [ b ]

(a) [1 X 5] , [5 X 8] (b) [5 x 1] , [8 X 5]

(c) [8 X 5] , [5 X 1] (d) [8 X 5] , [ 1 X 5]

4. Which of the following functions can be used as an activation function in the output layer if we wish
to predict the probabilities of n classes (p1, p2..pk) such that sum of p over all n equals to 1?

[ a ]

(a) Softmax (b) ReLu

(c) Sigmoid (d) Tanh

5. Assume a simple MLP model with 3 neurons and inputs= 1,2,3. The weights to the input neurons
are 4,5 and 6 respectively. Assume the activation function is a linear constant value of 3. What will
be the output? [ c ]

(a) 32 (b) 64

(c) 96 (d) 128

6. For an image recognition problem (recognizing a cat in a photo), which architecture of neural
network would be better suited to solve the problem? [ b ]

(a) Multi Layer Perceptron (b) Convolutional Neural Network

(c) Recurrent Neural Network (d) Perceptron

7. Consider the scenario. The problem you are trying to solve has a small amount of data. Fortunately,
you have a pre-trained neural network that was trained on a similar problem. Which of the following
methodologies would you choose to make use of this pre-trained network? [ d ]

(a) Re-train the model for the new dataset

(b) Assess on every layer how the model performs and only select a few of them

(c) Fine tune the last couple of layers only

(d) Freeze all the layers except the last, re-train the last layer
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8. A perceptron is . [ a ]

(a) a single layer feed-forward neural network with pre-processing

(b) an auto-associative neural network

(c) a double layer auto-associative neural network

(d) a neural network that contains feedback

9. Neural Networks are complex  with many parameters. [ a ]

(a) Linear Functions (b) Nonlinear Functions

(c) Discrete Functions (d) Exponential Functions

10. Which of the following is an application of Neural Network [ d ]

(a) Sales forecasting (b) Data validation

(c) Risk management (d) All of the above
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Fill in the blanks

1. Madaline stands for .

2. The training of the Back Propagation Network is done in  stages

3. CAM stands for .

4. In the  associative memory network, the training input vector and training output vector
are the same.

5. The BAM is a  associative pattern-marching network that encodes binary or bipolar pat-
terns using Hebbian learning rule

6. The junctions that allow signal transmission between the axons terminals and dendrites are called
.

7. The weight updating in case of perceptron learning, if y   t is .

8. Deep Learning algorithms are  more accurate than machine learning algorithm in image
classification.

9. Why do we normalize the inputs X is .

10. Low bias and high variance, we get  model.

ANSWERS

1. Multiple Adaptive Linear Neuron

2. three

3. Content Addressable Memories

4. auto

5. Recurrent hetero

6. synapses

7. wi(new) = wi(old) + ±txi

8. 41%

9. It makes the cost function faster to optimize

10. over fitting
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One Mark Answers
1. What are tensors?

Ans :
Tensors are multidimensional arrays in Deep Learning that are used to represent data. They repre-

sent the data with higher dimensions

2. What is a Boltzmann machine?

Ans :
A Boltzmann machine is a type of recurrent neural network that uses binary decisions.

3 What are some of the advantages of using TensorFlow?

Ans :
 High amount of flexibility and platform independence

 Trains using CPU and GPU

 Supports auto differentiation and its features

 Handles threads and asynchronous computation easily

 Open-source

 Has a large community

4. What is the use of LSTM?

Ans :
LSTM stands for long short-term memory. It is a type of RNN that is used to sequence a string of

data. It consists of feedback chains that give it the ability to perform like a general-purpose computational
entity.

5. What are some of the examples of supervised learning algorithms in Deep Learning?

Ans :
There are three main supervised learning algorithms in Deep Learning:

 Artificial neural networks

 Convolutional neural networks

 Recurrent neural networks

6. What are the elements in TensorFlow that are programmable?

Ans :
In TensorFlow, users can program three elements:

 Constants

 Variables

 Placeholders
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7. Data Normalization.

Ans :
Data normalization is an essential preprocessing step, which is used to rescale values to fit in a

specific range.

8. What are the prerequisites for starting in Deep Learning?

Ans :
There are some basic requirements for starting in Deep Learning, which are:

 Machine Learning

 Mathematics

 Python Programming

9. In which layer softmax activation function used?

Ans :
Softmax activation function has to be used in the output layer.

10. What are the Applications of a Recurrent Neural Network (RNN)?

Ans :
The RNN can be used for sentiment analysis, text mining, and image captioning. Recurrent Neural

Networks can also address time series problems such as predicting the prices of stocks in a month or
quarter.
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UNIT
III

Gradient-based optimization, Derivative of a tensor operation, Stochastic
gradient descent, Chaining derivatives: The Backpropagation algorithm
Neural networks: Anatomy, Layers, Models, Loss functions and optimizers

3.1 GRADIENT-BASED OPTIMIZATION

Q1. Discuss about Gradient-based optimi-
zation.

Ans : (Imp.)

Gradient descent is an optimization algorithm
that’s used when training deep learning models. It’s
based on a convex function and updates its param-
eters iteratively to minimize a given function to its
local minimum.


  


   

j j 0 1
j

J( , )

             Learning  Rate

Gradient Descent

The notation used in the above Formula is
given below :

In the above formula,
  is the learning rate,

 J is the cost function, and

   is the parameter to be updated.

As you can see, the gradient represents the
partial derivative of J(cost function) with respect to
j.

Note that, as we reach closer to the global
minima, the slope or the gradient of the curve be-
comes less and less steep, which results in a smaller
value of derivative, which in turn reduces the step
size or learning rate automatically.

It is the most basic but most used optimizer
that directly uses the derivative of the loss function
and learning rate to reduce the loss function and
tries to reach the global minimum.

Thus, the Gradient Descent Optimization al-
gorithm has many applications including-

 Linear Regression,

 Classification Algorithms,

 Back propagation in Neural Networks, etc.

Repeat until convergence {

j  j – 
j


 J(q)

}

The above-described equation calculates the
gradient of the cost function J() with respect to the
network parameters  for the entire training dataset:

Our aim is to reach at the bottom of the graph
(Cost vs weight), or to a point where we can no
longer move downhill–a local minimum.

Role of Gradient

In general, Gradient represents the slope of
the equation while gradients are partial derivatives
and they describe the change reflected in the loss
function with respect to the small change in param-
eters of the function. Now, this slight change in loss
functions can tell us about the next step to reduce
the output of the loss function.
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Role of Learning Rate

Learning rate represents the size of the steps
our optimization algorithm takes to reach the glo-
bal minima. To ensure that the gradient descent al-
gorithm reaches the local minimum we must set the
learning rate to an appropriate value, which is nei-
ther too low nor too high.

Taking very large steps i.e, a large value of
the learning rate may skip the global minima, and
the model will never reach the optimal value for
the loss function. On the contrary, taking very small
steps i.e, a small value of learning rate will take for-
ever to converge.

Thus, the size of the step is also dependent
on the gradient value.

Image Source: Google Images

The gradient represents the direction of increase.
But our aim is to find the minimum point in the
valley so we have to go in the opposite direction of
the gradient. Therefore, we update parameters in
the negative gradient direction to minimize the loss.

Algorithm: = –  J()

In code, Batch Gradient Descent looks some-
thing like this:

for x in range(epochs):

params_gradient = find_gradient(loss_ func-
tion, data, parameters)

parameters = parameters - learning_rate *
params_gradient

Advantages of Batch Gradient Descent:

1.  Easy computation.

2.  Easy to implement.

3.  Easy to understand.

Disadvantages of Batch Gradient Descent:

1.  May trap at local minima.

2.  Weights are changed after calculating the gra-
dient on the whole dataset. So, if the dataset
is too large then this may take years to con-
verge to the minima.

3.  Requires large memory to calculate gradient
on the whole dataset.

3.2 DERIVATIVE OF A TENSOR OPERATION

Q2. Write a note on Derivative of a tensor
operation

Ans :
A gradient is the derivative of a tensor opera-

tion. It’s the generalization of the concept of de-
rivatives to functions of multidimensional inputs:
that is, to functions that take tensors as inputs.

Consider an input vector x, a matrix W, a tar-
get y, and a loss function loss. You can use W to
compute a target candidate y_pred, and compute
the loss, or mismatch, between the target candi-
date y_pred and the target y:

y_pred = dot(W, x)

loss_value = loss(y_pred, y)

If the data inputs x and y are frozen, then this
can be interpreted as a function mapping values of
W to loss values:

loss_value = f(W)

Let’s say the current value of W is W0. Then
the derivative of f in the point W0 is a tensor
gradient(f)(W0) with the same shape as W, where
each coefficient gradient(f) (W0)[i, j] indicates the
direction and magnitude of the change in loss_value
you observe when modifying W0[i, j]. That tensor
gradient(f)(W0) is the gradient of the function f(W)
= loss_value in W0.

You saw earlier that the derivative of a func-
tion f(x) of a single coefficient can be interpreted as
the slope of the curve of f. Likewise, gradient(f)(W0)
can be interpreted as the tensor describing the cur-
vature of f(W) around W0.
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For this reason, in much the same way that, for a function f(x), you can reduce the value of f(x) by
moving x a little in the opposite direction from the derivative, with a function f(W) of a tensor, you can
reduce f(W) by moving W in the opposite direction from the gradient: for example, W1 = W0 - step *
gradient(f)(W0) (where step is a small scaling factor). That means going against the curvature, which
intuitively should put you lower on the curve. Note that the scaling factor step is needed because
gradient(f)(W0) only approximates the curvature when you’re close to W0, so you don’t want to get too
far from W0.

3.3 STOCHASTIC GRADIENT DESCENT

Q3. Explain about Stochastic Gradient Descent with suitable examples.

Ans : (Imp.)

Stochastic Gradient Descent

To overcome some of the disadvantages of the GD algorithm, the SGD algorithm comes into the
picture as an extension of the Gradient Descent. One of the disadvantages of the Gradient Descent
algorithm is that it requires a lot of memory to load the entire dataset at a time to compute the derivative
of the loss function. So, In the SGD algorithm, we compute the derivative by taking one data point at a
time i.e, tries to update the model’s parameters more frequently. Therefore, the model parameters are
updated after the computation of loss on each training example.

So, let’s have a dataset that contains 1000 rows, and when we apply SGD it will update the model
parameters 1000 times in one complete cycle of a dataset instead of one time as in Gradient Descent.

Algorithm: =–  J(;x(i);y(i)) , where {x(i) ,y(i)} are the training examples

We want the training, even more, faster, so we take a Gradient Descent step for each training
example. Let’s see the implications in the image below:

Fig.: SGD vs GD

“+” denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a
lot faster to compute for SGD than for GD. as it uses only one training example (vs. the whole batch for GD).

To find some insights from the above diagram:

 In the left diagram of the above picture, we have SGD (where 1 per step time) we take a Gradient
Descent step for each example and on the right diagram is GD(1 step per entire training set).

 SGD seems to be quite noisy, but at the same time it is much faster than others and also it might be
possible that it not converges to a minimum.

It is observed that in SGD the updates take more iterations compared to GD to reach minima. On
the contrary, the GD takes fewer steps to reach minima but the SGD algorithm is noisier and takes more
iterations as the model parameters are frequently updated parameters having high variance and fluctua-
tions in loss functions at different values of intensities.
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Its code snippet simply adds a loop over the training examples and finds the gradient with respect to
each of the training examples.

for x in range(epochs):

np.random.shuffle(data)

for example in data:

params_gradient = find_gradient(loss_function, example, parameters)

parameters = parameters - learning_rate * params_gradient

Advantages of Stochastic Gradient Descent

1.  Convergence takes less time as compared to others since there are frequent updates in model
parameters.

2.  Requires less memory as no need to store values of loss functions.

3.  May get new minima’s.

Disadvantages of Stochastic Gradient Descent

1.  High variance in model parameters.

2.  Even after achieving global minima, it may overshoots.

3.  To reach the same convergence as that of gradient descent, we need to slowly reduce the value of
the learning rate.

Mini-Batch Gradient Descent

To overcome the problem of large time complexity in the case of the SGD algorithm. MB-GD
algorithm comes into the picture as an extension of the SGD algorithm. It’s not all but it also overcomes
the problem of Gradient descent. Therefore, It’s considered the best among all the variations of gradient
descent algorithms. MB-GD algorithm takes a batch of points or subset of points from the dataset to
compute derivate.

It is observed that the derivative of the loss function for MB-GD is almost the same as a derivate of
the loss function for GD after some number of iterations. But the number of iterations to achieve minima
is large for MB-GD compared to GD and the cost of computation is also large.

Therefore, the weight updation is dependent on the derivate of loss for a batch of points. The
updates in the case of MB-GD are much noisy because the derivative is not always towards minima.

It updates the model parameters after every batch. So, this algorithm divides the dataset into vari-
ous batches and after every batch, it updates the parameters.

Algorithm: = – . J(; B(i)), where {B(i)} are the batches of training examples

In the code snippet, instead of iterating over examples, we now iterate over mini-batches of size 30:
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for x in range(epochs):

np.random.shuffle(data)

for batch in get_batches(data, batch_size=30):

params_gradient = find_gradient(loss_function, batch, parameters)

parameters = parameters - learning_rate * params_gradient

Advantages of Mini Batch Gradient Descent

1.  Updates the model parameters frequently and also has less variance.

2.  Requires not less or high amount of memory i.e requires a medium amount of memory.

Disadvantages of Mini Batch Gradient Descent

1.  The parameter updation in MB-SGD is much noisy compared to the weight updation in the GD
algorithm.

2.  Compared to the GD algorithm, it takes a longer time to converge.

3.  May get stuck at local minima.

Challenges with all types of Gradient-based Optimizers

Optimum Learning Rate

Choosing an optimum value of the learning rate. If we choose the learning rate as a too-small
value, then gradient descent may take a very long time to converge. For more about this challenge, refer
to the above section of Learning Rate which we discussed in the Gradient Descent Algorithm.

