
- by -

WELL EXPERIENCED LECTURER

 Study Manual

 Important Questions

 Solved Model Papers

 Solved Previous Question Papers

Rahul’s 
Topper’s Voice

Price

 `. 199-00

M.C.A.
II Year III Sem

(Osmania University)

Hyderabad. Cell : 9391018098, 9505799122

SOFTWARE
ENGINEERING

Latest 2024 Edition

All disputes are subjects to Hyderabad Jurisdiction only

TMRahul Publications

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written permission
of the publisher

C

M.C.A.
II Year III Sem

(Osmania University)

Price `. 199 -00

SOFTWARE
ENGINEERING

C
O
N
T
E
N
T
S

STUDY MANUAL

Important Questions III - VI

Unit - I 1 - 30

Unit - II 31 - 74

Unit - III 75 - 105

Unit - IV 106 - 133

Unit - V 134 - 159

Lab Programs 160 - 260

SOLVED MODEL PAPERS

Model Paper - I 261 - 261

Model Paper - II 262 - 262

Model Paper - III 263 - 263

PREVIOUS QUESTION PAPERS

April / May - 2023 264 - 266

October / November - 2023 267 - 268

SOFTWARE
ENGINEERING

I

Contents
UNIT - I

Topic Page No.

1.1 The Software Problem .. 1

1.2 Cost, Schedule, and Quality, Scale and Change ...2

1.3 Software Processes .. 9

1.3.1 Component Software Processes ..10

1.4 Software Development Process Model ..12

1.5 Project Management Process...27

UNIT - II

2.1 Software Requirements Analysis and Specification ..31

2.2 Value of a Good SRS ..33

2.3 Requirements Process ...35

2.4 Requirements Specification ...41

2.4.1 Components of SRS ...45

2.5 Functional Specification with Use Cases ..51

2.5.1 Developing Use Cases ...53

2.6 Other Approaches for Analysis ..54

2.7 Software Architecture ..58

2.7.1 Role of Software Architecture Views ..64

2.8 Architecture Styles ...66

2.9 Documenting Architecture Design ...68

2.9.1 Building Blocks of Document Architecture ..71

UNIT - III

3.1 Planning a Software Project ..75

3.2 Effort Estimation ...76

3.3 Project Schedule and Staffing ...79

3.4 Quality Planning ..81

3.5 Risk Management Planning ...82

3.6 Project Monitoring Plan...86

3.7 Detailed Scheduling ..87

3.8 Design Concept ...89

II

Topic Page No.

3.8.1 Data Design in Software Engineering ..91

3.8.2 Function Oriented Design, Object Oriented Design, Detailed Design92

3.9 Verification ..94

3.10 Metrics ..95

UNIT - IV

4.1 Coding ..106

4.1.1 Programming Principles ..107

4.1.2 Guidelines ...109

4.2 Unit Testing ..113

4.3 Code Metrics Values ..114

4.4 Code Validation or Code Verification Techniques in Software Engineering116

4.5 Software Testing Techniques ..119

4.5.1 White Box Testing ..120

4.5.2 Black Box Testing ..125

4.5.3 White Box Testing Vs Black Box Testing ...130

4.6 Software Testing Metrics ..131

UNIT - V

5.1 Software Maintenance, Supportability ..134

5.2 Reengineering ...136

5.3 Business Process Re-engineering ...137

5.4 Software Reengineering ..139

5.5 Reverse Engineering ...141

5.6 Software Restructuring ..143

5.7 Forward Reengineering ...144

5.8 Economics of Re-Engineering ...146

5.9 SPI Process ..147

5.10 Process Change Management (PCM) ...151

5.11 CMM ..152

5.12 The People Capability Maturity Model ..156

5.13 IDEAL Model ..158

IMPORTANT QUESTIONS SOFTWARE ENGINEERING

III
Rahul Publications

UNIT - I

1. What are the Challenges faced by Software Engineering?

Ans :
Refer Unit-I, Q.No. 2

2. Explain Software Engineering Process.

Ans :
Refer Unit-I, Q.No. 6

3. Explain Prototype Model and Iterative Development Model.

Ans :
Refer Unit-I, Q.No. 10

4. Explain project management process.

Ans :
Refer Unit-I, Q.No. 14

UNIT - II

1. What are Software Requirements Specification and Describe various characteristics
of software require-ments specification?

Ans :
Refer Unit-II, Q.No. 1

2. Explain about Requirement Process.

Ans :
Refer Unit-II, Q.No. 4

3. What is Software Requirements Specification? Explain Structure and Characteristics
of SRS.

Ans :
Refer Unit-II, Q.No. 6

4. Discuss briefly the validation of SRS.

Ans :
Refer Unit-II, Q.No. 9

Important Questions

MCA II YEAR III SEMESTER

IV
Rahul Publications

5. Discuss about functional specifications using use cases.

Ans :
Refer Unit-II, Q.No. 11

6. Explain different approaches of Analysis in Software Engineering.

Ans :
Refer Unit-II, Q.No. 13

7. Explain about software architecture state its characteristics.

Ans :
Refer Unit-II, Q.No. 14

8. What are the different views of Software Architecture?

Ans :
Refer Unit-II, Q.No. 16

9. How would you build software archi-tecture document?

Ans :
Refer Unit-II, Q.No. 18

UNIT - III

1. Explain about Effort and Schedule estimates of Software Projects.

Ans :
Refer Unit-III, Q.No. 2

2. What is Staffing? Explain Project Schedule.

Ans :
Refer Unit-III, Q.No. 3

3. What is Risk Management in Software Projects? Give brief ideas of Risk Assessment
and Control.

Ans :
Refer Unit-III, Q.No. 5

4. Explain the concept of detailed schedu- ling.

Ans :
Refer Unit-III, Q.No. 7

5. What are the strategies followed in designing software?

Ans :
Refer Unit-III, Q.No. 10

IMPORTANT QUESTIONS SOFTWARE ENGINEERING

V
Rahul Publications

6. What are metrics, Measurements & Models of Project Management & Software
Management?

Ans :
Refer Unit-III, Q.No. 12

UNIT - IV

1. Explain various Programming Practices used in Coding. What is meant by Information
Hiding?

Ans :
Refer Unit-IV, Q.No. 1

2. State the Advantages of Coding Guidelines.

Ans :
Refer Unit-IV, Q.No. 5

3. What are the metrics of Coding?

Ans :
Refer Unit-IV, Q.No. 7

4. Explain in detail the Code verification Techniques in Software Engineering.

Ans :
Refer Unit-IV, Q.No. 8

5. Describe white box testing in software engineering.

Ans :
Refer Unit-IV, Q.No. 10

6. Explain Black Box Testing in detail.

Ans :
Refer Unit-IV, Q.No. 11

7. What are the differences between White Box and Black Box Testing?

Ans :
Refer Unit-IV, Q.No. 12

8. What are Software Testing Metric?

Ans :

Refer Unit-IV, Q.No. 13

MCA II YEAR III SEMESTER

VI
Rahul Publications

UNIT - V

1. What is Software Maintenance? Describe the types of Software Mainta-nance.

Ans :
Refer Unit-V, Q.No. 1

2. What is Re-engineering? Describe steps followed by Reengineering.

Ans :

Refer Unit-V, Q.No. 2

3. Explain the concept of Software Re-engineering.

Ans :
Refer Unit-V, Q.No. 6

4. What is forward engineering in software?

Ans :
Refer Unit-V, Q.No. 9

5. Explain the concept of Economics of Reengineering.

Ans :
Refer Unit-V, Q.No. 10

6. Discuss in detail about Process and Product Quality In Software Engineering.

Ans :
Refer Unit-V, Q.No. 11

7. Describe in detail the frame work of PCCM.

Ans :
Refer Unit-V, Q.No. 16

8. Explain in detail about Ideal Model and Spice in SPI.

Ans :
Refer Unit-V, Q.No. 17

UNIT - I SOFTWARE ENGINEERING

1
Rahul Publications

Rahul Publications
 1.1 THE SOFTWARE PROBLEM

Q1. Define Software.

Ans :
 The problem domain for software engineering

is industrial-strength software. This software
is meant to solve some problem of some set
of users, and is expected to be of high quality.

 In this problem domain, cost, schedule, and
quality are basic driving forces. Hence,
methods and tools that will be used for
solving problems in this domain must ensure
high productivity and high quality.

 Productivity is measured as amount of output
per unit of input resource. In software, output
can be measured in terms of lines of code
delivered, and as human time is the main
resource, input can be measured as person-
months. Productivity can therefore be
measured as lines of code delivered per
person-month.

 Software quality has many attributes which
include functionality, reliability, usability,
efficiency, maintainability, and portability.
Reliability is often considered as the main
quality attribute, and as unreliability in
software is due to defects in the software,
quality can be characterized by number of
defects per thousand lines of code.

UNIT
I

The software Problem: Cost, Schedule and Quality, Scale and change,

Software Processes: Process and project, Component Software

Processes, Software Development Process Models, Project management

Process.

 The problems in this domain often tend to
be very large and where the needs of the
customers change fast. Hence the techniques
used for developing industrial-strength
software should be such that they are capable
of building large software systems, and have
the capability to handle changes.

Q2. What are the Challenges faced by
Software Engineering?

Ans : (Imp.)

Software engineering employs a well-defined
and systematic approach to develop software. This
approach is considered to be the most effective way
of producing high-quality software. However,
despite this systematic approach in software
development, there are still some serious challenges
faced by software engineering.

Some of these challenges are listed below.

1. The methods used to develop small or
medium-scale projects are not suitable when
it comes to the development of large-scale or
complex systems.

2. Changes in software development are
unavoidable. In today’s world, changes occur
rapidly and accommodating these changes to
develop complete software is one of the major
challenges faced by the software engineers.

MCA II YEAR III SEMESTER

2
Rahul Publications

Rahul Publications

3. The advancement in computer and software
technology has necessitated for the changes
in nature of software systems. The software
systems that cannot accommodate changes
are not of much use. Thus, one of the
challenges of software engineering is to
produce high quality software adapting to the
changing needs within acceptable schedules.
To meet this challenge, the object oriented
approach is preferred, but accommodating
changes to software and its maintenance
within acceptable cost is still a challenge.

4. Informal communications take up a
considerable portion of the time spent on
software projects. Such wastage of time delays
the completion of projects in the specified
time.

5. The user generally has only a vague idea
about the scope and requirements of the
software system. This usually results in the
development of software, which does not
meet the user’s requirements.

6. Changes are usually incorporated in
documents without following any standard
procedure. Thus, verification of all such
changes often becomes difficult.

7. The development ofl1igh-quality and reliable
software requires the software to be
thoroughly tested. Though thorough testing
of software consumes the majority of
resources, underestimating it because of any
reasons deteriorates the software quality.

8. In addition to the above mentioned key
challenges, the responsibilities of the system
analyst, designers, and programmers are
usually not well defined. Also, if the user
requirements are not precisely defined,
software developers can misinterpret the
meaning. All these challenges need to be
addressed in order to ensure that the software
is developed within the specified time and
estimated costs and also meets the
requirements specified by the user.

1.2 COST, SCHEDULE, AND QUALITY, SCALE

AND CHANGE

Q3. What are various Software Engineering
Problems? Explain.

(OR)

Discuss about

(i) Cost (ii) Schedule

(iii) Qualify (iv) Scale and Change

Ans :
Though the need for high quality distin-

guishes industrial strength software from others, cost
and schedule are other major driving forces for such
software. In the industrial-strength software domain,
there are three basic forces at play cost, schedule,
and quality. The software should be produced at
reasonable cost, in a reasonable time, and should
be of good quality. These three parameters often
drive and define a software project.

(i) Cost

Industrial-strength software is very expensive
primarily due to the fact that software development
is extremely labor-intensive. To get an idea of the
costs involved, let us consider the current state of
practice in the industry. Lines of code (LOC) or
thousands of lines of code (KLOC) delivered is by
far the most commonly used measure of software
size in the industry. As the main cost of producing
software is the manpower employed, the cost of
developing software is generally measured in terms
of person-months of effort spent in development.
And productivity is frequently measured in the
industry in terms of LOC (or KLOC) per person-
month.

The productivity in the software industry
for writing fresh code generally ranges from few
hundred to about 1000+ LOC per person-month.
This productivity is over the entire development
cycle, not just the coding task. Software companies
often charge the client for whom they are
developing the software between $3000 - $15,000
per person-month. With a productivity of 1000
LOC per person-month, it means that each line of

UNIT - I SOFTWARE ENGINEERING

3
Rahul Publications

Rahul Publications

delivered code costs between $3 and $15! And even small projects can easily end up with software of
50,000 LOC. With this productivity, such a software project will cost between $150,000 and $750,000!

(ii) Schedule

Schedule is another important factor in many projects. Business trends are dictating that the time to
market of a product should be reduced; that is, the cycle time from concept to delivery should be small.
For software this means that it needs to be developed faster, and within the specified time. Unfortunately,
the history of software is full of cases where projects have been substantially late.

Clearly, therefore, reducing the cost and the cycle time for software development are central
goals of software engineering. Productivity in terms of output (KLOC) per person-month can adequately
capture both cost and schedule concerns. If productivity is higher, it should be clear that the cost in terms
of person-months will be lower (the same work can now be done with fewer person-months). Similarly,
if productivity is higher, the potential of developing the software in less time improves—a team of higher
productivity will finish a job in less time than a same-size team with lower productivity. (The actual time the
project will take, of course, depends also on the number of people allocated to the project.) Hence,
pursuit of higher productivity is a basic driving force behind software engineering and a major reason for
using the different tools and techniques.

(iii) Qualify

Besides cost and schedule, the other major factor driving software engineering is quality. Today,
quality is one of the main mantras, and business strategies are designed around it. Unfortunately, a large
number of instances have occurred regarding the unreliability of software the software often does not do
what it is supposed to do or does something it is not supposed to do. Clearly, developing high-quality
software is another fundamental goal of software engineering. However, while cost is generally well
understood, the concept of quality in the context of software needs further elaboration. The international
standard on software product quality suggests that software quality comprises six main attributes.

Functionality Reliability Usability

Software
Quality

Efficiency Maintainability Portability

These attributes can be defined as follows :

1. Functionality: The capability to provide functions which meet stated and implied needs when the
software is used.

2. Reliability: The capability to provide failure-free service.

3. Usability: The capability to be understood, learned, and used.

4. Efficiency: The capability to provide appropriate performance relative to the amount of resources
used.

5. Maintainability: The capability to be modified for purposes of making corrections, improvements,
or adaptation.

6. Portability: The capability to be adapted for different specified environments without applying
actions or means other than those provided for this purpose in the product.

MCA II YEAR III SEMESTER

4
Rahul Publications

Rahul Publications

With multiple dimensions to quality, different
projects may emphasize different attributes, and a
global single number for quality is not possible.
However, despite the fact that there are many quality
attributes, reliability is generally accepted to be the
main quality criterion. As unreliability of software is
due to the presence of defects in the software, one
measure of quality is the number of defects in the
delivered software per unit size (generally taken to
be thousands of lines of code, or KLOC). With this
as the major quality criterion, the quality objective
is to reduce the number of defects per KLOC as
much as possible. Current best practices in software
engineering have been able to reduce the defect
density to less than 1 defect per KLOC.

To determine the quality of a software
product, we need to determine the number of
defects in the software that was delivered. This
number is clearly not known at delivery time and
may never be known. One approach to measure
quality is to log the defects found in 6 months (or 1
year) after delivery and define quality with respect
to these defects. This means that quality of delivered
software can only be determined 6 months after its
delivery. The defect density can, however, also be
estimated from past data of similar projects—if
similar approaches are being used, then it is
expected that the current project will have similar
defect density as the past projects. It should be
pointed out that to use this definition of quality, what
a defect is must be clearly defined. A defect could
be some problem in the software that causes the
software to crash or a problem that causes an output
to be not properly aligned or one that misspells some
word, etc. The exact definition of what is considered
a defect will clearly depend on the project or the
standards the organization developing the project
uses (typically it is the latter).

Besides reliability, another quality attribute of
great interest is maintainability. Once the software
is delivered and deployed, it enters the maintenance
phase. Why is maintenance needed for software,
when software has no physical components that can
degrade with age? Software needs to be maintained

because of the residual defects remaining in the
system. It is commonly believed that the state of
the art today is limited and developing software with
zero defect density is not possible. These defects,
once discovered, need to be removed, leading to
what is called corrective maintenance. Maintenance
is also needed to change the delivered software to
satisfy the enhanced needs of the users and the
environment, leading to adaptive maintenance.
Over the life of a software system, maintenance cost
can far exceed the cost of original development.
The maintenance-to-development-cost ratio has
been variously suggested as 80:20, 70:30, or
60:40. Due to this high cost, maintainability attribute
of delivered software is of high interest—it is clearly
desirable to have software systems that are easier
to maintain.

(iv) Scale and Change

Though cost, schedule, and quality are the
main driving forces for a project in our problem
domain (of industry strength software), there are
some other characteristics of the problem domain
that also influence the solution approaches
employed. We focus on two such characteristics—
scale and change.

Most industrial-strength software systems tend
to be large and complex, requiring tens of
thousands of lines of code. Sizes of some of the
well-known software products are given in Table.
As can be expected, development of a large system
requires a different set of methods compared to
developing a small system, as the methods that are
used for developing small systems often do not scale
up to large systems.

An example will illustrate this point. Consider
the problem of counting people in a room versus
taking a census of a country. Both are essentially
counting problems. But the methods used for
counting people in a room will just not work when
taking a census. A different set of methods will have
to be used for conducting a census, and the
census problem will require considerably more
management, organization, and validation, in
addition to counting.

UNIT - I SOFTWARE ENGINEERING

5
Rahul Publications

Rahul Publications

Size (KLOC) Software Languages
980 gcc ansic, cpp, yacc
320 perl perl, ansic, sh
200 openssl ansic, cpp, perl
100 apache ansic, sh
65 sendmail ansic
30,000 Red Hat Limax ansic, cpp
40,000 Windows XP ansic, cpp

Similarly, methods that one can use to
develop programs of a few hundred lines cannot
be expected to work when software of a few
hundred thousand lines needs to be developed. A
different set of methods must be used for
developing large software.

Any software project involves the use of
engineering and project management. In small
projects, informal methods for development and
management can be used. However, for large
projects, both have to be much more rigorous. In
other words, to successfully execute a project, a
proper method for engineering the system has to
be employed and the project has to be tightly
managed to make sure that cost, schedule, and
quality are under control.

Large scale is a key characteristic of the
problem domain and the solution approaches
should employ tools and techniques that have the
ability to build large software systems. Change is
another characteristic of the problem domain which
the approaches for development must handle. As
the complete set of requirements for the system is
generally not known (often cannot be known at
the start of the project) or stated, as development
proceeds and time passes, additional requirements
are identified, which need to be incorporated in the
software being developed. This need for changes
requires that methods for development embrace
change and accommodate it efficiently. Change
requests can be quite disruptive to a project, and if
not handled properly, can consume up to 30 to
40% of the development cost.

Software has to be changed even after it has
been deployed. Though traditionally changes in

software during maintenance have been
distinguished from changes that occur while the
development is taking place, these lines are blurring,
as fundamentally the changes in both of these
scenarios are similar-existing source code needs to
be changed due to some changes in the
requirements or due to some defects that need to
be removed.

Overall, as the world changes faster, software
has to change faster, even while under
development. Changes in requirements are

therefore a characteristic of the problem domain.

In today’s world, approaches that cannot accept and
accommodate change are of little use—they can

solve only those few problems that are change

resistant.

Q4. What is Software Engineering and
Explain Evolution of Software Enginee-
ring?

Ans :

(i) Software: Is more than just a program
code. A program is an executable code, which

serves some computational purpose.

Software is considered to be collection of
executable programming code, associated

libraries and documentations. Software, when

made for a specific requirement is
called software product.

MCA II YEAR III SEMESTER

6
Rahul Publications

Rahul Publications

(ii) Engineering: On the other hand, is all
about developing products, using well-
defined, scientific principles and methods.

Software engineering is an engineering
branch associated with development of
software product using well-defined scientific
principles, methods and procedures. The
outcome of software engineering is an
efficient and reliable software product.

Definitions

1. The application of a systematic, disciplined,
quantifiable approach to the development,
operation and maintenance of software; that
is, the application of engineering to software.

2. The study of approaches as in the above
statement.

3. Software engineering is the establishment and
use of sound engineering principles in order
to obtain economically software that is reliable
and work efficiently on real machines.

Evolution

The process of developing a software product
using software engineering principles and methods
is referred to as software evolution. This includes
the initial development of software and its
maintenance and updates, till desired software
product is developed, which satisfies the expected
requirements.

Evolution starts from the requirement
gathering process. After which developers create a
prototype of the intended software and show it to
the users to get their feedback at the early stage of
software product development. The users suggest
changes, on which several consecutive updates and
maintenance keep on changing too. This process
changes to the original software, till the desired
software is accomplished.

Even after the user has desired software in
hand, the advancing technology and the changing
requirements force the software product to change
accordingly. Re-creating software from scratch and
to go one-on-one with requirement is not feasible.
The only feasible and economical solution is to
update the existing software so that it matches the
latest requirements.

Software Evolution Laws
Lehman has given laws for software

evolution. He divided the software into three
different categories:
 S-type (static-type): This is a software,

which works strictly according to defined
specifications and solutions. The solution and
the method to achieve it, both are
immediately understood before coding. The
s-type software is least subjected to changes
hence this is the simplest of all. For example,
calculator program for mathematical
computation.

 P-type (practical-type): This is a software
with a collection of procedures. This is
defined by exactly what procedures can do.
In this software, the specifications can be
described but the solution is not obvious
instantly. For example, gaming software.

 E-type (embedded-type): This software
works closely as the requirement of real-

UNIT - I SOFTWARE ENGINEERING

7
Rahul Publications

Rahul Publications

world environment. This software has a high
degree of evolution as there are various
changes in laws, taxes etc. in the real world
situations. For example, Online trading
software.

 E-Type software evolution

 Lehman has given eight laws for E-Type
software evolution -

 Continuing change: An E-type software
system must continue to adapt to the real
world changes; else it becomes progressively
less useful.

 Increasing complexity - As an E-type
software system evolves, its complexity tends
to increase unless work is done to maintain
or reduce it.

 Conservation of familiarity: The familiarity
with the software or the knowledge about
how it was developed, why was it developed
in that particular manner etc. must be
retained at any cost, to implement the changes
in the system.

 Continuing growth: In order for an E-type
system intended to resolve some business
problem, its size of implementing the changes
grows according to the lifestyle changes of
the business.

 Reducing quality: An E-type software
system declines in quality unless rigorously
maintained and adapted to a changing
operational environment.

 Feedback systems: The E-type software
systems constitute multi-loop, multi-level
feedback systems and must be treated as such
to be successfully modified or improved.

 Self-regulation: E-type system evolution
processes are self-regulating with the
distribution of product and process measures
close to normal.

 Organizational stability: The average
effective global activity rate in an evolving E-
type system is invariant over the lifetime of
the product.

Q5. Explain the Paradigm of Software
Engineering and needs.

Ans :
Software paradigms refer to the methods and

steps, which are taken while designing the software.
There are many methods proposed and are in work
today, but we need to see where in the software
engineering these paradigms stand. These can be
combined into various categories, though each of
them is contained in one another :

Programming paradigm is a subset of
Software design paradigm which is further a subset
of Software development paradigm.

Software Development Paradigm

This Paradigm is known as software
engineering paradigms where all the engineering
concepts pertaining to the development of software
are applied. It includes various researches and
requirement gathering which helps the software
product to build. It consists of

 Requirement gathering

 Software design

 Programming

Software Design Paradigm

This paradigm is a part of Software
Development and includes:

 Design

 Maintenance

 Programming

MCA II YEAR III SEMESTER

8
Rahul Publications

Rahul Publications

Programming Paradigm

This paradigm is related closely to
programming aspect of software development. This
includes:

 Coding

 Testing

 Integration

Need

The need of software engineering arises
because of higher rate of change in user
requirements and environment on which the
software is working.

 Large software: It is easier to build a wall
than to a house or building, likewise, as the
size of software become large engineering has
to step to give it a scientific process.

 Scalability: If the software process were not
based on scientific and engineering concepts,
it would be easier to re-create new software
than to scale an existing one.

 Cost: As hardware industry has shown its
skills and huge manufacturing has lower down
the price of computer and electronic
hardware. But the cost of software remains
high if proper process is not adapted.

 Dynamic Nature: The always growing and
adapting nature of software hugely depends
upon the environment in which user works.
If the nature of software is always changing,
new enhancements need to be done in the
existing one. This is where software
engineering plays a good role.

 Quality Management: Better process of
software development provides better and
quality software product.

Characteristics

A software product can be judged by what it
offers and how well it can be used. This software
must satisfy on the following grounds:

 Operational

 Transitional

 Maintenance

Well-engineered and crafted software is
expected to have the following characteristics:

Operational

This tells us how well software works in
operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is
moved from one platform to another :

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well a software
has the capabilities to maintain itself in the ever-
changing environment :

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of
computer science, which uses well-defined
engineering concepts required to produce efficient,
durable, scalable, in-budget and on-time software
products.

UNIT - I SOFTWARE ENGINEERING

9
Rahul Publications

Rahul Publications

1.3 SOFTWARE PROCESSES

Q6. Explain Software Engineering Process.

Ans : (Imp.)

 Software engineering is defined as the
systematic approach to the development, operation,
maintenance, and retirement of software.

In other words, the systematic approach must
help achieve a high quality and productivity (Q&P).
In software, the three main factors that influence
Q&P are people, processes, and technology. That
is, the final quality delivered and productivity
achieved depends on the skills of the people involved
in the software project, the processes people use to
perform the different tasks in the project, and the
tools they use.

As it is people who ultimately develop and
deliver (and productivity is measured with respect
to people’s effort as the basic input), the main job
of processes is to help people achieve higher Q&P
by specifying what tasks to do and how to do them.
Tools are aids that help people perform some of
the tasks more efficiently and with fewer errors. It
should therefore be clear that to satisfy the objective
of delivering software with high Q&P, processes
form the core. Consequently, in software
engineering, the focus is primarily on processes,
which are referred to as the systematic approach in
the definition given above. It is this focus on process
that distinguishes software engineering from most
other computing disciplines. Many other computing
disciplines focus on some type of product operating
systems, databases, etc., while software engineering
focuses on the process for producing the products.

As processes form the heart of software
engineering, with tools and technology providing
support to efficiently execute the processes, this
book focuses primarily on processes.

 Role of a process and a process model in a
project.

 Various component processes in the software
process and the key role of the development
process and the project management process.

 Various models for the development
process—waterfall, prototyping, iterative,
RUP, time boxing, and XP.

 The overall structure of the project
management process and its key phases.

 Process and Project

A process is a sequence of steps performed
for a given purpose. As mentioned earlier, while
developing (industrial strength) software, the
purpose is to develop software to satisfy the needs
of some users or clients. A software project is one
instance of this problem, and the development
process is what is used to achieve this purpose.

User needs Software

Satisfies

So, for a project its development process plays
a key role—it is by following the process the desired
end goal of delivering the software is achieved.
However, as discussed earlier, it is not sufficient to
just reach the final goal of having the desired
software, but we want that the project be done at
low cost and in low cycle time, and deliver high-
quality software. The role of process increases due
to these additional goals, and though many
processes can achieve the basic goal of developing
software, to achieve high Q&P we need some
“optimum” process. It is this goal that makes
designing a process a challenge.

We must distinguish process specification or
description from the process itself. A process is a
dynamic entity which captures the actions
performed. Process specification, on the other hand,
is a description of process which presumably can
be followed in some project to achieve the goal for
which the process is designed.

In a project, a process specification may be
used as the process the project plans to follow. The
actual process is what is actually done in the project.
Note that the actual process can be different from

MCA II YEAR III SEMESTER

10
Rahul Publications

Rahul Publications

the planned process, and ensuring that the specified
process is being followed is a nontrivial problem.
However, in this book, we will assume that the
planned and actual processes are the same and will
not distinguish between the two and will use the
term process to refer to both.

A process model specifies a general process,
which is “optimum” for a class of projects. That is,
in the situations for which the model is applicable,
using the process model as the project’s process will
lead to the goal of developing software with high
Q&P. A process model is essentially a compilation
of best practices into a “recipe” for success in the
project. In other words, a process is a means to reach
the goals of high quality, low cost, and low cycle
time, and a process model provides a process
structure that is well suited for a class of projects.

A process is often specified at a high level as
a sequence of stages. The sequence of steps for a
stage is the process for that stage, and is often
referred to as a sub process of the process.

1.3.1 Component Software Processes

Q7. What are the Components of Software
Process?

Ans :
A process is the sequence of steps executed

to achieve a goal. Since many different goals may
have to be satisfied while developing software,
multiple processes are needed. Many of these do
not concern software engineering, though they do
impact software development. These could be
considered non-software process. Business
processes, social processes, and training processes
are all examples of processes that come under this.
These processes also affect the software
development activity but are beyond the purview
of software engineering.

The processes that deal with the technical and
management issues of software development are
collectively called the software process. As a software
project will have to engineer a solution and properly
manage the project, there are clearly two major
components in a software process a development
process and a project management process. The
development process specifies all the engineering
activities that need to be performed, whereas the

management process specifies how to plan and
control these activities so that cost, schedule, quality,
and other objectives are met. Effective development
and project management processes are the key to
achieving the objectives of delivering the desired
software satisfying the user needs, while ensuring
high productivity and quality.

During the project many products are
produced which are typically composed of many
items (for example, the final source code may be
composed of many source files). These items keep
evolving as the project proceeds, creating many
versions on the way. As development processes
generally do not focus on evolution and changes,
to handle them another process called software
configuration control process is often used. The
objective of this component process is to primarily
deal with managing change, so that the integrity of
the products is not violated despite changes.

