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UNIT - I

1. Explain in detail about scalar and vector fields.

Ans : (Dec.-19, June-18(KU), Dec.-19(KU)

Refer Unit-I, Q.No. 14

2. Define gradient of a scalar field funct-ion. Explain the physical significance for the
gradient of a scalar field.

Ans : (Dec.-19(MGU), Dec.-18, Dec.-18(KU), Dec.-17(MGU), Dec.-16)

Refer Unit-I, Q.No. 15

3. What is called divergence? Derive expression for divergence of a vector field.

Ans : (Aug.-21, June-18(KU), June-17, Dec.-19(KU), Dec.-16)

Refer Unit-I, Q.No. 16

4. What are line, surface and volume integrals? Explain.

Ans : (Dec.-19, Dec.-18, Dec.-(MGU), Dec.-18(KU)

Refer Unit-I, Q.No. 19

5. State and prove Gauss’s divergence theorem.

Ans : (Aug.-21, Dec.-19, June-19, June-18(KU, June-17)

Refer Unit-I, Q.No. 21

UNIT - II

1. Derive the equation of motion of variable mass system.

Ans : (June-21, Dec.-19, Dec.-16)

Refer Unit-II, Q.No. 6

2. Describe the principle of motion of a rocket as system of variable mass.

Ans : (Dec.-17)

Refer Unit-II, Q.No. 7

3. What are the various stages of the rocket(multistage rocket) in motion?

Ans : (Dec.-19, Dec.-18(MGU)

Refer Unit-II, Q.No. 8

Frequently Asked & Important Questions
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4. Explain in detail about collisions in two and three dimensions.

Ans : (Dec.-19(MGU), June-19, May-18, Dec.-17, June-17)

Refer Unit-II, Q.No. 15

5. Explain the terms impact parameter and scattering cross-section.

Ans : (Dec-19(KU), Dec.-19(MGU), Dec.-18, June-18)

Refer Unit-II, Q.No. 16

6. Explain about Rutherford’s cross-section. Obtain an expression for the Rutherford’s
scattering cross-section and also number of scattered particles per unit area.

Ans : (Dec.-18, June-18)

Refer Unit-II, Q.No. 18

7. Define rigid body. Derive an expression for the angular moments of a rigid body and
hence define inertia tensor.

Ans : (Dec.-19(KU), June-18(KU, Dec.-16)

Refer Unit-II, Q.No. 29

8. Define principal moments of inertia, products of inertia, and principal axes of a rigid
body. Why are they important?

Ans : (Dec.-16)

Refer Unit-II, Q.No. 30

9. Derive Euler’s equations of rotation of a rigid body about a fixed point.

Ans : (Dec.-19(MGU), Dec.-18, June-18, Dec.-17(MGU)

Refer Unit-II, Q.No. 32

UNIT - III

1. Define gravitational field and gravitational potential. Obtain  Expression for gravitational
potential due to a point mass.

Ans : (June-19, Dec.-16)

Refer Unit-III, Q.No. 7

2. State and obtain kepler’s law motion planetary.

Ans : (June-17, Dec.-16)

Refer Unit-III, Q.No. 10

3. Define postulates of special theory of relativity.

Ans : (June-19)

Refer Unit-III, Q.No. 11
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4.  Describe Michelson Morely experiment. What is its significance?

Ans : (June-19, Dec.-18, June-18, Dec.-16)

Refer Unit-III, Q.No. 15

5. Explain and write Lorentz Transforma-tions.

Ans : (Dec.-16)

Refer Unit-III, Q.No. 16

6. Explain the concept of Time Dilation.

Ans : (Dec.-17)

Refer Unit-III, Q.No. 17

7. What is length contraction? Obtain expression for length contraction.

Ans : (June-19, (Dec.-17)

Refer Unit-III, Q.No. 18

UNIT - IV

1.  Define simple harmonic motion? Write the Equation for simple harmonic oscillator?

Ans : (Imp.)

Refer Unit-IV, Q.No. 2

2. Write Physical Characteristics of simple  Harmonic motion?

Ans : (Imp.)

Refer Unit-IV, Q.No. 4

3. Define torsion pendulum? How do you determine modulus of rigidity using torsion
pendulum?

Ans : (July-21)

Refer Unit-IV, Q.No. 5

4. Discuss the combination of two mutually  simple harmonic vibrations of same
frequencies with neat diagrams?

Ans : (Imp.)

Refer Unit-IV, Q.No. 7
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5. What are damped osccillations? Solve the differential Equation of damped harmonic
oscillator ?

Ans : (July-21)

Refer Unit-IV, Q.No. 9

6. Discuss Energy consideration in damped harmonic motion?

Ans : (July-21)

Refer Unit-IV, Q.No. 10

7. Explain forced vibrations?Obtain differential  equation of forced oscillator & its solution?

Ans : (Imp.)

Refer Unit-IV, Q.No.12

8. Explain the terms amplitude  resonance & velocity resonance?

Ans : (Imp.)

Refer Unit-IV, Q.No. 13
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UNIT
I

VECTOR ANALYSIS :

Scalar and vector fields, gradient of a scalar field and its physical significance.
Divergence and curl of a vector field and related problems. Vector integration,
line, surface and volume integrals. Stokes, Gauss and Greens theorems-simple
applications.

1.1 VECTOR ANALYSIS

Q1. Explain the representation and notation
of vectors.

Ans :
Definitions

There are two kinds of physical quantities.
The first are quantitities which have only magnitude
and which are not related to any fixed direction in
space. Such quantities are called scalars. Examples
of scalar are mass, length, density, volume etc. If
the unit of measurement is fixed, then a real number
is sufficient enough to represent a scalar quantity.

Second kind of quantities are those which
have magnitude as well as direction. Such quantities
are called vectors. Examples of vectors are velocity,
displacement, force, acceleration etc.

Representation of Vectors

We shall represent vectors by directed line
segments. Let O be any arbitrary fixed point in the
space and P be any other point. Then the straight
line OP has magnitude as well as direction. Therefore
the directed line segment OP is capable of
representing a vector quantity. We denote this vector

by 

OP  or simply by OP and read it as vector OP..

The length OP represents the magnitude of the
vector OP. The point O is called the origin or the
initial point of the vector OP while P is called the
terminal point.

P

O

Notation of Vectors

Vectors ate generally represented by
clarendon letters (letters in bold faced type) and
their magnitudes by the corresponding italic letters.

Thus we may denote 

OP  by a and its magnitude

by a. Since it is very inconvenient to show the
difference between italic and bold faced letters in
writing, we may use the Greek letters  etc.
to represent vectors and the letters a, b, c, d etc. to
represent their magnitudes. However, it is more

convenient to represent vectors by a, b, c,d  etc.

and their magnitudes by a, b, c, d etc.

Modulus of a vector. The non-negative
number which is the measure of the magnitude of
a vector is called is modulus or module. Thus the
length of the line segment OP is the modulus of

OP.  The modulus  a  of a vector a is sometimes
written as +|a|.

Q2. What are different kinds of vectors ?

Ans :
(i) Zero or Null Vector

The zero or the null vector is a vector whose
mudulus is zero, and the whose direction is
indeterminate. The null vector is represented
by the symbol 0 (printed in bold faced typed).
In the case of the null vector the initial and

terminal points coincide. Thus 

AA,  


OO,  etc.

are null vectors.

(ii) Unit Vector

A vector whose, modulus is unity, is called a
unit vector. The unit vector in the direction
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of vector  a  is represented by â . It is read as
‘a Cap’.

(iii) Like and Unlike Vectors

Vectors having the same direction are called
like vectors and those having   opposite
directions are called unlike vectors.

(iv) Collinear or Parallel Vector

Vectors having the same line of action or
having the lines of action parallel to one
another are called collinear or parallel vectors.

(v) Equal Vectors

Two vectors are said to be equal if, and only
if, they are parallel, have the sense of
direction, and the same are called like vectors
and those having opposite directions are
called unlike vectors.

(vi) Collinear or Parallel Vectors

Vectors having the same line of action or
having the lines of action parallel to one
another are called collinear or parallel vectors.

(vii) Equal Vectors

Two vectors are said to be equal if, and only
if, they are parallel, have the same sense of
direction, and the same magnitude. The
starting points of the vectors are immaterial.
It is the direction of magnitude which are
important. To denote the equality of vectors,
the usual equality sign(=) is used. Thus, if  a
and  b  are equal vectors, we write a = b.

If the lines AB, CD and EFGH are parallel
and AB = CD=EF=GH, then we have

  
   
AB CD EF GH.

B

A D

C
g

H

G
F

The equality of two vectors, are discussed
above, does not mean that the quantities
represented by  a  and  b  are equivalent in
all respects. For example, if two equal forces
(in the same directions) are applied at
different points of a rigid body, they may have
different medchanical effects.

(viii) Negative Vector

The vector which has the same modulus as
the vector  a  but opposite direction, is called
the negative of  a.

The negative of  a  is represented by –a. Thus

if 

AB a,  then  


BA a.

(ix) Co-initial Vectors

The vectors which have the same initial point
are called co-initial vectors.

(x) Coplanar Vectors

The vectors which are parallel to the same
plane or which lie in the same plane are said
to be coplanar.

(xi) Localised and free vectors

A vector which is drawn parallel to a  given
vector through a specified point in space is
called as localised vector. There can be one
and only one such vector. But if the origin of
vectors is not specified, the vectors are said
to be free vectors.

Q3. What are the properties of vector
addition?

Ans :
Let  a  and  b  be any two given vectors. If

three points O, A, B are taken such that

OA a


, AB b


, then the vector OB


 (= say c) is
called the vector sum or the resultant of the given
vectors  a  and  b  and we write

OB OA AB 
  

  or   c = a+b

It should be noted that the terminal point of
vector  a  is the initial point of vector  b  and the
resultant vector  c  is the join of the initial point of  a
to the terminal point of b.

B

AO a

b
a+b

The above law of addition is known as the
triangle law of addition.
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Q4. Explain the Properties of Vector
Addition.

Ans :

(i) Vector addition is commutative i.e.,
a+b=b+a, where  a  and  b  are any two
vectors

Proof :

Let  a  and  b  be two vectors represented by

OA


and AB


Then by definition of addition of two vectors,
we have

OB


= OA AB
 

= a+b ...(1)

Complete the parallelogram  OABC

We have by definition of equality of two
vectors,

OC AB b 
 

and CB OA a 
 

C B

AO

a

a

b b

Now by definition of addition of two vectors,
we have

OB OC CB 
  

 = b+a

 From (1) and (2), we have

a+b = b+a,  which proves the statement.

(ii) Vector addition is associative  i.e,

(a+b)+c = a+(b+c),

where  a, b, c  are any three vectors

Proof :

Let OA a,


, AB b


 and  BC c


Complete the quadrilateral

OABC

We have, by definition of addition of two
vectors,

OC OA AC 
  

But by definition of addition of two vectors,
we have

C

O A

B

a
b

c

(a+b)

AC AB BC 
  

= b + c

 OC OA
 

+ (AB BC)
 

= a+(b+c)
       ...(1)

Again we have by definition of addition of
two vectors,

OC OB BC 
  

But OB


= OA


+ AB


 [by definition of
addition of two vectors]

= a+b.

   OC


 = (a+b)+c        ...(2)

Hence from (1) and (2), we have

a+(b+c) = (a+b+c, which proves the
statement.

Note :

From the above property we notice that the
sum of three vectors a, b and c is independent of
the order in which they are added. Hence this sum
can be written as a+b+c without any doubt.

(iii) For every vector  a, a+0=a, where  0  is
the zero vector

Proof :

Let  OA a


  and  AA 0


We have by definition of addition of two
vectors

OA OA AA a 0   
  

 a =  a+0, which proves the statement
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(iv) To every vector  a, there corresponds the
vector  –a  such that  a+(–a)=0, where
0  is the zero vector

Proof :

Let OA a


;  then  AO a 


We have by definition of addition of two
vectors

OA AO OO 
  

  a+(–a) = 0.  Hence the result

Substraction of vectors

If  a, b,  be any two given vectors, then we
write a+(–b)= a – b, and call the operation
subtraction. Thus to subtract the vector  b  from  a,
reverse the direction of  b  and  add it to  a.

Q5. Explain about multiplication of a vector
by a scalar.

Ans :

Let  m  be a scalar and  a  be a vector, then
ma  is defined as a vector whose modulus is  |m|
times the modulus of the vector  a  and whose
direction is that of the vector  a  or opposite to the
vector  a  according as  m  is positive or negative.

1. From the above definition it is obvious that if
two non-zero  a  and  b are collinear, there
exists a non-zero scalar  m  such that  a =
mb.

Conversely if there exists a relation of the type
a = mb between two non-zero vectors  a
and  b, then the vectors  a  and  b must be
collinear.

2. If  a  denotes the modulus of a non-zero vec-
tor  a,  then the unit vector â in the direction
of  a  is given by

a
â

a
  or  

a
â

a


Since  a 0 , therefore |a| 0  and so 
1
a

is a positive real number. Now by the definition of

multiplication of a vector by a scalar, 
1

a
a  is a vector

whose direction is that of the vector  a. Again, by
the same definition, modulus of the

vector
1 1

a
a a

  times the modulus of a =

1
a 1

a
 . Thus 

1
a

a  is unit vector in the direction

of the vector a.
Hence in order to obtain a unit vector in the

direction of any given non-zero vector we are to
divide that vector by its modulus i.e, we are to
multiply that vector by the reciprocal of its modulus.

Q6. State the Properties of Multiplication of
Vector by Scalars.

Ans :
(i) The scalar multiple of a vector satisfies

associative law, i.e.,

m (na) = (mn) a=n (ma).

(ii) The scalar multiple of a vector satisfies the
distributive laws;

i.e., (m+n) a = ma+na       ...(1)

and m (a+b) = ma + mb,       ...(2)

where  m  and  n  are scalars and  a  and  b
are vectors.

To prove (1) let m+n be positive. Then the
L.H.S. of (1) represents a vector whose modulus is
(m+n) times the modulus of a and which points in
the same direction as a. The R.H.S. of (1) represents
the sum of two vectors of magnitudes |m|a| and
|n| |a| pointing in the directions of  a  or opposite
to a. The sum of these two vectors is a vector of
magnitude (m+n) |a| and pointing in the direction
of a.

If (m+n) is negative, then both the sides of
(i) represent a vector of magnitude I (m + n)|a|
and pointing in the direction opposite to a.

Hence the result (1) follows.

Now we shall prove the result (2).

Let us first take  m  positive.
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Let  OP a


 and  PQ b


O

Q

PPP

Q

Q

Then, by definition of addition of two vectors,
we have

OQ a b 


Produce  OP  to  P' such that  mOP = OP'.

Through  P'  draw a line parallel to PQ in the

sense of PQ


 to meet OQ produced in Q'. Then

since the triangles  OPQ  and  OP'Q' are similar, we
have

OP
OP


= 

OQ
OQ


= 

P Q
PQ
 

= m  [  OP' = mOP]

 OQ' = mOQ  and thus

OQ


 = m OQ m(a b) 


and P Q mPQ    and thus

P Q m PQ mb   
 

Now in triangle  OP'Q', we have by definition
of addition of two vectors

OQ OP P Q .    
  

 m(a+b) = ma+mb.

In the above case we have taken  m  to be
positive and >1. If  m  is positive and less than 1,
then  P'Q'  will be nearer to  O than PQ as shown in
the figure by dotted line P''Q''.

     It case  m  is negative, we take points  P' and  Q'
on PO and QO produced such that

OP mOP 
 

 and  OQ


= mOQ.


Now the result can be proved as above.

m(a+b)
mb

P

Q

ma
a+b

a P

b

Q

O

Q7. Describe scalar product of two vectors.

Ans :
The scalar product or dot product of two

vectors A and B is defined as the product of the
magnitudes of two vectors (i.e., A and B) and the
cosine of the angle between them.

A · B = A B  cos 

where    is the angle between two vectors

 cos  = 
A·B
AB

The product is a scalar quantity. The product
may be positive or negative depending upon the
angle . The product is negative when    is between
/2 and 3/2.

    A · B = A B cos  = A (B cos ) = (A cos ) B

Hence, the scalar product of two vectors will
be equal to the product of the length of one vector
and the length of the component of the second
vector along the first vector direction.

Properties

1. The scalar product is commutative, i.e.,

A·B = B·A

2. The scalar product follows the distributive law,
i.e.,

A·(B+C) = A·B+A·C

3. The scalar product of a vector by itself is equal
to the square of the scalar magnitude, i.e.,

A·A = A2

4. The scalar product of two vectors vanishes
when the vectors are at right angles, i.e.,

A·B = A B cos 90o = 0

5. When the vectors are parallel, the scalar
product of two vectors is equal to the product
of their scalar magnitudes

A·B = A B cos  = A B



B.Sc. I YEAR  I SEMESTER

6
Rahul Publications

Rahul Publications

6. The scalar product of unit orthogonal vectors,
i, j and k have the following relations.

i · i = j · j = k · k = 1

i · j = j · k = k · i = 0

7. The scalar product of two vectors is equal to
the sum of the products of their
corresponding  x, y and z components.

If A = i Ax + j A, k A

and B - i Bs +  j By + k B2

then A · B = Ax Bx + Ay By + Az Bz

Examples :

1. if A = B, then A · B = A · A = A2 = |A|2

Thus the vector dotted with itself gives the
square of its magnitude. This provides a
method of finding the magnitude of a vector.

2. If  A · B = 0  but  A  0  and  B  0.

then the two vectors i.e., A and B are
perpendicular to each other or the two vectors
are orthogonal.

Example :

Deduce the angle made by the vector  4i – 3j
+ 5k  with  Z axis.

Sol :
By the definition of dot product, the angle  

between two vectors is given by

cos  =
A·B
AB

Let the vector B be along the Z axis. Then B
= B k

Now,

A · B  = (4i – 3j + 5k) · (Bk)

    =  4 B i · k – 3 B j · k + 5 B k · k

    =  0 – 0 + 5 B = 5 B

     A  =  |A| = 2 2 2
x y z(A A A ) 

    =  2 2 2[(14) ( 3) (5) ] 5 2   

   =  [(0)2 + (0)2 + (B)2] = B

 cos  = 
5B

(5 2)(B)  =
1

2

or   =  cos–1
1

2

 
 
 

 =  45o.

Q8. Discuss about vector product of two
vectors.

Ans :
The vector product or cross product of two

vectors is defined as a vector having magnitude
equal to the product of the magnitude of two vectors
and the sine of the angle between them. The
direction being perpendicular to the plane
containing the two vectors.

If A and B are two vectors then their vector
product is A × B which can be expressed as

A × B = AB sin 0 n̂

where A and B are magnitudes of A and B, 0
is the angle between them and n is a unit vector
perpendicular to the plane of A and B. The direction
of A × B is given by the right hand rule.

According to this rule, if a right handed screw
is imagined to be placed at the common tail point
of the two vectors [whose vector product is to be
obtained fig. (a) and is given a rotation from first
vector A to second vector B. then the advancement
of the screw gives the direction of resultant vector R
= A × B. It is obvious from fig. (b), that if the screw
is rotated from B to A. then the direction of
advancement of the screw will be just opposite.
Therefore



UNIT - I MECHANICS AND OSCILLATIONS

7
Rahul Publications

Rahul Publications

B × A = vector having magnitude of R but
opposite in direction

= – R.

Thus A × B  B × A

Q9.   Explain the Properties of Vector Product.

Ans :
i) The vector product is not commutative

A × B   B × A

ii) The vector product is distributive

A × (B + C) = A × B + A × C

iii) The vector product of two parallel vectors is
a null vector i.e.

A × B = A B  sin n̂  = A B  sin 0 n̂ 0

iv) The vector product of a vector by itself is a
null vector (zero)

A × A = A, A sin n̂ = A A sin 0 n̂ 0

v) The magnitude of the vector product of two
vectors mutually at right angle is equal to the
product of the magnitude of the vectors.

A×B = A B sin n̂ = A B sin 90° n̂ =A B n̂

vi) The vector product of unit orthogonal vectors,
i, j and k have the following relations :

i × i = j × j = k × k = 0

i × j = –j × i = k,

j × v k = –k × j = i,

and k × i = –i × k = j

vii) The vector product of two vectors in terms
of their  x, y  and  z  components can be
expressed in the form of determinant.

If A = iA,  + j Ay + kAZ

and B = i Bx + j By  + k Bz

then A × B = x y z

x y z

i j k
A A A

B B B

viii) The vector product of two vectors A and B
gives the area of the parallelogram formed
by the vectors. Let two vectors A and B are
inclined at an angle  as shown in figure.
OPMQ is the parallelogram formed by the
vectors A and B. QN is the perpendicular
drawn from Q on OP. The area of
parallelogram

=  OP × perpendicular distance QN

=  OP × OQ sin 6

=  AB sin 0

=  A × B.

Q10. Define scalar triple product of two
vectors.

Ans :
The scalar product of a vector A with the

vector product of two other vector B and C is
termed as scalar triple product. This is written as

A·(B×C)

The scalar product  A·(B×C) gives a scalar.
This gives the volume of the parallelopiped formed
by vectors  A, B and C.

Expressing vectors in their components forms,
we have

A = i Ax + j Ay + k Az

B = i Bx + j By + k Bz

and C = i Cx + j Cy + k C2

 A·(B×C) = Ax (By Cz – Bz Cy)

               + Ay (Bz Cx – Bx Cz)

               + Az (Bx Cy – By Cx)

In compact form, the above expression can
be expressed as

A·(B×C) = 

x y z

x y z

x y z

A A A

B B B

C C C

Properties of Scalar Triple Product

1. If the scalar triple product is zero, then the
three vectors are coplanar.
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2. The following cylic relation hold gold in scalar triple product

A·(B×C) = B·(C×A) = C·(A×B)

3. The dot and cross can be interchanged in a scalar triple product

A·(B×C) = (A×B)·C

4. In scalar triple product

A·(B×C) = – A·(C×B)

Q11. Define vector triple product. Write the properties of vector triple product.

Ans :
The vector product of a vector A with the vector produce of two other vector B and C is termed as

vector triple produc t. This is written as

A × (B×C)

By the property of vectors products, A×(B×C) is a vector perpendicular to A and also to (B×C).
Further (B×C) is perpendicular to plane of B and C. Hence A×B(×C) must be in the plane of B and C.

A × (B×C) = x y z

y z z y z x x z x y y x

i j k
A A A

(B C B C ) (B C B C ) (B C B C )  

Properties

i) A×(B×C)   (A×B)×C

The associative law does not apply to vector products.

ii) A×(B×C) = B (A·C) – C (A·B)

iii) A×(B×C) = – (B×C) × A

iv) A×(B×C) + B × (C×A)+C × (A×C) = 0

Q12. Explain the concept of vector area.

Ans :
We notice that, the vector product of two vectors A and B is another vector C and

C = A × B = (AB sin ) n̂

where,  is the angle between A and B and n̂  is the unit vector in a direction perpendicular to the plane
defined by  A and B.

AB Sin  is the magnitude of C and we know that this mag­nitude is equal to the area of the
parallelogram formed with sides as A and B, having an angle 8 between them. The details that can be
inferred from the vector product about the parallelogram are

a) The location of the parallelogram in space.

b) Relative position of one side with respect to the other,  and

c) The area which has got a numerical value equal to the magnitude (length) of the vector C
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Any plane area of magnitude. AB sin , with its positive unit normal n can be visualised to represent
the vector product A x B. This idea leads us to the concept of vector area.

Any plane area such as S shown in the Fig. above can be considered to have got the Vector
Properties, i.e., both magnitude and direction.

The magnitude is equal to just the area and the direction is that of the normal to the plane of the
area. The sign of the vector area is by convention, defined with respect to the order in which the area is
traced out when viewed from an external point as O. If the area is traced in the anticlockwise direction, the
positive direction of vector area will be along the unit normal n. The direction of tracing the area S and the
unit normal n are related to by the Right Handed Screw Rule.

The equation S = S n defines the vector area S
Vector areas can also be resolved into components and added together, just like all the other vector

quantities.
Vector areas are quite useful in physics. In enunciating the Gauss’s Law in electro statics or relating

the macroscopic current i to the microscopic current density J, the vector area concept is quite useful.
Q13. What is vector differentiation? Discuss the rules of vector differentiation.

Ans :
Any change in a vector involves both the change in the magnitude of the vector and also the

change in its direction. Hence, a vector derivative is basically different from the ordinary derivative of a
(physical) scalar quantity.

Let us consider a particle moving along the curved path AB. Let teh particle be at a point  P1 on the
curve at time  t1,  and be at  P2  at time t2. With respect to the origin O, the position vector of P1 is

1 1OP r(t )


 and to P2 is 2 2OP r(t )


The displacement of the particle in the time interval

t = t2 – t1  will be r


= r(t2) – r(t1)
This follows from the law of addition of vectors and nothing that as t is very small, r is also quite

small. 
r
t




 gives the rate of change of  r. The direction of this ratio will be along  P1, P2, that is, along the

direction of r.
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When t  is very very small, that is t  0, r will be represented by dr and t  by dt and

r dr
t dt





and is called the vector derivative of  r.  We know that dr/dt is nothing else but, the velocity  v  of

the particle.

Hence v =
dr
dt

We should note that, dr is a vector increment and hence involves both a change in magnitude, as
well as change in its direction.

If  r  is expressed in its rectangular components as

r = xi + yj + zk

then the velocity  
dt dx dy dz

v i j k
dt dt dt dt

    ...(1)

and acceleration  
2 2 2 2

2 2 2 2
dv d r d x d y d z

a i j k
dt dt dt dt dt

     
              

     
...(2)

Rules

1. Differentitation of sum of two vectors

If  C = A + B, then

dC dA dB
dt dt dt

 

i.e., 
d
dt

(A+B) = 
dA dB
dt dt



Vector differentiation is distributive

2. Differentiation of the scalar product of two vectors

If C = A · B, then

dC dA
dt dt

   
 

· B+A·
dB
dt

 
 
 

i.e.,  
d
dt

(A·B) = 
dA
dt

 
 
 

·B+A·
dB
dt

 
 
 

Vector differentiation is commutative

Let us consider a special case where A is a constant vector that is, the magnitudeof A is a constant
and B = A

Then 
d
dt

(A·A) =
dA
dt

 
 
 

·A+A·
dA
dt

 
 
 
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2d dA
(A ) 2 ·A

dt dt
   
 

But, as A is a constant, 2d
(A ) 0

dt


Hence,  2
dA
dt

 
 
 

 · A = 0  or  
dA
dt

 
 
 

· A = 0

That is, 
dA
dt

 
 
 

 is perpendicular to A.

A is a constant defines the position of a point on the surface of a sphere of a radius a.

dA/dt gives the velocity and it is perpendicular to A. That is, when a particle moves on the surface of
a sphere, its velocity will always be normal to the radius vector. This is obvious in circular motion.

3. Differentiation of vector product of two vectors

If  C = A × B, then

dC dA
dt dt

   
 

× B + A ×
dB
dt

 
 
 

(i.e.,)  
d
dt

(A × B) = 
dA
dt

 
 
 

× B + A ×
dB
dt

 
 
 

4. Differentiation of scalar tirple product

If  E = A · (B × C)  (E  is a scalar)

  
dE
dt

=
dA
dt

 
 
 

·(B×C)+A ·
dB

C
dt

  
 

+A·
dC

B
dt

  
 

i.e.,   
d
dt

 [A·(B×C)]=
dA
dt

 
 
 

·(B×C)+A·
dB

C
dt

  
 

+A·
dC

B
dt

  
 

5. Differentiation of vector triple product

If  D = A × (B×C) then

d
dt

 [A×(B×C)] =
dA
dt

 
 
 

×(B×C)+A×
dB

C
dt

  
 

+A×
dC

B
dt

  
 

In general, vector differentiation follows the same rules as of ordinary differential calculus.

But, here we should be cautious enough to note that a vector product foes not follow the commutative
law.
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1.2  SCALAR AND VECTOR FIELDS

Q14. Explain in detail about scalar and vector
fields.

(OR)

What are scalar and vector fileds?

Ans :    (Dec.-19, June-18(KU), Dec.-19(KU)

We know that a physical quantity can be
expressed as a continuous function of the position
of a point in the region of space. For example when
a rod is heated at one end, then there is a variation
of temperature along the length of the rod. The
physical quantity temperature at any point (x, y, z)
can be expressed by a continuous function T (x, y,
z). Such a function is termed as a point function or
function of position. The region specifying that
physical quantity is labelled as its field. Depending
upon the nature of physical quantity the field may
be scalar or a vector.

I) Scalar Field

If a scalar physical quantity is assigned to each
point in space then we have a scalar field in that
region of space. The scalar field in three dimensions
can be represented by a scalar point function (x,
y, z).

Example

The electronic potential due to a single positive
charge  q  columns depends on the position of the
point from the charge. Then V0(x0, y0, z0) and V(x1,
y1, z1) are the scalar point functions at (x0, y0, z0)
and (x1, y1, z1). Now the region is a scalar field.

In a scalar field, there are a number of surfaces
are known as level surfaces.

The level surfaces, equipotential (gravitational
or electrostatic) etc.

For example, if we imagine sphere of different
radii taking a point charge  q  as the centre, then we
get equipotential level surfaces. These are spherical
in nature and at any level surface the scalar point
function V (x, y, z) has a constant value. If the level
surface are parallel to each other, then the scalar
field is called as stationary scalar field.

The concept of a scalar field can easily be
understood with the help of the following examples:

i) Consider a solid block of material whose faces
are maintained at different temperatures.
Now the temperature of the body will vary
from point to point, i.e., temperature will be
a function of position coordinates x, y, z in
rectangular coordinate system. Hence,
temperature is a scalar field.

ii) The density at any point inside a body
occupying given region is a scalar field. The
electrical potential is differeent at different
points. Hence, electric potential is scalar field.

II) Vector Field

When a vector physical quantity is expressed
from point to point in the region of space by a
continuous vector function A(x, y, z) then the region
is a vector field. The example of vector field are
gravitiational, magnetic, electric intensity.

The vector point function at any point in the
field is given by a vector having unique value for a
magnitude and direction.

Both magnitude and direction change
continuously from point to point throughout the
field region. Starting from any desired point in the
field and processing throughout infinitesimal
distances from point to point in the direction of field,
we obtain a curved line. So the field can be mapped
out by curved lines known as flux lines or lines of
flow.

The tangent at any point of a line gives the
direction of A at the point. The magnitude of A at
any point of on a flux line is given by the number
of flux line crossing unit area perpendicular to their
direction drawn at any point.

The number of lines passing through unit area
of the surface perpendicular to their direction is
called as magnetic flux. The magnetic flux depends
on the distance of the point from the magnetic pole.
In this way, the magnetic flux at that point. When
the flow lines are parallel to each other, then the
vector field is called as stationary vector field.
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1.2.1 Gradient of a Scalar Field and Physical significance

Q15. Define gradient of a scalar field funct-ion. Explain the physical significance for the
gradient of a scalar field.

(OR)

Explain gradent of a scalarfield.

(OR)

Define gradient of a scalars filed obtain an expression for it.

Ans : (Dec.-19(MGU), Dec.-18, Dec.-18(KU), Dec.-17(MGU), Dec.-16)

In order to consider the gradient of a scalar, let (x, y, z) be a scalar function of position of a scalr
point of coordinates (x, y, z). The partial derivatives of  along the three coordinate axes are

x



, y

  and  

z



The gradient of a scalar function    is defined as

grad  = i
x



+ j y

 + k

z



...(1)

We know that vector differential operator  (del) is defined as

  = i 
x



+j y

 +k

z



   =  i
x



+j y

 +k

z



...(2)

The equation (2) is the same as equation (1). It is obvious from equation (2) that del operator ( )

is a vector operator and when operated with a scalr () converts the scalar into a vector. The vector ( )
is called the gradient of the scalar.

The gradient is a different operator by means of which we can associate a vector field with a scalar
field. For example, the intensity of electric field E, (a vector quantity) is the gradient of potential V (a scalar
quantity) with a negative sign, i.e.,

E = – grad V

The negative sign indicates that the direction of field intensity is opposite to the direction of increasse
of potential.

Let  S(x, y, z) be a scalar point function depending on the three cartesian coordinates in space.
Suppose S / x, S / y     and S/ z   be the partial derivatives along the three perpendicular axes
respectively. Now the gradient of the scalar functioon  S  can be expressed as

grad   S = i
S
x



+j
S
y

 +k

S
z




or grad   S =  S  where   = i
x



+j y

 +k

z


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Physical significance for the gradient of a scalar field

Consider two such surfaces, very close to each other, as shown in fig. (1). These surfaces-are specified
by constant scalar function S and S + dS respectively. Let A and B are two points on these surfaces and
O is a point outside the surfaces. Let r and r + dr be the radius vectors of points A and B with respect to
origin O respectively. The vector drawn from A to B will be dr ( AB = OB – OA = r+dr – r = dr). Let

the normal drawn from the point A of surface S is AC and n̂  is the unit vector along the normal. Now
certainly AC will be minimum distance between the two surfaces. Suppose the angle between AB and AC
is .

Now the magnitude of the rate of increase of S at point A in the direction AB is S/ r.   Similarly, the

rate of increase of S in the direction AC is S/ n.   From ABC,   AC = AB cos  or n = n r  cos 


S
n



 = 
S

r cos


     or  
S
r




= 
S
n



cos 

It is obvious from eq. (1) that S/ r   is maximum when  = 0 because now cos =1. So the

maximum value of S/ r   is S/ n  . In this way the maximum rate of increase of a scalar function S at any
point in a scalar field is given, in magnitude and direction by the vector

S
n̂

n



where n̂  is the unit normal vector at that point. The vector is defined as the gradient of the scalar field S
at that point and is written as

grad  S = 
S

n̂
n



Thus the gradient of a scalar field S is a vector whose magnitude at any point is equal to the
maximum rate of increase of s at that point and whose direction is along the normal to the level surface at
that point. This gives the physical significance of gradient of scalar field.

1.2.2 Divergence of a Vector Field

Q16. What is called divergence? Derive expression for divergence of a vector field.

(OR)

Explain divergence of a vector field and its physical significance.
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(OR)

Show that the dNA 
yx zAA A

x y z

 
 

    where A is a vector filed.

Ans : (Aug.-21, June-18(KU), June-17, Dec.-19(KU), Dec.-16)

The operator   can be involved in the multiplication with a vector. The scalar or dot product of
operator   with a vector A (i.e.,  · A) is called as divergence. The divergence of a vector field at any
point is defined as the amount of flux per unit volume diverging from that point. The divergence is a
scalar.

Let  A  be a vector function differentiable at each point (x, y, z) in a region of space. Now the
divergence of  A  is given by

      · A = i y k
x y z
   
     

· (i Ax + j Ay + k Az)

    = 
yx zAA A

x y z

 
 

  

 div A =  · A = 
yx zAA A

x y z

 
 

  

This is the expression of divergence in cartesian coordinates.

Expression for Divergence of a Vector Field

Consider a small rectangular parallelopiped in vector field as shown in fig. below. Let dx, dy and dz
be the lengths of the sides of parallelopiped parallel to the coordinate X, Y and Z axes respectively.

Let a vector A represents the velocity of a fluid centre C with components Ax, Ay and Az along the
three axes respectively. Let  Ax / x  represents the rate of change of Ax along the X-axis. Similarly Ay/
y and Az / z  will be the rate of change of Ay and Az along Y and Z-axes respectively..

The value of Ax at the centre M of face PQRS

= value of Ax at the centre C + increase in magnitude from C to M

= value of Ax at centre + rate of change × distance
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= Ax + xA dx
x 2





 = Ax + 

1
2

xA
dx

x



Similarly the magnitude at the centre N of face EFGH

= Ax –
1
2

xA
dx

x



The negative sign is taken because N is towards left of C.

We know that the value of the fluid flowing per unit time through a face is equal to the product of
the area of the face and normal component of the vector upon it. This is known as flux through the face.
Hence

Flux entering the face EFGH = x
x

A1
A dx

2 x
 

  
 dy dz

where   dy dz  is the area of face EFGH

and   Flux leaving the face PQRS =
x

x
A1

A dx
2 x
   

dy dz

The excess of flux leaving the parallelopiped over that entering in x-direction is given by

= 
x

x
A1

A dx
2 x
   

dy dz – 
x

x
A1

A dx
2 x
   

dy dz

= xA
x




dx dy dz

Similarly, the next flux leaving the paralleopiped in Y and Z-directions are

yA

y




dx dy dz  and zA

z



dx dy dz

 Total flux leaving or diverging from paralleopiped

= xA
x




dx dy dz +
yA

y



 dx dy dz + zA
z




dx dy dz

= yx zAA A
x y z

  
  

   
dx dy dz

Here dx dy dz is the volume of the elementary parallelopiped. Hence the amount of flux diverging
per unit volume

= 
yx zAA A

x y z

  
  

   

This is defined as divergence of A.

Thus  div A = 
yx zAA A

x y z

 
 

   .
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1.2.3   Curl of a Vector Field

Q17. What is curl of a vector field ? Obtain expression for curl of a vector field.

Ans : (Dec.-19, Dec.-19(MGU), Dec.-18(KU)

Consider two areas ABCD and A' B' C' D' in a uniform electric field which is represented by straight
parallel lines as shown in fig. The area A' B' C' D' is perpendicular to lines of force. So the contribution of
line integrals is zero. For area ABCD, the line integrals along AD and BC are zero while the line integrals
along AB and CD are not zero. This shows that there is a certain orientation of the area for which the line
integral is maximum.

The curl of a vector field is defined as the maximum line integral of the vector per unit area. It is
essentially a vector quantity. The direction is normal to the area.

If A is a vector function differentiate at each point (x, y, z) in a region of a space, then the curl (or
rotation) of A expressed by the cross product of  and A, i.e.,

Curl A = A 

x y z

i j k

x y z
A A A

  
  

Physical Significance of a Curl

The curl is a closed line integral per unit area as the area shrinks to a point. It gives the circulation
per unit area i.e., circulation density of a vector about a point at which the area is going to shrink. Thus
curl of a vector at a point quantifies the circulation of a vector around that point. In general if there is no
rotation, there is no curl while large angular velocities means greater values of curl. The curl also gives the
direction, which is along the axis through a point at which curl is defined.

The magnetic field lines produced by the current carrying conductor are rotating in the form of
concentric circles around the conductor. Thus there exists a curl of magnetic field intensity which we have

defined as  × H . The direction of curl is along the axis about which rotation of a vector field exists and
the proper direction is to be obtained by right handed screw rule. If the direction of rotation of vector field
about a point reverses, the sign of the curl also reverses.

The water velocity in a river which increases linearly towards the surface, the magnetic field lines
due to current carrying conductor, the body rotating about a fixed axis are few examples of a curl.

Thus if curl of a vector field exists then the field is called rotational. For irrotational vector field, the
curl vanishes i.e. curl is zero.

Another physical interpretation of a curl is about a rigid body rotating about a fixed axis with
uniform angular velocity. Thus if v is its linear velocity then its angular velocity () is half the curl of its
linear velocity. The curl v represents the net rotation of a body about the axis.
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Expression for Curl of a Vector Field

Consider a small rectangular area abcd in a vector field along X-Y plane as shown in fig. Let  dx  and
dy  be the sides of the rectangular area parallel to X and Y axes respectively. Further let the value of vector
field at the centre P be A and its components are Ax and Ay along X and Faxes respectively.

Now we shall consider the values of these components at the middle points Q, R, S and T. It should
be remembered that the rate of change of Ax along y-axis can be represented by Ax/ y and similarly the
rate of change of Ay along x-axis can be represented by Ay/ x.

The increase in magnitude of Ax in going from P to R will be

= 
xA

y

 (PR) = 

xA
y




1
dy

2
 
 
 

=
1
2

xA
y


 dy

The value of  Ax  at  R = Vx +
1
2

xA
y


 dy ... Eqn.  (1)

Similarly,

The value of  Ax at T = Ax – 
1
2

xA
y


  dy ... Eqn.  (2)

The value of  Ay at T = Ay +
1
2

yA

x




 dx ... Eqn.  (3)

The value of  Ay at S = Ay –
1
2

yA

x




 dx ... Eqn.  (4)

Now the line integral along the boundary abcd

= ab × (component of the vector along ab) + bc × (component of the vector along be) + cdx
(component of the vector along cd) + da × (component of vector along da).

= 
x

x
A1

A dy
2 y
 

  
dx + 

y
y

A1
A dx

2 x

 
 

 
dy – 

y
x

A1
A

2 y

 
 

 
dx –

y
y

A1
A dx

2 x

 
 

 
dy

The last two line integrals are taken as negative because the components of the vectors are in
opposite directions.

= 
y xA A

x y

 
 

  
dx dy ... Eqn.  (5)
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The line integral per unit area =
y xA A

x y

 
 

  
... Eqn.  (6)

( area of the rectangle is  dx dy)

By definition, eq.(6) represents the magnitude of the component of curl A taken about Z-axis.
Hence, we may write

curlz A = 
y xA A

k
x y

 
 

  
... Eqn.  (7)

where k is unit vector along the Z-axis.

Similarly, the components of curl A about Y and X axes shall be

curly  A = 
x zA A

j
z x

     
... Eqn.  (8)

and curlx  A = 
yz AA

i
y z

 
 

  
... Eqn.  (9)

Adding eqs. (7),(8),(9) we get

curl  A = i 
yz AA

y z

 
 

  
+ j

x zA A
z x

     
+k

y xA A
x y

 
 

  
... Eqn. (10)

In the determinant form eq.(10) can be expressed as

curl  A = 

x y z

i j k

x y z
A A A

  
  

.

Curl in Various Coordinate Systems

As the curl of A  i.e, A   is a cross product it can be expressed in determinant from in various co-
ordinate systems.
1. Cartesian Co-ordinate System

A =

x y z

x y z

a a a

x y z
A A A

  
  

A





   =  
yz AA

y z

 
   

 xa  x zA A
z x

     

y x
y z

A A
a a

x y

 
    
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2. Cylindrical co-ordinate system

A   = 
1
r

 

r z

x z

a ra a

r z
A rA A





  
  

    = 
z AA1

r z
 

   
r z

r
A A

a
z r

      
r

z
(rA ) A1 1

a a
r r r




 
    

3. Spherical co-ordinate system

A = 2
1

r sin
 

r

r

a ra r sin a

r
A rA r sin A



 



  
  



A = 2
1

r sin

A sin A   
   

r
1

a
r

 r (r A )A1
a

sin r



 

    
 + 

r(rA ) A1
a

r r



     

Q18. What are the properties of a curl?

Ans :
The various properties of curl are,

1. The curl of a vector is a vector quantity

2.   × ( A  + B ) =   × A  +   × B

3.   ×   × A  =   ( . A ) –  2 A

4. The divergence of a curl is zero

  * (  × A ) = 0

5. The curl of a scalar makes no sense

  ×  = No sense if  is scalar..

6. The curl of gradient of a vector is zero.

  ×   V = 0

7.   × A  × B  = A  ( * B ) – B  ( * A ) * ( B * ) A – ( A * ) B
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1.3  VECTOR INTEGRATION

1.3.1 Line, Surface and Volume Integrals

Q19. What are line, surface and volume integrals? Explain.

(OR)

Write a short note on vector integration

(OR)

Explain line, surface and volume.

Ans : (Dec.-19, Dec.-18, Dec.-(MGU), Dec.-18(KU)

The integrals which are commonly used are :

1. Line integral

2. Surface integral and

3. Volume integral

1. Line Integral

Integral 
Q

P  A · dI is defined as the line integral of A along the curve PQ.

If A denotes the electric field intensity at any point, then the line integral represents the potential
difference between P and Q.

Q



dt

A

P

R

2. Surface Integral

Consider a simple surface S in a vector field bounded by a curve as shown in fig. Let dS be an
infinitesimal element of the surface. This surface element of area dS can be represented by area
vector dS. If n̂  be a unit positive vector (drawn outward the surface) in the direction of dS, then

dS = n̂  dS

Let A be a vector at middle of the element dS in the direction making an angle  with n̂ . Now the
scalar product
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A · dS = A · n dS = A dS cos 

is called the flux of vector field A across the area element dS. The total flux of the vector field across
the entire surface area S is given by

s  A · dS = 
s  A · n dS = 

s  A cos  dS

This is defined as the surface integral.

3. Volume Integral

The integral evaluated over a three dimensional domain is known as volume integral.

Consider a closed surface in space enclosing a volume V. If A be a vector point function at a point
in a small element of volume dV, then the integral

V
  A dV

is called the volume integral of vector A over the surface.

1.4  STOKE’S THEOREM

Q20. State and prove stoke’s theorem.

Ans : (June-19, June-18, Dec.-16)

Statement

The line integral of a vector field A around a closed curve is equal to the surface integral of the curl
of A taken over the surface S surrounded by the closed curve, i.e.,

C  A · dl = 
S
  curl A · dS = 

S
  (  × A) dS

Proof

Consider a surface S enclosed in a vector field A. The line integral of A around the curve PQR
traced counter - clockwise is

C  A · dl

Let the entire surface be divided into a large numbr of square loops. Suppose n̂  be a unit positive
outward normal upon dS. The vector area of the element is

n̂  dS = dS

So the line integral of A around the boundry of the area dS is

curl A · dS
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This applies to all surface element. Hence the sum of the line integrals of A around the boundaries
of all the area elements is given by

S
 curl A · dS

This is the surface integral of A.

The sum of the line integrals on the boundary line of the curve is given by eq. (2) This is also given
by eq. (1). Hence

C  A · dI = 
S
 curl A · dS = 

S
 (  × A) · dS

This is Stoke’s theorem.

From eq. (3), Stokes theorem gives a method to convert a surface integral into a line integral and
vice versa. When curl A is zero, the line integral of A over the closed path is zero and hence the field is
conservative.

1.5 GAUSS’S THEOREM

Q21. State and prove Gauss’s divergence theorem.

Ans : (Aug.-21, Dec.-19, June-19, June-18(KU, June-17)

Statement :

The surface integral of the normal component of vector A taken over a closed surface S is equal to
the volume integral of the divergence of vector A over the volume V enclosed by the surface S, i.e.,

S
 A · dS = 

V
 div A dV = 

V
 (  · A) dV

Proof :

Let us consider a closed surface S of any arbitrary shape drawn in a vector field A as shown in figure
below.

Let the surface encloses a volume V.

We know that div A represents the amount of flux diverging per unit volume and hence the flux
diverging from the element of volume dV will be div A dV.

So the total flux coming out from the entire volume is given by

V
 div A dV
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Now we consider a small element of area dS on the surface S as shown in fig. Let n̂  represents the
unit vector drawn normal to area dS. It should be remembered that outward drawn normal on a surface
is taken as positive. If the field vector A and outward normal n̂  are at an angle , then the component of
A along n̂  is

A cos  = A · n̂

The flux of A through the surface element dS is given by

(A · n̂ ) dS = A · dS

So the total flux through the entire surface S is given by 
S
 A · dS ... (2)

This must be equal to the total flux diverging from the whole volume V enclosed by the surface S.
Hence from eqs. (1) and (2) we get

S
 A · dS = 

V
 div A dV ... (3)

This is Gauss theorem of divergence and may also be written as

S
 (A · n̂ ) dS = 

V
 (  · A) dV ... (4)

(i) Gauss divergence theorem provides a relation between surface and volume integrals.

(ii) This theorem is applicable for closed surface only.

1.6 GREEN’S THEOREM

Q22. State and explain Green’s Theorem applications.

Ans : (June-17, Dec.-16)

Statement :

If  and  are two scalar point functions such that these functions and their first derivatives are
continuously differentiable, in a region bounded by a closed surface S, then we have

2

V

( . )dV    = 
S

( ).dS ... (1)

and 2 2

V

( )dV      = 
V

( ).ds   ... (2)

These equations are known as first and second form of Green’s theorem.

Proof :

Let us take the following mathematical from Gauss’s divergence theorem

V V

div A dV A.dS 
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Because   will also be a vector quantity,   will be a vector quantity..

Let this is represented by vector A. Thus

A = 

or i Ax + j Ay + k Az =  i j k
x y z

   
     

 From this equation we can see that  Ax = 
x




, Ay =  y

  and Az = 

z



Now div A = 
yx z

AA A
x y z

 
 

  

Substituting the values of Ax, Ay and Az, we get,

div A = 
x x y y z z
                          

 = 
2 2 2

2 2 2. . .
x x y y z zx y z

                
                        

 = 
2 2 2

2 2 2. . . .
x x y y z zx y z

            
              

= 2 .     ..(4)

Substituting the value of div A from equation (4) in equation (3), we get

2

V
S

( . )dV ( ). S         ... (5)

This is known as Green’s first theorem.