Constant Learning Rate

For all the parameters, they have a constant learning rate but there may be some parameters that
we may not want to change at the same rate.

Local minimum

May get stuck at local minima i.e, not reach up to the local minimum.

3.4 CHAINING DERIVATIVES: THE BACKPROPAGATION ALGORITHM

Q4. Explain in detail about The Backpropagation algorithm.

Ans : (Imp.)

Backpropagation evaluates the expression for the derivative of the cost function as a product of
derivatives between each layer from left to right — “backwards” — with the gradient of the weights
between each layer being a simple modification of the partial products (the “backwards propagated error)
we casually assumed that because a function is differentiable, we can explicitly compute its derivative. In
practice, a neural network function consists of many tensor operations chained together, each of which
has a simple, known derivative. For instance, this is a network f composed of three tensor operations, a,
b, and c, with weight matrices W1, W2, and W3:

f(W1, W2, W3) = a(W1, b(W2, c(W3)))

Calculus tells us that such a chain of functions can be derived using the following identity, called the
chain rule: f(g(x)) = f’(g(x)) * g’(x). Applying the chain rule to the computation of the gradient values of
a neural network gives rise to an algorithm called Backpropagation (also sometimes called reverse-mode
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differentiation). Backpropagation starts with the final loss value and works backward from the top layers
to the bottom layers, applying the chain rule to compute the contribution that each parameter had in the
loss value.

Nowadays, and for years to come, people will implement networks in modern frameworks that are
capable of symbolic differentiation, such as TensorFlow. This means that, given a chain of operations with
a known derivative, they can compute a gradient function for the chain (by applying the chain rule) that
maps network parameter values to gradient values. When you have access to such a function, the back-
ward pass is reduced to a call to this gradient function. Thanks to symbolic differentiation, you’ll never
have to implement the Backpropagation algorithm by hand. For this reason, we won’t waste your time
and your focus on deriving the exact formulation of the Backpropagation algorithm in these pages. All
you need is a good understanding of how gradient-based optimization works.

This was the input data:

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype(‘float32’) / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype(‘float32’) / 255

Now we understand that the input images are stored in Numpy tensors, which are here formatted
as float32 tensors of shape (60000, 784) (training data) and (10000, 784) (test data), respectively.

This was our network:

network = models.Sequential()

network.add(layers.Dense(512,activation=’relu’, input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation=’softmax’))

Now we understand that this network consists of a chain of two Dense layers, that each layer applies
a few simple tensor operations to the input data, and that these operations involve weight tensors. Weight
tensors, which are attributes of the layers, are where the knowledge of the network persists.

This was the network-compilation step

network.compile(optimizer=’rmsprop’,

loss=’categorical_crossentropy’,

metrics=[‘accuracy’])

Now we understand that categorical_crossentropy is the loss function that’s used as a feedback
signal for learning the weight tensors, and which the training phase will attempt to minimize. You also
know that this reduction of the loss happens via mini-batch stochastic gradient descent. The exact rules
governing a specific use of gradient descent are defined by the rmsprop optimizer passed as the first
argument.

Finally, this was the training loop

network.fit(train_images,train_labels,epochs=5,batch_size=128)

Now we understand what happens when you call fit: the network will start to iterate on the training
data in mini-batches of 128 samples, 5 times over (each iteration over all the training data is called an
epoch). At each iteration, the network will compute the gradients of the weights with regard to the loss on
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the batch, and update the weights accordingly. After these 5 epochs, the network will have performed
2,345 gradient updates (469 per epoch), and the loss of the network will be sufficiently low that the
network will be capable of classifying handwritten digits with high accuracy.

3.5 NEURAL NETWORKS

3.5.1 Anatomy

Q5. Write a note on Anatomy of a neural network.

Ans : (Imp.)

Anatomy of a neural network

Artificial neural networks are one of the main tools used in machine learning. As the “neural” part of
their name suggests, they are brain-inspired systems which are intended to replicate the way that we
humans learn. Neural networks consist of input and output layers, as well as (in most cases) a hidden layer
consisting of units that transform the input into something that the output layer can use. They are excel-
lent tools for finding patterns which are far too complex or numerous for a human programmer to extract
and teach the machine to recognize.

While vanilla neural networks (also called “perceptrons”) have been around since the 1940s, it is
only in the last several decades where they have become a major part of artificial intelligence. This is due
to the arrival of a technique called backpropagation (which we discussed in the previous tutorial), which
allows networks to adjust their neuron weights in situations where the outcome doesn’t match what the
creator is hoping for — like a network designed to recognize dogs, which misidentifies a cat, for example.

The fact that neural networks make use of affine transformations in order to concatenate input
features together that converge at a specific node in the network. This concatenated input is then passed
through an activation function, which evaluates the signal response and determines whether the neuron
should be activated given the current inputs.as this can be an important factor in obtaining a functional
network. So far we have only talked about sigmoid as an activation function but there are several other
choices, and this is still an active area of research in the machine learning literature.

This idea can be extended to multilayer and multi-feature networks in order to increase the ex-
planatory power of the network by increasing the number of degrees of freedom (weights and biases) of
the network, as well as the number of features available which the network can use to make predictions.
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Finally, The network parameters (weights and biases) could be updated by assessing the error of

the network. This is done using backpropagation through the network in order to obtain the derivatives
for each of the parameters with respect to the loss function, and then gradient descent can be used to
update these parameters in an informed manner such that the predictive power of the network is likely to
improve.

Together, the process of assessing the error and updating the parameters is what is referred to as
training the network. This can only be done if the ground truth is known, and thus a training set is needed
in order to generate a functional network. The performance of the network can then be assessed by
testing it on unseen data, which is often known as a test set.

Neural networks have a large number of degrees of freedom and as such, they need a large amount
of data for training to be able to make adequate predictions, especially when the dimensionality of the
data is high (as is the case in images, for example — each pixel is counted as a network feature).

A generalized multilayer and multi-featured network looks like this:

Generalized multilayer perceptron with n hidden layers, m nodes, and d input features.

We have m nodes, where m refers to the width of a layer within the network. Notice that this is no
relation between the number of features and the width of a network layer.

We also have n hidden layers, which describe the depth of the network. In general, anything that
has more than one hidden layer could be described as deep learning. Sometimes, networks can have
hundreds of hidden layers, as is common in some of the state-of-the-art convolutional architectures used
for image analysis.
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The number of inputs, d, is pre-specified by the available data. For an image, this would be the
number of pixels in the image after the image is flattened into a one-dimensional array, for a normal
Pandas data frame, d would be equal to the number of feature columns.

In general, it is not required that the hidden layers of the network have the same width (number of
nodes); the number of nodes may vary across the hidden layers. The output layer may also be of an
arbitrary dimension depending on the required output. If you are trying to classify images into one of ten
classes, the output layer will consist of ten nodes, one each corresponding to the relevant output class —
this is the case for the popular MNIST database of handwritten numbers.

Prior to neural networks, rule-based systems have gradually evolved into more modern machine
learning, whereby more and more abstract features can be learned. This means that much more complex
selection criteria are now possible.

To understand this idea, imagine that you are trying to classify fruit based on the length and width
of the fruit. It may be easy to separate if you have two very dissimilar fruit that you are comparing, such
as an apple and a banana. However, this rule system breaks down in some cases due to the oversimplified
features that were chosen.

Neural networks provide an abstract representation of the data at each stage of the network which
are designed to detect specific features of the network. When considering convolutional neural networks,
which are used to study images, when we look at hidden layers closer to the output of a deep network,
the hidden layers have highly interpretable representations, such as faces, clothing, etc. However, when
we look at the first layers of the network, they are detecting very basic features such as corners, curves,
and so on.

These abstract representations quickly become too complex to comprehend, and to this day the
workings of neural networks to produce highly complex abstractions are still seen as somewhat magical
and is a topic of research in the deep learning community.
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An example of a neural network with multiple hidden layers classifying written digits from the
MNIST dataset.

3.5.2 Layers

Q6. Discuss about Layers in Neural Networks.

Ans : (Imp.)

The fundamental data structure in neural networks is the layer, to which you were introduced a
layer is a data-processing module that takes as input one or more tensors and that outputs one or more
tensors. Some layers are stateless, but more frequently layers have a state: the layer’s weights, one or
several tensors learned with stochastic gradient descent, which together contain the network’s knowledge.
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Different layers are appropriate for different tensor formats and different types of data processing.
For instance, simple vector data, stored in 2D tensors of shape (samples, features), is often processed by
densely connected layers, also called fully connected or dense layers (the Dense class in Keras). Sequence
data, stored in 3D tensors of shape (samples, timesteps, features), is typically processed by recurrent
layers such as an LSTM layer. Image data, stored in 4D tensors, is usually processed by 2D convolution
layers (Conv2D).

We can think of layers as the LEGO bricks of deep learning, a metaphor that is made explicit by
frameworks like Keras. Building deep-learning models in Keras is done by clipping together compatible
layers to form useful data-transformation pipelines. The notion of layer compatibility here refers specifi-
cally to the fact that every layer will only accept input tensors of a certain shape and will return output
tensors of a certain shape.

Consider the following example:

from keras import layers

layer = layers.Dense(32, input_shape=(784,))

We’re creating a layer that will only accept as input 2D tensors where the first dimension is 784 (axis
0, the batch dimension, is unspecified, and thus any value would be accepted). This layer will return a
tensor where the first dimension has been transformed to be 32.

Thus, this layer can only be connected to a downstream layer that expects 32-dimensional vectors
as its input. When using Keras, you don’t have to worry about compatibility, because the layers you add
to your models are dynamically built to match the shape of the incoming layer. For instance, suppose you
write the following:

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Dense(32, input_shape=(784,)))

model.add(layers.Dense(32))

The second layer didn’t receive an input shape argument—instead, it automatically inferred its
input shape as being the output shape of the layer that came before.

3.5.3 Models

Q7. Discuss about Neural Network Models.

Ans : (Imp.)

The Neural Networks Model

Neural networks are simple models of the way the nervous system operates. The basic units
are neurons, which are typically organized into layers, as shown in the following figure.
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Fig.: Structure of a Neural Network

A neural network is a simplified model of the way the human brain processes information. It
works by simulating a large number of interconnected processing units that resemble abstract versions of
neurons.

The processing units are arranged in layers. There are typically three parts in a neural network:
an input layer, with units representing the input fields; one or more hidden layers; and an output layer,
with a unit or units representing the target field(s). The units are connected with are propagated from
each neuron to every neuron in the next layer. Eventually, a result is delivered from the output layer.

The network learns by examining individual records, generating a prediction for each record, and
making adjustments to the weights whenever it makes an incorrect prediction. This process is repeated
many times, and the network continues to improve its predictions until one or more of the stopping
criteria have been met.

Initially, all weights are random, and the answers that come out of the net are probably nonsensical.
The network learns through training. Examples for which the output is known are repeatedly presented
to the network, and the answers it gives are compared to the known outcomes. Information from this
comparison is passed back through the network, gradually changing the weights. As training progresses,
the network becomes increasingly accurate in replicating the known outcomes. Once trained, the network
can be applied to future cases where the outcome is unknown.

Models: networks of layers

A deep-learning model is a directed, acyclic graph of layers. The most common instance is a linear
stack of layers, mapping a single input to a single output.

But as you move forward, you’ll be exposed to a much broader variety of network topologies.
Some common ones include the following:
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 Two-branch networks

 Multihead networks

 Inception blocks

The topology of a network defines a hypothesis space we defined machine learning as “searching
for useful representations of some input data, within a predefined space of possibilities, using guidance
from a feedback signal.” By choosing a network topology, you constrain your space of possibilities (hy-
pothesis space) to a specific series of tensor operations, mapping input data to output data. What you’ll
then be searching for is a good set of values for the weight tensors involved in these tensor operations.

Picking the right network architecture is more an art than a science; and although there are some
best practices and principles you can rely on, only practice can help you become a proper neural-network
architect. The next few chapters will both teach you explicit principles for building neural networks and
help you develop intuition as to what works or doesn’t work for specific problems.

3.5.4 Loss functions and optimizers

Q8. Explain in detail about Loss functions and Optimizers.

Ans : (Imp.)

Loss functions and optimizers keys to configuring the learning process.

Once the network architecture is defined, you still have to choose two more things:

 Loss function (objective function): The quantity that will be minimized during training. It repre-
sents a measure of success for the task at hand.

 Optimizer : Determines how the network will be updated based on the loss function. It imple-
ments a specific variant of stochastic gradient descent (SGD).

A neural network that has multiple outputs may have multiple loss functions (one per output). But
the gradient-descent process must be based on a single scalar loss value; so, for multiloss networks, all
losses are combined (via averaging) into a single scalar quantity.

Choosing the right objective function for the right problem is extremely important: your network
will take any shortcut it can, to minimize the loss; so if the objective doesn’t fully correlate with success for
the task at hand, your network will end up doing things you may not have wanted. Imagine a stupid,
omnipotent AI trained via SGD, with this poorly chosen objective function: “maximizing the average well-
being of all humans alive.” To make its job easier, this AI might choose to kill all humans except a few and
focus on the well-being of the remaining ones because average well-being isn’t affected by how many
humans are left. That might not be what you intended! Just remember that all neural networks you build
will be just as ruthless in lowering their loss function, so choose the objective wisely, or you’ll have to face
unintended side effects.