These three constituent processes focus on
the projects and the products and can be considered
as comprising the product engineering processes,
as their main objective is to produce the desired
product. If the software process can be viewed as a
static entity, then these three component processes
will suffice. However, a software process itself is a
dynamic entity, as it must change to adapt to our
increased understanding about software
development and availability of newer technologies
and tools. Due to this, a process to manage the
software process is needed.

The basic objective of the process
management process is to improve the software
process. By improvement, we mean that the
capability of the process to produce quality goods
at low cost is improved. For this, the current software
process is studied, frequently by studying the
projects that have been done using the process.

The whole process of understanding the
current process, analyzing its properties, determining
how to improve, and then affecting the
improvement is dealt with by the process
management process. The relationship between
these major component processes. These
component processes are distinct not only in the
type of activities performed in them, but typically
also in the people who perform the activities
specified by the process. In a typical project,

UNIT - I SOFTWARE ENGINEERING

11
Rahul Publications

Rahul Publications

development activities are performed by
programmers, designers, testers, etc.; the project
management process activities are performed by the
project management; configuration control process
activities are performed by a group generally called
the configuration controller; and the process
management process activities are performed by the
software engineering process group (SEPG).

We will focus primarily on processes relating
to product engineering, particularly the
development and project management processes.
Much of the book discusses the different phases of
a development process and the sub-processes or
methodologies used for executing these phases. For
the rest of the book, we will use the term software
process to mean product engineering processes,
unless specified otherwise.

Software Development Process Models

For the software development process, the
goal is to produce a high-quality software product.
It therefore focuses on activities directly related to
production of the software, for example, design,
coding, and testing. As the development process
specifies the major development and quality control
activities that need to be performed in the project,
it forms the core of the software process. The
management process is often decided based on the
development process.

A project’s development process defines the
tasks the project should perform, and the order in
which they should be done. A process limits the
degrees of freedom for a project by specifying what
types of activities must be undertaken and in what
order, such that the “shortest” (or the most efficient)

path is obtained from the user needs to the software
satisfying these needs. The process drives a project
and heavily influences the outcome.

A process model specifies a general process,
usually as a set of stages in which a project should
be divided, the order in which the stages should be
executed, and any other constraints and conditions
on the execution of stages. The basic premise
behind a process model is that, in the situations for
which the model is applicable, using the process
model as the project’s process will lead to low cost,
high quality, reduced cycle time, or provide other
benefits. In other words, the process model provides
generic guidelines for developing a suitable process
for a project. Due to the importance of the
development process, various models have been
proposed. In this section we will discuss some of the
major models.

A software process is a collection of various
activities. There are five generic process framework
activities :

1. Communication: The software develop-
ment starts with the communication between
customer and developer.

2. Planning : It consists of complete estimation,
scheduling for project development and
tracking.

3. Modeling: Modeling consists of complete
requirement analysis and the design of the
project like algorithm, flowchart etc.

 The algorithm is the step-by-step solution
of the problem and the flow chart shows
a complete flow diagram of a program.

4. Construction: Construction consists of code
generation and the testing part.

 Coding part implements the design
details using an appropriate prog-
ramming language.

 Testing is to check whether the flow of
coding is correct or not.

MCA II YEAR III SEMESTER

12
Rahul Publications

Rahul Publications

 Testing also check that the program
provides desired output.

5. Deployment: Deployment step consists of
delivering the product to the customer and
take feedback from them.

 If the customer wants some corrections
or demands for the additional
capabilities, then the change is required
for improvement in the quality of the
software.

1.4 SOFTWARE DEVELOPMENT PROCESS MODEL

Q8. What is a Software Process Model?

(OR)

Describe various software.

Ans :
A Process Model describes the sequence of

phases for the entire lifetime of a product. Therefore
it is sometimes also called Product Life Cycle. This
covers everything from the initial commercial idea
until the final de-installation or disassembling of the
product after its use. Usually there are three main
phases :

 concept phase

 implementation phase

 maintenance phase

Each of these main phases usually has some
sub-phases, like a requirements engineering phase,
a design phase, a build phase and a testing phase.
The sub-phases may occur in more than one main
phase each of them with a specific peculiarity
depending on the main phase. Besides the phases
a Process Model shall also define at least:

 The activities that have to be carried out in
each of the sub-phases, including the
sequence in which these activities have to be
carried out.

 The roles of the executors that have to carry
out the activities, including a description of
their responsibilities and required skills.

 The work products that have to be
established or updated in each of the
activities. Besides the final product there are
usually several other items that have to be
generated during the development of a
product. These are for example requirements
and design document, test specifications and
test reports, etc.

Therefore, a Process Model provides a fixed
framework that guides a project in :

 Development of the product

 Planning and organizing the project

 Tracking and running the project

Q9. Describe Waterfall Model.

Ans :
The simplest process model is the waterfall

model, which states that the phases are organized
in a linear order. The model was originally proposed
by Royce, though variations of the model have
evolved depending on the nature of activities and
the flow of control between them. In this model, a
project begins with feasibility analysis. Upon
successfully demonstrating the feasibility of a project,
the requirements analysis and project planning
begins. The design starts after the requirements
analysis is complete, and coding begins after the
design is complete. Once the programming is
completed, the code is integrated and testing is done.
Upon successful completion of testing, the system is
installed. After this, the regular operation and
maintenance of the system takes place.

The basic idea behind the phases is separation
of concerns each phase deals with a distinct and
separate set of concerns. By doing this, the large
and complex task of building the software is broken
into smaller tasks (which, by themselves, are still
quite complex) of specifying requirements, doing
design, etc. Separating the concerns and focusing
on a select few in a phase gives a better handle to
the engineers and managers in dealing with the
complexity of the problem.

The requirements analysis phase is mentioned
as “analysis and planning.” Planning is a critical
activity in software development. A good plan is
based on the requirements of the system and should

UNIT - I SOFTWARE ENGINEERING

13
Rahul Publications

Rahul Publications

be done before later phases begin. However, in
practice, detailed requirements are not necessary
for planning. Consequently, planning usually
overlaps with the requirements analysis, and a plan
is ready before the later phases begin. This plan is
an additional input to all the later phases.

Linear ordering of activities has some
important consequences. First, to clearly identify the
end of a phase and the beginning of the next, some
certification mechanism has to be employed at the
end of each phase. This is usually done by some
verification and validation means that will ensure
that the output of a phase is consistent with its input
(which is the output of the previous phase), and
that the output of the phase is consistent with the
overall requirements of the system.

The consequence of the need for certification
is that each phase must have some defined output
that can be evaluated and certified. That is, when
the activities of a phase are completed, there should
be some product that is produced by that phase.
The outputs of the earlier phases are often called
work products and are usually in the form of
documents like the requirements document or
design document. For the coding phase, the output
is the code. Though the set of documents that
should be produced in a project is dependent on
how the process is implemented, the following
documents generally form a reasonable set that
should be produced in each project:

 Requirements document

 Project plan

 Design documents (architecture, system,
detailed)

 Test plan and test reports

 Final code

 Software manuals (e.g., user, installation, etc.)

One of the main advantages of the waterfall
model is its simplicity. It is conceptually straight
forward and divides the large task of building a
software system into a series of cleanly divided
phases, each phase dealing with a separate logical
concern. It is also easy to administer in a contractual
setup—as each phase is completed and its work
product produced, some amount of money is given
by the customer to the developing organization.

Requirement
Analysis

Definition

System Design

Software Design

Coding

Software Integration
& Verification

System Valiadation

Operration & Maintence

Fig.: Waterfall Model

The phases of “The Waterfall Model” are :

(i) Requirement Analysis & Definition: All
requirements of the system which has to be
developed are collected in this step. Like in
other process models requirements are split
up in functional requirements and constraints
which the system has to fulfil. Requirements
have to be collected by analysing the needs
of the end user(s) and checking them for
validity and the possibility to implement them.
The aim is to generate a Requirements
Specification Document which is used as an
input for the next phase of the model.

(ii) System Design: The system has to be
properly designed before any implementation
is started. This involves an architectural design
which defines and describes the main blocks
and components of the system, their
interfaces and interactions. By this the needed
hardware is defined and the software is split
up in its components. E.g. this involves the
definition or selection of a computer platform,
an operating system, other peripheral
hardware, etc. The software components

MCA II YEAR III SEMESTER

14
Rahul Publications

Rahul Publications

have to be defined to meet the end user
requirements and to meet the need of
possible scalability of the system. The aim of
this phase is to generate a System Architecture
Document this serves as an input for the
software design phase of the development,
but also as an input for hardware design or
selection activities. Usually in this phase
various documents are generated, one for
each discipline, so that the software usually
will receive a software architecture
document.

(iii) Software Design: Based on the system
architecture which defines the main software
blocks the software design will break them
further down into code modules. The
interfaces and interactions of the modules are
described, as well as their functional contents.
All necessary system states like startup,
shutdown, error conditions and diagnostic
modes have to be considered and the activity
and behaviour of the software has to be
defined. The output of this phase is a
Software Design Document which is the base
of the following implementation work.

(iv) Coding: Based on the software design
document the work is aiming to set up the
defined modules or units and actual coding
is started. The system is first developed in
smaller portions called units. They are able
to stand alone from an functional aspect and
are integrated later on to form the complete
software package.

(v) Software Integration & Verification :
Each unit is developed independently and
can be tested for its functionality. This is the
so called Unit Testing. It simply verifies if the
modules or units to check if they meet their
specifications. This involves functional tests at
the interfaces of the modules, but also more
detailed tests which consider the inner
structure of the software modules. During
integration the units which are developed and
tested for their functionalities are brought
together. The modules are integrated into a
complete system and tested to check if all
modules cooperate as expected.

(vi) System Validation : After successfully
integration including the related tests the
complete system has to be tested against its
initial requirements. This will include the
original hardware and environment, whereas
the previous integration and testing phase
may stil l be performed in a different
environment or on a test bench.

(vii) Operation & Maintenance: The system is
handed over to the customer and will be used
the first time by him. Naturally the customer
will check if his requirements were
implemented as expected but he will also
validate if the correct requirements have been
set up in the beginning. In case there are
changes necessary it has to be fixed to make
the system usable or to make it comply to
the customer wishes. In most of the “Waterfall
Model” descriptions this phase is extended
to a never ending phase of “Operations &
Maintenance”. All the problems which did not
arise during the previous phases will be
solved in this last phase.

Weakness

The weakness of the Waterfall Model is at
hand :

(i) It is very important to gather all possible
requirements during the first phase of
requirements collection and analysis. If not
all requirements are obtained at once the
subsequent phases will suffer from it. Reality
is that only a part of the requirements is
known at the beginning and a certain
percentage will be gathered during the
complete development time.

(ii) Iterations are only meant to happen within
the same phase or at best from the start of
the subsequent phase back to the previous
phase. If the process is kept according to the
school book this tends to shift the solution of
problems into later phases which eventually
results in a bad system design. Instead of
solving the root causes the tendency is to
patch problems with inadequate measures.

UNIT - I SOFTWARE ENGINEERING

15
Rahul Publications

Rahul Publications

(iii) There may be a very big “Maintenance” phase at the end. The process only allows for a single run
through the waterfall. Eventually this could be only a first sample phase which means that the
further development is squeezed into the last never ending maintenance phase and virtually run
without a proper process.

Q10. Explain Prototype Model and Iterative Development Model.

Ans : (Imp.)

I. Prototype Model

The goal of a prototyping-based development process is to counter the first limitation of the waterfall
model. The basic idea here is that instead of freezing the requirements before any design or coding can
proceed, a throwaway prototype is built to help understand the requirements. This prototype is developed
based on the currently known requirements. Development of the prototype obviously undergoes design,
coding, and testing, but each of these phases is not done very formally or thoroughly. By using this
prototype, the client can get an actual feel of the system, which can enable the client to better understand
the requirements of the desired system. This results in more stable requirements that change less frequently.

Prototyping is an attractive idea for complicated and large systems for which there is no manual
process or existing system to help determine the requirements. In such situations, letting the client “play”
with the prototype provides invaluable and intangible inputs that help determine the requirements for the
system. It is also an effective method of demonstrating the feasibility of a certain approach. This might be
needed for novel systems, where it is not clear that constraints can be met or that algorithms can be
developed to implement the requirements. In both situations, the risks associated with the projects are
being reduced through the use of prototyping.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
report

Fig.: Prototype Model

A development process using throwaway prototyping typically proceeds as follows. The development
of the prototype typically starts when the preliminary version of the requirements specification document
has been developed. At this stage, there is a reasonable understanding of the system and its needs and
which needs are unclear or likely to change. After the prototype has been developed, the end users and
clients are given an opportunity to use and explore the prototype. Based on their experience, they provide
feedback to the developers regarding the prototype: what is correct, what needs to be modified, what is
missing, what is not needed, etc. Based on the feedback, the prototype is modified to incorporate some of
the suggested changes that can be done easily, and then the users and the clients are again allowed to use
the system. This cycle repeats until, in the judgment of the prototype developers and analysts, the benefit
from further changing the system and obtaining feedback is outweighed by the cost and time involved in
making the changes and obtaining the feedback. Based on the feedback, the initial requirements are
modified to produce the final requirements specification, which is then used to develop the production
quality system.

MCA II YEAR III SEMESTER

16
Rahul Publications

Rahul Publications

For prototyping for the purposes of requirement analysis to be feasible, its cost must be kept low.
Consequently, only those features are included in the prototype that will have a valuable return from the

user experience. Exception handling, recovery, and conformance to some standards and formats are

typically not included in prototypes. In prototyping, as the prototype is to be discarded, there is no point
in implementing those parts of the requirements that are already well understood. Hence, the focus of the

development is to include those features that are not properly understood. And the development approach

is “quick and dirty” with the focus on quick development rather than quality. Because the prototype is to
be thrown away, only minimal documentation needs to be produced during prototyping. For example,

design documents, a test plan, and a test case specification are not needed during the development of the

prototype. Another important cost-cutting measure is to reduce testing. Because testing consumes a major
part of development expenditure during regular software development, this has a considerable impact in

reducing costs. By using these types of cost-cutting methods, it is possible to keep the cost of the prototype

to less than a few percent of the total development cost.

And the returns from this extra cost can be substantial. First, the experience of developing the
prototype will reduce the cost of the actual software development. Second, as requirements will be more

stable now due to the feedback from the prototype, there will be fewer changes in the requirements.

Consequently the costs incurred due to changes in the requirements will be substantially reduced. Third,
the quality of final software is likely to be far superior, as the experience engineers have obtained while

developing the prototype will enable them to create a better design, write better code, and do better

testing. And finally, developing a prototype mitigates many risks that exist in a project where requirements
are not well known.

Overall, prototyping is well suited for projects where requirements are hard to determine and the

confidence in the stated requirements is low. In such projects where requirements are not properly

understood in the beginning, using the prototyping process model can be the most effective method for
developing the software. It is also an excellent technique for reducing some types of risks associated with

a project.

II. Iterative Development Model

The iterative development process model counters the third and fourth limitations of the waterfall

model and tries to combine the benefits of both prototyping and the waterfall model. The basic idea is

that the software should be developed in increments, each increment adding some functional capability
to the system until the full system is implemented.

In the first step of this model, a simple initial implementation is done for a subset of the overall

problem. This subset is one that contains some of the key aspects of the problem that are easy to understand

and implement and which form a useful and usable system. A project control list is created that contains,
in order, all the tasks that must be performed to obtain the final implementation. This project control list

gives an idea of how far along the project is at any given step from the final system.

Each step consists of removing the next task from the list, designing the implementation for the

selected task, coding and testing the implementation, performing an analysis of the partial system obtained

UNIT - I SOFTWARE ENGINEERING

17
Rahul Publications

Rahul Publications

after this step, and updating the list as a result of the analysis. These three phases are called the design

phase, implementation phase, and analysis phase. The process is iterated until the project control list is
empty, at which time the final implementation of the system will be available. The iterative enhancement

model is shown in Figure.

Design0 Design0

Analysis0 Analysis0

Design1

Implement1

Analysis1

Implement0 Implement0

Fig.: Interative Development Model

The project control list guides the iteration steps and keeps track of all tasks that must be done.

Based on the analysis, one of the tasks in the list can include redesign of defective components or redesign

of the entire system. However, redesign of the system will generally occur only in the initial steps. In the
later steps, the design would have stabilized and there is less chance of redesign. Each entry in the list is a
task that should be performed in one step of the iterative enhancement process and should be simple
enough to be completely understood. Selecting tasks in this manner will minimize the chances of error
and reduce the redesign work. The design and implementation phases of each step can be performed in
a top-down manner or by using some other technique.

Though there are clear benefits of iterative development, particularly in allowing changing
requirements, not having the all-or-nothing risk, etc., there are some costs associated with iterative
development also. For example, as the requirements for future iterations are not known, the design of a
system may not be too robust. Also, changes may have to be made to the existing system to accommodate
requirements of the future iterations, leading to extra rework and/or discarding of work done earlier.
Overall, it may not offer the best technical solution, but the benefits may outweigh the costs in many
projects.

Another common approach for iterative development is to do the requirements and the architecture
design in a standard waterfall or prototyping approach, but deliver the software iteratively. That is, the
building of the system, which is the most time and effort-consuming task, is done iteratively, though most
of the requirements are specified upfront. We can view this approach as having one iteration delivering
the requirements and the architecture plan, and then further iterations delivering the software in increments.
At the start of each delivery iteration, which requirements will be implemented in this release are decided,
and then the design is enhanced and code developed to implement the requirements. The iteration ends
with delivery of a working software system providing some value to the end user. Selecting of requirements
for an iteration is done primarily based on the value the requirement provides to the end users and how
critical they are for supporting other requirements.

MCA II YEAR III SEMESTER

18
Rahul Publications

Rahul Publications

User
Needs

Requirement
Architechture

Existing
Software

Feedback

A Development
Iteration

Select
Requirements

Enhance Design

Build

Test

Requirements

Architecture
design

Requirement Specification
+

Architecture

Software
Release

The advantage of this approach is that as the requirements are mostly known upfront, an overall
view of the system is available and a proper architecture can be designed which can remain relatively
stable. With this, hopefully rework in development iterations will diminish. At the same time, the value to
the end customer is delivered iteratively so it does not have the all-or-nothing risk. Also, since the delivery
is being done incrementally, and planning and execution of each iteration is done separately, feedback
from an iteration can be incorporated in the next iteration. Even new requirements that may get uncovered
can also be incorporated. Hence, this model of iterative development also provides some of the benefits
of the model discussed above.

The iterative approach is becoming extremely popular, despite some difficulties in using it in this
context. There are a few key reasons for its increasing popularity. First and foremost, in today’s world
clients do not want to invest too much without seeing returns. In the current business scenario, it is
preferable to see returns continuously of the investment made. The iterative model permits this—after
each iteration some working software is delivered, and the risk to the client is therefore limited. Second, as
businesses are changing rapidly today, they never really know the “complete” requirements for the software,
and there is a need to constantly add new capabilities to the software to adapt the business to changing
situations. Iterative process allows this. Third, each iteration provides a working system for feedback,
which helps in developing stable requirements for the next iteration. Below we will describe some other
process models, all of them using some iterative approach.

Q11. Explain in detail about Rational Unified Process Model and Time Box Model.

Ans :

1. Rational Unified Proces Model

Rational Unified Process (RUP) is another iterative process model that was designed by Rational,
now part of IBM. Though it is a general process model, it was designed for object-oriented development
using the Unified Modeling Language (UML).

RUP proposes that development of software be divided into cycles, each cycle delivering a fully
working system. Generally, each cycle is executed as a separate project whose goal is to deliver some

UNIT - I SOFTWARE ENGINEERING

19
Rahul Publications

Rahul Publications

additional capability to an existing system (built by the previous cycle). Hence, for a project, the process
for a cycle forms the overall process. Each cycle itself is broken into four consecutive phases:

(i) Inception phase

(ii) Elaboration phase

(iii) Construction phase

(iv) Transition phase

(i) Inception phase

The purpose of the inception phase is to establish the goals and scope of the project, and completion
of this phase is the lifecycle objectives milestone. This milestone should specify the vision and high-
level capability of the eventual system, what business benefits it is expected to provide, some key
illustrative use cases of the system, key risks of the project, and a basic plan of the project regarding
the cost and schedule. Based on the output of this phase, a go/no-go decision may be taken. And
if the project is to proceed, then this milestone represents that there is a shared vision among the
stakeholders and they agree to the project, its vision, benefits, cost, usage, etc.

(ii) Elaboration phase

In the elaboration phase, the architecture of the system is designed, based on the detailed
requirements analysis. The completion of this phase is the lifecycle architecture milestone. At the
end of this phase, it is expected that most of the requirements have been identified and specified,
and the architecture of the system has been designed (and specified) in a manner that it addresses
the technical risks identified in the earlier phase.

In addition, a high-level project plan for the project has been prepared showing the remaining
phases and iterations in those, and the current perception of risks. By the end of this phase, the
critical engineering decisions regarding the choice of technologies, architecture, etc. have been
taken, and a detailed understanding of the project exists. Outputs of this milestone allow technical
evaluation of the proposed solution, as well as a better informed decision about cost-benefit analysis
of the project.

(iii) Construction phase

In the construction phase, the software is built and tested. This phase results in the software product
to be delivered, along with associated user and other manuals, and successfully completing this
phase results in the initial operational capability milestone being achieved.

(iv) Transition phase

The purpose of the transition phase is to move the software from the development environment to
the client’s environment, where it is to be hosted. This is a complex task which can require additional
testing, conversion of old data for this software to work, training of personnel, etc. The successful
execution of this phase results in achieving the milestone product release. The different phases and
milestones in RUP.

MCA II YEAR III SEMESTER

20
Rahul Publications

Rahul Publications

Life cycle
Objectives

Life cycle
Architecture

Initial Operational
Capability

Product
Release

Phases:

Milestones :

Inception Elaboration Construction Transition

Iter 1 Iter 1 Iter 1Iter 2 Iter 2 Iter 2Iter 3

Fig.: Relational unified process model

Though these phases are consecutive, each phase itself may have multiple iterations, with each
iteration delivering to an internal or external customer some well-defined output which is often a part of
the final deliverable of that phase’s milestone. Generally, it is expected that the construction phase will be
broken into multiple iterations, each iteration producing a working system which can be used for feedback,
evaluation, beta-testing, etc. Though iterations in construction are done often and it is clear what an
iteration in this phase delivers, iterations may be done meaningfully in other phases as well. For example,
in the elaboration phase, the first iteration may just specify the overall architecture and high-level
requirements, while the second iteration may be done to thrash out the details. As another example,
there may be multiple iterations to transition the developed software, with each iteration “making live”
some part or some feature of the developed software.

RUP has carefully chosen the phase names so as not to confuse them with the engineering tasks
that are to be done in the project, as in RUP the engineering tasks and phases are separate. Different
engineering activities may be performed in a phase to achieve its milestones. RUP groups the activities into
different subprocesses which it calls core process workflows. These subprocesses correspond to the tasks
of performing requirements analysis, doing design, implementing the design, testing, project management,
etc.

One key difference of RUP from other models is that it has separated the phases from the tasks and
allows multiple of these subprocesses to function within a phase. In waterfall (or waterfall-based iterative
model), a phase within a process was linked to a particular task performed by some process like
requirements, design, etc. In RUP these tasks are separated from the stages, and it allows, for example,
during construction, execution of the requirements process. That is, it allows some part of the requirement
activity be done even in construction, something the waterfall did not allow.

So, a project, if it so wishes, may do detailed requirements only for some features during the
elaboration phase, and may do detailing of other requirements while the construction is going on (maybe
the first iteration of it). This not only allows a project a greater degree of flexibility in planning when the
different tasks should be done, it also captures the reality of the situation it is often not possible to specify
all requirements at the start and it is best to start the project with some requirements and work out the
details later.

Though a subprocess may be active in many phases, as can be expected, the volume of work or the
effort being spent on the subprocess will vary with phases. For example, it is expected that a lot more
effort will be spent in the requirement subprocess during elaboration, and less will be spent in construction,

UNIT - I SOFTWARE ENGINEERING

21
Rahul Publications

Rahul Publications

and still less, if any, will be spent in transition. Similarly, the model has the development process active in
elaboration, which allows a project to build a prototype during the elaboration phase to help its requirements
activity, if needed. However, most of the implementation does happen in the construction phase. The
effort spent in a subprocess in different phases will, of course, depend on the project. However, a general
pattern is indicated in Table 2.1 by specifying if the level of effort for the phase is high, medium, low, etc.

Overall, RUP provides a flexible process model, which follows an iterative approach not only at a
top level (through cycles), but also encourages iterative approach during each of the phases in a cycle.
And in phases, it allows the different tasks to be done as per the needs of the project.

2. Time boxing Model

To speed up development, parallelism between the different iterations can be employed. That is, a
new iteration commences before the system produced by the current iteration is released, and hence
development of a new release happens in parallel with the development of the current release. By starting
an iteration before the previous iteration has completed, it is possible to reduce the average delivery time
for iterations. However, to support parallel execution, each iteration has to be structured properly and
teams have to be organized suitably. The timeboxing model proposes an approach for these.

In the timeboxing model, the basic unit of development is a time box, which is of fixed duration.
Since the duration is fixed, a key factor in selecting the requirements or features to be built in a time box
is what can be fit into the time box. This is in contrast to regular iterative approaches where the functionality
is selected and then the time to deliver is determined. Timeboxing changes the perspective of development
and makes the schedule a nonnegotiable and a high-priority commitment.

Each time box is divided into a sequence of stages, like in the waterfall model. Each stage performs
some clearly defined task for the iteration and produces a clearly defined output. The model also requires
that the duration of each stage, that is, the time it takes to complete the task of that stage, is approximately
the same. Furthermore, the model requires that there be a dedicated team for each stage. That is, the
team for a stage performs only tasks of that stage—tasks for other stages are performed by their respective
teams. This is quite different from other iterative models where the implicit assumption is that the same
team performs all the different tasks of the project or the iteration.

Having time-boxed iterations with stages of equal duration and having dedicated teams renders
itself to pipelining of different iterations. (Pipelining is a concept from hardware in which different instructions
are executed in parallel, with the execution of a new instruction starting once the first stage of the previous
instruction is finished.)

To illustrate the use of this model, consider a time box consisting of three stages: requirement
specification, build, and deployment. The requirement stage is executed by its team of analysts and ends
with a prioritized list of requirements to be built in this iteration along with a high-level design. The build
team develops the code for implementing the requirements, and performs the testing. The tested code is
then handed over to the deployment team, which performs predeployment tests, and then installs the
system for production use. These three stages are such that they can be done in approximately equal time
in an iteration.

With a time box of three stages, the project proceeds as follows. When the requirements team has
finished requirements for timebox-1, the requirements are given to the build team for building the software.
The requirements team then goes on and starts preparing the requirements for timebox-2. When the
build for timebox-1 is completed, the code is handed over to the deployment team, and the build team
moves on to build code for requirements for timebox- 2, and the requirements team moves on to doing
requirements for timebox-3.

MCA II YEAR III SEMESTER

22
Rahul Publications

Rahul Publications

TB1

TB2

TB3

TB4

Requirements

Requirements

Requirements

Requirements

Buld

Buld

Buld

Buld

Deploy

Software

Deploy

Deploy

Deploy

Fig.: Time boxing model

With a three-stage time box, at most three iterations can be concurrently in progress. If the time box
is of size T days, then the first software delivery will occur after T days. The subsequent deliveries, however,
will take place after every T/3 days. For example, if the time box duration T is 9 weeks (and each stage
duration is 3 weeks), the first delivery is made 9 weeks after the start of the project. The second delivery
is made after 12 weeks, the third after 15 weeks, and so on. Contrast this with a linear execution of
iterations, in which the first delivery will be made after 9 weeks, the second after 18 weeks, the third after
27 weeks, and so on.

There are three teams working on the project—the requirements team, the build team, and the
deployment team. It should be clear that the duration of each iteration has not been reduced.

The total work done in a time box and the effort spent in it also remains the same—the same
amount of software is delivered at the end of each iteration as the time box undergoes the same stages. If
the effort and time spent in each iteration also remains the same, then what is the cost of reducing the
delivery time? The real cost of this reduced time is in the resources used in this model. With timeboxing,
there are dedicated teams for different stages and the total team size for the project is the sum of teams of
different stages. This is the main difference from the situation where there is a single team which performs
all the stages and the entire team works on the same iteration.

Hence, the timeboxing provides an approach for utilizing additional manpower to reduce the delivery
time. It is well known that with standard methods of executing projects, we cannot compress the cycle
time of a project substantially by adding more manpower. However, through the timeboxing model, we
can use more manpower in a manner such that by parallel execution of different stages we are able to
deliver software quicker. In other words, it provides a way of shortening delivery times through the use of
additional manpower.

Timeboxing is well suited for projects that require a large number of features to be developed in a
short time around a stable architecture using stable technologies. These features should be such that there
is some flexibility in grouping them for building a meaningful system in an iteration that provides value to
the users. The main cost of this model is the increased complexity of project management (and managing
the products being developed) as multiple developments are concurrently active. Also, the impact of
unusual situations in an iteration can be quite disruptive. Further details about the model, as well as a
detailed example of applying the model on a real commercial project, are given in [60, 59].

UNIT - I SOFTWARE ENGINEERING

23
Rahul Publications

Rahul Publications

Q12. Explain the Principle of Agile Process Model.

Ans :
Agile development approaches evolved in the 1990s as a reaction to documentation and

bureaucracy-based processes, particularly the waterfall approach. Agile approaches are based on some
common principles, some of which are [www.extremeprogramming.org] :

 Working software is the key measure of progress in a project.