Interchanging  and  in equation . (a), we have

2

V S

( . )dV ( ). S         ... (a)

Subtracting equation (5) from equation (a), we get,

2 2

V S

( )dV ( ).dS          ... (b)

This is known as Green’s second theorem.
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PROBLEMS

1. Compute   A × B and B × A,  when A = 10i – 6j  and B = –4i + 3j

Sol :
We know that

A×B  = x y z

x y z

i j k
A A A

B B B
 = 

i j k
10 6 0

4 3 0




   =  k [10 × 3 – (–6)(–4)] = 6 k

Further A × B = – B × A

 B × A = – A × B = – 6 k

2. If A and B are two vectors given by   A = i Ax + j Ay + k Az

B = i Bx + j By + k Bz

show that, A × B = – B × A

Sol :
We know that

A × B = x y z

x y z

i j k
A A A

B B B

    = – x y z

x y z

i j k
B B B

A A A

(  Interchange of rows in determinant produces a negative sign)

    = – B × A.

3. Prove that  |A×B|2 + |A · B|2 = A2B2

Sol :
We know that

|A × B| = A B sin 

and   |A · B| = A B  cos 

 |A×B|2 + |A·B|2 = (A B sin )2 + (A B cos )2

=  A2 B2 [sin2 + cos2 ] = A2 B2
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4. Express the scalar triple product A·(B×C) in terms of the cartiesian components of the
vectors A, B and C.

Sol :
First of all, we express the vectors A and B×C in their cartesian components. Thus

A·(B×C)  =  (i Ax + j Ay + k Az) · x y z

x y z

i j k
B B B

C C C

  = (i Ax + j Ay + k Az) · [i (By Cz – Bz Cy)

+ j (Bz Cx – Bx Cz) + k (Bx Cy – By Cx)]

  = [Ax (By Cz – Bz Cy) + Ay (Bz Cx – Bx Cz)] + Az (Bx Cy – By Cx)

  = 

x y z

x y z

x y z

A A A

B B B

C C C

5. A paraellopiped has edges described by the vectors  i + 2j, 4j and j+3k. Find its volume.

Sol :
Volume of parallelopiped = A · (B×C)

Further, A · (B×C)  =  

x y z

x y z

x y z

A A A

B B B

C C C

Given that, A = i + 2j, i.e.,  Ax = 1, Ay = 2  and  Az = 0

B = 4j  i.e,  Bx = 0, By = 4  and  Bz = 0

C = j + 3k  i.e.,  Cx = 0,  Cy = 1 and Cz = 3

 A · (B×C)  = 

1 2 0
0 4 0
0 1 3

= 12

6. Prove that if the scalar triple product of three vectors vanishes, the vectors are coplanar.

Sol :
A · (B×C) = 0,  i.e.,

Given that,  A · (B×C) = 0,  i.e.,

Volume of parallelopiped = 0

So, the vectors A, B and C must be in the same plane.
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7. If  A = 2i – 3j + k, B = 3i + 4j  and  C = 3i + 6k, deduce the values of :

i) A · (B×C)  and ii) (A×B) · C

Sol :

i) A · (B×C) = 

x y z

x y z

x y z

A A A

B B B

C C C

= 

2 3 1
3 4 0

3 0 6



= 2 (24 – 0) – (–3)(18 – 0)+1 (0 – 12) = 90

ii) We know that

(A×B)·C = A·(B×C)

(A×B)·C = 90

8. Express the scalar triple product A   (B × C) in terms of the cartiesian components of
the vectors A, B and C.

Sol :

A   (B × C) = (i Ax + j Ay + k Az)   x y z

x y z

i j k
 B B B  
C C C

= (i Ax + j Ay + k Az)   [i (By Cz – Bz Cy) + j (Bz Cx – Bx Cz) + k (Bx Cy – By Cx)]

= [Ax (By Cz – Bz Cy) + Ay (Bz Cx – Bx Cz)] + Az (Bx Cy – By Cx)

= 
x y z

x y z

x y z

A A A
 B B B  
C C C

9. A parallelopiped has edges described by the vectors i + 2j, 4j and  j + 3 k. Find its
volume.

Sol :
Volume of parallelopiped = A   (B × C)

Further   A   (B × C) = 
x y z

x y z

x y z

A A A
 B B B  
C C C
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Given that, A = i + 2 j, i.e., Ax = 1, Ay = 2 and Az = 0

B = 4 j   i.e., Bx = 0, By = 4 and Bz = 0

C = j + 3k   i.e., Cx = 0, Cy = 1 and Cz = 3

 A   (B × C) = 

1 2 0
 0 4 0  
0 1 3

 = 12

10. Prove that if the scalar triple product of three vectors vanishes, the vectors are coplanar.

Sol :
A   (B × C) = Volume of parallelopiped formed by them

 Given that,  A   (B × C) = 0,  i.e.,

 Volume of parallelopiped = 0

 So, the vectors A, B and C must be in the same plane.

11. If  A = 4 i – 5 j + 3 k,  B = 2 i – 10 j – 7 k and C = 5 i + 7 j – 4 k, then deduce,

i) A × (B × C)   and   ii)  (A × B) × C)

Sol :
(i) (A   C) = 20 – 35 – 12 = –27

   and (A   B) = 8 + 50 – 21 = 37

    A × (B × C) = (2 i – 10 j – 7 k) × (–27) – (5 i + 7 j – 4 k) × (37)

= (–54 i + 270 j + 189 k) – (185 i + 259 j – 148 k)

= 239 i + 11 j + 337 k

(ii) (A × B) × C) = – C × (A × B)

= [– A (C   B) – B (C   A)]

= B(A   C) – A (B   C)

   (A   C) = (20 – 35 – 12) = –27

   (B   C) = (10 – 70 + 28) = –32

     (A × B) × C) = (2i – 10 j – 7 k) (–27) – (4 i – 5 j + 3 k) (–32)

Solving we get = 74 i + 110 j + 285 k.

12. Find the directional derivatives of a scalar point function f in the direction of coordinate
axes.

Sol :
The grad f at any point (x, y, z) is the vector.

   But grad f = i 
f
x



 + j 
f
y

  + k 

f
z


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The directional derivative of f in the direction of i.

=  grad f . i

= 
f f f

i j k
x y z
   

     
 i = i2 

f
x



= 
f
x



Similarly, the directional derivatives of f in the direction of j and k are 
f
y

 and 

f
z



 respectively..

13. Find the directional derivative of f(x, y, z) = x2yz + 4xz2 at the point (1, –2, 1) in the
direction of the vector 2i – j – 2k.

Sol :
f(x, y, z) = x2yz + 4xz2

The grad f at any point (x, y, z) is the vector and is given by

grad f = i 
f
x



 + j 
f
y

  + k 

f
z



 = i (2xyz + 4z2) + j x2z + k (x2y + 8xz)

At the point (1, –2, –1)

grad f = i (4 + 4) + j (–1) + k (–2 –8)

 = 8i – j – 10k

If a be the unit vector in the direction of the vector  2i – j – 2k, then

a = 
2i j 2k

4 1 4
 
 

 = 
2
3

i – 
1
3

j – 
2
3

k

Hence the required directional derivative is

df
ds

 = grad f  a = (8i – j – 10k) 
2 1 2

i j k
3 3 3

   
 

= 
16
3

 + 
1
3

 + 
20
3

 = 
37
3

As this is + ve, f is increasing in this direction.

14. In what direction from the point (1, 1, –1) is the directional derivative of f = x2 – 2y2 + 4z2 is a
maximum ? Also find the value of this maximum directional derivative.

Sol :
The function f is given by   f = x2 – 2y2 + 4z2
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grad f = i 
f
x



 + j 
f
y

  + k 

f
z



  = i (2x) + j (–4y) + k (8z) = 2xi – 4yj + 8zk

At the point (1, 1, –1)

grad f = 2i – 4j – 8k

The directional derivative of f is maximum in the direction of

grad f = 2i – 4j – 8k

The maximum value of this directional derivative is given by

   |grad f| = |2i – 4j – 8k| = 4 16 64 

= 84  = 2 21

15. If  S = S (x, y, z) = x2 – x2 y + x y2 z2, then find the value of grad S at the point (2, –1, –
3)

Sol :

We know that grad  S =  S  where       i 
x



 + j y

  + k 

z



 grad S = i j k
x y z
   
     

 (x2 – x2 y + x y2 z2)

   = i 
x



 (x2 – x2 y + x y2 z2) + j y

  (x2 – x2 y + x y2 z2) + k 

z



 (x2 – x2 y + x y2 z2)

   = i (2x – 2 x y + y2 z2) + j (–x2 + 2 x y z2) + k (2 z x y2)

Substituting the given values, we get

grad S = i {2 × 2 – 2 × 2 (–1) + (–1)2 (–3)2} + j {–(2)2 + 2 × 2 (–1) (–3)2} + k {(–3) (2) (–1)2}

   = i (17) – j (40) – k (12).

16. If  = 4x3 + 3yz2 – z3, find  2  at (1, –1, –1).

Sol :

2 = 
2 2 2

2 2 2x y z
   

     
 (4x3 + 3y z2 – z3)

 =
2

2x



(4x3 + 3y z2 – z3) +
2

2y

  (4x3 + 3y z2 – z3) +

2

2z



(4x3 + 3y z2 – z3)

 = 
x



3 2 3 (4 x 3y z z )
x
    

 + y



3 2 3 (4 x 3y z z )
y
 

   
+

z



3 2 3 (4 x 3y z z )
z
    
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Now

x



 
3 2 3 (4 x 3y z z )

x
    

 = 
x



 (12x2) = 24 × y

  

3 2 3 (4 x 3y z z )
y
 

   
 = y


  (3z2) = 0

and   
z



 
3 2 3 (4 x 3y z z )

z
    

 = 
z



 (6yz – 2z2) = 6y – 6z

 2   = 24x + 6y – 6z
Substituting the given values, we get

2   = 24 × 1 + 6 (–1) – 6 (–1) = 24 – 6 + 6 = 24
17. If r is the position vector of a point, then evaluate

(1) grad r and    (2) grad (1/r)

Sol :
1. We know that r = i x + j y + k z

      r = (x2 + y2 + z2)1/2

Now grad

r = i j k
x y z
   
     

 (x2 + y2 + z2)1/2 + i 
x



 (x2 + y2 + z2)1/2 + j y

  (x2 + y2 + z2)1/2

                            + k 
z



 (x2 + y2 + z2)1/2

= i 
2 2 2 1/2

1
2x

2
(x y z )



 
 + j 

2 2 2 1/2

1
2y

2
(x y z )



 
 + k 

2 2 2 1/2

1
2z

2
(x y z )



 

= 2 2 2 1/2

ix jy kz
(x y z )

 
  =

r
r

Let r̂  be a unit vector along r, then r = r̂ r  or  r/r = r̂

 grad r = r̂

2. grad 
1
r

 
 
 

= i j k
x y z
   
     

 (x2 + y2 + z2)1/2

= i 
x



 (x2 + y2 + z2)–1/2 + j y

  (x2 + y2 + z2)–1/2 + k̂  

z



 (x2 + y2 + z2)–1/2

  = i 
2 2 2 3/ 2

1
2x

2
(x y z )

 

 
 + j 

2 2 2 3/ 2

1
2y

2
(x y z )

 

 
 + k 

2 2 2 3/ 2

1
2z

2
(x y z )

 

 

  = – 2 2 2 3/ 2

ix jy kz
(x y z )

 
 

 =  – 3

r
r

 =  – 2

r̂
r
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18. If r is the position vector, such that  = log r, find grad .

Sol :

The position vector   r = i x + j y + k z

and r2 = x2 + y2 + z2  or  r = (x2 + y2 + z2)1/2

 log r = log (x2 + y2 + z2)1/2

= 
1
2

 log (x2 + y2 + z2)

Now     grad   =  grad log r =   log r

= 
1
2

   log (x2 + y2 + z2)

= 
1
2

 x



 log (x2 + y2 + z2) i + y


  log (x2 + y2 + z2) j + 2 2 2 log (x y z ) k

z
    

= 
1
2

 2 2 2 2 2 2 2 2 2

2x 2y 2z
i j k

(x y z ) (x y z ) (x y z )
 

        

= 2 2 2

xi yj zk
(x y z )

 
   = 2

r
r

19. If the electric potential at any point due to a charge q is given by V = q/r then show that

the electric intensity E is given by  E = 3

q
r

 r

Sol :
We know that   E  =  – grad V

 E  =  – grad 
q
r

 
 
 

 
q

 V =
r

 
 
 


    =  – q grad 
1
r

 
 
 

But  grad 
1
r

 
 
 

 = 3

r
r
 

 
 

  E = –q × 3

r
r
 

 
 

 = 3

q
r

r
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20. If A = iy + j (x2 + y2) + k (yz + zx), then find div A at (1, –2, 3).

Sol :
The vector A is given by  A = iy + j (x2 + yz) + k (yz + zx)

But div  A = . A

where     = i 
x



 + j y

  + k 

z



 div A  = i j k
x y z
   
     

[iy + j (x2 + xz) + k (yz + zx)]

 = 
x



 y + y

  (x2 + yz) + 

z



 (yz + zx)

  = 0 + 2y + (y + x) = 3y + x

At the point (1, –2, 3)

div A = 3(–2) + 1 = –6 + 1 = –5

21. If A = i y + j (x2 + y2) + k (yz + zx) then find div A at point (1, –2, 3).

Sol :
We know that the div A =    A

where      i 
x



 + j y

  + k 

z



 div A = i j k
x y z
   
     

 . {i y + j (x2 + y2) + k (yz + zy)}

 = 
x



 y + y

  (x2 + y2) + 

z



 (yz + zx)

 = 0 + 2 y + (y + x) = (3y + x)

At point (1, –2, 3)

div A = 3 × (–2) + 1 = –5.

22. Evaluate div F, where  F = 2 x2 z i – x y2 z j + 3 y2 x k

Sol :

   F = i j k
x y z
   

     
   (2 x3 z i – x y2 z j + 3 y2 x k)

    F = 
x



 (2x3 z) – y

  (x y2 z) + 

z



 (3 y2 x)

  = 6 x2 z – 2 x y z + 0

  = 6 x2 z – 2 x y z.
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23. If r is the position vector of a point, then show that

(a) div r = 3    and (b)  (r   A) = A

Sol :
(a) The position vector r is written as

r = i x + j y + k z

so that r2 = x2 + y2 + z2

Now div r =    r

= i j k
x y z
   
     

   (i x + j y + k z)

= 
x
x



 + 
y
y

  + 

z
z



= 1 + 1 + 1 = 3

(b) r   A  = (i x + j y + k z)   (i Ax + j Ay + k Az)

 = x Ax + y Ay + z Az

  (r   A) = i j k
x y z
   
     

 (x Ax + y Ay + z Az)

= i Ax + j Ay + k Az  = A

24. Find the value of constant c for which the vector A = i (x + 3 y) + j (y – 2 z) + k (x + c z)
is solenoidal.

Sol :
The vector A is solenoidal if the divergence is zero. We know that

div A = xA
x




 + 
yA

y



  + zA
z




= 
x



 (x + 3 y) + y

  (y – 2 z) + 

z



 (x + c z)

=  1 + 1 + c = 2 + c

     2 + c  =  0   or   c = –2

25. If a is a constant vector, find div (r × a).

Sol :
The vector r = i x + j y + k z

Let a = i a1 + j a2 + k a3
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r × a = 

1 2 3

i j k
x y z

a a a

 = i (a3 y – a2 z) + j (a1 z – a3 z) + k (a2 x – a1 y)

Now div (r × a) = 
x



 (a3 y – a2 z) + y

  (a1 z – a3 x) + 

z



 (a2 x – a1 y)

 = 0 + 0 + 0 = 0

26. If A = i (3 x y) – j (y2) evaluate C  A   dr, where C is a closed curve in x, y plane, y = 2x2

from (0, 0) to (1, 2).

Sol :
Here integration is performed in x, y plane, hence z = 0  and  r = i x + j y.


C  A   dr = 

C  [i (3 x y) – j y2]   [i dx + j dy]

= 
C  (3 x y dx – y2 dy)

= 
1

0  [3x (2 x2) dx – (2x2) 4x dx] ( y = 2x2  and  dy = 4 x dx)

= 
1

0  [6x3 dx – 16 x5 dx]

= 

14 6

0

6x 16 x
4 6

 
 

 
 = 

6 16
4 6
   

 = –
7
6

27. Evaluate the line integral of function F = 6 x i + 4 y j between the points (0, 0) and (2, 2)
in X-Y plane.

Sol :

The line integral is given by  
Q

P  F   dI = 
Q

P  (Fx dx + Fy dy + Fz dz)

Here F is confined to X-Y plane, hence Fz = 0


Q

P  F   dI = 
Q

P  (Fx dx + Fy dy)

= 
(2,2)

(0,0)  (6 x dx + 4 y dy)

= 
2

0  6 x dx + 
2

0  4 y dy

= [3 x2] 2
0  + [2 y3] 2

0  = 12 + 8

= 20.
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28. If r the position vector of a point, prove that curl r = 0.

Sol :
When r is the position vector of (x, y, z), then

 r = ix + jy+ kz

    Now curl r =   × r

= i j k
x y z
   
     

 × (ix + jy + kz)

= 

i j k

x y z
x y z

  
  

 curl r  = i 
z y
y z
  

   
 + j

x z
z x

     
 + k

y x
x y
  

   

  = i(0 – 0) + j(0 – 0) + k (0 – 0) = 0

29. If v = x2zi – 2y3z3j + xy2zk then find curl v at the point (1, –1, + 1)

Sol :
Curl v  =   × v

    = i j k
x y z
   
     

 × (x2zi – 2y3z2j + xy2zk)

    = 

2 3 2 2

i j k

x y z
x z zy z xy z

  
  



      = i
2 3 2(xy z) ( 2y z )

y z
  

    
 – j

2 2(xy z) (xy z)
z x
      

+ k
3 2 2( 2y z ) (x z)

x y
  

    

or, curl  v = i [2xyz + 4y3z] – j (–x2 + y2z) + k [0 – 0]

 At the point (1, – 1, 1) we have curl

Curl v = i [2(1) (–1) (1) + 4(–)3 (1)] – j [–12 + (–1)2 (1)]

  = – 6i + j(0)

 Curl v = – 6i.
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30. If  f = x2y i – 2xz j + 2yz k, find :

i)  div    ii)  curl f   and    iii)  curl curl f

Sol :

The vector f is given by   f = x2yi – 2xz i + 2yz K

i) But div    f =  . f

= i j k
x y z
   
     

 × (x2yi – 2xz j + 2yz k)

= 
x



 (x2y) + y

  (– 2xy) + 

z



 (2yz)

=  2xy + 0 + 2y = 2xy + 2y

=  2y(x + 1)

ii) curl f =   × f = 

2

i j k

x y z
x y 2xz 2yz

  
  



= (2yz) ( 2xz)
y z
  

    
 i + 

2(x y) (2yz)
z z
     

 j+
29 2xz (x y) k

z y
  

   

= (2z + 2x)i + (0 – 0) j + (–2z – x2) k

= (2x + 2z)i – (x2 + 2z) k

iii) curl curl f  =   × (  × i)

=   × ((2x + 2z) i – (x2 + 2z) k)

= 

2

i j k

x y z
2x 2z 0 x 2z

  
  
  

= 
2( x 2z) (0)

y z
  

     
i + 2(2x 2z) ( x 2z)

z x
        

 j + (0) (2x 2 z)
x y
  

    
k

= 0i + (2 + 2x) k + (0 – 0) k = (2x + 2)k
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31. Show that  A = e–x (– yz i + zj + yk) is irrotational

Sol :
We known that when   × A = 0, the function is irrotational.

Given that      A = – yze–x i + ze–x + j + ye–x k

      × A = 

x x x

i j k

x y z
yze ze ye  

  
  



= i 
x x(ye ) (ze )

y z
   

   
 – j 

x(y x) ( yze )
x z

       
+ k 

x x(ze ) ( yze )
x y

   
    

= i(e–x – e–x) – j (– ye–x + ye–x) + k(–ze–x + ze–x)

= 0

So, the function is irrotational.

32. If V is a constant vector, show that (i) div V = 0 and (ii) curl V = 0

Sol :
V is a constant vector.

i) div V = 
V V V

i j k
x y z
   

     

   = i.0 + j.0+ k.0 = 0

ii) curl V = 
V V V

i j k
x y z

   
        

   = i × 0 + j × + k × 0 = 0

33. If A = iy + j(x2 + y2) + k(yz + zx), then find the value of curl A at (1, –1, 1).

Sol :
We know that curl A =   × A

= i j k
x y z
   
     

 × [iy + j(x2 + y2) + k (yz + zx)]

= 
2 2

i j k

x y z
y (x y ) (yz zx)

  
  

 
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= i
2 2(yz zx) (x y )

x z
       

+j y (yz zx)
z z
      

+ k
2 2(x y ) y

x y
  

    

= i(z + 0) + j(0 – z) + k(2x – 1)

= iz – jz + k(2x – 1)

At the point (1, – 1, 1)

Curl A = i × 1 – j × 1 + k(2 × 1 – 1) = i – j + k

34. If a rigid body is rotating with angular velocity  prove that

   = 
1
2

 curl V   where v is the linear velocity..

Sol :
Curl v =  × v

Now   v = ( × r)

   v = i(y z – yz) + j(z x – zx) + k(x y – xy)

Now   × v = ×( × r)

= 

y z z x x y

i j k
/ x / y / z

( z y ) ( x z ) ( y x )
     

        

=  i x y z x( y x ) ( x z )
y z
  

         
+ j x z x y( z y ) ( y x )

y z
  

         

 + k z x y z( x z ) ( z x )
y z
  

         

= i (x + x) + j(y + y) + k(z + z)

= 2 [ix + jy  + kz] = 2

  = 
1
2

curl v..

35. Find the value of curl (a × r), where a is a constant vector.

Sol :

     a × r = x y z

i j k
a a a
x y z
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=  i(ay z – az y) + j(az x – ax z) + k(ax y – ay x)

Now, curl (a × r) =  × (a × r)

   × (a × r)  = 

y z z x x y

i j k
/ x / x / z

(a z a y) (a x a z) (a y a x)
     
  

= i x y z x(a y a x) (a x a z)
y z
  

     
+ j y z x y(a z a x) (a y a x)

z x
       

+ k z x y z(a x a z) (a z a y)
x x
       

= i[ax + ax] + j[ay + ay] + k[az + az]

= 2[iax + jay + kaz] = 2 a.

36. Obtain the values of the following :

(i)  curl grad S,      (ii)  grad div A  and    (iii)  div curl A

Sol :
i) curl grad  S =  × S

=  
S S S

i j k i j k
x y z x y z
        
               

= 

i j k

x y z
S S S
x y z

  
  
  
  

= 
S S

i
y z z y

                 
 + j

S S
z x x z

                  
+ k

S S
x y x z

                 
 =  0 + 0 + 0 = 0

ii)   grad div   A=  ( .A)

= i j k
x y z
   
     

yx z
AA A

x y z

  
     

= i
x



yx z
AA A

x y z

  
     

 +  j y



yx z
AA A

x y z

  
     

+ k 
k



yx z
AA A

x y z

  
     
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iii) div curl   A =  ( . A)

= i j k
x y z
   
     

· 
yz

AA
i

y z

  
     

 + 
x zA A

j
z x

     
+k + 

y x
A A
x y

 
     

= 
x



yz
AA

y z

 
   

 + y



x zA A
z x

     
+ 

z



y x
A A
x y

 
   

= 

22
yz

AA
x y x z

 
      

 + 
2 2

x zA A
y z y x

  
     

+

2 2
y x

A A
z x z y

  
      

= 0 
2 2 2 2 2 2

, ,
x y y x y z z y z x x z

       
                 



37. Prove that

i)  × (A + B) =  × A +  × B or

curl (A + B) = curl A + curl B

ii)  ×(A × B) = A( .B) – B( ·A) or

curl (A × B) = A div B – B div A

Sol :

i)  × (A + B)

= i j k
x y z
   
     

× [i(Ax + Bx) + j(Ay + By) + k(Az + Bz)]

= k 
x



(Ay + By) – j
x



(Az + Bz) + k
x



(Ax + Bx)]+ i
y



(Az + Bz)+ j
z



(Ax + Bx)

        – i
z



(Az + Bz)

=i z z y y(A B ) (A B )
y z
  

     
 + j x x z z(A B ) (A B )

z x
       

+k y y x x(A B ) (A B )
x y
  

     

= 
   

       

y yz z A BA B
i

y y z z
+ j

           
x x x zA B A B

z z x x + k
   

       

yx x xBA A B
x x y y

= y yz z
A BA B

i i
y z y z

      
              

+
x z x zA A B B

j j
z x y z

                  
+

y yx x
A BA B

k k
x y x y

      
              



UNIT - I MECHANICS AND OSCILLATIONS

43
Rahul Publications

Rahul Publications

= 
y yz x z xA AA A A A

i j k
y z z x x y

                             
+

y y yz x z
B B BB B B

i j k
y z z x x y

                             

=    ×A + ×B = curl A + curl B

 curl (A+B) = curl A + curl B

ii) We know that A × (B × C) = B(A .C) – C(A.B)

  Hence,     × (A × B) = A( .B) – B( . A)

= A div B – B div A

    curl (A × B) = A div B – B div A

38. Prove that  curl curl A = grad div A – 2 A

Sol : (June-18)

curl curl A = × ( × A)

We know that    A × (B × C) = B(A · C) – C (A · B)

   × ( × A) =  ( · A) – ( · )A

=  grad (div A) – 2 A

           So   curl curl A = grad (div A) – 2 A

The value can also be obtained in the following way :

( A)  = y yz x z x
A AA A A A

i j k
y z z x x y

                             

 × ( A) =  × y yz x z x
A AA A A A

i j k
y z z x x y

                             

= 

y yz x z x

i j k

x y z

A AA A A A
y z z x x y

 
 
    

   
                            

= i 
y x x z

A A A A
y x y z z x

                      
+ j

y yz x
A AA A

z y z x x y

       
                

 + k yx z z
AA A A

x z x y y z

                    
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= i

2 2 2 2
y x x z

2 2

A A A A
y x z xy z

    
   

      
– i

2
x

2

A
x




 + i 
2

x
2

A
x




 + j

2 22 2
y yz x

2 2

A AA A
z y x yz x

   
   

      

– j
2

y
2

A

y




+ j 

2
y

2

A

y




+ k

2 22 2
y yx z

2 2

A AA A
x z y zx y

   
   

      
– k

2 2
z z

2 2

A A
k

z z
 


 

= 
2 2 22 2 2

y y yx x x
2 2 2 2 2 2

A A AA A A
i j

x y z x y z

       
                   

– k
2 2 2

z z z
2 2 2

A A A
x y z

   
       

+ 
2 2 22 2 2

y y yx x x
2 2

A A AA A A
i j

z x z x x y y zx y

        
                       

+ k
22 2

yz x
2

AA A
x z y zz

  
         

= 
2 2 2

x y z2 2 2
(i A j A k A )

x y z

    
          

+ 
y yx z x z

A AA A A A
i j

x x y z y x y z

         
        

           

    
yx z

AA A
k

z x y z

  
       

= – y2 x z
AA A

A
x y z

  
        

= – 2 A + ( . A)

Then curl curl A = grad div A – 2 A

39. By stokes theorem, prove that 
C

r.d 0 l , where  r  is position vector..

Sol :
By stokes theorem, we have

C S

A . dl= curl A . dS 
Replacing the vector A by position vector r, we get

C S

r.dl = curl r . dS 

S

= 0.dS (  curl r = 0)

Hence,
C

r.dl = 0
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40. Stoke’s theorem, prove that  curl  grad  = 0.

Sol :
According to Stoke’s theorem, we have

C S

A . dl curl A . dS 

Let A = rad , then  
C

grad . dl = 
S

ˆcurl grad .n dS

   Now, grad  . dl  = i j k
x y z
   

     
 + (i dx + j dy + k dz)

 = 
x



dx + y

  dy + 

z



 dz = d

   
C

d  = A
A[ ]  where A is any point on C

Hence,
S

ˆcurl grad .n dS 0 
This is true for all surface elements S, i.e,  curl grad  = 0

41. Evaluate by Stoke’s theorem 
C

(y zdx x zdy x y dz)   where C is the curve x2 + y2 = 1

and z = y2.

Sol :

C

(y z dx+ x z dy+x y dz)

=  [(i y z j z x k x y) . (i dx j dy k dz)   
C


=  [(i y z j z x k x y) . dr 
C
  = A. dr

C


  A  =  i y z + j z x + k x y

Now      curl A  = 

i j k
/ x / y / z
y z x z x y

     

=  i xy x z j y z xy
y z z x
                

+ k x z y z
x y
  

   
=  i (x – x) + j(y –y) + k (z – z) = 0

By Stokes theorem  
C

A . dl  = 
S

ˆcurl A . n dS = 0

 Given integral is zero.
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42. Verify Stoke’s theorem for the vector A = x(ix + jy) integrated round the square, in the
plane z = 0, whose sides are along the lines x = 0, y = 0, x = a, y = a.

Sol :
The situation is shown in figure below.

y = a

x = a

y = 0

x = 0

R

Y

O
P X

Q

Here
C

A . dr = OP
A.dl  PQ

A.dl  + QR
A.dl  + RO

A.dl

where OP
A.dl = 

a

0
x(ix jy) . i dx 

3a 2

0

a
x dx

3


PQ
A dl  = 

a a

0 0
x(ix jy) j y) j dy a y dy    =

3a
2

QR
A dl  = a a 2

0 0
x(i x j y) i dx x dx   =

3a
3

and    
RO

A·dl = 
a

0

x(i x j y) . j dy  = 
a

0
0(ix jy) . j dy = 0

  
C

A dr = 
3a

3
+

3a
2

–
3a

3
+0 =

3a
2

... (1)

Further, 
S

curl A dS  = 
S

curl x(ix jy) dS 

= 
a a

0 0
k y . k dx dy   ( curl x (i x + j y) = k y)

=  
a a

0 0
y dx dy   = 

a a

0 0
dx y dy   = a × 

2 3a a
2 2
 ... (2)

From equation (1) and (2) Stoke’s theorem stands verified.
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43. Evaluate ˆ r.n dS , where S is a closed surface.

Sol :
By Gauss’s theorem

S

ˆr n dS =
V

div r dV =
V

i j k (ix j y k z) dV
x y z
   
        



= 
V V

x y z
dV 3 dV

x y z
   

      
  = 3 V

where V is the volume enclosed by surface S.

44. If F = i ax + jby + kcz, where a, b, c are constants show that 
S

4ˆF.n dS = (a+ b+c)
3


where S is the surface area of a unit sphere.
Sol :

According to Gauss’s theorem 
S

ˆF n dS  =
V

div.F dV
where V is the volume enclosed by S.

Now   
S

ˆF n dS = 
V

(i a x j b y k c z)dV   

= 
V

(a x) (b y) (c z) dV
x y z
   

     


= 
V V

(a b c) dV (a b c) dV      = (a+b+c) ·
4
3


[ volume V is enclosed by spehre of radius one = 
4
3

. . (1)3 = 
4
3
]

= 
4
3
(a + b + c)

45. Find 
S

ˆF ndS  where F = i 4 x z – j y2 + k y z and S is the surface of a cube bounded by

x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
Sol :

According to Gauss’ theorem  
S

ˆF n dS =
V

div F dV

= 
yx z

V

FF F
x y z

  
     

  dx dy dz

=  2

V

(4x z) y (y z) dx dy dz
x y z
   

      

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= 
V

(4z 2 y y) dx dy dz 

= 
1 1 1

0 0 0
(4z y)   dx dy dz

= 
1 1 2 1

00 0
[2 z y z]   dx dy = 

1 1

0 0
(2 y) dy dx 

= 

121 1

0 0
0

y 3
2y dx dx

2 2
 

  
 

   = 

1

0

3 3
x

2 2
    

46. If A = 2xz2 î – yz ĵ + 3xz3 k̂ . Find  .A at (1, 1, 1).

Sol :
Given,

A = 2xz2
î  – yz ĵ  + 3xz3 k̂

(x, y, z) = (1, 1, 1) ...(1)
The expression for calculating the gradient of A is given by,

 A = 
A

î
x




+ A
ĵ

y



 +
A

k̂
z




...(2)

Substituting equation (1) in equation (2),

  A = î.
x



(2xz3 î  – yz ĵ  + 3xz2 k̂ ) + ĵ
y



(2xz2 î  – yz ĵ  + 3xz3 k̂ ) + k̂
z



(2xz2 î  – yz ĵ +3xz3 k̂ )

= 
2 3 ˆˆˆ ˆ(2xz )(i.j) (3xz )(i.k)

z x
     

+
2 3 ˆˆˆ ˆˆ ˆ(2xz )(j.i) ( yz)(i.j) (3xz )(j.k)

y y y
   

      

= 2 3ˆ ˆ ˆ ˆˆ ˆ(2xz )(k.i) ( yz)(k.j) (3xz )(k.k)
x z z
         

= 2 3 ˆ ˆˆˆ ˆˆ(2xz (i.i) ( yz)(j.j) 3xz (k.k)
x z z
  

  
  

ˆ ˆ[ p.q 0]

= 
x



(2xz2) – y

 yz +

z



3xz3 ˆ ˆ[ p.p 1]

= 2z2 – z + 3x(3z2)

  A = 2z2 – z + 3x(3z2)

Substituting (1, 1, 1) in above equation,

  A = 291)2 – (1) + 9(4)(1)2

 = 2 – 1 + 9
 = 10

  A = 10
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Short Question and Answers
1. Define gradient of a scalars filed obtain an expression for it.

Ans :

In order to consider the gradient of a scalar, let (x, y, z) be a scalar function of position of a scalr
point of coordinates (x, y, z). The partial derivatives of  along the three coordinate axes are

x



, y

  and  

z



The gradient of a scalar function  is defined as

grad  = i
x



+ j y

 + k

z



...(1)

We know that vector differential operator  (del) is defined as

  = i 
x



+j y

 +k

z



   =  i
x



+j y

 +k

z



...(2)

The equation (2) is the same as equation (1). It is obvious from equation (2) that del operator ( )

is a vector operator and when operated with a scalr () converts the scalar into a vector. The vector ( )
is called the gradient of the scalar.

The gradient is a different operator by means of which we can associate a vector field with a scalar
field. For example, the intensity of electric field E, (a vector quantity) is the gradient of potential V (a scalar
quantity) with a negative sign, i.e.,

E = – grad V

The negative sign indicates that the direction of field intensity is opposite to the direction of increasse
of potential.

Let  S(x, y, z) be a scalar point function depending on the three cartesian coordinates in space.
Suppose S / x, S / y     and S/ z   be the partial derivatives along the three perpendicular axes
respectively. Now the gradient of the scalar functioon  S  can be expressed as

grad   S = i
S
x



+j
S
y

 +k

S
z




or grad   S =  S  where   = i
x



+j y

 +k

z


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2. Show that F  = (y2 – x2) + î + 2xy ĵ  conservative.

Ans :
Given force is,

F


=(y2 – x2) î  + 2xy ĵ

A force is said to be conservative, if the curl of the force is zero.

i.e., curl F


= 0

 Curl F =  × F = 

2 2

i j k

x y z

(y x ) 2xy 0

  
  



= (0) (2xy)
y z
 


 

– j
2 2(0) (y x )

x x
 

 
  +k

2 2(2xy) (y x )
z z
 

 
 

= i|0 – 0| – j|0 – 0|+k|2y – 2y| = 0

 Curl F = ×F = 0

Thus, the given force is conservative in nature.

3. Explain divergence of a vector field and its physical significance.

Ans :

The operator   can be involved in the multiplication with a vector. The scalar or dot product of
operator   with a vector A (i.e.,  · A) is called as divergence. The divergence of a vector field at any
point is defined as the amount of flux per unit volume diverging from that point. The divergence is a
scalar.

Let  A  be a vector function differentiable at each point (x, y, z) in a region of space. Now the
divergence of  A  is given by

      · A = i y k
x y z
   
     

· (i Ax + j Ay + k Az)

    = 
yx zAA A

x y z

 
 

  

 div A =  · A = 
yx zAA A

x y z

 
 

  

This is the expression of divergence in cartesian coordinates.
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4. Curl of a Vector Field.

Ans :
Consider two areas ABCD and A' B' C' D' in a uniform electric field which is represented by straight

parallel lines as shown in fig. The area A' B' C' D' is perpendicular to lines of force. So the contribution of
line integrals is zero. For area ABCD, the line integrals along AD and BC are zero while the line integrals
along AB and CD are not zero. This shows that there is a certain orientation of the area for which the line
integral is maximum.

The curl of a vector field is defined as the maximum line integral of the vector per unit area. It is
essentially a vector quantity. The direction is normal to the area.

If A is a vector function differentiate at each point (x, y, z) in a region of a space, then the curl (or
rotation) of A expressed by the cross product of  and A, i.e.,

Curl A = A 

x y z

i j k

x y z
A A A

  
  

5. Prove that Curl of a gradient is zero.

Ans :
Ley  be any scalar point function.

grad  = i j k
x y z
   
      

 grad  = i
x



+ j
y



+ k
z



Curl (grad ) = 

i j k

x y z

x y z

  
  
  
  
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= 
2 2

i
y z y z

    
      

–
2 2

j
x z x z

    
      

+
2 2

k
x y y x

    
      

= i (0)+ j (0)+ k (0)

 Curl (grad ) = 0

 Curl of a gradient is zero

6. Gauss’s divergence theorem.

Ans :
The surface integral of the normal component of vector A taken over a closed surface S is equal to

the volume integral of the divergence of vector A over the volume V enclosed by the surface S, i.e.,

S
 A · dS = 

V
 div A dV = 

V
 (  · A) dV

Proof :

Let us consider a closed surface S of any arbitrary shape drawn in a vector field A as shown in figure
below.

Let the surface encloses a volume V.

We know that div A represents the amount of flux diverging per unit volume and hence the flux
diverging from the element of volume dV will be div A dV.

So the total flux coming out from the entire volume is given by

V
 div A dV

Now we consider a small element of area dS on the surface S as shown in fig. Let n̂  represents the
unit vector drawn normal to area dS. It should be remembered that outward drawn normal on a surface
is taken as positive. If the field vector A and outward normal n̂  are at an angle , then the component of
A along n̂  is

A cos  = A · n̂

The flux of A through the surface element dS is given by

(A · n̂ ) dS = A · dS

So the total flux through the entire surface S is given by 
S
 A · dS ... (2)
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This must be equal to the total flux diverging from the whole volume V enclosed by the surface S.
Hence from eqs. (1) and (2) we get

S
 A · dS = 

V
 div A dV ... (3)

This is Gauss theorem of divergence and may also be written as

S
 (A · n̂ ) dS = 

V
 (  · A) dV ... (4)

(i) Gauss divergence theorem provides a relation between surface and volume integrals.

(ii) This theorem is applicable for closed surface only.

7. State and explain Green’s theorem.

Ans :
Statement :

If  and  are two scalar point functions such that these functions and their first derivatives are
continuously differentiable, in a region bounded by a closed surface S, then we have

2

V

( . )dV    = 
S

( ).dS ... (1)

and 2 2

V

( )dV      = 
V

( ).ds   ... (2)

These equations are known as first and second form of Green’s theorem.

Proof :

Let us take the following mathematical from Gauss’s divergence theorem

V V

div A dV A.dS 

Because   will also be a vector quantity,   will be a vector quantity..

Let this is represented by vector A. Thus

A = 

or i Ax + j Ay + k Az =  i j k
x y z

   
     

 From this equation we can see that  Ax = 
x




, Ay =  y

  and Az = 

z



Now div A = 
yx z

AA A
x y z

 
 

  
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Substituting the values of Ax, Ay and Az, we get,

div A = 
x x y y z z
                          

 = 
2 2 2

2 2 2. . .
x x y y z zx y z

                
                        

 = 
2 2 2

2 2 2. . . .
x x y y z zx y z

            
              

= 2 .     ..(4)

Substituting the value of div A from equation (4) in equation (3), we get

2

V
S

( . )dV ( ). S         ... (5)

This is known as Green’s first theorem.

Interchanging  and  in equation . (a), we have

2

V S

( . )dV ( ). S         ... (a)

Subtracting equation (5) from equation (a), we get,

2 2

V S

( )dV ( ).dS          ... (b)

This is known as Green’s second theorem.

8. Prove that  .(A×r) = r.( ×A)

Ans :
Let A and r be the vectors given as,

A = Ax i + Ay j + Azk

r = xi + yj + zk

Consider,

A × r = x y z

i j k
A A A

x y z

 = i[Ayz – Azyy] – j[Axz – Azx] + k[Axy – Ayx]

 A × r = i[Ayz – Azy] + j[Azx – Axz] + k[Zxy – Ayx]



UNIT - I MECHANICS AND OSCILLATIONS

55
Rahul Publications

Rahul Publications

Applying divergence on both sides,

 .(A×r) =  .[i[Ayz – Azy] + j[Azx – Axz] + k[Azy – Ayx]]

= i j k
x y z
   
     

.[i[Ayz – Azy] + j[Azx – Axz] + k(Axy – Ayx)]

= i.i
x



[Ayz – Azy] + j.j y

 [Azx – Axz] + k.k

z



[Axy – Ayx]

= z
yA

x




– y

yA

x




 + 

zx A
y

 – z

xA
y


 + y x

z

A


– x
yA

z





  (A×r) = x y yA A

x z

  
   

+y
x zA A

z z
     

+z
y xA A

x y

 
   

...(1)

Consider,  × A = curl A = 

x y z

i j k

x y z
A A A

  
  

   = i.ix yx AA
y z

 
 

  
– j

z xA A
z z

     
+k

y xA A
x y

 
 

  

Consider r.curl A = (xi + yi + zk). y yx x z x

z

A AA A A A
i j k

y z x x y

         
                    

= i.ix
yx AA

y z

 
 

  
+j.jy

x zA A
z x

     
 + k.kz

y xA A
x y

 
 

  

  r.curl A = x
yx AA

y z

 
   

+ y
x zA A

z x
     

+ z
y xA A

x y

 
   

...(2)

Comparing equations (1) and (2),

 .(A × r) = r.curl A

  .(A × r) = r.( × A)

  .(A × r) = r.( × A)
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9. What are scalar and vector fileds?

Ans :

We know that a physical quantity can be expressed as a continuous function of the position of a
point in the region of space. For example when a rod is heated at one end, then there is a variation of
temperature along the length of the rod. The physical quantity temperature at any point (x, y, z) can be
expressed by a continuous function T (x, y, z). Such a function is termed as a point function or function of
position. The region specifying that physical quantity is labelled as its field. Depending upon the nature of
physical quantity the field may be scalar or a vector.

I) Scalar Field

If a scalar physical quantity is assigned to each point in space then we have a scalar field in that
region of space. The scalar field in three dimensions can be represented by a scalar point function (x, y,
z).

Example

The electronic potential due to a single positive charge  q  columns depends on the position of the
point from the charge. Then V0(x0, y0, z0) and V(x1, y1, z1) are the scalar point functions at (x0, y0, z0) and
(x1, y1, z1). Now the region is a scalar field.

In a scalar field, there are a number of surfaces are known as level surfaces.

The level surfaces, equipotential (gravitational or electrostatic) etc.

For example, if we imagine sphere of different radii taking a point charge  q  as the centre, then we
get equipotential level surfaces. These are spherical in nature and at any level surface the scalar point
function V (x, y, z) has a constant value. If the level surface are parallel to each other, then the scalar field
is called as stationary scalar field.

The concept of a scalar field can easily be understood with the help of the following examples:

i) Consider a solid block of material whose faces are maintained at different temperatures. Now the
temperature of the body will vary from point to point, i.e., temperature will be a function of position
coordinates x, y, z in rectangular coordinate system. Hence, temperature is a scalar field.

ii) The density at any point inside a body occupying given region is a scalar field. The electrical potential
is differeent at different points. Hence, electric potential is scalar field.

II) Vector Field

When a vector physical quantity is expressed from point to point in the region of space by a
continuous vector function A(x, y, z) then the region is a vector field. The example of vector field are
gravitiational, magnetic, electric intensity.

The vector point function at any point in the field is given by a vector having unique value for a
magnitude and direction.
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10. What are line, surface and volume integrals?

Ans :
The integrals which are commonly used are :
1. Line integral
2. Surface integral and
3. Volume integral

1. Line Integral

Integral 
Q

P  A · dI is defined as the line integral of A along the curve PQ.

If A denotes the electric field intensity at any point, then the line integral represents the potential
difference between P and Q.

Q



dt

A

P

R

2. Surface Integral
Consider a simple surface S in a vector field bounded by a curve as shown in fig. Let dS be an
infinitesimal element of the surface. This surface element of area dS can be represented by area
vector dS. If n̂  be a unit positive vector (drawn outward the surface) in the direction of dS, then

dS = n̂  dS

Let A be a vector at middle of the element dS in the direction making an angle  with n̂ . Now the
scalar product

A · dS = A · n dS = A dS cos 
is called the flux of vector field A across the area element dS. The total flux of the vector field across
the entire surface area S is given by

s  A · dS = 
s  A · n dS = 

s  A cos  dS

This is defined as the surface integral.
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3. Volume Integral

The integral evaluated over a three dimensional domain is known as volume integral.

Consider a closed surface in space enclosing a volume V. If A be a vector point function at a point
in a small element of volume dV, then the integral

V
  A dV

is called the volume integral of vector A over the surface.

11. If f = (x2 + y2 + z2)1/2 then find grad .

Ans :
Given,

 = (x2 + y2 + z2)1/2

Grand  = i
x



+ j
y

 + k

z



= i
x





[(x2 + y2 + z2)1/2] + j .
y



[(x2 + y2 + z2)1/2 + k.
z



[(x2 + y2 + z2)1/2]

= 
1

i .
2

1
12 2 2 2(x y z )


  (2x) + 
1

j.
2

1
12 2 2 2(x y z )


  (2y) + 1
k.

2

1
12 2 2 2(x y z )


  (2z)

= 
1

12 2 2 2i (x y z )


  (x) +
1

2 2 2 2j(x y z )


  (y) + 
1

2 2 2 2k(x y z )


  (z)

= 1
2 2 2 2

1

(x y z ) 
x i y j zk   

   Grad = 2 2 2 1/2
x i y j zk

(x y z )

 

 

12. What are different kinds of vectors?

Ans :
(i) Zero or Null Vector

The zero or the null vector is a vector whose mudulus is zero, and the whose direction is indeterminate.
The null vector is represented by the symbol 0 (printed in bold faced typed). In the case of the null

vector the initial and terminal points coincide. Thus 

AA,  


OO,  etc. are null vectors.

(ii) Unit Vector

A vector whose, modulus is unity, is called a unit vector. The unit vector in the direction of vector  a

is represented by â . It is read as  ‘a Cap’.
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(iii) Like and Unlike Vectors

Vectors having the same direction are called like vectors and those having   opposite directions are
called unlike vectors.

(iv) Collinear or Parallel Vector

Vectors having the same line of action or having the lines of action parallel to one another are called
collinear or parallel vectors.

(v) Equal Vectors

Two vectors are said to be equal if, and only if, they are parallel, have the sense of direction, and the
same are called like vectors and those having opposite directions are called unlike vectors.

(vi) Collinear or Parallel Vectors

Vectors having the same line of action or having the lines of action parallel to one another are called
collinear or parallel vectors.
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Choose the Correct Answers

1. Two vectors A


 and B


 are perpendicular to each other if [ a ]

(a) 0A B 
 

(b)  0A B 
 

(c) · 1A B 
 

(d) 1A B 
 

2. If  l, m, n  are the direction cosines of a vector, then [ b ]

(a) l2  + m2 + n2 = 0 (b) l2  + m2 + n2 = 1

c) l2  + m2 + n2 > 0 (d) l2 + m2 + n2 < 1

3. Two vectors  and BA
 

 are perpendicular to each other if . [ a ]

(a)  · B =0A
 

(b)  × B =0A
 

(c)  · B =1A
 

(d)  × B =1A
 

4. Three vectors , B and  CA
 

 will form a triangle if [ c ]

(a) B > CA 
 

(b) A B C 
  

(c) A B C 
  

(d) 0A B C  
  

5. Volume of parallelopiped formed by ,  andA B C
  

 is . [ d ]

(a) ( · )A B C
  

(b) ( × )A B C
  

(c) ·( · )A B C
  

(d) ·( × )A B C
  

6. The magnitude of the vector drawn in a direction perpendicular to the surface  x2+2y2+z2 = 7 at
the point (1, –1, 2) is [ d ]

(a)
2
3

(b)  
3
2

(c) 3 (d)  6

7. The directional derivative of   = xyz  at the point (1, 1, 1) in the direction î  is [ c ]

(a) –1 (b)
1
3



(c) 1 (d)
1
3
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8. If  ,f ax i by j cz k  
  

 a, b, c  are  constants, then F.ds  where S  is the surface of a unit sphere

is [ b ]

(a) (a b c)
3


  (b)  
4

(a b c)
3
  

(c) 2 (a+b+c) (d)   (a+b+c)

9. The line integral 2 2

c

x dx y dy,  where  c  is the boundary of the region  x2+y2<a2 equals [ b ]

(a) 0 (b)  0

(c) a2 (d)  
1
2
a2

10. If  R xi yi zk    and A


 is a constant vector,  curl (A R)
 

 is equal to [ d ]

(a) R
 (b) 2R



(c) A


(d) 2A


11. If  r xi yj zk  
   and ( ) ,r r

  then  div r


 is [    ]

(a) 2 (b) 3

(c) –3 (d) –2

12. If  r xi y j zk  
   and  r r


 then ( )r  is [ c ]

(a) (r) r


(b)
(r) r
r



(c)
(r) r
r



(d) none of these

13. Two vectors are such that |A B|
 

= |A B|.
 