Fortunately, when it comes to common problems such as classification, regression, and sequence
prediction, there are simple guidelines you can follow to choose the correct loss. For instance, you’ll use
binary cross entropy for a two-class classification problem, categorical cross entropy for a many-class
classification problem, mean-squared error for a regression problem, connectionist temporal classification
(CTC) for a sequence-learning problem, and so on. Only when you’re working on truly new research
problems will you have to develop your own objective functions. In the next few chapters, we’ll detail
explicitly which loss functions to choose for a wide range of common tasks.

Back Propogation and Optimisation Function: Error J(w) is a function of internal parameters
of model i.e weights and bias. For accurate predictions, one needs to minimize the calculated error. In a
neural network, this is done using back propagation. The current error is typically propagated backwards
to a previous layer, where it is used to modify the weights and bias in such a way that the error is
minimized. The weights are modified using a function called Optimization Function.
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Optimisation functions usually calculate the gradient i.e. the partial derivative of loss function with
respect to weights, and the weights are modified in the opposite direction of the calculated gradient. This
cycle is repeated until we reach the minima of loss function.

Thus, the components of a neural network model i.e the activation function, loss function and
optimization algorithm play a very important role in efficiently and effectively training a Model and pro-
duce accurate results. Different tasks require a different set of such functions to give the most optimum
results.

Loss Functions

Thus, loss functions are helpful to train a neural network. Given an input and a target, they calcu-
late the loss, i.e difference between output and target variable. Loss functions fall under four major
category:

Regressive loss functions

They are used in case of regressive problems, that is when the target variable is continuous. Most
widely used regressive loss function is Mean Square Error. Other loss functions are:

1. Absolute error : measures the mean absolute value of the element-wise difference between in-
put.

2. Smooth Absolute Error : a smooth version of Abs Criterion.

Classification loss functions

The output variable in classification problem is usually a probability value f(x), called the score for
the input x. Generally, the magnitude of the score represents the confidence of our prediction. The target
variable y, is a binary variable, 1 for true and -1 for false.

On an example (x,y), the margin is defined as yf(x). The margin is a measure of how correct we are.
Most classification losses mainly aim to maximize the margin. Some classification algorithms are :

1. Binary Cross Entropy

2. Negative Log Likelihood

3. Margin Classifier

4. Soft Margin Classifier

Embedding loss functions

It deals with problems where we have to measure whether two inputs are similar or dissimilar. Some
examples are:

1. L1 Hinge Error : Calculates the L1 distance between two inputs.

2. Cosine Error : Cosine distance between two inputs.

Visualising Loss Functions

We performed the task to reconstruct an image using a type of neural network called Autoencoders.
Different results were obtained for the same task by using different Loss Functions, while everything else
in the neural network architecture remained constant. Thus, the difference in result represents the prop-
erties of the different loss functions employed. A very simple data set, MNIST data set was used for this
purpose. Three loss functions were used to reconstruct images.

 Absolute Loss Function

 Mean Square Loss Function

 Smooth Absolute Loss Function
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Loss function for Mean Square Error loss(x, y)=
1
n

2
i i|x y |

Loss function for  Absolute Error loss(x, y)=
1
n i i|x y |

Loss function for Smooth Absolute Error loss(x, y)=
1
n

2
i i i i

i i

0.5 * (x y ) ,  if  |x y | 1
|x y | 0.5,stotherwise

    
 

   


While the Absolute error just calculated the mean absolute value between of the pixel-wise differ-
ence, Mean Square error uses mean squared error. Thus it was more sensitive to outliers and pushed pixel
value towards 1 (in our case, white as can be seen in image after first epoch itself).

Smooth L1 error can be thought of as a smooth version of the Absolute error. It uses a squared
term if the squared element-wise error falls below 1 and L1 distance otherwise. It is less sensitive to outliers
than the Mean Squared Error and, in some cases, prevents exploding gradients.
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Short Question and Answers
1. Discuss about Gradient-based optimization?

Ans :
Gradient descent is an optimization algorithm that’s used when training deep learning

models. It’s based on a convex function and updates its parameters iteratively to minimize a given
function to its local minimum.

The notation used in the above Formula is given below,

 ± is the learning rate,

 J is the cost function, and

 ô is the parameter to be updated.

The gradient represents the partial derivative of J (cost function) with respect to ôj 

Note that, as we reach closer to the global minima, the slope or the gradient of the curve becomes
less and less steep, which results in a smaller valueof derivative, which in turn reduces the step size or
learning rate automatically.

It is the most basic but most used optimizer that directly uses the derivative of the loss function and
learning rate to reduce the loss function and tries to reach the global minimum.

The Gradient Descent Optimization algorithm has many applications including:

 Linear Regression,

 Classification Algorithms,

Backpropagation in Neural Networks, etc.

Repeat until convergence  {

j   Qj —  
j


  J()

}

The above-described equation calculates the gradient of the cost function J(¸) with respect to the
network parameters ¸ for the entire training dataset:
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2. What Is the Difference Between Batch Gradient Descent and Stochastic Gradient
Descent?

Ans :

The stochastic gradient computes the 
gradient using a single sample.
It converges much faster than the batch 
gradient because it updates weight more 
frequently

The batch gradient computes the gradient using the 
entire dataset.
It takes time to converge because the volume of data is 
huge, and weights update slowly.

Stochastic Gradient DescentBatch Gradient Descent

The stochastic gradient computes the 
gradient using a single sample.
It converges much faster than the batch 
gradient because it updates weight more 
frequently

The batch gradient computes the gradient using the 
entire dataset.
It takes time to converge because the volume of data is 
huge, and weights update slowly.

Stochastic Gradient DescentBatch Gradient Descent

3. What Do You Understand by Backpropagation?

Ans :

Backpropagation is a technique to improve the performance of the network. It backpropagates the
error and updates the weights to reduce the error.

A training algorithm which is used for a multilayer neural network is known as backpropagation. In
backpropagation, the error is moved from the end of the network to all weights, thus allowing efficient
computing of the gradient. It is typically divided into several steps, such as-

 Forward propagation of the training data so that the output is generated.

 By using the target value and the output value, error derivative can be computed. (with
respect to output activation)

 We then propagate for computing the derivative of the error (with respect to output activation)
and continue to do so for all of the hidden layers.

 By using the previously calculated derivatives, we can calculate error derivatives with respect
to the weights.

 Update the weights.

4. What is a Neural Network?

Ans :
Neural Networks replicate the way humans learn, inspired by how the neurons in our brains fire,

only much simpler.

 Neural Network: The most common Neural Networks consist of three network layers:



BSc. III YEAR  VI SEMESTER

84
Rahul Publications

Rahul Publications

 An input layer: A hidden layer (this is the most important layer where feature extraction
takes place, and adjustments are made to train faster and function better)

 An output layer: Each sheet contains neurons called “nodes,” performing various operations.
Neural Networks are used in deep learning algorithms like CNN, RNN, GAN, etc.

5. What is gradient descent?What are the steps for using a gradient descent algorithm?

Ans :
Gradient descent is an optimization algorithm used to minimize some function by iteratively moving

in the direction of steepest descent as defined by the negative of the gradient.

 Stochastic Gradient Descent: Uses only a single training example to calculate the gradient
and update parameters.

 Batch Gradient Descent: Calculate the gradients for the whole dataset and perform just
one update at each iteration.

 Mini-batch Gradient Descent: Mini-batch gradient is a variation of stochastic gradient
descent where instead of single training example, mini-batch of samples is used. It’s one of the
most popular optimization algorithms.

The steps involved in using a gradient descent algorithm are as follows-

 -Initialize a random weight and bias

 -Pass an input through the network and get the value from the output layer

 -Calculate if there is an error between the actual value and the predicted value

 -Go to each neuron which is contributing to the error and change its respective value so that
the error is reduced

 -Reiterate the steps until the best weights of the network are found.
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6. Write a note on Anatomy of a neural network.

Ans :
Artificial neural networks are one of the main tools used in machine learning. As the “neural” part of

their name suggests, they are brain-inspired systems which are intended to replicate the way that we
humans learn. Neural networks consist of input and output layers, as well as (in most cases) a hidden layer
consisting of units that transform the input into something that the output layer can use. They are excellent
tools for finding patterns which are far too complex or numerous for a human programmer to extract and
teach the machine to recognize.

Input
X

Output
Y

Neuron
Node 

Input
X

Output
Y

Neuron
Node 

While vanilla neural networks (also called “perceptrons”) have been around since the 1940s, it is
only in the last several decades where they have become a major part of artificial intelligence. This is due
to the arrival of a technique called backpropagation (which we discussed in the previous tutorial), which
allows networks to adjust their neuron weights in situations where the outcome doesn’t match what the
creator is hoping for — like a network designed to recognize dogs, which misidentifies a cat, for example.

The fact that neural networks make use of affine transformations in order to concatenate input
features together that converge at a specific node in the network. This concatenated input is then passed
through an activation function, which evaluates the signal response and determines whether the neuron
should be activated given the current inputs.as this can be an important factor in obtaining a functional
network. So far we have only talked about sigmoid as an activation function but there are several other
choices, and this is still an active area of research in the machine learning literature.
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Affine transformation
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7. What are Layers in a Neural Network?

Ans :
A neural network is made up of vertically stacked components called Layers. Each dotted line in the

image represents a layer. There are three types of layers in a Neural Network.
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Input Layer: First is the input layer. This layer will accept the data and pass it to the rest of the
network.

Hidden Layer: The second type of layer is called the hidden layer. Hidden layers are either one or
more in number for a neural network. In the above case, the number is 1. Hidden layers are the ones that
are actually responsible for the excellent performance and complexity of neural networks. They perform
multiple functions at the same time such as data transformation, automatic feature creation, etc.

Output Layer: The last type of layer is the output layer. The output layer holds the result or the
output of the problem. Raw images get passed to the input layer and we receive output in the output
layer.

In this case, we are providing an image of a vehicle and this output layer will provide an output
whether it is an emergency or non-emergency vehicle, after passing through the input,hidden layers and
finally output layers.

8. List out neural network models?

Ans :
There are many different types of artificial neural networks, varying in complexity. They share the

intended goal of mirroring the function of the human brain to solve complex problems or tasks. The
structure of each type of artificial neural network in some way mirrors neurons and synapses. However,
they differ in terms of complexity, use cases, and structure. Differences also include how artificial neurons
are modelled within each type of artificial neural network, and the connections between each node.
Other differences include how the data may flow through the artificial neural network, and the density of
the nodes.

5 Examples of the different types of artificial neural network include:

 Feedforward artificial neural networks

 Perceptron and Multilayer Perceptron neural networks

 Radial basis function artificial neural networks

 Recurrent neural networks

 Modular neural networks

9. What is loss function? and list out them.

Ans :
A loss function is a function that compares the target and predicted output values; measures how

well the neural network models the training data. When training, we aim to minimize this loss between the
predicted and target outputs.
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Types of Loss Functions

In supervised learning, there are two main types of loss functions — these correlate to the 2 major
types of neural networks: regression and classification loss functions

1. Regression Loss Functions — used in regression neural networks; given an input value,
the model predicts a corresponding output value (rather than pre-selected labels).

Ex. Mean Squared Error, Mean Absolute Error

2. Classification Loss Functions — used in classification neural networks; given an input, the
neural network produces a vector of probabilities of the input belonging to various pre-set
categories — can then select the category with the highest probability of belonging.

Ex. Binary Cross-Entropy, Categorical Cross-Entropy

10. How can hyperparameters be trained in neural networks?

Ans :
Hyperparameters can be trained using four components as shown below:

 Batch Size: This is used to denote the size of the input chunk. Batch sizes can be varied and cut
into sub-batches based on the requirement.

 Epochs: An epoch denotes the number of times the training data is visible to the neural network so
that it can train. Since the process is iterative, the number of epochs will vary based on the data.

 Momentum: Momentum is used to understand the next consecutive steps that occur with the
current data being executed at hand. It is used to avoid oscillations when training.