 For progress in a project, therefore, software should be developed and delivered rapidly in small
increments.

 Even late changes in the requirements should be entertained (small-increment model of
development helps in accommodating them).

 Face-to-face communication is preferred over documentation.

 Continuous feedback and involvement of customer is necessary for developing good-quality software.

 Simple design which evolves and improves with time is a better approach than doing an elaborate
design up front for handling all possible scenarios.

 The delivery dates are decided by empowered teams of talented individuals (and are not dictated).

Agile Principles

 The highest priority of this process is to satisfy the customer.

 Acceptance of changing requirement even late in development.

 Frequently deliver a working software in small time span.

 Throughout the project business people and developers work together on daily basis.

 Projects are created around motivated people if they are given the proper environment and support.

 Face to face interaction is the most efficient method of moving information in the development
team.

 Primary measure of progress is a working software.

 Agile process helps in sustainable development.

 Continuous attention to technical excellence and good design increases agility.

 From self organizing teams the best architecture, design and requirements are emerged.

 Simplicity is necessary in development.

Many detailed agile methodologies have been proposed, some of which are widely used now.
Extreme programming (XP) is one of the most popular and well-known approaches in the family of agile
methods. Like all agile approaches, it believes that changes are inevitable and rather than treating changes
as undesirable, development should embrace change. And to accommodate change, the development
process has to be lightweight and quick to respond.

For this, it develops software iteratively, and avoids reliance on detailed and multiple documents
which are hard to maintain. Instead it relies on face-to-face communication, simplicity, and feedback to
ensure that the desired changes are quickly and correctly reflected in the programs. Here we briefly
discuss the development process of XP, as a representative of an agile process.

MCA II YEAR III SEMESTER

24
Rahul Publications

Rahul Publications

An extreme programming project starts with user stories which are short (a few sentences)
descriptions of what scenarios the customers and users would like the system to support. They are different
from traditional requirements specification primarily in details—user stories do not contain detailed
requirements which are to be uncovered only when the story is to be implemented, therefore allowing
the details to be decided as late as possible. Each story is written on a separate card, so they can be
flexibly grouped.

The empowered development team estimates how long it will take to implement a user story. The
estimates are rough, generally stated in weeks. Using these estimates and the stories, release planning is
done which defines which stories are to be built in which system release, and the dates of these releases.

Frequent and small releases are encouraged, and for a release, iterations are employed. Acceptance
tests are also built from the stories, which are used to test the software before the release. Bugs found
during the acceptance testing for an iteration can form work items for the next iteration.

User
Stories

Release
Planning Iteration Acceptance

Test
Small

release

Development is done in iterations, each iteration lasting no more than a few weeks. An iteration
starts with iteration planning in which the stories to be implemented in this iteration are selected—high-
value and high-risk stories are considered as higher priority and implemented in early iterations.
Failed acceptance tests in previous iteration also have to be handled. Details of the stories are obtained
in the iteration for doing the development.

The development approach used in an iteration has some unique practices. First, it envisages that
development is done by pairs of programmers (called pair programming. Instead of individual
programmers. Second, it suggests that for building a code unit, automated unit tests be written first
before the actual code is written, and then the code should be written to pass the tests. This approach is
referred to as test-driven development, in contrast to regular code-first development in which
programmers first write code and then think of how to test it. As functionality of the unit increases, the
unit tests are enhanced first, and then the code is enhanced to pass the new set of unit tests. Third, as it
encourages simple solutions as well as change, it is expected that the design of the solution devised
earlier may at some point become unsuitable for further development. To handle this situation, it suggests
that refactoring be done to improve the design, and then use the refactored code for further development.
During refactoring, no new functionality is added, only the design of the existing programs is
improved. Fourth, it encourages frequent integration of different units. To avoid too many changes in
the base code happening together, only one pair at a time can release their changes and integrate into
the common code base.

Release
Plan

User
Stories

Iteration
Plan

Get Details
of User
stories

Create
Unit

Tests

Integrate

Code
+

UT
Acceptance

Test

UNIT - I SOFTWARE ENGINEERING

25
Rahul Publications

Rahul Publications

This is a very simplified description of XP. There are many other rules in XP relating to issues like
rights of programmers and customers, communication between the team members and use of metaphors,
trust and visibility to all stakeholders, collective ownership of code in which any pair can change any
code, team management, building quick spike solutions to resolve difficult technical and architectural
issues or to explore some approach, how bugs are to be handled, how what can be done within an
iteration is to be estimated from the progress made in the previous iteration, how meetings are to be
conducted, how a day in the development should start, etc. The website [www.extremeprogramming.org]
is a good source on these, as well as other aspects of XP.

XP, and other agile methods, are suitable for situations where the volume and pace of requirements
change is high, and where requirement risks are considerable. Because of its reliance on strong
communication between all the team members, it is effective when teams are collocated and of modest
size, of up to about 20 members. And as it envisages strong involvement of the customer in the
development, as well as in planning the delivery dates, it works well when the customer is willing to be
heavily involved during the entire development, working as a team member.

Q13. Explain the process of Extreme Programming (XP).

Ans :
 The Extreme Programming is commonly used agile process model.

 It uses the concept of object-oriented programming.

 A developer focuses on the framework activities like planning, design, coding and testing. XP has a
set of rules and practices.

Release

Refactoring

Planning Design

CodingTesting

Fig. : The Extreme Programming Process

XP Values

Following are the values for extreme programming:

1. Communication

 Building software development process needs communication between the developer and
the customer.

 Communication is important for requirement gathering and discussing the concept.

2. Simplicity

The simple design is easy to implement in code.

3. Feedback

Feedback guides the development process in the right direction.

MCA II YEAR III SEMESTER

26
Rahul Publications

Rahul Publications

4. Courage

In every development process there will
always be a pressure situation. The courage
or the discipline to deal with it surely makes
the task easy.

5. Respect

Agile process should inculcate the habit to
respect all team members, other stake holders
and customer.

The XP Process

The XP process comprises four framework
activities :

1. Planning

 Planning starts with the requirements
gathering which enables XP team to
understand the rules for the software.

 The customer and developer work
together for the final requirements.

2. Design : The XP design follows the ‘keep it
simple’ principle.

 A simple design always prefers the more
difficult representation.

3. Coding

 The coding is started after the initial
design work is over.

 After the initial design work is done, the
team creates a set of unit tests which can
test each situation that should be a part
of the release.

 The developer is focused on what must
be implemented to pass the test.

 Two people are assigned to create the
code. It is an important concept in
coding activity.

4. Testing

 Validation testing of the system occurs
on a daily basis. It gives the XP team a
regular indication of the progress.

 ‘XP acceptance tests’ are known as the
customer test.

 Scrum

 Scrum is an agile software development
method.

 Scrum principles are consistent with the
agile platform that are used to guide
development activities within a process.

 It includes the framework activities like
requirement, analysis, design, evolution
and delivery.

 Work tasks occur within a process pattern
in each framework activity called as
‘sprint’.

 Scrum highlights the use of a set of
software process pattern that are effective
for the projects with tight timelines,
changing requirements and business
criticality.

 Scrum consists of the use of a set of
software process patterns.

Each process patterns defines a set of
development actions which are as follows :

1. Backlog

 A prioritized list of project requirements
or features that provide business value
for the customer.

 Items can be added to the backlog at
any time.

 The product manager accesses the
backlog and updates priorities, as
required.

2. Sprints

 It consists of work units that are required
to achieve a requirement defined in the
backlog.

 Changes are not introduced during the
sprints. It allows team members to work
in short-term but in the stable
environment.

3. Scrum meeting

 The short meetings are held daily by the
scrum team.

 The key questions are asked and
answered by all team members.

UNIT - I SOFTWARE ENGINEERING

27
Rahul Publications

Rahul Publications

 Daily meetings guide to ‘knowledge
socialization’ and that encourages a self-
organizing team structure.

4. Demos

 Deliver the software increment to the
customer. Using which the customer
evaluates and demonstrates the
functionalities.

1.5 PROJECT MANAGEMENT PROCESS

Q14. Explain project management process.

Ans : (Imp.)

We have seen many different development
process models. What is the need for the different
models? As mentioned earlier, while developing
(industrial strength) software, the purpose is not
only to develop software to satisfy the needs of
some users or clients, but we want that the project
be done in low cost and cycle time, and deliver
high-quality software.

In addition, there could be other constraints
in a project that the project may need to satisfy.
Hence, given the constraints of the project, we
would like to employ the process model that is
likely to maximize the chances of delivering the
software, and achieve the highest Q&P. Hence,
selecting a suitable development process model for
a project is a key decision that a project manager
has to take. Let us illustrate this by a few examples.

Suppose a small team of developers has been
entrusted with the task of building a small auction
site for a local university. The university
administration is willing to spend some time at the
start to help develop the requirements, but it is
expected that their availability will be limited later.
The team has been given 4 months to finish the
project, and an extension of the deadline
seems very improbable. It also seems that the
auction site will have some features that are
essential, but will also have some features that are
desirable but without which the system can function
reasonably well.

With these constraints, it is clear that a
waterfall model is not suitable for this project, as
the “all or nothing” risk that it entails is
unacceptable due to the inflexible deadline. The
iterative enhancement model where each iteration
does a complete waterfall is also not right as it
requires requirements analysis for each iteration,
and the users and clients are not available
later. However, the iterative delivery approach in
which the complete requirements are done in the
first iteration but delivery is done in iterations seems
well suited, with delivery being done in two (or
three) iterations (as time is short). From the
requirements, the project team can decide what
functionality is essential to have in a working system
and include it in the first iteration. The
other desirable features can be planned for the
second iteration. With this approach, the chances
of completing the first iteration before the final
deadline increase. That is, with this model, the
chances of delivering a working system
increase. RUP, as it allows iterations in each phase,
is also a suitable model.

Consider another example where the
customers are in a highly competitive environment
where requirements depend on what the
competition is doing, and delivering functionality
regularly is highly desirable. Furthermore, to
reduce cost, the customer wants to outsource as
much project work as possible to another team in
another country.

For this project, clearly waterfall is not suitable
as requirements are not even known at the start.
Iterative enhancement also may not work as it may
not be able to deliver rapidly. XP will be hard to
apply as it requires that the entire team, including
the customer, be collocated. For this project, the
time boxing model seems to fit the best. The whole
project can employ three teams—one of analysts
who will work with the customer to determine the
requirements, one to do the development (which

MCA II YEAR III SEMESTER

28
Rahul Publications

Rahul Publications

could be in some low-cost destination), and the third to do the deployment, which will be where the site
is hosted. By suitably staffing the teams, the duration of each of the three phases—analysis and design,
build, and deployment—can be made approximately equal. Then the time boxing model can be applied.

Consider another project, where a university wants to automate the registration process. It already
has a database of courses and pre-requisites, and a database of student records. In this project, as the
requirements are well understood (since registrations have been happening manually), the waterfall model
seems to be the optimum.

Project Management Process

While the selection of the development process decides the phases and tasks to be done, it does
not specify things like how long each phase should last, or how many resources should be assigned to a
phase, or how a phase should be monitored. And quality and productivity in the project will also
depend critically on these decisions. To meet the cost, quality, and schedule objectives, resources have to
be properly allocated to each activity for the project, and progress of different activities has to be monitored
and corrective actions taken when needed. All these activities are part of the project management
process. Hence, a project management process is necessary to ensure that the engineering process ends
up meeting the real-world objectives of cost, schedule, and quality.

The project management process specifies all activities that need to be done by the project
management to ensure that cost and quality objectives are met. Its basic task is to ensure that, once a
development process is chosen, it is implemented optimally. That is, the basic task is to plan the
detailed implementation of the process for the particular project and then ensure that the plan is properly
executed. For a large project, a proper management process is essential for success.

The activities in the management process for a project can be grouped broadly into three phases:
planning, monitoring and control, and termination analysis. Project management begins with planning,
which is perhaps the most critical project management activity. The goal of this phase is to develop a
plan for software development following which the objectives of the project can be met successfully and
efficiently. A software plan is usually produced before the development activity begins and is updated as
development proceeds and data about progress of the project becomes available. During planning, the
major activities are cost estimation, schedule and milestone determination, project staffing, quality control
plans, and controlling and monitoring plans. Project planning is undoubtedly the single most important
management activity, and it forms the basis for monitoring and control. We will devote one full chapter later
in the book to project planning.

Project monitoring and control phase of the management process is the longest in terms of duration;
it encompasses most of the development process. It includes all activities the project management has to
perform while the development is going on to ensure that project objectives are met and the development
proceeds according to the developed plan (and update the plan, if needed). As cost, schedule, and
quality are the major driving forces, most of the activity of this phase revolves around monitoring factors
that affect these. Monitoring potential risks for the project, which might prevent the project from meeting
its objectives, is another important activity during this phase. And if the information obtained by monitoring
suggests that objectives may not be met, necessary actions are taken in this phase by exerting suitable
control on the development activities.

Monitoring a development process requires proper information about the project. Such information
is typically obtained by the management process from the development process. Consequently, the
implementation of a development process model should ensure that each step in the development process
produces information that the management process needs for that step. That is, the development process
provides the information the management process needs. However, interpretation of the information is
part of monitoring and control.

UNIT - I SOFTWARE ENGINEERING

29
Rahul Publications

Rahul Publications

Whereas monitoring and control last the entire duration of the project, the last phase of the
management process—termination analysis—is performed when the development process is over. The
basic reason for performing termination analysis is to provide information about the development process
and learn from the project in order to improve the process. This phase is also often called postmortem
analysis. In iterative development, this analysis can be done after each iteration to provide feedback to
improve the execution of further iterations. We will not discuss it further in the book.

The temporal relationship between the management process and the development process is shown.
This is an idealized relationship showing that planning is done before development begins, and termination
analysis is done after development is over. As the figure shows, during the development, from the various
phases of the development process, quantitative information flows to the monitoring and control phase of
the management process, which uses the information to exert control on the development process.

As a plan also includes planning for monitoring, we will not discuss the monitoring separately but
discuss it as part of the planning activity.

Planning Monitoring and Control
Termination

Analysis Management
Process

Development
Process

Metrics
Values

Management
Control

Time

Q15. What are the differences between computer science and software engineering?

Ans : (Imp.)

S.No. Computer Science Software Engineering
1. Computer science takes abroad approach to study of the Software engineering is a filed largely concerned with the application

principles and use of computers that covers both theory and of engineering process to the creation, maintence, and design of
applications. This filed involves the understanding and software for a variety of different purposes.
application of both abstract and concrete knowledge.

2. The computer science program is generaly contained in he The software engineering program is most often housed in the
engineering department in four-year universities. engineering department in four year universities.

3. Understanding the interaction between hardware and software In general, students in this field will not receive training on hardware
will be included in curricula; however, specific training on development; however, they will gain knowledge on the interplay
hardware development generally will not. between hardware and software.

4. Algorithmic training should be part of a computer science Student will likely take class on algorithms; however, it will not be a
curriculum, pursuant to the 2013 Computer Science Curricula focal point of the degree.
offered by the Joint Task Force on Computing Curricula
Association for Computer Machinery (ACM), and the IEEE
Computer Society.

5. Project management is often included in the computer science Students studying software engineering will likely take courses on
curriculum, sometimes as part of a software engineering course. project management, both in undergraduate and graduate programs.

MCA II YEAR III SEMESTER

30
Rahul Publications

Rahul Publications

6. Depending on the institution, a wide array of specializations While pursuing a degree in software engineering, students may have
may be available, including a focus on artificial intelligence, the opportunity to focus on a number of different specializations, including
mobile and internet computing, security, real-world computing, network-centric systems, modeling and simulation, games and
and theory. entertainment systems, digital and embedded systems, and other areas.

7. A degree in computer science may prepare students for careers According to the Bureau of Labor Statistics, established positions related
as computer and information research scientists; computer to software engineering may include careers in software development;
network architects; computer programmers; systems analysts; computer network architecture; computer systems analysis; web
information security analysts; software developers; or web development; and information research.
developers, all of which are described in detail by the Bureau
of Labor Statistics.

8. Emerging positions in the field of computer science may include Emerging occupations related to software engineering depend on the
careers in cloud computing; robotics and artificial intelligence; state of software and technology in the future. That being said, those
application development; and forensic analysis. By nature, this with a degree in software engineering may find work in artificial
list will continue to grow in the future. intelligence, app development, and software development for any future

technologies that arise.

9. The following is a list of 8 schools that offer online degree The following is a list of 8 schools that offer online degree programs in
programs in computer science: software engineering:
• Oregon State University • Penn State World Campus
• University of Illinois • Brigham Young University - Idaho
• University of Maryland University College • Colorado Technical University
• Florida State University • Arizona State University
• Champlain College • Herzing University
• Penn State World Campus • Walden University
• Drexel University • North Dakota State University
• California State University Online • Carnegie Mellon University

10. Ultimately, while it is impossible to place a single label on this Software engineering, much like other engineering disciplines, aims to
field of study, largely due to the ever-changing nature of utilize general applications of computers and software to create efficiencies
technology, those studying computer science should expect to or solve problems. As such, software engineers can expect to create
become familiar with computers, their functions, and their and maintain existing software for a number of different purposes.
general application. While some software programming may While software engineers will generally not find themselves in research-
play a part in this area, computer scientists may also be tasked based positions, they should expect to become extremely familiar with
with developing new coding languages,or researching new the development of software, as well as how to use the variety of tools
technology to extend the boundaries of the industry. Overall, in their arsenal to create useful finished product.
computer science mixes both concrete and abstract concepts
as they relate to computers and technology.

UNIT - II SOFTWARE ENGINEERING

31
Rahul Publications

Rahul Publications
2.1 SOFTWARE REQUIREMENTS ANALYSIS

AND SPECIFICATION

Q1. What are Software Requirements
Specification and Describe various
characteristics of software require-
ments specification?

Ans : (Imp.)

Meaning

The output of the requirements phase of the
software development process is Software
Requirements Specification (SRS) (also known as
requirements document). This document lays a
foundation for software engineering activities and
is created when entire requirements are elicited and
analyzed. SRS is a formal document, which acts as
a representation of software that enables the users
to review whether it (SRS) is according to their
requirements. In addition, it includes user
requirements for a system as well as detailed
specifications of the system requirements.

IEEE defines software requirements specifi-
cation as, ‘a document that clearly and precisely
describes each of the essential requirements (functions,
performance, design constraints and quality attributes)
of the software and the external interfaces. Each
requirement is defined in such a way that its
achievement can be objectively verified by a prescribed
method, for example, inspection, demonstration,
analysis or test.’ Note that requirements specification
can be in the form of a written document, a
mathematical model, a collection of graphical models,
a prototype, and so on.

UNIT
II

Software Requirements Analysis and Specification: Value of a good

SRS, Requirements Process, Requirements Specification, Functional

Specification with Use Cases, Other approaches for analysis.

Software Architecture: Role of Software Architecture Views, Component

and connector view, Architectural styles for C & C view, Documenting

Architecture Design, Evaluating Architectures.

Essentially, what passes from requirements
analysis activity to the specification activity is the
knowledge acquired about the system. The need
for maintaining a requirements document is that
the modeling activity essentially focuses on the
problem structure and not its structural behavior.
While in SRS, performance constraints, design
constraints, and standard compliance recovery are
clearly specified. This information helps in
developing a proper design of the system.

Characteristics

1. Feedback: Provides a feedback, which
ensures to the user that the organization
(which develops the software) understands
the issues or problems to be solved and the
software behavior necessary to address those
problems.

2. Decompose problem into components :
Organizes the information and divides the
problem into its component parts in an
orderly manner.

3. Validation: Uses validation strategies applied
to the requirements to acknowledge that
requirements are stated properly.

4. Input to design: Contains sufficient detail
in the functional system requirements to
devise a design solution.

5. Basis for agreement between the user
and the organization : Provides a complete
description of the functions to be performed
by the system. In addition, it helps the users
to determine whether the specified require-
ments are accomplished.

6. Reduce the development effort : Enables
developers to consider user requirements

MCA II YEAR III SEMESTER

32
Rahul Publications

Rahul Publications

before the designing of the system comme-
nces. As a result, ‘rework’ and inconsistencies
in the later stages can be reduced.

7. Estimating costs and schedules :
Determines the requirements of the system
and thus enables the developer to have a
‘rough’ estimate of the total cost and schedule
of the project.

Q2. What is requirements analysis in
Software Engineering?

Ans :
IEEE defines requirements analysis as (1)

the process of studying user needs to arrive at a
definition of a system, hardware or software
requirements. (2) The process of studying and
refining system, hardware or software requirements.’
Requirements analysis helps to understand,
interpret, classify, and organize the software
requirements in order to assess the feasibility,
completeness, and consistency of the requirements.
Various other tasks performed using requirements
analysis are listed below.

1. To detect and resolve conflicts that arise due
to unclear and unspecified requirements.

2. To determine operational characteristics of the
software and how they interact with the
environment.

3. To understand the problem for which the
software is to be developed.

4. To develop an analysis model to analyze the
requirements in the software.

5. Software engineers perform analysis modeling
and create an analysis model to provide
information of ‘what’ software should do
instead of ‘how’ to fulfill the requirements in
software. This model emphasizes information
such as the functions that software should
perform, behavior it should exhibit, and
constraints that are applied on the software.
This model also determines the relationship
of one component with other components.
The clear and complete requirements
specified in the analysis model help the
software development team to develop the
software according to those requirements. An

analysis model is created to help the
development team to assess the quality of the
software when it is developed. An analysis
model helps to define a set of requirements
that can be validated when the software is
developed.
Let us consider an example of constructing a

study room, where the user knows the dimensions
of the room, the location of doors and windows,
and the available wall space. Before constructing
the study room, he provides information about
flooring, wallpaper, and so on to the constructor.
This information helps the constructor to analyze
the requirements and prepare an analysis model
that describes the requirements. This model also
describes what needs to be done to accomplish those
requirements. Similarly, an analysis model created
for the software facilitates the software development
team to understand what is required in the software
and then they develop it.

In Figure the analysis model connects the
system description and design model. System
description provides information about the entire
functionality of the system, which is achieved by
implementing the software, hardware and data. In
addition, the analysis model specifies the software
design in the form of a design model, which provides
information about the software’s architecture, user
interface, and component level structure.

System
Description

Analysis
Model

Design
Mode

The guidelines followed while creating an
analysis model are listed below.

1. The model should concentrate on require-
ments in the problem domain that are to be
accomplished. However, it should not
describe the procedure to accomplish the
requirements in the system.

UNIT - II SOFTWARE ENGINEERING

33
Rahul Publications

Rahul Publications

2. Every element of the analysis model should help in understanding the software requirements. This
model should also describe the information domain, function, and behavior of the system.

3. The analysis model should be useful to all stakeholders because every stakeholder uses this model
in his own manner. For example, business stakeholders use this model to validate requirements
whereas software designers view this model as a basis for design.

4. The analysis model should be as simple as possible. For this, additional diagrams that depict no new
or unnecessary information should be avoided.

Also, abbreviations and acronyms should be used instead of complete notations. The choice of
representation is made according to the requirements to avoid inconsistencies and ambiguities. Due to
this, the analysis model comprises structured analysis, object-oriented modeling, and other approaches.
Each of these describes a different manner to represent the functional and behavioral information. Structured
analysis expresses this information through data-flow diagrams whereas object-oriented modeling specifies
the functional and behavioral information using objects. Other approaches include ER modeling and
several requirements specification languages and processors.

Analysis
Model

Structured
Analysis

Object Oriented
Modeling

Other
approaches

2.2 VALUE OF A GOOD SRS

Q3. Explain how good is your SRS.

Ans :
The origin of most software systems is in the needs of some clients. The software system itself is

created by some developers. Finally, the completed system will be used by the end users. Thus, there are
three major parties interested in a new system: the client, the developer, and the users. Somehow the
requirements for the system that will satisfy the needs of the clients and the concerns of the users have to
be communicated to the developer. The problem is that the client usually does not understand software
or the software development process, and the developer often does not understand the client’s problem
and application area. This causes a communication gap between the parties involved in the development
project. A basic purpose of the SRS is to bridge this communication gap so they have a shared vision of
the software being built. Hence, one of the main advantages of a good SRS is:

 An SRS establishes the basis for agreement between the client and the supplier on what
the software product will do.

This basis for agreement is frequently formalized into a legal contract between the client (or the
customer) and the developer (the supplier). So, through SRS, the client clearly describes what it

MCA II YEAR III SEMESTER

34
Rahul Publications

Rahul Publications

expects from the supplier, and the developer
clearly understands what capabilities to build
in the software. A related, but important,
advantage is :

 An SRS provides a reference for
validation of the final product.

That is, the SRS helps the client determine if
the software meets the requirements. Without
a proper SRS, there is no way a client can
determine if the software being delivered is
what was ordered, and there is no way the
developer can convince the client that all the
requirements have been fulfilled. Providing
the basis of agreement and validation should
be strong enough reasons for both the client
and the developer to do a thorough and
rigorous job of requirement understanding
and specification, but there are other very
practical and pressing reasons for having a
good SRS.

Studies have shown that many errors are
made during the requirements phase. And
an error in the SRS will manifest itself as an
error in the final system implementing the
SRS. Clearly, if we want a high-quality end
product that has few errors, we must begin
with a high-quality SRS. In other words, we
can conclude that:

 A high-quality SRS is a prerequisite to
high-quality software.

Finally, the quality of SRS has an impact on
cost (and schedule) of the project. We know
that errors can exist in the SRS. It is also known
that the cost of fixing an error increases almost
exponentially as time progresses [10, 12].
Hence, by improving the quality of
requirements, we can have a huge savings in
the future by having fewer expensive defect
removals. In other words.

 A high-quality SRS reduces the
development cost

Characteristics of a Good Software Require-
ments Specification

A software requirements specification should
be clear, concise, consistent and unambiguous. It
must correctly specify all of the software

requirements, but no more. However the software
requirement specification should not describe any
of the design or verification aspects, except where
constrained by any of the stakeholders requirements.

 Complete : For a software requirements
specification to be complete, it must have the
following properties: Description of all major
requirements relating to functionality,
performance, design constraints and external
interfaces. Definition of the response of the
software system to all reasonable situations.
Conformity to any software standards,
detailing any sections which are not
appropriate Have full labelling and references
of all tables and references, definitions of all
terms and units of measure. Be fully defined,
if there are sections in the software
requirements specification still to be defined,
the software requirements specification is not
complete

 Consistent : A software requirement
specification is consistent if none of the
requirements conflict. There are a number
of different types of confliction: Multiple
descriptors - This is where two or more words
are used to reference the same item, i.e.
where the term cue and prompt are used
interchangeably. Opposing physical
requirements - This is where the description
of real world objects clash, e.g. one
requirement states that the warning indicator
is orange, and another states that the indicator
is red. Opposing functional requirements -
This is where functional characteristics conflict,
e.g. perform function X after both A and B
has occurred, or perform function X after A
or B has occurred.

 Traceable: A software requirement
specification is traceable if both the origins
and the references of the requirements are
available. Traceability of the origin or a
requirement can help understand who asked
for the requirement and also what
modifications have been made to the
requirement to bring the requirement to its
current state. Traceability of references are
used to aid the modification of future
documents by stating where a requirement

UNIT - II SOFTWARE ENGINEERING

35
Rahul Publications

Rahul Publications

has been referenced. By having foreword
traceability, consistency can be more easily
contained.

 Unambiguous: As the Oxford English
dictionary states the word unambiguous
means [Hawkins ’88]: “not having two or
more possible meanings”. This means that
each requirement can have one and only one
interpretation. If it is unavoidable to use an
ambiguous term in the requirements
specification, then there should be clarification
text describing the context of the term. One
way of removing ambiguity is to use a formal
requirements specification language. The
advantage to using a formal language is the
relative ease of detecting errors by using lexical
syntactic analysers to detect ambiguity. The
disadvantage of using a formal requirements
specification language is the learning time and
loss of understanding of the system by the
client.

 Verifiable: A software requirement
specification is verifiable if all of the require-
ments contained within the specification are
verifiable. A requirement is verifiable if there
exists a finite cost-effective method by which
a person or machine can check that the
software product meets the requirement.
Non-verifiable requirements include “The
system should have a good user interface”
or “the software must work well under most
conditions” because the performance words
of good, well and most are subjective and
open to interpretation. If a method cannot
be devised to determine whether the software
meets a requirement, then the requirement
should be removed or revised.

2.3 REQUIREMENTS PROCESS

Q4. Explain about Requirement Process.

Ans : (Imp.)

The requirement process is the sequence of
activities that need to be performed in the
requirements phase and that culminate in
producing a high-quality document containing the
SRS. The requirements process typically consists of
three basic tasks:

i) Problem or requirement analysis

ii) Requirements specification, and

iii) Requirements validation

i) Problem or requirement analysis

Problem analysis often starts with a high-level
“problem statement.” During analysis the problem
domain and the environment are modeled in an
effort to understand the system behavior, constraints
on the system, its inputs and outputs, etc. The basic
purpose of this activity is to obtain a thorough
understanding of what the software needs to
provide. Frequently, during analysis, the analyst will
have a series of meetings with the clients and end
users. In the early meetings, the clients and end users
will explain to the analyst about their work, their
environment, and their needs as they perceive
them. Any documents describing the work or the
organization may be given, along with outputs of
the existing methods of performing the tasks. In these
early meetings, the analyst is basically the listener,
absorbing the information provided. Once the
analyst understands the system to some extent, he
uses the next few meetings to seek clarifications of
the parts he does not understand. He may
document the information or build some models,
and he may do some brainstorming or thinking
about what the system should do. In the final few
meetings, the analyst essentially explains to the client
what he understands the system should do and uses
the meetings as a means of verifying if what he
proposes the system should do is indeed consistent
with the objectives of the clients.

ii) Requirements specification

The understanding obtained by problem
analysis forms the basis of requirements specification,
in which the focus is on clearly specifying the require-
ments in a document. Issues such as representation,
specification languages, and tools are addressed
during this activity. As analysis produces large
amounts of information and knowledge with
possible redundancies, properly organizing and
describing the requirements is an important goal of
this activity.

iii) Requirements validation

Requirements validation focuses on ensuring
that what have been specified in the SRS are indeed
all the requirements of the software and making
sure that the SRS is of good quality. The require-

MCA II YEAR III SEMESTER

36
Rahul Publications

Rahul Publications

ments process terminates with the production of the
validated SRS. We will discuss this more later in the
chapter.