 The angle between the vectors is [ d ]

(a) 00 (b) 300

(c) 600 (d) 900

14. Pict out the scalar quantity out of the following : [ b ]

(a) Force (b) Electric potential

(b) Momentum (d) Intensity of electric field

15. If two forces are equal and their resultant is also equal to one of them, then the angle between the
two forces is [ b ]

(a) 600 (b) 1200

(c) 900 (d) 00
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16. Which of the following is scalar quantity ? [ a ]

(a) work (b) acceleration

c) electric field d) displacement

17. Which is vector quantity ? [ a ]

(a) Flux density (b) Magnetic flux

c) Intensity of magnetic flux (d) Magnetic potential

18. A vector A


 points vertically upward and B


 points towards north. The vector product A B
 

 is :

[ b ]

(a) zero (b) along west

(c) along east (d) vertically downward

19. Surface is . [ d ]

(a) scalar (b) vector

(c) neither scalar nor vector (d)  both scalar and vector

20. The vector sum of two forces is perpendicular to their vector difference. In that case, the forces

[ c ]

(a) are not equal to each other in magnitude

(b) cannot be predicted

(c) are equal to each other

(d) are equal to each other in magnitude
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Fill in the Blanks

1. The line integral 2 2 ,
c

x dx y dy  where  c  is the boundary of the region  x2+y2<a2 equals .

2. A force field F


 is said to be conservative if .

3. If  F


 is the velocity of a fluid particle then .
c

F dr
 

 represents .

4. If  A


  is such that 0A  


 then A


 is called .

5. If  F


 is a conservative force field, thent he value of curl F


 is .

6. The unit vectors  ˆ ˆ,̂ ,   and  r    are .

7. A particle is moving in a plane, its velocity v


 is given by .

8. Total vector surface area of a closed volume is .

9. Two vectors A


 and B


 are collinear if .

10. If  (x, y, z)  be a scalar function then ˆˆ ˆ y
i j k

x y z
  

 
  

is called .

11. The integration of a vector along a curve is called its .

12. If  A  be a vector point function at a point in a small element of volume dv, then the integral 
v

A dv

is called .

13. The  of a vector field is defined as the maximum line integra of the vector per unit area.

14. The scalar product or dot product of two vectors A and B is defined as .

15. If vector r, is a function of a scalar variable t, then we write r 


.

16. The magnitude of a vector cannot be .

17. The angle between vectors ( )A B
 

 and ( )B A
 

 is .

18. If  n̂  is the unit vector in the direction of ,A


 then n̂   .
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ANSWERS

1. a

2. Curl 0F 


3. circulation

4. irrotational

5. 0

6. perpendicular

7. ˆˆr r r 

8. null vector

9. A B 0 
 

10. gradient of the scalar function  .

11. line integral

12. the volume integral of vector A.

13. Curl

14. the product of the magnitudes of two vectors.

15. ( ).r t


16. negative

17. 

18.
A

A



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UNIT
II

MECHANICS OF PARTICLES:
Laws of motion, motion of variable mass system, motion of a rocket, multi-
stage rocket, conservation of energy and momentum. Collisions in two and
three dimensions, concept of impact parameter, scattering cross-section
MECHANICS OF RIGID BODIES :
Definition of Rigid body, rotational kinematic relations, equation of motion
for a rotating body, angular momentum and inertial tensor. Euler’s equation,
precession of a top, Gyroscope

2.1 MECHANICS OF PARTICLES

Q1. Explain the concept of mechanics of
particles.

Ans :

Introduction

A particle is considered to be an object having
mass and having neither any size nor any internal
structure at all. It may be defined as a point mass. If
the relative positions of different particles change
with time, then such an arrangement is referred to
as a system of particles. A rigid body stands as an
example for a system of particles in which there will
be a continuous distribution of mass and the relative
distance between any two particles will not change
even when the body is subjected to an external force.

In mechanics we treat a body as just a point
mass (a particle) as an approximation. But this
approximation is not always valid. Any body is an
aggregate of particles (a system of particles). The
body may be a solid or a fluid. It is possible to
determine the general laws of motion of bodies like
an Indian club (a rigid body), flowing water or
galaxies (flexible systems) without considering the
mutual influence between various particles of the
system. We consider only the external influence -
that is, the external force.

The branch of physics that deals with the
motion of one particle (or a body) or a system of
particles (or bodies) without any reference to the
forces acting on, is called Kinematics. In this unit we
are concerned with the motion (change of
coordinates of particle or particles among themselves
and with time) of one particle (or body) or many
particles (or bodies) with reference to the forces

acting on. This branch of physics is called Particle
Dynamics. First we shall deal with a single particle.

2.1.1 Laws of Motion

Q2. State and explain Newton’s Law of
Motion.

Ans : (Aug.-21)

Newton's laws are applied to objects which
are idealised as single point masses, in the sense
that the size and shape of the object's body are
neglected to focus on its motion more easily. This
can be done when the object is small compared to
the distances involved in its analysis, or the
deformation and rotation of the body are of no
importance. In this way, even a planet can be
idealised as a particle for analysis of its orbital motion
around a star.

In their original form, Newton's laws of
motion are not adequate to characterise the motion
of rigid bodies and deformable bodies. Leonhard
Euler in 1750 introduced a generalisation of
Newton's laws of motion for rigid bodies called Euler's
laws of motion, later applied as well for deformable
bodies assumed as a continuum. If a body is
represented as an assemblage of discrete particles,
each governed by Newton's laws of motion, then
Euler's laws can be derived from Newton's laws.
Euler's laws can, however, be taken as axioms
describing the laws of motion for extended bodies,
independently of any particle structure.

Newton's laws hold only with respect to a
certain set of frames of reference called Newtonian
or inertial reference frames. Some authors interpret
the first law as defining what an inertial reference
frame is; from this point of view, the second law
only holds when the observation is made from an
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inertial reference frame, and therefore the first law
cannot be proved as a special case of the second.
Other authors do treat the first law as a corollary of
the second. The explicit concept of an inertial frame
of reference was not developed until long after
Newton's death.

In the given interpretation mass, acceleration,
momentum, and (most importantly) force are
assumed to be externally defined quantities. This is
the most common, but not the only interpretation
of the way one can consider the laws to be a
definition of these quantities.

Newtonian mechanics has been superseded
by special relativity, but it is still useful as an
approximation when the speeds involved are much
slower than the speed of light.

Q3. Describe Newton’s Law of Motion.

Ans :
I. Newton’s First Law of Motion

Every particle or system will continue its initial
state till the force acts on it. If no external force is
acting, the particle in rest will remain in rest and the
particle moving with some uniform velocity will
continue with the same velocity. This law tells that,
w.r.t. to center of mass, the center of mass of an
isolated system will remain at rest or moves with
uniform velocity. As a matter of fact every particle
or system will oppose the change of state. This law
introduces a quantity called inertia.

Inertia

It is the inherent property of a particle to
oppose the change of state. It can be measured with
the mass of particle.

Examples

1. A passenger standing in a jerk train will get a
when the train suddenly moves. Sometimes
it may happen that passenger falls in a
direction opposite to the movement of train.
This is due to inertia of rest.

2. Similarly if a bus takes a sudden turn while
going, then passenger sitting in the bus may
bend away from the turn. This is due to
directional inertia.

3. Bicyclist going with more speed suddenly used
the front brakes to stop it, then he may fall.
This is due to motional inertia.

Force
From the first law of Newton, force can be

defined. Force is an agency to change or trying to
change the state of a system.

Sometimes two or more particles in a system under
the action of internal forces. But these internal forces
can not change the state. Only the external forces
can change the state. We can understand this by
the following examples.
1. An object on a table can not be moved

without applying a force on it. That is the
property of inertia may helps it to be in same
state. But it changes its position only by
applying the force.

2. A driver should apply accelerator to improve
the speed of a bus, similarly he has to apply
the brakes to bring it to rest. So only on the
application of force, we can change the state
of a system.

II. Newton’s Second Law of Motion
This law based on the concept of momentum.

The quantity momentum is the product of mass and
velocity, which is a vector. Its unit in S.I system is kg
ms–1. Its dimensional formula MLT–1.

Second law of Newton states that “rate of
change of momentum is equal to the external force
acting on it”. The change in momentum happens
only in the direction of force. From this law, force
and acceleration can be related.

Let us consider a particle of mass ‘m’ is moving
with initial velocity ‘u’. A force ‘F’ is applied for a
time ‘t’ sec. The final velocity of the particle is v.

Initial momentum Pi = mu.

Final momentum  Pf = mv

Change in momentum Pf – Pi = m(v – u)

Rate of change of momentum = 
m(v u)

t


But from the definition of acceleration

a =
(v u)

t


 Rate of change of momentum = ma.

From the second law, force applied.

F  ma
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and F = k.ma, K is constant of proportionality.
Its value depends on the measure of force. Unit
force is one which can produce an acceleration of
one m/s2 in a one kg object. i.e., if m = 1, a = 1
then F = 1 for which K = 1.

 F = ma.

In the S.I system, units of force is Newton
and in C.G.S system unit of force is Dyne.

1N = 105 Dynes.

Newton’s Third Law of Motion

This law will not explain the motion of a
particle but explains the mutual interacting forces
among the particles. The law states that “for every
action there is an equal and opposite reaction”
present. So no force can be applied on a particles
without the reaction, since action and reaction
observed on two different particles.

Let an object ‘A’ applied a force FAB on B
another object ‘B’. Simultaneously ‘B’ applies a fore
FBA on the object ‘A’. But from the third law of
Newton FA = - FBA. The force FAB is action and
FBA. is reaction.

Examples

1. Book placed on a table applies its weight on
the table which is action in turn table applies
the source force on the book in opposite
direction which is reaction.

2. Revolving moon attracted by the earth and
at the same time then moon also attracts the
earth with the same force.

3. Even in an atom the coulombic forces
between the nucleus and electron also
constitute action and reaction pair.

Q4. What are the physical quantities
involved in the dynamics of a particle?

Ans :
In the dynamics of a particle we come across

with several physical quantities as force, linear
momentum, impulse, angular momentum etc., in
addition to the familiar physical quantities of length,
mass, time, velocity and accleration. We have
already come across force in figure.

Let us consider some of these physical
quantities.

(a) Linear Momentum (p)

We have already seen that the product of the
mass ‘m’ and velocity ‘v’ of a particle is
defined as its momentum ‘p’ usually called
the linear momentum.

p = mv

As, velocity v is a vector, momentum p is also
a vector quantity. As is evident from the above
equation, a heavy mass moving with a small
velocity may have the same momentum as a
lighter mass moving with a greater velocity. It
is momentum the product of the mass and
velocity of a body, that gives an estimation of
the force required to stop the body.

(b) Impulse

In any given impact, the total change in the
linear momentum of any body due to the
action of a force is defined as the impulse of
the force.

Impulse = p = p2 – p1 = m (v2 – v1)

....(1)

where v1, p1 refer to initial velocity and initial
momentum and v2, p2 refer to final velocity
and final momentum.

The impulse is a vector quantity.

As F = 
dp
dt

 we can write

p = p2 – p1 = 
2 2

1 1

t t

t t

dp F.dt 

when we apply a constant force F,

Impulse p F. t   ...(2)

Impulse is hence defined as the product of
the average force multiplied with the duration
of the impact. Impulse plays an important role
when very large forces are acting for a very
short interval of time. Examples are hitting a
nail into a wall, hitting a cricket ball with bat.

(c) Angular momentum (L or J)

The angular momentum J of a particle of
mass ‘m’, revolving around an axis is defined
by.
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J r p  ...(3)

where p is the linear momentum of the
particle A, and r is the radius vector from the
axis of rotation to the particle, as shown in
the figure.

O

r A

P

J = r × P

Z

O

r A

P

J = r × P

Z

It is also the moment of momentum. It is a
pseudo vector (as it is the cross product of
two real vectors). The concept of angular
momentum is quite useful in describing
rotatory motion of objects in a way just as
the linear momentums plays an important
role in the linear motion.

(d) Torque ( )


The torque 


 of a force ‘F’ around an axis is
defined by


  = r × F ...(3)

where F


 is the force acting on the particle A,
and r is the radius vector from the axis of
rotation to the particle as shown in figure.

O

r A

F

= r × F


Z

O

r A

F

= r × F


Z

It is also called the moment of force around
the axis. It is a pseudo vector.

It plays the same role in rotatory motion as
the force F does in the linear motion. If the
force F acts along the radius rector r then
there will be only translatory motion and there
will be no rotatory motion for the particle. (r
× F = 0 in such a case)

Relation between Angular Momentum and
Torque :

Angular momentum J = r × p and hence

dJ dp dr
r p

dt dt dt
   

   But
dr dr

p mv
dt dt

    = m. 
dr dr
dt dt

  = 0


dJ dp

r r F
dt dt

     


dJ
dt

 


...(4)

Thus, we can define torque as the rate of
change of angular momentum just as we
defined force as the rate of change of linear
momentum.

From equation (4) it is evident that,

If 
  = 0, then 

dJ
dt

 = 0

i.e., J is a constant.

It means that, in the absence of an external
torque, the angular momentum of a body is
conserved. This is called the law of
conservation of angular momentum.

(e) Work (W)

Work is said to be done by a force (F) when
its point of application undergoes a change
and is measured by the product of the force
and the displacement in the direction of the
force.

If, on the application of a force F, a body
undergoes a displacement r in a direction
making an angle q with F, then work done
by the force is given by
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dW = F(dr cos ) = F.dr ...(5)

and the total work done is

2

1

r

r

W F.dr  ...(6)

Evidently, work is a scalar quantity.

If work done (W) by a force is positive, it
means that the force actually does work on
the body.

If W turns out to be negative, it means that
the box i is doing work against the force (for
example, when brakes are applied to a car,
the car does work against the braking force
an ultimately comes to rest).

(f) Energy (W or E)

The energy associated with a body is defined
as the capacity of the body to do work. The
body is not doing any work, but it can do
work when it is necessary. In mechanics we
have energy in two different forms - Kinetic
Energy and Potential Energy.

Kinetic Energy is the energy possessed by a
body by virtue of its motion. Potential Energy
is the energy possessed by a body by virtue
of its position or state in a force field (like
gravitational field or electrical field etc.)

(g) Kinetic Energy of a body and the Work-
Energy Theorem

Let us consider a body of mass ‘m’, moving
with a velocity ‘v’. By virtue of its motion,
the body possesses kinetic energy. This will
be equal to the work that the body can do.

Kinetic energy of a body of mass m, moving
with a velocity v is given by

2 21 1
K.E. mv   or  K mv

2 2
   ...(7)

Work - Energy Theorem

Let us consider that a body of mass ‘m’ is
under the continuous influence of (an
unbalanced or resultant) a force ‘F’ and as a
result its velocity change form vi to vf when it
moves from position r1 to position r2.

The work done by the force is given by

W = 
1
2

 mv2
f – 

1
2

 mvi
2 ... (8)

(i.e.) W = Kfinal – Kinitial                   ... (9)

That is, the work done by an unbalanced or
resultant force on a body is equal to the
change in kinetic energy of the body. This is
called the Work-Energy theorem.

(h) Potential Energy of a Body (P.E.)

The potential energy of a body at a point in
a filed is defined as the work, that can be
done by the body in moving from the given
position in the field to the reference point of
zero potential energy.

The capacity of the body to do work because
of its position arises due to the existence of a
force field, such as gravitational field, electric
field etc.

For example, let us consider a body of mass
m, at a height ‘h’ from the surface of the
earth.

The potential energy of a body of mass m, at
a height h from the ground is given by

P.E. mgh ...(10)

From U(h) = mgh we can notice that,

   – 
U(h)

h



 = – mg = |F(h)|

In general, are can write as

|F(x)| = – 
U(x)

x



...(11)

or, in the most generalized from

F(r) =  


 U(r) ...(12)

i.e., Force is the negative gradient of potential
energy.
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Q5. Define linear momentum of a particle
and system of particles.

(OR)

State law of conservation of linear
momentum and explain with two
examples.

Ans :
1. Linear Momentum of a Particle

Let the mass of a particle is ‘m’ and its velocity
is v


, then

Linear momentum P


= m v


The measure of every quantity depends on
the frame of reference. While mentioning a quantity
one have to mention a frame of reference. From
newton’s second law, the rate of change in
momentum is equal to the external force acting on
it. The direction of change in momentum can be
expected along the direction of force.

F


=
dp
dt


=

d
dt

(m v


)= m
d
dt

v


 = m a


Since 
dv
dt

 = a , a  is the acceleration.

So F  = m a

2. Linear Momentum of System of Particles

Consider a system of N particles. Their masses
are m1, m2, ..... mn. And their velocities are v1, v2,
..... vn respectively.

Total linear momentum of the system

1 2 3P P P P .........   
   

...(1)

But P


 = 1 1m v


 + 2 2m v


 + 3 3m v


 ........

From the definition of centre of mass total
linear momentum of a system is equal to the
momentum of centre of mass.

P


 = cmMv


 ( cmv  is the velocity of centre of
mass, M is total mass.)

Differentiating equation (1) w.r.t time.

dP
dt


 = M cmdv

dt



cm

dp
Ma

dt


 

dP
dt


= 

extF


...(2)

extF


 is the external force acting on the system

of particles. In a system one can expect the internal
force amount the particles, but these forces will
cancel in terms of action and reaction pairs.

3. Conservation of Linear Momentum

If no external force is acting on the system

(
extF


 = 0) from equation (2)  we have


dP
dt


 = 0

P


is a constant

If no external force is acting on a system of
particles, the total linear momentum of the system
of particulars remains same which imply the
conservation of linear momentum.

Example

Two masses A, B are with masses mA and
mB respectively. They are connected by a spring as
shown in figure, and placed on a table. Masses are
pulled apart and released. Two masses are vibrating
along the length of the spring.

Two masses are experiencing internal mutual
attractive force. Treating two masses as a whole, no
external force acting on it before the masses are
pulled and after their relax, system should follow
conservation if linear momentum.
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Initial momentum of the system = Final momentum of the system.

0 = mA vA + mB vB

where vA, vB are the velocities, after the masses were released.

So mA vA + mBvB

or vA= B B

A

m v
m



Kinetic energy of mass A is

  KA = 
1
2

 mA 2
Av  = 

2
A A

A

(m v )
2m

Kinetic energy of mass B is

KB = 
1
2

 mB
2
Bv

From the above 
2

A A A
2

B B B

K m v
K m v

 

Since 
A B

B A

v m
v m

 

Hence 
2

A A B B
2

B B AA

K m m m
K m mm

  

Due to conservation of linear momentum, the ratio of kinetic energies are equal to the reciprocal
ratio of their masses.

2.1.2 Motion of Variable Mass System

Q6. Derive the equation of motion of variable mass system.

(OR)

Derive an expression for the motion of variable mass system

Ans : (June-21, Dec.-19, Dec.-16)

In the systems dealt with sofar, we always assumed that the total mass M of the system remains
constant. Such systems are usually referred to as Isolated systems. But sometimes the mass may be changing
with time. Either mass may enter into the system (dm/dt is positive) or mass may leave the system (dm/dt
is negative) with time. For example, let us take the flight of a rocket. Most of the mass of a rocket consists
of its fuel. After firing, all of the fuel will eventually be burnt and ejected out from the nozzle of the rocket
engine.

Figure below shows a system of mass M whose centre of mass is moving with velocity  v  as seen
from a particular reference at any instant t. At a latter instant t + t, a mass M has been ejected from the
system and its centre of mass moves with a velocity u as seen by an observer.
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Fig.:

 Now the system mass is reduced to M – M and the velocity v of the centre of mass of the system
is changed to v + v. The system represents a motion like of a rocket.

Such kinds of problems may be solved by applying Newton’s second law to the combination of two
masses i.e., the remaining mass (M – M) and the ejected mass M combined together as a whole system.
It should be remembered that Newton’s second law can not be applied separately either to mass (M –
M) alone or to mass  M.

From Newton’s second law   Fext = 
dP
dt

For small interval of time     Fext  
P
t




= f iP P
t



Considering both the parts of masses M and M – M as forming one and the same system, we can
write

  Fext = f iP P
t



=
[(M M)(v v) Mu] [Mv]

t
      


... (1)

where Pf and Pi are the final and initial momentum of the system respectively.

  Fext. =  M
v

v
t





M
t




–
M M

v u
t t

 
 

 
... (2)

If t approaches zero, the configuration on right hand side of figure, approaches that left hand side
i.e., v/t approaches dv/dt, the acceleration of the body. Since there is a decrease in the mass with time
hence M/t is replaced by –dM/dt as t approaches zero. Finally, v goes to zero as t approaches zero.
Making these changes, equation (2) leads to

Fext = M 
dv dM dM

v u
dt dt dt

 

or Fext = 
d dM

(Mv) u
dt dt

 ... (3)

Equation (3) expresses Newton’s second law as applied to a body of variable mass. It is obvious
from this equation that d/dt(Mv) is not equal to the external force acting on the system unless the ejected
mass comes out with zero velocity.

Equation (3) can also be expressed in the following form :
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  Fext = M 
dv
dt

 + v 
dM
dt

 – u
dM
dt

or        M 
dv
dt

= Fext. + (u – v) 
dM
dt

... (4)

The last term of equation (4) is the rate of change of momentum of the system due to mass leaving
it. This can be regarded as the reaction force exerted on the system by the leaving mass. For a rocket, this
term is called the thrust and it is the rocket designer’s aim to make it as large as possible. Now we can write

ext. reaction.
dv

M F F
dt

  ... (5)

2.1.3 Motion of a Rocket

Q7. Explain the principle and motion of a rocket.

(OR)

Derive an equation of motion of a rocket.

(OR)

Describe the principle of motion of a rocket as system of variable mass.

Ans : (Dec.-17)

A moving rocket in which the fuel gets burnt and comes out in the form of exhaust gases is a good
example of a variable mass system. The rocket consists of a combustion chamber in which a liquid or a
solid is burnt. When the fuel is burnt, the pressure inside the composition chamber rises very high. Due to
the high pressure, the hot gases (burnt liquid or solid fuel) are expelled from the nozzle at the tail of the
rocket). These expelled gases will be in the form of a jet having a very high exhaust velocity. This is the
action. Consequently, as a reaction, the rocket moves in a direction opposite to the direction of the out
coming gases. Thus, the rocket works on the principle of Newton’s third law of motion or the law conservation
of momentum which is a consequence of the Newton’s third law.

u

v

m

v+ v

Thrust

Originally at time t, the rocket of mass M (including fuel) is moving with a velocity V in the laboratory
frame of reference. Let us suppose that in a time interval Dt (that is at time t + Dt) an amount of mass DM
is ejected from the rocket out in the form of exhaust gas jet. Let us suppose that – U is the velocity of
exhaust gas jet with respect to the rocket. Then the velocity of the gas jet in the laboratory frame will be (V
– U). Let us write.

V – U = Vrel

The time interval t may be made as small as possible, and in the limiting case, t   0

M dM
t dt





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The rate of change of momentum of
gas jet coming out of the rocket


 
 = force acting on the jet

= (rate of change of mass the rocket) × velocity

= 
dM
dt

 (V – U)

According to Newton’s third law of motion, this is equal in magnitude and opposite in direction to
the thrust acting on the rocket responsible for the forward motion of the rocket.

dM
Thrust on the rocket  T (V U)

dt
  ... (1)

Let Fexternal be the external force acting on the rocket, which is due to gravitation.

Hence, Fext = – Mg ... (2)

 Force acting on the rocket in the forward direction will be

FResultant = 
dM
dt

 (V – U) – Mg ... (3)

But, according to Newton’s second law of motion, this force will be equal to the rate of change in
the momentum (p = MV) of the rocket. That is

FN = 
d
dt

 (MV) = M
dV
dt

+ V 
dM
dt

... (4)

From (3) and (4)

    M 
dV
dt

 + V 
dM
dt

= 
dM
dt

 (V – U) – Mg

= . V 
dM
dt

 – U
dM
dt

 – Mg

or
dV dM

M U Mg
dt dt

   ... (5)

This is the first rocket equation.

Now, let us go back to the stage when the rocket is just about to be fired when the gases just start
burning. Initially, at t = 0, let the rocket has got a velocity V0 and has got total mass M0.

In the present state, let at t = t, the velocity the be V and mass M.

From equation (5)

dV dM
U g

dt dt
  

or dV = – U 
dM
M

 – g dt
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Integrating,

0

V

V

dV = – U
0

V

V

dM
M  – g 

0

V

V

dt  = – U 
0

M

M

dM
M  – g 

0

t

t

dt

0

V
V[V] = – U 

0

V
e V[Log M]  – g

0

t
t[t]

V – V0 = – U Loge
0

M
M

 
 
 

 – gt

or V – V0 = U Loge 
0

M
M

 
 
 

 – gt

or V = V0 + U Loge 
0M

M
 
 
 

0
0 e t

M
V V ULog g

M
    
 

... (6)

This is the second rocket - equation.

Let the rate of decrease of mass of the rocket be taken as 

(i.e.,)
dM
dt

  ... (7)

If the exhaust gases flow out at a uniform rate, then  is a constant

and M = M0 – t = M0
0

1
M T

 
 

 

Let  = 
0M


... (8)

Then 0M M [1 t]  ... (9)

Equation (9) will be modified as

V – V0 = U Loge

1
1 t
 
   

 – gt

or t
0 eV V U log (1 t) g     ... (10)

Special Cases :

(a) If mass of the rocket is ignored, we can neglect the external force due to    gravitation – (i.e.,) the
term involving ‘g’ and hence,
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From equation (6) we get,

V =  V0 + U Loge
0M

M
... (11)

and M
dV
dt

 = – U 
dM
dt

... (12)

(b) And further, if the initial velocity V0 of the rocket is zero, then,

V = U Loge
0M

M
 
 
 

... (13)

(c) We can get the distance travelled by the rocket just by integrating the equations giving the velocity
of the rocket (i.e., equation 6, 10, 11, 12).

2.1.4 Multistage Rocket

Q8. What are the various stages of the rocket(multistage rocket) in motion?

(OR)

Explain the working of multistage rocket.

Ans : (Dec.-19, Dec.-18(MGU)

A rocket is the vehicle employed for space journey. It works on the principle of jet propulsion. The
principle of jet propulsion depends on the law of conservation of momentum, according to which the
momentum of the jet emerging in the backward direction makes the rocket to move in the forward,
direction.

According to the type of fuel used, rockets are classified as (i) liquid fuel rockets and (ii) solid fuel
rockets.

A rocket to have maximum velocity at its final stage, insists.

1. Relative velocity of gases to be maximum.

2. Final mass of the rocket M is very much less than initial mass of the rocket M0.

Relative velocity of gases coming out of rocket depends on temperature, pressure within the chamber.
It also depends on area of crossection of the nozzle. With the presently using fuel, temperature that
develops in the chamber is 30000C. Due to this temperature and depending on the crossesction of
nozzle, the maximum relative velocity can be expected only 2 km/sec.

From the optimum design of the fuel chamber (for liquid fuels) presently the value of 0M
M

 is maintained

at nearly 10, and for solid fuels this value further low.

Therefore even on neglecting the gravitational force, the maximum velocity that a rocket can attain,
starting from rest is from equation :

    v = rel eu log m gt c 

    v = 0 + 2 loge– (10) – 0

    v = 2 × 2.3 = 4.6 km/sec.
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This velocity is very much less than the orbital velocity of a rocket i.e., (11.2 km/sec). Due to this
reason, in order to launch a satellite multistage rockets are used. At the end of first stage, the rocket may
attain a velocity nearly 4.6 km/sec and later second stage that begin to work and first stage of rocket
detaches from the rocket. The velocity is adding up and finally, with all different stages the rocket attains
the required velocity.

Q9. State and prove work-energy theorem.

Ans :
Statement :

The workdone by a force on a particle is equal to the change in the kinetic energy of the particle.

We know that the quantity F dr = F dr cos  is defined as the work done by force F on the particle
during small displacement dr. When the force F acts on the particle during a finite displacement, the work
done is obtained as

W = F dr F cos dr   ...(1)

Proof :

Consider that a body of mass m is acted upon by a resultant acceleration force F along the X-axis.
Suppose the body moves from a position x1 to position x2 along         X-axis. Let the velocity of the body
increases from v1 to v2. The workdone by the force in the displacement is

             W = 
2

1

x

x

F dx ... (2)

But according to Newton’s second law

           F = m a = m 
dv
dt

 = m 
dv
dx

 . 
dx
dt

 = mv
dv
dx

Substituting this value in equation (2), we get

    W = 
2

1

x

x

m v = 
dv
dx

 dx = m 
2

1

v

v

v dv

= 
2

2 2
2 1

v 1 1
m mv mv

2 2 2
 

  
 

= K2 – K1 ... (3)

where the quantity 
1
2

m v2 is defined as the knienetic energy of the body, K2 and K1 are the final and

initial kinetic energies of the body.

If K be the change in kinetic energy, then K = K2 – K1

 W = K ... (4)
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So, whenever a body is acted upon by a number of forces, then the work-done by the resultant
force is equal to change in the kinetic energy of the body. This is known as work-energy theorem.

2.1.5 Conservation of Energy

Q10. Explain about the law of conservation of energy.

Ans : (June-17)

Law of Conservation of Energy

Suppose conservative forces operate on a system of particles. If Uf and Ui be the potential energies
of the system and W be the workdone then

     Uf – Ui = – W

and     W = Kf – Ki (work energy theorem)

Then     Uf – Ui = – (Kf – Ki)

    (Uf + Kf) = (Ui + Ki) ...(1)

The sum of potential energy and kinetic energy is called as total mechanical energy. Equation (1)
shows that the total mechanical energy of the system remains constant when conservative forces are
acting on the system. This is called as conservation of mechanical energy.

According to law of conservation of mechanical energy “energy can neither be created nor destroyed”.
It can be transformed from one form to another form.

Let us consider the case of a body of mass m at a height h above the ground as shown in figure (a).
At position A, the kinetic energy of the body is zero while its potential energy is m g h. The sum of two
energies is m g h. Now suppose that the body falls through a distance x where the velocity of the body

becomes v. Using the formula, v2 = u2 + 2 g h, we have the velocity as v = (2 g x) because u = 0. In

this case, the kinetic energy of the body is

21 1
mv m(2 g x) m g x

2 2
 

Potential energy of the body  = m g (h – x).

  Total energy = m g x + m g (h – x) = m g h

Suppose the body reaches to ground where its potential energy is zero. Here kinetic energy of the
body is m g h. So, the sum of kinetic energy and potential energy remains constant. So, the principle of
conservation of energy may also be stated as “the total energy in any system always remains constant.”

The variation of energy is shown in figure.

Fig.: (b)

It is obvious from figure that total energy remains constant (m g h) throughout.
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2.1.6 Conservation of Momentum

Q11. State and prove the law of conservation of linear momentum. What is its importance in
physics?

Ans :
Law of conservation of linear momentum : If the resultant external forces acting on a system of

particles is zero, the total linear momentum of the system remains constant.

Proof :

Consider a system of n particles whose masses are m1, m2, ..... mn. The particles are in fixed
positions so as to form a rigid body. Suppose the particles of the system are interacting with each other
and are also acted on by external forces, so that they acquiare velocities 1, 2, ..... n respectively. Then
their total momentum P of the system is the vector sum of the momenta p1, p2, ..... pn of the individual
particles.

i.e., P = p1 + p2 + ..... pn

   = m11 + m22 + ..... mnn

Differentiating with respect to time t, we have

dP
dt

 = 1dp
dt

 + 2dp
dt

 + ..... + ndp
dt

or
dP
dt

 = 
d
dt

 (p1 + p2 + ..... + pn)

or F = F1 + F2 + ..... Fn

where   F1, F2, ..... Fn are the forces acting on the particles of masses m1, m2, .....mn respectively.

The internal forces along cannot bring about any changes in the momentum of the body since they
form pairs of equal and opposite forces according to III law of motion and balance each other. So they do
not contribute anything to the total force. The above forces F1, F2, ..... Fn thus represent only the external
force acting on the system and F their resultant.

If the resultant external force is zero i.e., F = 0 then

dP
dt

 = 0

i.e., P = p1 + p2 + ..... pn = constant

This is the law of conservation of linear momentum and may be stated as follows:

Statement :

If the resultant external forces acting on a system of particles is zero, the total linear momentum of
the system remains constant.

Importance :

1. The law is a fundamental one and an exact law in nature. No violations of it have been
observed.

2. In mechanics, the law is useful in solving many problems.
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3. The law helps in the investigation of fundamental particles.

4. The law is applicable to atomic and nuclear physics.

5. The law holds good where Newtonian mechanics fails.

6. The law is applicable even at relativistic velocities.

Q12. State and prove the law of conservation of angular momentum with examples.

Ans :

Law of Conservation of Angular Momentum

The law of conservation of angular momentum states that if no external torque acts on a body
rotating about a fixed point, the angular momentum of the body remains constant.

If a number of particles, each free to move independently of the other or attached to one another
to form a rigid body, then the angular momentum of the different particles of the system about any point
is the vector sum of the angular momenta of the individual particles about that point.

Thus if J1, J2, ..... are the angular momenta of the different particles of the system about the given
point, then the total angular momentum J of the whole system about that point is given by

J  =  J1 + J2 + ...

    =  (r1 + mv1) + (r2 + mv2) + ...

    =   (r × mv) =  (r × p)

The torque  is given by

  =  
dj
dt

 =  r × 
d
dt

 (mv)

    =   r × F

In the above summation, the moments of the internal forces which form collinear action-and-
reaction pairs of equal and opposite forces, having equal and opposite moments about the given point
balance each other and hence they produce no effect.

Thus, the rate of change of angular momentum of the system about any fixed point is the sum of
the torques about that point of all the external forces acting on the system.

If the external torque  = 0, then

dJ
dt

 = 0  or  J = constant

i.e., J = J1 + J2 + ..... = constant

Thus when the external torque (or sum of the external torques) acting on a system of particles is
zero, the total angular momentum of the system remains constant.

The above is the principle or law of conservation of angular momentum.
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2.2  COLLISIONS

Q13. Explain the concept of collisions. What are the types of collision?

Ans :
Meaning

Collision between two bodies mean their coming into contact with each other. The term at present,
however, is not confined only to the actual contact. Two bodies which exert forces on each other and
affect each other’s motion, though not in actual contact are said to collide or interact with each other. For
example, interaction between astronomical bodies through the gravitational force can be regarded as a
collision. Another example being the interaction i.e., scattering of protons (or -particles) by heavy nucleus
through electrostatic forces can also be regarded as a collision.

Types

Motion of bodies after collision depends upon their degree of elasticity. Hence, collisions can be
divided into two categories viz., inelastic collision and elastic collision.

(i) Inelastic collision

When two bodies after collision, move as one and do not have any tendency to separate as they
were before collision, the collision is said to be perfectly inelastic.

For example, a collision between a bullet, and its target is completely inelastic, if the bullet remains
embedded in the target after collision. The relative velocity between the bullet and the target after
collision is zero.

The kinetic energy in all such collisions is not conserved. The linear momentum is, however, conserved.

(ii) Elastic collision

When two bodies after collision, separate by virtue of their elastic properties, the collision is said to
be perfectly elastic.

Examples of such collisions are inter atomic collisions or collisions between subatomic particles. In
practical life, collisions between” two ivory balls or two glass balls can be regarded as perfectly
elastic.

No kinetic energy or momentum is lost in elastic collision i.e., conservation laws of both kinetic
energy as well as momentum holds good in the case of perfectly elastic collisions.

In fact, no collision is perfectly elastic or perfectly inelastic. Only the degree of elasticity of collision
varies. The degree of elasticity of collisions is measured in terms of the coefficient of restitution.

Definition

The coeff of restitution is the ratio of the relative velocity of separation of the two bodies after
collision to the relative velocity of approach before collision.

i.e., coefficient of restitution (e) = 
Re l vel of separation after collision
Re l vel of approach before collision

The value of e depends upon the nature of the colliding bodies. For example,  e = 0.5, for two glass
balls and e = 0.20, for two lead balls.

In the case of perfect elastic collision, e = 1.
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Line of Impact

When two bodies collide, their surfaces will be in contact during collision. The line perpendicular to
the common tangent to the surfaces at the point of contact is called the line of impact.

Direct impact

If the centres of mass of the colliding bodies are initially moving along the line of impact, then the
impact is called head on or direct. After the direct impact, bodies continue to move along the line of
impact.

Oblique impact

If the centres of mass of the colliding bodies are not initially moving along the line of impact, then
the impact is called oblique.

Q14. Distinguish between elastic and inelastic collisions. Show that in one dimensional elastic
collision between two particles

(i) the relative velocity of approach before collision is equal to the relative velocity of
separation after collision.

(ii) if the particles are of equal mass, they simply exchange velocities during collision.

Ans : (Aug.-21, Dec.-21)

S.No. Elastic Collisions S.No. Inelastic Collisions

1. Elastic collisions conserve kinetic energy. 1. Inelastic collisions do not conserve kinetic energy.

2. These type of collisions do not occur in common and can 2. These type of collisions occur at atomic level.
 never be observed at macroscopic scales.

3. Coefficient of restitution of elastic collisions  is equal to 3. Coefficient of restitution of inelastic collisions  lies between 0
unity (i.e., e = 1). and 1 (i.e., 0 < e < 1).

4. The most common example of elastic  collision is the 4. The common example of inelastic collision is the collision
collision between two billiard balls.  between two vehicles wherein the colliding, vehicles  get lock

together with each other.

The kinetic energy in all such collisions is not conserved. The linear momentum is, however, conserved.

Elastic collision in one dimension

Consider two smooth and non-rotating spheres A and B of masses m, and m2 moving in the
direction shown in [Fig. (1) (a)] with velocities u1 and u2 respectively before collision. Let them collide
headon without any rotation. During collision, the balls get depressed at the region of mutual contact and
move together momentarily. A part of the kinetic energy is stored in the balls , as their potential energy of
deformation: As the collision is perfectly elastic, the spheres tend to acquire the original state. In so doing,
they separate and the potential energy of deformation reappears as their kinetic energy. Let u1 and u2 be
their respective velocities after collision in the direction shown in [Fig. (1) (b)].
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              Before Collision    Before Collision

             1 (a) 1 (a)

According to the principle of conservation of linear momenta

Momenta of A and B
 

before collision




 = 
Momenta of A and B

after collision
 
 
 

 m1u1 + m2u2 = m1v1 + m2v2

or m1(u1 – v1) = m2(v2 – u2) ... (1)

Applying the principle of conservation of K.E., we have

Total K.E. of A and B
 

before collision




 = 
Total K.E. of A and B

after collision
 
 
 


1
2

 m1u1
2 + 

1
2

 m2u2
2 = 

1
2

 m1v1
2 + 

1
2

 m2v2
2

or
1
2

 m1(u1
2 – v1

2) = 
1
2

 m2(v2
2 – u2

2) ... (2)

Eq (2)   Eq. (1), we have

2 2
1 1 1

1 1 1

m (u v )
m (u v )


  = 

2 2
2 2 2

2 2 2

m (v u )
m (v u )




or u1 + v1 = v2 + u2

or u1 + v1 = v2 + u2 ... (3)

Thus in an elastic one dimensional collision, the relative velocity of approach before collision is
equal to the relative velocity of separation after collision.

2 1

1 2

(v v )
or 1

(u u )
 

  

i.e.,
Re l. vel of separation after collision
Re l. vel of approach before collision  = 1

This means that the coefficient of restitution is unity.
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Calculation of velocities after collision :

v2 – v1 = u1 – u2 ... Eq. (3)

or v2 = u1 – u2 + v1

Substituting this value of v2 in Eq. (1), we get

m1 (u1 – v1) = m2 (v2 – u2)

  = m2 (u1 – u2 + v1 – u2)

  = m2 (u1 – 2u2 + v1)

or m1u1 – m1v1 = m2u1 – 2m2u2 + m2v1

or u1(m1 – m2) + 2m2u2 = v1 (m1 + m2)

 v1 = 
1 2

1 2

m m
m m

 
  

 u1 + 
2

1 2

2m
m m

 
  

 u2 ... (5)

Substituting this value of v1 in Eq. (4), we get

u2 = u1 – u2 + v1 ... Eq. (4)

    = u1 – u2 + 
1 2

1 2

m m
m m

 
  

 u1 + 
2

1 2

2m
m m

 
  

 u2

v2 = u1 
1 2

1 2

m m
1

m m
 
  

 + u2 
2

1 2

2m
1

m m
 

  

    = 
1

1 2

2m
m m

 
  

 u1 + 
2 1

1 2

m m
m m

 
  

 u2 ... (6)

Special Cases :

(i) When the colliding bodies are of equal masses i.e., m1 = m2. Putting m1 for m2 in Eq. (5), we get

v1 = 
1 2

1 2

m m
m m

 
  

 u1 + 
1

1 2

2m
m m

 
  

 u2 ... (5)

    = 
1 1

1 1

m m
m m

 
  

 u1 + 
1

1 2

2m
m m

 
  

 u2

    = 0 + 
1

1

2m
2m  u2

i.e., v1 = u2

Similarly, putting m1 for m2 in Eq. (6), we get
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v2 = 
1

1 2

2m
m m

 
  

 u1 + 
2 1

1 2

m m
m m

 
  

 u2 ... (6)

    = 
1

1 1

2m
m m

 
  

 u1 + 
1 1

1 1

m m
m m

 
  

 u2

    = 
1

1

2m
2m  u1 + 0

i.e., v2 = u1

Thus  v1 = u2 and v2 = u1 i.e., the velocities of two perfectly elastic bodies of the same mass are
interchanged after collision.

(ii) When one of the colliding bodies is at rest. Suppose the sphere B is at rest i.e.,           u2 = 0. Putting
u2 = 0 in Eq. (5) and (6), we get

v1 = 
1 2

1 2

m m
m m

 
  

 u1 ... (7)

and v2 = 
1

1 2

2m
m m

 
  

 u1 ... (8)

Let us further consider three sub-cases

(a) When both the spheres are of the same mass i.e., m1 = m2, then

v1 = 
1 1

1 1

m m
m m

 
  

 u1 = 
1

0
2m  u1 = 0  from Eq. (7)

v2 = 
1

2 1

2m
m m

 
  

 u1 = 
1

1

2m
2m  u1 =u1  from Eq. (8)

Hence, after collision, the sphere A stops and B moves with the initial velocity of A i.e.,
the velocities of A and B get interchanged after collision. This result has one of the most
important applications in nuclear physics i.e., in slowing down the neutrons. As neutrons and
protons have equal masses, most of the energy of the fast neutrons is reduced and transferred
to protons by passing them through a substance like water which contains a number of protons.

(b) When m1 is negligible as compared to m2, then

v1 = 
2

2

0 m
0 m

 
  

 u1 = u1 ... from Eq. (7)

... from Eq. (8)

and v2 becomes very small   0
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Hence the velocity of the sphere A after impact is equal and opposite to its velocity
before impact. The velocity of the sphere B, after impact is almost equal to zero.

Thus when a smooth elastic sphere strikes a smooth elastic plane fixed rigidly to earth, it
rebounds back nearly with the same speed.

(c) When m2 is negligible as compared to m1, then

v1 = u1 (approximately) ... from Eq. (7)

and v2 = 2u2 (approximately) ... from Eq. (8)

Thus, the velocity of the sphere A, after impact, is nearly equal to its velocity before impact and the
velocity of the sphere B, after impact, is nearly double the velocity of the sphere A before impact.

2.2.1 Collision in two and Three Dimensions

Q15. Explain in detail about collisions in two and three dimensions.

Ans : (Dec.-19(MGU), June-19, May-18, Dec.-17, June-17)

If the centres of mass of the colliding bodies are not initially moving along the line of impact, then
the impact is called oblique or collision in two dimensions.

In a collision process, particles participating in a collision may approach in any direction before the
collision, and they may recede in any direction after the collision. If the particles are confined to a plane,
such collisions are called two dimensional collisions. If the particles are moving in space such collisions are
called three dimensional collisions. Depending on the way how a collision takes place, a collision categorized
as head on collision or oblique collision.

Before the collision if particles are approaching along the line joining their centres is called head on
collision, if not it is an oblique collision. Let us discuss two dimensional obique collision.

Let two spheres of masses m1 and m2 are colliding with initial velocities u1 and u2 making on angles
of ,  respectively with the line joining their centres. After the collision the final velocities are v1 and v2
making an angles of , , respectively as shown in fig above. In the oblique collision, the impact force
during the collision will act only along the line joining their centres, but not in a direction normal to their
line joining centres. Therefore the normal velocity components do not change during the collision.

 v1 sin = u1 sin ... Eqn. (1)

 v2 sin = u2 sin ... Eqn. (2)

From the conservation of linear momentum

m1u1 cos  + m2u2 cos  = m1 v1 cos  + m2 v2 cos  ... Eqn. (3)
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From the conservation of kinetic energy

1
2

 m1u1
2 cos2  + 

1
2

 m2u2
2 cos2  = 

1
2

 m1v1
2 cos2  + 

1
2

 m2v2
2 cos2   ... (4)

By solving the above equations, the values of v1, v2, ,  can be determined.

From equation (3)

m1 (u1 cos – v1 cos) = m2 (v2 cos – u2 cos) ... (5)

Similarly from equation (4)

m1 ( 2
1u  cos2  – 2

1v  cos2 ) = m2 ( 2
2v  cos2  – 2

2u  cos2 ) ... (6)

By dividing equation (6) with (5)

u1 cos + v1 cos = v2 cos + u2 cos ... (7)

Substituting the above values in equation (5), we have

v1 cos = 
1 2

1 2

m m
m m


  u1 cos + 

1

1 2

2m
m m  u2 cos ... (8)

v2 cos = 
1 2

1 2

m m
m m


  u2 cos + 

1

1 2

2m
m m  u1 cos ... (9)

Special Cases

1. If u2 = 0 then from equation (2)

v2 sin = 0  and  v2   0

  = 0 i.e., after the collision the mass m2 will move along the line joining the two centres.

2. If m1 = m2, from equation (8)

v1 cos  = u2 cos 

Similarly from equation  (9)

v2 cos  = u1 cos 

The velocities will interchange along the line joining the centres of the spheres.

3. If m1 = m2 and then u2 = 0

v1 cos = 0 cos = 0  = 90o

From equation  (2)  sin = 0       = 0

After the collision, the two spheres will move in mutually perpendicular directions.

Let us discuss a special two dimensional elastic collision. This collision normally we see in nuclear
reactions.
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Consider a mass m, is moving with a velocity u1. It hits another stationary mass m2 in a head on

collision. After the collision, the incident particle i.e m, moves with a velocity v1 making an angle of 1 with
the line joining the centres. And the target particle m2 moves with a velocity v2, making an angle 2.

The angle 1 is called scattering angle and the angle 2 is called recoil angle. Resolving the velocities
along the X and Y axes, from conservation of linear momentum along X-axis.

m1u1 + 0 = m1v1 cos1 + m2v2 cos2 ... (10)

From the conservation of linear momentum along Y – axis, we have

0 + 0 = m1 v1 sin1 – m2 v2 sin2

 m1v1 sin1 – m2v2 sin2 ... (11)

From conservation of kinetic energy

1
2

 m1 2
1u  + 0 = 

1
2

 m1 2
1v  + 

1
2

 m2 2
2v ... (12)

There are three equations, 10, 11 and 12. But the unknowns are v1, v2, 1, 2. It is not possible to
determine the four unknowns from three equations. But the unknows can be determinal in a special case.
If m1 = m2 then from equation (10), we have

u1 = v1 cos1 + v2 cos2 ... (13)

v1 sin1 = v2 sin2 ... (14)

2
1u  = 2

1v  + 2
2v ... (15)

From equation (13), we have

v2 cos 2 = u1 – v1 cos1

2
2v  cos2 2 = 2

1u  + 2
1v  cos2 1 – 2u1v1 cos1 ... (16)

From equation (14), we have

2
2v  sin2 2 = 2

1v  sin2 1 ... (17)

Adding equations (16)  and (17)

2
2v  = 2

1u  – 2
1v  – 2u1 v1 cos1 ... (18)
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From equation (15)

2
2v  = 2

1u  – 2
1v ... (19)

From equations (18)  and (19)

2
1u  – 2

1v  = 2
1u  + 2

1v  – 2u1 v1 cos1

– 2
1v  = 2

1v  – 2u1 v1 cos1

–2 2
1v  = –2u1v1 cos1

or v1 = u1 cos1 ... (20)

Substituting this in equation (10)

2
2v  = 2

1u  – 2
1u  cos21

2
2v  = 2

1u  (1 – cos21)

2
2v  = 2

1u  sin2 1

or v2 = u1 sin1 .. (21)

The final velocities v1, v2 are normal components of u1. Therefore 1 + 2 = 90o.