 Learning Rate: Learning rate is used as a parameter to denote the time required for the network
to update the parameters and learn.
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Choose the Correct Answer

1. Different learning method does not include: [ d ]

(a) Memorization (b) Analogy

(c) Deduction (d) Introduction

2. Which of the following is the model used for learning? [ d ]

(a) Decision trees (b) Neural networks

(c) Propositional and FOL rules (d) All

3. Automated vehicle is an example of . [ a ]

(a) Supervised learning (b) Unsupervised learning

(c) Active learning (d) Reinforcement learning

4. Following is an example of active learning: [ a ]

(a) News recommendation system (b) Dust cleaning machine

(c) Automated vehicle (d) None of them

5. Which of the following is not an application of learning? [ d ]

(a) Data mining (b) WWW

(c) Speech recognition (d) None of them

6. Which of the following is the component of learning system? [ d ]

(a) Goal (b) Model

(c) Learning rules (d) All of them

7. Following is also called as exploratory learning: [ c ]

(a) Supervised learning (b) Active learning

(c) Unsupervised learning (d) Reinforcement learning

8. How many types of learning are available in machine learning? [ c ]

(a) 1 (b) 2

(c) 3 (d) 4

9. Artificial neural network is used for [ d ]

(a) Classification (b) Clustering

(c) Pattern recognition (d) All of them

10. A Neural Network can answer [ b ]

(a) For Loop questions (b) what-if questions

(c) IF-The-Else Analysis Questions (d) None of the mentioned
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Fill in the blanks

1.  computes the output volume by computing dot product between all filters and image
patch

2.  is/are the ways to represent uncertainty

3. The purpose of Axon is .

4. When the cell is said to be fired ?

5. What is the objective of a pattern storage task is .

6. The BAM is a  associative pattern-marching network that encodes binary or bipolar pat-
terns using Hebbian learning rule

7. CAM stands for .

8. In the  associative memory network, the training input vector and training output vector
are the same.

9. The  is used to control the amount of weight adjustment at each step of training.

10. Madaline stands for .

ANSWERS

1. Convolution Layer

2. Fuzzy logic, Entropy and Probability

3. transmission

4. if potential of body reaches a steady threshold values

5. to store and recall

6. Recurrent hetero

7. Content Addressable Memories

8. auto

9. learning rate

10. Multiple Adaptive Linear Neuron
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One Mark Answers
1. What are activation functions?
Ans :

Activation functions are entities in Deep Learning that are used to translate inputs into a usable
output parameter.
2. What are activation functions?
Ans :

Activation functions are entities in Deep Learning that are used to translate inputs into a usable
output parameter.
3. Why is Fourier transform used in Deep Learning?
Ans :

Fourier transform is an effective package used for analyzing and managing large amounts of data
present in a database.
4. What are the elements in TensorFlow that are programmable?
Ans :

In TensorFlow, users can program three elements:
 Constants
 Variables
 Placeholders

5. What is CNTK used for?
Ans :

The Microsoft Cognitive Toolkit (CNTK) is a powerful, open source library that can be used to
create machine learning prediction models.
6. What are the main difficulties when training RNNs
Ans :

The two main difficulties when training RNNs are unstable gradients (exploding or vanishing) and a
very limited short-term memory. These problems both get worse when dealing with long sequences.
7. What’s the difference between Traditional Feedforward Networks and Recurrent Neu-

ral Networks?
Ans :

Traditional feedforward neural networks take in a fixed amount of input data all at the same time
and produce a fixed amount of output each time.

Recurrent neural networks do not consume all the input data at once. Instead, they take them in
one at a time and in a sequence.
8. What is the basic concept of Recurrent Neural Network?
Ans :

Use previous inputs to find the next output according to the training set.
9. For what RNN is used and achieve the best results?
Ans :

Handwriting and speech recognition.
10. One of the RNN´s issue is ‘Exploding Gradients’. What is that?
Ans :

When the algorithm assigns a stupidly high importance to the weights, without much reason.
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UNIT
IV

Introduction to Keras, Keras, TensorFlow, Theano, and CNTK Recurrent neural

networks: A recurrent layer in Keras, Understanding the LSTM and GRU layers

4.1  INTRODUCTION TO KERAS

Q1. Define Keras. Discuss its featurs and
benefits?

Ans :
Deep learning is a branch of artificial

intelligence concerned with solving highly complex
problems by emulating the working of the human
brain. In deep learning, we use neural networks
which use multiple operators placed in nodes to help
break down the problem into smaller parts, which
are each solved individually. But neural networks
can be really hard to implement. This problem is
taken care of by Keras, a deep learning framework.

Meaning

Keras is a high-level, deep learning API
developed by Google for implementing neural
networks. It is written in Python and is used to make
the implementation of neural networks easy. It also
supports multiple backend neural network
computation.                         

Keras is relatively easy to learn and work with
because it provides a python frontend with a high
level of abstraction while having the option of
multiple back-ends for computation purposes. This
makes Keras slower than other deep learning
frameworks, but extremely beginner-friendly. 

Keras allows you to switch between different
back ends. The frameworks supported by Keras are:

 Tensorflow

 Theano

 PlaidML

 MXNet

 CNTK (Microsoft Cognitive Toolkit )

Out of these five frameworks, TensorFlow has
adopted Keras as its official high-level API. Keras is
embedded in TensorFlow and can be used to
perform deep learning fast as it provides inbuilt
modules for all neural network computations. At
the same time, computation involving tensors,
computation graphs, sessions, etc can be custom
made using the TensorFlow Core API, which gives
you total flexibility and control over your application
and lets you implement your ideas in a relatively
short time.

Keras API Spec

TensorFlow WorkFlow

TF - Keras Theano-Keras …….

Fig.: Keras Backend

Features

Keras leverages various optimization
techniques to make high level neural network API
easier and more performant. It supports the
following features.

 Consistent, simple and extensible API.

 Minimal structure - easy to achieve the result
without any frills.

 It supports multiple platforms and backends.

 It is user friendly framework which runs on
both CPU and GPU.

 Highly scalability of computation.
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Benefits

Keras is highly powerful and dynamic
framework and comes up with the following
advantages

 Larger community support.

 Easy to test.

 Keras neural networks are written in Python
which makes things simpler.

 Keras supports both convolution and
recurrent networks.

 Deep learning models are discrete
components, so that, you can combine into
many ways.

Q2. Explain about keras applications and its
building model?

Ans :
Keras runs on top of open source machine

libraries like TensorFlow, Theano or Cognitive Toolkit
(CNTK). Theano is a python library used for fast
numerical computation tasks. TensorFlow is the most
famous symbolic math library used for creating
neural networks and deep learning models.
TensorFlow is very flexible and the primary benefit
is distributed computing. CNTK is deep learning
framework developed by Microsoft. It uses libraries
such as Python, C#, C++ or standalone machine
learning toolkits. Theano and TensorFlow are very
powerful libraries but difficult to understand for
creating neural networks.

Keras is based on minimal structure that
provides a clean and easy way to create deep
learning models based on TensorFlow or Theano.
Keras is designed to quickly define deep learning
models. Well, Keras is an optimal choice for deep
learning applications.

Keras is a deep-learning framework for Python
that provides a convenient way to define and train
almost any kind of deep-learning model. Keras was
initially developed for researchers, with the aim of
enabling fast experimentation.

Keras has the following key features

 It allows the same code to run seamlessly on
CPU or GPU.

 It has a user-friendly API that makes it easy
to quickly prototype deep-learning models.

 It has built-in support for convolutional
networks (for computer vision), recurrent
networks (for sequence processing), and any
combination of both.

 It supports arbitrary network architectures:
multi-input or multi-output models, layer
sharing, model sharing, and so on. This means
Keras is appropriate for building essentially
any deep-learning model, from a generative
adversarial network to a neural Turing
machine.

 Keras is distributed under the permissive MIT
license, which means it can be freely used in
commercial projects. It’s compatible with any
version of Python from 2.7 to 3.6.

Keras has well over 200,000 users, ranging
from academic researchers and engineers at both
startups and large companies to graduate students
and hobbyists. Keras is used at Google, Netflix, Uber,
CERN, Yelp, Square, and hundreds of startups
working on a wide range of problems. Keras is also
a popular framework on Kaggle, the machine-
learning competition website, where almost every
recent deep-learning competition has been won
using Keras models.

Need of Keras

 Keras is an API that was made to be easy to
learn for people. Keras was made to be
simple. It offers consistent & simple APIs,
reduces the actions required to implement
common code, and explains user error
clearly.

 Prototyping time in Keras is less. This means
that your ideas can be implemented and
deployed in a shorter time. Keras also provides
a variety of deployment options depending
on user needs.

 Languages with a high level of abstraction and
inbuilt features are slow and building custom
features in then can be hard. But Keras runs
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on top of TensorFlow and is relatively fast. Keras is also deeply integrated with TensorFlow, so you
can create customized workflows with ease.

 The research community for Keras is vast and highly developed. The documentation and help
available are far more extensive than other deep learning frameworks. 

 Keras is used commercially by many companies like Netflix, Uber, Square, Yelp, etc which have
deployed products in the public domain which are built using Keras. 

Apart from this, Keras has features such as :

 It runs smoothly on both CPU and GPU.

 It supports almost all neural network models.

 It is modular in nature, which makes it expressive, flexible, and apt for innovative research.

Building Model of aKeras

The below diagram shows the basic steps involved in building a model in Keras:

Fig.: Building a model

1. Define a network: In this step, you define the different layers in our model and the connections
between them. Keras has two main types of models: Sequential and Functional models. You choose
which type of model you want and then define the dataflow between them. 

2. Compile a network: To compile code means to convert it in a form suitable for the machine to
understand. In Keras, the model.compile() method performs this function. To compile the model,
we define the loss function which calculates the losses in our model, the optimizer which reduces the
loss, and the metrics which is used to find the accuracy of our model.

3. Fit the network: Using this, we fit our model to our data after compiling. This is used to train the
model on our data.

4. Evaluate the network: After fitting our model, we need to evaluate the error in our model.

5. Make Predictions: We use model.predict() to make predictions using our model on new data.

Applications

 Keras is used for creating deep models which can be productized on smartphones.

 Keras is also used for distributed training of deep learning models.

 Keras is used by companies such as Netflix, Yelp, Uber, etc.

 Keras is also extensively used in deep learning competitions to create and deploy working models,
which are fast in a short amount of time.
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4.2  TENSORFLOW

Q3. Explain in detail about Tensor Flow and its use cases?

(OR)

Explain in detail about components and its applications?

Ans:
TensorFlow is a popular framework of machine learning and deep learning. It is a free and open-

source library which is released on 9 November 2015 and developed by Google Brain Team. It is
entirely based on Python programming language and use for numerical computation and data flow,
which makes machine learning faster and easier.

TensorFlow can train and run the deep neural networks for image recognition, handwritten digit
classification, recurrent neural network, word embedding, natural language processing, video detection,
and many more. TensorFlow is run on multiple CPUs or GPUs and also mobile operating systems.

The word TensorFlow is made by two words, i.e., Tensor and Flow:

1. Tensor is a multidimensional array

2. Flow is used to define the flow of data in operation.

TensorFlow is used to define the flow of data in operation on a multidimensional array or Tensor.

TensorFlow

1 11 5 4
–2 9 1

….

….
….….….….

….…. ….….

Multiplication
A

B C

Addition

Fig.: Tensor Flow

History of TensorFlow

Many years ago, deep learning started to exceed all other machine learning algorithms when giving
extensive data. Google has seen it could use these deep neural networks to upgrade its services:

 Google search engine

 Gmail

 Photo

They build a framework called TensorFlow to permit researchers and developers to work together
in an AI model. Once it approved and scaled, it allows lots of people to use it.
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It was first released in 2015, while the first stable version was coming in 2017. It is an open- source
platform under Apache Open Source License. We can use it, modify it, and reorganize the revised version
for free without paying anything to Google.
Components of TensorFlow
i) Tensor

The name TensorFlow is derived from its core framework, “Tensor.” A tensor is a vector or a matrix
of n-dimensional that represents all type of data. All values in a tensor hold similar data type with a known
shape. The shape of the data is the dimension of the matrix or an array.

A tensor can be generated from the input data or the result of a computation. In TensorFlow, all
operations are conducted inside a graph. The group is a set of calculation that takes place successively.
Each transaction is called an op node are connected.

ii) II Graphs
TensorFlow makes use of a graph framework. The chart gathers and describes all the computations

done during the training.
Advantages
 It was fixed to run on multiple CPUs or GPUs and mobile operating systems.
 The portability of the graph allows to conserve the computations for current or later use. The graph

can be saved because it can be executed in the future.
 All the computation in the graph is done by connecting tensors together.

Consider the following expression  a = (b+c)*(c+2)
We can break the functions into components given below:
d = b+c
e = c+2
a = d*e
Now, we can represent these operations graphically below:

a = d*e

d = b + c e = c + 2

b c
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iii) Session

A session can execute the operation from the graph. To feed the graph with the value of a tensor,
we need to open a session. Inside a session, we must run an operator to create an output.

Popular of TensorFlow

TensorFlow is the better library for all because it is accessible to everyone. TensorFlow library integrates
different API to create a scale deep learning architecture like CNN (Convolutional Neural Network) or
RNN (Recurrent Neural Network).

TensorFlow is based on graph computation; it can allow the developer to create the construction of
the neural network with Tensorboard. This tool helps debug our program. It runs on CPU (Central Processing
Unit) and GPU (Graphical Processing Unit).

TensorFlow attracts the most considerable popularity on GitHub compare to the other deep learning
framework.

Use Cases/Applications of TensorFlow

TensorFlow provides amazing functionalities and services when compared to other popular deep
learning frameworks. TensorFlow is used to create a large-scale neural network with many layers.
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It is mainly used for deep learning or machine learning problems such as Classification, Percep-
tion, Understanding, Discovering Prediction, and Creation.

1. Voice/Sound Recognition

Voice and sound recognition applications are the most-known use cases of deep-learning. If the
neural networks have proper input data feed, neural networks are capable of understanding audio signals.

For example:

Voice recognition is used in the Internet of Things, automotive, security, and UX/UI.

Sentiment Analysis is mostly used in customer relationship management (CRM).

Flaw Detection (engine noise) is mostly used in automotive and Aviation.

Voice search is mostly used in customer relationship management (CRM)

2. Image Recognition

Image recognition is the first application that made deep learning and machine learning popular.
Telecom, Social Media, and handset manufacturers mostly use image recognition. It is also used for
face recognition, image search, motion detection, machine vision, and photo clustering.

For example, image recognition is used to recognize and identify people and objects in from of
images. Image recognition is used to understand the context and content of any image.

For object recognition, TensorFlow helps to classify and identify arbitrary objects within larger images.