Client/User
Needs

Problem
Analysis

Product
Description

Validation

Validated SRS

Client/User
Needs

Problem
Analysis

Product
Description

Validation

Validated SRS

It should be pointed out that the require-
ments process is not a linear sequence of these three
activities and there is considerable overlap and
feedback between these activities. The specification
activity we may go back to the analysis activity. This
happens as frequently some parts of the problem
are analyzed and then specified before other parts
are analyzed and specified. Furthermore, the
process of specification frequently shows
shortcomings in the knowledge of the problem,
thereby necessitating further analysis. Once the
specification is done, it goes through the validation
activity. This activity may reveal problems in the
specification itself, which requires going back to the
specification step, or may reveal shortcomings in
the understanding of the problem, which requires
going back to the analysis activity.

Q5. What is Software Requirement? State its
guidlines.

Ans :
In the software development process,

requirement phase is the first software engineering
activity. This phase is a user-dominated phase and
translates the ideas or views into a requirements
document. Note that defining and documenting the
user requirements in a concise and unambiguous
manner is the first major step to achieve a high-
quality product.

The requirement phase encompasses a set
of tasks, which help to specify the impact of the
software on the organization, customers’ needs, and
how users will interact with the developed software.
The requirements are the basis of the system design.
If requirements are not correct the end product will
also contain errors. Note that requirements activity
like all other software engineering activities should
be adapted to the needs of the process, the project,
the product and the people involved in the activity.
Also, the requirements should be specified at
different levels of detail. This is because requirements
are meant for people such as users, business
managers, system engineers, and so on. For
example, business managers are interested in
knowing which features can be implemented within
the allocated budget whereas end-users are
interested in knowing how easy it is to use the
features of software.

Requirement is a condition or capability
possessed by the software or system component in
order to solve a real world problem. The problems
can be to automate a part of a system, to correct
shortcomings of an existing system, to control a
device, and so on. IEEE defines requirement as

1. A condition or capability needed by a user to
solve a problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or system component
to satisfy a contract, standard, specification,
or other formally imposed documents.

3. A documented representation of a condition
or capability as in (1) or (2).’

Requirements describe how a system should
act, appear or perform. For this, when users request
for software, they provide an approximation of what
the new system should be capable of doing.
Requirements differ from one user to another and
from one business process to another.

Guidelines

The purpose of the requirements document
is to provide a basis for the mutual understanding
between the users and the designers of the initial
definition of the software development life cycle
(SDLC) including the requirements, operating
environment and development plan.

UNIT - II SOFTWARE ENGINEERING

37
Rahul Publications

Rahul Publications

The requirements document should include
the overview, the proposed methods and
procedures, a summary of improvements, a
summary of impacts, security, privacy, internal
control considerations, cost considerations, and
alternatives. The requirements section should state
the functions required in the software in quantitative
and qualitative terms and how these functions will
satisfy the performance objectives.

The requirements document should also
specify the performance requirements such as
accuracy, validation, timing, and flexibility. Inputs,
outputs, and data characteristics need to be
explained. Finally, the requirements document
needs to describe the operating environment and
provide (or make reference to) a development plan.

There is no standard method to express and
document requirements. Requirements can be
stated efficiently by the experience of knowledgeable
individuals, observing past requirements, and by
following guidelines. Guidelines act as an efficient
method of expressing requirements, which also
provide a basis for software development, system
testing, and user satisfaction. The guidelines that are
commonly followed to document requirements are
listed below.

1. Sentences and paragraphs should be short
and written in active voice. Also, proper
grammar, spelling, and punctuation should
be used.

2. Conjunctions such as ‘and’ and ‘or’ should
be avoided as they indicate the combination
of several requirements in one requirement.

3. Each requirement should be stated only once
so that it does not create redundancy in the
requirements specification document.

Types

Requirements help to understand the
behavior of a system, which is described by various
tasks of the system. For example, some of the tasks
of a system are to provide a response to input values,
determine the state of data objects, and so on. Note
that requirements are considered prior to the
development of the software. The requirements,
which are commonly considered, are classified into
three categories, namely.

i) Functional requirements

ii) Non-functional requirements

iii) Domain requirements.

Functional
requirements

Types of
requirements

Domainl
requirements

Non-
functional

requirements

i) Functional requirements

IEEE defines functional requirements as ‘a
function that a system or component must be able
to perform.’ These requirements describe the
interaction of software with its environment and
specify the inputs, outputs, external interfaces, and
the functions that should be included in the
software. Also, the services provided by functional
requirements specify the procedure by which the
software should react to particular inputs or behave
in particular situations.

To understand functional requirements
properly, let us consider the following example of
an online banking system.

1. The user of the bank should be able to search
the desired services from the available ones.

2. There should be appropriate documents’ for
users to read. This implies that when a user
wants to open an account in the bank, the
forms must be available so that the user can
open an account.

3. After registration, the user should be provided
with a unique acknowledgment number so
that he can later be given an account
number.

The above mentioned functional require-
ments describe the specific services provided by the
online banking system. These requirements indicate

MCA II YEAR III SEMESTER

38
Rahul Publications

Rahul Publications

user requirements and specify that functional
requirements may be described at different levels
of detail in an online banking system. With the help
of these functional requirements, users can easily
view, search and download registration forms and
other information about the bank. On the other
hand, if requirements are not stated properly, they
are misinterpreted by software engineers and user
requirements are not met.

The functional requirements should be
complete and consistent. Completeness implies that
all the user requirements are defined. Consistency
implies that all requirements are specified clearly
without any contradictory definition. Generally, it is
observed that completeness and consistency cannot
be achieved in large software or in a complex system
due to the problems that arise while defining the
functional requirements of these systems. The
different needs of stakeholders also prevent the
achievement of completeness and consistency. Due
to these reasons, requirements may not be obvious
when they are,’first specified and may further lead
to inconsistencies in the requirements specification.

ii) Non-functional requirements

The non-functional requirements (also known
as quality requirements) are related to system
attributes such as reliability and response time. Non-
functional requirements arise due to user
requirements, budget constraints, organizational
policies, and so on. These requirements are not
related directly to any particular function provided
by the system.

Non-functional requirements should be
accomplished in software to make it perform
efficiently. For example, if an Airplane is unable to
fulfill reliability requirements, it is not approved for
safe operation. Similarly, if a real time control system
is ineffective in accomplishing non-functional
requirements, the control functions cannot operate
correctly.

The description of different types of non-
functional requirements is listed below.

1. Product requirements : These require-
ments specify how software product
performs. Product requirements comprise the
following.

2. Efficiency requirements: Describe the
extent to which the software makes optimal

use of resources, the speed with which the
system executes, and the memory it
consumes for its operation. For example, the
system should be able to operate at least three
times faster than the existing system.

3. Reliability requirements: Describe the
acceptable failure rate of the software. For
example, the software should be able to
operate even if a hazard occurs.

4. Portability requirements: Describe the
ease with which the software can be
transferred from one platform to another. For
example, it should be easy to port the software
to a different operating system without the
need to redesign the entire software.

5. Usability requirements: Describe the
ease with which users are able to operate the
software. For example, the software should
be able to provide access to functionality with
fewer keystrokes and mouse clicks.

6. Organizational requirements: These
requirements are derived from the policies
and procedures of an organization.
Organizational requirements comprise the
following.

7. Delivery requirements: Specify when the
software and its documentation are to be
delivered to the user.

8. Implementation requirements: Describe
requirements such as programming language
and design method.

9. Standards requirements: Describe the
process standards to be used during software
development. For example, the software
should be developed using standards
specified by the ISO and IEEE standards.

10. External requirements : These require-
ments include all the requirements that affect
the software or its development process
externally. External requirements comprise
the following.

11. Interoperability requirements: Define
the way in which different computer based
systems will interact with each other in one
or more organizations.

UNIT - II SOFTWARE ENGINEERING

39
Rahul Publications

Rahul Publications

12. Ethical requirements: Specify the rules and regulations of the software so that they are acceptable
to users.

13. Legislative requirements: Ensure that the software operates within the legal jurisdiction. For
example, pirated software should not be sold.

1. Delivery
2. Implementation
3. Standards

Organisational
requirements

Non-Functional
requirements

1. Interoperability
2. Ethical
3. Legislative

1. Efficiency
2. Reliability
3. Portability
4. UsabilityProduct

requirements

External
requirements

Non-functional requirements are difficult to verify. Hence, it is essential to write non-functional
requirements quantitatively, so that they can be tested. For this, non-functional requirements metrics are
used. These metrics are listed in Table.

Percentage of target-dependent statements
Number of target systemsPortability

Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Robustness

Mean time to failure (MTTF)
Portability of unavailability
Rate of failure occurrence

Reliability

Training time
Number of help windowsEase of use

Amount of memory (KB)
Number of RAM chips.Size

Processed transaction/ second
User/event response time
Screen refresh rate

Speed

MeasuresFeatures

Percentage of target-dependent statements
Number of target systemsPortability

Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Robustness

Mean time to failure (MTTF)
Portability of unavailability
Rate of failure occurrence

Reliability

Training time
Number of help windowsEase of use

Amount of memory (KB)
Number of RAM chips.Size

Processed transaction/ second
User/event response time
Screen refresh rate

Speed

MeasuresFeatures

MCA II YEAR III SEMESTER

40
Rahul Publications

Rahul Publications

iii) Domain requirements

Requirements which are derived from the application domain of the system instead from the needs
of the users are known as domain requirements. These requirements may be new functional requirements
or specify a method to perform some particular computations. In addition, these requirements include
any constraint that may be present in the existing functional requirements. As domain requirements
reflect the fundamentals of the application domain, it is important to understand these requirements.
Also, if these requirements are not fulfilled, it may be difficult to make .the system work as desired.

A system can include a number of domain requirements. For example, it may comprise a design
constraint that describes the user interface, which is capable of accessing all the databases used in a
system. It is important for a development team to create databases and interface designs as per established
standards. Similarly, the requirements of the user such as copyright restrictions and security mechanism
for the files and documents used in the system are also domain requirements. When domain requirements
are not expressed clearly, it can result in the following difficulties.
 Problem of understandability: When domain requirements are specified in the language of

application domain (such as mathematical expressions), it becomes difficult for software engineers
to understand them.

 Problem of implicitness: When domain experts understand the domain requirements but do
not express these requirements clearly, it may create a problem (due to incomplete information) for
the development team to understand and implement the requirements in the system.

Requirements Engineering Process
This process is a series of activities that are performed in the requirements phase to express

requirements in the Software Requirements Specification (SRS)document. It focuses on understanding
the requirements and its type so that an appropriate technique is determined to carry out the
Requirements Engineering (RE) process. The new software developed after collecting requirements
either replaces the existing software or enhances its features and functionality. For example, the payment
mode of the existing software can be changed from payment through hand-written cheques to electronic
payment of bills.

An RE process is shown, which comprises various steps including feasibility study, requirements
elicitation, requirements analysis, requirements specification, requirements validation, and requirements
management.

SRS

Requirements
Analysis

Requirements
Specification

Requirements
Elicitation

Feasibility
Study

Feasibility
Report

User

Requirements
ValidationRequirements

Management

UNIT - II SOFTWARE ENGINEERING

41
Rahul Publications

Rahul Publications

The requirements engineering process begins
with feasibility study of the requirements. Then
requirements elicitation is performed, which focuses
on gathering user requirements. After the
requirements are gathered, an analysis is performed,
which further leads to requirements specification.
The output of this is stored in the form of software
requirements specification document. Next, the
requirements are checked for their completeness
and correctness in requirements validation. Last of
all, to understand and control changes to system
requirements, requirements management is
performed.

2.4 REQUIREMENTS SPECIFICATION

Q6. What is Software Requirements
Specification? Explain Structure and
Characteristics of SRS.

Ans : (Imp.)

The output of the requirements phase of the
software development process is Software
Requirements Specification (SRS) (also known as
requirements document). This document lays a
foundation for software engineering activities and
is created when entire requirements are elicited and
analyzed. SRS is a formal document, which acts as
a representation of software that enables the users
to review whether it (SRS) is according to their
requirements. In addition, it includes user
requirements for a system as well as detailed
specifications of the system requirements.

IEEE defines software requirements
specification as, ‘a document that clearly and
precisely describes each of the essential
requirements (functions, performance, design
constraints and quality attributes) of the software
and the external interfaces. Each requirement is
defined in such a way that its achievement can be
objectively verified by a prescribed method, for
example, inspection, demonstration, analysis or
test.’ Note that requirements specification can be
in the form of a written document, a mathematical
model, a collection of graphical models, a
prototype, and so on.

Essentially, what passes from requirements
analysis activity to the specification activity is the
knowledge acquired about the system. The need

for maintaining a requirements document is that
the modeling activity essentially focuses on the
problem structure and not its structural behavior.
While in SRS, performance constraints, design
constraints, and standard compliance recovery are
clearly specified. This information helps in
developing a proper design of the system. Various
other purposes served by SRS are listed below.

1. Feedback: Provides a feedback, which
ensures to the user that the organization
(which develops the software) understands
the issues or problems to be solved and the
software behavior necessary to address those
problems.

2. Decompose problem into components :
Organizes the information and divides the
problem into its component parts in an
orderly manner.

3. Validation : Uses validation strategies
applied to the requirements to acknowledge
that requirements are stated properly.

4. Input to design: Contains sufficient detail
in the functional system requirements to
devise a design solution.

5. Basis for agreement between the user
and the organization : Provides a
complete description of the functions to be
performed by the system. In addition, it helps
the users to determine whether the specified
requirements are accomplished.

6. Reduce the development effort: Enables
developers to consider user requirements
before the designing of the system
commences. As a result, ‘rework’ and
inconsistencies in the later stages can be
reduced.

7. Estimating costs and schedules :
Determines the requirements of the system
and thus enables the developer to have a
‘rough’ estimate of the total cost and schedule
of the project.

SRS is used by various individuals in the
organization. System customers need SRS to specify
and verify whether requirements meet the desired
needs. In addition, SRS enables the managers to
plan for the system development processes. System

MCA II YEAR III SEMESTER

42
Rahul Publications

Rahul Publications

engineers need a requirements document to
understand what system is to be developed. These
engineers also require this document to develop
validation tests for the required system. Lastly,
requirements document is needed by system
maintenance engineers to use the requirement and
the relationship between its parts.

The requirements document has diverse
users. Therefore, along with communicating the
requirements to the users it also has to define the
requirements in precise detail for developers and
testers. In addition it should also include information
about possible changes in the system, which can
help system designers avoid restricted decisions on
design. SRS also helps maintenance engineers to
adapt the system to new requirements.

Characteristics

Software requirements specification should be
accurate, complete, efficient, and of high quality,
so that it does not affect the entire project plan. An
SRS is said to be of high quality when the developer
and user easily understand the prepared document.
Other characteristics of SRS are discussed below.

1. Correct: SRS is correct when all user
requirements are stated in the requirements
document. The stated requirements should
be according to the desired system. This
implies that each requirement is examined
to ensure that it (SRS) represents user
requirements. Note that there is no specified

tool or procedure to assure the correctness
of SRS. Correctness ensures that all specified
requirements are performed correctly.

2. Unambiguous: SRS is unambiguous when
every stated requirement has only one
interpretation. This implies that each
requirement is uniquely interpreted. In case
there is a term used with multiple meanings,
the requirements document should specify
the meanings in the SRS so that it is clear
and easy to understand.

3. Complete: SRS is complete when the
requirements clearly define what the software
is required to do. This includes all the
requirements related to performance, design
and functionality.

4. Ranked for importance/stability: All
requirements are not equally important,
hence each requirement is identified to make
differences among other requirements. For
this, it is essential to clearly identify each
requirement. Stability implies the probability
of changes in the requirement in future.

5. Modifiable: The requirements of the user
can change, hence requirements document
should be created in such a manner that
those changes can be modified easily,
consistently maintaining the structure and
style of the SRS.

6. Traceable: SRS is traceable when the
source of each requirement is clear and
facilitates the reference of each requirement
in future. For this, forward tracing and
backward tracing are used. Forward tracing
implies that each requirement should be
traceable to design and code elements.
Backward tracing implies defining each
requirement explicitly referencing its source.

7. Verifiable: SRS is verifiable when the
specified requirements can be verified with a
cost-effective process to check whether the
final software meets those requirements. The
requirements are verified with the help of
reviews. Note that unambiguity is essential for
verifiability.

UNIT - II SOFTWARE ENGINEERING

43
Rahul Publications

Rahul Publications

8. Consistent: SRS is consistent when the
subsets of individual requirements defined do
not conflict with each other. For example,
there can be a case when different
requirements can use different terms to refer
to the same object. There can be logical or
temporal conflicts between the specified
requirements and some requirements whose
logical or temporal characteristics are not
satisfied. For instance, a requirement states
that an event ‘a’ is to occur before another
event ‘b’. But then another set of
requirements states (directly or indirectly by
transitivity) that event ‘b’ should occur before
event ‘a’.

Structure

The requirements document is devised in a
manner that is easier to write, review, and maintain.
It is organized into independent sections and each
section is organized into modules or units. Note that
the level of detail to be included in the SRS depends
on the type of the system to be developed and the
process model chosen for its development. For
example, if a system is to be developed by an
external contractor, then critical system specifications
need to be precise and detailed. Similarly, when
flexibility is required in the requirements and where
an in-house development takes place, requirements
documents can be less detailed.

Since the requirements document serves as
a foundation for subsequent software development
phases, it is important to develop the document in
the prescribed manner. For this, certain guidelines
are followed while preparing SRS. These guidelines
are listed below.

1. Functionality : It should be separate from
implementation.

2. Analysis model : It should be developed
according to the desired behavior of a system.
This should include data and functional
response of a system to various inputs given
to it.

3. Cognitive model : It should be developed
independently of design or implementation
model. This model expresses a system as
perceived by the users.

4. The content and structure of the
specification : It should be flexible enough
to accommodate changes.

5. Specification : It should be robust. That is,
it should be tolerant towards incompleteness
and complexity.

The information to be included in SRS
depends on a number of factors, for example, the
type of software being developed and the approach
used in its development. If software is developed
using the iterative development process, the
requirements document will be less detailed as
compared to that of the software developed for
critical systems. This is because specifications need
to be very detailed and accurate in these systems. A
number of standards have been suggested to
develop a requirements document. However, the
most widely used standard is by IEEE, which acts
as a general framework. This general framework
can be customized and adapted to meet the needs
of a particular organization.

Each SRS fits a certain pattern; thus, it is
essential to standardize the structure of the
requirements document to make it easier to
understand. For this IEEE standard is used for SRS
to organize requirements for different projects, which
provides different ways of structuring SRS. Note that
in all requirements documents, the first two sections
are the same.

This document comprises the following
sections.

1. Introduction: This provides an overview of
the entire information described in SRS. This
involves purpose and the scope of SRS, which
states the functions to be performed by the
system. In addition, it describes definitions,
abbreviations, and the acronyms used. The
references used in SRS provide a list of
documents that is referenced in the
document.

2. Overall description: It determines the
factors which affect the requirements of the
system. It provides a brief description of the
requirements to be defined in the next section
called ‘specific requirement’. It comprises the
following sub-sections.

MCA II YEAR III SEMESTER

44
Rahul Publications

Rahul Publications

3. Product perspective: It determines
whether the product is an independent
product or an integral part of the larger
product. It determines the interface with
hardware, software, system, and communi-
cation. It also defines memory constraints and
operations utilized by the user.

4. Product functions: It provides a summary
of the functions to be performed by the
software. The functions are organized in a list
so that they are easily understandable by the
user.

5. User characteristics : It determines
general characteristics of the users.

6. Constraints: It provides the general
description of the constraints such as
regulatory policies, audit functions, reliability
requirements, and so on.

7. Assumption and dependency: It provides
a list of assumptions and factors that affect
the requirements as stated in this document.

8. Apportioning of requirements: It deter-
mines the requirements that can be delayed
until release of future versions of the system.

9. Specific requirements: These determine
all requirements in detail so that the designers
can design the system in accordance with
them. The requirements include description
of every input and output of the system and
functions performed in response to the input
provided. It comprises the following
subsections.

10. External interface : It determines the
interface of the software with other systems,
which can include interface with operating
system and so on. External interface also
specifies the interaction of the software with
users, hardware, or other software. The
characteristics of each user interface of the
software product are specified in SRS. For
the hardware interface, SRS specifies the
logical characteristics of each interface among
the software and hardware components. If
the software is to be executed on the existing
hardware, then characteristics such as
memory restrictions are also specified.

11. Functions : It determines the functional
capabilities of the system. For each functional
requirement, the accepting and processing of
inputs in order to generate outputs are
specified. This includes validity checks on
inputs, exact sequence of operations,
relationship of inputs to output, and so on.

12. Performance requirements : It determines
the performance constraints of the software
system. Performance requirement is of two
types: static requirements and dynamic
requirements. Static requirements (also
known as capacity requirements) do not
impose constraints on the execution
characteristics of the system. These include
requirements like number of terminals and
users to be supported. Dynamic require-
ments determine the constraints on the
execution of the behavior of the system,
which includes response time (the time
between the start and ending of an operation
under specified conditions) and throughput
(total amount of work done in a given time).

13. Logical database of requirements: It
determines logical requirements to be stored
in the database. This includes type of
information used, frequency of usage, data
entities and relationships among them, and
so on.

14. Design constraint: It determines all design
constraints that are imposed by standards,
hardware limitations, and so on. Standard
compliance determines requirements for the
system, which are in compliance with the
specified standards. These standards can
include accounting procedures and report
format. Hardware limitations implies when
the software can operate on existing
hardware or some pre-determined hardware.
This can impose restrictions while developing
the software design. Hardware limitations
include hardware configuration of the
machine and operating system to be used.

15. Software system attributes: It provide
attributes such as reliability, availability,
maintainability and portability. It is essential
to describe all these attributes to verify that
they are achieved in the final system.

UNIT - II SOFTWARE ENGINEERING

45
Rahul Publications

Rahul Publications

16. Organizing Specific Requirements: It determines the requirements so that they can be properly
organized for optimal understanding. The requirements can be organized on the basis of mode of
operation, user classes, objects, feature, response, and functional hierarchy.

17. Change management process: It determines the change management process in order to
identify, evaluate, and update SRS to reflect changes in the project scope and requirements.

18. Document approvals: These provide information about the approvers of the SRS document
with the details such as approver’s name, signature, date, and so on.

19. Supporting information: It provides information such as table of contents, index, and so on.
This is necessary especially when SRS is prepared for large and complex projects.

Q7. Describe Various advantages of an SRS. What are various types of errors that occur in
SRS?

Ans :
Software requirement specification (SRS) is a document that completely describes what the proposed

software should do without describing how software will do it. The basic goal of the requirement phase is
to produce the SRS, Which describes the complete behavior of the proposed software. SRS is also helping
the clients to understand their own needs.

Advantages

Software SRS establishes the basic for agreement between the client and the supplier on what the
software product will do.

1. A SRS provides a reference for validation of the final product.

2. A high-quality SRS is a prerequisite to high-quality software.

3. A high-quality SRS reduces the development cost.

Types of Errors that Occur in SRS

 Omission : is a common error in requirements. In this type of error, some user requirements are
simply not included in the SRS The omitted requirement may be related to the behavior of the
system, its performance, constraints or any other factor.

 Inconsistency : It can be due to contradictions within the requirements themselves or to
incompatibility of the stated requirements with the actual requirements of the client or with the
environment in which the system will operate.

 Incorrect fact : This error occurs when some fact recorded in the SRS is not correct.

 Ambiguity : This error occurs when there are some requirements that have multiple meanings,
that is, their interpretation is not unique.

2.4.1 Components of SRS

Q8. List & Explain various components of an SRS.

Ans :
Completeness of specifications is difficult to achieve and even more difficult to verify. Having

guidelines about what different things an SRS should specify will help in completely specifying the
requirements. Here we describe some of the system properties than an SRS should specify.

MCA II YEAR III SEMESTER

46
Rahul Publications

Rahul Publications

The basic issues an SRS must address :

I) Functional Requirements

II) Design constraints

III) External interfaces Requirements

I) Functional Requirements

1. Which outputs should be produced from the given inputs?

2. Relationship between the input and output.

3. A detailed description of all the data inputs and their source, the units of measure.

4. The range of valid inputs.

II) Design Constraints

1. Standards that must be followed.

2. Resource limits & operating environment.

3. Reliability

4. Security requirement

5. Policies that may have an impact on the design of the system.

Standards Compliance

This specifies the requirements for the standards that the system must follow.

Hardware Limitations

The software may have to operate on some existing or predetermined hardware thus imposing
restrictions on the design.

 Reliability and Fault Tolerance:

 Fault tolerance requirements can place a major constraint on how the system is to be designed.
Fault tolerance requirements often make the system more complex and expensive.

 Security : Security requirements are particularly significant in defense systems and many database
systems. Security requirements place restrictions on the use of certain commands, control access to
data, provide different kinds of access requirements for different people require the use of passwords
and cryptography techniques and maintain a log of activities in the system.

 External Interface Requirements: All the possible interactions of the software with people,
hardware and other software should be clearly specified. For the user interface, the characteristics
of each user interface of the software product should be specified. User interface is becoming
increasingly important and must be given proper attention. A preliminary user manual should be
created with all use commands, screen formats and explanation of how the system will appear to
the user, and feedback and error message.

Like other specifications these requirements should be precise and verifiable. So a statement likes
“the system should be no longer than six characters” or command names should reflect the function they
perform used. If the software is to execute on existing hardware or on predetermined hardware, all the
characteristics of the hardware, including memory restrictions, should be specified. In addition, the current
use and load characteristics of the hardware should be given.

UNIT - II SOFTWARE ENGINEERING

47
Rahul Publications

Rahul Publications

Q9. Discuss briefly the validation of SRS.

Ans : (Imp.)

The development of software starts with the requirements document, which is also used to determine
eventually whether or not the delivered software system is acceptable. It is therefore important that the
requirement specification contains no error and specifies the client’s requirement correctly.

Furthermore due to the nature of the requirement specification phase, there is a lot of room for
misunderstanding and committing errors, and it is quite possible that the requirements specification does
not accurately represents the client’s needs. The basic objective of the requirement validation activity is to
ensure that SRS reflects the actual requirements accurately and clearly. A related objective is to check that
the SRS documents are itself of “good quality” (Some desirable quality objectives are given later).

Many different types of errors are possible , but the most common errors that occurs can be
classified in four types :

i) Omission

ii) Inconsistency

iii) Incorrect fact

iv) Ambiguity

i) Omission: Omission is a common error in requirements. In this type of error, some user
requirements is simply not included in the SRS; the omitted requirement may be related to the
behavior of the system, its performance, constraints, or any other factor.

Omission directly affects the external completeness of the SRS. Another common form of error in
requirement is inconsistency.

ii) Inconsistency: Inconsistency can be due to contradictions within the requirements themselves or
due to incompatibility of the started requirements with the actual requirements of the client or with
the environment in which the system will operate.

iii) Incorrect fact: The third common requirement error is incorrect fact. Errors of this type occur
when some facts recorded in the SRS are incorrect.

iv) Ambiguity: The fourth common error type is ambiguity. Errors of this type occur when there are
some requirements that have multiple meanings that is their interpretation is not unique.

2638%10%26%

AmbiguityInconsistencyIncorrect FactOmission

2638%10%26%

AmbiguityInconsistencyIncorrect FactOmission

In the errors detected in the requirement specification of the A-7 project (which deals with a real
time flight control software) were reported. A total of about 80 errors were detected. Out of the
which, about 23% were clerical in nature, of the remaining the distribution with error type was :

5%13%49%32%

AmbiguityInconsistencyIncorrect FactOmission

5%13%49%32%

AmbiguityInconsistencyIncorrect FactOmission

Apart from Requirement Reviews what are the other Methods Used for the Validation of SRS

Requirement reviews remain the most commonly used and viable means for requirement validation.
However, there are other approaches that may be applicable for some system or parts of system or
system that have been specified formally.

MCA II YEAR III SEMESTER

48
Rahul Publications

Rahul Publications

Automated Cross Referencing

Automated cross-referencing uses processors
to verify some properties of requirements. Any
automated processing of requirements is possible if
the requirements are written in a formal specification
language or a language specifically designed for
machine processing.

We saw example of such language earlier.
These tools typically focus on checks for internal
consistency and completeness, which sometimes
leads to checking of external completeness.
However, these tools cannot directly checks for
external completeness. For this reason, requirement
reviews are needed even if the requirements are
specified through a tool or in a formal notation.

If the requirements are in machine process
able form, they can be analyzed for internal
consistency among different elements of the
requirement.

Reading

The goal in reading is to have someone other
than the author or the requirements read the
requirement specification document to identify
potential problems. Having the requirement read
by another person who may have different
interpretation of requirements, many of the
requirements problems caused by misinterpretations
or ambiguities can be identified. Furthermore, if the
reader is a person who is in interested in the project
(like a person from the quality assurance group that
will eventually test the system) can address issues
that could cause problem later.

For example, if a tester reads the require-
ment, it is likely that the testability of requirement
will be well examined.