Therefore in a two dimensional elastic head on collision, if the incident particle hits with a target
particle initially at test, then after the collision two particles move in mutually perpendicular directions.

2.2.2 Concept of Impact Parameter,  Scattering Cross Section

Q16. Explain the terms impact parameter and scattering cross-section.

Ans : (Dec-19(KU), Dec.-19(MGU), Dec.-18, June-18)

Rutherford observed that when a sharp beam of –particles falls on a photographic plate in vaccum,
a sharp image is obtained. If, however – a thin foil of metal is placed in the path of the beam, the image
becomes diffused (or scattered). The diffusion increases with both thickness and the atomic weight of the
obstacle. The phenomenon is called scattering of –particles.

Most of the scattered  – particles are deviated through angles of the order of 2o or 3o from the
direction of the incident beam; but a small number, say about 1 in every 10,000 scattered through angles
more than 90o. A few of the –particles wee even scattered directly in the backward direction i.e., angle of
scattering = 180o.

Impact Parameter

Consider a positive particle, like a proton or an -particle, approaching a massive nucleus N of an
atom, as shown in figure.
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Due to coulombic force of repulsion, the particle follows a hyperbolic path AB with nucleus N as its
focus. In the absence of the repulsive force, the particle would have followed the straight line path AC. As
shown in figure, p is the perpendicular distance from the nucleus N to the original direction AC of the
particle. The distance (NM = p) is called the impact parameter. Thus impact parameter is defined as the
closest distance between nucleus and positively charged particle projected towards it. This is also known as
collision parameter.

Scattering Cross Section

When -particles are projected into a thin metal foil, they are deflected or scattered in different
directions. Let N be the incident intensity (number of incident particles crossing per unit time a unit surface
placed perpendicular to the direction of propagation). Suppose dN be the number of particles scattered
per unit time into solid angle d located in the direction  and  [Fig. below] with respect to the bombarding
direction. The ratio dN / N is called scattering cross-section.

Thus the scattering cross section in a given direction is defined as the ratio of number of scattering
particles into solid angle d per unit time to the incident intensity.

 Scattering cross-section, sc = 
dN
N

Q17. What is Rutherford’s Scattering? Obtain the equation for the angle of scattering of 
particle in Rutherford Scattering.

Ans :
Let us examine the scattering of ‘’ particle with gold nucleus. Rutherford conducted the ‘’ scattering

experiment in the year 1911. Radium source emits ‘’ rays. These ‘’ rays after passing through narrow
slits collimated into a narrow beam. These ‘’ rays will collide gold nucleus. The analyse the problem in a
simple way let us consider this collision as a two particle collision between an ‘’ particle and gold nucleus.
Because both the particles are positive, the repulsive force acting between them is
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F = 
0

1
4  1 2

2

q q
r

... (1)

q1, q1 are the charges of ‘’ particle and gold nucleus respectively. To derive an expression for
scattering crossection let us follow the following assumptions.

1. The collision between ‘’ particle and gold nucleus is a elastic collision, neglecting wave nature of
the particle.

2. Gold nucleus and – particles are to be treated as point masses, neglecting the particle size.

3. Treat the gold nucleus as heavy and at rest.

-Particle
v0

b

G
-Particle

v0
b

G

Head on collision  p = 0

Fig. : (4)

4. The –particle with mass M, moving towards the nucleus G with an initial velocity v0. Consider ‘p’
be the impact parameter for the ‘’ particle. As the  particle approaching the nucleus its velocity
is reducing and follow an hyperbolic path int he repulsive field of nucleus. As the ‘’ particle
reaching point ‘c’, its velocity becomes minimum and from there it returns back out of the field in
a hyperbolic path. Initial direction of ‘’ particle is x,y. After scattering its final direction is POQ. Let

y ô p = , scattering angle.

Consider the head on collision of ‘’ particle with an impact parameter p=0. Here the ‘’ particle
will reach a point ‘c’ where its velocity becomes zero. From that point the ‘’ particle retrace its pat with a
scattering angle  = 180o. Here Gc = b, which is called distance of closest approach.

If the atomic number of gold nucleus is Z

Then the potential at point ‘c’ due to the nucleus = 
0

1
4

Ze
b

Potential energy at point ‘c’ is  = 
2

0

2Ze
4 b ... (2)

where ‘2e’ is the charge on ‘’ particle. From conservation of energy, the initial kinetic energy of ‘’
particle is equal to potential energy.


1
2

 mv 2
0  = 

2

0

2Ze
4 b

 mv 2
0  = 

2

0

4Ze
4 b

 b = 
2

2
0 0

Ze
mv ... (3)
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Generally this situation is possible with impact parameter p = 0. This kind of scattering occurs
rarely.

But the case p   o is very general to observe. Here the ‘’ particle moves on hyperbolic path ACD.

The scattering angle  < 180o.

The velocity of ‘’ particle at the vertex of hyperbolic path ‘c’ is v.

Initial angular momentum of ‘’ particle at point A = mv0p.

Final angular momentum of ‘’ particle at point c is

= mvd  (GC = d as in fig.)

From conservation of angular momentum

mv0p = mvd

v0p = vd

 v = 0v p
d

... (4)

The value of ‘p’ can be determined from conservation of energy.

Kinetic energy of ‘’ particle at point A = 
1
2

 mv 2
0

Kinetic energy of ‘’ particle of point c = 
1
2

 mv2

Potential energy of ‘’ particle at point c = 
2

0

2Ze
4 d

From energy conservation

1
2

 mv 2
0  + 0 = 

1
2

 mv2 + 
2

0

2Ze
4 d

mv 2
0  = mv2 + 

2

0

Ze
d

v 2
0  = v2 + 

2

0

Ze
m d 

v2 = v 2
0  – 

2

0

Ze
m d 

v2 = v 2
0  – 

2
0bv

d
  b = 

2

2
0 0

Ze
mv
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v2 = v 2
0  

b
1

d
  
 

... (5)

From equation (4), substitute the value of v

2 2
0

2

v p
d

 = V 2
0  

b
1

d
  
 

2

2

p
d

 = 1 – 
b
d

p2 = d(d – b) ... (6)

From the property of hyperbola, the eccentricity e = sec , the length of semi latus rectrum.

GO = a sec .   (Oc = a from fig above.

From GNO GO = p.cosec 

 a sec  = p cosec 

a = p cot 

From fig. (3)

GC = GO + OC

    d =  a sec  + a  =  a (sec  + 1)

=  p cot  (1 + sec )

=  p [cot  + cot  sec ]

=  p 
cos cos 1
sin sin cos

      

    d =  p 
cos 1
sin sin

    
 = p 

cos 1
sin
  

  

    d = p 

22.cos
2

2sin cos
2 2



  
 
 

    d =  p cot 2
 

 
 

Substituting this value in equation (6)

   p2 =  p cot 2
 

 
 

 pcot b
2

     
  
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   p =  cot 2
 

 
 

 p cot b
2

    
  

   p =  p cot2 2
 

 
 

 – b cot 2
 

 
 

   b cot 2
 

 
 

 = p cot2 2
 

 
 

 – p

   b =  

2p cot 1
2

cot
2

       
 

 
 

   b =  

2

2

cos
2p 1

sin
2

cos  
2

sin  
2

  
    
  

    
 

 
 
 

 
 

 =  

2 2

2

p cos sin
2 2

sin
2

             
 

 
 

 × 

sin
2

cos
2

 
 
 
 

 
 

   b =  
2p cos

2 sin cos
2 2


    

   
   

 = 
2p cos

sin




   b =  2p cot 

   b =  2p cot 2
   

 
 

, from fig (3)  = 
2

  

   b =  2p cot 2 2
   

 

   b =  2p tan 2
 

 
 

   tan 2
 

 
 

 = 
b

2p
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Substituting the value of ‘b’ from equation (3)

tan 2
 

 
 

 = 
2

2
0 0

Ze
mv 2p   or

 tan 2
 

 
 

 = 
2

2
0 0

Ze
2 mv p ... (7)

This is an equation for scattering angle of ‘’ particle for an impact parameter p. As the impact
parameter is decreasing, scattering angle will increase.

Q18. Explain about Rutherford’s cross-section. Obtain an expression for the Rutherford’s
scattering cross-section and also number of scattered particles per unit area.

(OR)

Derive an expression for Rutherford’s scattering cross sections.

Ans : (Dec.-18, June-18)

Let  n  be the number of atoms per unit volume of the scatterer of thickness t. The scatered particles
are detected by means of scintillations produced by them on a  fluorescent screen S. Let  Q  be the total
number of -particles that strike the unit area of the scatterer. Our aim is to calculate the number of
particles N that are scattered through an angle    and strike unit area of screen  S  as a distance r.

It is clear that any  -particle whose initial velocity would bring it within a distance  p  of the nucleus
will be deflected through an angle . In order to determine the probability that n -particle would come
within this distance, we imagine a circle of radius  p  drawn around each nucleus. The area occupied by all
such circles in unit area of foil is  p2 nt. The probable number of -particles coming within the distance
of an impact parameter  p  of the nucleus is given by

p2 t n Q

Hence, the number of -particules having an impact parameter between  p  and  p+dp is given by

d (p2 t n Q) = 2p t n Q dp

Thus, the number of -particles scattered between angle    and  + d  is

2  p t n Q dp ...(8)

Eq.(8) will be used in calculating Rutherford’s scattering formula.

Now the scattering cross section    is give by

  =  
Number of    particles scattered into solid angle per unit time

Incident intensity

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Solid angle between    and  +d,  dw = 2 sin  d

The number of -particles scattered into solid angle  d  is given by

s I d  =  I 2 sin  d

This should be equal to the number of incident a-particles having impact parameters between p
and (p + dp). The area between circles of radii (p + dp) and p is given by

d(p2 ) = 2 p dp

 Number of incident particles = 2 p dp I ... (10)

From equation (9) and (10), we get

I 2 sin  d = – 2p dp I

I = incident intensity. Negative sign is used to show that an increase in p causes a decrease in .
Hence

  = 
2 p dp I

2 sin d I
 
    = – 

p dp
sin d 

         p= 
2

2
0 0

Ze
cot

22 m


   [Using equation (7)] ... (11)

      dp = 
2

2
0 0

Ze
2 m  

21
cosec d

2 2
   

 

Substituting these value in equation (11), we get

     = 

22
2

2
0 0

Ze 1
cot . cosec d

2 2 22 m

sin d

   
    

 

or          = 

2 4 2

2 2 2 4
0 0

Z e cot cos ec
2 2

8 m . 2 sin cos
2 2

 

 
  

        = 
2 4

2 2 2 4 4
0 0

Z e
16 m sin / 2    ... (13)

This represents the Rutherford’s scattering cross section.

Rutherford Scattering Formula

The number of ‘’ particles, scatters between scattering angles  and  + d is = 2ptnQdp

But  p = 
b
2

 cot 2
 

 
 
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p = 
2

2
0 0

Ze
2 mv

 cot 2
 

 
 

dp = 
2

2
0 0

Ze
2 mv  

21
 cosec

2 2

      
   

 d

Substituting the value of dp in the above, we have

= 2 t n Q 

2

2
0 0

Ze cot
2

2 mv

  
    

 
  

 
2

2
2

0 0

Ze 1
 cosec d

2 22 mv
              

All these scattered particles will pass through an area on the screen

dA = (2 r sin )rd .

dA = 2r sin  r d

dA = 2 sin  r2 d

dA = 4 sin 2
 

 
 

 cos 
2


 r2 d

No. of scattered particles pass through a unit area

N = 

2
2

2
2 2

0 0 0 0

2

Ze cot
Ze 122  tnQ  cosec d

2 22 mv 2 mv

4  sin cos r d
2 2

  
                    

  
        

   

N = 
2 4

2 2 2 4
0 0

Q n t Z e
16  m  v 

 4

1
Sin ( / 2)  2

1
r

... (15)

The above equation represents Rutherford scattering formula. The value of N is

1. Proportional to ‘t’ thickness of target

2. Proportional to Z2, square of the atomic number.

3. Inversely proportional to v0
4

4. Inversely proportional to sin4 2
 

 
 

5. Inversely proportional to square of the distance.
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2.3  DEFINITION OF RIGID BODY

Q19. What is rigid body and Inertia? Obtain expression for the kinetic energy of a rotating
body.

Ans : (Dec.-17(MGU)

Rigid Body

A rigid body is an assembly of a large number of particles in which the number particle distance
remains the same when it is acted upon by an external force or torque.

The shape of the body, therefore, remains unaltered during its motion which may be translational
or rotational or combination of the two.

Interia

According to Newton’s first law of motion a body at rest will remain at rest and a body moving with
uniform velocity in a straight line will continue to do so unless an external force is applied to it. This
property of a body by virtue of which it is unable to change its state of rest or of uniform motion in a
straight line by itself is known as “inertia”

For translatory motion the value of inertia depends only on the mass of the body. The greater is the
mass greater is the inertia.

Kinetic Energy of Rotation

For translatory motion kinetic energy depends upon mass m and velocity v and is given by 
1
2

 mv2.

When a body rotates about an axis, the kinetic energy of its rotation is determined not only by its
mass m and angular velocity , but also depends upon the position of the axis about which it rotates and
the distribution of mass about this axis.

If a body A rotates about an axis xy with an angular velocity w, all its particles have the same angular
velocity, but as they are at different distances from the axis of rotation, the linear velocities are different
distances from the axis of rotation, their liner velocities are different. Let the linear velocities of the particles
of mass m1, m2 ... ; distant r1, r2 ... from the axis of rotation be v1, v2, ... respectively. The kinetic energy of
the body is therefore, equal to the sum of the kinetic energies of the various particles and is given by

Total K.E. = 
1
2

m1v1
2 + 

1
2

 m2v2
2 + .....

Since v = rw

 The K.E = 
1
2

 m1r1
2 2 + 

1
2

 m2r
2

2 
2 + 

1
2

 m3r
2

3 
2 + .....

= 
1
2

 (mr2) 2 = 
1
2

 2 mr2 =  
1
2

 I2
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y

X

A

r1
m1

m2

m3

r2



m4

This expression is similar to the kinetic energy of a body in translation motion 
21

mv
2

 
 
 

. Here in

rotational motion m is replaced by I and v is replaced by . It should be noted that m has a constant value
whereas I depends upon the axis of rotation.

Q20. Explain moment of Inertia and Radius of Gyration.

Ans :
Moment of inertia of a body about an axis is defined as the sum of the product of the mass and the

square of the distance of the different particles of the body from the axis of rotation.

The moment of inertia of the body is expressed as mr2.

The K.E. of rotation = 21
I

2


If  = 1, then I = 2 × kinetic energy

Hence moment of inertia may also be defined as twice the kinetic energy of rotation of a body
when its angular velocity is unity.

Radius of Gyration

If the entire mass of the body is supposed to be concentrated at a point such that the kinetic energy
of rotation is the same as that of the body itself, then the distance of that point from the axis of rotation is
called the radius of gyration of the body about that axis. If k denotes the radius of gyration and m the
mass of the body supposed to be concentrated at that point, then we have

K.E = 21
I

2
  = 

1
2

 Smr2 2 = 2 21
Mk

2


 Mk2 = mr2 = mn 
2 2

1 2r r ...
n

  
 
 

where n is the number of particle each of mass m into which the given mass m is divided.

Now M = mn   K = 

1/ 22 2
1 2r r ...

n
  
 
 
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According to the definition of radius of gyration given above the dimensions of k are those of length
[L'] alone.

Now moment of inertia I = Mk2

 Dimensions of I = [M1L2]

In S.I. units of moment of inertia is expressed as kg-m2

Q21. What is the physical significance of moment of inertia?

Ans :

Physical Significance

Moment of inertia plays the same role in rotatory motion as mass does in linear motion, i.e.,
moment of inertia is an analogue of mass in linear motion.

According to Newton’s First law of motion, a body continues in its state of rest or of uniform motion
in a straight line unless some external force acts upon it. This property of matter is known as inertia. A
body always resists an external force tending to change its state of rest of linear motion. Greater the mass
of the body greater is the force required to produce its state of rest or of linear acceleration.

Similarly bodies possess rotational inertia, i.e., a body free to rotate about an axis opposes any
change in its state of rest or of rotation. Greater the moment of inertia of a body greater is the couple
required to produce a given angular acceleration.

The moment of inertia depends not only on the mass of a body but also on the distribution of mass
about the axis of rotation.

If a solid disc and a wheel have the same mass of a body but also on the distribution of mass about
axis of rotation.

If a solid disc and a wheel have the same mass, wheel will have a greater moment of inertia as the
mass in it is distributed at larger distances from the axis of rotation passing through the centre. The
analogy between the moment of inertia in rotational motion and mass in linear motion and mass in linear
motion will be clear from the similarity in the relation for momentum, force, impulse, energy and work as
illustrated below.

S.No. Translation Motion S.No. Rotatory Motion

1. Linear momentum = mV 1. Angular momentum = I

2. Force = ma 2. Torque or moment of the couple =

I × angular acceleration = I 

3. Impulse = m(v2 – v1) 3. Angular impulse = I(2 – 1)

4. Kinetic energy = 
1
2

 mv2 4. Rotational K.E = 
1
2

I2

5. Work = Force × distance 5. Work = Couple × angular

displacement
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Q22. State and prove the theorem of perpendicular axis for moment of inertia.

Ans :
This theorem states that the moment of inertia of a plane lamina about an axis perpendicular to the

plane of the lamina is equal to the sum of the moments of inertia of the lamina about the two axes at right
angles to each other, in its own plane intessecting each other at the point where the perpendicular axis
passes through it.

To put the above in mathematical from let Ix and Iy be moments of inertia about the two axes
perpendicular to each other in the plane of the lamina then the moment of inertia I about a line passing
through the point of intensection and perpendicular to its plane is given by I = Ix + Iy.

Let OX and OY be the two perpendicular axes in the plane of the lamine. Let m1 be the mass of a
particle distant r1 from an axis through 0 perpendicular to the plane XOY. The distance of this particle from
the y-axis is x and that from the x-axis is y.

Moment of inertia of this particle about the x-axis = m1y1
2 and moment of inertia of this particle

about the y-axis = m1x1
2.

If we divide the whole lamina into a number of particles of masses m1, m2, m3, .. etc. at distances r1,
r2, r3, ... etc. So that the corresponding distance are y1, y2,  y3 ... from the x-axis and x1, x2, x3 ... from the
y-axis, then

Moment of inertia of the lamina about x-axis Ix = m1y1
2 + m2y2

2 + ... = my2 and the moment of
inertia of the lamina about the y-axis

    Iy = m1x1
2 + m2x2

2 + .... = mx2

 Moment of inertia of the lamina about a perpendicular axis through o

     I = m1r1
2 + m2r2

2 + ... = mr2

= m1(x1
2 + y1

2) + m2(x2
2 + y2

2) + ...

= mx2 + my2 + Ix + Iy

Q23. State and prove theorem of parallel axes for moment of inertia.

Ans :
Theorem of parallel axes states that the moment of inertia of a body about any axis is equal to the

sum of its moment of inertia about a parallel axis through its centre of gravity and the product of its mass
and the square of the distance between the two axes.
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Let CD be an axis in the plane of the paper and AB a parallel axis through G the centre of mass of
the body. The perpendicular distance between the two axes is h. Let M be the mass of the body and m1

the mass of the element at p distant x1 and from AB.

Moment of inertia of m, about CD = m1(x1 + h)2

= m1(x1
2 + h2 + 2x1h)

= m1 x1
2 + m2h

2 + 2m1x1h

Moment of inertia of the body about CD

      I = m1x1
2 + m1h

2 + 2m1x1h

If  Ig is the moment of inertia of the body about AB, an axes through G, then Sm1x1
2 = Ig

 I = Ig + Mh2 + 2h m1x1

Now m1x1 is the sum of the moments of all the particles about AB passing through G the centre of
gravity. Since the body is balanced about the centre of mass G, therefore the algebraic sum of all the
moments abut G is zero.

 m1x1 = 0

Hence I = Ig + Mh2

2.3.1 Rotational Kinetic Relations

Q24. Explain in detail about rotational kinetic relations.

Ans :
Let the axis of rotation be passing through O and is perpendicular to the plane of the paper, i.e., z-

ais is the axis of rotation.

In figure (a), a plane of the rigid body that is at right angles to the axis of rotation is shown. We
choose a particle P in this plane. To locate this particle, we require two coordinates namely position vector
r and angle . For different particles in this plane or in the rigid body, values of r and  will be different.

1. Angular Position

With r fixed if  is varied, we arrive at rotational motion, i.e., particle P rotates in a circle of radius r.
 is increasing in anticlockwise direction and is taken as positive whereas  in clockwise direction is taken as
negative. Obviously

 = 
s
r

 in radians.
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2. Angular velocity

Let the body be rotating in counter-clockwise direction. At time t], the particle is at P(tl) while at time
t2 it is at P(t2): the angular positions are , and . Therefore, the angular displacement is

2 – 1 = ,

during the time interval

        t2 – t1 = t,

so that average angular speed of the particle in this time interval will be

     
t


 



Figure (b)

The instantaneous angular speed  is defined as limit to which ratio 
t




 approaches as t tends to

zero, i.e.,

      =
t 0
lim
  t




 = 
d
dt


Since in a rigid body interparticle distance is fixed, therefore if one of the particles undergoes an

angular displacement dq in time dt so must the others which implies that ratio 
d
dt


 or angular speed w will

be same for every particle in the body. This means that rather than speaking the angular velocity for single
particle we can state for the whole rigid body rotates with an angular velocity w or it is the characteristic of
the body as whole. Since d has no dimensions, w has the dimensions of an inverse time (T–1). The unit
of w is commonly taken as rad./sec or rev./sec.

3. Angular Acceleration

If angular speed  of particle P is not constant, i.e., at time t1 angular speed is 1 and at time t2,
angular speed is 2 then this variation in angular speed in time interval (t2 – t1) gives rise to angular
acceleration. The average angular acceleration is defined as

     = 2 1

2 1t t t
   


 
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whereas the instantaneous angular acceleration is defined as

 = 
t 0
lim
 

 
t




 = 
d
dt


.

Since co is same for all particles in the rigid body, a must also be the same as a consequence of
above relations. Thus , like co, is a characteristic of the body as a whole. Its dimensions are T–2 and units
are taken to be rad./sec2.

2.3.2  Equation of Motion for Rotating Body

Q25. Obtain the equation of motion of a rotating body.

Ans :

Equation of a Motion of a Rotating Body

Consider a rigid body capable of rotatining with an angular velocity w about an axis AB passing
through a fixed point O. The direction of angular velocity  will be along the axis of rotation AB.

At any instant, let r be the position vector of a particle P of the body. If the length of the perpendicular
drawn from P on AB is PC = r0, then C will be the centre of the circle, described by the point P.  The speed
of the particle is given by

Speed = r0 = r sin where  = POC

The velocity of the particle P is given by v = 


× r

The direction of velocity v at any instant will be perpendicular to the position vector r and tangential
to the circular path.

The angular momentum Jp of the particle P about the point O is given by

    Jp =  r × mvp

and its direction is perpendicular to r and v. The angular momentum J of the entire body about the point
O is given by

      J = r × mvp = mr × (


× r)

= m[(r. r)


– (r..


)r] = m[r2 –  – (r cos ) r]

The magnitude of r along  will be r cos . The magnitude of the component (J0) of the angular
momentum J along the axis of rotation will be given by

     J0 = m[r2


– 
 r cos  r cos ]

= mr2


(1– cos2 ) = mr2


 sin2 

= 

mr0

m 2
0r  is the moment of inertia of the body about the axis of rotation and is represented by I.

 J0 = I 


 or j = I
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0


r

Jp

C
r0

P(m)



A



B

0


r

Jp

C
r0

P(m)



A



B

The torque  about a point is the rate of change of angular momentum about that point.

  =
dJ
dt

This is the general equation for a rotating body. For a body rotating about the axis of symmetry.

    = 
dJ
dt


 = 

d
dt (I )

 = I
d
dt



where d


/dt is the angular momentum. If the axis of rotation and the axis of symmetry are not the same,

J


 and 
  may not be along the same direction. The torque 0 about  the axis of rotating is given by

.= 0dJ d
(I )

dt dt
 




In case, the axis of rotation is fixed relative to the body, I will be constant so that the torque  about
the axis of rotation is given by

     = I 
d
dt



In the absence of external torque ( = 0), the angular momentum ( I
 ) about the axis of rotation

is conserved.

i.e., I
  = constant.

Q26. (a) Prove from first principles that out of an infinite number of straight lines which may
be drawn parallel to a given direction the moment of inertia of a body is least about
the one passing through its centre of gravity.

(b) Determine the moment of inertia of a diatomic molecule.

Ans :
(a) According to the principle of parallel axes the moment of inertia I of a body about an axis is equal

to the sum of its moment of inertia about a parallel axis through its centre of gravity Ig and the
product of its mass M and the square of the distance h between the two axes i.e., I = Ig + Mh2
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Hence for a number of axes which are all parallel to each other at distances h1, h2, h3 etc. from
the axis AB passing through the centre of gravity the moment of inertia is respectively given by

(Ig + Mh1
2), (Ig + Mh2

2)

and so on. The value of h2 is always positive whether h is towards the left or right of AB. Hence Mh2

is a positive quantity.

The least value of I is obtained when h = 0 i.e., when the axis passes through the centre of
gravity.

Fig. (a)

(b) Moment of inertia of a diatomic molecule (about its centre of mass): A diatomic molecule
consists of two atoms (similar or dissimilar) separated by a distance greater than the atomic dimensions.
The familiar examples of diatomic molecules are H2, O2, HCl etc.

To find the moment of inertia of a diatomic molecule like HCl about an axis passing through its
centre of mass, let m1 and m2 be the masses of the atoms separated by a distance r (the inter-nuclear
distance).

If the centre of mass of the molecule lies at O at a distance r1 from m1 and r2 from m2, then

       m1r1 = m2r2

or m1(r – r2) = m2r2

             r2 = 
1

1 2

m r
m m

Similarly             r1 = 
2

1 2

m r
m m

Fig. (b)
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The moment of inertia of the molecule about an axis, passing through O, the centre of mass and
perpendicular to the line joining the two nuclei is given by

I = m1r1
2 + m2r2

2

  = m1 

2

2

1 2

m r
m m

 
  

 + m2 

2

1

1 2

m r
m m

 
  

= 1 2

1 2

m m
m m

 r2 
2 1

1 2 1 2

m m
m m m m
 

   

where   = 
1 2

1 2

m m
m m  is known as the reduced mass of the molecule

Q27. Determine the M.I. of a plane circular disc about an axis through its centre perpendicular
to its plane.

Ans :
Moment of inertia of a circular disc about an axis through its centre perpendicular to its

plane. Let M be the mass of the disc and R its radius. Consider an elementary ring of radius x and width
dx as shown in fig. Its area is equal to the product of the circumference and width i.e., 2x dx.

  Mass per unit area = 2

M
R

 Mass of the element = 2

M
R

 2xdx = 2

2M
R

 xdx

Moment of inertia of the element about an axis through its centre perpendicular to its plane = 2

2M
R

xdx  x2 = 2

2M
R

 x3 dx

Hence moment of inertia of the whole disc about this axis

I = 2

2M
R

 
R

0
  x3 dx = 2

2M
R

 

R4

0

x
4

 
 
 

 = 
1
2

 MR2
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Q28. Determine the moment of inertia of a circular disc about its diameter.

Ans :
Moment of inertia of a disc about its diameter. The moment of inertia of a circular disc about an axis

perpendicular to its plane and passing through its centre is given by

I = 
1
2

 MR2

where M is the mass and R its radius.

Now consider two perpendicular diameters AB and CD of the circular disc as in fig. Since all the
diameters are symmetrical the moment of inertia of the disc about one diameter is the same as that about
any other diameter.

If I1 and I2 are the moment of inertia of the disc about two axes perpendicular to  each other, then
applying the principle of perpendicular axis, the moment of inertia I of the disc about an axis perpendicular
to the plane of the disc through O.

I = I1 + I2

Since the two diameters are symmetrical with respect to the disc I1 = I2

 I = 2I1  or  I1 = 
I
2

 = 
2MR

2
 × 

1
2

 = 
2MR

4

2.3.3 Angular Momentum and Inertia Tensor

Q29. Define rigid body. Derive an expression for the angular moments of a rigid body and
hence define inertia tensor.

Ans : (Dec.-19(KU), June-18(KU, Dec.-16)

Rigid Body :

A rigid body is defined as a system of particles in which the relative distance between its constituent
particles remains constant and unchanged during its transational or rotational motion.

Suppose a rigid body is made up of a large number of particles. Let (xi, yi, zi) and (xj, yj, zj) be the
co-ordinates of the ith and jth particle of the body and rij the distance between them. Then

rij = 
1

2 2 2 2
i j i j i j(x x ) (y y ) (z z )      
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For a rigid body rij = a constant during any translational or rotational motion of the body. The
translational motion may be, one, two or three dimensional. The rotational motion can only be either two
or three dimensional.

Angular Momentum of a Rigid Body :

Consider a rigid body rotating about a fixed point with angular velocity w


. Take the origin 0 at this
fixed point and the three co-ordinate axes X, Y and Z as shown in fig below.

Z

X

0
Y




ir


Z

X

0
Y




ir


The linear velocity of a particle i, having position vector ir


iv


 = 
  × ir



If mi is the mass of this particle then the angular momentum of the particle i about the fixed point o.

i


l  = ir


 × mi iv



  = ir


 × mi (
  × ir


) = mi ir


 × (


 × ir


)

Then, total angular momentum of the rigid body

L


 = 
i
  

i


l  = 

i
  mi ir


 × (

  × ir


) ... (1)

where

i
  represents summation over all the particles of the rigid body..

Using the vector identity

A


 × ( B


 × C


) = B


( A


 . C


) – C


( A


 . B


), we get

    L


 = 
i
  mi [(

  ( ir


 . ir


) – ir


 ( ir


 . i


)]

   = 
i
  mi [

  ri
2 – ir


 ( ir


 .  )] ... (2)

If (xi, yi, zi) are the cartesian co-ordinates of the particle i and (x, y, z). The components of
angular velocity w


 along the three co-ordinate axes, then
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ir


  =  xi î  + yi
ĵ  + zi k̂   and     r1

2 = 2
1x  + 2

1y  + 2
1z

and 
  =  x î  + y

ĵ  + z k̂

 ir


 . w


 = (xi î  + yi
ĵ  + zi k̂ ) . (x î  + y

ĵ  + z k̂ )

  = xi x + yi y + zi z

Substituting the values of , ri
2 and ir


 . 
  in component form in eqn. (2) we get

L


 = 
i
  mi [(x î  + y

ĵ  + z k̂ ) ( 2
ix  + 2

iy  + 2
iz )– (xi î  + yi

ĵ  + zi k̂ ) (xix + yiy + ziz)]

      =  
i
  mi [ î  (x

2
ix  + x

2
iy  + x

2
iz  – y xiyi – z xizi)

    + ĵ  (y
2
ix  + y

2
iy  + y

2
iz  – xxiyi – y

2
iy  – zyizi)

    + k̂  (z
2
ix  + z

2
iy  + z

2
iz  – x xizi – yyizi – z

2
iz )]

If  Lx, Ly and Lz are components of L


 along the three co-ordinate axes, then

Lx = 
i
  mi (

2
1y  + 2

1z ) x – 
i
  mi xi yi y – 

i
  mi xi zi z ... (3)

Ly = 
i
  mi yi xi x + 

i
  mi (

2
1z  + 2

ix ) y – 
i
  mi yi zi z ... (4)

and Lz = 
i
  mi zi xi x –

i
  mi zi yi y +

i
mi (

2
ix  + 2

iy ) z ... (5)

We now substitute

i
  mi (

2
iy  2

1z ) = Ixx  ;  –
i
  mi xi yi = Ixy  ;  –

i
  mi xi zi = Ixz

–
i
  mi yi xi = Iyx  ;  –

i
  mi (

2
1z  + 2

ix ) = Ixy  ;  –
i
  mi yi zi = Iyz

and –
i
  mi zi xi = Izx  ;  –

i
  mi zi yi = Izy  ;  

i
  mi (

2
ix  + 2

iy ) = Izz

Equations  (3), (4) and (5) now become

Lx = Ixx x + Ixy y + Ixz z ... (6)

Ly = Iyx x + Iyy y + Iyz z ... (7)

and Lz = Izx x + Izy y + Izz z ... (8)

 L


 = î (Ixx x + Ixy y + Ixz z) + ĵ  (Iyx x + Iyy y + Iyz z) + k̂  (Izx x + Izy y + Izz z)

This equation shows that the angular momentum vector L


 is, in general, not in the same direction
as the angular velocity vector 


 nor it is in the direction of axis of rotation.
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In the matrix form equations (6), (7) and (8) may be expressed as under

x

y

z

L
L

L

 
 
 
  

 = 
xyxx xz

yx yy yz

zyzx zz

II I
I I I

II I

 
 
 
  

 
x

y

z

 
  
  

Moment of Inertia Tensor
In vector notation the result stated above in matrix form may be expressed as

L


 = I


w


 where  I


 = 
xyxx xz

yx yy yz

zyzx zz

II I
I I I

II I

 
 
 
  

is called the moment of inertia tensor or simply inertial tensor. It is a tensor of second rank, which
has nine components.

Q30. Define principal moments of inertia, products of inertia, and principal axes of a rigid
body. Why are they important?

Ans : (Dec.-16)

Principal moments of inertia

In vector notation the angular momentum L


 of a rigid body may be expressed as

L


 = I




 where  I


 = 
xyxx xz

yx yy yz

zyzx zz

II I
I I I

II I

 
 
 
  

is called the moment of inertia tensor.

The nine quantities Ixx, Ixy, Ixz  ; Iyx, Iyy, Iyz ; and Izx Izy, Izz are the components of the moment of inertia
of the body about the fixed X, Y and Z axes.

The diagonal elements Ixx, Iyy and Izz are the moments of inertia of the rigid body about X-axis, Y-axis
and Z-axis respectively and are called principal moments of inertia (or principal moments).
Products of inertia

The off diagonal elements Ixy, Ixz, Iyx, Iyz ;  and  Izx, Izy are called products of inertia. These occur in
symmetric pairs i.e.,

Ixy = Iyx ; Iyz = Izy ; and Ixy = Izx

The rotational behaviour of a rigid body about a given point is determined by a set of six quantities,
the three principal moments of inertia and the three products of inertia.

Principal axes of inertia
A set of three mutually perpendicular axes drawn through a point in the rigid body taken as origin,

such that the products of inertia (Ixy, Iyx; Iyz; Izy ; Ixz, Izx) about then vanish i.e. each is equal to zero whereas
(Ixx, Iyy, Izz) the principal moments of inertia are non zero are called principal axes of inertia or simply
principal axes.

In terms of principal axes, the angular momentum of a rigid body is given by

L


 = xxI


 x


î  + Iyy y ĵ  + Izz z k̂
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Q31. Explain the statement ‘Inertia tensor is symmetric’.

(OR)

State the properties of moment of inertia tensor.

Ans :
(a) Inertia tensor is symmetric

The moment of inertia tensor is given by

I


 = 
xyxx xz

yx yy yz

zyzx zz

II I
I I I

II I

 
 
 
  

It is called symmetric because its off diagonal elements known as products of inertia are equal i.e.

Ixy = Iyx ; Ixz = Izx ; Iyz = Izy

(b) Properties of moment of inertia tensor

1. The moment of inertia tensor is a symmetric tensor i.e. its off diagonal elements are equal

 Ixy = Iyx ; Ixz = Izx ; Iyz = Izy

As a result of this, there are only six independent components

Ixx, Iyy, Izz and Ixy, Iyz, Izx

As the products of inertia about the three principal axes are zero, i.e.

Ixy = Iyx + Ixz = Izx = Iyz = Izy = 0

Only three components are left, Ixx, Iyy and Izz which are sometimes written Ix, Iy, Iz.

2. Spherical top : A rigid body for which Ixx = Iyy = Izz is called a spherical top. In a spherical top
all the axes are symmetric. A sphere is an example of a spherical top.

3. Symmetric top : A rigid body for which

Ixx = Iyy   Izz

is called a symmetric top. A cylinder satisfies this condition. If the axis of the cylinder is taken as
principal Z-axis, then X and Y-axes are symmetric axes. But a cylinder is not called a symmetric
top. On the other hand all rigid bodies which do not have cylindrical shape but satisfy the
condition given above are considered as a symmetric top. The earth flattened at the poles and
bulging at the equator satisfies the above condition and is taken to be a symmetrical top.

4. Asymmetric top : A rigid body for which

Ixx   Iyy   Izz

is called an asymmetric top. A rigid body, in general is an asymmetric top.

5. Rotor : A rigid body for which

Ixx = Iyy  and  Izz = 0

is called a rotor. Example, a diatomic molecule.
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2.3.4  Euler’s Equation

Q32. Derive Euler’s equations of rotation of a rigid body about a fixed point.

(OR)

Obtain Euler’s equations of a rigid body rotating about a fixed point.

(OR)

Derive Euler’s equation for a rigid body.

Ans : (Dec.-19(MGU), Dec.-18, June-18, Dec.-17(MGU)

Euler’s equations

The time rate of change of angular momentum of a rigid body about a fixed point is equal to the
resultant external torque acting on the body about that fixed point.

If 


 is the torque and L


 the angular momentum, then




 = 
dL
dt


... (i)

This equation holds good if the system of axes has a fixed orientation in space i.e. the inertial frame
is fixed in space.

In order to study the rotation of a rigid body, the system of axes should be fixed in the body itself
and the origin should be coincident with the fixed point about which the body is rotating so that as the
body rotates the co-ordinate axes also rotate with the body.

The time rate of change of any vector in a fixed frame can be transferred to the time rate of change
of the same vector in a rotating frame using operator equation

S

d
dt

 
 
 

 (–)  =  
R

d
dt

 
 
 

 (–) + 


 × (–)R

where

S

d
dt

 
 
 

 represents the time rate of change in stationary frame,

R

d
dt

 
 
 

 the time rate of change in the rotating frame

and (–) the rotating vector.

Applying this operator equation to equation (i), we get

R


 = 
s

dL
dt

 
  
 



 = 
R

dL
dt

 
  
 



 +  
R

  L 


or 


 = 
dL
dt


 + 


 × L


 ... (iii)
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Now, the angular momentum of a rigid body rotating with angular vector 


 about a fixed point is
given by

    L


=  Lx î  + Ly
ĵ  + Lz k̂

= (Ixx x + Lxyy + Lxzz) î  + (Iyx x + Iyyy + Iyz z) ĵ

+ (Izx x + Izy y + Izz z) k̂

If î , ĵ  and k̂  are the unit vectors along the principal axes of inertia at the fixed point in the rigid
body about which it is rotating. Then

Ixy = Iyx = Izx = Ixz = Iyz Izy = 0

and we get L


 = Ixx x î  + Iyy y ĵ  + Izz z k̂


dL
dt


 = Ixx 

xd
dt


 î  + Iyy 
yd

dt


ĵ  + Izz 

zd
dt


k̂ ... (iii)

This gives the first term on the right hand side of eq. (ii).

To find the value of second term, we have




 × L


 = yx z

yy yxx x zz z

ˆ ˆˆ ji k
  

II I

 
 

     = î  (Izz y z – Iyy y z) + ĵ  (Ixx x z – Izz x z)

+ k̂  (Iyy x y – Ixx x y)

     = î y z (Izz – Iyy) + ĵ  x z (Ixx – Izz)

+ k̂  x y (Iyy – Ixx) ... (iv)

Substituting the value of 
dL
dt


 from Eq. (iii) and 


 × L


 from Eq. (iv) in Eq. (ii), we get




 = Ixx 
xd

dt


 î  + Iyy 
yd

dt


 ĵ  + Izz 

zd
dt


 k̂

+ î  y z (Izz – Iyy) + ĵ  x z (Ixx – Izz) + k̂  x y (Iyy – Ixx)    ... (v)

Now 


 = x î  + y
ĵ  + z k̂ ... (vi)

Comparing (v) and (vi), we get
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x = Ixx 
xd

dt


 + y z (Izz – Iyy) ... (vii)

y = Iyy 
yd

dt


 + x z (Ixx – Izz) ... (viii)

z = Izz 
zd

dt


 + x y (Iyy – Ixx) ... (ix)

Eq. numbers (vii), (viii) and (ix) for x, y and z are known as Euler’s equations for the motion of

the rigid body. These equations give the values of components of torque 


 = 
dL
dt


 relative to the rotating

principal axes, in terms of angular velocity of the principle axes and principal moments of inertia.

2.3.5  Precessional of a Symmetric Top

Q33. What is a symmetric top ? Derive an expression for the angular velocity of precession of
a symmetric top.

OR

Discuss the motion of a top and obtain an expression for the precessional frequency.

Ans : (Aug-21, Dec.-19, June-19, Dec.-18(MGU), Dec.-17)

Symmetric top

A symmetrical body spinning about an axis which is fixed at one point is called a top.

Precession of a top spinning in Earth’s gravitational field

Consider a top spinning about its axis of symmetry with an angular velocity . Its tip being a fixed
point coinciding with the origin O of an inertial frame of reference.

The angular velocity vector 


 and the angular momentum vector L will be pointed along the axis
of rotation according to the right hand rule. Let the axis of rotation make an angle  with the vertical at the
instant considered.

The forces acting on the top are

(i) its weight mg acting vertically downwards at its centre of mass C.

(ii) the upward force on the tip or pivot O. This force exerts no torque about O as it passes
through O.
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Hence the weight mg exerts a torque  about
O given by

 = r × mg
where r is the position vector of C with respect

to O.  is directed perpendicular to the plane
containing r and mg according to the right hand
rule.

The magnitude of || is given by
 || = r mg sin (180 – )

= r mg sin  ... (1)
when a torque  acts on a rigid rotating body,

it changes the angular momentum L of the body,
given by

 = 
L
t




or L =   t ... (2)
In the present case  is perpendicular to L.

Hence the change in L i.e., L (being in the direction
of ) will also be perpendicular to L.

If L be the angular momentum of the top at
time t, the angular momentum L + L, after a time
interval t is given by the vector sum of L and L.
As L is perpendicular to L and is very small, the
new angular momentum vector has the same
magnitude as the old but a different direction so
that the angular momentum vector of the top moves
around a horizontal circle. i.e., L precesses around
the vertical axis and sweeps out a cone. This is called
precessional motion of the top. The angular velocity
of precession p (or precessional frequency) is given
by

p t


 


... (3)

where  is the angle through which the
vector L rotates in time t. As is clear from the figure
that L << L, hence

L = R 

or  = 
L

R


 = 
L

L sin 




Substituting the value of  in eq. (3), we
have

p = 
L

L sin  ×  t

 

 = 
 L
 t




 × 
1

L sin 

 But
 L
 t




 =   from Eq. (2)

 p = 
L sin 




  and  = r mg sin   from Eq. (1)

 Hence p = 
r mg sin 

L sin 



 = 

mgr
L

Thus the precessional angular velocity is
independent of  and is inversely proportional to
the magnitude of the angular momentum L.

If L is large p the precessional angular velocity
will be small i.e., the faster the top spins about its
own axis, the more slowly it precesses about the
vertical axis.

2.3.6 Gyroscope

Q34. What is Gyroscope? Give its uses
advantages and applications.

(OR)

Describe Gyroscope.

Ans : (June-18)

A gyroscope is a heavy symmetrical body
(top) in the form of a heavy circular disc or fly wheel
rotating at a very high speed about is axle.

Gyroscopes have two basic properties :
precession. Those are defined as follows:
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1. RIGIDITY : The axis of rotation (spin axis)
of the gyro wheel tends to remain in a fixed
direction in space if no force is applied to it.

2. PRECESSION : The axis of rotation has a
tendency to turn at a right angle to the
direction of an applied force.
The gyroscope is mounted in gimbals so that

the disc and axle are both free to turn as a whole
about any one of the three perpendicular axes XX',
YY' and ZZ' which intersect at a common point O.
Each gimbal is mounted in the next gimbal with
jewelled bearings which are made up of a very hard
material like agate or saphire to reduce frictional
torque.

The spinning disc D is fixed in a ring PP which
is free to rotate about its axle coinciding with the
axis of symmetry XX'. The ring PP in turn is fixed in
another ring QQ which is free to rotate along YY'
axis perpendicular to XX'. Further the ring QQ is
fixed in a rigid frame work FF along the axis ZZ'. In
this rigid frame work the gyroscope possesses three
degree of freedom and can rotate about any of the
three axes. The motion of the gyroscope consists of
rotation, precession and nutation.

When a torque is applied to the axis of
rotation of the disc it give rise to the precession of

the axis of rotation. The rate of precession  = 
I



As  is inversely proportional to I and , larger
the value of I - the moment of inertia of the disc
and greater the angular velocity  smaller will be
the rate of precession. But a gyroscope, to be useful
and effective, must have a large value of angular
momentum, which is possible only with a heavy
disc rotating at a very high speed.

Advantages

1. They really make smaller stabilized system
2. They impart greater Stabilization
3. They are Accurate and Easy to understand.
Disadvantage
1. The Gyroscopes are really expensive, but not
in the terms of camera stabilization.
2. They are noisy if you are concerned about
sound.
3. Pan and tilt speed is limited.
4. They take too much time to get up the speed.
5. They require another cable, battery and an
inverter to work.
Uses
(i) Gyrocompass

The gyroscopes are used in ships and
aeroplanes to give a continuous indication of
the north - south direction. For this purpose
the gyroscope is set along the magnetic
meridian. Such a gyroscope is known as a
gyrocompass.
For this purpose, a large and heavy gyroscope

is used. The gyroscope is mounted in such a way
that it can spin at a very high speed about a vertical
axile, which can tilt forward or backward. The shaft
of the gyroscope disc is supported in bearings fixed
to the ship. When the ship rolls up and down the
gyroscope is automatically ti lted forward or
backward so that its precession gives rise to a torque
which acts in a direction opposite to that of the
rolling ship. This torque brings the ship back to its
stable position. Such a gyroscope is called a
gyrostabiliser.
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Q35. Explain the theory of action of a
gyroscope?

Ans :
Gyroscope

A top is a symmetrical body spinning about
an axis which is fixed at one point. If the fixed point
about which a symmetrical body is spinning about
its axis coincides with the centre of gravity of the
body, then it is called a gyroscope.

Theory and Action of a Gyroscope

The gyroscope consists of a heavy circular disc
of large moment of inertia free to rotate at high
speed is arranged writhing the rectangular frame.
The disc rotates about its axis. The angular velocity
vector  will be along the axis from the fixed pivot
O. The axis of gyroscope can itself rotate about O.
For such a rotation of the angular velocity vector,
the tip of the angular momentum vector L also
moves in a horizontal circle with time (shown by
dotted curve) making the gyroscope precess about
O. But the precessional velocity p is small compared
to the angular vector of the circular disc within the
frame work.

Let P be the upward force at the gyroscope
mg is acting vertically downward at a distance R
from O. The force P has a moment due to mg about
O, which is given by


  = mg R

and this torque acts in the direction
perpendicular to 

  and P. This direction also moves
in a circular path around O as the direction of
 changes.

 
  = 

dL
dt

Let d be the angle through which L turns in
a time dt, then.

L d = dL

or d = 
dL
L

Hence the precession velocity p is given by

p = 
d dL 1
dt L dt

   = 

L


Thus the precessional velocity is inversely
proportional to the angular momentum i.e., when
the angular velocity of the gyroscope is large, the
precessional velocity of the angular momentum is
small. Thus gyroscope is a device characterized by
the greater stability of its axis of rotation.

Q36. Write in detail about precession of
equinoxes.

Ans :
Axial precession is gravity-induced, slow, and

continuous change in the orientation of an
astronomical body’s rotational axis. In particular, it
can refer to the gradual shift in the orientation of
Earth’s axis of rotation, which, similar to a wobbling
top, traces out a pair of cones joined at their apices
in a cycle of approximately 26,000 years. The term
“ precession” typically refers only to this largest part
of the motion; other changes in the alignment of
Earth’s axis-nutation and polar motion– are much
smaller in magnitude.

Earth’s precession was historically called the
precession of the equinoxes, because the equinoxes
moved westward along the ecliptic relative to the
fixed stars, opposite to the yearly motion of the Sun
along the ecliptic.

The discovery of the precession of the
equinoxes is mostly attributed in the west to
Hellenisticera (2nd country BC) astronomer
Hipparchus, although there are alternative
suggestions claiming earlier discovery such as in
Indian text vedanga Jyotisha from 700 BCE. With
improvements in the ability to calculate the
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gravitational force between and among planents during the first half of the nineteenth century, it was
recognized that the ecliptic itself moved slightly, which was named planetary precession, as early as 1863,
while the dominant component was named lunisolar precession. Their combination was named general
precession, instead of precession of the equinoxes.