This is also used in engineering application to identify shape for modeling purpose (3d reconstruction
from 2d image) and by Facebook for photo tagging.

For example, deep learning uses TensorFlow for analyzing thousands of photos of cats. So a deep
learning algorithm can learn to identify a cat because this algorithm is used to find general features
of objects, animals, or people.

3. Time Series

Deep learning is using Time Series algorithms for examining the time series data to extract meaningful
statistics. For example, it has used the time series to predict the stock market.

A recommendation is the most common use case for Time Series. Amazon, Google, Facebook,
and Netflix are using deep learning for the suggestion. So, the deep learning algorithm is used to
analyze customer activity and compare it to millions of other users to determine what the customer
may like to purchase or watch.

For example, it can be used to recommend us TV shows or movies that people like based on TV
shows or movies we already watched.

4. Video Detection

The deep learning algorithm is used for video detection. It is used for motion detection, real-time
threat detection in gaming, security, airports, and UI/UX field.

For example, NASA is developing a deep learning network for object clustering of asteroids and
orbit classification. So, it can classify and predict NEOs (Near Earth Objects).
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5. Text-Based Applications

Text-based application is also a popular deep learning algorithm. Sentimental analysis, social media,
threat detection, and fraud detection, are the example of Text-based applications.

For example, Google Translate supports over 100 languages.

Some companies who are currently using TensorFlow are Google, AirBnb, eBay, Intel, DropBox,
Deep Mind, Airbus, CEVA, Snapchat, SAP, Uber, Twitter, Coca-Cola, and IBM.

Q4. What are the Features of TensorFlow?

Ans :

Features of TensorFlow

TensorFlow has an interactive multiplatform programming interface which is scalable and reliable
compared to other deep learning libraries which are available.

These features of TensorFlow will tell us about the popularity of TensorFlow.

1. Responsive Construct

We can visualize each part of the graph, which is not an option while using Numpy or SciKit. To
develop a deep learning application, firstly, there are two or three components that are required to
create a deep learning application and need a programming language.

2. Flexible

It is one of the essential TensorFlow Features according to its operability. It has modularity and parts
of it which we want to make standalone.

3. Easily Trainable

It is easily trainable on CPU and for GPU in distributed computing.

4. Parallel Neural Network Training

TensorFlow offers to the pipeline in the sense that we can train multiple neural networks and
various GPUs, which makes the models very efficient on large-scale systems.
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5. Large Community

Google has developed it, and there already is a large team of software engineers who work on
stability improvements continuously.

6. Open Source

The best thing about the machine learning library is that it is open source so anyone can use it as
much as they have internet connectivity. So, people can manipulate the library and come up with
a fantastic variety of useful products. And it has become another DIY community which has a
massive forum for people getting started with it and those who find it hard to use it.

7. Feature Columns

TensorFlow has feature columns which could be thought of as intermediates between raw data and
estimators; accordingly, bridging input data with our model.

The feature below describes how the feature column is implemented.

8. Availability of Statistical Distributions

This library provides distributions functions including Bernoulli, Beta, Chi2, Uniform, Gamma, which
are essential, especially where considering probabilistic approaches such as Bayesian models.

9. Layered Components

TensorFlow produces layered operations of weight and biases from the function such as
tf.contrib.layers and also provides batch normalization, convolution layer, and dropout layer. So
tf.contrib.layers.optimizers have optimizers such as Adagrad, SGD, Momentum which are often
used to solve optimization problems for numerical analysis.

10. Visualizer (With TensorBoard)

We can inspect a different representation of a model and make the changed necessary while
debugging it with the help of TensorBoard.

11. Event Logger (With TensorBoard)

It is just like UNIX, where we use tail - f to monitor the output of tasks at the cmd. It checks, logging
events and summaries from the graph and production with the TensorBoard.
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4.3  THEANO

Q5. What is Theano library in deep learning
with suitable examples?

Ans :
Theano is a Python library also known as the

grandfather of deep learning libraries is popular
among researchers. It is a compiler for manipulating
and analyzing mathematical expressions, particularly
matrix-valued expressions. Computations in Theano
are written in a NumPy-like syntax and built to run
quickly on either CPU or GPU architectures. Theano
python library has garnered attention in the
machine learning community as it lets you build
wrapper libraries or deep learning or neural
network models efficiently at high speeds.

Theano for Deep Learning

 A smart deep learning framework that lets
you perform data-intensive computations
faster than a CPU or a GPU with efficient
native libraries like BLAS.

 Evaluating expressions is much faster because
of the dynamic C code it generates.

 Creates Symbolic graphs for computing
gradients automatically.

 Provides stable means to optimize and
evaluate unstable expressions.

Installing of Theano using Anaconda in
windows:

To install theano package with conda run:

conda install -c anaconda theano

or

conda install theano (Preferable)

To install theano package with command
prompt:

pip install theano

In this way, we can install theano in windows.

Adding Two scalars using Theano

A simple function to add two scalars:

Example

# Import libraries
import theano

from theano import tensor
# Creating two floating-point scalars
x = tensor.dscalar()
y = tensor.dscalar()
# Creating addition expression
z = x + y
# Convert the expression into a callable object that
takes (x,y) values as input and computes a value for
z
fun = theano.function([x, y], z)
# Pass 11.6 to 'x', 1.1 to 'y', and evaluate 'z'
fun(11.6, 1.1)
Output
array(12.7)
Adding of Two Matrices using Theano:

A simple function to add two matrices:

Example

# Import libraries
import theano
from theano import tensor
# Creating two floating-point scalars
a = tensor.dmatrix()
b = tensor.dmatrix()
# Creating addition expression
c = a + b
# Convert the expression into a callable object that
takes (a,b) values as input and computes a value
for c
fun = theano.function([a, b], c)
# Calling function
fun([[1, 2], [3, 4]], [[1, 2], [3, 4]])
Output

array([[2., 4.],

        [6., 8.]])

To Compute Gradient in Derivatives in
Theano

Let’s create a function to find out the
derivative of some expression y with respect to its
parameter x. To do this we will use the macro tt.grad.
For instance, we can compute the gradient of 2x^3
with respect to x. Note that: d(2x^3)/dx = 6x^2.
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Example

# Import libraries
import theano
from theano import tensor
from theano import pp
# Creating a scalar
x = tensor.dscalar(‘x’)
# Creating ‘y’ expression
y = (2 * x ** 3)
# Computing derivative
derivative = tensor.grad(y, x)
# Print out the gradient
pp(derivative)
# Convert the expression into a callable object that
takes ‘x’ as input and computes a value for
‘derivative’
fun = theano.function([x], derivative)
# Calling function
fun(3)
Output

array(54.)

eval() Function in Theano

The eval() function is used to return the actual
value of theano variable instead of its name. If we
try to just print the variable x, we only print its name.
But if we use eval(), we get the actual square matrix
that it is initialised to.

Example

# Import library
import theano
# Creating a theano variable ‘x’ with value 10
x = theano.shared(10,’x’)
#This will just print the variable x
X
Output

x

# Eval function

x.eval() #This will print its actual value

Output

array(10)

4.4 WHAT IS MICROSOFT COGNITIVE

TOOLKIT (CNTK)?

Q6. Discuss in detail about CNTK?

Ans :
Microsoft Cognitive Toolkit (CNTK), formerly

known as Computational Network Toolkit, is a free,
easy-to-use, open-source, commercial-grade toolkit
that enables us to train deep learning algorithms to
learn like the human brain. It enables us to create
some popular deep learning systems like feed-
forward neural network time series predic-tion
systems and Convolutional neural network (CNN)
image classifiers.

CNTK allows the user to easily realize and
combine popular model types such as feed-forward
DNNs, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs/LSTMs).

For optimal performance, its framework
functions are written in C++. Although we can call
its function using C++, but the most commonly
used approach for the same is to use a Python
program.

Microsoft Research developed CNTK, a deep
learning framework that builds a neural network
as a series of computational steps via a direct graph.
CNTK supports interfaces such as Python and C++
and is used for handwriting, speech recognition, and
facial recognition.

CNTK’s Features

Following are some of the features and
capabilities offered in the latest version of Microsoft
CNTK:

Built-in components
 CNTK has highly optimised built-in compo-

nents that can handle multi-dimensional
dense or sparse data from Python, C++ or
BrainScript.

 We can implement CNN, FNN, RNN, Batch
Normalisation and Sequence-to-Sequence
with attention.

 It provides us the functionality to add new
user-defined core-components on the GPU
from Python.
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 It also provides automatic hyperparameter tuning.

 We can implement Reinforcement learning, Generative Adversarial Networks (GANs), Supervised
as well as Unsupervised learning.

 For massive datasets, CNTK has built-in optimised readers.

Usage of resources efficiently

 CNTK provides us parallelism with high accuracy on multiple GPUs/machines via 1-bit SGD.

 To fit the largest models in GPU memory, it provides memory sharing and other built-in methods.

Express our own networks easily

 CNTK has full APIs for defining your own network, learners, readers, training and evaluation from
Python, C++, and BrainScript.

 Using CNTK, we can easily evaluate models with Python, C++, C# or BrainScript.

 It provides both high-level as well as low-level APIs.

 Based on our data, it can automatically shape the inference.

 It has fully optimised symbolic Recurrent Neural Network (RNN) loops.

Measuring model performance

 CNTK provides various components to measure the performance of neural networks you build.

 Generates log data from your model and the associated optimiser, which we can use to monitor the
training process.

Version 1.0 vs Version 2.0

Following table compares CNTK Version 1.0 and 2.0:

        Version 1.0                                 Version 2.0

It was released in 2016. It is a significant rewrite of the 1.0 Version and was released in
June 2017.

It used a proprietary scripting Its framework functions can be called using C++, Python. We
language called BrainScript. can easily load our modules in C# or Java. BrainScript is also

supported by Version 2.0.

It runs on both Windows and It also runs on both Windows (Win 8.1, Win 10, Server 2012
Linux systems but not directly R2 and later) and Linux systems but not directly on Mac OS.
on Mac OS.

Important Highlights of Version 2.7

Version 2.7 is the last main released version of Microsoft Cognitive Toolkit. It has full support for
ONNX 1.4.1. Following are some important highlights of this last released version of CNTK.

 Full support for ONNX 1.4.1.

 Support for CUDA 10 for both Windows and Linux systems.

 It supports advance Recurrent Neural Networks (RNN) loop in ONNX export.

 It can export more than 2GB models in ONNX format.

 It supports FP16 in BrainScript scripting language’s training action.
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4.5  RECURRENT NEURAL NETWORKS

Q7. Explain in detail about Recurrent neural
networks (RNN’s)? and its applications

(OR)

Explain in detail about Recurrent neural
networks (RNN’s)? and working of
RNN’s

Ans : (Imp.)

A recurrent neural network (RNN) is a kind
of artificial neural network mainly used in speech
recognition and natural language processing (NLP).
RNN is used in deep learning and in the develop-
ment of models that imitate the activity of neurons
in the human brain.

Recurrent Networks are designed to recognize
patterns in sequences of data, such as text,
genomes, handwriting, the spoken word, and
numerical time series data emanating from sensors,
stock markets, and government agencies.

A recurrent neural network looks similar to a
traditional neural network except that a memory-
state is added to the neurons. The computation is
to include a simple memory.

The recurrent neural network is a type of deep
learning-oriented algorithm, which follows a
sequential approach. In neural networks, we always
assume that each input and output is dependent
on all other layers. These types of neural networks
are called recurrent because they sequentially
perform mathematical computations.

RNN Output Sent back to itself

Output

Input

Application of RNN

RNN has multiple uses when it comes to
predicting the future. In the financial industry, RNN
can help predict stock prices or the sign of the stock
market direction (i.e., positive or negative).

RNN is used for an autonomous car as it can
avoid a car accident by anticipating the route of the
vehicle.

RNN is widely used in image captioning, text
analysis, machine translation, and sentiment
analysis. For example, one should use a movie
review to understanding the feeling the spectator
perceived after watching the movie. Automating this
task is very useful when the movie company can
not have more time to review, consolidate, label,
and analyze the reviews. The machine can do the
job with a higher level of accuracy.

Following are the application of RNN:

1. Machine Translation

We make use of Recurrent Neural Networks
in the translation engines to translate the text from
one to another language. They do this with the
combination of other models like LSTM (Long
short-term memory).

English English

Japanese Japanese

Korean Korean

Neural Machine
Translation

2. Speech Recognition

Recurrent Neural Networks has replaced the
traditional speech recognition models that made use
of Hidden Markov Models. These Recurrent Neural
Networks, along with LSTMs, are better poised at
classifying speeches and converting them into text
without loss of context.

Speech Text
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3. Sentiment Analysis

We make use of sentiment analysis to positivity, negativity, or the neutrality of the sentence. Therefore,
RNNs are most adept at handling data sequentially to find sentiments of the sentence.

I like learning technology through streaming online courses
provided by Javatpoint +

I don’t like learning technology through books –

4. Automatic Image Tagger

RNNs, in conjunction with convolutional neural networks, can detect the images and provide their
descriptions in the form of tags. For example, a picture of a fox jumping over the fence is better explained
appropriately using RNNs.

A White Dog Jumping into the water

Limitations of RNN

RNN is supposed to carry the information in time. However, it is quite challenging to propagate all
this information when the time step is too long. When a network has too many deep layers, it becomes
untrainable. This problem is called: vanishing gradient problem.

If we remember, the neural network updates the weight use of the gradient descent algorithm. The
gradient grows smaller when the network progress down to lower layers.