Constructing Scenarios

Scenarios describe different situations of how
the system will work once it is operational. The most
common area for constructing scenarios is that of
system user interaction. Constructing scenarios is
good for clarifying misunderstandings in human
computer interaction area. They are of limited value
for verifying the consistency and completeness of
requirements;

 Prototyping : Though prototypes are
generally built to ascertain requirements, a
prototype can be built to verify requirements.
Prototype can be quite useful in verifying the
feasibility of some of the requirement (such
as answering the question Can this be done?)
A prototype that has been built during
problem analysis can also aid validation. For
example, if the prototype has a use interfaces
and the client has approved them after use,
then the user interface, as specified by the
prototype, can be considered validated. No
further validation need be performed for user
interface.

 Metrics : The basic purpose of metrics at
any point during a development project is to
provide qualitative information of the
management process so that the information
can be used effectively to control the
development process.

Q10. Explain the SRS with use case
Modeling.

Ans :

Many software teams are discovering that
mixing use-case modeling techniques for
requirements expression along with traditional
methods of documenting specific requirements
within a “software requirements specification” (SRS)
document provides an efficient means to record the
complete set of detailed requirements for a system
or application to be built. The Rational Unified
Process provides the following definitions:

 A requirement describes a condition or
capability to which a system must conform;
either derived directly from user needs, or
stated in a contract, standard, specification,
or other formally imposed document.

 A use case describes a sequence of actions a
system performs that yields an observable
result of value to a particular actor.

In our experience, we have found that a fully
specified set of use cases for a system often does a
great job of stating many of the requirements for
that system. But just as often there are also a
significant number of requirements that do not fit

UNIT - II SOFTWARE ENGINEERING

49
Rahul Publications

Rahul Publications

well within this modeling technique. Especially for
non-functional requirements (e.g., specifications for
usability, reliability, performance, maintainability,
supportability), it is usually best to use the good-ol’
tried-and-true traditional method for stating
requirements.

Traditionally, requirements specified in an
SRS are simple declarative statements written in a
text-based natural-language style (e.g., “ When the
user logs in, the system displays the splash screen
described in Figure x.”). Use cases should be viewed
merely as an alternative for specifying requirements;
moreover they describe complete threads, or
scenarios, through the system which provide
additional value in understanding the intended
behavior of the system. Use-case modeling is a
hallmark of the Unified Modeling Language (UML)
and the Rational Unified Process (RUP) as well as
being a central feature provided by visual modeling
tools, such as Rational Rose. In most circumstances
use cases should simply be applied as an added form
of expression which increases understandability, as
opposed to simply replacing the specification of
requirements in the traditional fashion.

We need to be able to support the traditional
requirements approach in all of our processes,
specifications and tools since it may well will be
needed whether or not a project decides to use the
use-case methodology (e.g., in specifying
requirements that do not fit easily in the use-case
model, especially non-functional requirements). It
does not have to be an “either-or”. Neither approach
is “best” in all circumstances - although it could
definitely be argued as to which approach might be
“better” for a particular application.

A common concern that we hear from
development teams first trying to apply use-case
modeling is that they do not want to maintain
redundant specifications of their requirements - one
expression in use-case form and another in the
traditional SRS form. They like use cases for
working with their customers to specify the functional
requirements of a system in the customers’
language, however they are often more familiar
with the more traditional form of expression (and
perhaps they are required by their boss, or
management or an outside agency) to produce a
Software Requirements Specification (SRS) that

contains the “complete” set of detailed software
requirements for the system. A key concept of good
requirements management advocates minimizing
redundancy, so this is definitely a valid concern that
should be addressed.

To facilitate the combination of traditional
SRS methods and use cases, we have defined a
simple construct called the “SRS Package”. This
“package” pulls together the complete set of software
requirements for a system (or portion of a system)
which may be contained in a single document,
multiple documents, a requirements repository
(consisting of the requirements’ text, attributes and
traceability), use case specifications and even the
graphical use case model diagrams which describes
relationships amongst the use cases and actors.
We’ve found this simple combination to be effective
in most all application development projects, and
it’s an easy way to kickstart your teams ability to
realize the additional benefits provided by the use
case technique.

Purpose

The SRS provides an organized way to collect
all software requirements surrounding a project (or
perhaps at a subsystem or feature level) into one
document. In these days of automation and visual
modeling, we often find ourselves with several
different tools for collecting these requirements. The
complete set of requirements may indeed be found
in several different artifacts accessible by multiple
tools. For example, you might find it useful to collect
some (or all) of the functional requirements of your
system in use cases and you might find it handy to
use a tool appropriate to the needs of defining the
use-case model. On the other hand, you might
find it appropriate to collect traditionally stated
natural-language requirements (such as non-
functional requirements, design constraints, etc.)
with a word processing tool in “supplementary
specifications”. And a requirements management
tool must be able to access all requirements for
maintaining requirement attributes and traceability.

Arguably, some combination of the use case
and traditional specification technique should be
used in all projects. To facilitate this, we will collect
the requirements for our SRS in a UML “package”
construct that may include a single document,
multiple documents, use case specifications and even
the graphical use case model which describes
relationships amongst the use cases.

MCA II YEAR III SEMESTER

50
Rahul Publications

Rahul Publications

The “SRS package” controls the evolution of the system throughout the development and release
phases of the project. In the Rational Unified Process, the following workers use the SRS Package :

 The system analyst creates and maintains the Vision, the use-case model overview and supplementary
specifications, which serve as input to the SRS and are the communication medium between the
system analyst, the customer, and other developers.

 The use-case specifier creates and maintains the individual use cases of the use-case model and
other components of the SRS package,

 Designers use the SRS Package as a reference when defining responsibilities, operations, and attributes
on classes, and when adjusting classes to the implementation environment.

 Implementers refer to the SRS Package for input when implementing classes.

 The project manager refers to the SRS Package for input when planning iterations.

 The testers use the SRS Package to verify system compliance.

From Vision to SRS

In the Requirements workflow of the Rational Unified Process, our requirements artifact structure
starts with an artifact called the Vision which describes the user’s or customer’s view of the product to be
developed, specified at the level of key user needs and features of the system.

The SRS Package is obviously related to the Vision document. Indeed, the Vision document serves
as the input to the SRS. But the two artifacts serve different needs and are typically written by different
authors. At this stage in the project, the focus of the project moves from the broad statement of user
needs, goals and objectives, target markets and features of the system to the details of how these features
are going to be implemented in the solution.

UNIT - II SOFTWARE ENGINEERING

51
Rahul Publications

Rahul Publications

What we need now is a collection, or
package, of artifacts that describes the complete
external behavior of the system - i.e., an artifact
that says specifically: “Here is what the system has
to do to deliver those features.” That is what we
refer to as the SRS Package.
A Living Artifact

The SRS Package is an active, living artifact.
Indeed it plays a number of crucial roles as the
developers embark upon their implementation
effort: It serves as a basis of communication between
all parties - i.e., between the developers themselves,
and between the developers and the external groups
(users and other stakeholders) with whom they must
communicate. Formally or informally, it represents
a contractual agreement between the various parties
- if it’s not in the SRS Package, the developers
shouldn’t be working on it. And if it is in the SRS
Package, then they are accountable to deliver that
functionality.
The Project Manager’s Reference Standard

The SRS serves as the project manager’s
reference standard. The project manager is unlikely
to have the time, energy, or skills to read the code
being generated by the developers and compare
that directly to the Vision document. He or she must
use the SRS as the standard reference for discussions
with the project team.

As noted earlier, it serves as input to the
design and implementation groups. Depending on
how the project is organized, the implementers may
have been involved in the earlier problem-solving
and feature-definition activities that ultimately
produced the Vision document. But it’s the SRS
they need to focus on for deciding what their code
must do. It serves as input to the software testing
and QA groups. These groups should also have
been involved in some of the earlier discussions,
and it’s obviously helpful for them to have a good
understanding of the “vision” laid out in the Vision
documents. But their charter is to create test cases
and QA procedures to ensure that the developed
system does indeed fulfill the requirements laid out
in the SRS. The SRS also serves as the standard
reference for their planning and testing activities.
Sample Templates for an SRS Package

In support of these concepts, two separate
SRS document templates have been developed and
are enclosed :

 An SRS template for use with projects using
use-case modeling, and

 An SRS template for projects using only
traditional requirements specification
techniques.

See the Rational Unified Process (v5.5) for
more information on these and other artifacts, along
with best practices for developing software with UML.

 2.5 FUNCTIONAL SPECIFICATION WITH USE CASES

Q11. Discuss about functional specifications
using use cases.

Ans : (Imp.)

Functional requirements often form the core
of a requirements document. The traditional
approach for specifying functionality is to specify
each function that the system should provide. Use
cases specify the functionality of a system by
specifying the behavior of the system, captured as
interactions of the users with the system. Use cases
can be used to describe the business processes of
the larger business or organization that deploys the
software, or it could just describe the behavior of
the software system. We will focus on describing the
behavior of software systems that are to be built.

Though use cases are primarily for specifying
behavior, they can also be used effectively for
analysis. Later when we discuss how to develop use
cases, we will discuss how they can help in eliciting
requirements also.

Use cases drew attention after they were used
as part of the object-oriented modeling approach
proposed by Jacobson [56]. Due to this connection
with an object-oriented approach, use cases are
sometimes viewed as part of an object-oriented
approach to software development. However, they
are a general method for describing the interaction
of a system (even non-IT systems).

Basics

A software system (in our case whose
requirements are being uncovered) may be used
by many users, or by other systems. In use case
terminology, an actor is a person or a system which
uses the system for achieving some goal. Note that
as an actor interacts for achieving some goal, it is a

MCA II YEAR III SEMESTER

52
Rahul Publications

Rahul Publications

logical entity that represents a group of users (people or system) who behave in a similar manner. Different
actors represent groups with different goals. So, it is better to have a “receiver” and a “sender” actor rather
than having a generic “user” actor for a system in which some messages are sent by users and received by
some other users.

A primary actor is the main actor that initiates a use case (UC) for achieving a goal, and whose goal
satisfaction is the main objective of the use case. The primary actor is a logical concept and though we
assume that the primary actor executes the use case, some agent may actually execute it on behalf of the
primary actor. For example, a VP may be the primary actor for get sales growth report by region use case,
though it may actually be executed by an assistant. We consider the primary actor as the person who
actually uses the outcome of the use case and who is the main consumer of the goal. Time-driven trigger
is another example of how a use case may be executed on behalf of the primary actor (in this situation the
report is generated automatically at some time).

Note, however, that although the goal of the primary actor is the driving force behind a use case,
the use case must also fulfill goals that other stakeholders might have for this use case. That is, the main
goal of a use case is to describe behavior of the system that results in satisfaction of the goals of all the
stakeholders, although the use case may be driven by the goals of the primary actor. For example, a use
case “Withdraw money from the ATM” has a customer as its primary actor and will normally describe the
entire interaction of the customer with the ATM. However, the bank is also a stakeholder of the ATM
system and its goals may include that all steps are logged, money is given only if there are sufficient funds
in the account, and no more than some amount is given at a time, etc. Satisfaction of these goals should
also be shown by the use case “Withdraw money from the ATM.”

For describing interaction, use cases use scenarios. A scenario describes a set of actions that are
performed to achieve a goal under some specified conditions. The set of actions is generally specified as a
sequence (as that is the most convenient way to express it in text), though in actual execution the actions
specified may be executed in parallel or in some different order. Each step in a scenario is a logically
complete action performed either by the actor or the system. Generally, a step is some action by the actor
(e.g., enter information), some logical step that the system performs to progress toward achieving its goals
(e.g., validate information, deliver information), or an internal state change by the system to satisfy some
goals (e.g., log the transaction, update the record).

A use case always has a main success scenario, which describes the interaction if nothing fails and all
steps in the scenario succeed. There may be many success scenarios. Though the use case aims to achieve
its goals, different situations can arise while the system and the actor are interacting which may not permit
the system to achieve the goal fully. For these situations, a use case has extension scenarios which describe
the system behavior if some of the steps in the main scenario do not complete successfully. Sometimes
they are also called exception scenarios. A use case is a collection of all the success and extension scenarios
related to the goal. The terminology of use cases is summarized in Table.

 Term Definition

Actor A person or a system which uses the system being built for achieving
some goal.

Primary actor The main actor for whom a use case is initiated and whose goal
Scenario satisfaction is the main objective of the use case.

A set of actions that are performed to achieve a goal under some
specified conditions.

Main success Describe the interaction if nothing fails and all steps in the scenario
scenario succeed.

Extension Describe the system behaviour if some of the steps in the main
scenario scenario do not complete successfully

UNIT - II SOFTWARE ENGINEERING

53
Rahul Publications

Rahul Publications

To achieve the desired goal, a system can
divide it into subgoals. Some of these subgoals may
be achieved by the system itself, but they may also
be treated as separate use cases executed by
supporting actors, which may be another system.
For example, suppose for verifying a user in
“Withdraw money from the ATM” an authentication
service is used. The interaction with this service can
be treated as a separate use case. A scenario in a
use case may therefore employ another use case
for performing some of the tasks. In other words,
use cases permit a hierarchic organization.

It should be evident that the basic system
model that use cases assume is that a system
primarily responds to requests from actors who use
the system. By describing the interaction between
actors and the system, the system behavior can be
specified, and through the behavior its functionality
is specified. A key advantage of this approach is that
use cases focus on external behavior, thereby cleanly
avoiding doing internal design during requirements,
something that is desired but not easy to do with
many modeling approaches.

Use cases are naturally textual descriptions,
and represent the behavioral requirements of the
system. This behavior specification can capture most
of the functional requirements of the system.
Therefore, use cases do not form the complete SRS,
but can form a part of it. The complete SRS, as we
have seen, will need to capture other requirements
like performance and design constraints.

Though the detailed use cases are textual,
diagrams can be used to supplement the textual
description. For example, the use case diagram of
UML provides an overview of the use cases and
actors in the system and their dependency. A UML
use case diagram generally shows each use case in
the system as an ellipse, shows the primary actor
for the use case as a stick figure connected to the
use case with a line, and shows dependency between
use cases by arcs between use cases. Some other
relationships between use cases can also be
represented. However, as use cases are basically
textual in nature, diagrams play a limited role in
either developing or specifying use cases. We will
not discuss use case diagrams further

2.5.1 Developing Use Cases

Q12. Explain the process of developing use
Cases.

Ans :
UCs not only document requirements, as

their form is like storytelling and uses text, both of
which are easy and natural with different
stakeholders, they also are a good medium for
discussion and brainstorming. Hence, UCs can also
be used for requirements elicitation and problem
analysis. While developing use cases, informal or
formal models may also be built, though they are
not required.

UCs can be evolved in a stepwise refinement
manner with each step adding more details. This
approach allows UCs to be presented at different
levels of abstraction. Though any numbers of levels
of abstraction are possible, four natural levels
emerge :
 Actors and goals. The actor-goal list

enumerates the use cases and specifies the
actors for each goal. (The name of the use
case is generally the goal.) This table may be
extended by giving a brief description of each
of the use cases. At this level, the use cases
together specify the scope of the system and
give an overall view of what it does.
Completeness of functionality can be assessed
fairly well by reviewing these.

 Main success scenarios. For each of the
use cases, the main success scenarios are
provided at this level. With the main scenarios,
the system behavior for each use case is
specified. This description can be reviewed
to ensure that interests of all the stakeholders
are met and that the use case is delivering
the desired behavior.

 Failure conditions. Once the success
scenario is listed, all the possible failure
conditions can be identified. At this level, for
each step in the main success scenario, the
different ways in which a step can fail form
the failure conditions. Before deciding what
should be done in these failure conditions
(which is done at the next level), it is better
to enumerate the failure conditions and
review for completeness.

MCA II YEAR III SEMESTER

54
Rahul Publications

Rahul Publications

 Failure handling: This is perhaps the most
tricky and difficult part of writing a use case.
Often the focus is so much on the main
functionality that people do not pay attention
to how failures should be handled.
Determining what should be the behavior
under different failure conditions will often
identify new business rules or new actors.

The different levels can be used for different
purposes. For discussion on overall functionality or
capabilities of the system, actors and goal-level
description is very useful. Failure conditions, on the
other hand, are very useful for understanding and
extracting detailed requirements and business rules
under special cases.

Steps

These four levels can also guide the analysis
activity. A step-by-step approach for analysis when
employing use cases is :

 Step 1: Identify the actors and their goals
and get an agreement with the concerned
stakeholders as to the goals. The actor-goal
list will clearly define the scope of the system
and will provide an overall view of what the
system capabilities are.

 Step 2: Understand and specify the main
success scenario for each UC, giving more
details about the main functions of the
system. Interaction and discussion are the
primary means to uncover these scenarios
though models may be built, if required.
During this step, the analyst may uncover that
to complete some use case some other use
cases are needed, which have not been
identified. In this case, the list of use cases will
be expanded.

 Step 3: When the main success scenario for
a use case is agreed upon and the main steps
in its execution are specified, then the failure
conditions can be examined. Enumerating
failure conditions is an excellent method of
uncovering special situations that can occur
and which must be handled by the system.

 Step 4: Finally, specify what should be done
for these failure conditions. As details of
handling failure scenarios can require a lot of
effort and discussion, it is better to first
enumerate the different failure conditions and

then get the details of these scenarios. Very
often, when deciding the failure scenarios,
many new business rules of how to deal with
these scenarios are uncovered.

Though we have explained the basic steps in
developing use cases, at any step an analyst may
have to go back to earlier steps as during some
detailed analysis new actors may emerge or new
goals and new use cases may be uncovered. That
is, using use cases for analysis is also an interactive
task.

What should be the level of detail in a use
case? There is no one answer to a question like this;
the actual answer always depends on the project
and the situation. So it is with use cases. Generally
it is good to have sufficient details which are not
overwhelming but are sufficient to build the system
and meet its quality goals. For example, if there is a
small collocated team building the system, it is quite
likely that use cases which list the main exception
conditions and give a few key steps for the scenarios
will suffice. On the other hand, for a project whose
development is to be subcontracted to some other
organization, it is better to have more detailed use
cases.

For writing use cases, general technical writing
rules apply. Use simple grammar, clearly specify who
is performing the step, and keep the overall scenario
as simple as possible. Also, when writing steps, for
simplicity, it is better to combine some steps into
one logical step, if it makes sense. For example, steps
“user enters his name,” “user enters his SSN,” and
“user enters his address” can be easily combined
into one step “user enters personal information.”

2.6 OTHER APPROACHES FOR ANALYSIS

Q13. Explain different approaches of Analysis
in Software Engineering.

Ans : (Imp.)

The basic aim of problem analysis is to obtain
a clear understanding of the needs of the clients
and the users, what exactly is desired from the
software, and what the constraints on the solution
are. Frequently the client and the users do not
understand or know all their needs, because the
potential of the new system is often not fully

UNIT - II SOFTWARE ENGINEERING

55
Rahul Publications

Rahul Publications

appreciated. The analysts have to ensure that the
real needs of the clients and the users are uncovered,
even if they don’t know them clearly. That is, the
analysts are not just collecting and organizing
information about the client’s organization and its
processes, but they also act as consultants who play
an active role of helping the clients and users identify
their needs.

The basic principle used in analysis is the same
as in any complex task: divide and conquer. That
is, partition the problem into subproblems and then
try to understand each subproblem and its
relationship to other subproblems in an effort to
understand the total problem. The concepts of state
and projection can sometimes also be used effectively
in the partitioning process. A state of a system
represents some conditions about the system.
Frequently, when using state, a system is first viewed
as operating in one of the several possible states,
and then a detailed analysis is performed for each
state. This approach is sometimes used in real-time
software or process-control software.

In projection, a system is defined from
multiple points of view [86]. While using projection,
different viewpoints of the system are defined and
the system is then analyzed from these different
perspectives. The different “projections” obtained
are combined to form the analysis for the complete
system. Analyzing the system from the different
perspectives is often easier, as it limits and focuses
the scope of the study.

In the remainder of this section we will discuss
two other methods for problem analysis. As the goal
of analysis is to understand the problem domain,
an analyst must be familiar with different methods
of analysis and pick the approach that he feels is
best suited to the problem at hand.

i) Data Flow Diagrams

Data flow diagrams (also called data flow
graphs) are commonly used during problem
analysis. Data flow diagrams (DFDs) are quite
general and are not limited to problem analysis for
software requirements specification. They were in
use long before the software engineering discipline
began. DFDs are very useful in understanding a
system and can be effectively used during analysis.

A DFD shows the flow of data through a
system. It views a system as a function that transforms
the inputs into desired outputs. Any complex system
will not perform this transformation in a “single step,”
and data will typically undergo a series of
transformations before it becomes the output. The
DFD aims to capture the transformations that take
place within a system to the input data so that
eventually the output data is produced. The agent
that performs the transformation of data from one
state to another is called a process (or a bubble).
Thus, a DFD shows the movement of data through
the different transformations or processes in the
system. The processes are shown by named circles
and data flows are represented by named arrows
entering or leaving the bubbles. A rectangle
represents a source or sink and is a net originator
or consumer of data. A source or a sink is typically
outside the main system of study.

In this DFD there is one basic input data flow,
the weekly timesheet, which originates from the
source worker. The basic output is the paycheck,
the sink for which is also the worker. In this system,
first the employee’s record is retrieved, using the
employee ID, which is contained in the timesheet.
From the employee record, the rate of payment
and overtime are obtained. These rates and the
regular and overtime hours (from the timesheet)
are used to compute the pay. After the total pay is
determined, taxes are deducted. To compute the
tax deduction, information from the tax-rate file is
used. The amount of tax deducted is recorded in
the employee and company records. Finally, the
paycheck is issued for the net pay. The amount paid
is also recorded in company records.

Some conventions used in drawing this DFD
should be explained. All external files such as
employee record, company record, and tax rates
are shown as a labeled straight line. The need for
multiple data flows by a process is represented by a
“*” between the data flows. This symbol represents
the AND relationship. For example, if there is a “*”
between the two input data flows A and B for a
process, it means that A AND B are needed for the
process. In the DFD, for the process “weekly pay”
the data flow “hours” and “pay rate” both are
needed, as shown in the DFD. Similarly, the OR
relationship is represented by a “+” between the
data flows.

MCA II YEAR III SEMESTER

56
Rahul Publications

Rahul Publications
This DFD is an abstract description of the system for handling payment. It does not matter if the

system is automated or manual. This diagram could very well be for a manual system where the
computations are all done with calculators, and the records are physical folders and ledgers. The details
and minor data paths are not represented in this DFD. For example, what happens if there are errors in
the weekly timesheet is not shown in this DFD. This is done to avoid getting bogged down with details
while constructing a DFD for the overall system. If more details are desired, the DFD can be further
refined. It should be pointed out that a DFD is not a flowchart. A DFD represents the flow of data, while
a flowchart shows the flow of control. A DFD does not represent procedural information. So, while
drawing a DFD, one must not get involved in procedural details, and procedural thinking must be consciously
avoided. For example, considerations of loops and decisions must be ignored. In drawing the DFD, the
designer has to specify the major transforms in the path of the data flowing from the input to output. How
those transforms are performed is not an issue while drawing the data flow graph.

Many systems are too large for a single DFD to describe the data processing clearly. It is necessary
that some decomposition and abstraction mechanism be used for such systems. DFDs can be hierarchically
organized, which helps in progressively partitioning and analyzing large systems. Such DFDs together are
called a leveled DFD set.

A leveled DFD set has a starting DFD, which is a very abstract representation of the system, identifying
the major inputs and outputs and the major processes in the system. Often, before the initial DFD, a
context diagram may be drawn in which the entire system is shown as a single process with all its inputs,
outputs, sinks, and sources. Then each process is refined and a DFD is drawn for the process. In other
words, a bubble in a DFD is expanded into a DFD during refinement. For the hierarchy to be consistent,
it is important.

That the net inputs and outputs of a DFD for a process are the same as the inputs and outputs of the
process in the higher-level DFD. This refinement stops if each bubble is considered to be “atomic,” in that
each bubble can be easily specified or understood. It should be pointed out that during refinement,
though the net input and output are preserved, a refinement of the data might also occur. That is, a unit
of data may be broken into its components for processing when the detailed DFD for a process is being
drawn. So, as the processes are decomposed, data decomposition also occurs.

UNIT - II SOFTWARE ENGINEERING

57
Rahul Publications

Rahul Publications

In a DFD, data flows are identified by unique
names. These names are chosen so that they
convey some meaning about what the data is.
However, for specifying the precise structure of data
flows, a data dictionary is often used. The associated
data dictionary states precisely the structure of each
data flow in the DFD. To define the data structure,
a regular expression type notation is used. While
specifying the structure of a data item, sequence or
composition is represented by “+”, selection by
vertical bar “|” (means one OR the other), and
repetition by “*”.

ii) ER Diagrams

Entity relationship diagrams (ERDs) have
been used for years for modeling the data aspects
of a system. An ERD can be used to model the data
in the system and how the data items relate to each
other, but does not cover how the data is to be
processed or how the data is actually manipulated
and changed in the system. It is used often by
database designers to represent the structure of the
database and is a useful tool for analyzing software
systems which employ databases. ER models form
the logical database design and can be easily
converted into initial table structure for a relational
database.

ER diagrams have two main concepts and
notations to representing them. These are entities
and relationships. Entities are the main information
holders or concepts in a system. Entities can be
viewed as types which describe all elements of some
type which have common properties. Entities are
represented as boxes in an ER diagram, with a box
representing all instances of the concept or type the
entity is representing. An entity is essentially
equivalent to a table in a database or a sheet in a
spreadsheet, with each row representing an instance
of this entity. Entities may have attributes, which
are properties of the concept being represented.
Attributes can be viewed as the columns of the
database table and are represented as ellipses
attached to the entity. To avoid cluttering, attributes
are sometimes not shown in an ER diagram.

If all identities are identified and represented,
we will have a set of labeled boxes in the diagram,
each box representing some entity. Entities, of
course, do not exist in isolation. They have

relationships between them and that is the reason
why they exist together in the same system.

Relationships between two entities are
represented by a line connecting the boxes
representing the entities. Having a line between two
boxes means that each element of one entity is
related to elements of the other entity, and vice
versa. This relationship can also be given a name
by labeling the line. In some notations, the name of
the relationship is mentioned inside a diamond.
Some examples of relationships are: studies-in
(between students and college), worksfor (between
employees and companies), and owner (between
people and cars). Note that the relationships need
not be between two distinct entities. There can be a
relationship between elements of the same entity.
For example, for an entity type Employee, there
can be a relationship Supervisor, which is between
elements of the entity Employee.

An ER diagram specifies some properties of
the relationship also. In particular, it can specify if
the relationship is optional (or necessary), and with
how many elements an element of an entity is related
to. This leads to many forms of relationships. The
common ones are one-to-one (that one element
of an entity is related to exactly one element of the
other entity), one-to-many or many-to-one (that
one element is related to many elements of the other
entity), and many-to-many (that one element of
entity A is related to many elements of entity B and
one element of entity B is related to many elements
of entity A). There are various notations to express
the nature of relationships; a common one is to put
“0”, “1”, or “M” on the two sides of the relationship
line to represent the cardinality of the relationship.
Thus, for a one-to-many relationship, a “1” will be
put on one end and “N” will be put on the other
end of the line.

Relationships reflect some properties of the
problem domain. For example, a course has many
students and a student is taking many courses,
leading to many-to-many relationship between
courses and students. But a student studies in exactly
one college though the college has many students,
leading to manyto- one relationship between
students and college. A department in a college has
exactly one head, and one person can be Head of
only one department, leading to one-to-one
relationship.

MCA II YEAR III SEMESTER

58
Rahul Publications

Rahul Publications

Let us draw the ER diagram for the university auction system, some use cases of which were
discussed earlier. From the use cases described, we can easily identify some entities—users, categories,
items, and bids. The relationships between them are also clear. A user can sell many items, but each item
has only one seller, so there is a one-to-many relationship “Sell” between the user and items. Similarly,
there is a one-to-many relationship between items and bids, between users and bids, and between categories
and items.

User
Sells

Items Categories

Bids

N 1

1

N1

N

Places Bid N

1

From the ER diagram, it is easy to determine the initial logical structure of the tables. Each entity
represents a table, and relationships determine what fields a table must have to support the relationship,
in addition to having fields for each of the attributes. For example, from the ER diagram for the auction
system, we can say that there will be four tables for users, categories, items, and bids. As user is related to
item by one-to-many, the item table should have a user-ID field to uniquely identify the user who is selling
the item. Similarly, the bid table must have a user-ID to identify the user who placed the bid, and an item-
ID to identify the item for which the bid has been made.

As we can see, an ER diagram is complementary to methods like use cases. Whereas use cases focus
on the nature of interaction and functionality, ER diagrams focus on the structure of the entities being
used in the use cases. Due to their complementary nature, both use cases and ER diagrams can be used
while analyzing the requirements of a system and both may be contained in an SRS.

2.7 SOFTWARE ARCHITECTURE

Q14. Explain about software architecture state its characteristics.

Ans : (Imp.)

Any complex system is composed of subsystems that interact under the control of system design
such that the system provides the expected behavior. When designing such a system, therefore, the logical
approach is to identify the subsystems that should compose the system, the interfaces of these subsystems,
and the rules for interaction between the subsystems. This is what software architecture aims to do.

Software architecture is a relatively recent area. As the software systems increasingly become
distributed and more complex, architecture becomes an important step in building the system. Due to a
wide range of options now available for how a system may be configured and connected, carefully
designing the architecture becomes very important. It is during the architecture design where choices like
using some type of middleware, or some type of backend database, or some type of server, or some type
of security component are made. Architecture is also the earliest place when properties like reliability and
performance can be evaluated for the system, a capability that is increasingly becoming important.