Precession of Equinoxes is due to precessional motion of earth’s rotational axis. The orbit plane of
the earth, revolving around the sun and plane passing through the equator of earth are inclined to each
other by an angle 23.5°. These two planes are intersecting at points A & B. These points are shown in
figure. The point A is called vernal equinox and points A & B is called line of Equinoxe. While the earth
revolving around the sun, it may reach point A on 21st march and point ‘B’ on 22nd September.  For these
two days the length of day and night will be equal.

At the equinoxe points the rotational axis of the earth, undergoes precessional motion. The internal
torque created on the earth due to two reasons 1. shape of the earth is not a perfect sphere. It is bulged
at the equator and flattended at the poles. This shape gives a symmetry of top 2. The attractive force
experienced by the earth from sun and moon are not equal.

The unequal attractive fore due to sun and moon will create an internal torque on the earth. This
leads to precessional motion of earth’s rotational axis. The rotational axis of the earth’s will complete a
cone with respect to pole star. The precessional motion of rotational axis of earth will bring a change in the
direction of line of equinoxe. This phenomenon is called precision of equinoxes. As the torque acting on
the earth is small, the rotational axis will take nearly 25,800 years to complete a total cone due to precessional
motion. For this small precessional angular velocity of the axis, the vega star will be fixed as pole star for
nearly 1200 years.

PROBLEMS

1. The burnt fuel in a rocket is ejecting out with velocity of 1.6 km/sec. If the rocket starts
from rest, then show that mass ratio of fuel to mass of empty rocket is 1100, for gaining
an escape velocity of 11.2 km/sec ?

If the fuel burnt rate is 1/10 of initial mass, then find the time to attain the velocity of
11.2 km/sec?

Sol :
Initial velocity of rocket vi = 0

Velocity of gases coming out of rocket vi = 1.6 km/sec

The final velocity of rocket v = 11.2 km/sec.

Equation for the final velocity of rocket is
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v = v0 + urel loge 
0M

M

11.2 = 0 + 1.6 loge 
0M

M

loge 
0M

M
 = 

11.2
1.6

 = 7

0M
M

 = e7 = 1101 ( M = Me, mass of the empty rocket, the maximum

       velocity attains only when fuel is completely exhausted)

0

e

M
M  = 

e f

e

M M
M


 = 1 + 
f

e

M
M

f

e

M
M  = 0M

M
 – 1

f

e

M
M  = 1101 – 1 = 1100

(b) Fuel burnt rate 
dM
dt

 =  = 
1

10
 M0

M = M0 – t = M0 
0

t
1

M
 

 
 

M = M0 
t

1
10

  
 

   1 – 
t

10
 = 

0

M
M

t
10

 = 1 – 
0

M
M  = 1– 

1
1101    0M

M
 = 1101

       = 
1100
1101

    t  = 
1100
1101

 × 10

    t  = 9.99 sec.
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2. (a) Find the momentum of an electron with kinetic energy 100 eV ?

(b) The car and truck masses are 4000 kg and 10,000 kg respectively ?

(i) At what speed of truck does its momentum equal to momentum of car travelling
with a speed of 30 m/s ?

(ii) At what speed of truck does its kinetic energy equal to kinetic energy of car
travelling with a speed of 30 m/s ?

Sol :
(a) Mass of the electron m = 9 × 10–28 gram.

Kinetic energy  = 
1
2

 mv2 = 100 eV

   
1
2

 mv2 = 100 × 1.6 × 10–12 erg.

   
2P

2m
 = 1.6 × 10–10

    P2 = 1.6 × 10–10 × 2 × 9 × 10–28

     = 1.6 × 18 × 10–38

P   = 381.6 18 10   = 5.37 × 10–19 gm.cm.sec–1

(b) (i) If the velocity of truck is ‘v’ then

10,000 × v = 4000 × 30

v = 
4000 30
10,000


 v = 12 m/sec

(ii) If the velocity of truck is ‘v1’ then

1
2

 × 10,000 × 2
1v  = 

1
2

 × 4000 × 30 × 30

2
1v  = 360

 v1  = 18.97 m/sec.

3. A rocket burns 0.02 kg of fuel per second ejecting it as a gas with a velocity of 10,000
m/sec. What force does the gas exert on the rocket?

Sol :
The thrust (Freaction) exerted by the escaping gas on the rocket is given by

Freaction = u 
dM
dt
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Here, u = 10,000 m/sec   and   
dM
dt

 
 
 

 = 0.02 kg.

 Freaction = (10,000) × (0.02)

  = 200 N

4. An empty rocket weights 6000 kg and contains 44000 kg of fuel. If the exhaust velocity
of gases is 1 km/s, find the maximum velocity attained by the rocket.

Sol :

max = u loge 
0M

M

= u × 2.3 log10 
0M

M

= 1 × 2.3 log10 
50,000
6000

 
 
 

    (  M0 = 44000 + 6000 = 50,000)

= 1 × 2.3 × 8.33

= 19.16 km/s

5. A rocket having an initial mass M0 starts from rest. When it attains a velocity , its mass
becomes M. What is the ratio of (M0 / M) when the velocity of exhaust gases is equal to 
(numerically).

Sol :
The velocity  of the rocket at any instant of time t is given by

 = 0 + u loge 
0M

M
 
 
 

Given that  0 = 0,     u = 

  = 0 +  loge 
0M

M
 
 
 

or loge 
0M

M
 
 
 

 = 1

or 0M
M

 = e = 2.717.

6. In a two stage rocket, the masses of first and second stages 300 kg and 30 kg respectively,
the fuel filled is 2400 kg and 270 kg respectively. If the exhaust velocity of gases is 2
km/sec then what is the final velocity of rocket?
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Sol :
The velocity attained by the rocket at the end of first stage

v = u loge 
0M

M

But  here M0 = 300 + 2400 + 30 + 270

    = 3000 kg

M  =  300 + 30 + 270 = 600 kg

u   =  2 km/sec

 v   =  2 × loge 
3000
600

= 2 × loge 5

v   =  3.22 km / sec

The velocity v = 3.22 km/sec will be the initial velocity to second stage.

Thus by the end of second stage the final velocity

v0  =  3.22 km/sec

M0 =  30 + 270 = 300 kg

M  =  30 kg

V  =  v0 + u loge 
0M

M

V  =  3.22 + 2 × loge 
300
30

    =  3.22 + 2 × loge 10

V  =  7.82 km/sec

7. Find the length contraction of 1.5 m rod moving with a speed of 0.95 c (c is the velocity
of light).

Sol :

l1 = 
2 2

1

1 / c 

l  =  1.5 m

 =  0.95 c

l' =  2

1.5

1 (0.95)  = 
1.5

1 (0.9025)  = 
1.5

0.0975
 = 

1.5
0.3122

l’ =  4.8046 m
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8. A rocket of mass 10,000 kg has got a full of mass 30,000 kg inside it. Fid the exhaust
velocity of the gases in 2 km/sec, find the maximum velocity of the rocket that can be
obtained.

Sol :

Maximum velocity of rocket vmax = u loge 
0M

M
 
 
 

M = Mass of rocket = 10,000 kg

M0 = Mass of rocket + fuel mass = 10,000 + 30,000 = 40,000 kg

u = Exhaust velocity of gases

u = 2 km/s

  vmax = 2 loge 
40,000
10,000

 
 
 

= 2 loge 4 = 2 × 2.3 log104

= 2 × 2.3 × 0.60206

 vmax = 2.7694 m/s

9. Find the magnitudes of gravitational field and potential at a distance of 10 cm from the
center of a solid sphere having a mass of 1 kg and a radius of 5 cm.

Sol :
M = 1 kg,  a = 5 cm = 5 × 10–2 m

 G = 6.67 × 10–11 N

G. Potential V = – 
GM
a

= 
11

2

6.67 10 1
5 10

 


= 1.33 × 10–9

G. field f  = 2

GM
a


= 

11

2 2

6.67 10 1
(5 10 )





  


= 0.266 × 10–7

10. If the duration of a day is 28 hours, measured through a clock placed in spaceship with
respect to a stationary observer, find the velocity of the spaceship.

Sol :
t' = 2 t = 24;  C = 3 × 108 m/s

t' = 
2

2

t

1
c




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28 = 
2

2

24

1
c


1 – 
2

2c


 = 
2

24
28

 
 
 

 = 0.735

2

2c


 = 0.265

v  = 0.265  × C

    = 0.265  × 3 × 108 = 1.54 × 108 m/sec

11. The speed of a body of mass 20 kg moving along a circle of radius 1.5 m increases at the
constant rate of 0.5 m/sec. Find the torque acting on the body.

Sol :
m = 20 kg;  r = 1.5 m;  V = 0.5 m/sec

 = 
dL
dt

 = 
d(mVr)

dt

 = 
mvr

t
 = 

20 0.5 1.5
1

 
 = 1.5 N – m

12. A rocket of mass 20 kg has 180 kg fuel. The exhaust velocity of the fuel is 1.6 km/sec.
Calculate the minimum rate of consumption of fuel so that the rocket may rise from the
ground.

Sol :
Mass  M = 20 + 180 = 200 kg

u = 1.6 km/sec., = 1.6 × 1000 m/sec.

u 
dM
dt

 = Mg

dM
dt

 = 
Mg
u

 = 
200 9.8
16 1000




= 1.225 km/sec.

13. The total mass of a rocket is 8000 kg. The exhaust velocity of gases 800 m/sec

(a) Find the burnt rate of fuel, just to lift the rocket.

(b) Find the burnt rate of fuel, to give an upward acceleration of 30 m/s2
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Sol :
(a) The thrust acting on the rocket must be equal to weight of the rocket.

Thrust on rocket

vr = 
dM
dt

 = Mg

800 × 
dM
dt

 = 8000 × (9.8 + 30)

dM
dt

 = 98 kg/sec

(b) To give an upward acceleration ‘a’, the required thrust to be act on rocket

vr = 
dM
dt

 = m(g + a)

800 
dM
dt

 = 8000(9.8 + 30)

dM
dt

 = 
8000 39.8

800


= 398 kg/sec.

14. The initial mass of a rocket is M0. Rocket starts from rest. The final mass of rocket is Mf,
where the final velocity is vf. Then prove that

f

rel

v
uf

0

M
e

M




Sol :
The final velocity of rocket is given by

v = v0 + urel loge 
0M

M
 – gt

Neglecting the ‘g’ at higher altitudes, we have

 v = urel loge 
0M

M
   ( v0 = 0)

If  M = Mf   then  v = vf

loge 
0

f

M
M = 

f

rel

v
u
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Taking antilogarithm on both sides

f

rel

v
u0

f

M
e

M
      or     

f

rel

v
u0

f

M
e

M





15. In a rocket the fuel burnt at a rate of 0.02 kg/sec. Exhaust velocity of gases 10,000 m/
sec. Find the thrust acting on the rocket.

Sol :

Thrust acting on Rocket Freaction = ur 
dM
dt

urel = 10,000 ms–1

 Freaction = urel 
dM
dt

  =  10,000 × 0.02

Freaction = 200 N

16. An empty rocket weights 5000 kg and contains 40,000 kg of fuel. If the exhaust velocity
of the fuel is 2.0 km/sec., find the maximum velocity gained by the rocket. (Given that
loge 10 = 2.3, log10 3 = 0.4771).

Sol :

Ignoring gravity effect, the velocity  of a rocket at any time t is given by

 = 0 + u loge 
0M

M

where M0 is the initial mass of the rocket (at t = 0) plus the mass of the fuel and M is the remaining mass
at a time t. The velocity  attains the maximum value when all the fuel is burnt. Then M is the mass of
empty rocket.

According to the given problem

0 = 0,  M0 = 5000 + 40,000 = 45,000 kg,  M = 5000 kg

and u = 2.0 km/sec.

 max = (2.0 km/sec) loge 
45000
5000

= (2.0 km/sec) loge (3)2

= (2.0 km/sec) 2 loge 3

= (2.0 km/sec) 2 × 2.3 × 0.4771

= 4.4 km/sec.
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17. From the nucleus of a radioactive element an election and nutron are disintegrated and
travel in mutually perpendicular directions. The momenta are 9.22 × 10–21, 5.33×10–21

kgms–1 respectively. Then

(a) Find the recoil velocity of nucleus

(b) Final direction of momentum of nucleus

(c) If the mass of nucleus is 3.9 × 10–25 kg, then find the kinetic energy.

Sol :

Let  
1P


, 
2P


 are the momenta of electron and proton respectively. . p


 is the recoil momentum of

nucleus.

2P


1P


P


30o

y

150o x

2P


1P


P


30o

y

150o x

From the conservation of momentum

0 = 
1P


 + 
2P


 + P

P  = – (
1P


 + 
2P


) = –(9.22 × 10–21 

i  + 5.33 × 10–21 j


)

P


 = 10–21 2 2(9.22) (5.33)

      = 1.065 × 10–20 kg ms–1.

(a) Velocity of nucleus

V = 
P

m



 = 
20

25

1.065 10
3.9 10








 = 0.27 × 105 m/s.

(b) tan  = 
2

1

P
P  = – 

5.33
9.22

 
 
 

 = tan–1 
5.33

9.22
 

 
 

 = 150o

(c) Kinetic energy = 
2P

2m
 = 

20 2

25

(1.065 10 )
2 3.9 10






 

    = 
40

25

1.134 10
7.8 10








 = 0.145 × 10–15 J
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18. A machine gun fires 50 gm bullets at a speed of 1000 m/sec. The gum man holding the
machine gun in his hands, can exert an average force of 180 newtons against the gun.
Determine the maximum number of bullets he can fire in a minute.

Sol :

Momentum of the bullet = 
50

1000
 
 
 

 × 100

= 50 kg-m/sec
Let  x  be the maximum number of bullets fired in one minute.

Momentum imparted per sec. = 50 × 
x

60
 
 
 

 kg-m sec2.

Now, Thrust exerted by gun man = rate at which momentum is imparted to the bullet

50 × 
x

60
 
 
 

 = 180 newton

        x = 
180 60

50


 = 216.

19. Two steel spheres of radii 2 cm and 3 cm move with velocities of 24 cm/sec. in opposite
directions and collide head on. If the collision is elastic, calculate the velocities after
impact.

Sol :
According to eq. (c) of article 2.16, we have

1 = 
2 2

1 2

2 m  u
(m m )  + 

1 2 1

1 2

(m m )u
(m m )




Here the masses of steel spheres are proportional to the cube of their radii, i.e., 23 and 33 i.e., 8 and
27. So m1 = 8 and m2 = 27, u1 = 24 cm/sec. and u2 = –24 cm/sec. Hence,

1 = 
2 27
8 27



 × (–24) + 
(8 27)
(8 27)


  × 24

Solving we get 1 = –50.05 cm/sec.
This shows that after impact, the 2 cm radius sphere moves in a direction opposite to the direction

of motion before impact.
Now according to equation (b) of article 2.16, we have

2 = 
1 1

1 2

2 m  u
(m m )  + 

2 1 2

1 2

(m m )u
(m m )




    = 
2 8 24
(8 27)
 
  + 

(27 8)( 24)
8 27
 


Solving we get 2 = –2.06 cm/sec.
The negative sign shows that 3 cm radius sphere moves in its own direction after impact.
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20. A 0.03 kg mass travelling at 0.08 m/s makes an elastic collision with a 0.05 kg mass at
rest. Find the speed of each mass after collision.

Sol :
Given  u1 = 0.08 m/s,  m1 = 0.03 kg,  u2 = 0  and  m2 = 0.05 kg

Here we have  m1 u1 + m2 u2 + m1 1 + m2 2

 0.03 × 0.08 + 0.05 × 0 = 0.03 1 + 0.05 2

Solving we get   31 + 52 = 0.24 ... (1)

From Newton’s experimental law

2 1

2 1u u
  

  = –e = –1

 2 1

0 0.08
  


 = –1

or 32 – 31 = 0.24 ... (2)

Solving eqs. (1) and (2) for 1 and 2, we get

2 = 0.06 m/s   and   1 = –0.02 m/s.

21. A ball moving with a speed of a 9 m/s strikes an identical stationary ball such that after
the collision the direction of each ball makes an angle of 30o with the original line of
motion. Find the speeds of the two balls after the collision. Is kinetic energy conserved
in this collision process ?

Sol :
The situation is shown in fig.

Initial momentum of balls = m × 9 + m × 0 = 9 m ... (1)

where m is the mass of each ball. Let after collision their velocities be 1 and 2 respectively. Final momentum
of the balls after collision along the same line

=  m 1 cos 30 + m 2 cos 30

= 1m ( 3)
2


 + 2m ( 3)
2


 = 2m ( 3)

2


 (1 + 2) ... (2)

According to the law of conservation of momentum
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9m = 
m (3)

2
 (1 + 2)

or
9 2

(3)


 = (1 + 2) ... (3)

The initial momentum of the balls along perpendicular direction = 0

Final momentum of balls along perpendicular direction

= m 1 sin 30 – m 2 sin 30 = 
m
2

 (1 + 2)

According of the law of conservation of momentum

m
2

 (1 – 2) = 0   or   1 – 2 = 0   or   1 = 2 ... (4)

Solving eqs. (3) and (4), we get

1 = 3 3  m/sec.   and   2 = 3 3  m/sec.

According to the law of conservation of energy

Energy before collision = Energy after collision

1
2

 m1 u1
2 + 

1
2

 m2 u2
2 = 

1
2

 m1 1
2 + 

1
2

 m2 2
2

1
2

 m (9)2 + 0 = 
1
2

 m (3 3 )2 + 
1
2

 m (3 3 )2

81m
2

 = 
54m

2

or L.H.S.   R.H.S.

This shows that energy is not conserved in this collision i.e., this is case of inelastic collision.

22. A ball moving at a speed of 2.2 m/sec. strikes an identical stationary ball. After collision
one ball moves at 1.1 m/sec. at 60o angle with the original line of motion. Find the
velocity of the other ball.

Sol :
Let  m be the mass of each ball and m, the initial velocity of the first ball. Let 1 and 2 be the final

velocities of the balls respectively after collision as shown in figure.
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Applying the law of conservation of momentum along original direction of motion, we have

m u = m 1 cos 60o + m 2 cos 

or u = 1 cos 60o + 2 cos 

2.2 = 1.1 (0.5) + 2 cos  (  cos 60o = 0.5)

 2 cos  = 2.2 – 0.55 = 1.65 ... (1)

Now applying conservation of momentum perpendicular to the original direction of motion, we
have

0 = m 1 sin 60o – m 2 sin 

or 0 = 1 sin 60o – 2 sin 

or 2 sin  = 1.1 (0.866) (  sin 60o = 0.866)

or 2 sin  = 0.953

Squaring and adding eqs. (1) and (2), we get

2
2 = (1.65)2 + (0.953)2

or 2 = 2 2[(1.65) (0.953) ]  = 1.9 m/sec.

Dividing eq. (2) by eq. (1), we get

tan  = 
0.953
1.65

 = 0.577

       = tan–1 (0.577) = 30o

23. Alfa particles of energy 4 MeV are scattered back from a gold foil Z = 79. Calculate the
maximum volume in which the positive charge of the atom is likely to be concentrated.

Sol :
The -particle will be scattered back a a point where its kinetic energy is converted into potential

energy. Let b be the distance of closest approach, then

K.E. = 
1
2

 m 0
2 = 

2

0

2 Ze
4 b

According to the given problem,

K.E. = 4 MeV = 4 × 106 eV

= (4 × 106) (1.6 × 10–19) joule.

    Z = 79  and  e = 1.6 × 10–19 C

 (4 × 106) (1.6 × 10–19) = 
19 2

9

2 79 (1.6 10 )
{1 / (9 10 )} b

  
 

    b = (9 × 109) 
19

6

2 79 (1.6 10 )
(4 10 )

  

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= 5.688 × 10–14 m

    Maximum volume = 
4
3

  b3

= 
4
3

 × (3.14) × (5.688 × 10–14)3

= 7.72 × 10–40 m3

24. An -particle with K.E. 6.0 × 10–14 joule is scattered at an angle of 60o by Coulomb
field of a stationary nucleus. Find the impact parameter.

Sol :
The impact parameter is given by

     p = 
2

2
0 0

Ze
2   m tan( / 2)   

= 
19 2

12 14 o

2 (1.6 10 )
2 3.14 (8.85 10 ) (12 10 ) tan 30



 

 
     

= 0.013 × 10–12

= 13 × 10–15 m.

25. A circular disc of mass 100 kg and radius 50 cm is mounted axially and is rotating.
Calculate the K.E. when its executes  25 rev./min.

Sol :

K.E. =
1
2

 I 2 = 
1
2

2
2

2

 
  

 

MR

M = 100 kg, R = 0.5 m  and   = 2n

n = number of rev./sec. = 
25
60

 =
(2 25)

60


= 
5
6


= 2.6166 rad/s

So, K.E. =
1
2

2100 (0.5)
2

 
 
 

 (2.6166)2 = 42.79 J

26. The speed of a particle of mass 20 kg that is moving along a circular radius is 1.5m
increasing at the rate of 0.5 m/s for every second. Find the torque acting on it.

Sol :
We know that, L = m v r
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Now,  = 
dL d
dt dt

 (mvr) = mr 
 
 
 

dv
dt

Here,   m = 20kg,  r = 1.5 m  and  
 
 
 

dv
dt  = 0.5 m/s.

  = 20 × 1.5 × 0.5 = 15 N–m

27. The kinetic energy of a metal disc rotaing at a constant speed of  5  revolutions per
second is  100 joule. Find the angular momentum of the disc.

Sol :
L = I

 = 2n = 2×3.14 × 5 = 31.4 sec–1

Now, K.E. =
1
2

I2

or I = 2

2 . . 
  

K E
= 2

2 100
(31.4)


= 0.2028 kg-m2

 L = 0.2028 × 31.4 = 6.368 kg-m2  sec–1

28. A top is spinning at  30 rev./sec. about an axis making an angle of 30o with the vertical.
Its mass is  1 kg  and its rotational inertia is  5×10–4 kg-m2. The centre of mass is 4 cm
from the pivot point. If the spin is clockwise as seen from the above, what is the magnitude
and direction of the angular velocity of precession ?

Sol :
The angular velocity of precession is given by

p =



rmg
L Iw

Here,  r = 0.04 m,  m = 1kg,  I = 5×10–4  kg-m2

and  = 2n = 2 × 30 = 60   rad/s.

p = 4

0.04 1 9.8
(5 10 )(60 )

 
  = 4.16 rad/sec

The spin is clockwise as seen from above and hence the angular velocity of precession is in the
downward direction.

29. A Fly wheel of mass M and radius ‘R’ is free to rotate on axel. A thread is rounded about
the wheel and at the end of the thread a force ‘F’ is applied. Then find the angular
acceleration and tangential acceleration of the point on the wheel ?

Sol :

Torque acting on wheel    F R
 
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Moment of inertia of wheel  I = 
1
2

MR2

But   = I, -angular acceleration

FR = 
1
2

MR2

  = 
2F
MR

Tangential acceleration    = R

  
2 2

  T
FR F

MR M

30. A symmetric top is spinning about its rotational axis with a speed of 30 revolutions per
second. Axis of rotation making an angle of 30° with vertical. Mass of the top 0.5 kg. Its
moment of inertia 5 × 10–4 kg.m2. The distance of centre of mass from pivot is 4 cm. If
we look on to the top, its rotational sense is clockwise. Find the magnitude and direction
of precessional angular velocity of the top?

Sol :
Angular velocity  = 30 × 2 rad/sec

Moment of inertia     I = 5.0 × 10–4 kg.m2

Angular momentum  J = 5.0 × 10–4 × 30 × 2

      J = 942 × 10–4 kg-m2/sec

Torque  = mgr

Mass m = 0.5kg

 = 0.5 × 9.8 × 0.04 = 0.196 Nm

Precessional angular velocity  
4

0.196
942 10


  

p J

p  = 2 rad/sec

The direction of precessional angular velocity is in clockwise.

31. A wheel is rotating with an angular velocity of 500 revolutions/minute on an axel. Another
wheel same as the first at rest is joined to the axel. Both the wheels are rotating with a
common speed. Find their common speed ?

Sol :
From the conservation of angular momentum

1 1 2 2    I I I
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I  = final angular momentum

1 1 2 2  I I = initial angular momentum

  = 1 1 2 2  I I
I

– 
1 1 2 2

1 2

  


I I
I I

  = 
500 0  


I I

I I
 = 250 revolutions/min.

32. A circular ring of mass 100 grams and radius 10 cm is rotating about an axis passing
through centre and   to the plane of ring with an angular velocity 10 revolutions per
second. Then find

a) Moment of inertia of the ring

b) Angular momentum

c) The required torque to increase angular momentum to 105 eng.sec in one second.

Sol :

a) Moment of inertia of the ring

I  =  MR2

1 = 100 × 10 × 10 = 104 gram.cm2

b) Angular momentum L = I

L  = 104 × 10 × 2 = 6.28 × 105 erg.sec

c) Torque  
5

410
10

10
   

dL
dt

  dyne.com.

33. A symmetric top is rotating with an angular velocity 18 revolutions/sec. It is inclined by
an angle of 20° with the vertical. The radius of gyration of the top is 6 cm. If the distance
of c.m from pivot is 5 cm. then find precessional angular velocity?

Sol :

Precessional angular velocity 
2

  
p

mgr gr
J k

 p
980 5

6 6 2 3.14 18


   

 p 1.2  radians/sec.
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34. A 500 gm stone is revolved at the end if a 0.4 m long string at the rate of 12.5 rad/s. Find
its angular momentum.

Sol :

Given,

A store revolves at the end of a string

Mass of stone, m = 500 gm = 0.5 kg

length of string, l = r = 0.4 m

Angular velocity of stone, w = 12.5 rad/s

The angular momentum of stone is obtained as,

Angular momentum = mr2 

= 0.5 × (0.4)2 × 12.5

= 1 kg m2/s

 Angular momentum of stone = = 0 1 kg m2 s–1



B.Sc. I YEAR  I SEMESTER

138
Rahul Publications

Rahul Publications

Short Question and Answers

1. Define Torques. prove that the rate of
change of angular momentum is equal
to torque.

Ans :
Torque

The restoring force that acts on a rotating
object is known as Torque and it is denoted by .

Relation between Torque and Angular
Momentum

Angular momentum of a body is given as,

L = I

Differentiating the above equation with
respect to time t,

d
dt

l
=

d(I )
dt


d
dt

l
= I

d
dt
 d

I
dt
   

 

Since, 
d
dt


 is angular acceleration,

I
d
dt

l
= 

2. State and explain Newton’s Law of
Motion.

Ans :
Newton's laws are applied to objects which

are idealised as single point masses, in the sense
that the size and shape of the object's body are
neglected to focus on its motion more easily. This
can be done when the object is small compared to
the distances involved in its analysis, or the
deformation and rotation of the body are of no
importance. In this way, even a planet can be
idealised as a particle for analysis of its orbital motion
around a star.

In their original form, Newton's laws of
motion are not adequate to characterise the motion

of rigid bodies and deformable bodies. Leonhard
Euler in 1750 introduced a generalisation of
Newton's laws of motion for rigid bodies called Euler's
laws of motion, later applied as well for deformable
bodies assumed as a continuum. If a body is
represented as an assemblage of discrete particles,
each governed by Newton's laws of motion, then
Euler's laws can be derived from Newton's laws.
Euler's laws can, however, be taken as axioms
describing the laws of motion for extended bodies,
independently of any particle structure.

3. Impact Parameter

Ans :
Consider a positive particle, like a proton or

an -particle, approaching a massive nucleus N of
an atom, as shown in figure.

Due to coulombic force of repulsion, the
particle follows a hyperbolic path AB with nucleus
N as its focus. In the absence of the repulsive force,
the particle would have followed the straight line
path AC. As shown in figure, p is the perpendicular
distance from the nucleus N to the original direction
AC of the particle. The distance (NM = p) is called
the impact parameter. Thus impact parameter is
defined as the closest distance between nucleus and
positively charged particle projected towards it. This
is also known as collision parameter.

4. Scattering Cross Section

Ans :
When -particles are projected into a thin

metal foil, they are deflected or scattered in different
directions. Let N be the incident intensity (number
of incident particles crossing per unit time a unit
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surface placed perpendicular to the direction of
propagation). Suppose dN be the number of
particles scattered per unit time into solid angle d
located in the direction  and  [Fig. below] with
respect to the bombarding direction. The ratio dN /
N is called scattering cross-section.

Thus the scattering cross section in a given
direction is defined as the ratio of number of
scattering particles into solid angle d per unit time
to the incident intensity.

 Scattering cross-section, sc = 
dN
N

5. Gyroscope.

Ans :

A gyroscope is a heavy symmetrical body
(top) in the form of a heavy circular disc or fly wheel
rotating at a very high speed about is axle.

Gyroscopes have two basic properties :
precession. Those are defined as follows:

1. RIGIDITY : The axis of rotation (spin axis)
of the gyro wheel tends to remain in a fixed
direction in space if no force is applied to it.

2. PRECESSION : The axis of rotation has a
tendency to turn at a right angle to the
direction of an applied force.

The gyroscope is mounted in gimbals so that
the disc and axle are both free to turn as a whole
about any one of the three perpendicular axes XX',
YY' and ZZ' which intersect at a common point O.
Each gimbal is mounted in the next gimbal with
jewelled bearings which are made up of a very hard
material like agate or saphire to reduce frictional
torque.

6. Describe the principle of motion of a
rocket as system of variable mass.

Ans :
A moving rocket in which the fuel gets burnt

and comes out in the form of exhaust gases is a
good example of a variable mass system. The rocket
consists of a combustion chamber in which a liquid
or a solid is burnt. When the fuel is burnt, the
pressure inside the composition chamber rises very
high. Due to the high pressure, the hot gases (burnt
liquid or solid fuel) are expelled from the nozzle at
the tail of the rocket). These expelled gases will be
in the form of a jet having a very high exhaust
velocity. This is the action. Consequently, as a
reaction, the rocket moves in a direction opposite
to the direction of the out coming gases. Thus, the
rocket works on the principle of Newton’s third law
of motion or the law conservation of momentum
which is a consequence of the Newton’s third law.

7. Calculate the thrust on a rocket.

Ans :
The expression for motion of a rocket is given

by,

M
dy
dt

 = Fext + Freaction

if the rocket moves away from the influence
of gavitational force of the earth, the there is no
external force acting on it.

 Fext = 0

The motion of a rocket becomes,

M
dy
dt

 = 0  + Freaction

  = Vrel

dM
dt

The term Vrel

dM
dt

 is termed as thrust of a rocket

 Rocket thrust = Vrel

dM
dt

Where,
Vrel – Exhaust velocity

M – Mass of a rocket
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8. Derive Euler’s equation for a rigid body.

Ans :

The time rate of change of angular momentum of a rigid body about a fixed point is equal to the
resultant external torque acting on the body about that fixed point.

If 


 is the torque and L


 the angular momentum, then




 = 
dL
dt


... (i)

This equation holds good if the system of axes has a fixed orientation in space i.e. the inertial frame
is fixed in space.

In order to study the rotation of a rigid body, the system of axes should be fixed in the body itself
and the origin should be coincident with the fixed point about which the body is rotating so that as the
body rotates the co-ordinate axes also rotate with the body.

The time rate of change of any vector in a fixed frame can be transferred to the time rate of change
of the same vector in a rotating frame using operator equation

S

d
dt

 
 
 

 (–)  =  
R

d
dt

 
 
 

 (–) + 


 × (–)R

where

S

d
dt

 
 
 

 represents the time rate of change in stationary frame,

R

d
dt

 
 
 

 the time rate of change in the rotating frame

and (–) the rotating vector.

9. Distinguish between elastic and inelastic collisions.

Ans :
S.No. Elastic Collisions S.No. Inelastic Collisions

1. Elastic collisions conserve kinetic energy. 1. Inelastic collisions do not conserve kinetic energy.

2. These type of collisions do not occur in common and can 2. These type of collisions occur at atomic level.
 never be observed at macroscopic scales.

3. Coefficient of restitution of elastic collisions  is equal to 3. Coefficient of restitution of inelastic collisions  lies between 0
unity (i.e., e = 1). and 1 (i.e., 0 < e < 1).

4. The most common example of elastic  collision is the 4. The common example of inelastic collision is the collision
collision between two billiard balls.  between two vehicles wherein the colliding, vehicles  get lock

together with each other.
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10. Explain the theory of action of a
gyroscope?

Ans :
A top is a symmetrical body spinning about

an axis which is fixed at one point. If the fixed point
about which a symmetrical body is spinning about
its axis coincides with the centre of gravity of the
body, then it is called a gyroscope.

Theory and Action of a Gyroscope

The gyroscope consists of a heavy circular disc
of large moment of inertia free to rotate at high
speed is arranged writhing the rectangular frame.
The disc rotates about its axis. The angular velocity
vector  will be along the axis from the fixed pivot
O. The axis of gyroscope can itself rotate about O.
For such a rotation of the angular velocity vector,
the tip of the angular momentum vector L also
moves in a horizontal circle with time (shown by
dotted curve) making the gyroscope precess about
O. But the precessional velocity p is small compared
to the angular vector of the circular disc within the
frame work.

11. Inelastic collision.

Ans :
When two bodies after collision, move as one

and do not have any tendency to separate as they
were before collision, the collision is said to be
perfectly inelastic.

For example, a collision between a bullet, and
its target is completely inelastic, if the bullet remains
embedded in the target after collision. The relative
velocity between the bullet and the target after
collision is zero.

The kinetic energy in all such collisions is not
conserved. The linear momentum is, however,
conserved.

12. Elastic collision.

Ans :
When two bodies after collision, separate by

virtue of their elastic properties, the collision is said
to be perfectly elastic.

Examples of such collisions are inter atomic
collisions or collisions between subatomic particles.

In practical life, collisions between” two ivory balls
or two glass balls can be regarded as perfectly elastic.

No kinetic energy or momentum is lost in
elastic collision i.e., conservation laws of both kinetic
energy as well as momentum holds good in the case
of perfectly elastic collisions.

In fact, no collision is perfectly elastic or
perfectly inelastic. Only the degree of elasticity of
collision varies. The degree of elasticity of collisions
is measured in terms of the coefficient of restitution.

13. Show that  = 1 for a rotating rigid
body.

Ans :
The force acting on the particle produces an

angular acceleration in the body, causing it to rotate
about z-axis. The torque acting on the particle ‘P’
or the rigid body is given as,

T =  = r × F ...(1)

The equation of motion of rigid rotating body
can be obtained by estimating the relationship
between torque applied and angular acceleration
of the body. Consider the rotation of the body
through an infinitesimal angle d within an
infinitesimal time dt. Let the particle move from P(t)
to P(t + dt) along the radius are ‘r’ in dt sec. Figure
(ii) illustrates the diagrammatic representation of the
rotating body with necessary notations.

14. Explain the working of multistage
rocket.

Ans :
A rocket is the vehicle employed for space

journey. It works on the principle of jet propulsion.
The principle of jet propulsion depends on the law
of conservation of momentum, according to which
the momentum of the jet emerging in the backward
direction makes the rocket to move in the forward,
direction.

According to the type of fuel used, rockets
are classified as (i) liquid fuel rockets and (ii) solid
fuel rockets.

A rocket to have maximum velocity at its final
stage, insists.
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1. Relative velocity of gases to be maximum.

2. Final mass of the rocket M is very much less than initial mass of the rocket M0.

Relative velocity of gases coming out of rocket depends on temperature, pressure within the chamber.
It also depends on area of crossection of the nozzle. With the presently using fuel, temperature that
develops in the chamber is 30000C. Due to this temperature and depending on the crossesction of
nozzle, the maximum relative velocity can be expected only 2 km/sec.

From the optimum design of the fuel chamber (for liquid fuels) presently the value of 0M
M

 is maintained

at nearly 10, and for solid fuels this value further low.

Therefore even on neglecting the gravitational force, the maximum velocity that a rocket can attain,
starting from rest is from equation :

    v = rel eu log m gt c 

    v = 0 + 2 loge– (10) – 0

    v = 2 × 2.3 = 4.6 km/sec.

This velocity is very much less than the orbital velocity of a rocket i.e., (11.2 km/sec). Due to this
reason, in order to launch a satellite multistage rockets are used. At the end of first stage, the rocket may
attain a velocity nearly 4.6 km/sec and later second stage that begin to work and first stage of rocket
detaches from the rocket. The velocity is adding up and finally, with all different stages the rocket attains
the required velocity.

15. Moment of Inertia.

Ans :

Moment of inertia of a body about an axis is defined as the sum of the product of the mass and the
square of the distance of the different particles of the body from the axis of rotation.

The moment of inertia of the body is expressed as mr2.

The K.E. of rotation = 21
I

2


If  = 1, then I = 2 × kinetic energy

Hence moment of inertia may also be defined as twice the kinetic energy of rotation of a body
when its angular velocity is unity.
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Choose the Correct Answers

1. If moment of inertia of a wheel, having radius of gyration 60 cm, is 360 kg m2 then mass of the
wheel is . [ d ]

(a) 200 kg (b) 500 kg

(c) 800 kg (d) 1000 kg

2. Angular momentum is the vector product of : [ a ]

(a) linear momentum and radius vector

(b) moment of inertia and angular acceleration

(c) linear momentum and angular velocity

(d) linear velocity and radius velocity

3. The orbit of an artificial satellite is . [ c ]

(a) hyperbolic (b) parabolic

(c) elliptic (d) none of these

4. M.I. of a solid sphere is [ c ]

(a) 2 22
m r

3
(b) 23

mr
2

(c) 22
mr

5
(d) 23

mr
5

5. If a satellite is launched into a circular orbit close to the earth. its velocity is [ b ]

(a) 2gR (b) gR

(c) gR (d) 2gR

6. Law of conservation of angular momentum is consequence of . [ b ]

(a) homogeneity of space (b) isotropy of space

(c) homogeneity of space and time (d) homogeneity of time

7. Homogeneity of time leads to conservation of . [ c ]

(a) linear momentum (b) angular momentum

(c) total energy (d) kinetic energy

8. Which is not explicit function of time ? [ c ]

(a) velocity (b) acceleration

(c) potential energy (d) momentum
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9. A bicycle in motion does not fall because one of the following is conserved. [ b ]

(a) linear momentum (b) angular momentum

(c) kinetic energy (d) all of the above

10. Newton’s law of motion are based on the assumption that space is . [ c ]

(a) homogeneous (b) isotropic

(c) homogeneous and isotropic (d) invariant under rotation

11. A body of mass  m  collides against a wall with a velocity  v  and  rebounds with the same velocity.
The change in memontum of the wall is . [ c ]

(a) zero (b) mv

(c) –2mv (d) –mv

12. Ratio of inertial mass to gravitational mass is [ b ]

(a) 1 : 2 (b) 1 : 1

(c) 2 : 1 (d) no fixed number
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Fill in the Blanks

1. Moment of inertia is .

2. Units of M.I  are .

3. The number of co-ordinates required to describe a collision in centre of mass frame is .

4. In elastic collision there is a conservation of .

5. The scatering cross-section has the dimensions of .

6. If    is the angle of scattering in lab and    in c.m. system, then for  m1 = m2  we have   = .

7. The path of an -particle in Rutherford scattering is always .

8. When the velocities get intercharged after collision of two bodies, the collision is  elastic.

9. The minimum velocity with which a body may be projected to become a satellite of the earth is
.

10. The value of escape velocity is  km/sec.

11. The time period of a geostationary satellite is  hours

12. Rocket works on the principle of conservation of .

13. If the force on a rocket moving with a velocity of 300 m/sec is 210H. then the rate of fuel combustion
is  kg/sec.

14. Newton’s second law gives the measure of .

15. A body which does not undergo any change in shape or size by the application of external forces is
called .

16. Law of conservation of linear momentum is consequence of .

17. The unit of angular momentum is .

18. Number of dimensions space has is .

ANSWERS

1. 2

2kE
w

2. Kg.m2

3. 3

4. linear momentum

5. area

6.
2

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7. hyperbola

8. perfectly

9. 7.92 km/sec.

10. 11.2 km/sec

11. 24

12. linear momentum.

13. 0.7

14. force

15. a rigid body

16. homogeneity of space.

17. Kg m2 s–1 or Joule second.

18. three
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3.1 CENTRAL FORCES

3.1.1 Definition and Examples

Q1. Define central and non-central forces.
What are the characteristics of central
force?

Ans : (June-21, Dec.-19, June-17)

(i) Central Force

A central force is defined as a force, which
always acts on a particle or body towards or
away from a fixed, point and whose
magnitude depends upon only on the
distance from the fixed point. This fixed point
is known as the centre of the force.

(ii) Non-Central Force

A non-central force is that force which does
not simply depend upon the distance
between the centres of the two interacting
bodies but also on other parameters such as
their spin and relative orientation.

Characteristics

The characteristics of non-central forces are :

i) They are short range forces i.e. the force acts
only when the interacting particles are very
close to each other.

ii) Non-central forces do not necessarily act
along the line joining the centres of the two
bodies.

iii) A non-central force is non-conservative and
cannot be derived from some scalar potential
i.e. they are not the gradient of some scalar
function.

UNIT
III

CENTRAL FORCES :
Central forces – definition and examples, conservative nature of central forces,
conservative force as a negative gradient of potential energy, equation of motion under
a central force, gravitational potential and gravitational field, motion under inverse
square law, derivation of Kepler’s laws.
SPECIAL THEORY OF RELATIVITY:
Galilean relativity, absolute frames, Michelson-Morley experiment, Postulates of special
theory of relativity. Lorentz transformation, time dilation, length contraction, addition
of velocities, mass-energy relation. Concept of four vector formalism.

Examples

Familiar examples of non-central forces are :

(i) Weak forces called into play in b-decay and
decay processes where the decay products
are leptons (electrons, positrons, neutrinos,
m-mesons etc.) arc non-central. Weak forces
arc non-zero only when the interacting
particles just overlap.

(ii) Strong nuclear forces between proton-
proton (p-p interaction), proton-neutron (p-
n interaction) and neutron-neutron (n-n
interaction) are non-central as these are due
to the exchange of p+, p– and p0 mesons
respectively.

Explanation

It is convenient to express the central force in
polar coordinate system. Let O be  the centre of
force, which is taken as the origin of coordinate
system. P is a particle whose polar coordinates are r
and q. The central force on particle P is expressed
by F. Mathematically, F is expressed as,

Y

X

Z

O


Pr

r

F

F = r̂  f(r)       ... Eqn. (1)

where f(r) is a function of the distance r of the particle

from the fixed point and r̂  is unit vector along the
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radius vector r of the particle with respect to that
fixed point. In case of two particles the magnitude
of central force depends upon the distance of
separation of two particles and the direction being
along the line joining the particles.

Examples :

1. The gravitional force exerted on a particle of
mass m, by another stationary particle of mass
m2 is a central force and can be written as

  F12 = – G 1 2
2

m m
r̂

r

where r is the distance between the two
particles. Here negative sign indicates that the
force is attractive.

But F = f(r) r̂

 f(r) = – G 1 2
2

m m
r

 = – 2

C
r

where C = – G m1m2 is a constant.

Thusf(r)  2

1
r

which is the famous inverse square law.

Thus the earth moves around the sun under
a central force which is always directed
towards the sun.

2. The electrostatic force exerted on a charged
particle qx by another stationary charged
particle q2 is a central force and is given by

  F12 = 1 2
2

0

q q1 ˆ. r
4 r

But     F = f(r) r̂

   f(r) = 1 2
2 2

0

q q1 C
.

4 r r




or   f(r)   2

1
r

Thus, electron in a hydrogen atom moves
under a central force which is always directed
towards the nucleus.

3. A mass attached to one end of a spring whose
other end is fixed is also an example of central
force. The spring always pulls towards the
fixed end of pushes way from it by an elastic
force.

F = – kx

where ‘x’ is the distance of the mass from the
unstretched position of the spring and k is
spring constant.

3.2 CONSERVATIVE NATURE OF CENTRAL

FORCES

Q2. Explain the conservative  nature of
central force?

Ans : (June-18)

A force is said to be conservative if the work
done in moving a particle from one point to another
point is independent of the path followed. But
depends on the end points. Consider a particle that
moves from A to B. It can follow path I or path II or
any other path. If the force is conservative, the work
done along these paths is constant. The points A
and B are fixed.

B A

A B
F.dr F.dr 
  

path I       path II

The work done in moving a particle along a
closed curve is zero.

WAB = work done in moving from A to B

B

A
F.dr


.... (1)

WBA = work done in moving from B to A
= + WBA = –WAB

  Net work done = WAB + WBA

WAB + WBA = 0 .... (2)
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3.3 CONSERVATIVE FORCE AS A NEGATIVE GRADIENT OF POTENTIAL ENERGY

Q3. Show that the conservative force is the negative gradient of potential energy.

Ans : (Dec.-19, Dec-17)

The work done against central force is equal  to increase in potential energy of the body. The
potential energy of a body on the earth is zero. When the body is lifted to certain height against gravitational
force, an increase in potential energy takes place. Let U (x, y, z) is the potential energy function due to
central force field, the change in potential energy is

     dU  = 
U U U

dx dy dz
x y z

  
 

  

    =
U U U

i j k
x y z

   
     

   i  dx j  dy k dz 
 

 = dr ...(1)

If F


is central force, the work done  against central force  is equal to the change in potential energy

dU F.dr 


F = Fxdx + Fydy + Fzdz ...(2)

Fx = U
x




, Fy = U
y




, Fz = U
z




From equation (1) and (2), one can obtain

U U U
F i j k

dx y z
         

  

   i j k U
x y z
          

 

F U 
 

= – grad U ...(3)

3.4 EQUATION OF MOTION UNDER A CENTRAL FORCE

Q4. Prove that the motion under a central force takes place in fixed plane?

Ans :
Consider a particle in X-Y plane. Let r and   are the position and velocity vectors of the particle.

The angular momentum of the particle is

L r p 
  

r m  
  ...... (1)
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The direction of L is along Z-axis. Under a central force, L is constant and it is always along Z-axis.
The vectors r and   lie in X-Y plane.

Consider the motion of earth around the sun. The earth moves under the gravitational force extended
by sun. As per law of conservation of angular momentum, the angular momentum L of the earth with
respect to sun is constant, r and  are always perpendicular to L, orbit of the earth lies in a plane
perpendicular to L. This shows that the motion under a central force takes place in a fixed plane.
Areal Velocity Under Central Force

Consider the motion of the earth around the sun. Let r be the radius vector of earth with respect to
sun. In a short interval of time t, the earth moves from P to P'.

Let A  is the area swept out by radius vector in a time interval t .

A = area of SPP' = 
1
2

× base × height

1
A r r

2
  

 

A 1 r
r

t 2 t
 

 
 

 

      = 
1 dr

r
2 dt






       =
1

r
2

 
 

     =
1

r m
2m

 


       = 
L

2m

Under central force, angular momentum in constant.

dA
dt

= constant dt

dA
dt

is called as areal velocity. The areal velocity under central force is constant. The radius vector

sweeps out equal areas in equal intervals of time.
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Radial and Centripetal Acceleration in Polar Coordinates

Consider a particle at the point P. Let r,   be the polar co-ordinates of the particle at P. Let r̂ , ̂  be
the unit vectors along and perpendicular to the radius vector r. The trajectory of a point is a plane curve
through the point.

Let r = r r̂

The velocity of a particle is written as

ˆdr dr drˆV r r
dt dt dt

  


...(1)

     
dr d ˆr̂ r
dt dt


  

d̂r d ˆ
dt dt

    


dr
r̂

dt
 is the radial component of the velocity of the particle. This occurs due to change of r when 

is constant. 
d ˆr
dt

  is the transverse component of velocity of the particle. This occurs due to change in

when r is constant.

The acceleration of the particle is

2

2

d r d dr d ˆr̂ r
dt dt dt dt

       

= 
2 2

2 2

ˆˆd r dr dr dr d rd d dˆ ˆ.̂r . . . r .
dt dt dt dt dt dtdt dt

      
            

=
2 2

2 2

d r dr d dr d r d d dˆ ˆ ˆˆ ˆ.r . r r
dt dt dt dt dt dt dt dt

       
         

   

ˆd d
.̂r

dt dt

  
  

 


= 

22 2

2 2

d r d d dr d ˆˆr r r 2 .
dt dt dtdt dt

              
     

...(2)

= 
r t

ˆˆa r a 
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22

r 2

d r d
a r

dt dt
    

 
 = Radial component  of acceleration

2

t 2

d dr d
a r 2 .

dt dt dt
 

 

2
t

1 d d
a r

r dt dt
   

 

Thus the radial and centripetal acceleration of a particle  in polar coordinates is discussed.
Q5. Deduce Equation of motion of a particle under  the action of a central force. Express the

Equation in terms of total Energy.

Ans :
The acceleration of a particle under central force in polar coordinates is written as

22 2

2 2

d r d d dr d ˆˆr r r 2
dt dt dt dt dt

               
     

.... (1)

= radial component + transverse component
The central force is a radial force.  Therefore the radial acceleration is present. The transverse

acceleration is zero.



22

2

d r d F(r)
r

dt dt m
    

 
.... (2)

and
2

2

d dr d
r 2 . 0

dt dt dt
           

    

i.e.,
21 d d

r 0
r dt dt

   
 

.... (3)

Where F(r) is the magnitude of the radial force, m is the mass of the particle.