The gradient stays constant, meaning there is no space for improvement. The model learns from a
change in its gradient; this change affects the network’s output. If the difference in the gradient is too small
(i.e., the weight change a little), the system can’t learn anything and so the output. Therefore, a system
facing a vanishing gradient problem cannot converge towards the right solution.

The recurrent neural will perform the following

The recurrent network first performs the conversion of independent activations into dependent
ones. It also assigns the same weight and bias to all the layers, which reduces the complexity of RNN of
parameters. And it provides a standard platform for memorization of the previous outputs by providing
previous output as an input to the next layer.
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These three layers having the same weights
and bias, combine into a single recurrent unit.

Input

Output

For calculating the current state-

     ht = f(ht-1, Xt)

Where   ht = current state

   Ht-1 = previous state

     Xt = input state

To apply the activation function tanh, we
have-

     ht = tanh (Whhht-1+ WxhXt)

Where:

  Whh= weight of recurrent neuron and,

  Wxh= weight of the input neuron

The formula for calculating output:

    Yt = Whyht

Training through RNN

 The network takes a single time-step of the
input.

 We can calculate the current state through
the current input and the previous state.

 Now, the current state through ht-1 for the
next state.

 There is n number of steps, and in the end,
all the information can be joined.

 After completion of all the steps, the final step
is for calculating the output.

 At last, we compute the error by calculating
the difference between actual output and the
predicted output.

 The error is backpropagated to the network
to adjust the weights and produce a better
outcome.

Working of RNN in TensorFlow

Recurrent Neural Networks have vast applica-
tions in image classification and video recognition,
machine translation, and music composition.

Consider an image classification use-case
where we have trained the neural network to classify
images of some animals.

So, let’s feed an image of a cat or a dog; the
network provides an output with the corresponding
label to the picture of a cat or a dog.

See the below diagram

Here, the first output being a cat will not
influence the previous output, which is a dog. This
means that output at a time ‘t’ is autonomous of
output at the time ‘t-1?.

Consider the scenario where we will require
the use of the last obtained output:

The concept is the same as reading a book.
With every page we move forward into, we need
the understanding of previous pages to make
complete sense of the information in most of
the cases.

With the help of the feed-forward network,
the new output at the time ‘t+1? has no relation
with outputs at either time t, t-1, t-2.

So, the feed-forward network cannot be used
when predicting a word in a sentence as it will have
no absolute relation with the previous set of words.
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But, with the help of Recurrent Neural Net-works, this challenge can be overcome.

See the following diagram

In the above diagram, we have specific inputs at-1? which is fed into the network. These inputs will
lead to parallel outputs at time ‘t-1’ as well.

In the next timestamp, information from the previous input’t-1? is provided along with input at’t?
to provide the output at ‘t eventually.’

This process repeats itself, to ensure that the latest inputs are aware and can use the information
from the previous timestamp is obtained.

The recurrent network is a type of artificial neural network which is designed to recognize patterns
in sequences of data. Like, text, genomes, handwriting, the spoken word, numerical times series data
from sensors, stock markets, and government agencies.

4.5.1 A Recurrent Layer in Keras

Q8. Write about recurrent layer in Keras

Ans: (Imp.)

Recurrent Layers

RNN:

keras.engine.base
_layer.wrapped_fn()  

The RNN layer act as a base class for the recurrent layers.

Arguments

 cell : It can be defined as an instance of RNN cell, which is a class that constitutes:

 A call: (input_at_t, states_at_t) method that returns (output_at_t, states_at_t_plus_1). It may
optionally take a constant argument, which is explained below more briefly in the section “Note
on passing external constants”.

 A state_size: attribute can be simply defined as a single integer (state integer) or a list/tuple of
integers (one size per state). In case of a single integer, it acts as a size of the recurrent state that is
mandatory to be similar to the size of the output cell.

 An output_size: attribute, which can be referred to as a single integer or a TensorShape that
epitomizes the shape of output. In case of a backward-compatible reason when the attribute is
unavailable for the cell, there may be a chance that the value may get inferred by its initial element
on the state_size.
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 Also, there may be a possibility where
the cell is a list of RNN cell instances; then, in
that case, the cell gets stacked one after
another in the RNN, leading to an efficient
implemen-tation of the stacked RNN.

 return_sequences: It is a Boolean that
depicts the last output to be returned either
in the output sequence or the full sequence.

 return_states: It is also Boolean that depicts
for the last state if it should be returned in
addition to the output.

 go_backwards: It is Boolean, which is by
default False. In case if it is set to True, then it
backwardly processes the sequence of input
and reverts back with the reversed sequence.

 stateful: It is Boolean, which is by default
False. If stateful is set to True, then for each
sample in the batch at the ith index, the last
state will be utilized as the initial state for the
sample of the ith index in the following batch.

 unroll: It is Boolean (False by default). If in
case it is true, then either it will unroll the
network, or it will utilize a symbolic loop. The
RNN can speed up on unrolling even if it is
memory-intensive as it is much more suitable
for shorter sequences.

 input_dim: It is an integer that depicts the
dimensionality of the input. The input_shape
argument will be utilized when this layer will
be used as an initial layer in the model.

 input_length: It describes the length of the
input sequences, which is specified when it is
constant. It is used when we first want to
connect it to the Flatten and then to the
Dense layers upstream as it helps to compute
the output shape of the dense layer. If the
recurrent layer is not the initial layer in the
model, then you will have to specify the length
of the input at the level of the first layer
via input_shape

Input shape

It is a 3D tensor of shape (batch_size, times-
teps, input_dim).

Output shape

 If the return_state: a list of tensors, then
the first tensor will be the output and the
remaining will be the last states, each of shape
(batch_size, units) like for example; For RNN
and GRU, the number of state of tensors is 1
and for LSTM is 2.

 If the return_sequence: 3D, then the shape
of a tensor will be (batch_size, timesteps,
units), else if it is a 2D, then the shape will
be (batch_size, units).

Masking

Masking is supported by this layer to input
the data with several numbers of timesteps. The
Embedding layer is utilized with the mask_zero
parameter, which is set to True, for introducing
masks to the data.

Note on using statefulness in RNNs

If you set the RNN layer as ‘stateful’, then it
means states that are computed in a single batch
for the samples are used again as initial states for
the next batch samples. It means that one-to-one
mapping is done in between the samples in distinct
consecutive batches.

For enabling statefulness, you need to specify
stateful=True inside the constructor layer followed
by specifying a fixed batch size for the model, which
is done by passing if sequential model: batch_
input_shape=(…) to the initial (first) layer in the
model, else for any functional model consisting 1
or more Input layers: batch_shape=(…) to all the
first layers in the model. The expected shape of
inputs includes the batch size to be a tuple of integers,
for example (32, 10, 100) and specify shuffle =
False while calling fit().

Also, you need to call .reset_states() either
on a specified layer or on the entire model, if you
are willing to reset the states of your model.

Note on specifying the initial states of RNNs

The initial state of RNN layers can be
symbolically specified by calling them with
initial_state keyword argument, such that its value
must be a tensor or list of tensors depicting the initial
states of the RNN layer.
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The initial state of RNN layers can be numeri-
cally specified by calling reset_states with states
keyword argument, such that its value must either
be a numpy array or a list of arrays depicting the
initial states of the RNN layers.

Note on passing external constants to RNNs

The external constants can be pass on the
cell by utilizing the constants keyword argument
of RNN.__call__ and RNN.call method for which it
necessitates the cell.call method to accept the same
keyword arguments constants. These constants are
utilized for conditioning the cell transformation on
additional static inputs (that does not change over
time).

4.5.2 Understanding the LSTM and GRU
layers

Q9. Explain in detail about LSTM layers?

Ans : (Imp.)

LSTM

Keras LSTM stands for the Long short-term
memory layer, which Hochreiter created in 1997.
This layer uses available constraints and runtime
hardware to gain the most optimized performance
where we can choose the various implementation
that is pure tensorflow or cuDNN based.

keras.layers.LSTM(units, activation =’tanh’,
recurrent_activation= ‘sigmoid’, use_bias= True,
kernel_initializer=’ glorot_uniform’, recurrent_
initializer=’ orthogonal’, bias_initializer=
‘zeros’, unit_forget_bias=Tr ue, kernel_regularizer
=None, recurrent_regularizer=None, bias_
regularizer= None, activity_regularizer=
None, kernel_constraint= None, recurrent_
constraint = None, bias_constraint= None, dropout
=0.0, recurrent_dropout=0.0, implementation =
2,  return_sequences = False, return_state =
False, go_backwards = False, stateful =
False, unroll = False)  

Arguments

 Units: It refers to a positive integer that
represents the output space dimensionality.

 Activation: It can be defined as an activation
function to be used, which is a hyperbolic

tangent (tanh) by default. If None is
passed then it means nothing has been
applied (i.e. “linear” activation a(x) = x).

 recurrent_activation: It is an activation
function that is utilized for the recurrent step
and is by default, hard sigmoid (hard
_sigmoid). If None is passed then it means
nothing has been applied (i.e. “linear”
activation a(x) = x).

 use_bias: It refers to Boolean that depicts
for the layer whether to use a bias vector or
not.

 kernel_initializer: It refers to an initializer
for the kernel weights matrix that is utilized
to linearly transform the inputs.

 recurrent_initializer: It refers to an
initializer for the recurrent_kernel weights
matrix that is supposed to be used while
linearly transforming the recurrent states.

 bias_initializer: It indicates an initializer for
bias vector.

 unit_forget_bias: It indicates a Boolean,
and if set to True, 1 will be added to the bias
of the forget gate at the initialization. Also, it
will enforce the bias_initializer=”zeros”.

 kernel_regularizer: It refers to a regularizer
function, which is being applied to
the kernel weights matrix.

 recurrent_regularizer: It refers to a
regularizer function that is applied to
the recurrent_kernel weight matrix.

 bias_regularizer: It refers to the regularizer
function, which is being implemented on the
bias vector.

 activity_regularizer: It refers to the
regularizer function that is applied to the
activation (output of the layer).

 kernel_constraint: It refers to a constraint
function executed on the kernel

 bias_constraint: It refers to a constraint
function, which is being applied to the bias
vector.

 recurrent_constraint: It is that constraint
function that is applied to the recurrent
_kernel weights matrix.
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 dropout: It is a float in between 0, and 1that
depicts the total number of the fraction of
units to be dropped to linearly transform the
input.

 recurrent_dropout: It is a float in between
0, and 1that depicts the total number of the
fraction of units to be dropped to linearly
transform the recurrent state.

 implementation: It is an implementation
mode, which is either 1 or 2. In mode 1,
operations will be structure as a large number
of smaller dot products and additions,
whereas in mode 2, it will batch them as a
few large operations. These modes will
showcase different performance profiles over
distinct hardware and applications.

 return_sequences: It refers to a Boolean
that depicts for the last output to be returned
either in the output sequence or the full
sequence.

 return_states: It refers to also Boolean that
depicts for the last state if it should be
returned in addition to the output.

 go_backwards: It can be defined as a
Boolean, which is by default False. In case, if
it is true, then it backwardly processes the
input sequence and reverts back the reversed
sequence.

 stateful: It can be understood as Boolean,
which is by default False. If it is True, then for
each sample in the batch at the ith index, the
last state will be utilized as the initial state for
the sample of the ith index in the following
batch.

 unroll: It indicates to a Boolean (False by
default). If in case it is true, then either it will
unroll the network, or it will utilize a symbolic
loop. The RNN can speed up on unrolling
even if it is memory-intensive as it is much
more suitable for shorter sequences.

4.5.2.1 GRU

Q10. Write a short note on GRU (Gated Recur-
rent Unit) with suitable illustrations.

Ans : (Imp.)

GRU

Introduction to KerasGRU

Keras GRU abbreviation is gated recurrence
unit which was introduced in 2014. It is very simpler
and very similar to the LSTM. It is nothing but the
LSTM without using an output gate. They are
performing similarly to the LSTM for most of the
tasks, but it will perform better on multiple tasks by
using a smaller dataset and using data that was less
frequently used in the keras network.

Key Takeaways

 The keras GRU is known as a gated recurrent
unit or it is an RNN architecture that was
similar to the units of LSTM.

 It will comprise the update gate and reset gate
instead of using an input. The reset gate will
combine new input from memory.

Keras GRU

By using keras and TensorFlow we are
building the neural network which was very easy to
build. We can easily build the neural network by
using libraries of keras and TensorFlow. Basically,
GRU is an improved version of the RNN model. It
is more efficient than the RNN model which was
very simple. It is an improved version of the RNN
model. This model is very useful and efficient
compared to the RNN model.

The model contains two gates first is reset and
the second is updated. We can also replace the
simple RNN layer with the bidirectional gru layer.
The GRU model will comprise the reset gate and
update the gate instead of an input. It will forget
the gate of the LTSM. The reset gate will determine
how we are combining the new input by using
previous memory and the output gate will define
how much memory we are keeping around.

Keras GRU Layers

As per the available constraint and hardware,
the GRU layer is choosing different implementations
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for maximizing the performance. If the gru is available and all the arguments of the layer are meeting the
requirement of the cuDNN kernel. This layer will use the cuDNN implementation. The below example
shows how kerasgru uses the layer as follows.