Software Architecture also called High Level Software Design is the first design step after analyzing
all requirements for software. The goal is to define a software structure which is able to fulfill the

UNIT - II SOFTWARE ENGINEERING

59
Rahul Publications

Rahul Publications

requirements. Also the non-functional requirements, such as scalability, portability and maintainability
have to be considered in this step.

This first design step could be more or less independent of a programming language. However, the
programming language has to be defined prior to defining the interfaces.

I) The Static Architecture

The first step in designing software is to define the static architecture. Simply speaking this is a very
high level outline of the components and layers of software. Even if there are no requirements which
explicitly ask for some of the below listed features, it is good design style to adhere to the following
principles :

1. Define layers which make the functional part of the software independent of a hardware platform.
There should be a hardware abstraction layer which encapsulates microcontroller specific code and
features within the layer. All other layers have to be free of controller specific code. Another layer
called “Physical Layer” should adapt the functional software to the specific signals. This is a data
processing layer which filters signals and prepares them to be presented in physical units and defined
resolutions at its interface.

2. If necessary, design a layer to adapt to a special operating system. Operating systems may offer
services and semaphores, but never use them directly in your functional software. Define your own
services and semaphores and go through a special layer to adapt them to the operating system
services.

Functional Software

HW Abstraction Layer

Hardware

O
pe

ra
ti

n
g

S
ys

te
m

O
S

 A
da

pt
at

io
n

La
ye

r

3. Design any additional layers inside your functional software as appropriate.

4. Design components inside your functional software. Depending on your requirements and future
strategies it may be wise to e.g. design communication protocol components in a way that they can
be easily removed and replaced by another protocol, to adapt to different platforms and systems.
E.g. in the automotive industry the CAN bus is widely used for communication between the various
electronic systems in a vehicle. However some customers require different communication systems
as for example Flex Ray or any proprietary system. Your software can be designed in a way to
modify the communication systems and protocols easily. Almost as easy as “plug and play”, if the
design is done properly.

MCA II YEAR III SEMESTER

60
Rahul Publications

Rahul Publications

Com.
Protocol

Function
Block

1

Function
Block

2

Function
Block

n

HW Abstraction Layer

Hardware

Framework

O
pe

ra
tin

g
Sy

st
em

O
S

A
da

pt
at

io
n

La
ye

r

5. Design an own framework which controls the calls and interactions of your software.

6. Consider organizational aspects in your architecture. Parts of the software may be developed by
different departments or even outsourced to external companies. Your static architecture has to
reflect this so that complete components or even layers can be assigned to a vendor. This has to be
also reflected in the interface definition.

The Interfaces

The design of your interfaces is another element which adds to the stability, portability and
maintainability of your software. The following things have to be observed :

1. Only use function calls as interfaces and refrain from using memory pools or any other globally
shared elements as interface.

2. Make your interfaces as narrow as possible. Therefore use simple basic data types rather than
complicated proprietary structures at the interfaces. It is sometimes amazing how simple interfaces
can be if the functionality is distributed in a sensible way in appropriate components.

3. Preferably make your interfaces uni-directional. This means that input components provide interfaces
used by the processing components and layers. Avoid bidirectional interaction between the same
components.

4. Describe your interfaces clearly. Already in the architecture the kind of information, the data width,
resolution and sign has to be defined. This is especially important if components are developed by
different vendors.

II) The Dynamic Architecture

i) Operating Systems and Timing

Basically there are two categories of microcontroller systems. The first one is EVENT driven, as e.g.
cell phones and other modern communication equipment.

The other kind of application is TIME driven. These microcontroller systems usually have the task to
measure and evaluate signals and react on this information accordingly. This measuring activity means
that signal sampling has to be performed. Additionally there may be activities like feedback current controls
which have to be performed. Both activities imply by the underlying theories that sample rates have to be
as exact as possible.

Both categories of systems are called REALTIME SYSTEMS, but they are like two different worlds!

UNIT - II SOFTWARE ENGINEERING

61
Rahul Publications

Rahul Publications

The EVENT driven systems are comparatively simple. The are usually in an idle state until one of
the defined events triggers a task or process, which is executed sequentially until it is finished and the
system returns to the idle state. During the execution of such a task these systems usually do not react on
other events. This “first comes first serves” principle can be seen in a cell phone, where incoming calls are
ignored after you started to dial an outgoing call.

TIME driven system is much more complicated. Usually all possible inputs to the system have to be
sampled and all outputs have to be served virtually simultaneously. This means that time slices have to be
granted to the various activities and their duration has to be defined and limited to ensure the overall
function of the system.

It would be too much to go into more details here. However there are some general rules which
should be considered :

1. The CPU selection should be made according to the application. There are some CPUs which
support time driven application in an optimized way. E.g. it is recommendable to have sufficient
interrupt levels, CAPCOM units and I/O ports which can be accessed without delays for time driven
applications.

In recent years some well-known microcontrollers which originate in the event driven world were
pushed into the time driven market. The ease of development and stability of the systems suffer
from this. Although the attempt was made by the CPU manufacturer to cover for that by designing
suitable peripheral units, the whole situation still looks like an odd patchwork rather than a sound
design.

2. Operating systems can be event driven and non-preemptive for EVENT driven applications.

3. Operating systems should be time driven and preemptive for TIME driven systems.

4. Standard operating systems may fail you for high speed tasks, such as a 250 micro second cyclic
tasks for feedback current controls. In this case you have to do this by timer interrupts outside of the
operating system. Therefore have a close look at the OS from the shelf before you base your
system on it.

ii) Module Design

Module design which is also called “low level design” has to consider the programming language
which shall be used for implementation. This will determine the kind of interfaces you can use and a
number of other subjects. On these pages I want focus on module design for the C programming language
and show some crucial principles for a successful design, which are the following:

iii) Object Orientation

Object orientation is nowadays usually associated with certain design methods like UML and
programming languages like C++ or Java. However, the principles of object orientation were developed
long before these methods and programming languages were invented. The first steps of object oriented
design were done by using C. And indeed object orientation is a principle of design rather than a tool or
method based feature. Some of these principles are:

1. Orientation of program components at the real physical world. This means that the division of a
software package is done according to the real outside world of a system and according to main
internal tasks of such a system.

2. Combining of all elements of a software (i.e. data, definitions and procedures) into an object. This
means that everything that is needed to handle an element of the system is grouped and contained
in one object. This is called encapsulation and will be further elaborated.

3. Access to the object’s data and functions via a clearly defined narrow interface and hiding of elements
which are not required for the outside world. Example:

MCA II YEAR III SEMESTER

62
Rahul Publications

Rahul Publications
iv) Encapsulation and Information Hiding

The principle of encapsulation goes hand in hand with “information hiding” and is part of the idea

of object orientation. The principle is that only the data which are part of the interface of an object are

visible to the outside world. Preferably these data are only available via function calls, rather than being
presented as global variables. An encapsulated module design (related to C-programs) can be achieved

by :

1. The use of local variables inside the functions as far as possible. I.e. avoid variables with validity
across functions or even modules.

2. The use of C-function interfaces i.e. pass parameters and return parameters for data exchange,

rather than global or static variables.

3. If values have to have a lifetime bejond one execution loop, use static variables rather than global
variables.

4. Design your software with a synchronized control and data flow as outlined below.

The advantages of encapsulation are at hand :

 No interference from other software parts. I.e. global variables are not available to the outside

world and thus no other software portion can access them to modify them.

 No unexpected results for users of an object. Accessing global variables inside another object for

reading may give you unexpected behaviour of these values. Unless you fully understand and
consider the interiors of another object you never can be sure if it is behaving as expected. Clearly

UNIT - II SOFTWARE ENGINEERING

63
Rahul Publications

Rahul Publications

defined interfaces can be tested and documented regarding their behavior. Some global value from
in between a module may give you surprises.

 Good testability of the individual components.

 Good maintainability because of clearly defined behavior and interfaces.

 Reduced resource consumption! In experienced programmers don’t believe this, but a couple of
design improvements we did in the past clearly confirmed it again and again. Runtime is optimized
in many cases by up to 40%. If the outlined design principles are followed consequently values are
kept in CPU registers rather than in memory. The access to registers is usually much faster than a
memory access. RAM is thus optimized by 30-40% as well, since variables are in registers or on the
dynamic stack rather than on fixed locations in the memory. These advantages are much bigger
than the tradeoff i.e. the execution time and stack consumption for calling a couple of additional
functions.

Synchronizing of Control and Data Flow

A picture tells more than thousand words in this case. Below you see a part of a typical design of
microcontroller software. This is done the “classical” way i.e. in an “open” design using global variables
and not using the interfaces of the C-functions.

This is the way a lot of microcontroller software is still done today. As you can see there are mainly
global variables, and they are accessed form various functions. Can you imagine what happens if the
sequence of the function calls is modified? This code is hard to maintain and even harder to test and may
have a lot of surprises for you, up to field re-calls of your products. A surprise you certainly don’t want to
have!

In this picture you can see basically the same software following the principles of encapsulation
and synchronized control and data flow :

MCA II YEAR III SEMESTER

64
Rahul Publications

Rahul Publications
How you can achieve this?

1. Follow the ideas of object orientation.

2. Make use of the encapsulation principles as outlined above.

3. Use the C-function interfaces and - use only C-functions as interfaces.

4. Make your system data flow driven. This means that e.g. if you expect an output of your system
you should call the output generating function. This function needs data to make decisions and this
data it gets by calling other functions in turn which e.g. do calculations and evaluation of intermediate
results. The intermediate results are aquired by again calling other functions which aquire and
prepare peripheral inputs e.g. sensors, etc.. Of course there are still a lot of things to consider even
is a design as we just outlined, but in the end it will be stable and understandable, and even
resource saving.

2.7.1 Role of Software Architecture Views

Q15. Explain the role of software architecture.

Ans :
Generally speaking, architecture of a system provides a very high level view of the parts of the

system and how they are related to form the whole system. That is, architecture partitions the system in
logical parts such that each part can be comprehended independently, and then describes the system in
terms of these parts and the relationship between these parts.

Any complex system can be partitioned in many di erent ways, each providing a useful view and
each having di erent types of logical parts. The same holds true for a software system—there is no unique
structure of the system that can be described by its architecture; there are many possible structures.

UNIT - II SOFTWARE ENGINEERING

65
Rahul Publications

Rahul Publications

Due to this possibility of having multiple
structures, one of the most widely accepted
definitions of software architecture is that the
software architecture of a system is the structure or
structures of the system, which comprise software
elements, the externally visible properties of those
elements, and the relationships among them. This
definition implies that for elements in architecture,
we are only interested in those abstractions that
specify those properties that other elements can
assume to exist and that are needed to specify
relationships. Details on how these properties are
supported are not needed for architecture. This is
an important capability that allows architecture
descriptions to represent a complex system in a
succinct form that is easily comprehended.

An architecture description of a system will
therefore describe the di erent structures of the
system. The next natural question is why should a
team building a software system for some customer
be interested in creating and documenting the
structures of the proposed system. Some of the
important uses that software architecture descriptions
play are [6, 23, 54]:

1. Understanding and communication

An architecture description is primarily to
communicate the architecture to its various
stakeholders, which include the users who will use
the system, the clients who commissioned the
system, the builders who will build the system, and,
of course, the architects. Through this description
the stakeholders gain an understanding of some
macro properties of the system and how the system
intends to ful-fil l the functional and quality
requirements. As the description provides a common
language between stakeholders, it also becomes the
vehicle for negotiation and agreement among the
stakeholders, who may have conflicting goals.

2. Reuse

The software engineering world has, for a
long time, been working toward a discipline where
software can be assembled from parts that are
developed by di erent people and are available for
others to use. If one wants to build a software
product in which existing components may be
reused, then architecture becomes the key point at
which reuse at the highest level is decided. The
architecture has to be chosen in a manner such that

the components which have to be reused can fit
properly and together with other components that
may be developed. Architecture also facilitates reuse
among products that are similar and building
product families such that the common parts of
these di erent but similar products can be reused.
Architecture helps specify what is fixed and what is
variable in these diferent products, and can help
minimize the set of variable elements such that di
erent products can share software parts to the
maximum. Again, it is very hard to achieve this type
of reuse at a detail level.

3. Construction and Evolution

As architecture partitions the system into
parts, some architecture-provided partitioning can
naturally be used for constructing the system, which
also requires that the system be broken into parts
such that di erent teams (or individuals) can
separately work on dif erent parts. A suitable
partitioning in the architecture can provide the
project with the parts that need to be built to build
the system. As, almost by definition, the parts
specified in an architecture are relatively
independent (the dependence between parts
coming through their relationship), they can be built
independently.

4. Analysis

It is highly desirable if some important
properties about the behavior of the system can be
determined before the system is actually built. This
will allow the designers to consider alternatives and
select the one that will best suit the needs. Many
engineering disciplines use models to analyze design
of a product for its cost, reliability, performance,
etc. Architecture opens such possibilities for software
also. It is possible (though the methods are not fully
developed or standardized yet) to analyze or predict
the properties of the system being built from its
architecture. For example, the reliability or the
performance of the system can be analyzed. Such
an analysis can help determine whether the system
will meet the quality and performance requirements,
and if not, what needs to be done to meet the
requirements.

For example, while building a website for
shopping, it is possible to analyze the response time
or throughput for a proposed architecture, given
some assumptions about the request load and

MCA II YEAR III SEMESTER

66
Rahul Publications

Rahul Publications

hardware. It can then be decided whether the
performance is satisfactory or not, and if not, what
new capabilities should be added (for example, a
di erent architecture or a faster server for the back
end) to improve it to a satisfactory level.

Not all of these uses may be significant in a
project and which of these uses is pertinent to a
project depends on the nature of the project. In
some projects communication may be very
important, but a detailed performance analysis may
be unnecessary (because the system is too small or
is meant for only a few users). In some other
systems, performance analysis may be the primary
use of architecture.

2.8 ARCHITECTURE STYLES

Q16. What are the different views of Software
Architecture?

Ans : (Imp.)

There is a general view emerging that there
is no unique architecture of a system. The definition
that we have adopted (given above) also expresses
this sentiment. Consequently, there is no one
architecture drawing of the system. The situation is
similar to that of civil construction, a discipline that
is the original user of the concept of architecture
and from where the concept of software architecture
has been borrowed.

For a building, if you want to see the floor
plan, you are shown one set of drawings. If you are
an electrical engineer and want to see how the
electricity distribution has been planned, you will
be shown another set of drawings. And if you are
interested in safety and firefighting, another set of
drawings is used. These drawings are not
independent of each other they are all about the
same building. However, each drawing provides a
different view of the building, a view that focuses
on explaining one aspect of the building and tries
to a good job at that, while not divulging much
about the other aspects. And no one drawing can
express all the different aspects such a drawing will
be too complex to be of any use.

Similar is the situation with software
architecture. In software, the different drawings are
called views. A view represents the system as

composed of some types of elements and
relationships between them. Which elements are
used by a view, depends on what the view wants to
highlight. Different views expose different properties
and attributes, thereby allowing the stakeholders and
analysts to properly evaluate those attributes for the
system. By focusing only on some aspects of the
system, a view reduces the complexity that a reader
has to deal with at a time, thereby aiding system
understanding and analysis.

A view describes a structure of the system.
We will use these two concepts views and structures
interchangeably. We will also use the term
architectural view to refer to a view. Many types of
views have been proposed. Most of the proposed
views generally belong to one of these three types:

i) Module

ii) Component and connector

iii) Allocation

i) Module

In a module view, the system is viewed as a
collection of code units, each implementing some
part of the system functionality. That is, the main
elements in this view are modules. These views are
code-based and do not explicitly represent any
runtime structure of the system. Examples of
modules are packages, a class, a procedure, a
method, a collection of functions, and a collection
of classes.

The relationships between these modules are
also code-based and depend on how code of a
module interacts with another module. Examples
of relationships in this view are “is a part of” (i.e.,
module B is a part of module A), “uses or depends
on” (a module A uses services of module B to
perform its own functions and correctness of module
A depends on correctness of module B), and
“generalization or specialization” (a module B is a
generalization of a module A).

ii) Component and Connector

In a component and connector (C&C) view,
the system is viewed as a collection of runtime entities
called components. That is, a component is a unit
which has an identity in the executing system.
Objects (not classes), a collection of objects, and a
process are examples of components. While
executing, components need to interact with others

UNIT - II SOFTWARE ENGINEERING

67
Rahul Publications

Rahul Publications

to support the system services. Connectors provide
means for this interaction. Examples of connectors
are pipes and sockets. Shared data can also act as a
connector. If the components use some middleware
to communicate and coordinate, then the
middleware is a connector. Hence, the primary
elements of this view are components and
connectors.

iii) Allocation

An allocation view focuses on how the di erent
software units are allocated to resources like the
hardware, file systems, and people. That is, an
allocation view specifies the relationship between
software elements and elements of the environments
in which the software system is executed. They
expose structural properties like which processes run
on which processor, and how the system files are
organized on a file system.

An architecture description consists of views
of different types, with each view exposing some
structure of the system. Module views show how
the software is structured as a set of implementation
units, C&C views show how the software is
structured as interacting runtime elements, and
allocation views show how software relates to non-
software structures. These three types of view of
the same system form the architecture of the system.

Note that the different views are not unrelated.
They all represent the same system. Hence, there
are relationships between elements in one view and
elements in another view. These relationships may
be simple or may be complex. For example, the
relationship between modules and components may
be one to one in that one module implements one
component. On the other hand, it may be quite
complex with a module being used by multiple
components, and a component using multiple
modules. While creating the different views, the
designers have to be aware of this relationship.

The next question is what are the standard
views that should be expressed for describing the
architecture of a system? To answer this question,
the analogy with buildings may again help. If one is
building a simple small house, then perhaps there
is no need to have a separate view describing the
emergency and the fire system. Similarly, if there is
no air conditioning in the building, there need not
be any view for that. On the other hand, an office
building will perhaps require both of these views, in

addition to other views describing plumbing, space,
wiring, etc.

However, despite the fact that there are
multiple drawings showing di erent views of a
building, there is one view that predominates in
construction - that of physical structure. This view
forms the basis of other views in that other views
cannot really be completed unless this view can be
done. Other views may or may not be needed for
constructing a building, depending on the nature
of the project. Hence, in a sense, the view giving
the building structure may be considered as the
primary view in that it is almost always used, and
other views rely on this view substantially. The view
also captures perhaps the most important property
to be analyzed in the early stages, namely, that of
space organization.

The situation with software architecture is also
somewhat similar. As we have said, depending on
what properties are of interest, different views of
the software architecture are needed. However, of
these views, the C&C view has become the defacto
primary view, one which is almost always prepared
when an architecture is designed (some definitions
even view architecture only in terms of C&C views).
In this chapter, we will focus primarily on the C&C
view. A note about relationship between architecture
and design is in order.

As partitioning a system into smaller parts and
composing the system from these parts is also a goal
of design, a natural question is what is the difference
between a design and architecture as both aim to
achieve similar objectives and seem to fundamen-
tally rely on the divide and conquer rule? First, it
should be clear that architecture is a design in that it
is in the solution domain and talks about the
structure of the proposed system. Furthermore, an
architecture view gives a high-level view of the
system, relying on abstraction to convey the
meaning - something which design also does. So,
architecture is design. We can view architecture as a
very high-level design, focusing only on main
components, and the architecture activity as the first
step in design. What we term as design is really about
the modules that will eventually exist as code. That
is, they are a more concrete representation of the
implementation (though not yet an implementation).

MCA II YEAR III SEMESTER

68
Rahul Publications

Rahul Publications

Consequently, during design lower-level
issues like the data structures, files, and sources of
data, have to be addressed, while such issues are
not generally significant at the architecture level. We
also take the view that design can be considered as
providing the module view of the architecture of
the system.

The boundaries between architecture and
high-level design are not fully clear. The way the
field has evolved, we can say that the line between
architecture and design is really up to the designer
or the architect. At the architecture level, one needs
to show only those parts that are needed to perform
the desired evaluation. The internal structure of these
parts is not important. On the other hand, during
design, designing the structure of the parts that can
lead to constructing them is one of the key tasks.
However, which parts of the structure should be
examined and revealed during architecture and
which parts during design is a matter of choice.
Generally speaking, details that are not needed to
perform the types of analysis we wish to do at the
architecture time are unnecessary and should be
left for design to uncover.

2.9 DOCUMENTING ARCHITECTURE DESIGN

Q17. Explain in brief the need and reasons
for documenting the software architec-
ture.

Ans :
Documenting architecture is an important

part of software development. Architecture must be
documented in a good amount of detail and should
be presented in an accessible form for many different
stakeholders. A simple search shows lots of material.
However, much of it tends to be pretty complex in
nature. Much like there is not one definition around
what an architect does, there is not one standard
precise way of documenting architecture.

Let’s look at some of the reasons around why
we need to document architecture.

 Whiteboard designs are not persistent!

 Teams grow in size, and explaining the
principles of architecture to a wider and wider
audience gets difficult.

 The various decisions that drive the design
could be forgotten and documenting them
could help us get some rationale.

 People don’t stay forever.

 Stakeholders have different concerns. This is
a solid way to address those concerns ahead
of time.

 This is an easy tool to visualize and plan for
many different needs.

 Distributed systems and approaches like SOA
have increased the overall design scope and
complexity. No longer is the idea of a single
system or a monolith accomplishing all the
needs. Invariably, any modern system is build
using multiple components and systems, and
the interaction of these components together
is what collectively accomplishes the business
task. It becomes important to document their
interaction.

These reasons pose several different
questions:

 What should we document?

 How do we document?

 What approach or view should we use?

 How do we communicate clearly?

This article will attempt to answer some of
these. However, the key point to remember is that
there is not one right or wrong way; the answer
depends on different things. It is important to
consistently and periodically review and correct.

Another related question that could drive
some of these concerns is the role of the architect.
There are different views, ranging from the extremes
of the architect being totally disconnected from the
technology to architects who are totally immersed
in technology working on bleeding edge research.
The reality tends to be in the middle, where the
architect is still expected to be technical and
equipped to have skills to converse with non-
technical stakeholders.

UNIT - II SOFTWARE ENGINEERING

69
Rahul Publications

Rahul Publications

Documentation Misnomers

Let us first start with the misnomers that seem
to be common :

 There are architects who specialize in
particular diagramming tools or diagrams.
They get so excited in the process of creating
these artifacts that all their time and effort is
spent focused on producing more and more
diagrams. These are the architects whom
sometimes I refer funnily as enterprise
artists rather than enterprise architects. We
have to remember that these diagrams are
means to an end and not the end itself. There
is nothing wrong in being artistic, but we are
not here to produce art but architecture! It’s
important to balance out the artistic urge and
its okay for some of the diagrams to be less
perfect in terms of coloring, shapes, etc.

 Similarly, there are another set of Architects
who use all sort of complex Architecture
Artifacts that’s available in the industry. They
simply love complexity and would like to talk
things in abstract and enjoy the kind of hallow
the mystery produces.

“Any intelligent fool can make things
bigger and more complex... It takes a touch
of genius and a lot of courage to move in the
opposite direction.”

However, they have complete disregard for
any feedback on whether what they produce is useful
to any stakeholders.

It’s important to remember that doing actual
architecture and addressing concerns of the
stakeholders is the primary role of an architect and
the tools and documentation play more of a support
role that helps us accomplish the primary role. So,
picking tools and techniques that would allow the
architect focus on his or her primary job is important.
Any tool that is over-engineered or makes people
spend more time is an absolute no for me.

Many architects are convinced that
documenting views alone is sufficient. The industry
has come to accept that software architecture cannot
be described in a simple one-dimensional model.
There are multiple goals and stakeholders and there
are different views to address the goals and concerns.
Architecture views are representations of the overall

architecture that are meaningful to one or more
stakeholders in the system. The architect chooses
and develops a set of views that will enable the
architecture to be communicated to and understood
by all the stakeholders and enable them to verify
that the system will address their concerns.
Documenting more than views including things like
architecture decisions, quality attributes, etc. are also
equally important.

The views could be produced using different
levels of notations. It is not a rule of thumb that
they always need to be produced only using formal
notations.

 Informal notations: custom conventions
(i.e., general diagramming tools).

 Semi-formal notations: some element of
semantics (i.e., UML).

 Formal notations: precise semantics
(i.e., ADL such as ArchiMate).

More formal notations tend to take more time
but allow us to produce less ambiguous artifacts.

So, what should a good architecture
document contain. There are no definite set of rules
and these are some of the suggestions that make
sense to me.

Identify Views

Here is a definition of architecture view from
OpenGroup :

“Architecture views are representations of the
overall architecture that are meaningful to one or
more stakeholders in the system. The architect
chooses and develops a set of views that will enable
the architecture to be communicated to, and
understood by, all the stakeholders, and enable
them to verify that the system will address their
concerns.”

Overall, we have come to a common
understanding that describing architecture in a
one-dimensional model is pretty complex to
represent as well as understand. One-dimensional
models are usually hard to understand and hard to
maintain and end up being very poor in satisfying
all of the different Stakeholder’s concerns. Just like
how traditional engineering produces different
diagrams (Ex: Floor Plans, Electricity, Security), the

MCA II YEAR III SEMESTER

70
Rahul Publications

Rahul Publications

IT Architect is also expected to produce different
views to address the concerns of the StakeHolders.
The approach of producing many different Views
allows us to represent complex systems in a
manageable and maintainable fashion and satisfies
many of the concerns of business and technical
stakeholders.

There are different approaches that support
this concept and are listed below. In general, the
idea is to separate and provide views that support
the following or more in detail. There are different
nomenclatures available and I am using what I see
to be the best fits.

 Module views: Internal working of a
component.

 Logical views: How different modules work
together to provide the business functionality.

 Physical views: How the components are
deployed.

 Behavior view: The dynamic aspects of the
system behavior and the variations. While the
views are concerned with the structure of the
system, these views focus on the behavior of
the system for various internal and external
stimuli and other behavior-driven inputs.

Example

 Krutchen 4+1 Architectural View Point.

 Siemen’s Four View Model.

 Rozanski Woods.

 Archimate View Points.

 UML 2.o.

It is important to also document which Views
address which of our stakeholder concerns to allow
stakeholders to focus on what is important for them.
Also there are different tooling available to satisfy
the different Views, each satisfying a variety of
concerns. It would be a good idea to identify and
decide on them across the spectrum to ensure
consistency.

Document Interfaces

The many different elements that make up
the System interact with each other through

interfaces. They are the key to building the Systems
and are important for many stakeholders like
Developers, Testers, operational folks etc. The
interface documentation should inform what the
consumers should know to interact with it in
combination with many other elements. Usually the
interfaces tend to be documented along with the
Module Views as a part of the Views. The interface
documentation is not just limited to the REST or
SOAP API documentation. Though they could be
classified as interface documentation and could be
produced using some of the standard tooling
available, they very well could be a Java or a C#
Interface.

These are some of the suggestions around
organizing interfaces.

 Name and version the interface.

 Provide details of operations and their
semantics

 Provide what variances are available with
respect to consuming the interface.

 Provide expected error conditions and error
handling details.

 Provide performance or reliability numbers.

 Provide behavior diagrams like “sequence
diagrams” in case the interaction is complex.

Document Key Decisions

A key responsibility of the Architect is to make
variety of decisions weighing in the different
concerns and tradeoffs. The approach of
understanding software architecture in terms of a
variety of architecture decisions is widely recognized.
The decisions if documented could help in the long
term around why certain design decisions were
made and the actual thinking behind these decisions.
A simple approach is to maintain a collection of
“architecturally significant” decisions in a decision
log. These are the decisions that impact many of
the architecture concerns like NFRs, interfaces,
Implementation Concerns, Design etc. The decision
log could include things like

 Context or background. Explain what the
issue is about and the options that are
available.

UNIT - II SOFTWARE ENGINEERING

71
Rahul Publications

Rahul Publications

 Decision. This includes the decision that is
taken and the rationale.

 Status. This involves whether the decision
is proposed or accepted. There are various
lifecycle events for a decision.

 Impact. What is the impact of the decision?
What do we gain or lose? What are the
tradeoffs?

 Stakeholders. Parties who are impacted by
decisions.

Document NFRs and Quality Attributes

This involves software that does not address
its quality concerns and won’t meet needs. It is
important to document the different quality
attributes and other NFRs.

 The design approach should consider the
nonfunctional requirements and related cost.

 Various factors like like performance
compliance, PCI and governance require-
ments, etc. that impact the design are visible
to the different stakeholders.

 Different architectural components providing
a service have quality attributes defined in
their interface documentation. They, in turn,
depend on all requirements.

 The NFRs should show how different
nonfunctional requirements are satisfied.

 It helps different stakeholders like quality
engineers and operational engineers to plan
in advance various tasks like load testing,
operational alerts, etc.

2.9.1 Building Blocks of Document
Architecture

Q18. How would you build software archi-
tecture document?

Ans : (Imp.)

Architecture is the fundamental organization
of a system embodied in its components, their

relationships to each other, and to the environment,
and the principles guiding its design and evolution
(IEEE 1471).

The definition suggested by IEEE (above)
refers to a solution architect and/or software
architect. However, as Microsoft suggests there are
other kinds of architects such as a Business Strategy
Architect. There are basically six types of Architects:

Business Strategy Architect

The purpose of this role is to change business
focus and define the enterprise’s to-be status. This
role, he says, is about the long view and about
forecasting.

 Business Architect: The mission of business
architects is to improve the functionality of
the business. Their job isn’t to architect
software but to architect the business itself and
the way it is run.

 Solution Architect: Solution architect is a
relatively new term, and it should refer also
to an equally new concept. Sometimes,
however, it doesn’t; it tends to be used as a
synonym for application architect.

 Software Architect: Software architecture
is about architecting software meant to
support, automate, or even totally change the
business and the business architecture.