Let r2
d
dt


 = h (Constant)

Let r = 
1
u

      2

dr 1 du
dt u dt

 

           2

1 du d
.

u dt dt


 

2dr d du
r .

dt dt d
           

du
h

d
     

2 d
h r

dt
       


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Differentiating once again one can obtain

2

2

d r d du
h

dt dt d
    

      
d du d

h
d d dt

      

      
2

2

d u d
h .

d dt


 


      
2

2 2

d u h
h .

d r
 

 2

d h
dt r
   



2
2 2

2

d u
h u

d
 


 ... (5)

Putting this value in equation  (2), one can  obtain

22
2 2

2 2

d u h F(r)
h u r

d r m
       

2

d h
dt r
       



2

2 2 2

1
F

d u uu
d mh u

 
 
   


.... (6)

This is the general  equation of motion under central force.
Q6. Find the central force due to potential energy function u = – kr2.

Ans :
Given that,
Potential energy function, u = – kr2

The central force due to potential energy function is given as,

F = – 
du
dr

Substituting the corresponding values in above equation,

F = 
d

dr


(kr2)

   = – 2krN
 Central force, F = – 2kr N.

3.5 GRAVITATIONAL POTENTIAL AND GRAVITATIONAL FIELD

Q7. Define gravitational field and gravitational potential. Obtain  Expression for gravitational
potential due to a point mass.

Ans : (June-19, Dec.-16)

The region around a body where the gravitational force of attraction is present is called the gravitational
field.
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Gravitational attraction or the intensity of the
gravitational field at a point in the field is the force
experienced by a unit is placed at that point.

The intensity of the gravitational field is

2

M 1
F G

r




2

GM
F

r


Gravitational Potential
It is defined as the work done to bring unit

mass from infinite distance to a distance r from
mass M.

Force acting on a unit mass is  F = 2

GM
r



If the amount of work done to displace a body
to a distance dr in gravitational field is d, then

d = F(r)dr

2

Gm
dr

r
 

 V(r) = 
r

d


 

     
r

2

Gm
dr

r
 

V(r) = 
Gm

r


 The  potential energy of a body of mass m
is

U(r) =
GMm

r


Where G = Gravitational constant
M = mass of earth
m = mass of a body
r = Distance between M and m

Gravitational Energy of Many Particle System
If there are more then two bodies, the

gravitational potential energy is calculated using the
principle of super position. Consider a system that
has three masses m1,m2 and m3.

The potential energy of the system with masses
m1 and m2 is

1 2
12

12

Gm m
U

r


       ... (1)

The potential energy of the system with masses
m2 and m3 is

2 3
23

23

Gm m
U

r




The potential energy of the system with masses
m1 and m3 is

1 3
13

13

Gm m
U

r


       ... (3)

The potential energy of the three masses is

U = U12 + U13 + U23

1 2 1 3 2 3

12 13 23

Gm m Gm m Gm m
r r r

 
    

 
     ... (4)

This is also called as the self energy of the
system.

3.6 MOTION UNDER INVERSE SQUARE LAW

Q8. Show that the inverse square law of
gravitation leads to kepler’s law?

Ans :
The equation of motion of a particle moves

under the influence of central field force is

2

2 2 2

d u f(r)
u

d h u
  


      ... (1)

f(r) - force per unit mass.

The Newtons’ gravitational force is

2

GMm
F

r



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The negative sign indicates that the force is
attractive in nature.

M = mass of sun, m = mass of planet

Force acting on planet per unit mass

f(r) = 2

Gm
r


...(3)

Putting  this value in equation (1), one can
obtain

2

2 2 2 2

d u Gm
u

d h r u
  



2 21
u u r 1

r
  

2

2 2

d u Gm
u

d h
 



But GM = 


2

2 2

d u u
u

d h
 



2

2 2 2

d
u u 0

d h h
              

.... (4)

This is equation of motion of planet under
inverse square law.

3.7 DERIVATION OF KEPLER’S LAWS

Q9. State keplers laws of planetary motion.

Ans : (Dec.-17)

Kepler proposed three laws for planetary
motion.

They are as follows:

1. First Law

Each planet revolves around the sun in an
elliptical orbit around the sun. The sun is at
the one of the foci of the ellipse [Fig. 7].

This law is called as the law of elliptical orbits.

This law gives us the shape of the orbit of a
planet around the sun.

2. Second Law
The radius vector of any planet relative to
the sun sweeps out equal areas in equal times.
The areal velocity of the radius vector is
constant.
This law is called as the law of areas. This law
gives the relationship between the speed of
the planet and its distance from the sun.

3. Third law
The square of the period of revolution of any
planet around the sun is directly proportional
to the cube of the length of semi-major axis
of the elliptical orbit. This is called as
harmonic law.

T2   a3

T = period of revolution of planet around
the sun
a = length of semi-major axis of the elliptical
orbit.

Q10. Derive Keplers laws.

(OR)

State and obtain kepler’s law motion
planetary.

Ans : (June-17, Dec.-16)

Consider a planet of mass m. This moves
under the gravitational field of the sun. As per
Newtons’ law of gravitation, the attractive force
between the planet and the sun is

2

GMmˆF r
r





Where M = mass of the sun

m = mass of planet

r  = distance between planet and
         sun

r̂  = unit vector along the radius
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The gravitational force is a central force.
Therefore the angular momentum is conserved. The
motion of the planet takes place in a fixed plane.
The areal velocity of its radius vector is constant.

The areal velocity is

dA L
dt 2m



2h 1 d
mr

2 2m dt
   

 

2 d
h r

dt


       ... (2)

The radial force on the planet is

22

2

d r d
F m r

dt dt

     
   

      ... (3)

Using equations (1) and (3), one can has

22

2 2

d r d GMm
m r

dt dt r

      
   

22

2 2

d r d Gm
r

dt dt r
    

 

Using equation (2), one can has

2 2

2 3 2

d r h GM
dt r r


 

Put r =
1
u

                                ... (4)


2

2 3 2
2

d r
h u GMu

dt
         ... (5)

Differentiating equation (4), one can obtain

2

dr 1 du
dt u dt

 

     2

1 du d
.

u d dt


 


     
2

2

1 du
(hu )

u d
     

     
2d

hu
dt
   



     
du

h
d

 


Differentiating  once again,

2 2

2 2

d r d u d
h .

dt d dt


 


       
2

2
2

d u
hu

d
 


     

2d
hu

dt
   



Putting this value in equation (5), one can
obtain

2
2 2 2 3 2

2

d u
h u h u GMu

d
   



2

2 2

d u GM
u

d h
 



2

2 2

d u GM
u 0

d h
      

      ... (6)

2

2 2 2

d GM GM
u u 0

d h h
             

      ... (7)

The solution of this equation is

2

GM
u Ccos

h
   

2

GM
u C cos

h
  

   
2

2

GM Ch cos
h

 


2 2h u GM h Ccos  

2
2 h C

h u GM 1 cos
GM

 
   

 

2 2h / GM h C
1 cos

r GM
         ... (8)
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This equation is of the form

1 ecos
r
  

l
                   ...(9)

This equation shows a conic section of
eccentricity

e =
2h C

GM
 and semi-latus rectum l =

2h
GM

.

The total energy of the planet is negative as
the orbit of the planet around the sun is closed.
The total energy is negative when e < 1. Therefore
the orbit of the planet around the sun is ellipse.
This is Keplers’ first law.

Derivation of Second Law

Consider the planetary motion. Let S is the
center of the sun. P is the center of the planet in its
orbit. Let r


 is the radius vector of the planet with

respect to S. The planet moves from P to P' in a
small interval of time.

The vector area A


 swept by the radius
vector in time interval t  is

1
A r r

2
  
  

      ... (1)

Dividing both sides by t,  one can obtain

A 1 r
r

t 2 t
 

 
 

 

dA 1 dr
r

dt 2 dt
 



      
1

r
2

 
 

      
1

r m
2m

  
 

dA 1
L

dt 2m


 

L


 is constant for a central  force

dA
dt


 = constant

Thus the areal velocity is constant. This proves
the Keplers’ second law of motion.
Third Law

Consider the semi- latus rectum l of the
elliptical orbit. a and b are the semi- major and semi-
minor axes of the ellipse, respectively.

2 2b h
a GM

 l

If t is the period of the planet around the sun,

area of ellipse ab
T

areal velocity h / 2


 

2 2 2
2

2

4 a b
T

h




     
2 2 2

2

4 a b
GMb / a




     
2 34 a

GM




2 3T a
Thus the square of the time period of

revolution of planet around the sun is directly
proportional to the  length of the semi major axis of
the elliptical orbit.

3.8 SPECIAL THEORY OF RELATIVITY

Q11. Define postulates of special theory of
relativity.

Ans : (June-19)

Einstein published the special theory of
relativity  in 1905. This theory was based on the
postulates.
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Postulate 1

 The laws of physics have the same  form in
all  inertial frames of references moving with a
constant velocity relative to one another.

This is called as principle of relativity. This
postulate defines the absence of universal frame of
reference.

As per this postulate, it is impossible by any
means to demonstrate absolute motion. The
absolute motion is meaningless. The motion of
bodies relative to one another has physical meaning.
There is no absolute motion according to Einstein.
Undetection of absolute motion implies undetection
of ether. If the laws of physics were different for
observers in different frames in relative motion, it
could be determined from these differences which
objects are stationary in space and which are
moving. There is no universal frame of reference,
this distinction between objects cannot be made.

Postulate 2

The speed of light in free space is the same in
all inertial frames of references. This is called as the
principle of the constancy of the speed of light.

This postulate follows directly from the result
of Michelson-Morley experiment. As per this
postulate, the speed of light is same in all directions.
It is the greatest velocity.

3.9 GALILEAN RELATIVITY

Q12. Explain the common terms in theory of
relativity.

Ans :
While sitting in a moving vehicle, if you look

at the distant objects like trees or anything stationary,
they appear to move in a direction opposite to the
direction of the motion of the vehicle. It is easy to
realize that for a person standing on the ground,
you will appear to be moving in a particular direction,
while to you, the standing person would appear to
move in a direction opposite to your direction of
motion. In other words, what one observes is
relative, it is not absolute and depends on the state
of motion of the observer.

We take another example, a boy sitting in a
moving vehicle throws a ball upward and the ball

returns to his hand after sometime and it is being
watched by a person standing outside. Now,
imagine what is observed by the boy and the person
standing outside. For the boy, the ball has moved
up straight and come down straight into his hand,
as if he had been stationary. What does the person
standing outside observes ? He observes, that after
the boy has thrown the ball and because the boy is
continuously moving, the ball takes a parabolic path
before finally coming to his hand. These two
examples make it clear that what an observer
observes, depends on his state or his frame of
reference, as discussed below.

Newton. Galileo, Lorentz, Michelson, Morley,
Einstein and others have made significant
contributions in developing the subject of relativity,
the understanding of which is necessary for knowing
the mysteries of physics. We are going to see that
length, mass, time, etc. are not absolute and their
values depend on the state of the observer.

Some of the common terms used in relativity
are defined below :

(i) Particle : A particle is a small piece of matter,
having practically no linear dimension, but
only a position at a point. It is characterized
by its mass and charge.

(ii) Observer : A person who locates, records,
measures and interprets an event is called an
observer.

(iii) Event : In relativity, an event implies anything
that occurs suddenly or instantaneously at a
point in space. It involves a position and a
time of occurrence.

Frame of Reference

Even the basic physical quantities like
displacement, velocity, time, mass, etc. are not
absolute and the measured values are relative,
depending upon the reference and the state of
observer. To locate the coordinates of a point, we
assign a specific x-, y- and Z-values of a coordinate
system having its origin at O with x = 0, y = 0 and
z = 0. If the origin of the coordinate system is
changed, the coordinates of the point also change.
We can state that the reference of the point has
changed and the coordinate axes form a reference
system.
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A system of coordinate axes which defines
the position of a particle or specifies the location of
an event is called a frame of reference. The simplest
frame of reference is the Cartesian system of
coordinates in which the location of a point is
specified by the three (X-, y- and z-) coordinates.

However, for complete specification of an
event in a reference frame, i.e., for determination
of its exact location as well as the exact time of its
occurrence, in addition to the three space
coordinates, another coordinate, time / of its
occurrence should be specified. A frame of reference
having four coordinates, x, y, z and t is referred to
as a space-time frame the four axes defining a four-
dimensional contirum is called space-time.

Q13. Describe Galilean Transformation.

Ans : (June-17)

Galilean or Classical Transformation

A point or particle at any instant has different
coordinates in different reference systems. The
equations which provide the relationship between
the coordinates of two reference systems are called
transformation equations.

The transformation of coordinates of a particle
from one inertial frame to another is known as
Galilean (or classical) transformation.

S

vt

v
SS

0 X

ZZ

0
X

yy

Fig.: Reference frame S' moves with
velocity v (in the x direction) relative to

reference frame S.

To detect the position of a particle at a certain
time, we should represent it in both space as well as
time. such a thing is called an event. The event may
be conveniently represented by (x, y, z, t).

Consider a fixed frame of reference S with
axes OX, OY and OZ. Let an event P be represented
by (x, y, z, t). The same event is seen by an observer
in the moving frame of reference S' with axes O'X'.
O'Y' and O'Z'. The frame of reference S' is moving
with a relative velocity . Let the origin O' at time  t
= t' = 0 be at O. Now, the observer in the moving
frame S' sees the same event at time t'. Hence the
coordinates be represented by (x', y', z', t'). It is now
required to obtain the relation between x, y, z, t
and x', y', z', t'. It is clear from fig. above that the
measurements in S' with those in the frame S by
the equations.

x' = x – vt    y' = y    z' = z  and  t' = t
...(1)

The same can be represented in the frame S
with those in frame S' by considering that S is
moving a velocity –v with respect to S'. Thus

x = x'+vty = y'  z = z'   and  t = t'
...(2)

These sets of equations are Galilean (or
classical) transformations.

To convert velocity components measured in
the frame S to their equivalents in the frame S'. we
differentiate these equations and putting  t' = t  and
dt' = dt, we get

vx'  =  

   

 x
dx dx

v v v
dt dt

v'y  =  

 

 y
dy dy

v
dt dt

v'z  =  

 

 z
dz dz

v
dt dt

To convert acceleration components, we
differentiate again

fx'  =  




2

2

d x
dt

= 
2

2

d x
dt

= fx
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fy'  =  




2

2

d y
dt

= 
2

2

d y
dt

= fy

fz'  =  




2

2

d z
dt

= 
2

2

d z
dt

= fz

Thus it is clear that acceleration of a body is
the same in both the frames of reference. Hence
Newton’s second law of motion (F = mf) is equally
valid in both the frames. So Newton’s laws of motion
are invarient under the Galilean (or classical)
transformation.

3.10 ABSOLUTE FRAME OF REFERENCE

Q14. Discuss about absolute frame of
reference.

Ans : (June-17)

Absolute Frames of Reference

We know that the laws of mechanics are
invariant under Galilean transformation and the laws
of electro magnetism or electro dynamics and
Maxwell’s equations are not invariant under Galilean
transformations. Hence, the velocity of light will have
different values for different observers moving with
different uniform velocities. From this, scientists
thought that there exists a preferred inertial frame
known as the absolute frame in which the velocity
of light will be exactly equal to the value derived
from

Maxwell’s equations c =
0 0

1

 
= 3 ×108

m/s and will be the same in all directions as the frame
is at absolute rest.

Relative to such an absolute frame of
reference, the velocity of light as determined in any
inertial frame moving with a velocity v relative to
the absolute frame will be c+v or c – v depending
on the direction of motion. Scientists called such on
absolute frame as ether, and tried to measure the
change in velocity of light as measured from earth.
Michelson and Morley experiment is aimed at this
purpose. But it failed to observe any such change
and the velocity of light is found to be independent
of the state of motion of the observer.

To explain the null result of Michelson Morley
experiment Einstein proposed his famous postulates
of special theory of relativity that

1) The laws of physics, all laws, are the same in
all inertial frames and

2) The speed of light in vacuum ‘c’ has the same
value in all inertial frames.

Now, as Galilean transformations are
insufficient to predict the invariance of all physical
laws and the invariance of velocity of light, Lorentz
transformations are to be used. When the laws of
physics are expressed in Four Vector Formalism,
they will be invariant.

The final conclusion is that there are no
absolute frames of reference and all motion is
relative.

3.11 MICHELSON - MORLEY EXPERIMENT

Q15. Describe Michelson Morely experiment.
What is its significance?

Ans :   (June-19, Dec.-18, June-18, Dec.-16)

In 1887, Michelson and Morley performed
an experiment in order to determine the velocity of
earth w.r.t. ether medium as the inertial frame of
reference by using an interferometer. However, the
result of the experiment ruled out the existence of
this hypothetical medium.

Experimental arrangement

The experiments] arrangement is show fig.
(3). Light from a monochromatic extended source
S after being rendered parallel by

Fig.: Set-up for Michelson-Morley Experiment
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a collimating lens L, falls on the semisilvered glass plate G inclined at an angle 45o to the beam. It is divided
into two parts, one being reflected from the semisilvered surface G giving rise to ray 1 which travels
towards mirror and the other being transmitted giving rise to ray 2 which travels towards mirror M2. The
two rays fall normally on mirrors M1 and M2 respectively and are reflected back along their original paths.
The reflected rays again meet at the semisilvered surface of glass plate G and enter telescope where
interference pattern is obtained. The optical distances at the mirror M1 and M2 from G are made equal
with the help of a compensating plate not shown is the figure.

If the apparatus is at rest in ether, the two reflected rays would take equal time to return the glass
plate G. But actually the whole apparatus is moving along with the earth. Let us suppose that the direction
of motion of earth is in the direction of the initial beam. Due to the motion of the earth, the optical paths
traversed by both the ray are not the same The reflections at mirrors. M1 and M2 do not take place at A
and B but at A' and B' respectively as show n in fig. (3). Thus the times taken by the two rays to travel to
mirrors and back to G will be different in this case.

Theory

Let the two mirrors M1 and M2 he art an equal distance / from the glass plate G. Further let c and v
he the velocities of light and apparatus or earth respectively. It is obvious from fig. (3) than the reflected
ray I from glass plate G strikes the mirror M1 at A' and not at A due to the motion of the earth. The total
path of the ray from G to A and back will he GA'G'. From GA'D

or (GA')2 = (AA')2 + (A'D)2 ( GD = AA') ...(1)

If t be the time taken by the ray to move from G to A. Then from eq.(1), we have

(c t)2 = ( t)2 + (l)2

or t2(c2 – 2) = l2   or   t = 2 2(c ) 

l

If t1 be the time taken by the ray to travel the whole parth GAG’. then

t1 = 2t = 
2 2

2

c ) 

l
 = 1/22

2

2

c 1
c

 
  

 

l

  = 
2
c
l

1/22

2
1

c


 

  
 

=
2
c
l 2

2
1

2c

 
 

  
...(2)

Now consider the case of the transmitted ray 2 which is moving longitudinally towards minor  M2. It
has a velocity (c – ) relative to the apparatus when it is moving from G to B. During its return journey its
velocity relative to apparatus is (c + ). If t2 be the total time taken by the longitudinal ray to reach G', then

     t2 = (c ) 
l

+ (c ) 
l

( GB = G' B' = l)

      t2 = 
2 2

(c ) (c )

(c )

    

 

l l
 = 2 2

2  c

(c ) 

l
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 = 2 2 2
2  c

(c / c ) 

l
 = 

12

2
2 

1
c c


 

  
 

l

= 
2
c
l

2

2
1

c

 
 

  
...(3)

Thus, difference in times of travel of longitudinal and transverse journeys is

    t = t2 – t1

= 
2

2
2

1
c c

 
  

 

l
 –

2
c
l

2

2
2 1

1
c 2 c

 
  

 

l

= 
2

2
2
c c

l
 = 

2

3c

l
...(4)

 Optical path difference between two rays is given by

Optical path difference = velocity × t = c × t

    = c × 
2

3c

l
=

2

2
 

c

l

If  is the wavelength of light used, then path difference terms of wavelength = 

2

2
 

c





l  .

Michelson and Morley performed the experiment in two steps i.e., firstly by the setting shown in fig.
and secondly by turning the apparatus through 90o. When the apparatus was turned through 90o, the
positions of two mirrors are changed. Now the path difference is in opposite directions i.e., the path
difference is – l 2 /c2 wavelength. The resultant path difference now becomes (l 2 /c2) – (– l 2 /c2)
= 2l 2 /c2 = 2 l 2 /c2) wavelength. We know that a change optical path difference by  corresponds
to a shift of one fringe and hence the path difference (2 l 2 /c2) corresponds to a fringe shift (2 l 2 /
c2). Following were following data of Michelson and Morley experiment :

l = 1.0 × 103 cm,  = 5.0 × I0–5 cm,

v = 3 × l06 cm/sec,  and c = 3 × I010 cm/sec

Change in fringe shift n =
2

2
2  

c





l

or n = 
3 6

5 10 2
2 1.0 10 (3 10 )

5.0 10 (3 10 )
   

 
= 0.4 fringe

Thus a shift of less than half a fringe was only expected. Michelson and Morley could observe a shift
of about 0.01 of fringe. Of course, this shift is within the limits (or) the error of observations. They
repeated the experiment at different points on the earth’s surface and at different seasons of the year but
they could not detect any measurable shift. So it was a null or negative result.
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The negative result suggests that it is impossible to measure the speed of the earth relative to ether
or the concept of a fixed frame of reference (like ether filling all space) cannot be checked by experiment.
In this way the null result of experiment lead to the total rejection of ether hypothesis. This suggests that
the speed of light in vacuum is the same in all frames of reference which are in uniform relative motion.

1. Ether drag: In order to explain the null result, it was argued that when the earth earth moves
through ether, it drags ether along with it. As such, the velocity of the earth w.r.t. ether i.e.,  = O.

In the equation (vii), setting  = O, we have

n = O

i.e., no fringe shift should be expected.

2. Loreutz-Fitzgerald Contraction: Lorentz and Fitzgerald suggested that a moving body contracts

by a factor 2 21 / c   along its direction of motion. However, no such contraction occurs in a

direction perpendicular to the direction of motion.

According to contraction hypothesis, the distance for the transmitted part of the beam i.e., the

distance of mirror M2 from the glass plate contracts from to d to d 2 21 / c  . Using equation (ii),

replacing d by d 2 21 / c 

t2 = 
2 22d 1 / c

c
 

2

2
1

c

 
  

 

   = 
2d
c

1/22

2
1

c

 
  

 

2

2
1

c

 
  

 
= 

2d
c

2

2
1

2c

 
  

 

2

2
1

c

 
  

 

Neglecting higher power of 2 / c2, we have

t2 = 
2d
c

2

2
1

2c

 
  

 
= t1

From above discussion contraction hypothesis allows shortening of the path of light parallel to the
earth’s motion just enough to equalise the transit times for the two paths and hence no fringe shift is
observed.

Inferences from Michelson - Morley experiment

The null result of the Michelson - Morley experiment has some conclusions .

1. The negative result of the experiment implied that the motion of the earth through ether was
undetectable. Hence, the concept of ether medium as a preferred inertial frame of reference must
be discarded.

2. The null result indicated that the measured speed of light is same in all directions. It is not affected
by the motion of the earth through the space. It is called the principle of consistency of the speed of
light and is one of the two fundamental postulates of Einstein’s special theory of relativity.
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3.12 LORENTZ TRANSFORMATIONS

Q16. Explain and write Lorentz Transforma-
tions.

Ans : (Dec.-16)

Consider a reference frame S which is at Y
U. rest. Consider another reference frame S’ which
is moving with a constant velocity V. The S position
vector of an event in S' frame

   

r' = x – t ....(1)

The component from of equation (1) is
written as

x' = x – t ....(2)

y' = y ....(3)

z' = z ....(4)

and t' = t ....(5)

The equations (2) to (5) are called Galilean
transformations. The relation between velocity
components in S and S' frames is written as

    x x ....(6)

  y y' ....(7)

  z z' ....(8)

The eqs. (6), (7) and (8) disobey the
postulates of special theory of relativity.

The relation between x and x' is written as

    x k x t ....(9)

where x is a constant of proportionality.

The inverse equation for equation (9) is
written as

  x k '(x ' t ') ....(10)

The other equations are written as

y' = y ....(11)

z' = z ....(12)

Times t and t' are not equal.

Putting the value of x' from equation (9) in
equation (10), we have

    x kk '(x t) k ' t '

     
1 kk '

t ' kt x
k ' ....(13)

For calculating k and k', the second postulate
of special theory of relativity is used.

Consider a single of light is given  out from
the  common origins of S and S' at t = t' = 0. The
signal propagates in the two systems according to
the equations

x = ct ....(14)

x' = ct' ....(15)

in system S and S' respectively.

Substituting the values of x' and t' into
equation (15), one can has

         
1 kk '

k x t ckt cx
k '

 
 

 
       

1
cx ct

1 c
1 1

kk '
....(16)

Comparing equation (16) with equation (14),
we have





     





2

2

1
c 1

1 c
1 1

kk '
1

kk '

1
c

....(17)
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We choose  


2

2

1
k k '

1
c

....(18)

Substituting  these values in equations (9) and
(13), we have

    

 

 
  


2

2

2

2

2

x t
x '

1
c

y ' y

z ' z and
x

t
ct '

1
c

....(19)

Equations (19) are called Lorentz trans-
formations.

The inverse Lorentz transformation equations
are written as

    

 

 
  


2

2

2

2

2

x ' t '
x

1
c

y y'

z z '
x '

t '
ct

1
c

....(20)

The measurements of position and time are
found to depend upon the frame of reference of
the observer. The Lorentz equations reduce to the
Galilean transformations when the relative velocity
is very small in comparison with the velocity of light.

3.13  TIME DILATION

Q17. Explain the concept of Time Dilation.

Ans : (Dec.-17)

Time intervals are affected by relative motion.
A clock moving with velocity  with respect to an

observer appears him to have slowed down by a

factor 



2

21 ,
c

 than when at rest with respect to

him.
Suppose a clock is placed at the point x' in

the moving frame S'. An observer in S' finds that

the clock gives two ticks at times 1t '  and 2t ' . The
time interval between the ticks as judged from S' is

 0 2 1t t ' t '

t0 is the interval as measured in a frame in
which the clock is at rest. Another observer measures
the time interval between the same two ticks from a
stationary frame of reference S, relative to which
the clock is moving with velocity . If he records the
ticks at times t1 and t2, the time interval appears to
him as

t = t2 – t1

Using Lorentz transformations, we have

   
 




2 2

2 2

2

x '
t '

ct

1
c

and 

   
 




1 2

1 2

2

x '
t '

ct

1
c

   
  




2 1
2 1 2

2

t ' t '
t t t

1
c

   




0

2

2

t
t

1
c

From this equation, it is evident that to the
stationary observer in S, the time intervals appear

to be lengthened by a factor 


2

2

1

1
c

. A moving

clock
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appears to be slowed down to a stationary observer.
This concept is called time dilation.

If = c, then t= . It means that a clock
moving with the speed of light appears to be
completely stopped to a stationary observer.

Special Cases:

1. When  is very small compared to c, 
2

2c


 is

neglected

  t= t0

2. If   is comparable to c, 
2

21
c


  is less than

unity. In this case t > t0.

3.14 LENGTH CONTRACTION

Q18. What is length contraction? Obtain
expression for length contraction.

Ans : (June-19, (Dec.-17)

Consider two reference frames S and S'
respectively.

S' is moving with a velocity   with respect
to S. An observer in frame S' is at rest with
respect to S' and hence with respect to the rod. The
rod is at rest with respect to this observer.

The length L0 of the rod is written as

Where x'2 and xj are the coordinates of the
rod in S'. Let L frame is the length of the rod in S
frame of reference.

Using Lorentz transformation equations, we
have

 




1 1
1 2

2

x t
x '

1
c

.....(2)

 





2 2
2 2

2

x t
x '

1

..... (3)

 0 2 1L x ' x '

    
 

  

2 2 1 1

2 2

2 2

x t (x t )

1 1
c c






2 1
0 2

2

x x
L

1
c

 [ t1 = t2]




0 2

2

L
L

1
c

..... (4)

This equation indicates that to the stationary
observer in S, the rod placed  in the moving frame

S' appears to be contracted by a factor 



2

21
c

.

This

contraction occurs in the direction of relative motion.
If  = c, then L = 0. This means that the rod moving
with the speed of light will appear as reduced to a
point to a stationary observer. This type of
contraction is called the Lorentz-Fitzgerald length
contraction.

Special Cases:

1. When  is very small compared c, 
2

2c
 is

neglected. Thus L = L0.

2. When  is comparable to c,



2

21
c

 is less

than unity. Thus L < L0. The length of the
moving rod appears to be less than the length
when it was at rest.
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3. When  is equal to c or greater than c, 
2

2c
 is

equal to unity or greater than unity. Thus l =
0 or imaginary. This is impossible and no
material body attains the speed of light.

4. The contraction takes place only along the
direction of motion and remains unchanged
in a perpendicular direction.

5. The contraction is not visualized as it really
occurs.

6. The contraction is reciprocal

An interesting puzzle of the length contraction
was proposed by Terrel in the year 1959. Consider
a cube of side L0 moves with uniform velocity v
with respect to an observer situated at some
distance. The direction of motion of the cube is
perpendicular to the line of sight of the observer.
The length of the cube is shortened to

L=L0




2

21
c

while the other dimensions were

unaffected. The length DE must be equal to L0


c

.The observer sees not only the face AB but also

AD. AB is perpendicular to the line of sight and AD
is parallel to the line of sight. The length of the cube
parallel to the direction of  motion is shortened to


 

2

0 2L L 1
c

. The cube is appear to be rotated

through an angle   
 
 

1sin
c

. Thus the cube is

subjected to an apparent rotation [Fig. 6]. Similarly
a moving sphere appear as a sphere.

3.15 ADDITION OF VELOCITIES

Q19. Obtain the relativistic law for the
addition of velocities.

Ans :
Consider two reference frames S and S’. The

frame S’ moves with a constant velocity v relative
to S along the X-axis. Let a body moves a distance
dx in a time interval dt in the frame S. The velocity
of the body measured by an observer in S frame of
reference is

u = 
dx
dt

...(1)

The velocity of the body in S’ frame of
reference is

dx '
u'

dt '
 ...(2)

Using Lorentz transformations, we have

2

2

x t
x '

1
c

 




and
2

2

2

x
t

ct '

1
c

   
 




Differentiating, we have

2

2

dx dt
dx '

1
c

 





and
2

2

2

dx
dt

cdt '

1
c

   
 





2

dx ' dx dt
u'

dxdt ' dt
c

 
 


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2

dx
dt

dx
1

c dt

 





dx
dt

= u

  
2

u
u'

u
1

c

 


   
 

...(3)

This equation gives the relativistic addition of
velocities u and  .

Special Cases :
1. If u' and are small when compared to c,

2

u'
c


 is neglected.

Thus u = u' + T his is the classical formula.
2. If   or u' = c then u = c. If one  body moves

with velocity c with  respect to other, their
relative velocity is c.

3. When u' = c =  , then u = c. The addition
of velocity of light reproduces the velocity of
light.

3.16 MASS-ENERGY RELATION

Q20. Derive Einstein mass-energy relation.
Explain the verification of mass-energy
relation.

Ans : (June-19)

As per Einsteins’ mass - energy relation

m = 0

2

2

m

1
c


...(1)

m0 = rest mass of the body
c = velocity of light
 = velocity of body
m = mass of the body
According to Newtons’ second law of motion,

F = 
d d dm

(m ) m
dt dt dt


   

The change in kinetic energy of the body is
equal to the workdone by the force F for a
displacement dS of the body.

Thusdk = F. ds

    
d dm

m dS dS
dt dt


  

    
dS ds

m d dm
dt dt

   

     2m d dm     ...(2)

Differentiating equation (1), we have

3/22

0 2 2

1 2 d
dm m 1

2 c c


             

    

      

0
3/22 2

2

m d
c

1
c

 


 
 

 

We know that  m = 0
1/22

2

m

1
c

 
 

 

 dm 2 2

m d
(c )

 


 

 2 2m d c dm    

Putting this value in equation (2), one can
has

 2 2 2 2dk c dm dm c dm     

The kinetic energy of a body is written as

 
0

m 2 2
0m

k dk c dm c m m      ...(3)

m0c
2 is the rest energy of the body. The total

energy of a body is the sum of the kinetic energy
and the rest energy.

 E = k + E0

   = (m – m0)c
2 + m0c

2

E = mc2 – m0c
2 + m0c

2

E = mc2 ...(4)
This equation represents the famous Einsteins’

mass - energy relation.
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3.17  CONCEPT FOUR VECTOR FORMALISM

Q21. Explain four vector formalism?

Ans : (Dec.-18)

The four vector concept has its significance in
theory of relativity. As per first  postulate of special
theory of relativity, the laws of physics are invariant
in all inertial reference frames.

If any equation holds good from the point of
special theory of relativity, it should  be expressed
in four  vector form. As per Lorentz transformations,
the value x2 + y2 + z2 – c2 t2 must be same in all
inertial reference frames. If S and S' are two inertial
reference  frames, then

2 2 2 2 2 2 2 2 2  2
1 1 1x y z c t x y z c t '        ... (1)

Let x1 = x, x2 = y, x3 = z and x4 = ict

x1, x2, x3 and x4  are treated as components of
a vector in 4D space. the vector length in 4 D space
is written  as

D2 = 2 2 3 2
1 2 2 4x x x x  

     =
4

2

1

x

 ...(2)

If vector length is invariant in both frames S
and S'. Using Lorentz transformation

4 4
2 ' 2

1 1

x x 
 

 

x ' v(x t)  

  y' = y

 z' = z

2

x
t ' v t

c
    

where   1/22

2

2

1
v 1 ,

1
c


  




 
c


 

   1 1 1 4x v x t v x i x      

2 2 3 3x x ;x x  

 1
4 4 4 1

i x
x ict ' v x v x i x

c
         

 ... (3)

Putting the above equations in matrix form

1 1

2 2

3 3

4 4

x xv 0 0 i v
x x0 1 0 0
x x0 0 1 0
x xi v 0 0 v

     
        
    

          

....(4)

The above matrix form shown the position
coordinates in four vector notation. The above
matrix is valid for S and S' frames which have relative
velocity along X-Matrix elements will be determined
in any direction.

PROBLEMS

1. What will be the fringe - slift according
to the ether theory in Michelson -
Morley experiment. The effective length
of each path is 5 m and light has 5000
Å wavelength?

Sol :
The fringe shift in Michelson - Morley

experiment  is

2

2

2
N

c


 


l

where l = 5m,  = 3 × 104 m/s,

  c = 3 × 108 m/s and

 = 5000 Å = 5 × 10–7 m


 

 

24

28 7

2 5 3 10
N

3 10 7 10

  
 

  

      
8

16 7

10 9 10
9 10 7 10

 


  

      
8

16 7

10 9 10
9 7 10 

 


 

      =
8

9

90 10
63 10




= 1.43×10–1

N =0.14
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2. A rod 0.1m  long is moving  along its
length with a velocity of 0.5c. Calculate
the length as it appears to a stationary
observer?

Sol :
l0 = 1m,  = 0.5 c, l = ?

2

0 2L L 1
c


 

   
20.5c)

1
2

 
   

 

2 2

2

c 0.25c
L

c




   r 1 0.25  = 0.87 m

L = 0.87 m

3. A space ship 30 m long passes the earth
at a speed of 2.8 ×108 m/s. What will
be its apparent length ? (c = 3.0 × 108

m/s)

Sol :

2

0 2L L 1
c


 

L0 = rest length of space ship

L = Length of space ship

  = Velocity of a body or space ship

     = 2.8 × 108 m/s

c = velocity of light

22.8
L 30 1

3
    
 

    
9 7.84

30
9




     
30

1.16
3



     = 10 × 1.07

  L = 10.77 m

4. Calculate the length and the orientation
of a meter rod in a frame of reference
which  is moving with a velocity equal
to 0.8 c in a direction making an angle
of 45o with the rod?

Sol :

 = 0.8,= 45o , L = ?

The component of the length of the 1 – m
rod along the direction of the motion of the frame
is l cos 45o. The component of the length of the 1 –
m rod along perpendicular direction is l sin 45o.

The apparent length along the moving frame
is

2
o

x 2L cos 45 1
c


 l

     = 1 cos 45o 
 2

2

0.6
1

c


     = 0.707 
2

2

0.36c
1

c


     = 0.707 
2 2

2

c 0.36c
c



     = 0.7070 0.64

    = 0.707 × 0.8

Lx = 0.56 m

The length perpendicular to the direction of
motion is

Ly = L sin 45o = sin 45o

Ly = 0.707 m

2 2L Lx Ly 

     2 2
0.56 0.707 

 0.313 0.499 0.81  

      L = 0.9 m
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If the rod  makes an angle   with the
direction of motion

Ly 0.707
tan

Lx 0.560
   =1.26

 1tan 1.26 

5. Calculate the percentage contraction of
the rod moving with a velocity of 0.5 c
in a direction inclined at 60o to its’ own
length?

Sol :
L0 is the length of the rod at rest. Its

component to the direction of motion is L0 sin60o.

The apparent length along the direction of
motion

 o
0 2

0.6c
L cos60 1

c
 

0L 0.5 0.63 

= L0 × 0.5 × 0.79

= 0.40 L0

The apparent length perpendicular to the
direction of motion

= L0 sin 60o

= 
3

2
L0

  The length of the moving rod

 
2

2

0 0

3
0.40L L

2

 
   

 

0L 0.16 0.87 

0L 1.03

= 1.01 L0

Percentage contraction is 0

0

L L
L


 × 100

0 0

0

L 1.01L
L


× 100 = – 0.01 × 100

    = –1.0%

% contraction = 1.0%

6. A rocket ship is 99 m long  on the ground.
When it is in flight its length is 98 m to
an observer on the ground. What is its’
speed ? (c = 3 × 108 m/s)

Sol :
L0 = Length of the rocket ship on the ground

L = Length in the flight

We know that 
2

0 2L L 1
c


 

22

2
0

L
1

c L
 

   
 

2 2

2
0

L
1

L c
  

  
 

2

0

L
1 .c

L
 

    
 

    2
1 0.98 .c 

   1 0.96.c 

 = 0.2c

7. Two particles are moving in opposite
directions each with a speed of 0.8 c in
laboratory frame  of reference. Find the
velocity of one particle relative to other.

Sol :

2

u'
u

u'1
c

 




where u' = 0.8 c and   = 0.8c
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2

0.8c 0.8c
0.8c 0.8c1

c






    
1.6c

1 0.64




u = 0.97 c

As per, Galilean transformations,

u = u' + = 0.8 c + 0.8 c = 1.6 c

This is greater than c and hence  impossible

8. In the laboratory two particles are
observed to travel in opposite directions
each with a speed 2.8 × 1010 cm /sec.
Deduce the relative speed of the
particles? (c = 3.0 × 1010 cm/sec)

Sol :

2

u'
u

u'1
c

 




 

10 10

10 10

210

2.8 10 2.8 10
2.8 10 2.8 10

1
3.0 10

  


  


  

10

10

5.6 10
2.8 2.8 10

1
9.0




 


105.6 10
2.8 2.8

1
9.0







105.6 10
1.871


 = 2.99 × 1010 cm/sec

9. What is the velocity of   mesons whose
proper mean life is 3 × 10–8 sec and
observed mean life is 2 × 10–7 sec ?

Sol :
The observed mean life is

0

2

2

t
t

1
c




t0 = 3 × 10–8  sec, t = 2 × 10–7 sec

where t0 is the proper life

2
0

2

t
1

c t


 

22
0

2 2

t
1

c t


 

2 8

2 7

3 10
1

c 2 10





 
 



             = 1.5 × 10–1 = 0.15

 
2

2

21 0.15
c


 

 = 0.0225

2

2c


=1 – 0.0225 = 0.9775

c


 = 0.98

   = 0.98 c

10. On the surface of the earth the mass of
the man is 95 kg. When he is in a rocket
moving with a speed of 3 × 107 m/s
relative to the earth, what will be his
mass as observed by

1) an observer on the earth

2) an observer in his rocket?

(c = 3 × 108 m/s)

Sol :
m0 = 95 kg

The mass as observed by a stationary observer
when the man is moving in a rocket

0

2

2

m
m

1
c





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    27

2

95

3 10
1

c






  
27

8

95

3 101
3 10


    

14

16

95

9 101
9 10





14 16

95

1 10 




2

95

1 10




95
1 0.01




= 
95
0.99

= 95.95

    m = 95.95

An observer moving in the rocket will find
the mass of the man as the rest mass i.e.,
95.95.

11. A charged particle shows an accelera-
tion  of 3 × 1012 cm/sec2 under an
electric field at low speed. Calculate the
acceleration of the particle under the
same field when the speed has reached
a value 2.88 × 1010  cm/sec. The speed
of light is 3.0 × 1010 cm/sec.

Sol :
The force acting  on a particle is

a0 = 3 × 1012 cm/sec2, a = ?, F = qE

When  = 2.88 × 1010 cm/sec

acceleration a0 = 
0 0

F qE
m m



      = 3 × 1012 cm/sec2

When the particle attains a speed  3.0 × 1010

cm/sec, its mass increases to m

 
 

0 0

2 210

2
210

m m
m

2.88 101 1c
3.0 10

 
  



 
 

0

2

2

m
m

2.88
1

3.0





    0m
1 0.9216




   0m
0.0784



0

F F
mm

0,0784

  

   = 0.0784 × 
0

F
m

= 0.0784 × 3 × 1012

    = 0.23 × 1012 cm/sec2

12. The rest mass of an electron is 9 × 10–31

kg. What will be its mass if it were

moving with 
2
3

rd of the speed of light ?

Sol :

We know that m = 0

2

2

m

1
c


2
c 3



2 2

2 2

2
1 1

c 3


  
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    = 
4

1
9



   
9 4

9




 
5
9



  m =
319 10

5
9



319 3 10
5

 


       
3121 10

5




      = 9.39 × 10–31kg

13. Deduce the velocity at which the mass
of a particle becomes 1.5 times its’ rest
mass (c = 3 × 108 m/s)

Sol :

We know that m = 0

2

2

m

1
c


0

m
m

= 1.5

2

2

1 15 3
1.5

10 2
1

c

  


2

2

1
1 2 / 3

c 3 / 2


  

2

2

4
1

c 9
 

  
 

2

2

4
1

c 9


 

    
9 4 5

9 9


 

5
c 9



5
c

3
 

   =
5

3
 × 3 × 108 m/s

 =2.24 × 108 m/s

14. Deduce the rest energy of an electron in
iozles and electron vists (m0 = 9.1 ×
10–31 kg,  C = 3.0 × 108 m/s). Also
deduce the speed at which the total
relation static energy  becomes 1.25
times the rest energy?

Sol :
The rest energy is  E0 = m0c

2

= 9.1 × 10–31 × (3 × 108)2

= 8.19 × 10–14 J

    
14

0 19

8.19 10
E

1.6 10










 = 0.51 × 106 eV

 = 0.51 MeV

2

2
0 0 0

E mc m
1.25

E m c m
  

2
0

2

m 1
m

1
c




2

2

1

1
c



= (1.25)2 =1.5625

2

2

1
1 0.64

c 1.5625


  
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2

2c


=1 – 0.64 = 0. 36

c


= 0.6

  = 0.6 C = 0.6 × 3 × 108 m/s

  = 1.8 ×108 m/s

15. Show that the mass of an electron is
equivalent to 0.51 MeV energy. State the
minimum energy of  -ray photon which
can produce an electron positron pair.

Sol :
The rest mass m0 of an electron is 9.1 × 10–

31 kg.

E0 = 0.51 MeV

To produce an electron position pair, the
minimum energy of the  -ray photon is the sum
of the rest- mass  energy of an electron and a
position.

0.51  0.51 = 1.02 MeV

16. A particle of rest mass m0 moves with a

speed of 
c
3

. calculate its mass,

momentum, total energy and kinetic
energy?

Sol :
The relativistic mass of the particle is

0 0

2 2

2 2

m m
m

c
1 1

c 3c

 


 

    
0 0

0

m m 3
 m

21 2
1

3 3

  


m = 1.22 m0

The momentum is 0

c
p m 1.22m

3
   

= 0.70 c m0

The total energy  is E = mc2 = 1.22 m0c
2

The kinetic energy is K = E – m0c
2

= 1.22 m0c
2 – m0c

2

     K = 0.22 m0c
2

17. An electron (rest mass 9.1 ×10–31kg) is
moving with speed 0.8c. What is its total
energy? Find the ratio of Newtonian
kinetic energy to the relativistic energy?
(c = 3.0 × 108 m/s)

Sol :

We know that  0

2

2

m
m

1
c






 

31

2

9.1 10

1 0.8






319.1 10
1 0.64






319.1 10
0.36




319.1 10
0.6




= 15.17 × 10–31 kg

The  total energy of the electron is

E = mc2

   = 15.17 × 10–31 × (3.0 ×108)2

   = 136.53 × 10–31+16

  = 136.53 × 10–15

  = 1.36 × 10–31J

The Newtonian kinetic energy is 
2

0

1
m

2


The ratio of Newtonian kinetic energy to the
relativistic energy is
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 

2 2
0

0
2 2

0 0

1
m m12

mc m c 2 m m c

       

 
31

31 31

1 9.1 10
2 15.17 10 9.1 10



 




  

31

31

1 9.1 10
2 6.07 10










        
1 9.1

0.75
2 6.07

  

18. How much energy will be obtained if 3.0
g of mass  is completely converted into
energy?

Sol :
Using mass - energy relation

  2E m c  

2
m 3g 3 10 kg   

c = 3.0 × 108 m/s

E = (3 × 10–2)(3.0 × 108)2 = 27
×1014

1 MeV = 1.60 × 10–31 J

E = 
14

13

27.0 10
1.60 10




 MeV

     = 16.87 × 1027 MeV

19. What is the mass equivalent of the
energy from an antenna radiating 20000
watts for 48 hours.

Sol :
The total energy radiated is

E = 20000 × 48 watt-hours

     = 20000 × 48 × 3600 watt-sec

    = 3.45 × 109 J

The mass equivalent is

m 2

E
c


 

      
9

28

3.45 10

3.0 10






    
9

16

3.45 10
9 10






    
9 163.45

10
9

 

    = 0.38 × 10–7 kg

20. A clock keeps correct time. With  what
speed should it be moved relative to an
observer so that it may appear to loose
5 minutes in 24 hours?

Sol :

0

2

2

t
t

1
c




t0 = 24 × 60 = 1440

t = 5 + 24 × 60 = 1445

2

21445 1440 1
2c

 
  

 

2

2

1445 5
1

2c 1440 1440


  

       = 3.47 × 10–3

2 3 23.47 10 2c   

32 2.47 10 c    

  2 0.00347 c  

  0.00694 c 

 =0.0833 c

Thus  = 0.0833 × 3 ×108

         = 0.25 × 108 m/s
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21. Find the velocity with which a body
should be moving such that it gets its
rest mass doubled?

Sol :

We know that m = 0

2

2

m

1
c




0
0 2

2

m
2m

1
c






1/22

2

1
1

c 2
 

  
 

2

2

1
1

c 4


 

     2 23 3
c c

4 2
  

 = 0.86 c = 0.86 × 3 × 108

  = 2.58 × 108 m/s

22. In Michelson- Morley  experiment, the
mirror is 10 m distance from the glass
plate. Find fringe shift for 6000 Å
radiation ( = 3 × 104 m/s)

Sol :

Fringe shift 
2

2

2 v
c

 


l

  
8

16 10

2 10 9 10
9 10 6000 10

  


  

8

3 16 10

180 10
54 10 10 10




  

8 3 16 10180
10

54
   

= 3.33 × 10–1

          = 0.33

23. A meson particle decays in 2s in a rest
frame. When meson particle is moving
with 0.6 c velocity. Find its decay time?

Sol :

  = 0.6c, t = 0

2

2

t

1
c


  
2

2

2

1
c






2

2

0.6c
1

c


   
 

        
2

1 0.36




t0 = 2 s,  t = ?

       t =
2

0.64

       t = 2.5 s

24. Find the velocity with which a body
should travel so that the length becomes
half of the rest length.

Sol :
Given that,

For a body,

Length = 
1
2

(rest length)

 l = 
'

2
l

The variation oflength and velocity can be
mathematically expressed by length contraction.

i.e., l = l'
2

2
v

1
c


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
'

2
l

 = l'
2

2
v

1
c




2

2
v

1
c

 =
1
2

 1 – 
2

2
v

c
 = 

1
4


2

2
v

c


= 1

4
– 1


2

2
v

c


 = 

3
4



2

2
v

c
 = 

3
4


v
c

= 
3

2

 v = 
3

2
 c = 0.866 c

= 0.866 × 3 × 108 [  c = 3 × 108 m/sec]

= 2.598 × 108

= 2.6 × 108 m/sec.