Code

tf.keras.layers.GRU(

units,

activation,

return_state= False,

go_backwards= False,

stateful = False,

unroll = False,

time_major= False,

reset_after= True,

recurrent_activation=”sigmoid”,

use_bias= True,

kernel_initializer=”glorot_uniform”,

recurrent_initializer=”orthogonal”,

bias_initializer=”zeros”,

bias_constraint= None,

dropout =0.0,

recurrent_dropout=0.0,

return_sequences= False,

)

Output:

>>>

>>> tf.keras.layers.GRU(
. . . units,

. . . activation,

. . . return_state = False,

. . . go_backwards - False,

. . . stateful = False,

. . . unroll = False,

. . . time_major = False,

. . . reset_after = True,

. . . recurrent_activation = “sigmoid”,

. . . usebias = True,

. . . kernel_initializer = “glorot_uniform”
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. . . recurrent_initializer = “orthogonal”,

. . . bias_initlalizer = “zeros”,

. . . bias_constraint = None,

. . . dropout_0.0,

. . . recurrent_dropout = 0.0,

. . . return_sequences = False,

. . . )
Basically, there are two variants available for GRU implementation. Default is based on the v3 and

it contains the reset gate which was applied to the matrix multiplication. The other is based on the original
and it contains the order reserved.

Code:

ip=tf.random.normal([22,12,6])

lay =tf.keras.layers.GRU(6)

op =lay(ip)

print(op.shape)

Output

The below variant of gru layer is compatible with the GPU only. So it will contain separate biases.

Code

lay =tf.keras.layers.GRU(4,return_sequences= True,return_state= True)

whole_sequence_output,final_state=lay(ip)

print(whole_sequence_output.shape)

print(final_state.shape)

Output

>>>
>>>
>>>
>>> lay = tf.keras.layers.GRU (4, return_sequences = True, return_state = True)
>>> whole_sequence_output, final_state = lay (ip)
>>> print(whole_sequence_output.shape)
(22, 12, 4)
>>> print (final_state.shape)
(22, 4)
>>>
>>>
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Keras GRU contains the below arguments which we need to define while implementing the gru
layer.

 activation

 units

 recurrent_activation

 use_bias

 kernel_initializer

 recurrent_initializer

 bias_regularizer

 kernel_regularizer

 recurrent_regularizer

 go_backwards

 stateful

 bias_initializer

 activity_regularizer

 kernel_constraint

 recurrent_constraint

 bias_constraint

 dropout

 recurrent_dropout

 return_sequences

 return_state

 time_major

 reset_after

The kerasgru layer also contains the call arguments i.e. mask, input training, and initial state. We can
use all these arguments at the time of defining it.

Keras GRU Methods

Given below are the methods mentioned:

1. get_dropout_mask_for_cell

This method will get mask dropout from the cells RNN input. This method is creating mask based
context into the cached mask. If suppose a new mask is generated it will update the cache in the cell.
This method will contain count, input, and training arguments. The below example shows
get_dropout_mask_for_cell method.

Code:

importtensorflow.compat.v2 astf

from kerasimport backend
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classgru:

def get_dropout_mask_for_cell(self, inputs, training, count=1):

ifself.dropout==0:

return None

Output:

>>>
>>>
>>> import tensorflow.compat.v2 as tf
>>> from tensorflow.tools.docs import doc_controls
>>> from keras import backend
>>> class gru:
. . . def get_dropout_mask_for_cell (self, inputs, training, count-1);

2. get_recurrent_dropout_mask_for_cell

This method will get the recurrent mask dropout from the RNN cell. It will create mask based
context which was existing in the cached mask. This method will contain count, input, and training
arguments. Below example shows get_recurrent _dropout _mask_for_cell method.

Code:

importtensorflow.compat.v2 astf

from kerasimport backend

classgru:

def get_recurrent_dropout_mask_for_cell(self, inputs, training, count=1):

Output:

>>>
>>>
>>> import tensorflow.compat.v2 as tf
>>> from keras import backend
>>> class gru:
. . . def get_recurrent_dropout_mask_for_cell (self, inputs, training, count=1);

3. reset_dropout_mask

This method is used in resetting the dropout mask. This method is important in the RNN layer for
invoking the call method so we can clear the cached method by calling the call method. The below
example shows get reset_dropout_mask method.

Code:

importtensorflow.compat.v2 astf

from kerasimport backend

classgru:

def reset_dropout_mask(self):
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Output:

>>>
>>>
>>> import tensorflow.compat.v2 as tf
>>> from keras import backend
>>> class gru:
. . . def reset_dropout_mask (self):

4. reset_recurrent_dropout_mask

This method is used in resetting the recurrent dropout mask. This method is important in the RNN
layer for invoking the call method so we can clear the cached mask method. The below example
shows get reset_recurrent_dropout_mask method.

Code:

importtensorflow.compat.v2 astf
from kerasimport backend
classgru:
def reset_recurrent_dropout_mask(self):
Output:
>>>
>>>
>>> import tensorflow.compat.v2 as tf
>>> from keras import backend
>>> class gru:
. . . def reset_recurrent_dropout_mask (self):

5. reset_states

This method is used to reset the recorded states from the RNN layer. We can use the RNN layer
which was constructed from stateful arguments. Numpy array contains the initial state value. The
below example shows reset_states method.

Code:
importtensorflow.compat.v2 astf
from kerasimport backend
classgru:
def reset_states(states = None):
Output:

>>>
>>>
>>> import tensorflow.compat.v2 as tf
>>> from keras import backend
>>> class gru:
. . . def reset_states (states = None):
. . .
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Keras GRU Network

The GRU unit doesn’t need to use a memory unit for controlling the flow of information unit as
LSTM. It will make use of hidden states without any control. GRU contains parameters for training the
faster and generalizing the large data. The gru network is very similar to the LSTM except it will contain
two gates update and reset gate. The reset gate will determine how we can combine the new input with
the previous memory. The below example shows how kerasgru works as follows. In the below example,
we are creating the model.

Code

mod =keras.Sequential()
mod.add(layers.GRU(64,input_shape=(32,32)))
mod.add(layers.BatchNormalization())
mod.add(layers.Dense(15))
print(mod.summary())
Output
>>>
>>> import transforflowas tf
>>> from tensorflow import keras
>>> from trensorflow.keras import layers
>>>
>>> mod = keras.sequential( )
>>> mod.add(layers.GRU(64. Input_Shape = (32.  32)))
>>> mod.add(layers.BatchNormalization())
>>> mod.add(layers.Dense(15))
>>> print(mod.summary())

Layer  (type) Output Shape Parma #

gru_2  (GRU) (None, 64) 18816
batch_normalization (BatchN (None, 64) 256
ormaliztion)
dense (Dense) (None, 15) 975
Total params : 20,047
Trainable paramas : 19,919
Non-trainable params : 128

None
>>>

Model: “sequential”
In the below example, we are using the fit method to define the kerasgru network model.
Code
model.fit(
x_train,y_train, …
)
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Output

>>>
>>>
>>> model.fit(
. . . X_trai, y_train, validation_data = (x_validate, y_validate), batch_size=64, epochs = 18
. . .  )
Now we are testing the kerasgru network model. We are using for loop for the same.

Code

foriinrange(10):

result =tf.argmax()

Output

>>>
>>>
>>>
>>> for i in range(10):
. . . reslult = tf.argmax(model.predict(tf.expand_dims(x_test[i], 0)), axis = 1)
. . .

Examples of Keras GRU

Given below are the examples mentioned:

Example #1

In the below example, we are using the layer.

Code

importtensorflowastf

from tensorflowimportkeras

ip=tf.random.normal([42,22,12])

lay =tf.keras.layers.GRU(24)

op =lay(ip)

print(op.shape)

Output

>>>
>>>
>>> import tensorflow as tf
>>> from tensorflow import keras
>>> ip = tf.random.normal ([42, 22, 12])
>>> lay = tf.keras.layers.GRU (24)
>>> OP = lay(ip)
>>> print (OP.shape)
(42, 24)
>>>
>>>
>>>
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Example #2
In the below example we are importing the keras module.
Code
importtensorflowastf
from tensorflowimportkeras
lay =tf.keras.layers.GRU()
whole_sequence_output,final_state=lay(ip)
print(whole_sequence_output.shape)
print(final_state.shape)
Output

>>>
>>>
>>> import tensorflow as tf
>>> from tensorflow import keras
>>> lay = tf.keras.layers.GRU (4, return_sequences = True, return_state = True)
>>> whole_sequence_output, final_state = lay (ip)
>>> print(whole_sequence_output.shape)
(42, 22, 4)
>>> print (final_state.shape)
(42, 4)
>>>
>>>
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Short Question and Answers

1. Write short note on Keras?

Ans :
Keras is a high-level, deep learning API developed by Google for implementing neural networks. It

is written in Python and is used to make the implementation of neural networks easy. It also supports
multiple backend neural network computation.                         

Keras is relatively easy to learn and work with because it provides a python frontend with a high
level of abstraction while having the option of multiple back-ends for computation purposes. This makes
Keras slower than other deep learning frameworks, but extremely beginner-friendly. 

Keras allows you to switch between different back ends. The frameworks supported by Keras are:

 TensorFlow

 Theano

 PlaidML

 MXNet

 CNTK (Microsoft Cognitive Toolkit)

Out of these five frameworks, TensorFlow has adopted Keras as its official high-level API. Keras is
embedded in TensorFlow and can be used to perform deep learning fast as it provides inbuilt modules for
all neural network computations. At the same time, computation involving tensors, computation graphs,
sessionsetc. can be custom made using the TensorFlow Core API, which gives you total flexibility and
control over your application and lets you implement your ideas in a relatively short time.

Fig.: Keras Backend

2. Write short note on Keras features and benefits?

Ans :
Features

Keras leverages various optimization techniques to make high level neural network API easier and
more performant. It supports the following features “

 Consistent, simple and extensible API.

 Minimal structure - easy to achieve the result without any frills.

 It supports multiple platforms and backends.

 It is user friendly framework which runs on both CPU and GPU.

 Highly scalability of computation.
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Benefits

Keras is highly powerful and dynamic framework and comes up with the following advantages

 Larger community support.

 Easy to test.

 Keras neural networks are written in Python which makes things simpler.

 Keras supports both convolution and recurrent networks.

 Deep learning models are discrete components, so that, you can combine into many ways.

3. Building Model of a Keras:

Ans :
The below diagram shows the basic steps involved in building a model in Keras:

Fig. : Building a Model

(i) Define a network: In this step, you define the different layers in our model and the connections
between them. Keras has two main types of models: Sequential and Functional models. You
choose which type of model you want and then define the dataflow between them.

(ii) Compile a network: To compile code means to convert it in a form suitable for the machine
to understand. In Keras, the model.compile() method performs this function. To compile the
model, we define the loss function which calculates the losses in our model, the optimizer
which reduces the loss, and the metrics which is used to find the accuracy of our model.

(iii) Fit the network: Using this, we fit our model to our data after compiling. This is used to train
the model on our data.

(iv) Evaluate the network: After fitting our model, we need to evaluate the error in our model.

(v) Make Predictions: We use model.predict() to make predictions using our model on new
data.

4. Discuss about Applications of Keras

Ans :
 Keras is used for creating deep models which can be productized on smartphones.

 Keras is also used for distributed training of deep learning models.

 Keras is used by companies such as Netflix, Yelp, Uber, etc.

 Keras is also extensively used in deep learning competitions to create and deploy working
models, which are fast in a short amount of time.

5. What are the Features of TensorFlow?

Ans :
TensorFlow has an interactive multiplatform programming interface which is scalable and reliable

compared to other deep learning libraries which are available.
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These features of TensorFlow will tell us about
the popularity of TensorFlow.

(i) Responsive Construct: We can visualize
each part of the graph, which is not an option
while using Numpy or SciKit. To develop a
deep learning application, firstly, there are two
or three components that are required to
create a deep learning application and need
a programming language.

(ii) Flexible: It is one of the essential TensorFlow
Features according to its operability. It has
modularity and parts of it which we want to
make standalone.

(iii) Easily Trainable: It is easily trainable on CPU
and for GPU in distributed computing.

(iv) Parallel Neural Network Training:
TensorFlow offers to the pipeline in the sense
that we can train multiple neural networks
and various GPUs, which makes the models
very efficient on large-scale systems.

(v) Large Community: Google has developed
it, and there already is a large team of
software engineers who work on stability
improvements continuously.

(vi) Open Source: The best thing about the
machine learning library is that it is open
source so anyone can use it as much as they
have internet connectivity. So, people can
manipulate the library and come up with a
fantastic variety of useful products. And it has
become another DIY community which has
a massive forum for people getting started
with it and those who find it hard to use it.

6. Write short note on CNTK?

Ans :
Microsoft Cognitive Toolkit (CNTK), formerly

known as Computational Network Toolkit, is a free,
easy-to-use, open-source, commercial-grade toolkit
that enables us to train deep learning algorithms to
learn like the human brain. It enables us to create
some popular deep learning systems like feed-
forward neural network time series prediction
systems and Convolutional neural network (CNN)
image classifiers.

CNTK allows the user to easily realize and
combine popular model types such as feed-forward
DNNs, convolutional neural networks (CNNs) and
recurrent neural networks (RNNs/LSTMs).

For optimal performance, its framework
functions are written in C++. Although we can call
its function using C++, but the most commonly
used approach for the same is to use a Python
program.

Microsoft Research developed CNTK, a deep
learning framework that builds a neural network
as a series of computational steps via a direct graph.
CNTK supports interfaces such as Python and C++
and is used for handwriting, speech recognition, and
facial recognition.