 Infrastructure Architect: The technical
infrastructure exists for deployment of the
solutions of the solution architect, which
means that the solution architect and the
technical infrastructure architect should work
together to ensure safe and productive
deployment and operation of the system

 Enterprise Architect : Enterprise Architec-
ture is the practice of applying a
comprehensive and rigorous method for
describing a current and/or future structure
and behaviour for an organization’s processes,
information systems, personnel and
organizational subunits, so that they align with
the organization’s core goals and strategic

MCA II YEAR III SEMESTER

72
Rahul Publications

Rahul Publications

direction. Although often associated strictly
with information technology, it relates more
broadly to the practice of business
optimization in that it addresses business
architecture, performance management, and
process architecture as well (Wikipedia).

Business
Strategy Architect

Enterprise
Architect

Solution
Architect

Technical
Infrastructure

Architect

Business
Architect

Solution Architect
As we are techies let’s focus on Solution

Architect role :

It tends to be used as a synonym for
application architect. In an application-centric world,
each application is created to solve a specific business
problem, or a specific set of business problems. All
parts of the application are tightly knit together, each
integral part being owned by the application. An
application architect designs the structure of the
entire application, a job that’s rather technical in
nature. Typically, the application architect doesn’t
create, or even help create, the application
requirements; other people, often called business
analysts, less technically and more business-oriented
than the typical application architect, do that.

So if you are asked to get on board and
architecture a system based on a whole bunch of
requirements, you are very likely to be asked to do
solution architecture.

How to do that?

A while back a person who does not have a
technical background, but he has money so he is
the boss, was lecturing that in an ideal world no
team member has to talk to other team members.
At that time I was thinking that in my ideal world,
which is very close to the Agile world, everybody
can (or should) speak to everybody else. This points
out that how you architecture a system is strongly
tight to your methodology. It does not really make
a big difference that which methodology you follow
as long as you stick to the correct concepts. Likewise,

he was saying that the Software Architecture
Document is part of the BRD (Business Requirement
Document) as if it was technical a business person
(e.g. the stake holders) would not understand it.
And I was thinking to me that: mate! There are
different views being analyzed in a SAD. Some of
them are technical, some of them are not.

What the above story points out to me is that
solution architecture is the art of mapping the
business stuff to technical stuff, or in the other words,
it’s actually speaking about technical things in a
language which is understandable to business
people.

A very good way to do this is to putting
yourself in the stakeholders’ shoes. There are several
types of stakeholders in each project who have their
own views and their own concerns. This is the biggest
difference between the design and the architecture.
A designer thinks very technically while an architect
can think broadly and can look at a problem from
different views. Designers usually make a huge
mistake, which happens a lot in Australia: They put
everything in one document. Where I am doing a
solution architecture job now, I was given a 21-
mega-byte MS Word document which included
everything, from requirements to detailed class and
database design.

Such a document is very unlikely to be
understandable by the stakeholders and very hard
to use by developers. I reckon that this happens
because firstly designers don’t consider the
separation of stake holders and developers
concerns. Second, because it’s easier to write down
everything in a document. But I have to say that
this is wrong as SAD and design document (e.g.
TSD) are built for different purposes and for different
audiences (and in different phases if you are
following a phase-based methodology such as RUP).
If you put everything in a document, it’s like you
are cooking dinner and you put the ingredients
along with the utensils in a pot and boil them!!

A very good approach for looking at the
problem from the stakeholder’s point of view is the
4+1 approach. At this model, scenarios (or Use
Cases) are the base and we look at them from a
logical view (what are the building blocks of the
system), Process view (processes such as
asynchronous operations), Development (aka
Implementation) view and Physical (aka
Deployment) view. There are also optional views
such as Data View that you can use if you need to.
Some of the views are technical and some of them

UNIT - II SOFTWARE ENGINEERING

73
Rahul Publications

Rahul Publications

are not, however they must match and there must
be a consistency in the architecture so that technical
views can cover business views (e.g. demonstration
of a business process with a UML Activity Diagram
and/or State Diagram).

Logical
view

Process
view

Physical
view

Development
view

Use case
view

I believe that each software project is like a
spectrum that each stakeholder sees a limited part
of it. The role of an architect is to see the entire
spectrum. A good approach to do so (that I use a
lot) is to include a business vision (this might not be
a good term) in your SAD. It can be a billeted list, a
diagram or both, which shows what the application
looks like from a business perspective. Label each
part of the business vision with a letter or a number.
Then add an architectural overview and then map
it to the items of business vision indicating that which
part of the architecture is meant to address which
part of the business vision.

Q19. Explain the concept of Software
Architecture Document (SAD).

Ans :
There are a whole bunch of SAD templates

on the internet, such as the template offered by
RUP. However the following items seem to be
necessary for each architecture document:
 Introduction. This can include Purpose,

Glossary, Background of the project,
Assumptions, References etc. I personally
suggest that you explain that what kind of
methodology you are following? This will
avoid lots of debates, I promise!

 It is very important to clear the scope of the
document. Without a clear scope not only
you will never know that when you are
finished, you won’t be able to convince the
stakeholder that the architecture is
comprehensive enough and addresses all their
needs.

 Architectural goals and constraints: This can
include the goals, as well as your business and
architectural visions. Also explain the
constraints (e.g. if the business has decided
to develop the software system with Microsoft
.NET, it is a constraint). I would suggest that
you mention the components (or modules)
of the system when you mention your
architectural vision. For example say that it
will include Identity Management, Reporting
etc. And explain what your strategy to address
them is. As this section is intended to help
the business people to understand your
architecture, try to include clear and well-
organized diagrams.

 A very important item that you want to
mention is the architectural principles that you
are following. This is even more important
when the client organization maintains a set
of architectural principles.

 Quality of service requirements:
Quality of service requirements address
the quality attributes of the system, such
as performance, scalability, security etc.
These items must not be mentioned in
a technical language and must not
contain any details (e.g. the use of
Microsoft Enterprise Library 5).

 Use Case View: Views basically come
from 4+1 model so if you follow a
different model you might not have it.
However, it is very important that you
detect key scenarios (or Use Cases) and
mention them in a high-level. Again,
diagrams, such as Use Case Diagram,
help.

 Logical View : Logical view demon-
strates the logical decomposition of the
system, such as packages the build it. It
will help the business people and the
designers to understand the system
better.

 Process View: Use activity diagrams as
well as state diagrams (if necessary) to
explain the key processes of the system
(e.g. the process of approving a leave
request).

MCA II YEAR III SEMESTER

74
Rahul Publications

Rahul Publications

 Deployment View: Deployment view
demonstrates that how the system will
work in a real production environment.
I suggest that you put 2 types of
diagrams: one (normal) human
understandable diagram, such a Visio
Diagram that shows the network,
firewall, application server, database,
etc. Also a UML deployment diagram
that demonstrates the nodes and
dependencies. This will again helps the
business and technical people have
same understanding of the physical
structure of the system.

 Implementation View: This part is the
most interesting section of the techies. I
like to include the implementation
options (e.g. Java and .NET) and
provide a list of pros and cons for each
of them. Again, technical pros and cons
don’t make much sense to business
people. They are mostly interested in
Cost of Ownership and availability of
the resources and so on. If you suggest
a technology or if it has already been
selected, list the products and services
that are needed on a production
environment (e.g. IIS 7, SQL Server
2008). Also it’ll be good to include a
very high-level diagram of the system.

Web browser

Desktop
user

TCPIP

HTTPS

Firewall

ASP .NET Web Ser

Web Service

Back end .NETsoftware

OS

Web browser

Desktop
user

TCPIP

HTTPS

Firewall

ASP .NET Web Ser

Web Service

Back end .NETsoftware

OS

Also I like to explain the architectural patterns
that I’m going to use. If you are including this section
in the Implementation View, explain them enough
so that a business person can quite understand what
that pattern is for. For instance if you are using Lazy
Loading patter, explain that what problem does it
solve and why you are using it.

Needless to say that you have to also decide
which kind of Architecture style you are suggesting,
such as 3-Tier and N-Tier, Client-Server etc. Once
you have declared that, explain the components of
the system (Layers, Tiers and their relationships) by
diagrams.

This part also must include your implemen-
tation strategy for addressing the Quality of Service
Requirements, such as how will you address scaling
out.

 Data View: If the application is data centric,
explain the overall solution of data
management (never put a database design
in this part), your backup and restore strategy
as well as disaster recovery strategy.

 Be iterative: It is suggested that the
architecture (and in result the Software
Architecture Document) be developed
through two or more iterations. It’s impossible
to build a comprehensive architecture
document in one iteration as not only
Architecture has an impact on the
requirements, but also architecture begins
in an early stage and many of the scenarios
are likely to change.

How to prove that ?

Now that after doing lots of endeavor you
have prepared your SAD, how will you prove it to
the stakeholders? I assume that many of business
people do not have any idea about the content and
structure of an SAD and the amount of information
that you must include in it.

A good approach is to prepare a presentation
about the mission of the system, scope, goals, visions
and your approach. Invite the stakeholders to a
meeting and present the architecture to them and
explain that how the architecture covers their
business needs. If they are not satisfied, your
architecture is very likely to be incomplete.

UNIT - III SOFTWARE ENGINEERING

75
Rahul Publications

Rahul Publications
3.1 PLANNING A SOFTWARE PROJECT

Q1. What is a Software Project?

(OR)

Explain the planning a software project.

Ans :
Planning is the most important project

management activity. It has two basic objectives-
establish reasonable cost, schedule, and quality goals
for the project, and to draw out a plan to deliver
the project goals. A project succeeds if it meets its
cost, schedule, and quality goals. Without the project
goals being defined, it is not possible to even declare
if a project has succeeded. And without detailed
planning, no real monitoring or controlling of the
project is possible.

Often projects are rushed toward
implementation with not enough effort spent on
planning. No amount of technical effort later can
compensate for lack of careful planning. Lack of
proper planning is a sure ticket to failure for a large
software project. For this reason, we treat project
planning as an independent chapter. Note that we
also cover the monitoring phase of the project
management process as part of planning, as how
the project is to be monitored is also a part of the
planning phase.

The inputs to the planning activity are the
requirements specification and maybe the
architecture description. A very detailed require-
ments document is not essential for planning, but

UNIT
III

Planning a Software Project: Effort Estimation, Project Schedule and

staffing, Quality Planning, Risk Management Planning, Project Monitoring

Plan, Detailed Scheduling.

Design: Design concepts, Function oriented Design, Object Oriented

Design, Detailed Design, Verification, Metrics.

for a good plan all the important requirements must
be known, and it is highly desirable that key
architecture decisions have been taken.

There are generally two main outputs of the
planning activity: the overall project management
plan document that establishes the project goals on
the cost, schedule, and quality fronts, and defines
the plans for managing risk, monitoring the project,
etc.; and the detailed plan, often referred to as
the detailed project schedule, specifying the tasks
that need to be performed to meet the goals, the
resources who will perform them, and their
schedule. The overall plan guides the development
of the detailed plan, which then becomes the main
guiding document during project execution for
project monitoring.

 How to estimate effort and schedule for the
project to establish project goals and
milestones and determine the team size
needed for executing the project.

 How to establish quality goals for the project
and prepare a quality plan.

 How to identify high-priority risks that can
threaten the success of the project, and plan
for their mitigation.

 How to plan for monitoring a project using
measurements to check if a project is
progressing as per the plan.

 How to develop a detailed task schedule from
the overall estimates and other planning tasks
done such that, if followed, the overall goals
of the project will be met.

MCA II YEAR III SEMESTER

76
Rahul Publications

Rahul Publications

3.2 EFFORT ESTIMATION

Q2. Explain about Effort and Schedule
estimates of Software Projects.

Ans : (Imp.)

For a software development project, overall
effort and schedule estimates are essential
prerequisites for planning the project. These
estimates are needed before development is
initiated, as they establish the cost and schedule goals
of the project.

A more practical use of these estimates is in
bidding for software projects, where cost and
schedule estimates must be given to a potential client
for the development contract. (As the bulk of the
cost of software development is due to the human
effort, cost can easily be determined from effort by
using a suitable person-month cost value.) Effort
and schedule estimates are also required for
determining the staffing level for a project during
different phases, for the detailed plan, and for
project monitoring.

The accuracy with which effort can be
estimated clearly depends on the level of information
available about the project. The more detailed the
information, the more accurate the estimation can
be. Of course, even with all the information
available, the accuracy of the estimates will depend
on the effectiveness and accuracy of the estimation
procedures or models employed and the process.
If from the requirements specifications, the
estimation approach can produce estimates that are
within 20% of the actual effort about two-thirds of
the time, then the approach can be considered
good. Here we discuss two commonly used
approaches.

I) Top-Down Estimation Approach

Although the effort for a project is a function
of many parameters, it is generally agreed
that the primary factor that controls the effort
is the size of the project. That is, the larger
the project, the greater is the effort
requirement. The topdown approach utilizes
this and considers effort as a function of project

size. Note that to use this approach, we need
to first determine the nature of the function,
and then to apply the function, we need to
estimate the size of the project for which effort
is to be estimated.
If past productivity on similar projects is
known, then it can be used as the estimation
function to determine effort from the size. If
productivity is P KLOC/PM, then the effort
estimate for the project will be SIZE/P person
months. Note that as productivity itself
depends on the size of the project (larger
projects often have lower productivity), this
approach can work only if the size and type
of the project are similar to the set of projects
from which the productivity P was obtained
(and that in the new project a similar
productivity can be obtained by following a
process similar to what was used in earlier
projects).

A more general function for determining
effort from size that is commonly used is of
the form:

EFFORT = a * SIZEb,
where a and b are constants, and project size
is generally in KLOC (size could also be in
another size measure called function points
which can be determined from requirements).
Values for these constants for an organization
are determined through regression analysis,
which is applied to data about the projects
that have been performed in the past. For
example, Watson and Felix [81] analyzed the
data of more than 60 projects done at IBM
Federal Systems Division, ranging from 4000
to 467,000 lines of delivered source code,
and found that if the SIZE estimate is in
thousands of delivered lines of code (KLOC),
the total effort, E, in person-months (PM) can
be given by the equation E = 5.2(SIZE).91.
In the COnstructive COst MOdel
(COCOMO), for the initial estimate (also
called nominal estimate) the equation for an
organic project is

E = 3.9(SIZE)..
Though size is the primary factor affecting cost,
other factors also have some effect. In the
COCOMO model, after determining the initial

UNIT - III SOFTWARE ENGINEERING

77
Rahul Publications

Rahul Publications

estimate, some other factors are incorporated for obtaining the final estimate. To do this, COCOMO
uses a set of 15 different attributes of a project called cost driver attributes. Examples of the attributes
are required software reliability, product complexity, analyst capability, application experience, use
of modern tools, and required development schedule. Each cost driver has a rating scale, and for
each rating, a multiplying factor is provided. For example, for the reliability, the rating scale is very
low, low, nominal, high, and very high; the multiplying factors for these ratings are .75, .88, 1.00,
1.15, and 1.40, respectively. So, if the reliability requirement for the project is judged to be low,
then the multiplying factor is .75, while if it is judged to be very high, the factor is 1.40. The
attributes and their multiplying factors for different ratings.

Rating
 Cost Drivers Very Low Nominal High Very

Low High

Product Attributes
RELY, required reliability .75 .88 1.00 1.15 1.40
DATA, database size .94 1.00 1.08 1.16
CPLX, product complexity .70 .85 1.00 1.15 1.30
Computer Attributes
TIME, execution time constraint 1.00 1.11 1.30
STOR, main storage constraint 1.00 1.06 1.21
VITR, virtual machine volatility .87 1.00 1.15 1.30
TURN, computer turnaround time .87 1.00 1.07 1.15
Personnel Attributes
ACAP, analyst capability 1.46 1.19 1.00 .86 .74
AEXP, application exp. 1.29 1.13 1.00 .91 .82
PCAP, programmer capability 1.42 1.17 1.00 .86 .70
VEXP, virtual machine exp. 1.21 1.10 1.00 .90
LEXP, prog. language exp. 1.14 1.07 1.00 .95
Project Attributes
MODP, modern prog. practices 1.24 1.10 1.00 .91 .82
TOOL, use of SW tools 1.24 1.10 1.00 .91 .83
SCHED, development schedule 1.23 1.08 1.00 1.04 1.10

The multiplying factors for all 15 cost drivers are multiplied to get the effort adjustment factor
(EAF). The final effort estimate, E, is obtained by multiplying the initial estimate by the EAF. In other
words, adjustment is made to the size-based estimate using the rating for these 15 different factors.

As an example, consider a system being built for supporting auctions in a university (some of the
use cases of this were discussed in the previous chapter). From the use cases and other requirements, it is
decided that the system will comprise a few different modules. The modules and their expected sizes are:
Login 200 LOC
Payment 200 LOC
Administrator interface 600 LOC
0Seller functions 200 LOC
Buyer functions 500 LOC
View and bookkeeping 300 LOC
TOTAL 2000 LOC

MCA II YEAR III SEMESTER

78
Rahul Publications

Rahul Publications

The total size of this software is estimated to
be 2 KLOC. If we want to use COCOMO for
estimation, we should estimate the value of
the different cost drivers. Suppose we expect
that the complexity of the system is high, the
programmer capability is low, and the
application experience of the team is low. All
other factors have a nominal rating. From
these, the effort adjustment factor (EAF) is

EAF = 1.15 * 1.17 * 1.13 = 1.52.

The initial effort estimate for the project is
obtained from the relevant equations. We
have

Ei = 3.9 * 2.91 = 7.3 PM.

Using the EAF, the adjusted effort estimate is

E = 1.52 * 7.3 = 11.1 PM.

From the overall estimate, estimates of the
effort required for the different phases in the
projects can also be determined. This is
generally done by using an effort distribution
among phases. The percentage of total effort
spent in a phase varies with the type and size
of the project, and can be obtained from data
of similar projects in the past.

It should be noted that to use the top-down
approach for estimation, even if we have a
suitable function, we need to have an estimate
of the project size. In other words, we have
replaced the problem of effort estimation by
size estimation. One may then ask, why not
directly do effort estimation rather than size
estimation? The answer is that size estimation
is often easier than direct effort estimation.
This is mainly due to the fact that the system
size can be estimated from the sizes of its
components (which is often easier to do) by
adding the size estimates of all the
components. Similar property does not hold
for effort estimation, as effort for developing
a system is not the sum of effort for developing
the components (as additional effort is needed
for integration and other such activities when
building a system from developed
components).

Clearly for top-down estimation to work well,
it is important that good estimates for the size
of the software be obtained. There is no

known “simple” method for estimating the
size accurately. When estimating software size,
the best way may be to get as much detail as
possible about the software to be developed
and to be aware of our biases when estimating
the size of the various components. By
obtaining details and using them for size
estimation, the estimates are likely to be closer
to the actual size of the final software.

II) Bottom-Up Estimation Approach

A somewhat different approach for effort
estimation is the bottom-up approach. In this
approach, the project is first divided into tasks
and then estimates for the different tasks of
the project are obtained. From the estimates
of the different tasks, the overall estimate is
determined. That is, the overall estimate of
the project is derived from the estimates of
its parts. This type of approach is also
called activity-based estimation. Essentially,
in this approach the size and complexity of
the project is captured in the set of tasks the
project has to perform.

The bottom-up approach lends itself to direct
estimation of effort; once the project is
partitioned into smaller tasks, it is possible to
directly estimate the effort required for them,
especially if tasks are relatively small. One
difficulty in this approach is that to get the
overall estimate, all the tasks have to be
enumerated. A risk of bottom-up methods is
that one may omit some activities. Also,
directly estimating the effort for some
overhead tasks, such as project management,
that span the project can be difficult.

If architecture of the system to be built has
been developed and if past information about
how effort is distributed over different phases
is known, then the bottom-up approach need
not completely list all the tasks, and a less
tedious approach is possible. Here we
describe one such approach used in a
commercial organization.

In this approach, the major programs (or
units or modules) in the software being built
are first determined. Each program unit is
then classified as simple, medium, or complex
based on certain criteria. For each classification

UNIT - III SOFTWARE ENGINEERING

79
Rahul Publications

Rahul Publications

unit, an average effort for coding (and unit
testing) is decided. This average coding effort
can be based on past data from a similar
project, from some guidelines, or on
experience of people.

Once the number of units in the three
categories of complexity is known and the
estimated coding effort for each program is
selected, the total coding effort for the project
is known. From the total coding effort, the
effort required for the other phases and
activities in the project is determined as a
percentage of coding effort. For this, from
information about the past performance of
the process, the likely distribution of effort in
different phases of this project is determined.
This distribution is then used to determine
the effort for other phases and activities from
the effort estimate of coding. From these
estimates, the total effort for the project is
obtained.

This approach lends itself to a judicious
mixture of experience and data. If suitable
past data are not available (for example, if
launching a new type of project), one can
estimate the coding effort using experience
once the nature of the different types of units
is specified. With this estimate, we can obtain
the estimate for other activities by working
with some reasonable or standard effort
distribution. This strategy can easily account
for activities that are sometimes difficult to
enumerate early but do consume effort by
budgeting effor t for an “other” or
“miscellaneous” category.

The procedure for estimation can be
summarized as the following sequence of
steps :

1. Identify modules in the system and classify
them as simple, medium, or complex.

2. Determine the average coding effort for
simple/medium/complex modules.

3. Gets the total coding effort using the coding
effort of different types of modules and the
counts for them?

4. Using the effort distribution for similar
projects, estimate the effort for other tasks
and the total effort.

5. Refine the estimates based on project-specific
factors.

This procedure uses a judicious mixture of
past data (in the form of distribution of effort) and
experience of the programmers. This approach is
also simple and similar to how many of us plan any
project. For this reason, for small projects, many
people find this approach natural and comfortable.

Note that this method of classifying programs
into a few categories and using an average coding
effort for each category is used only for effort
estimation. In detailed scheduling, when a project
manager assigns each unit to a member of the team
for coding and budgets time for the activity,
characteristics of the unit are taken into account to
give more or less time than the average.

3.3 PROJECT SCHEDULE AND STAFFING

Q3. What is Staffing? Explain Project
Schedule.

Ans : (Imp.)

After establishing a goal on the effort front,
we need to establish the goal for delivery schedule.
With the effort estimate (in person-months), it may
be tempting to pick any project duration based on
convenience and then fix a suitable team size to
ensure that the total effort matches the estimate.
However, as is well known now, person and months
are not fully interchangeable in a software project.
Person and months can be interchanged arbitrarily
only if all the tasks in the project can be done in
parallel, and no communication is needed between
people performing the tasks. This is not true for
software projects—there are dependencies between
tasks (e.g., testing can only be done after coding is
done), and a person performing some task in a
project needs to communicate with others
performing other tasks. As Brooks has pointed out
man and months are interchangeable only for
activities that require no communication among
men, like sowing wheat or reaping cotton. This is
not even approximately true of software”

MCA II YEAR III SEMESTER

80
Rahul Publications

Rahul Publications

However, for a project with some estimated effort, multiple schedules (or project duration) are
indeed possible. For example, for a project whose effort estimate is 56 person-months, a total schedule of
8 months is possible with 7 people. A schedule of 7 months with 8 people is also possible, as is a schedule
of approximately 9 months with 6 people. (But a schedule of 1 month with 56 people is not possible.
Similarly, no one would execute the project in 28 months with 2 people.) In other words, once the effort
is fixed, there is some flexibility in setting the schedule by appropriately staffing the project, but this
flexibility is not unlimited. Empirical data also suggests that no simple equation between effort and schedule
fits well.

The objective is to fix a reasonable schedule that can be achieved (if suitable number of resources
is assigned). One method to determine the overall schedule is to determine it as a function of effort. Such
function can be determined from data from completed projects using statistical techniques like fitting a
regression curve through the scatter plot obtained by plotting the effort and schedule of past projects. This
curve is generally nonlinear because the schedule does not grow linearly with effort. Many models follow
this approach [2, 12]. The IBM Federal Systems Division found that the total duration, M, in calendar
months can be estimated by M=4.1E.38. In COCOMO, the equation for schedule for an organic type of
software is M = 2.5E.38. As schedule is not a function solely of effort, the schedule determined in this
manner is essentially a guideline.

Another method for checking a schedule for medium-sized projects is the rule of thumb called
the square root check [58]. This check suggests that the proposed schedule can be around the square
root of the total effort in person months. This schedule can be met if suitable resources are assigned to the
project. For example, if the effort estimate is 50 person-months, a schedule of about 7 to 8 months will be
suitable. From this macro estimate of schedule, we can determine the schedule for the major milestones in
the project.

To determine the milestones, we must first understand the manpower ramp-up that usually takes
place in a project. The number of people that can be gainfully utilized in a software project tends to follow
the Rayleigh curve [71, 72]. That is, in the beginning and the end, few people are needed on the project;
the peak team size (PTS) is needed somewhere near the middle of the project; and again fewer people are
needed after that. This occurs because only a few people are needed and can be used in the initial phases
of requirements analysis and design. The human resources requirement peaks during coding and unit
testing, and during system testing and integration, again fewer people are required.

Often, the staffing level is not changed continuously in a project and approximations of the Rayleigh
curve are used: assigning a few people at the start, having the peak team during the coding phase, and
then leaving a few people for integration and system testing. If we consider design and analysis, build, and
test as three major phases, the manpower ramp-up in projects typically resembles the function. For ease
of scheduling, particularly for smaller projects, often the required people are assigned together around
the start of the project. This approach can lead to some people being unoccupied at the start and toward
the end. This slack time is often used for supporting project activities like training and documentation.

Given the effort estimate for a phase, we can determine the duration of the phase if we know the
manpower ramp-up. For these three major phases, the percentage of the schedule consumed in the build
phase is smaller than the percentage of the effort consumed because this phase involves more people.
Similarly, the percentage of the schedule consumed in the design and testing phases exceeds their effort
percentages. The exact schedule depends on the planned manpower ramp-up, and how many resources
can be used effectively in a phase on that project. Generally speaking, design requires about a quarter of
the schedule, build consumes about half, and integration and system testing consume the remaining
quarter. COCOMO gives 19% for design, 62% for programming, and 18% for integration.

UNIT - III SOFTWARE ENGINEERING

81
Rahul Publications

Rahul Publications
Design Build Test

Peak Team
Size

3.4 QUALITY PLANNING

Q4. Define Quality Planning. Write different Software Quality Factors.

Ans :

For quality, even if we set the goal in terms of expected delivered defect density, it is not easy to plan

for achieving this goal or for checking if a plan can meet these goals. Hence, often, quality goals are

specified in terms of acceptance criteria— the delivered software should finally work for all the situations

and test cases in the acceptance criteria. Further, there may even be an acceptance criterion on the

number of defects that can be found during the acceptance testing. For example, no more than n defects

are uncovered by acceptance testing.

The quality plan is the set of quality-related activities that a project plans to do to achieve the quality

goal. To plan for quality, let us first understand the defect injection and removal cycle, as it is defects that

determine the quality of the final delivered software.

Software development is a highly people-oriented activity and hence it is error-prone. In a software

project, we start with no defects (there is no software to contain defects). Defects are injected into the

software being built during the different phases in the project. That is, during the transformation from user

needs to software to satisfy those needs, defects are injected in the transformation activities undertaken.

These injection stages are primarily the requirements specification, the high-level design, the detailed

design, and coding.

To ensure that high-quality software is delivered, these defects are removed through the quality

control (QC) activities. The QC activities for defect removal include requirements reviews, design reviews,

code reviews, unit testing, integration testing, system testing, acceptance testing, etc. Figure 4.2 shows the

process of defect injection and removal.

MCA II YEAR III SEMESTER

82
Rahul Publications

Rahul Publications

Development
process

Requirements
analysis R Design R Coding R UT IT/ST AT

Defect Removal

R - Removal
UT - Unit Testing
IT - Integration Testing
ST - System Testing
AT - Acceptance Testing

Defect injection

As the final goal is to deliver software with low defect density, ensuring quality revolves around two
main themes: reduce the defects being injected, and increase the defects being removed. The first is often
done through standards, methodologies, following of good processes, etc., which help reduce the chances
of errors by the project personnel. (There are specific techniques for defect prevention also.) The quality
plan therefore focuses mostly on planning suitable quality control tasks for removing defects.

Reviews and testing are two most common QC activities utilized in a project. Whereas reviews are
structured, human-oriented processes, testing is the process of executing software (or parts of it) in an
attempt to identify defects. The most common approach for quality planning in a project is to specify the
QC activities to be performed in the project, and have suitable guidelines for performing each of the QC
tasks, such that the chances of meeting the quality goals are high. During project execution, these activities
are carried out in accordance with the defined procedures.

When this approach is used for ensuring quality, making quantitative claims can be quite hard. For
quantitative assessment of the quality processes, metrics-based analysis is necessary. That, however, is an
advanced topic, beyond the scope of this book (and indeed many organizations). Hence, for ensuring
quality, the reliance is primarily on applying suitable QC techniques at the right places in the process, and
using experience to ensure that sufficient QC tasks are done in the project.

Hence, the quality plan for the project is largely a specification of which QC task is to be done and
when, and what process and guidelines are to be used for performing the QC task. The choice depends
on the nature and goals and constraints of the project. Typically, the QC tasks will be schedulable tasks in
the detailed schedule of the project. For example, it will specify what documents will be inspected, what
parts of the code will be inspected, and what levels of testing will be performed. The plan can be considerably
enhanced if some expectations of defect levels that are expected to be found for the different quality
control tasks are also mentioned—these can then aid the monitoring of quality as the project proceeds.

3.5 RISK MANAGEMENT PLANNING

Q5. What is Risk Management in Software Projects? Give brief ideas of Risk Assessment
and Control.

Ans : (Imp.)