 At v = 0.866 c  or v = 2.6 × 108 m/sec, the lenght of body becomes half of the rest length.
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Short Question and Answers

1. Central Force.

Ans :
A central force is defined as a force, which

always acts on a particle or body towards or away
from a fixed, point and whose magnitude depends
upon only on the distance from the fixed point.
This fixed point is known as the centre of the force.

2. What are inertial and non-inertial
frames?

Ans :
(i) Inertial Frame of Reference

Inertial frame of reference can be defined as
a frame in which the bodies obey Newton’s law of
inertia. In other words, a coordinate system wherein
Newton’s first law of motion holds good is known
as Inertial frame of reference.

In this type of frame, a body moves with
constant velocity i.e., zero acceleration. Hence, it is
also known as unaccelerated frame.

Examples

(a) Any reference frame attached to earth

(b) A coordinate system fixed on earth having
spinning motion

(c) A cart at rest or moving with constant velocity.

(ii) Non-inertial Frame of Reference

Non-inertial frame of reference can be defined
as a frame in which the bodies do not obey Newton’s
first law of motion. In other words, a frame of
reference having an acceleration with respect to an
inertial frame is known as non-inertial frame of
reference.

In this type of frame, a body moves with
variable velocity i.e., certain amount of acceleration.
Hence, it is also known as accelerated frame.

Examples

(i) Any reference frame with uniform linear
acceleration

(ii) A cart moving with variable velocity

(iii) An aircraft making its take-off run.

3. What is velocity of the particle if its KE
is equal for rest energy?

Ans :
Given that,
For a particle,
Total energy = E = moC

2

The variation of mass with velocity can be
mathematically expressed as,

m = o
2

2

m

v
1

c


...(1)

Where,
m = Relatively mass which includes both

kinetic and rest energy
mo = Rest mass

 E = Ek + Er

mc2 – Ek + moc
2 [  E = mc2]

 Ek
 = mc2 – moc

2

 Ek = 
2

o
2

2

m c

v
1

c


– moc
2

 moc
2 = 

2
o

2

2

m c

v
1

c


 – moc
2     [  Given]


2

o
2

2

m c

v
1

c


= 2moc
2


2

o
2

2

m c

v
1

c


= 2


2

2
v

1
c

 = 
1
2
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 1 – 
2

2
v

c
=

21
2

 
 
 

 1 – 
2

2
v

c
=

1
4


2

2
v

c
=1 – 

1
4


2

2
v

c
=

3
4

 v2 = c2
3
4

 v = c
3
4

 v = 0.75 × 3 × 1010 = 2.59 × 1010

  Velocity of particle, v = 2.59 × 1010 cm/sec

4. Calculate the work done to keep two
balls having a mass 500 gm each from
infinite distance to 10cm apart.

Ans :
Given that,

Mass of balls,

M1 = m = 500 gm = 500 ×10–3 kg

Distance, r = 10 cm × 10–2m

Work done in moving the balls from infinite
distance to 10 cm apart is given as,

W = E = – mGM
r

Where, G – Gravitational constant

= 6.67 × 0–11 Nm2 kg–2

Substituting the corresponding values in
above equation,

     W = – 
11 3 3

2
6.67 10 500 10 500 10

10 10

  


    



= – 6.67 × 25 × 10–11 + 4 – 6 + 1

= – 16.675 × 10–12 J
 Work done, W = – 166.75 × 10–12 J
5. Time Dilation.

Ans :
Time intervals are affected by relative motion.

A clock moving with velocity  with respect to an
observer appears him to have slowed down by a

factor 



2

21 ,
c

 than when at rest with respect to

him.
Suppose a clock is placed at the point x' in

the moving frame S'. An observer in S' finds that

the clock gives two ticks at times 1t '  and 2t ' . The
time interval between the ticks as judged from S' is

 0 2 1t t ' t '

t0 is the interval as measured in a frame in
which the clock is at rest. Another observer measures
the time interval between the same two ticks from a
stationary frame of reference S, relative to which
the clock is moving with velocity . If he records the
ticks at times t1 and t2, the time interval appears to
him as

t = t2 – t1

Using Lorentz transformations, we have

   
 




2 2

2 2

2

x '
t '

ct

1
c

and 

   
 




1 2

1 2

2

x '
t '

ct

1
c

   
  




2 1
2 1 2

2

t ' t '
t t t

1
c

   




0

2

2

t
t

1
c
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From this equation, it is evident that to the
stationary observer in S, the time intervals appear

to be lengthened by a factor 


2

2

1

1
c

. A moving

clock appears to be slowed down to a stationary
observer. This concept is called time dilation.

If = c, then t= . It means that a clock
moving with the speed of light appears to be
completely stopped to a stationary observer.

6. Length contraction.

Ans :
Consider two reference frames S and S'

respectively.

S' is moving with a velocity   with respect
to S. An observer in frame S' is at rest with
respect to S' and hence with respect to the rod. The
rod is at rest with respect to this observer.

The length L0 of the rod is written as

Where x'2 and xj are the coordinates of the
rod in S'. Let L frame is the length of the rod in S
frame of reference.

Using Lorentz transformation equations, we
have

 




1 1
1 2

2

x t
x '

1
c

...(2)

 





2 2
2 2

2

x t
x '

1

...(3)

 0 2 1L x ' x '

    
 

  

2 2 1 1

2 2

2 2

x t (x t )

1 1
c c






2 1
0 2

2

x x
L

1
c

 [ t1 = t2]




0 2

2

L
L

1
c

...(4)

This equation indicates that to the stationary
observer in S, the rod placed  in the moving frame

S' appears to be contracted by a factor 



2

21
c

.

This

contraction occurs in the direction of relative motion.
If  = c, then L = 0. This means that the rod moving
with the speed of light will appear as reduced to a
point to a stationary observer. This type of
contraction is called the Lorentz-Fitzgerald length
contraction.

7. A meter scale length is recorded as 96
cm by an observer. Find it’s velocity.

Ans :
Given that,

Length of a scale, l = 1m

Length observed, l = 96 cm = 96 × 10–2m

Velocity of the observe, v is given as,

v = c
2

2
1

l

l

2

2
v

' 1
c

 
  
  
 l l

Where,

c – Velocity of light = 3 × 108 m/s

Substituting the corresponding values in
above equation.
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V = 3 × 108

2

2
(96 10 )

1
(1)




= 3 × 108 1 0.9216

= 3 × 108 × 0.28

= 0.84 × 108

= 84 × 106 m/s

 Velocity, v = 84 × 106 m/s

8. Explain the conservative  nature of
central force?

Ans :
A force is said to be conservative if the work

done in moving a particle from one point to another
point is independent of the path followed. But
depends on the end points. Consider a particle that
moves from A to B. It can follow path I or path II or
any other path. If the force is conservative, the work
done along these paths is constant. The points A
and B are fixed.

B A

A B
F.dr F.dr 
  

path I       path II

The work done in moving a particle along a
closed curve is zero.

WAB = work done in moving from A to B

B

A
F.dr


...(1)

WBA = work done in moving from B to A
= + WBA = –WAB

  Net work done = WAB + WBA

WAB + WBA = 0 ...(2)

9. Kepler's laws of planetary motion.

Ans :

Kepler proposed three laws for planetary
motion.

They are as follows:

1. First Law

Each planet revolves around the sun in an
elliptical orbit around the sun. The sun is at
the one of the foci of the ellipse [Fig. 7].

This law is called as the law of elliptical orbits.

This law gives us the shape of the orbit of a
planet around the sun.

2. Second Law

The radius vector of any planet relative to
the sun sweeps out equal areas in equal times.
The areal velocity of the radius vector is
constant.

This law is called as the law of areas. This law
gives the relationship between the speed of
the planet and its distance from the sun.

3. Third law

The square of the period of revolution of any
planet around the sun is directly proportional
to the cube of the length of semi-major axis
of the elliptical orbit. This is called as
harmonic law.

T2   a3

T = period of revolution of planet around
the sun

a = length of semi-major axis of the elliptical
orbit.
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10. Define postulates of special theory of
relativity.

Ans :
Einstein published the special theory of

relativity  in 1905. This theory was based on the
postulates.

Postulate 1

 The laws of physics have the same  form in
all  inertial frames of references moving with a
constant velocity relative to one another.

This is called as principle of relativity. This
postulate defines the absence of universal frame of
reference.

As per this postulate, it is impossible by any
means to demonstrate absolute motion. The
absolute motion is meaningless. The motion of
bodies relative to one another has physical meaning.
There is no absolute motion according to Einstein.
Undetection of absolute motion implies undetection
of ether. If the laws of physics were different for
observers in different frames in relative motion, it
could be determined from these differences which
objects are stationary in space and which are
moving. There is no universal frame of reference,
this distinction between objects cannot be made.

Postulate 2

The speed of light in free space is the same in
all inertial frames of references. This is called as the
principle of the constancy of the speed of light.

This postulate follows directly from the result
of Michelson-Morley experiment. As per this
postulate, the speed of light is same in all directions.
It is the greatest velocity.

Q11. Concept Four Vector Formalism

Ans :
The four vector concept has its significance in

theory of relativity. As per first  postulate of special
theory of relativity, the laws of physics are invariant
in all inertial reference frames.

If any equation holds good from the point of
special theory of relativity, it should  be expressed
in four  vector form. As per Lorentz transformations,
the value x2 + y2 + z2 – c2 t2 must be same in all

inertial reference frames. If S and S' are two inertial
reference  frames, then

2 2 2 2 2 2 2 2 2  2
1 1 1x y z c t x y z c t '        ...(1)

Let x1 = x, x2 = y, x3 = z and x4 = ict
x1, x2, x3 and x4  are treated as components of

a vector in 4D space. the vector length in 4 D space
is written  as

D2 = 2 2 3 2
1 2 2 4x x x x  

     =
4

2

1

x



If vector length is invariant in both frames S
and S'. Using Lorentz transformation

4 4
2 ' 2

1 1

x x 
 

 

x ' v(x t)  

  y' = y
 z' = z

2

x
t ' v t

c
    

where   1/22

2

2

1
v 1 ,

1
c


  



 
c


 

   1 1 1 4x v x t v x i x      

2 2 3 3x x ;x x  

 1
4 4 4 1

i x
x ict ' v x v x i x

c
         

  ...(3)

Putting the above equations in matrix form

1 1

2 2

3 3

4 4

x xv 0 0 i v
x x0 1 0 0
x x0 0 1 0
x xi v 0 0 v

     
        
    

          

...(4)

The above matrix form shown the position
coordinates in four vector notation. The above
matrix is valid for S and S' frames which have relative
velocity along X-Matrix elements will be determined
in any direction.
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12. Define gravitational field.

Ans :
The region around a body where the

gravitational force of attraction is present is called
the gravitational field.

Gravitational attraction or the intensity of the
gravitational field at a point in the field is the force
experienced by a unit is placed at that point.

The intensity of the gravitational field is

2

M 1
F G

r




2

GM
F

r


13. Lorentz Transformations.

Ans :
Consider a reference frame S which is at Y

U. rest. Consider another reference frame S’ which
is moving with a constant velocity V. The S position
vector of an event in S' frame

   

r' = x – t ...(1)

The component from of equation (1) is
written as

x' = x – t ...(2)

y' = y ...(3)

z' = z ...(4)

and t' = t ...(5)

The equations (2) to (5) are called Galilean
transformations. The relation between velocity
components in S and S' frames is written as

    x x ...(6)

  y y' ...(7)

  z z' ...(8)

The eqs. (6), (7) and (8) disobey the
postulates of special theory of relativity.

The relation between x and x' is written as

    x k x t ...(9)

where x is a constant of proportionality.

The inverse equation for equation (9) is
written as

  x k '(x ' t ') ...(10)

The other equations are written as

y' = y ...(11)

z' = z ...(12)

Times t and t' are not equal.

Putting the value of x' from equation (9) in
equation (10), we have

    x kk '(x t) k ' t '

     
1 kk '

t ' kt x
k ' ...(13)

For calculating k and k', the second postulate
of special theory of relativity is used.

Consider a single of light is given  out from
the  common origins of S and S' at t = t' = 0. The
signal propagates in the two systems according to
the equations

x = ct ...(14)

x' = ct' ...(15)

in system S and S' respectively.

Substituting the values of x' and t' into
equation (15), one can has

         
1 kk '

k x t ckt cx
k '

 
 

 
       

1
cx ct

1 c
1 1

kk '
...(16)
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Comparing equation (16) with equation (14),
we have





     





2

2

1
c 1

1 c
1 1

kk '
1

kk '

1
c

...(17)

We choose  


2

2

1
k k '

1
c

...(18)

Substituting  these values in equations (9) and
(13), we have

    

 

 
  


2

2

2

2

2

x t
x '

1
c

y ' y

z ' z and
x

t
ct '

1
c

...(19)

Equations (19) are called Lorentz trans-
formations.

The inverse Lorentz transformation equations
are written as

    

 

 
  


2

2

2

2

2

x ' t '
x

1
c

y y'

z z '

x '
t '

ct

1
c

...(20)

14. Mass-energy relation.

Ans :
As per Einsteins’ mass - energy relation

m = 0

2

2

m

1
c


m0 = rest mass of the body

c = velocity of light

 = velocity of body

m = mass of the body

According to Newtons’ second law of motion,

F = 
d d dm

(m ) m
dt dt dt


   

The change in kinetic energy of the body is
equal to the workdone by the force F for a
displacement dS of the body.

Thusdk = F. ds

    
d dm

m dS dS
dt dt


  

    
dS ds

m d dm
dt dt

   

     2m d dm     ...(2)

Differentiating equation (1), we have

3/22

0 2 2

1 2 d
dm m 1

2 c c


             

    

      

0
3/22 2

2

m d
c

1
c

 


 
 

 

We know that  m = 0
1/22

2

m

1
c

 
 

 

 dm 2 2

m d
(c )

 


 

 2 2m d c dm    
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Putting this value in equation (2), one can
has

 2 2 2 2dk c dm dm c dm     

The kinetic energy of a body is written as

 
0

m 2 2
0m

k dk c dm c m m     ...(3)

m0c
2 is the rest energy of the body. The total

energy of a body is the sum of the kinetic energy
and the rest energy.

 E = k + E0

   = (m – m0)c
2 + m0c

2

E = mc2 – m0c
2 + m0c

2

E = mc2 ...(4)
This equation represents the famous Einsteins’

mass - energy relation.
15. Addition of velocities.

Ans :
Consider two reference frames S and S’. The

frame S’ moves with a constant velocity v relative
to S along the X-axis. Let a body moves a distance
dx in a time interval dt in the frame S. The velocity
of the body measured by an observer in S frame of
reference is

u = 
dx
dt

...(1)

The velocity of the body in S’ frame of
reference is

dx '
u'

dt '
 ...(2)

Using Lorentz transformations, we have

2

2

x t
x '

1
c

 




and
2

2

2

x
t

ct '

1
c

   
 




Differentiating, we have

2

2

dx dt
dx '

1
c

 




and
2

2

2

dx
dt

cdt '

1
c

   
 





2

dx ' dx dt
u'

dxdt ' dt
c

 
 



    
2

dx
dt

dx
1

c dt

 





dx
dt

= u

  
2

u
u'

u
1

c

 


   
 

...(3)

This equation gives the relativistic addition of
velocities u and  .
16. If the earth be one-half of its present

distance from the sun what will be the
number of days in a year?

Ans :
Let x be the distance between the sun and

the earth. When the earth was at half of its present
distance from the sun,. then the distance becomes

x
2

.

According to Kepler’s third law, the square of
the time period of revolution of the planet is
proportional to cube of semi-major axis i.e.,

T2  a2


2

1

2

T
T

 
 
 

 = 
3

1

2

a
a

 
 
 
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
2
1
2
2

T

T
 = 

3
1
3
2

a

a


2
1
3
1

T

a
 = 

2
2
3
2

T

a

 2
2T =

3
2

1

a
a

 
 
 

× 2
1T ...(1)

Here, T1 = 1 year, a1 = x, a2 = 
1
2

x

Substituting the corresponding values in
quation (1),

2
2T =

x
2
x

 
 
 
  
 

 × 1 year

     = 
31

2
 
 
 

× 1 year

 2
2T  = 

1
8

 years

 T2 = 
1

8
 = 

1

2 2
 × 365 days

     [  1 year = 365 days]

 T2 = 125 days

 T2 = 129 days

17. Gali lean Transformat ion

Ans :

Galilean or Classical Transformation

A point or particle at any instant has different
coordinates in different reference systems. The
equations which provide the relationship between
the coordinates of two reference systems are called
transformation equations.

The transformation of coordinates of a particle
from one inertial frame to another is known as
Galilean (or classical) transformation.

S

vt

v
SS

0 X

ZZ

0
X

yy

Fig.: Reference frame S' moves with velocity v
(in the x direction) relative to reference frame S.

To detect the position of a particle at a certain
time, we should represent it in both space as well as
time. such a thing is called an event. The event may
be conveniently represented by (x, y, z, t).

18. The total electrical energy generated in
a station in a particular year was 7.5 ×
1011 KWH. Find the mass equivalent of
this energy.

Ans :
Given that,

In a station,

Total electrical energy generated
= 7.5 × 1011 KWH

= 7.5 × 1011 × 3.60 × 106 J

[ 1 KWH = 3.6 × 106 J]
= 2.7 × 1018 J

The expression for mass equivalent of electrical
energy is given as,

E = mc2

 m = 2
E

c

Substituting the corresponding values in
above equation.

m = 
18

8 2
2.7 10

(3 10 )





    = 
18

16
2.7 10

9 10





    = 0.3 × 102

  Mass equivalent of the 7.5×1011 kWH = 30kg
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Choose the Correct Answers

1. Gravitational potential inside a spherical shell is . [ a ]

(a) equal to that on the surface (b) greater than that on the surface

(c) less than that on the surface (d) zero

2. The velocity of the earth around the sun is . [ c ]

(a) 3 km/s (b) 30 km/s

(c) 0.3 km/s (d) 300 km/s

3. A body under the inverse square force will move along a circular path if total energy is .

[ c ]

(a) zero

(b) positive

(c) negative but equal to minimum potential energy

(d) negative but greater than minimum potential energy.

4. A satellite revolves round a plant of radius R in time T. What will be the period of revolution around
another planet of radius 3R ? [ a ]

(a)  3T (b) 3 3T

(c) T (d) 9 T

5. The angular velocity of rotation of a star (of mass m and radius R) at which the matter will start
escaping from its equator is . [ b ]

(a)  
2GR

m
(b)  3

2Gm
R

(c)  
2Gm

R
(d)  

22Gm
R

6. An infinite number of identical point masses each equal to m are placed at point x = 1, x = 2, x =
4, x = 8, ... The total gravitational potential at point x = 0 is . [ b ]

(a) – Gm (b) – 2Gm

(c) + 2 Gm (d) infinite

7. If the radius of earth were to decrease 1%, its mass remaining the same, acceleration due to gravita
on the surface of the earth. [ d ]

(a) will increase by 1% (b) will decrease by 1%

(c) will decrease by 2% (d) will increase by 2%
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8. If the K.E. of a staellite revolving in an orbit near the earth surface is doubled then: [ d ]

(a) its orbital velocity is doubled (b) its period of revolution is doubled

(c) it will be broken into pieces (d) it escapes out of earth’s field

9. Michelson - Morley experiment was performed to . [ c ]

(a) measure speed of light

(b) prove existence of ether

(c) measure speed of earth relative to ether

(d) test the isotropy of space

10. Rest volume L3
0 is connected to relativistic volume as . [ c ]

(a) 3 2 3/ 2
0L (1 ) (b) 3 2

0L (1 ) 

(c) 3 2
0L 1   (d)

3
0

2

L

1 

11. Relativistic transformations were suggested by . [ d ]

(a) Newton (b) Einstein

(c) Huygen (d) H.A.Lorentz

12. A body moves with 0.2c velocity. The ratio of the moving mass to rest mass is . [ b ]

(a) 1.2 (b) 1.02

(c) 0.2 (d) 1.0

13. The rest mass of an electron is m0. When it moves will velocity v = 0.6c then its mass is .
[ b ]

(a) m0 (b) 5/4 m0

(c) 4/5m0 (d) 2m0

14. In accordance with the special theory of relativity if  n  and  u'  be the velocities of a particle in the
laboratory and in the moving frames respectively, then which of the following relations is correct.

[ b ]

(a) u'y = uy (b) u'x = ux

(c) u'z = uz (d) none of the above

15. In a perfectly elastic, relativistic collision between two masses, which one of the following quantities
is NOT conserved ? [ b ]

(a) momenturn (b) energy

(c) rest mass (d) angular momentum
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1. The condition for conservative force is  .

2. If the total energy of a particle is negative but not minimum, the path is .

3. Gravitational forces are  .

4. The force required to keep the satellite in the orbit is provided by  .

5. If the eccentricity of a trajectory is zero, the trajectory is .

6. A body under the action of inverse square force will follow an elliptic path if eccentricity is  

7. A body under the inverse square force will move along a circular path if total energy is  

8. An inetial frame of reference must .

9. In a perfectly elastic, relativistic collision between two masses, quantities is NOT conserved

10. Michelson-Morley experiment to detect the presence of ether is based in the phenomen of  .

11. Two photons recede from each other. Their relative velocity will be  .

12. The rect mass of an electron is M0. When it moves with a velocity v = 0.6 c then its mass is
.

13. At what velocity the kinetic energy of a particle is equal to the rest mass energy?  .

14. Einstein’s mass-energy relation (E = mc2) shows that mass and energy disappers to reappear as
 and .

ANSWERS

1. F V  
 

2. elliptical

3. weak

4. gravitation

5. circle

6. e < 1

7. negative but equal to minimum potential energy.

8. not accelerate

9. energy

10. interference

11. c

12. 5/4 m0

13. 3/2c

14. energy and mass

Fill in the Blanks
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4.1 SIMPLE HAROMONIC OSCILLATOR

Q1. Discuss the basic terms involved in
oscillator, motion?

Ans :
Introduction

A motion which repeats itself after equal
intervals of time is called periodic motion or
harmonic motion.

A body or a particle is said possess oscillatory
or vibratory motion if it moves back and forth
repeatedly about the mean position.

Few terms regarding the oscillatory motion:

(i) Perodic time

The periodic time ‘T’ of an oscillatory motion
is defined as the time taken for one oscillation.

(ii) Frequency

The ‘frequency’ n or v is defined as the
number of oscillations in one second. It is

reciprocal of periodic time. i.e., n = 1
T  cycles

per second.

(iii) Displacement

The Distance of the particle in any direction
from the equilibrium position at any instant
is called the displacement of the particle at
that instant.

(iv) Amplitude

The maximum displacement or the distance
between the equilibrium position at and  the
extremeposition is known as amplitude ‘a’ of
the oscillation.

UNIT
IV

OSCILLATIONS :

Simple harmonic oscillator, and solution of the differential equation– Physical
characteristics of SHM, torsion pendulum measurements of rigidity modulus, compound
pendulum, measurement of g, combination of two mutually perpendicular simple
harmonic vibrations of same frequency and different frequencies, Lissajous figures.

Damped harmonic oscillator, solution of the differential equation of damped oscillator.
Energy considerations, logarithmic decrement, relaxation time, quality factor, differential
equation offorced oscillator and its solution, amplitude resonance, velocity resonance.

(v) Phase

The phase of an oscillatory particle at any
instant defines the state of the particle as
regards its position and direction of motion
at that instant.

(vi) Restoring force

In the equilibrium position of the oscillationg
particle, no net force acts on it, when the
particle is displaced from its equilibrium
position, a periodic force acts  on it in such a
direction as to bring the particle to its
equilibrium position. This is called the
restoring  force F.

Q2. Define simple harmonic motion? Write
the Equation for simple harmonic
oscillator?

Ans : (Imp.)

Simple Harmonic Motion

It is defined as the motion of an oscillatory
particle which is acted upon by a restoring  force
which is directly proportional to the displacement
but opposite to it in direction.

Following are the characteristics of simple
harmonic motion :

(a) The motion is periodic.

(b) The motion is along a straight line about the
mean or equilibrium  position.

(c) The Acceleration is proportional  to the
displacement.

(d) Acceleration is directed towards the mean or
equilibrium position.
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Simple Harmonic Oscillator

When a particle or body moves around such
that is acceleration is always directed towards a fixed
point and varies directly as  its distance from the
point, the particle or body is said to executer S.H.M.
the particles or body executing simple harmonic
motion is called a simple oscillator

Equation of Motion of a Simple Oscillator

Consider a particle P of mass m executing
S.H.M about  equilibrium position O along X-axis
as shown  in fig (2). By defination, the force under
which  the particle is oscillating is proportional  to its
displacement directed towards the mean position.
Let x be the displacement of P from O at any instant.
The instantaneous force Facting  upon P is given by

F   – x or F = – k x, ....... (1)

Where k is  proportionality  factor which
represents the force per unit displacement. The
negative sign is used  to show that  the force F is
opposite to the displacement. The negative sign is
used to show that the force F is opposite to the
displacement.

According to Newton’s second law of motion
the restoring force on mass m produces as

acceleration 
2

2

d x
dt

 in the mass, so that

Force = mass × acceleration

i.e., F=
2

2

d x
m

dt
....... (1)

From eq (1) & (2)

2

2

d x
m

dt
= – kx or  

2

2

d x
dt

= 
k

x
m


Let us put 
k
m

 = 2 . Thus,

2

2

d x
dt

 + 2 x = 0 ....... (3)

This is known as the differential equation of
simple harmonic oscillator.

4.1.1 Solution of Differential Equation

Q3. Derive the differential Equation of
simple harmonic oscillator ?

Ans :
2

2

d x
dt

= d dx
dt dt
 
  

=
dv
dt

=
dv
dx

.
dx
dt

= v
dv
dx

dx
v

dt
   


Substituting the value of 
2

2

d x
dt

 in (3)

We get V = 2dV
x

dx
 

Vdv = – 2 x dx........ (4)

(OR)

  Integrating eq (4) we get

2V
2

 = – 2 
2x

2
+ C1

{where C1 = Constant of Integration}

The value of C1 can be  obtained by applying
the condition that at x = a (Amplitude of vibration
the velocity of particle is zero.

O = 
2 2a
2


 + C1

C1 = 
2 2a
2




2V
2

= 
2 2x
2


+

2 2a
2



V2 = 2 (a2 – x2)

V =  2 2a x  ....... (5)

(OR)

As V = 
dx
dt

, eq (5) can be written as

 2 2

dx
dt

a x
 


........ (6)
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So Integrate eq (6) we put  x= a sin ,
Hence,

dx = a cos d

acos d
a cos

 


 or d = dt   ...... (7)

Integrating eq (7), we get  t ,      where

  is constant. Now  the displacement

 x a sin t    ...... (8)

This  gives the displacement of particle at any
instant.

If the motion  takes place along y-axis, then

y =  a sin t   ....... (9)

Second treatment

The simple harmonic oscillator equation is

2
2

2

d x
x 0

dt
  

Let us assume a trial solution of the form

tx Ce

Where C and   are arbitary constants.
Differentiating  it, we get

dx
dt

 = tC e  and 
2

2

d x
dt

 = 2 tC e

Substituting  these values in the equation of
simple  oscillator, we have

2 t 2 tC e Ce    = 0

  (OR)

 t 2 2Ce   = 0

    2 2   = 0    [ C 0  and te 0  ]

 2 j ,       Where  j = ( 1)

Now, x = j tCe   and x = j tCe 

So the general solution can be written as

x = j t
1C e   + j t

2C e 

Where C1  and C2  are arbitary  constants

Further,

   1 2x C cos t j sin t C cos t j sin t       

   1 2 1 2x C C cos t j C C sin t     

Let us put 1 2C C a sin    and j (C1 – C2)  =
a cos 

Where a and   are  new constants

  x a sin cos t a cos sin t     

(or)

 x a sin t   

This is the solution of the equation of simple
harmonic oscillator.

4.1.2 Physical characteristics of simple
Harmonic motion

Q4. Write Physical Characteristics of simple
Harmonic motion?

Ans : (Imp.)

1. Displacement

The displacement of any yarticle ay any instant
executing S.H.M. is given by

x = a sin(wt +  )

The maximum displacement from the mean
position is called amplitude. Here the
amplitude is a

2. Velocity

The velocity v od the oscillating particle can
be obtained by differentiating eq (8).

Thus  V = 
dx
dt

 =    2 2a cos t a x         ..... (1)

At the mean position i.e,  at x = 0 , the
velocity  is maximum (a). So Vmax = a.
The Velocity is zero at the extreme positions.

3. Periodic time

Time taken for one complete oscillation is
called as periodic time and is denoted by T.
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Let t be increased by 
2


 in eq (8) then

2
x a sin t

          

=    a sin t 2 a sin t        

This shows that the displacement repeats itself

after a time 
2 
  

. Therefore, 
2 
  

 is known

as periodic time.

  T = 
2 
  

1
22

2

d x x
dt

        
    



Now, T = 
2


= 
2 2

2

d x / dt
x



 
 
 

= 2 2

x displacement
2 2

(d x / dt ) acceleration
          

4. Frequency

The number of oscillations made in one
second is called as frequency and is denoted
by n or V. Hence.

n or V = 
1
T

 = 
2



 = 
1 k
2 m

 
   

 ..... (3)

5. Phase

 The angle  t    is called the phase  of
vibrations. Phase of a body executing S.H.M
at  any instant represent its state as regards its
position and direction at that instant.

6. Epoch

 The value  of phase when t = 0 is called  the
phase or epoch. In our case   is the epoch.

It is, therfore, termed as the length of
equivalent of simple pendulum.

1. Centre of suspension

The point s of intersection of horizontal axis
with the vertical plane passing through the
centre of gravity is called the centre of
suspension.

2. Centre of oscillation

The point O at a distance {l + (k2/l) equal to
the length of the equivalent simple pendulum
from the  point of suspension S, is called the
centre of oscillation corresponding to centre
of suspension S. It lies on the line joining S to
the  centre of gravity of the body and
produced.

3. Conditions for maximum and minimum
time period

The time period of a compound pendulum
is

T = 
 2k /

2
g

 
 
 
 

 

or

T2 = 
 2 2 24 k

Ig

  
 = 

2 24 k
g

 
 

 




Differentiating this expression with respect to
l, we have

2T.
dT
d  =

2 2

2

4 k
1

g
 

 
 

For T to be maximum or minimum we put

dT
d  = 0 which gives k  . Further 

2

2

d T
d

comes out to be positive for this value of l.
This means that time period T is a minimum
when k   or we can state that when the
distance between the centre of suspension
and centre of mass is equal to the radius of
gyration of the pendulum about an axis
passing through its centre of mass and
perpendicular  to the plane  of oscillation,
the time period will be minimum.
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4.2  TORSIONAL PENDULUM

4.2.1 Measurements of Rigidity Modulus

Q5. Define torsion pendulum? How do you
determine modulus of rigidity using
torsion pendulum?

Ans : (July-21)

The torsional pendulam is shown in fig. It
consists of  heavy metal or cylinder suspended from
a  rigid support by means at experiment wire. When
the sphere or cylinder is signty twisted in the
horizontal plane and then released the pendulum
starts torsional oscillations about the axis of
suspension.

Theory

Let a sphere or cylinder at mass M be
suspended at one end of a wire of length l  and
radius r keeping  its other end fixed at a rigid
support. this behaves like a torsional pendulum.

Let the pendulum sligntly twisted in horizontal
plane through an angle   radian and then released.
the pendulum starts executing torsional oscillations.
Let l be  the moment of inertia of cylinder or sphere
about the axis of suspension within elastic limits. The
couple  or  torque acting  on the  wire is proportional
to  angular displacement.

Therefore, T = I

Where angular  acceleration 
2

2

d
dt


   and

inertial couple acting, T = I
2

2

d
dt


If C be  the torsional rigidity of suspension

wire (i.e., required to produce unit radian twist in
the wire), then restoring couple (  ) required to

produced   radian is  –C  .

In equilibrium 
2

2

d
I C

dt

  

Therefore, the equation of motion of the

pendulum will be 
2

2

Id
C

dt

 = 0 or 

2

2

d C
0

dt I

  

2
2

2

d
0

dt

   Where 2 C

I
  ..... (2)

(or)

This is differential eq of simple harmonic
motion whose time period T is given by

T=
2


=
2

C
I



 
 
 

= I
2

C
   
 

T = 
I

2
C

 ....... (3)

We know that torsional rigidity  C of a wire is
given by

C = 
4nr

2

 ....... (4)

Where n is the modulus of rigidity material of
wire and I is moment of inertia

In case of sphere I = 
2
4

 MR2

Where M = mass of sphere and

R = radius of sphere

In case of cylinder I =
1
2

MR2

Where M = mass of cylinder and

R = Radius of cylinder substituting  the
volume of C from eq (4) in eq (4) we get
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T = 3 4

1 2I
2 2

nr / 2 nr
      




or 
2

2
4 4

8 I 8 I
T

nr r
 

 
 



Measurement of Rigidity modulus by
Torsional Pendulum

The following procedure is adopted

(i) The sphere or the cylinder is suspended a rigid
support with the help of experimental wire
as shown in fit.

(ii) The sphere of cylinder is sightly roated about
the wire and  released so that it begins to
execute tortional oscillations of small
amplitude about wire as axis.

(iii) Start stop watch and simultaneously  count
the number of oscillations in the way find time
period T.

T = 
total number of oscillations

total time taken

(iv) Measure the length l and radius of the wire.
The radius of the  wire is measured with the
help of screw  gauge and length l  with help
of meter scale.

(v) With the help of verneir calliper measure the
radius  R of sphere or cylinder.

(vi) Measure the mass M (in kg) of (cylinder or
sphere) with help of physical balance
calculate

I = 
2
5

 MR2

I = 
1
2

 MR2

Using the formula, = 2 4

8 I
T r
 

 calculate the

value of rigidity  of the wire

Therefore 
2

2
2 4 2 4

8 1 4 MR I
MR

T r 2 T r
     

 


 for

cylinder and 
2

2
2 4 2 4

8 2 16 MR I
MR

T r 5 5T r
     

 


for sphere

4.3  COMPOUND PENDULUM

Q6. Explain Compound Pendulum?

Ans :
Compound Pendulum

A compound pendulum is a rigid body
capable of oscillating about a horizantal axis passing
through it (not through its centre of gravity) in a
vertical plane.

Let fig represent the vertical section of any
irregular  rigid body pivoted at  a point S. In the
equillibrium position of the body, the centre of mass
lies vertically below S. Let m be the mass of the
body and l the distance between the point of
Suspension s and centre of gravituy G.

Let , at any instant t, the body be dispached
through on angle  . Now a restoring couple acts
on the body to bring it in its mean position of rest.
Due to intertia, it does not  stop in the position of
rest but swings to opposite side, i.e., the body
executes simple hormonic motion.

            

Theory

The time period may be calculated as follows
Restoring couple = weight × perpendicular distance
of G from S.

  = mg × l sin

  = mgl (  sin   , when   is small)

If I is the moment of inertia of the body about
an axis through s perpendicular to the plane of

oscillation and 
2

2

d
dt


 angular acceleration, then the

torque acting will be
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2

2

d
I

dt


 

2

2

d
I mg

dt

  

and thus

negative sign indicating that angular acceleration is always towards the position of rest. Then


     

2
2

2

d mgl
P

dt I
,

where,

2mg
P

I



This is the equation of simple harmonic motion whose time period T is given


  

2 I
T 2

P mgl ......(a)

If Ig be the moment of inertia of the body about centre of gravity, then from theorem of parallel axis

I = Ig + ml2

I =- mk2 + ml2 ......(b)

or

where k is the radius of gyration about an axis through the centre of gravity

putting the value of I from eq(b) into (a)

2 2mk m
T 2

mg
 

   
 


  = 

2k
1

2
g

 
 

  
  
 



comparing the above time period with the periodic time of the simple pendulum 
L

T 2
g

    
 

.

We note that

2k
L  


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4.4  COMBINATION OF TWO MUTUALLY PERPENDICULAR SIMPLE HARMONIC  VIBRATIONS OF

SAME FREQUENCY AND DIFFERENT FREQUENCIES

Q7. Discuss the combination of two mutually  simple harmonic vibrations of same
frequencies with neat diagrams?

Ans : (Imp.)

Equal frequenties Perpendicular

Let us consider the case when two simple harmonic  motion have the same frequency (or time
period) one acting  along the  x-axis and the y-axis. Let the two vibrations be represented by

 x a sin t    ...... (1)

y bsin t  ...... (2)

When a and b are the amplitudes of x and y vibrations respectively. The x motion is ahead of the y
motion by angle   i.e. the phase difference  between the two vibrations is 

The equation of resultant vibration can be obtained by climinating  t between eqs (1) and (2).

From eq (2), we have y
sin t

b
    
 

  cos t  =  21 sin t  =
2

2

y
1

b

  
  
  

Expanding eq (1) and substituting the values of sint and cos t, we get

x
a

 = sint cos  + cost sin

(or)
x
a

 = 
y
b

 cos  +
2

2

y
1

b
 
 

 
 sin 

(or)
x
a

 = 
y
b

 cos =
2

2

y
1

b
 
 

 
 sin 

Squaring both sides, we have

2
x y

cos
a b

   
 

 = 
2

2
2

y
1 sin

b
 

  
 

(or)
2

2

x
a

 + 
2

2

y
b

2cos –
2xy
ab

cos

= 2sin   – 
2

2

y
b

 2sin 
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(or)
2

2

x
a

 + 
2

2

y
b

2 2(cos sin )   –
2xy
ab

 cos

=
2sin 

(or)
2

2

x
a

 + 
2

2

y
b

 – 
2xy
ab

 cos  = 
2sin   ...(3)

The equation represents on oblique ellipse, which is the resultant path of the particle, Here we
consider the following  important cases:

(i) When  = 0 (two vibrations are in phase)

In this case,  sin  = 0  and cos  = 1

The eq(3) becomes 
2

2

x
a

 + 
2

2

y
b

 –
2xy
ab

=0

(or)
2

x y
a b

  
 

= 0 or 
x y
a b

   
 

 = 0

(or) ± y = ± 
b
a

x ...... (4)

This eq. represents two coincident  straight lines passing through the origin and inclined to x-axis at
the angle , given by

= tan–1 
b
a

 
 
 

This is the resultant path of the particle as shown in  fig [14(a)]

(ii) When  = 
4


, we have

sin  =
1
2

 and cos =
1
2

Now eq (3) becomes

2

2

x
a

 + 
2

2

y
b

 – 
2xy
ab

1
2

 = 
1
2

..... (5)

This represents an oblique  ellipse, as shown in fig [14(b)]

(iii) When  = 
2


, we have

sin  = 1 and cos = 0

the eq (3) reduces to

2

2

x
a

 + 
2

2

y
b

 = 1 ...... (6)
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The resultant path is an ellipse whose major axis coincides with the coordinate axis as shown in fig.
If a =  b, then  x2 + y2 = a2, so the resultant path of the particle is a circle of radius a as shown in fig.

(iv) When  = 
3
4


, we have

sin = 
1
2

 and cos  = –
1
2

The eq (3) becomes

2

2

x
a

 + 
2

2

y
b

 – 
2xy
ab

1
2

  
 

=
1
2

...... (7)

This represents an oblique ellipse as shown in fig .

(v) When  = , we have

sin  = 0 and cos  = – 1

Now eq (3) reduces to

2

2

x
a

 + 
2

2

y
b

 +
2xy
ab

 = 0

(or)
2

x y
a b

  
 

= 0

(or)
x y
a b

   
 

 = 0

(or) ± y = ± 
b
a

x ...... (8)

This again represents a pair of coincident straight lines passing through the origin and inclined to x-
axis at an angle  given by

 = tan–1 
b
a

  
 
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4.5  LISSAJOUS FIGURES AND THEIR GRAPHI-
CAL REPRESENTATIONS

Q8. Explain lissajous figures.

Ans :
The resultant path traced out by a particle

when it is acted upon simultaneously by two simple
harmonic motions at right angles to each other is
known as Lissajous figure.

The nature of resultant path depends upon:

(1) The amplitude of vibrations

(2) The frequencies of two vibrations

(3) Phase difference between them

Graphical representation of Lissajous figures

Here we consider the method of
combination of two rectangular simple harmonic
motions of amplituded a and b graphically in the
following cases :

(1) Same frequency and having a phase
difference zero

(2) Same frequency but having a phase difference

4


(3) Frequencies in the ratio 1 : 2 and phase
difference zero

(4) Frequencies in the ratio 1 : 2 and phase

difference 
2


(1) Same frequency and having a phase
difference zero

(i) Draw two circles of reference of radii a and b
equal to the amplitudes of the corresponding
simple harmonic motions taking place along
AB and A’ B’ axes respectively.

(ii) Divide these circles into equal parts, say for
example in 8 parts, so each part corresponds

to an angle 

4

. Start numbering on the circle

diameter AB from the position shown in fig.
(16) while on the circle diameter A’ B’ from
the position shown in fig. (16) because the

two vibrations are perpendicular to each other
and there is no phase difference between
them.

   

(iii) Draw lines through these points perpendicular
to the line AB and A’ B’ respectively, so as to
enclose a rectangle FRES.

(iv) At the start both perpendiculars intersect at
O, the position initially taken up by the
vibration particles. In the positions (1,1'),
(2,2'), (3,3') they are found to intersect
respectively at N, S, N and so on till after a
complete time period the starting point O is
reached again.

(v) The straight line RS then represents the
resultant of the two simple harmonic
vibrations.

(2) Same frequency but having a phase

difference 
4


Consider two rectangular S.H.M.s taking
place parallel to AB and A’ B’, the two lines mutually
re-pendicular to each other. Draw two circles of
reference of radii a and b equal to the amplitudes
of the corresponding simple harmonic motions
taking place along AB and A’ B’ axes respectively.
Divide the circumference of each circle into 8 equal
parts (As the periods are equal), and produce it as
shown in the fig. (17) so as to enclose a rectangle
FRES. Start numbering on the circle of diameter
AB from the position P while on the circle of

diameter A’ B’ from the  position of angle 

4

 because

there is a phase difference of 

4

 between them.
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When the particle first starts from P, the  second
particle starts from 0’i.e., the position of angle


4

. The resultant position is marked by point

1 in the rectangle FRES.

Following are come uses of Lissajous figures :

(i) The ratio of the frequencies of two vibrating
Systems can be obtained from their Lissajous
figures provided the ratio is in whole number
i.e., 1 : 1, 1 : 2, 1 : 3 and so on.

(ii) The Lissajous figures provide a good method
for ajusting the frequencies of two forks to a
given ratio.

(iii) Lissajous figures may be  used to determine
the frequency of a tuning fork provided the
frequency of other tuning fork producing the
figure is known are Commensurable i.e.,  in
a whole number ratio.

(iv) These figures are useful in testing the accuracy
of tuning of some simple intervals between
two forks. This is possible  because a slight
mistuning causes the figure to vary in form.

(v) The figures may be employed to investigate
how the period of a rod, fixed at one end,
varies with the length of the rod.

(vi) Helmholtz used these figures to investigate the
vibration of a violin string.

4.6  DAMPED HARMONIC OSCILLATOR,
SOLUTION OF THE DIFFERENTIAL EQUATION OF

MAMPED OSCILLATOR

Q9. What are damped osccillations? Solve
the differential Equation of damped
harmonic oscillator ?

Ans : (July-21)

For an ideal hamonic oscillator, the amplitude
of  vibration  remains  constant for  an infinite time.
When a body vibrates in air or in any other medium
which offers resistance to its motion, the amplitude
of vibration decreases gradually and  ultimately the
body comes to  rest. This is due to the fact that the
body is subjected to frictional forces arising from air
resistance. The motion of the body is known as
damped simple harmonic motion. As an example,
if we displace a pendulum from its equilibrium
position it will oscillate with a decreasing amplitude
and finalles come to rest in equilibrium position.

Let us consider another example of damped
vibrations as shown in fig(1). Here a mass m is
suspended from the spring and set to vibrate. It is
observed that mass vibrates for a longer time in air
as compared to the mass which vibrates partially in
air and partially in liquid kept below the mass as
shown in fig(1). The damping force is more when
the mass moves in liquid and hence the vibrations
die out more quickly in liquid than in aid.

Equation of damped hamonic oscillator

The damped system is subjected to :

(i) A restoring force which is proportional to
displacement but oppositely directed. This is
written as  –  x where  is a  constant of
proportionality or force constant.

(ii) A frictional force proportional to velocity but
oppositely directed. This  may be written as
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dx
r

dt
    

. where r is the  frictional force per

unit  velocity.

Since, force = Mass ×Acceleration = m
2

2

d x
dt

Therefore, the equation of motion of the
particle  is given by

2

2

d x
m

dt
 = 

dx
x r

dt
 

(or)
2

2

d x
dt

 + 
r
m

dx
dt

 + 
m


 x = 0

(or)
2

2

d x
dt

 + 2b
dx
dt

 + 2x =0 ...... (1)

Where 
r
m

 = 2b and 
m


= 2

Here b is damping constant or 
1
b
 
  

 as decay

modulus.
Equation (1) is a differential equation of

damped harmonic motion.

Solution of the equation for various boundary
conditions

Solution of the equation

Equation (1) is a differential equation of
second degree. Let its solution be tx Ae
....(2)

Where A and  are arbitrary constants.

Differentiating eq (2) with respect to t, we get

tdx
A e

dy
   and 

2
2 t

2

d x
A e

dt
 

Substituting these values in eq(1), we have

2 tA e + t2bA e + 2 tw Ae = 0

or t 2 2Ae ( 2b w )      = 0

As tAe 0  2 22b w 0    

This give 2 2b (b w )    

The general solution of eq(1) is given by

                  
2 2 2 2b b t b b t

1 2x A e A e ...... (3)

Where A1 and A2 are arbitary constants

Dpending upon the relative values of b and
 , three cases are possible :

4.7 ENERGY CONSIDERATIONS, COMPARISON

WITH UNDAMPED HAROMIC OSCILLATOR

Q10. Discuss Energy consideration in
damped harmonic motion?

Ans : (July-21)

Energy of damped harmonic  oscillator

Whenever a system is set into oscillations, its
motion is opposed by frictional (damping) force due
to air resistance. The work done against these force
is  dissipated out in the form of heat. So the
mechanical  energy of the system  continuously
decreases with time and amplitude of oscillation
gradually decays to zero. Here we shall obtain an
expression for the energy dissipation from the
oscillation.

The displacement of a damped harmonic
oscillator at any time is given by

x =         
bt 2 2ae sin b t

  =     bt tae sin t .

Where     t 2 2b  ....... (1)

The instantaneous velocity is given by

 
  
dx
dt =     bt tabe sin t

+     t bt ta e cos t  .....(2)

In practice, the damping is very small i.e. <<
. Hence the term –abe–bt sin (tt + ) can be
neglected in comparison with the term

    t bt ta e cos t . Now, we have
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 
  
dx
dt  =     t bt ta e cos t  ...... (3)

The mechanical energy E of the oscillator is
given by

E = Kinetic energy + potential energy

= 
     

2
21 dx 1

m x
2 dt 2 ...... (4)

Substituting  the values of 
 
  
dx
dt  and  x from

(3) and (1) in (4)

We get

E =     2 t2 2bt 2 t1
ma e cos t

2

     2 2bt 2 t1
a e sin t

2

=        
2 2bt 2 t1

ma e cos t
2 m

     2 bt 2 t1
a e sin t

2

 
          

   
 t 2 2b

m

=              
2 2bt 2 t 2 t1

a e cos t sin t
2

   = 
2 2bt1

a e
2

= 
2 2 2bt1

a m e
2

E = 
2 2bt1

a e
2

....... (5)

This shows that the energy  of oscillator
decreases with time.

4.8  LOGRITHM DECREMENT, RELAXATION

TIME AND QUALITY FACTOR

Q11. Define  & Explain  Logarithmic  decre-
ment relaxation time & quality  factor?

Ans :
Following  are the three different methods of

describing  the damping of an oscillator.

1. Logarithmic decrement

Logartithmic decrement measures the rate at
which  the amplitude disc away. The  amplitude  of
damped  harmonic  oscillator is given by amplitude
= a.e–bt at t = 0, amplitude a0 = a.

Let a1, a2, a3 .... be the  amplitudes at time  t
= T, 2T, 3T ..... respectively where T = period of
oscillation. Then

a1 = a.e–bT

a2 = a. e–b (2T)

a3 = a.e–b(3T)

From these equations , we get

0

1

a
a = 1

2

a
a

=
2

3

a
a =.....= ebT=e (where bT= )

is known as logarithmic decrement.

Taking the natural logarithm, we get,

= loge 
0

1

a
a  = loge 

1

2

a
a

= loge 
2

3

a
a  = ......

Thus logarithm decrement is defined as the
natural logarithm of the ratio between  two
successive maximum  amplitudes which  are
separated by one period.

2. Relaxation Time

The relaxation time is defined as the time
taken for the total mechanical energy to decay
(1/c) of its original value.

The mechanical energy of damped harmonic
oscillator is given by

E = 
1
2

 a2..e–2bt
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Let E = E0 when t = 0,  E0 = 
1
2

a2.