7. What are the features of CNTK?

Ans :
Following are some of the features and

capabilities offered in the latest version of Microsoft
CNTK:
Built-in Components
 CNTK has highly optimised built-in

components that can handle multi-
dimensional dense or sparse data from
Python, C++ or BrainScript.

 We can implement CNN, FNN, RNN, Batch
Normalisation and Sequence-to-Sequence
with attention.

 It provides us the functionality to add new
user-defined core-components on the GPU
from Python.

 It also provides automatic hyperparameter
tuning.

 We can implement Reinforcement learning,
Generative Adversarial Networks (GANs),
Supervised as well as Unsupervised learning.

 For massive datasets, CNTK has built-in
optimised readers.

Usage of resources efficiently
 CNTK provides us parallelism with high

accuracy on multiple GPUs/machines via 1-
bit SGD.

 To fit the largest models in GPU memory, it
provides memory sharing and other built-in
methods.
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8. Explain in detail about Recurrent neural networks (RNN’s)?

Ans :
A recurrent neural network (RNN) is a kind of artificial neural network mainly used in speech

recognition and natural language processing (NLP). RNN is used in deep learning and in the development
of models that imitate the activity of neurons in the human brain.

Recurrent Networks are designed to recognize patterns in sequences of data, such as text, genomes,
handwriting, the spoken word, and numerical time series data emanating from sensors, stock markets,
and government agencies.

A recurrent neural network looks similar to a traditional neural network except that a memory-state
is added to the neurons. The computation is to include a simple memory.

The recurrent neural network is a type of deep learning-oriented algorithm, which follows a sequential
approach. In neural networks, we always assume that each input and output is dependent on all other
layers. These types of neural networks are called recurrent because they sequentially perform mathematical
computations.

9. What are the Applications of RNN?

Ans :
Following are the application of RNN:

(i) Machine Translation: We make use of Recurrent Neural Networks in the translation engines to
translate the text from one to another language. They do this with the combination of other models
like LSTM (Long short-term memory).

(ii) Speech Recognition: Recurrent Neural Networks has replaced the traditional speech recognition
models that made use of Hidden Markov Models. These Recurrent Neural Networks, along with
LSTMs, are better poised at classifying speeches and converting them into text without loss of
context.

(iii) Sentiment Analysis: We make use of sentiment analysis to positivity, negativity, or the neutrality
of the sentence. Therefore, RNNs are most adept at handling data sequentially to find sentiments of
the sentence.

(iv) Automatic Image Tagger: RNNs, in conjunction with convolutional neural networks, can detect
the images and provide their descriptions in the form of tags. For example, a picture of a fox
jumping over the fence is better explained appropriately using RNNs.
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10. Differentiate between TensorFlow and Keras?

Ans :

C++, CUDA, PythonPythonWritten In

Fast, high-performanceSlow, low performanceSpeed

Second most popularMost popularPopularity

YesYesDoes It Have 
Trained Models?

Difficult to conduct debugging
Simple network, so debugging is not 
often needed

Debugging

Large datasets, high performanceSmaller datasetsDatasets

Not easy to useSimple, concise, readableArchitecture

High and LowHighAPI Level

TensorFlowKeras

C++, CUDA, PythonPythonWritten In

Fast, high-performanceSlow, low performanceSpeed

Second most popularMost popularPopularity

YesYesDoes It Have 
Trained Models?

Difficult to conduct debugging
Simple network, so debugging is not 
often needed

Debugging

Large datasets, high performanceSmaller datasetsDatasets

Not easy to useSimple, concise, readableArchitecture

High and LowHighAPI Level

TensorFlowKeras
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Choose the Correct Answer

1.  is a high level API built on TensorFlow.. [ b ]

(a) PyBrain (b) Keras

(c) PyTorch (d) Theano

2. Is keras a library? [ a ]

(a) Yes (b) No

(c) Can be yes or no (d) Can not say

3. Who invented keras? [ d ]

(a) Michael Berthold (b) Adam Paszke

(c) Sam Gross (d) François Chollet

4.  is a regularization technique for neural network models proposed by Srivastava, it is a
technique where randomly selected neurons are ignored during training. [ c ]

(a) Callout (b) Digout

(c) Dropout (d) Knimeout

5. What is true about Keras? [ d ]

(a) Keras is an API designed for human beings, not machines.

(b) Keras follows best practices for reducing cognitive load

(c) It provides clear and actionable feedback upon user error

(d) All of the above

6. What are advanced activation functions in keras? [ c ]

(a) LeakyReLU (b) PReLU

(c) Both A and B (d) None of them

7. Which of the following are correct initializers in keras? [ d ]

(a) keras.initializers.Initializer() (b) keras.initializers.Zeros()

(c) keras.initializers.Ones() (d) All of the above

8. A  requires shape of the input (input_shape) to understand the structure of the input
data. [ a ]

(a) Keras layer (b) Keras Module

(c) Keras Model (d) Keras Time

9. Which of the following returns all the layers of the model as list? [ b ]

(a) model.inputs (b) model.layers

(c) model.outputs (d) model.get_weights

10. Keras is a . [ b ]

(a) Data science library (b) Neural network library

(c) Data testing library (d) None of them
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Fill in the blanks

1. Keras is written in .

2. Keras is a .

3. Keras developed by .

4. Keras support  and  neural networks

5. How many backend engines does Keras consist is .

6. TensorFlow is a product of .

7. TensorFlow helps us to perform . and .

8. Which kind of library Theano is .

9. tf.keras.backend.set_floatx(value) will return .

10. What is the return value of the epsilon function is .

ANSWERS

1. Python

2. Neural network library

3. François Chollet

4. Convolutional, recurrent

5. Three

6. Google

7. Data automation, Model tracking

8. Mathematical operation

9. Returns the default float type, as a string

10. It returns the fuzz factor
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One Mark Answers

1. Who is the Creator of Keras?

Ans :
François Chollet, He is currently working as an AI Researcher at Google.

2. List out layers in keras?

Ans :
 Core Layers

 Convolutional Layers

 Pooling Layers

 Locally-connected Layers

 Recurrent Layers

 Embedding Layers

 Merge Layers

 Advanced Activations Layers

 Normalization Layers

 Noise layers

3. What is the significance of using the Fourier transform in Deep Learning tasks?

Ans :
The Fourier transform function efficiently analyzes, maintains, and manages large datasets. You can

use it to generate real-time array data that is helpful for processing multiple signals.

4. What are some of the uses of Autoencoders in Deep Learning?

Ans:
 Autoencoders are used to convert black and white images into colored images.

 Autoencoder helps to extract features and hidden patterns in the data.

 It is also used to reduce the dimensionality of data.

 It can also be used to remove noises from images.

5. What is Data Augmentation in Deep Learning?

Ans :
Data Augmentation is the process of creating new data by enhancing the size and quality of training

datasets to ensure better models can be built using them. There are different techniques to augment data
such as numerical data augmentation, image augmentation, GAN-based augmentation, and text
augmentation.
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6. Explain two ways to deal with the vanishing gradient problem in a deep neural network.

Ans :
 Use the ReLU activation function instead of the sigmoid function

 Initialize neural networks using Xavier initialization that works with tanh activation.

7. What APIs does Keras have?

Ans :
Keras has two main APIs: the Sequential API and the Functional API. The Sequential API is used for

creating simple models, while the Functional API is used for creating more complex models.

8. How many ways can we initialize weights in Keras?

Ans :
There are three ways that we can initialize weights in Keras:

(i) Initializing all weights to the same value

(ii) Initializing weights randomly

(iii) Initializing weights using a pre-trained model

9. Why is there a need for keras?

Ans :
Keras is an API designed for human beings, not machines. Keras follows best practices for reducing

cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for
common use cases, and it provides clear and actionable feedback upon user error.

10. What is keras dropout?

Ans :
Dropout is a regularization technique for neural network models proposed by Srivastava, it is a

technique where randomly selected neurons are ignored during training.
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PART - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions. All questions carry equal marks.

ANSWERS

1. Differences between ML and DL. (Unit-I, SQA-3)

2. Applications of Deep Learning. (Unit-I, SQA-4)

3. Write short note on Deep Learning Algorithms. (Unit-I, SQA-6)

4. Write about Broadcasting in Tensors with suitable examples. (Unit-II, SQA-1)

5. Explain about Reshaping a Tensor with suitable examples. (Unit-II, SQA-3)

6. What are the main differences between AI, Machine Learning, and

Deep Learning? (Unit-II, SQA-6)

7. Discuss about Gradient-based optimization. (Unit-III, SQA-1)

8. What Do You Understand by Backpropagation? (Unit-III, SQA-3)

9. What is a Neural Network? (Unit-III, SQA-4)

10. Write short note on Keras. (Unit-IV, SQA-1)

11. Building Model of a Keras. (Unit-IV, SQA-3)

12. Discuss about Applications of Keras. (Unit-IV, SQA-4)

PART - B  (4 × 12 = 48 Marks)

Note : Answer all the questions. All questions carry equal marks.

13. (a) What is Deep Learning? Explain in detail about Deep Learning. (Unit-I, Q.No.1)

OR

(b) What are the Real-World Examples of Tensors? Give with examples. (Unit-I, Q.No.11)

14. (a) Define Tensor? What Does Element-Wise Operations with examples. (Unit-II, Q.No.1)

OR

(b) Discuss about Geometric interpretation of tensor operations. (Unit-II, Q.No.5)
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15. (a) Discuss about Gradient-based optimization. (Unit-III, Q.No.1)

OR

(b) Write a note on Anatomy of a neural network. (Unit-III, Q.No.5)

16. (a) Write short note on Keras features and benefits. (Unit-IV, Q.No.1)

OR

(b) What are the Features of TensorFlow? (Unit-IV, Q.No.4)
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PART - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions. All questions carry equal marks.

ANSWERS

1. What do you understand by Boltzmann Machine? (Unit-I, SQA-10)

2. What is the use of Deep learning in today’s age, and how is it adding data

scientists? (Unit-I, SQA-9)

3. Discuss about Data representations for neural networks. (Unit-I, SQA-8)

4. Discuss about Tensor dot with suitable examples. (Unit-II, SQA-2)

5. Write about Broadcasting in Tensors with suitable examples. (Unit-II, SQA-1)

6. Discuss about geometric interpretation of deep learning. (Unit-II, SQA-4)

7. What is gradient descent? What are the steps for using a gradient descent

algorithm? (Unit-III, SQA-5)

8. Write a note on Anatomy of a neural network in Deep Learning. (Unit-III, SQA-6)

9. What are Layers in a Neural Network? (Unit-III, SQA-7)

10. Differentiate between TensorFlow and Keras. (Unit-IV, SQA-10)

11. What are the Features of TensorFlow? (Unit-IV, SQA-5)

12. Discuss about Applications of Keras. (Unit-IV, SQA-4)

PART - B  (4 × 12 = 48 Marks)

Note : Answer all the questions. All questions carry equal marks.

13. (a) Explain the history (Evolution) of Deep Learning. (Unit-I, Q.No.2)

OR

(b) Write short note and examples on :

i) Image Data (Unit-I, Q.No.14)

ii) Video Data (Unit-I, Q.No.15)
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14. (a) Write about Broadcasting in Tensors with suitable examples. (Unit-II, Q.No.2)

OR

(b) Explain about Reshaping a Tensor with suitable examples. (Unit-II, Q.No.4)

15. (a) Write a note on Derivative of a tensor operation. (Unit-III, Q.No.2)

OR

(b) Explain about Stochastic Gradient Descent with suitable examples. (Unit-III, Q.No.3)

16. (a) Explain about keras applications and its building model. (Unit-IV, Q.No.2)

OR

(b) Discuss in detail about CNTK. (Unit-IV, Q.No.6)
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PART - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions. All questions carry equal marks.

ANSWERS

1. Write a note on Deep Learning. (Unit-I, SQA-1)

2. Explain about Simple neural network architecture. (Unit-I, SQA-7)

3. Write short note on Deep Learning Algorithms. (Unit-I, SQA-6)

4. How can hyperparameters be trained in neural networks? (Unit-II, SQA-7)

5. What are some of the examples of supervised learning and unsupervised learning

algorithms in Deep Learning? (Unit-II, SQA-8)

6. Explain about Reshaping a Tensor with suitable examples. (Unit-II, SQA-3)

7. What is a Neural Network? (Unit-III, SQA-4)

8. List out neural network models. (Unit-III, SQA-8)

9. What is loss function? and list out them. (Unit-III, SQA-9)

10. What are the Features of TensorFlow? (Unit-IV, SQA-5)

11. Write short note on CNTK. (Unit-IV, SQA-6)

12. Explain about Recurrent neural networks (RNN’s). (Unit-IV, SQA-8)

PART - B  (4 × 12 = 48 Marks)

Note : Answer all the questions. All questions carry equal marks.

13. (a) What is Neural Networks? Explain in detail about Neural Networks

and it types. (Unit-I, Q.No.6)

OR

(b) Explain and List out Deep Learning Algorithms. (Unit-I, Q.No.5)

14. (a) Discuss about Tensor dot with suitable examples. (Unit-II, Q.No.3)

OR

(b) Explain about Reshaping a Tensor with suitable examples. (Unit-II, Q.No.4)
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15. (a) Explain in detail about The Backpropagation algorithm. (Unit-III, Q.No.4)

OR

(b) Discuss about Layers in Neural networks. (Unit-III, Q.No.6)

16. (a) What is Theano library in deep learning with suitable examples? (Unit-IV, Q.No.5)

OR

(b) Explain in detail about Recurrent neural networks (RNN’s). and

working of RNN’s. (Unit-IV, Q.No.7)