Now,  E = E0 .e
–2bt ........(2)

Let T be the relaxation time i.e., t = T. E = 0E
e

.

Making this substitution in eqn (2), we get.

    
 

2b0
0

E
E .e

e  or   1 be e

(or) –1 = – 2b 

    
 

1
b

2

From eqns (2) and (3), we get

  t /
0E E .e

The expression of power dissipation, can be
written as.



E

P

3. Quality factor

The quality factor is defined as 2 times the
ratio of the energy  stored in the system to the energy
lost per period.

Q = 2 . energy stored in system
energy lost per period

 2.. E
PT

Where P is power dissipated and t is periodic

time. We know that P = 

E

, where   is relaxation

time. So,

Q =  



E

2
E / .T

=
2
T

= T

 Q T

Where  = 
 

 
 

2
T = angular frequency

It is clear form eq.(6) that the  higher the value
of Q, the higher would be the value of relaxation
time.   i.e., lower damping.

4.9  FORCED DIFFERENTIAL EQUATION OF

FORCED OSCILLATOR AND ITS SOLUTION

Q12. Explain forced vibrations?Obtain
differential  equation of forced
oscillator & its solution?

Ans : (Imp.)

Forced vibrations can be defined as the
vibrations in which the body vibrates with a
frequency other than its natural frequency under
the action of an external periodic force.

Theory of Forced Vibrations

1. Equation of forced vibrations

The force acted upon the particle are :

(i) A restoring force proportional to the
displacement but oppositely directed, given
by.

rf x  (or)  rf x

where  is known as the force constant.

(ii) A frictional force proportional to velocity but
oppositely directed, given by

 f

dx
f

dt
 (or)  f

dx
f r.

dt

where r is frictional  force per unit velocity,
and

(iii) The external periodic force, represented by.

fe = F sin Pt

where F is the maximum value  of this force

and 


P
2

 is its frequency. So, the total force

acting on the particle is given by

   t

dx
f x r. F sinPt

dt

impressed periodic force is called driver and
the body executing forced vibrations is called
driven oscillation.
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By Newton’s second  law of motion this must
be equal to the product  of mass m of the
particle and its instantaneous acceleration.

i.e., m.
2

2

d x
,

dt
 hence

m.    
2

2

d x dx
x r. F sinpt

dt dt

  
2

2

d x dx
m. r. x F sinpt

dt dt


  

2

2

d x r dx F
. x sinpt

dt m dt m m

   
2

2
2

d x dx
2b. .x f sinpt

dt dt

where 
r
m

 = 2b, 

m

= 2 and 
F
m

 = f

Eqn(1) is the differential eqn of the motion
of the particle.

2. Solution of equation of forced
oscillations

(Amplitude and phase of forced
vibrations)

In this case, when the steady state is set up,
the particle vibrates with the frequency of
applied force, and not with its own natural
frequency. The solution of differential eqn(2)
must be of type.

x = A sin (t – ) .......... (2)

Where A is the steady amplitude of vibrations
and is the angle which the displacement x
logs behind the applied force F sinpt A and 
being orbitrary constant.

Differentiating eqn (2), we have

dx
dt

 = A. cos (t – )

and
2

2

d x
dt

 = – A 2 sin (t –)

Substituting these values in eqn (1), we get

–A.P2 sin (Pt – )+ 3b A. P cos (Pt –)

+ 2 A sin (Pt – )

= f sin Pt = + sin {(Pt – ) + }

If this relation holds good for all values of t,
the coefficients of sin (Pt –) and cos (Pt – )
terms on both sides of this equation must be
equal  the coefficients of sin (Pt – ) and  cos
(Pt – ) on both sides, we have

A (2 – 2) = f cos 

and 2b. A P = f. sin 

Squaring eqn (3) and (4) and then adding,
we get

    
22 2 2 2 2 2 2A P 4b .A P f

      
22 2 2 2 2A P ) 4b P

A =    
22 2 2 2

f

P 4b P ]

While on dividing eqn (4) by eqn (3) we have

   
 

  
   2 2 2 2

2b.A. 2.b.
tan

A P P

(or)        
1

2 2

2b
tan

P

Substituting the value of A from eqn(5) in
eqn (2), we get.

x = 
 

   
     

22 2 2 2

f
sin t

P 4b .P

Eqn(5) give the amplitude of forced vibration
while eqn (6) its phase. Depending upon the
relative values of P and , there cases are
possible.
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4.10 AMPLITUDE RESONANCE & VELOCITY

RESONANCE

Q13. Explain the terms amplitude  resonance
& velocity resonance?

Ans : (Imp.)

Amplitude Resonance

The amplitude of forced oscillations  varies
with the  frequency of applied force and become
maximum at a  paritcular  frequency. This
phenomenon is known as amplitude resonance.

Condition of amplitude resonance

In case  of forced vibrations, we have

A = 
      

22 2 2 2

f

4b P

and  

 

   
   

1
2 2

2b
tan

P

The expression (1) shows that the amplitude
varies with  the frequency of the P. for a particular
value  of P. the amplitude becomes maximum. This
phenomenon is known as amplitude resonance. The
amplitude is maximum when

      
22 2 2 2P 4b P  is minimum

      
22 2 2 2d

P 4b P
d  = 0

        2 22 P 2P 4b 2P = 0

            2 2 2P 2b

P =   2 22b

Thus the amplitude is maximum when the

frequency 


P
2

 of the impressed force becomes

  



2 22b

2
. This is resonant  frequency. This gives

frequencies of the system both in presence of

damping i.e., 
  



2 22b

2
 and in the absence of

damping  i.e., 

2

. If the damping is small, then it

can be neluted and the condition of maximum is
reduced to  P = w

Putting condition (3) in eq (1), we get

 Amax = 
          

22 2 2 2 2 2

f

2b 4b 2b

=   2 2 4

f
4b 4b

 = 
  2 2

f

2b b

=
 2 2

f

2b P b
       2 2 4P 2b

and for law damping it reduce to

Amax 
f

2bP

maxA  as b  0
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Showing that

Shows the variation of amplitude with forcing
frequency at different amounts of damping curve
(1) shows the amplitude when there is no damping
i.e., b = 0. In this case the amplitude in practise
due to frictional resistance, as slight damping is
always present, curve (2) and (3) show the effect of
damping  on the amplitude.

(ii) Velocity resonance [Energy resonance]

At very low during frequencies (<<), the
velocity amplitude is given by

   
 




  
 max 2

F / m P F / m FP
u

/ m

Thus, the amplitude is mainly governed by
the force constant , when (<<), then

  max

f F
P mP

In this case, the amplitude is mainly governed
by the mass m, i.e., inertia factor.

At frequecies comparable with natural
frequency, the  amplitude is maximum for a
particular frequency. For the frequency

 
   

  
   

max 22 2
2

2

f

P
4b

P

This  is maximum when  denominator is
minimum, i.e.,

  
 
 

22 2P
P = 0 or   2 2P = 0 or P=

At this  frequency of applied force, the velocity
(or kinetic energy) of the oscillator is maximum. The
phenomenon is known as velocity resonance. So
when the druing frequency is equal  to the natural
undamped frequency of the  oscillator, the velocity
amplitude is  maximum. Fig. shows the variation of
velocity amplitude of forced oscillation  with
frequency of applied force.

PROBLEMS

1. When the body is in S.H.M. the time
period is 0.001 sec, amplitude of
vibration is 0.5 cm. Find the
acceleration when it displaces to a
distance of 0.2 cm from rest.

Sol :
We known that in S.H.M.,

a = 2 y = 
2

2

4
T

 y m/sec2

a =
 

 


2

2

4 3.14

0.001
 × 0.2. 

 
 


2

2

0.8 3.14

0.001

  = 7.889 × 106 m/sec2

2. A particle performing S.H.M. has a
maximum velocity of 0.4 m/s and a
maximum acceleration of 0.8 m/sec2.
Calculate the amplitude and the period
of the oscillator.

Sol :
Given  that (V) max = 0.4 m/s

and (acc)max = 0.8 m/sec2

We know that (V) max = a 

and (acc) max = a2

 
 
 


    



2
max

max

acc a 2
V a T

or  T = 2  × 
 
 

max

max

V

acc
 = 2  × 

0.4
0.8

=  sec
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or T = 3. 14 sec

From eq(1)  = 
0.8
0.4

= 2

So,  (v)mass = a  or 0.4 = a(2)

 a = 0.2 meter

3. A particle  under S.H.M. has dis-
placement  of 0.4 at the velocity  0.3 m/
s and a displacement 0.3 m at the
velocity 0.4 m/s. Calculate amplitude
and  frequency of the oscillation.

Sol :

We know that, V =   2 2a y

Considering displacement of oscillation along
y-axis.

Now,    
220.3 a 0.3  =   2a 0.016

    
220.4 a 0.3  =   2a 0.09

Dividing eq. (1) by eq. (2) we get

3
4

= 
 
 





2

2

a 0.16

a 0.09
 or 

9
16

 = 



2

2

a 0.16
a 0.09

or 16a2  – 2.56 = 9a2 – 0.81 or 7a2 =1.75

or a2 = 
 
  
1.75

7 = 0.25

 a = ± 0.5 m

Substituting the value of a in eq(2) we get

0.4 =   0.25 0.09  = 0.4  or  = 1

and rad/sec or 2n = 1

  n = 


1
2

 Hz

4. The displacement equation of a particle
simple harmonic motion is x = 0.01 sin
50(t + 0.007) metre. Calculate the
amplitude time period, maximum
velocity and initial phase for the particle

Sol :
Given x = 0.001 sin 50 (t + 0.007)

Standard equation of S.H.M. is

x = a sin (t +)

Comparing the two  equation we get

a = 0.01 metre,  = 50 

T =


2

=



2
50

=
1
25

 or T = 0.04 sec

Maximum velocity Vmax = w

  Vmax = 0.01 × 50  =
1

100
 × 50 × 3.14

= 1.57 m/sec

Initial plane  = 50  ×0.007

= 50 × 3.14 × 0.007

   = 1.099 or 0.35  radian

5. A particle excutes S.H.M with a period
of 0.002 sec and amplitude 10 cm. Find
its acceleration when it is 4 cm away
from it mean position and also obtain
its maximum velocity.

Sol :

We know that     x a sin t

The velocity and acceleration are given by

v =
dx
dt

 =  a cos (t + ) and Vmax = a

acceleration = 
2

2

d x
dt

 = –2 a sin (t +f)

= –2x

Here,  = 
2

T
 = 

2x3.14
0.002

 = 
2 3.14
0.002
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     = 3.14 × 103 sec–1,

x = 4 cm  and a = 10 cm

 acceleration = – (3.14 × 103)2 × 4

= – 3.9 × 107 cm/sec2

Vmax = a = 3.14 × 103 × 10

= 3.14 × 104 cm/sec

6. A particle of mass 5 × 10–13 kg executes
S.H.M and  amplitude of 0.08 m. Its
frequency is 16 Hz. Find its maximum
velocity and energy at mean position.

Sol :
In case of S.H.M  x = asin (t + )

The maximum velocity Vmax = a = 2 na

 Vmax = 2 ×3.14 ×16 × 0.08 = 0.038 m/
sec

The energy at mean position is entirely kinetic

  E = Kmax = 
1
2

 M Vmax
2

=
1
2

× (5 ×10–5kg) ×(8.038)2 = 0.16 joule

7. The displacement of the particle
executing  S.H.M is given by x = 10 cos
(4t + /3) metre. Find out the frequency
and displacement  after time 1 second.

Sol :
Give x = 10 cos (4 t + /3)

The equation of S.H.M. is given by

x = a cos (t + )

Comparing eqs (1) and (2), we get

 = 4 but  = 2n

  2n = 4  or n = 2 Hz

Displacement at 1 sec = 10 cos 
    

4 1
3

= 10 cos 
    

4
3  = 10 cos 

 
  
13

3

8. A body of 0.5 kg mass is hung to spring
and made  to oscillate. For time t = 0,
displacement is 0.44 m, acceleration is
– 0.0176 m/sec. Find the force constant
of spning

Sol :

Time period of spning T = 
    
m

2
k

    = 
2

T
 = 



    

2

m
2

k

=  
  

k
m

or 2 = 
k
m

We know that acceleration, a = 2

x =
k
m

 × x

k = 
ma
x

 = 
0.5 0.0176
0.44

 = 0.2 N/m

9. The length of a weightness spring
increases by 2cm when a weight of 1.0
kg is suspended from it. The weight is
pulled down by 10cm and released.
Determine

(i) Period of oscillation of spring

(ii) P.E of oscillation of spring

Sol :

We know that K=
F
x

=
1.0 9.8

0.02
=490 N/m

Now,

T = 2    
 

m
k

= 2
   
 

1.0
490

     =



2

7 (10) = sec = 0.29 sec

P.E =
1
2

kx2 =
1
2

× 490 × (0.1)2 = 2.45 Joule
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10. A spring of force constant 20 N/m is hung
vertically and loaded with a mass 0.1kg
and allowed to oscillate calculated the
time period and frequency of oscillation
of the spring.

Sol :
The angular frequency

w =  
 
 

k
m

=
 
 
 

20
0.1

 = 200

=14.14 red/sec

We know that w = 
2

T
 or Time period

T = 
2

w

 T = 
2 3.14
14.14

= 04414 sec

and frequency,

n= 
1
T

 = 
1

0.4414
 = 2.265Hz

11. A spring is strenched by 8 cm by a factor
of 10N. Find its force constant. What
will be the frequency of a 4kg mass
suspended from it?

Sol :

The frequency is given by n = 
 
   

1 k
2 m

where k = spring constant

F= kx (or) k = 
F
x

= 
10

0.08
 = 125 N/m

We know that

x = 8cm = 0.08m and m = 4kg

 n = 


1
2 3.14

×
125

4
= 0.9Hz

12. Lissajous figures are produced with two
tuning forks whose frequencies are
approximately 2:1 complete cycle of
changes of form takes 5 second. Fork of
higher pitch is slightly loaded such that
the period of cycle is raised to 10
second. If the frequency of lower fork is
500, find the frequency of the other fork
before and after loading.

Sol :
Let n1 and n2 be the frequencies of higher

and lower forks respectively. Before loading, the
figures are repeated after 5 second. i.e., the higher
fork makes one vibration more or less than double
number made by lower fork.

Thus,

n1 × 5 ~ z(n2 × 5) (or) n1 ~ 2n2 = 
1
5

or  n1 = 2n2 
    
1
5 = 2×500 

1
5

= 1000.2  or  999.8

After loading n1 = 2n2


1
10

= 5×500=
1

10

= 1000.1  or  999.9

As on loading, the frequency should decrease
and hence frequency before loading = 1000.2 Hz
and after loading 1000.1 Hz.
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Short Question & Answers

1. Discuss the basic terms involved in
oscillator, motion.

Ans :
Introduction

A motion which repeats itself after equal
intervals of time is called periodic motion or
harmonic motion.

A body or a particle is said possess oscillatory
or vibratory motion if it moves back and forth
repeatedly about the mean position.

Few terms regarding the oscillatory motion:

(i) Perodic time

The periodic time ‘T’ of an oscillatory motion
is defined as the time taken for one oscillation.

(ii) Frequency

The ‘frequency’ n or v is defined as the
number of oscillations in one second. It is

reciprocal of periodic time. i.e., n = 1
T  cycles

per second.

(iii) Displacement

The Distance of the particle in any direction
from the equilibrium position at any instant
is called the displacement of the particle at
that instant.

(iv) Amplitude

The maximum displacement or the distance
between the equilibrium position at and  the
extremeposition is known as amplitude ‘a’ of
the oscillation.

(v) Phase

The phase of an oscillatory particle at any
instant defines the state of the particle as
regards its position and direction of motion
at that instant.

(vi) Restoring force

In the equilibrium position of the oscillationg
particle, no net force acts on it, when the

particle is displaced from its equilibrium
position, a periodic force acts  on it in such a
direction as to bring the particle to its
equilibrium position. This is called the
restoring  force F.

2. Write Physical Characteristics of simple
Harmonic motion?

Ans :
1. Displacement

The displacement of any yarticle ay any instant
executing S.H.M. is given by

x = a sin(wt +  )

The maximum displacement from the mean
position is called amplitude. Here the
amplitude is a

2. Velocity

The velocity v od the oscillating particle can
be obtained by differentiating eq (8).

Thus  V = 
dx
dt

 =    2 2a cos t a x         ..... (1)

At the mean position i.e,  at x = 0 , the
velocity  is maximum (a). So Vmax = a.
The Velocity is zero at the extreme positions.

3. Periodic time

Time taken for one complete oscillation is
called as periodic time and is denoted by T.

Let t be increased by 
2


 in eq (8) then

2
x a sin t

          

=    a sin t 2 a sin t        
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This shows that the displacement repeats itself

after a time 
2 
  

. Therefore, 
2 
  

 is known

as periodic time.

 T = 
2 
  

1
22

2

d x x
dt

        
    



Now, T = 
2


= 
2 2

2

d x / dt
x



 
 
 

= 2 2

x displacement
2 2

(d x / dt ) acceleration
          

4. Frequency

The number of oscillations made in one
second is called as frequency and is denoted
by n or V. Hence.

n or V = 
1
T

 = 
2



 = 
1 k
2 m

 
   

 ..... (3)

5. Phase

 The angle  t    is called the phase  of
vibrations. Phase of a body executing S.H.M
at  any instant represent its state as regards its
position and direction at that instant.

6. Epoch

 The value  of phase when t = 0 is called  the
phase or epoch. In our case   is the epoch.

3. Explain lissajous figures.

Ans :
The resultant path traced out by a particle

when it is acted upon simultaneously by two simple
harmonic motions at right angles to each other is
known as Lissajous figure.

The nature of resultant path depends upon:

(1) The amplitude of vibrations

(2) The frequencies of two vibrations

(3) Phase difference between them

Graphical representation of Lissajous figures

Here we consider the method of
combination of two rectangular simple harmonic
motions of amplituded a and b graphically in the
following cases :

(1) Same frequency and having a phase
difference zero

(2) Same frequency but having a phase difference

4


(3) Frequencies in the ratio 1 : 2 and phase
difference zero

(4) Frequencies in the ratio 1 : 2 and phase

difference 
2


4. What are damped osccillations?

Ans :
For an ideal hamonic oscillator, the amplitude

of  vibration  remains  constant for  an infinite time.
When a body vibrates in air or in any other medium
which offers resistance to its motion, the amplitude
of vibration decreases gradually and  ultimately the
body comes to  rest. This is due to the fact that the
body is subjected to frictional forces arising from air
resistance. The motion of the body is known as
damped simple harmonic motion. As an example,
if we displace a pendulum from its equilibrium
position it will oscillate with a decreasing amplitude
and finalles come to rest in equilibrium position.

Let us consider another example of damped
vibrations as shown in fig(1). Here a mass m is
suspended from the spring and set to vibrate. It is
observed that mass vibrates for a longer time in air
as compared to the mass which vibrates partially in
air and partially in liquid kept below the mass as
shown in fig(1). The damping force is more when
the mass moves in liquid and hence the vibrations
die out more quickly in liquid than in aid.



B.Sc. I YEAR  I SEMESTER

214
Rahul Publications

Rahul Publications

5. Explain the terms amplitude  resonance
& velocity resonance?

Ans :
Amplitude Resonance

The amplitude of forced oscillations  varies
with the frequency of applied force and become
maximum at a  paritcular  frequency. This
phenomenon is known as amplitude resonance.

Condition of amplitude resonance

In case  of forced vibrations, we have

A = 
      

22 2 2 2

f

4b P

and  

 

   
   

1
2 2

2b
tan

P

The expression (1) shows that the amplitude
varies with  the frequency of the P. for a particular
value  of P. the amplitude becomes maximum. This
phenomenon is known as amplitude resonance.

6. Expain the term Velocity resonance
[Energy resonance].

Ans :
At very low during frequencies (<<), the

velocity amplitude is given by

   
 




  
 max 2

F / m P F / m FP
u

/ m

Thus, the amplitude is mainly governed by
the force constant , when (<<), then

  max

f F
P mP

In this case, the amplitude is mainly governed
by the mass m, i.e., inertia factor.

At frequecies comparable with natural
frequency, the  amplitude is maximum for a
particular frequency. For the frequency

 
   

  
   

max 22 2
2

2

f

P
4b

P

This  is maximum when  denominator is
minimum, i.e.,

  
 
 

22 2P
P = 0 or   2 2P = 0 or P=

At this  frequency of applied force, the velocity
(or kinetic energy) of the oscillator is maximum.

7. Define Logarithmic decrement.

Ans :
Logartithmic decrement measures the rate at

which  the amplitude disc away. The  amplitude  of
damped  harmonic  oscillator is given by amplitude
= a.e–bt at t = 0, amplitude a0 = a.

Let a1, a2, a3 .... be the  amplitudes at time
t = T, 2T, 3T ..... respectively where T = period of
oscillation. Then

a1 = a.e–bT

a2 = a. e–b (2T)

a3 = a.e–b(3T)

From these equations , we get

0

1

a
a = 1

2

a
a

=
2

3

a
a = ..... = ebT=e

(where bT= )

is known as logarithmic decrement.

Taking the natural logarithm, we get,

= loge 
0

1

a
a  = loge 

1

2

a
a

 = loge 
2

3

a
a  = ......

Thus logarithm decrement is defined as the
natural logarithm of the ratio between  two
successive maximum  amplitudes which  are
separated by one period.
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8. Define term Relaxation Time.

Ans :
The relaxation time is defined as the time

taken for the total mechanical energy to decay (1/
c) of its original value.

The mechanical energy of damped harmonic
oscillator is given by

E = 
1
2

 a2..e–2bt

Let E = E0 when t = 0,  E0 = 
1
2

a2.

Now,  E = E0 .e
–2bt ........(2)

Let T be the relaxation time i.e., t = T. E = 0E
e

.

Making this substitution in eqn (2), we get.

    
 

2b0
0

E
E .e

e  or   1 be e

(or) –1 = – 2b 

    
 

1
b

2

From eqns (2) and (3), we get

  t /
0E E .e

The expression of power dissipation, can be
written as.



E

P

9. Quality factor.

Ans :
The quality factor is defined as 2 times the

ratio of the energy  stored in the system to the energy
lost per period.

Q = 2 . energy stored in system
energy lost per period

 2.. E
PT

Where P is power dissipated and t is periodic

time. We know that P = 

E

, where   is relaxation

time. So,

Q =  



E

2
E / .T

=
2
T

= T

 Q T

Where  = 
 

 
 

2
T = angular frequency

It is clear form eq.(6) that the  higher the value
of Q, the higher would be the value of relaxation
time.   i.e., lower damping.

10. Equation of Motion of a Simple
Oscillator.

Ans :
Consider a particle P of mass m executing

S.H.M about  equilibrium position O along X-axis
as shown  in fig (2). By defination, the force under
which  the particle is oscillating is proportional  to its
displacement directed towards the mean position.
Let x be the displacement of P from O at any instant.
The instantaneous force Facting  upon P is given by

F   – x or F = – k x, ....... (1)

Where k is  proportionality  factor which
represents the force per unit displacement. The
negative sign is used  to show that  the force F is
opposite to the displacement. The negative sign is
used to show that the force F is opposite to the
displacement.

According to Newton’s second law of motion
the restoring force on mass m produces as

acceleration 
2

2

d x
dt

 in the mass, so that

Force = mass × acceleration

i.e., F=
2

2

d x
m

dt
....... (1)

From eq (1) & (2)
2

2

d x
m

dt
= – kx or  

2

2

d x
dt

= 
k

x
m


Let us put 
k
m

 = 2 . Thus,

2

2

d x
dt

 + 2 x = 0 ....... (3)

This is known as the differential equation of
simple harmonic oscillator.
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Choose the Correct Answers

1. The potential energy of a particle executing SHM is given by [ c ]

(a)
1
4

kx2 (b)
1
3

kx2

(c)
1
2

kx2 (d) – kx

2. For a particle executes simple harmonic motion, the phase difference is . [ a ]

(a)
2


(b) 

(c)
6


(d)
2




3. A particle executes SHM with a frequency ‘f’. The frequency with which kinetic energy oscillates is
. [ b ]

(a) f (b) 2f

(c) 4f (d)
f
2

4. At what phase P.E and K.E are equal in case of SHM. [ d ]

(a) 30o (b) 60o

(c) 90o (d) 45o

5. If the length of seconds pendulum is increased by 2%. How many seconds it will lose per day.

[ a ]

(a) 864 sec (b) 3927 sec

(c) 3429 sec (d) None of the above

6. For small amplitude oscillations the potential energy curve. [ b ]

(a) circular (b) parabolic

(c) elliptical (d) hyperbolic

7. In a simple harmonic motion the amplitude is 5cm and time period is 31.4 sec. The maximum
velocity is (in cm/sec) [ d ]

(a) 1.4 (b) 2

(c) 2.4 (d) 1

8. In the expression x = Asin(wt + ); is x is . [ b]

(a) amplitude (b) displacement

(c) phase (d) velocity



UNIT - IV MECHANICS AND OSCILLATIONS

217
Rahul Publications

Rahul Publications

9. The length of pendulum which has a period 2.4 sec is [ a ]

(a) 1.43 cm (b) 2.46 cm

(c) 1.62 cm (d) 2.17 m

10. When the amplitude of a particle executing SHM decreases, its time period. [ b ]

(a) decreases

(b) remains unchanged

(c) increases

(d) may increase or decrease depending upon the phase
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Fill in the Blanks
1. The phase differencebetween displacement and acceleration of SHO is .

2. MKS unit of spring constant is .

3. The energy possessed by a body a virtue of its position is known as .

4. A vibrating body is having maximum kinetic energy at .

5. The frequency of SHO is decreased by  force constant.

6. The time period of a second pendulum is .

7. If the point of suspension and point of oscillation are interchanged in a compound pendulum, then
the time period .

8. The time period of Torsion pendulum is .

9. The period of SHO is .

10. The time period of a pendulum of infinite lengths .

ANSWERS

1.  radian (or) 180o

2. newton / meter

3. potential energy

4. mean position

5. mean position

6. 2 seconds

7. remains same

8. T = 2
I
m

9. independent of amplitude

10. 2
R
g
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

Subject : Physics
Paper-I :  Mechanics and Oscillations

MODEL PAPER - I

Time : 3 Hours] [Max. Marks : 80

Part - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions

ANSWERS

1. Show that F


=(y2 – x2) î  + 2xy ĵ conservative. (Unit-I, SQA-2)

2. Curl of a Vector Field. (Unit-I, SQA-4)

3. Gauss’s divergence theorem. (Unit-I, SQA-6)

4. Calculate the thrust on a rocket. (Unit-II, SQA-7)

5. Define Torques. prove that the rate of change of angular momentum is equal

to torque. (Unit-II, SQA-1)

6. Inelastic collision. (Unit-II, SQA-11)

7. Length contraction. (Unit-III, SQA-6)

8. Calculate the work done to keep two balls having a mass 500 gm each from

infinite distance to 10cm apart. (Unit-III, SQA-4)

9. What are inertial and non-inertial frames? (Unit-III, SQA-2)

10. What are damped osccillations? (Unit-IV, SQA-4)

11. Expain the term Velocity resonance (Energy resonance). (Unit-IV, SQA-6)

12. Quality factor. (Unit-IV, Prob.9)

Part - B  (4 × 12 = 48 Marks)

Note : Answer all the questions

13. (a) Define gradient of a scalar field funct-ion. Explain the physical significance

for the gradient of a scalar field. (Unit-I, Q.No.15)

OR

(b) What are line, surface and volume integrals? Explain. (Unit-I, Q.No.19)
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14. (a) Derive the equation of motion of variable mass system. (Unit-II, Q.No.6)

OR

(b) Explain in detail about collisions in two and three dimensions. (Unit-II, Q.No.15)

15. (a) Describe Galilean Transformation. (Unit-III, Q.No.13)

OR

(b) Explain and write Lorentz Transformations. (Unit-III, Q.No.16)

16. (a) Define torsion pendulum? How do you determine modulus of rigidity

using torsion pendulum? (Unit-IV, Q.No.5)

OR

(b) Explain the terms amplitude resonance & velocity resonance? (Unit-IV, Q.No.13)
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

Subject : Physics
Paper-I :  Mechanics and Oscillations

MODEL PAPER - II

Time : 3 Hours] [Max. Marks : 80

Part - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions

ANSWERS

1. Prove that  .(A×r) = r.( ×A) (Unit-I, SQA-8)

2. What are different kinds of vectors? (Unit-I, SQA-12)

3. What are scalar and vector fileds? (Unit-I, SQA-7)

4. Distinguish between elastic and inelastic collisions. (Unit-II, SQA-9)

5. Derive Euler’s equation for a rigid body. (Unit-II, SQA-8)

6. Moment of Inertia. (Unit-II, SQA-15)

7. Central Force. (Unit-III, SQA-1)

8. What is velocity of the particle if its KE is equal for rest energy? (Unit-III, SQA-3)

9. Define postulates of special theory of relativity. (Unit-III, SQA-10)

10. Explain lissajous figures. (Unit-IV, SQA-3)

11. Define Logarithmic decrement. (Unit-IV, SQA-7)

12. Equation of Motion of a Simple Oscillator. (Unit-IV, SQA-10)

Part - B  (4 × 12 = 48 Marks)

Note : Answer all the questions

13. (a) What is called divergence? Derive expression for divergence of a vector

field. (Unit-I, Q.No.16)

OR

(b) State and prove Gauss’s divergence theorem. (Unit-I, Q.No.21)

14. (a) Describe the principle of motion of a rocket as system of variable mass. (Unit-II, Q.No.7)

OR
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(b) What is a symmetric top ? Derive an expression for the angular velocity

of precession of a symmetric top. (Unit-II, Q.No.21)

15. (a) State and obtain kepler’s law motion planetary. (Unit-III, Q.No.10)

OR

(b) What is length contraction? Obtain expression for length contraction. (Unit-III, Q.No.18)

16. (a) What are damped osccillations? Solve the differential Equation of

damped harmonic oscillator ? (Unit-IV, Q.No.9)

OR

(b) Write Physical Characteristics of simple  Harmonic motion? (Unit-I, Q.No.4)
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

Subject : Physics
Paper-I :  Mechanics and Oscillations

MODEL PAPER - III

Time : 3 Hours] [Max. Marks : 80

Part - A  (8 × 4 = 32 Marks)

Note : Answer any Eight questions

ANSWERS

1. Define gradient of a scalars filed obtain an expression for it. (Unit-I, SQA-1)

2. Explain divergence of a vector field and its physical significance. (Unit-I, SQA-3)

3. Prove that Curl of a gradient is zero. (Unit-I, SQA-5)

4. Explain the working of multistage rocket. (Unit-II, SQA-14)

5. State and explain Newton’s Law of Motion. (Unit-II, SQA-2)

6. The kinetic energy of a metal disc rotaing at a constant speed of  5  revolutions

per second is  100 joule. Find the angular momentum of the disc. (Unit-II, Prob.27)

7. Time Dilation. (Unit-III, SQA-5)

8. A meter scale length is recorded as 96 cm by an observer. Find it’s velocity.  (Unit-III, SQA-7)

9. Kepler's laws of planetary motion. (Unit-III, SQA-9)

10. Write Physical Characteristics of simple Harmonic motion? (Unit-IV, SQA-2)

11. Explain the terms amplitude  resonance & velocity resonance? (Unit-IV, SQA-5)

12. Discuss the basic terms involved in oscillator, motion. (Unit-IV, SQA-1)

Part - B  (4 × 12 = 48 Marks)

Note : Answer all the questions

13. (a) What is curl of a vector field ? Obtain expression for curl of a vector field. (Unit-I, Q.No.17)

OR

(b) State and explain Green’s Theorem applications. (Unit-I, Q.No.22)

14. (a) What are the various stages of the rocket(multistage rocket) in motion? (Unit-II, Q.No.8)

OR
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(b) Derive Euler’s equations of rotation of a rigid body about a fixed point. (Unit-II, Q.No.32)

15. (a) Define gravitational field and gravitational potential. Obtain  Expression

for gravitational potential due to a point mass. (Unit-III, Q.No.7)

OR

(b) Describe Michelson Morely experiment. What is its significance? (Unit-III, Q.No.15)

16. (a) Define simple harmonic motion? Write the Equation for simple harmonic

oscillator? (Unit-IV, Q.No.2)

OR

(b) Discuss Energy consideration in damped harmonic motion? (Unit-IV, Q.No.10)
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FACULTY OF SCIENCE
B.Sc. I - Semester Regular Examination

July / August - 2021

Subject : Physics
Paper-I :  Mechanics and Oscillations

Time : 2 Hours] [Max. Marks : 80

Part - A  (5 × 4 = 20 Marks)

Note : Answer any five questions.

ANSWERS

1. What are scalar and vector fields? Give examples. (Unit-I, SQA-9)

2. Define the curl of a vector field. (Unit-I, SQA-4)

3. If A = 2 × z2 î  – y z ĵ  + 3xz2 k̂ . Find  .A at (1, 1, 1). (Unit-I, Prob.46)

4. Distinguish between elastic and inelastic collisions. (Unit-II, SQA-9)

5. Explain working of Gyroscope. (Unit-II, SQA-10)

6. A 500 gm stone is revolved at the end of a 0.4 m long string at the rate of

12.5 rad/s. Find its angular momentum. (Unit-II, Prob.34)

7. State Keplers laws of planetary motion. (Unit-III, SQA-9)

8. State postulates of special theory of relativity. (Unit-III, SQA-10)

9. Find the velocity with which a body should travel so that the length becomes

half of the rest length. (Unit-III, Prob.24)

10. What are the physical characteristics of simple harmonic motion? (Unit-IV, SQA-2)

11. What are Lissajous figures? Mention its applications. (Unit-IV, SQA-3)

12. A particle executing SHM has an acceleration of 0.5 m/s2, when the displacement

is 2m. Find its time period. (Unit-IV, Prob.1)

Part - B  (3 × 20 = 60 Marks)

Note : Answer any three questions.

13. Explain the gradient of a scalar field. Derive the equation for it and write the

significance. (Unit-I, Q.No.15)

14. Define divergence of a vector field. State and prove Gauss divergence theorem. (Unit-I, Q.No.16,21)

15. State Newton’s laws of motion. Derive the equation of motion of a system of

variable mass. (Unit-II, Q.No.2,6)
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16. Explain the precessional motion of a symmetric Top. Obtain an expression for

precisional velocity. (Unit-II, Q.No.33)

17. What are central forces? Mention its features. Show that conservative force is

equivalent to negative gradient of potential energy. (Unit-III, Q.No.1,3)

18. Describe Michelson Moreley experiment and discuss its disadvantages. (Unit-III, Q.No.15)

19. Explain with necessary theory, how do you determine the rigidity modulus of

a given wire using torsional pendulum. (Unit-IV, Q.No.5)

20. Derive the equation of motion of a damped harmonic oscillator. Deduce the

solution and discuss the under damped and critically damped conditions. (Unit-IV, Q.No.9,10)
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

November / December - 2019

Subject : Physics
Paper-I : Mechanics and Oscillations

Time : 3 Hours] [Max. Marks : 80

Part - A  (8 × 4 = 32 Marks)

Note : Answer any Eight of the following questions

ANSWERS

1. What are scalar and vector fields? Give examples. (Unit-I, SQA-9)

2. Define curl of a vector and explain its significance. (Unit-I, SQA-4)

3. What are line, surface and volume integrals? (Unit-I, SQA-10)
4. Explain the working of multistage rocket. (Unit-II, SQA-14)

5. Prove the law of conservation of energy using Euler’s equations. (Unit-II, SQA-8)

6. An -particle with kinetic energy 6 × 10–14 J is scattered at an angle of 60°

by coulomb field of stationary nucleus. Find the impact parameters. (Unit-II, Prob.24)

7. Distinguish between inertial and non-inertial frames. (Unit-III, SQA-2)
8. State Kepler’s laws of motion. (Unit-III, SQA-9)

9. Assuming that earth is revolving around the Sun in circular orbit of radius

1.5 × 1011 m, estimate the mass of the sun. (G = 6.67 × 10–11 N-m3/kg2). (Unit-III, SQA-16)

10. Write the expression of Lorentz and Galilean transformation. (Unit-III, SQA-13,17)

11. Explain significance of four vector formalism. (Unit-III, SQA-11)

12. The total electrical energy generated in a station in a particular year was

7.5 × 1011 KWH. Find the mass equivalent of this energy. (Unit-III, SQA-18)

Part - B  (4 × 12 = 48 Marks)

Note : Answer All the questions

13. (a) Explain line, surface and volume integrals in vector fields and explain their

significance. (Unit-I, Q.No.19)

OR

(b) Explain the divergence of a vector field. State and prove Gauss-divergence

theorem. (Unit-I, Q.No.16,21)
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14. (a) Derive the equation of motion of system of variable mass. (Unit-II, Q.No.6)

OR

(b) Calculate the processional velocity of a symmetric top and show that

 = p × L where  is torque, p is precessional velocity and L is

angular momentum. (Unit-II, Q.No.33)

15. (a) What are central forces? Mention its characteristics. Show that the central

force is equal to negative gradient of potential energy. (Unit-III, Q.No.1,3)

OR

(b) Define gravitational field and gravitational potential. Derive the equation

of motion of a planet under inverse square law. (Unit-III, Q.No.7)

16. (a) State postulates of special theory of relativity. Explain length contraction

and time dilation. (Unit-III, Q.No.11,17,18)

OR

(b) Describe Michelson-Morley experiment and explain the significance of

negative result. (Unit-III, Q.No.15)
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

May / June - 2019

MECHANICS
Time: 3 Hours] [Max. Marks:  80

PART – A (5 x 4 = 20 Marks)
Note: Answer any FIVE of the following questions

ANSWERS

1. If  = (x2 + y2 + z2)1/2 then find grad . (Unit-I, SQA-11)

2. Explain the terms gradient and divergence. (Unit-I, SQA-1,3)

3. What are the elastic and inelastic collisions? Give examples. (Unit-II, SQA-11,12)

4. Show that  = I for a rotating rigid body. (Unit-II, SQA-13)

5. Prove that central forces are conservative forces. (Unit-III, SQA-8)

6. Prove that areal velocity is constant. (Unit-III, SQA-14)

7. Explain about addition of velocities. (Unit-III, SQA-15)

8. Discuss Lorentz transformations. (Unit-III, SQA-13)

PART – B (4 x 15 = 60 Marks)

Note: Answer ALL the questions

9. (a) What are the scalar and vector fields? State and prove Stoke’s theorem.     (Unit-I, Q.No.14,21)

OR

(b) State and prove Gauss divergence theorem. (Unit-I, Q.No.21)

10. (a) Derive the equation for final velocities of two particles in an elastic collision

in two dimension. (Unit-II, Q.No.15)

OR

(b) Explain the precessional motion of a symmetric top. Obtain an expression

for its precessional velocity. (Unit-II, Q.No.33)

11. (a) State and explain coriolis force. What are the consequences of coriolis force? (Out of Syllabus)

OR

(b) State Kepler’s law. Prove Kepler’s first law. (Unit-III, Q.No.10)

12. (a) Describe Michelson-Morley experiment and discuss the significance of

negative result. (Unit-III, Q.No.15)

OR

(b) Derive Einstein mass-energy relation. Explain the verification of mass-energy

relation. (Unit-III, Q.No.20)
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FACULTY OF SCIENCE
B.Sc. I - Semester(CBCS) Examination

November / December - 2018

MECHANICS
Time: 3 Hours] [Max. Marks:  80

PART – A (5 x 4 = 20 Marks)

Note: Answer any FIVE of the following questions

ANSWERS

1. Define Scalar field. What is gradient of a scalar field? Explain its significance. (Unit-I, SQA-9)

2. Define line, surface and volume integrals. Give one example for each. (Unit-I, SQA-10)

3. Distinguish between elastic and inelastic collision. (Unit-II, SQA-9)

4. Explain the concept of impact parameter. (Unit-II, SQA-3)

5. Explain the working of Gyroscope. Mention few fields where Gyroscope use in

mandatory. (Unit-II, SQA-10)

6. Define Kepler’s laws of planetary motion. Give the significance of each law. (Unit-III, SQA-9)

7. Mention the postulates of special theory of relativity. (Unit-III, SQA-10)

8. Obtain an expression for mass-energy relation. (Unit-III, SQA-14)

PART – A (4 × 15 = 60 Marks)

Note: Answer any FIVE of the following questions

9. (a) Define divergence of a vector field. State and prove Gauss theorem.

Mention one application of Gauss theorem. (Unit-I, Q.No.16,24)

OR

(b) (i) State and prove Stoke’s theorem. (Unit-I, Q.No.20)

(ii) If r is a position vector, prove that 


. r


 =3 (Unit-I, Q.No.28)

10. (a) Derive Euler’s equations of a rigid rotating body. (Unit-II, Q.No.32)

OR

(b) Derive an expression for Rutherford scattering cross section. (Unit-II, Q.No.18)

11. (a) What is coriolis force? Obtain an expression for freely falling body due to

coriolis force. (Out of Syllabus)

OR

(b) Derive Kepler’s First law of planetary motion. (Unit-III, Q.No.9)

12. (a) Describe Michelson-Morley experiment and discuss the negative result.         (Unit-III, Q.No.15)

OR

(b) Explain the concept of four vectors. Explain length contraction. (Unit-III, Q.No.21,18)
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Time : 3 Hours] [Max. Marks : 80

Part - A  (5 × 4 = 20 Marks)

Note : Answer any Five of the following questions

ANSWERS

1. State Green’s and Gauss’s Theorems. (Unit-I, SQA-6,7)

2. Prove that  .(A × r) = r.(  × A). (Unit-I, SQA-8)

3. Calculate the Thrust on a rocket. (Unit-II, SQA-7)

4. Obtain Euler’s equations of a rigid body rotating about a fixed point. (Unit-II, SQA-8)

5. What are central forces? Write their characteristics. (Unit-III, SQA-1)

6. Define gravitational field and give two examples. (Unit-III, SQA-12)

7. State Einstein’s postulates and obtain Lorentz transformation equations for

position and time. (Unit-III, SQA-13)

8. Explain the concept of four vector. (Unit-III, SQA-11)

Part - B  (4 × 15 = 60 Marks)

Note : Attempt All the questions

9. (a) Prove that Curl Curl A = Grad div A- V2A. (Unit-I, Q.No.38)

OR

(b) Explain the curl of a vector field. State and prove Stoke’s theorem. (Unit-I, Q.No.17,20)

10. (a) Obtain an expression for precessional velocity of the symmetric top.

Explain the principle and working of Gyroscope. (Unit-II, Q.No.33,34)

OR

(b) Define impact parameter. Derive an expression for Rutherford scattering

cross-section. (Unit-II, Q.No.16,18)

11. (a) Show that the central forces are conservative. State Kepler’s third law from

inverse square law of gravitation. (Unit-III, Q.No.2,9)
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OR

(b) What is Coriolis force and obtain its expression? Derive Kepler’s third law

from inverse-square law of gravitation. (Out of Syllabus)

12. (a) Define inertial and non-inertial frames. Explain the concept of time dilation

with example. (Unit-III, Q.No.17)

OR

(b) Describe Michelson-Morley experiment. Discuss the importance of negative

result. (Unit-III, Q.No.15)
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Part - A  (5 × 4 = 20 Marks)

Note : Answer any Five of the following questions

ANSWERS

1. Define Gradient, Divergence and Curl. Give examples to each. What are their

physical significance. (Unit-I, SQA-1,3,4)

2. Prove that Curl of a gradient is zero. (Unit-I, SQA-5)

3. Describe the principle of motion of a rocket as a system of variable mass. (Unit-II, SQA-6)

4. Define impact parameter and scattering cross section. (Unit-II, SQA-3,4)

5. Are central forces are conservative? Give two examples of central forces. (Unit-III, SQA-8)

6. State and explain Kepler’s laws of planetary motion. (Unit-III, SQA-9)

7. Mention the postulates of special theory of relativity. (Unit-III, SQA-10)

8. Explain the concept of four vector formalism. (Unit-III, SQA-11)

Part - B  (4 × 15 = 60 Marks)

Note : Attempt All the questions

9. (a) Define surface and volume integral. State and prove Gauss’s divergence

theorem. (Unit-I, Q.No.19,21)

OR

(b) Define Green’s theorem. Give the proof of Green’s theorem. (Unit-I, Q.No.22)

10. (a) Define elastic and inelastic collisions. Give the theory of elastic collisions

in two dimensions. (Unit-II, Q.No.13,15)

OR

(b) What is a symmetric top? Explain the precession of top and obtain an

expression for precession velocity, of symmetric top. (Unit-II, Q.No.33)

11. (a) Show that conservative force as a negative gradient of potential energy. (Unit-II, Q.No.3)
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(b) What is Coriolis force and obtain its expression? (Out of Syllabus)

OR

(c) Derive Kepler’s second law and third law of planetary motion. (Unit-III, Q.No.9,10)

12. (a) Describe the working of Michelson-Morley experiment and derive the

expression for the fringe shift. (Unit-III, Q.No.15)

OR

(b) What is length contraction? Obtain expression for length contraction. (Unit-III, Q.No.18)

(c) Explain the concept of time dilation. (Unit-III, Q.No.17)
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MECHANICS

Time: 3 Hours] [Max. Marks:  80

PART – A (5 x 4 = 20 Marks)
Note: Answer any FIVE of the following questions

ANSWERS

1. Explain the Divergence of vector field and its physical

significance. (Unit-I, SQA-3)

2. Show that    


2 2 ˆ ˆF y x i 2xy j  conservative (Unit-I, SQA-2)

3. Define : (i) Impact parameter (ii) Scattering cross section (Unit-II, SQA-3,4)

4. Describe Gyroscope. (Unit-II, SQA-5)

5. Calculate the work done to keep two balls having a mass

500 gm each from infinite distance to 10cm apart. (Unit-III, SQA-4)

6. Explain the coriolis force. (Out of Syllabus)

7. Explain : (i) Time dilation (ii) Length contraction (Unit-III, SQA-5,6)

8. A meter scale length is recorded  as 96 cm by an observer.

Find his velocity. (Unit-III, SQA-7)

PART – B (4 x 15 = 60 Marks)

Note: Attempt ALL the  questions.

9. (a) State and  prove  Gauss divergence theorem. (Unit-I, Q.No.21)

OR

(b) State and prove Green’s  theorem. (Unit-I, Q.No.22)

10. (a) Discuss elastic collision in two dimensions (Unit-II, Q.No.15)

OR

(b) Obtain Euler’s equation. Prove the  law of conservation

of energy from them. (Unit-II, Q.No.32,10)

11. (a) What are central forces? Show that the  central force is

equal to negative gradient of potential energy. (Unit-III, Q.No.1,3)
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OR

(b) State and prove Kepler’s law of  planetary motion (Unit-III, Q.No.10)

12. (a) Describe Michelson Morley experiment and explain

Physical  significance of negative result. (Unit-III, Q.No.15)

OR

(b) What are the Frames of reference? Explain the Galilean

transformation. (Unit-III, Q.No.14,13)
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MECHANICS
Time: 3 Hours]        [Max. Marks:  80

PART – A (5 x 4 = 20 Marks)

Note: Answer any FIVE of the following questions
ANSWERS

1. Define gradient of a scalar field. Obtain an expression for it. (Unit-I, SQA-1)

2. Prove that   


ˆ ˆF a xi yj  is a conservative force. (Unit-I, SQA-2)

3. Define Torque. Prove that the rate of change of  angular momentum

is equal to Torque. (Unit-II, SQA-1)

4. State Newton’s Laws of motions. (Unit-II, SQA-2)

5. What are the central forces? (Unit-III, SQA-1)

6. Explain the coriolis force. (Out of Syllabus)

7. What  are intertial  and non-inertial frames. Give examples. (Unit-III, SQA-2)

8. What is velocity of the particle if its KE is equal to rest energy (Unit-III, SQA-3)

PART – B (4 x 15 = 60 Marks)
Note: Attempt ALL the  questions.

9. (a) State and prove stokes theorem. (Unit-I, Q.No.20)

OR

(b) State and prove Green’s theorem. (Unit-I, Q.No.22)

10. (a) Derive the equations of motion of system of variable mass, (Unit-II, Q.No.6)

OR

(b) Obtain an expression for angular momentum of a rigid body rotating
about a fixed axis. A wheel is rotating with 500 revolutions per minuteb
about an axis. Another similar wheel which is at rest is added to the axis
of first wheel and if the  both  wheels rotate with uniform velocity find
their uniform velocity (Unit-II, Q.No.29)

11. (a) Obtain the equation of motion of  a particle moving under the influence
of central force. Find the  central force due to potential energy function
U=–Kr2. (Unit-III, Q.No.4,6)
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OR

(b) State and obtain Kepler’s laws of planetary motion. (Unit-III, Q.No.10)

12. (a) Describe Michelson Morley experiment. What is its significance? (Unit-III, Q.No.15)

OR

(b) Explain the Lorentz transformations. (Unit-III, Q.No.16)