A software project is a complex undertaking. Unforeseen events may have an adverse impact on a
project’s ability to meet the cost, schedule, or quality goals. Risk management is an attempt to minimize

UNIT - III SOFTWARE ENGINEERING

83
Rahul Publications

Rahul Publications

the chances of failure caused by unplanned events. The aim of risk management is not to avoid getting
into projects that have risks but to minimize the impact of risks in the projects that are undertaken.

A risk is a probabilistic event—it may or may not occur. For this reason, we frequently have an
optimistic tendency to simply not see risks or to hope that they will not occur. Social and organizational
factors also may stigmatize risks and discourage clear identification of them. This kind of attitude gets the
project in trouble if the risk events materialize, something that is likely to happen in a large project. Not
surprisingly, then, risk management is considered first among the best practices for managing large software
projects. It first came to the forefront with Boehm’s tutorial on risk management. Since then, several
books have targeted risk management for software.

Risk Assessment

The goal of risk assessment is to prioritize the risks so that attention and resources can be focused on
the more risky items. Risk identification is the first step in risk assessment, which identifies all the different
risks for a particular project. These risks are project-dependent and identifying them is an exercise in
envisioning what can go wrong. Methods that can aid risk identification include checklists of possible risks,
surveys, meetings and brainstorming, and reviews of plans, processes, and work products.

Checklists of frequently occurring risks are probably the most common tool for risk identification—
most organizations prepare a list of commonly occurring risks for projects, prepared from a survey of
previous projects. Such a list can form the starting point for identifying risks for the current project.

Based on surveys of experienced project managers, Boehm has produced a list of the top 10 risk
items likely to compromise the success of a software project. Some of these risks along with the techniques
preferred by management for managing these risks. Top risks in a commercial software organization can
be found in.

S.No. Risk Item Risk Management Techniques

1. Personnel shortfalls Staffing with top talent: Job matching; Team
building; Key personnel agreements; Training
Prescheduling key people

2. Unrealistic Schedules Detailed cost and schedule estimation; Design to
and Budgets cost; Incremental development; Software reuse,

requirements scrubbing.

3. Developing the Wrong Organization analysis; Machine analysis; User
Software Functions. surveys; Prototyping; Early user’s manuals

4. Developing the Wrong Prototyping Scenarios; Task analysis; User
User Interface characterization.

5. Gold Plating Requirements scrubbing; Prototyping; Cost
benefit analysis, Design to cost

The top-ranked risk item is personnel shortfalls. This involves just having fewer people than necessary
or not having people with specific skills that a project might require. Some of the ways to manage this risk
are to get the top talent possible and to match the needs of the project with the skills of the available
personnel. Adequate training, along with having some key personnel for critical areas of the project, will
also reduce this risk.

The second item, unrealistic schedules and budgets, happens very frequently due to business and
other reasons. It is very common that high-level management imposes a schedule for a software project
that is not based on the characteristics of the project and is unrealistic. Underestimation may also happen
due to inexperience or optimism.

MCA II YEAR III SEMESTER

84
Rahul Publications

Rahul Publications

The next few items are related to require-
ments. Projects run the risk of developing the wrong
software if the requirements analysis is not done
properly and if development begins too early.
Similarly, often improper user interface may be
developed. This requires extensive rework of the
user interface later or the software benefits are not
obtained because users are reluctant to use it. Gold
plating refers to adding features in the software that
are only marginally useful. This adds unnecessary
risk to the project because gold plating consumes
resources and time with little return.

Risk identification merely identifies the
undesirable events that might take place during the
project, i.e., enumerates the “unforeseen” events
that might occur. It does not specify the probabilities
of these risks materializing nor the impact on the
project if the risks indeed materialize. Hence, the
next tasks are risk analysis and prioritization.

In risk analysis, the probability of occurrence
of a risk has to be estimated, along with the loss
that will occur if the risk does materialize. This is
often done through discussion, using experience and
understanding of the situation, though structured
approaches also exist.

Once the probabilities of risks materializing
and losses due to materialization of different risks
have been analyzed, they can be prioritized. One
approach for prioritization is through the concept
of risk exposure (RE), which is sometimes called
risk impact. RE is defined by the relationship

RE = Prob(UO) * Loss(UO)

where Prob(UO) is the probability of the risk
materializing (i.e., undesirable outcome)
andLoss(UO) is the total loss incurred due to the
unsatisfactory outcome. The loss is not only the
direct financial loss that might be incurred but also
any loss in terms of credibility, future business, and
loss of property or life. The RE is the expected value
of the loss due to a particular risk. For risk
prioritization using RE is, the higher the RE, the
higher the priority of the risk item.

Risk Control

The main objective of risk management is to
identify the top few risk items and then focus on
them. Once a project manager has identified and
prioritized the risks, the top risks can be easily

identified. The question then becomes what to do
about them. Knowing the risks is of value only if
you can prepare a plan so that their consequences
are minimal—that is the basic goal of risk
management.

One obvious strategy is risk avoidance, which
entails taking actions that will avoid the risk
altogether, like the earlier example of shifting the
building site to a zone that is not earthquake-prone.
For some risks, avoidance might be possible.

For most risks, the strategy is to perform the
actions that will either reduce the probability of the
risk materializing or reduce the loss due to the risk
materializing. These are called risk mitigation steps.
To decide what mitigation steps to take, a list of
commonly used risk mitigation steps for various
risks is very useful here. For the risks mentioned
suitable risk mitigation steps are also given.

Note that unlike risk assessment, which is
largely an analytical exercise, risk mitigation
comprises active measures that have to be
performed to minimize the impact of risks. In other
words, selecting a risk mitigation step is not just an
intellectual exercise. The risk mitigation step must
be executed (and monitored). To ensure that the
needed actions are executed properly, they must
be incorporated into the detailed project schedule.

Risk prioritization and consequent planning
are based on the risk perception at the time the risk
analysis is performed. Because risks are probabilistic
events that frequently depend on external factors,
the threat due to risks may change with time as
factors change. Clearly, then, the risk perception
may also change with time. Furthermore, the risk
mitigation steps undertaken may affect the risk
perception.

This dynamism implies that risks in a project
should not be treated as static and must be
monitored and reevaluated periodically. Hence, in
addition to monitoring the progress of the planned
risk mitigation steps, a project must periodically
revisit the risk perception and modify the risk
mitigation plans, if needed. Risk monitoring is the
activity of monitoring the status of various risks and
their control activities. One simple approach for risk
monitoring is to analyze the risks afresh at each major
milestone, and change the plans as needed.

UNIT - III SOFTWARE ENGINEERING

85
Rahul Publications

Rahul Publications

A Practical Risk Management Planning Approach

Though the concept of risk exposure is rich, a simple practical way of doing risk planning is to
simply categorize risks and the impacts in a few levels and then use it for prioritization. This approach is
used in many organizations. Here we discuss a simple approach used in an organization . In this approach,
the probability of a risk occurring is categorized as low, medium, or high. The risk impact can also be
classified as low, medium, and high. With these ratings, the following simple method for risk prioritization
can be specified :

S.No Risk Probability Impact Example Mitigation

1. Failure to meet the high Study white papers and guidelines
performance on perf. Train team on perf. tuning.

Update review checklist to look for
perf. pitfalls. Test application for perf.
during system testing.

2. Lock of people with Medium Medium Medium Train resources Review prototype
right skills. with customers.

Develop coding practices.

3. Complexity of application Medium Medium Medium Ensure ongoing knowledge transfer.
Deploy persons with prior experience
wtih the domain.

4. Manpower Medium Medium Medium Train a core group of four people.
attrition.

Rotates assignments among people.

Identify backups for key roles.

5. Unclear requirements Medium Medium Medium Review a prototype. Conduct a
midstage review.

1. For each risk, rate the probability of its happening as low, medium, or high.

2. For each risk, assess its impact on the project as low, medium, or high.

3. Rank the risks based on the probability and effects on the project; for example, a high-probability,
high-impact item will have higher rank than a risk item with a medium probability and high impact.
In case of conflict, use judgment.

4. Select the top few risk items for mitigation and tracking.

5. An example of this approach is given in Table, which shows the various ratings and the risk mitigation
steps. As we can see, the risk management plan, which is essentially this table, can be very brief and
focused. For monitoring the risks, one way is to redo risk management planning at milestones,
giving more attention to the risks listed in the project plan. During risk monitoring at milestones,
reprioritization may occur and mitigation plans for the remainder of the project may change,
depending on the current situation and the impact of mitigation steps taken earlier.

MCA II YEAR III SEMESTER

86
Rahul Publications

Rahul Publications

3.6 PROJECT MONITORING PLAN

Q6. What are different methods used for
monitoring a project?

Ans :
A project management plan is merely a

document that can be used to guide the execution
of a project. Even a good plan is useless unless it is
properly executed. And execution cannot be
properly driven by the plan unless it is monitored
carefully and the actual performance is tracked
against the plan.

Monitoring requires measurements to be
made to assess the situation of a project. If
measurements are to be taken during project
execution, we must plan carefully regarding what
to measure, when to measure, and how to measure.
Hence, measurement planning is a key element in
project planning. In addition, how the measurement
data will be analyzed and reported must also be
planned in advance to avoid the situation of
collecting data but not knowing what to do with it.
Without careful planning for data collection and its
analysis, neither is likely to happen.

(i) Measurements

The basic purpose of measurements in a
project is to provide data to project
management about the project’s current state,
such that they can effectively monitor and
control the project and ensure that the project
goals are met. As project goals are established
in terms of software to be delivered, cost,
schedule, and quality, for monitoring the state
of a project, size, effort, schedule, and defects
are the basic measurements that are needed.
Schedule is one of the most important metrics
because most projects are driven by
schedules and deadlines. Only by monitoring
the actual schedule can we properly assess if
the project is on time or if there is a delay. It
is, however, easy to measure because
calendar time is usually used in all plans.

Effort is the main resource consumed in a
software project. Consequently, tracking of
effort is a key activity during monitoring; it is
essential for evaluating whether the project is
executing within budget. For effort data some

type of timesheet system is needed where
each person working on the project enters
the amount of time spent on the project. For
better monitoring, the effort spent on various
tasks should be logged separately. Generally
effort is recorded through some on-line
system, which allows a person to record the
amount of time spent against a particular
activity in a project. At any point, total effort
on an activity can be aggregated.

Because defects have a direct relationship to
software quality, tracking of defects is critical
for ensuring quality. A large software project
may include thousands of defects that are
found by different people at different stages.
Just to keep track of the defects found and
their status, defects must be logged and their
closure tracked. If defects found are being
logged, monitoring can focus on how many
defects have been found so far, what
percentages of defects are still open, and
other issues. Defect tracking is considered one
of the best practices for managing a project.

Size is another fundamental metric because
it represents progress toward delivering the
desired functionality, and many data (for
example, delivered defect density) are
normalized with respect to size. The size of
delivered software can be measured in terms
of LOC (which can be determined through
the use of regular editors and line counters)
or function points. At a more gross level, just
the number of modules or number of features
might suffice.

For effective monitoring, a project must plan
for collecting these measurements. Most
often, organizations provide tools and policy
support for recording this basic data, which
is then available to project managers for
tracking.

(ii) Project Monitoring and Tracking

The main goal of project managers for
monitoring a project is to get visibility into
the project execution so that they can
determine whether any action needs to be
taken to ensure that the project goals are met.
As project goals are in terms of effort,
schedule, and quality, the focus of monitoring

UNIT - III SOFTWARE ENGINEERING

87
Rahul Publications

Rahul Publications

is on these aspects. Different levels of
monitoring might be done for a project. The
three main levels of monitoring are activity
level, status reporting, and milestone analysis.
Measurements taken on the project are
employed for monitoring.

Activity-level monitoring ensures that each
activity in the detailed schedule has been
done properly and within time. This type of
monitoring may be done daily in project team
meetings or by the project manager checking
the status of all the tasks scheduled to be
completed on that day. A completed task is
often marked as 100% complete in detailed
schedule this is used by tools like the Microsoft
Project to track the percentage completion
of the overall project or a higher-level task.
This monitoring is to ensure that the project
continues to proceed as per the planned
schedule.

Status reports are often prepared weekly to
take stock of what has happened and what
needs to be done. Status reports typically
contain a summary of the activities
successfully completed since the last status
report, any activities that have been delayed,
any issues in the project that need attention,
and if everything is in place for the next week.
Again, the purpose of this is to ensure that
the project is proceeding as per the planned
schedule.

The milestone analysis is done at each
milestone or every few weeks, if milestones
are too far apart, and is more elaborate.
Analysis of actual versus estimated for effort
and schedule is often included in the
milestone analysis. If the deviation is
significant, it may imply that the project may
run into trouble and might not meet its
objectives. This situation calls for project
managers to understand the reasons for the
variation and to apply corrective and
preventive actions if necessary. Defects found
by different quality control tasks, and the
number of defects fixed may also be
reported. This report monitors the progress
of the project with respect to all the goals.

3.7 DETAILED SCHEDULING

Q7. Explain the concept of detailed schedu-
ling.

Ans : (Imp.)

 For the detailed schedule, the major phases
identified during effort and schedule
estimation, are broken into small schedulable
activities in a hierarchical manner.

 For example, the detailed design phase can
be broken into tasks for developing the
detailed design for each module, review of
each detailed design, fixing of defects found,
and so on. For each detailed task, the project
manager estimates the time required to
complete it and assigns a suitable resource so
that the overall schedule is met, and the
overall effort also matches. In addition to the
engineering tasks that are the outcome of the
development process, the QC tasks identified
in the quality plan, the monitoring activities
defined in the monitoring plan, and the risk
mitigation activities should also be scheduled.

 At each level of refinement, the project
manager determines the effort for the overall
task from the detailed schedule and checks it
against the effort estimates. If this detailed
schedule is not consistent with the overall
schedule and effort estimates, the detailed
schedule must be changed. If it is found that
the best detailed schedule cannot match the
milestone effort and schedule, then the earlier
estimates must be revised. Thus, scheduling
is an iterative process.

 Generally, the project manager refines the
tasks to a level so that the lowest-level activity
can be scheduled to occupy no more than a
few days from a single resource. Activities
related to tasks such as project management,
coordination, database management, and
configuration management may also be listed
in the schedule, even though these activities
have less direct effect on determining the
schedule because they are ongoing tasks
rather than schedulable activities.
Nevertheless, they consume resources and
hence are often included in the project
schedule.

MCA II YEAR III SEMESTER

88
Rahul Publications

Rahul Publications

 Rarely will a project manager complete the detailed schedule of the entire project all at once. Once
the overall schedule is fixed, detailing for a phase may only be done at the start of that phase.

 For detailed scheduling, tools like Microsoft Project or a spreadsheet can be very useful. For each
lowest-level activity, the project manager specifies the effort, duration, start date, end date, and
resources. Dependencies between activities, due either to an inherent dependency (for example,
you can conduct a unit test plan for a program only after it has been coded) or to a resource related
dependency (the same resource is assigned two tasks), may also be specified. From these tools the
overall effort and schedule of higher-level tasks can be determined.

 A detailed project schedule is never static. Changes may be needed because the actual progress in
the project may be different from what was planned, because newer tasks are added in response to
change requests, or because of other unforeseen situations. Changes are done as and when the
need arises. The final schedule, frequently maintained using some suitable tool, is often the most
“live” project plan document. During the project, if plans must be changed and additional activities
must be done, after the decision is made, the changes must be reflected in the detailed schedule, as
this reflects the tasks actually planned to be performed. Hence, the detailed schedule becomes the
main document that tracks the activities and schedule.

 It should be noted that only the number of resources is decided during the overall project planning.
However, detailed scheduling can be done effectively only after actual assignment of people has
been done, as task assignment needs information about the capabilities of the team members. In
our discussion above, we have implicitly assumed that the project’s team is led by a project manager,
who does the planning and task assignment. This form of hierarchical team organization is fairly
common, and was earlier called the Chief Programmer Team.

Example

As an example, consider the example of a project from [58]. The overall effort estimate for this
project is 501 person-days, or about 24 person-months (this estimation was done using the bottom-up
approach discussed earlier). The customer gave approximately 5.5 months to finish the project. Because
this is more than the square root of effort in person-months, this schedule was accepted. Hence, these
define the effort and schedule goals of the project.

The milestones are determined by using the effort estimates for the phases and an estimate of the
number of resources available. Table shows the highlevel schedule of the project. This project uses the
RUP process in which initial requirement and design is done in two iterations and the development is
done in three iterations. The overall project duration with these milestones is 140 days.

 Task Duration Work Start End

(days) (person
- days)

Project initiation 33.78 24.2 5/4/00 6/23/00

Regular activities 87.11 35.13 6/5/00 10/16/00

Training 95.11 49.37 5/8/00 9/29/00

Knowledge sharing tasks 78.22 19.56 6/2/00 9/30/00

Inception phase 26.67 22.67 4/3/00 5/12/00

Elaboration Iteration 1 27.56 55.16 5/15/00 6/23/00

Elaboration Iteration 2 8.89 35.88 6/26/00 7/7/00

UNIT - III SOFTWARE ENGINEERING

89
Rahul Publications

Rahul Publications

Construction Iteration 1 8.89 24.63 7/10/00 7/21/00

Construction Iteration 2 6.22 28.22 7/20/00 7/28/00

Construction Iteration 3 6.22 27.03 7/31/00 8/8/00

Transition phase 56 179.62 8/9/00 11/3/00

Back-end work 4.44 6.44 8/14/00 8/18/00

This high-level schedule is an outcome of the overall project planning, and is not suitable for assigning
resources and detailed planning.

For detailed scheduling, these tasks are broken into schedulable activities. In this way, the schedule
also becomes a checklist of tasks for the project. As mentioned above, this exploding of top-level activities
is not done fully at the start but rather takes place many times during the project.

The detailed schedule of the construction-iteration 1 phase of the project. For each activity, the
table specifies the activity by a short name, the module to which the activity is contributing, and the effort
(the duration may also be specified). For each task, how much is completed is given in the % Complete
column. This information is used for activity tracking. The detailed schedule also specifies the resource to
which the task is assigned (specified by initials of the person). Sometimes, the predecessors of the activity
(the activities upon which the task depends) are also specified. This information helps in determining the
critical path and the critical resources. This project finally had a total of about 325 schedulable tasks.

3.8 DESIGN CONCEPT

Q8. Explain briefly about software design and different types of approaches.

Ans :
Meaning

Software design is a process to transform user requirements into some suitable form, which helps
the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification) document is created
whereas for coding and implementation, there is a need of more specific and detailed requirements in
software terms. The output of this process can directly be used into implementation in programming
languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves the concentration
from problem domain to solution domain. It tries to specify how to fulfill the requirements mentioned in
SRS.
Software Design Levels

Software design yields three levels of results:
 Architectural Design - The architectural design is the highest abstract version of the system. It

identifies the software as a system with many components interacting with each other. At this level,
the designers get the idea of proposed solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple component’ concept
of architectural design into less-abstracted view of sub-systems and modules and depicts their
interaction with each other. High-level design focuses on how the system along with all of its
components can be implemented in forms of modules. It recognizes modular structure of each sub-
system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is seen as a system
and its sub-systems in the previous two designs. It is more detailed towards modules and their

MCA II YEAR III SEMESTER

90
Rahul Publications

Rahul Publications

implementations. It defines logical structure
of each module and their interfaces to
communicate with other modules.

Approaches

(i) Modularization

Modularization is a technique to divide a
software system into multiple discrete and
independent modules, which are expected
to be capable of carrying out task(s)
independently. These modules may work as
basic constructs for the entire software.
Designers tend to design modules such that
they can be executed and/or compiled
separately and independently.

Modular design unintentionally follows the
rules of ‘divide and conquer’ problem-solving
strategy this is because there are many other
benefits attached with the modular design of
a software.

Advantage

 Smaller components are easier to
maintain

 Program can be divided based on
functional aspects

 Desired level of abstraction can be
brought in the program

 Components with high cohesion can be
re-used again

 Concurrent execution can be made
possible

 Desired from security aspect

(ii) Concurrency

Back in time, all software are meant to be
executed sequentially. By sequential
execution we mean that the coded
instruction will be executed one after another
implying only one portion of program being
activated at any given time. Say, software has
multiple modules, then only one of all the
modules can be found active at any time of
execution.

In software design, concurrency is
implemented by splitting the software into

multiple independent units of execution, like
modules and executing them in parallel. In
other words, concurrency provides capability
to the software to execute more than one
part of code in parallel to each other.

It is necessary for the programmers and
designers to recognize those modules, which
can be made parallel execution.

Example

The spell check feature in word processor is
a module of software, which runs along side
the word processor itself.

(iii) Coupling and Cohesion

When a software program is modularized, its
tasks are divided into several modules based
on some characteristics. As we know,
modules are set of instructions put together
in order to achieve some tasks. They are
though, considered as single entity but may
refer to each other to work together. There
are measures by which the quality of a design
of modules and their interaction among them
can be measured. These measures are called
coupling and cohesion.

Cohesion

Cohesion is a measure that defines the degree
of intra-dependability within elements of a
module. The greater the cohesion, the better
is the program design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is
unplanned and random cohesion, which
might be the result of breaking the
program into smaller modules for the
sake of modularization. Because it is
unplanned, it may serve confusion to
the programmers and is generally not-
accepted.

 Logical cohesion - When logically
categorized elements are put together
into a module, it is called logical
cohesion.

UNIT - III SOFTWARE ENGINEERING

91
Rahul Publications

Rahul Publications

 Temporal Cohesion - When elements
of module are organized such that they
are processed at a similar point in time,
it is called temporal cohesion.

 Procedural cohesion - When
elements of module are grouped
together, which are executed
sequentially in order to perform a task,
it is called procedural cohesion.

 Communicational cohesion - When
elements of module are grouped
together, which are executed sequen-
tially and work on same data (infor-
mation), it is called communicational
cohesion.

 Sequential cohesion - When elements
of module are grouped because the
output of one element serves as input
to another and so on, it is called
sequential cohesion.

 Functional cohesion - It is considered
to be the highest degree of cohesion,
and it is highly expected. Elements of
module in functional cohesion are
grouped because they all contribute to
a single well-defined function. It can also
be reused.

Coupling

Coupling is a measure that defines the
level of inter-dependability among
modules of a program. It tells at what
level the modules interfere and interact
with each other. The lower the coupling,
the better the program. There are five
levels of coupling, namely -

 Content coupling - When a module
can directly access or modify or refer to
the content of another module, it is
called content level coupling.

 Common coupling- When multiple
modules have read and write access to
some global data, it is called common
or global coupling.

 Control coupling- Two modules are
called control-coupled if one of them

decides the function of the other module
or changes its flow of execution.

 Stamp coupling- When multiple
modules share common data structure
and work on different part of it, it is called
stamp coupling.

 Data coupling- Data coupling is when
two modules interact with each other by
means of passing data (as parameter).
If a module passes data structure as
parameter, then the receiving module
should use all its components.

Ideally, no coupling is considered to be
the best.

(iv) Design Verification

The output of software design process is
design documentation, pseudo codes,
detailed logic diagrams, process diagrams,
and detailed description of all functional or
non-functional requirements.

The next phase, which is the implementation
of software, depends on all outputs
mentioned above.

It is then becomes necessary to verify the
output before proceeding to the next phase.
The early any mistake is detected, the better
it is or it might not be detected until testing of
the product. If the outputs of design phase
are in formal notation form, then their
associated tools for verification should be used
otherwise a thorough design review can be
used for verification and validation.

By structured verification approach, reviewers
can detect defects that might be caused by
overlooking some conditions. A good design
review is important for good software design,
accuracy and quality.

3.8.1 Data Design in Software Engineering

Q9. Write short notes on data design?

Ans :
Data design is the first design activity, which

results in fewer complexes, modular and efficient
program structure. The information domain model

MCA II YEAR III SEMESTER

92
Rahul Publications

Rahul Publications

developed during analysis phase is transformed into
data structures needed for implementing the
software. The data objects, attributes, and
relationships depicted in entity relationship diagrams
and the information stored in data dictionary
provide a base for data design activity. During the
data design process, data types are specified along
with the integrity rules required for the data. For
specifying and designing efficient data structures,
some principles should be followed.

These principles are listed below.

(i) The data structures needed for implementing
the software as well-as the operations that can
be applied on them should be identified.

(ii) A data dictionary should be developed to
depict how different data objects interact with
each other and what constraints are to be
imposed on the elements of data structure.

(iii) Stepwise refinement should be used in data
design process and detailed design decisions
should be made later in the process.

(iv) Only those modules that need to access data
stored in a data structure directly should be
aware of the representation of the data
structure.

(v) A library containing the set of useful data
structures along with the operations that can
be performed on them should be
maintained.

(vi) Language used for developing the system
should support abstract data types.

The structure of data can be viewed at three
levels, namely, program component level,
application level, and business level. At the program
component level, the design of data structures and
the algorithms required to manipulate them is
necessary, if high-quality software is desired. At the
application level, it is crucial to convert the data
model into a database so that the specific business
objectives of a system could be achieved. At the
business level, the collection of information stored
in different databases should be reorganized into
data warehouse, which enables data mining that
has an influential impact on the business.

3.8.2 Function Oriented Design, Object
Oriented Design, Detailed Design

Q10. What are the strategies followed in
designing software?

Ans : (Imp.)

Software design is a process to conceptualize
the software requirements into software
implementation. Software design takes the user
requirements as challenges and tries to find
optimum solution. While the software is being
conceptualized, a plan is chalked out to find the
best possible design for implementing the intended
solution.

There are multiple variants of software design.
Let us study them briefly:

(i) Structured Design

Structured design is a conceptualization of
problem into several well-organized elements
of solution. It is basically concerned with the
solution design. Benefit of structured design
is, it gives better understanding of how the
problem is being solved. Structured design
also makes it simpler for designer to
concentrate on the problem more accurately.

Structured design is mostly based on ‘divide
and conquer’ strategy where a problem is
broken into several small problems and each
small problem is individually solved until the
whole problem is solved.

The small pieces of problem are solved by
means of solution modules. Structured design
emphasis that these modules be well
organized in order to achieve precise solution.

These modules are arranged in hierarchy.
They communicate with each other. A good
structured design always follows some rules
for communication among multiple modules,
namely-

 Cohesion - grouping of all functionally
related elements.

 Coupling - communication between
different modules.

A good structured design has high cohesion
and low coupling arrangements.

UNIT - III SOFTWARE ENGINEERING

93
Rahul Publications

Rahul Publications

(ii) Function Oriented Design

In function-oriented design, the system is
comprised of many smaller sub-systems
known as functions. These functions are
capable of performing significant task in the
system. The system is considered as top view
of all functions.

Function oriented design inherits some
properties of structured design where divide
and conquer methodology is used.

This design mechanism divides the whole
system into smaller functions, which provides
means of abstraction by concealing the
information and their operation.. These
functional modules can share information
among themselves by means of information
passing and using information available
globally.

Another characteristic of functions is that
when a program calls a function, the function
changes the state of the program, which
sometimes is not acceptable by other
modules. Function oriented design works well
where the system state does not matter and
program/functions work on input rather than
on a state.

Design Process

 The whole system is seen as how data
flows in the system by means of data
flow diagram.

 DFD depicts how functions changes data
and state of entire system.

 The entire system is logically broken
down into smaller units known as
functions on the basis of their operation
in the system.

 Each function is then described at large.

(iii) Object Oriented Design

Object oriented design works around the
entities and their characteristics instead of
functions involved in the software system. This
design strategies focuses on entities and its
characteristics. The whole concept of software
solution revolves around the engaged entities.

Let us see the important concepts of Object
Oriented Design :

 Objects - All entities involved in the
solution design are known as objects. For
example, person, banks, company and
customers are treated as objects. Every
entity has some attributes associated to
it and has some methods to perform on
the attributes.

 Classes - A class is a generalized
description of an object. An object is an
instance of a class. Class defines all the
attributes, which an object can have and
methods, which defines the functionality
of the object.

 In the solution design, attributes are
stored as variables and functionalities are
defined by means of methods or
procedures.

 Encapsulation - In OOD, the attributes
(data variables) and methods (operation
on the data) are bundled together is
called encapsulation. Encapsulation not
only bundles important information of
an object together, but also restricts
access of the data and methods from
the outside world. This is called
information hiding.

 Inheritance - OOD allows similar classes
to stack up in hierarchical manner where
the lower or sub-classes can import,
implement and re-use allowed variables
and methods from their immediate
super classes. This property of OOD is
known as inheritance. This makes it
easier to define specific class and to
create generalized classes from specific
ones.

 Polymorphism - OOD languages
provide a mechanism where methods
performing similar tasks but vary in
arguments, can be assigned same name.
This is called polymorphism, which
allows a single interface performing tasks
for different types. Depending upon how
the function is invoked, respective
portion of the code gets executed.

MCA II YEAR III SEMESTER

94
Rahul Publications

Rahul Publications

(iv) Design Process

Software design process can be perceived as series of well-defined steps. Though it varies according
to design approach (function oriented or object oriented, yet It may have the following steps involved:

 A solution design is created from requirement or previous used system and/or system sequence
diagram.

 Objects are identified and grouped into classes on behalf of similarity in attribute characteristics.

 Class hierarchy and relation among them is defined.

 Application framework is defined.

3.9 VERIFICATION

Q11. What is software verification?

Ans :
Verification makes sure that the product is designed to deliver all functionality to the customer.

 Verification is done at the starting of the development process. It includes reviews and meetings,
walk-throughs, inspection, etc. to evaluate documents, plans, code, requirements and specifications.

Suppose you are building a table. Here the verification is about checking all the parts of the table,
whether all the four legs are of correct size or not. If one leg of table is not of the right size it will imbalance
the end product. Similar behavior is also noticed in case of the software product or application. If any
feature of software product or application is not up to the mark or if any defect is found then it will result
into the failure of the end product. Hence, verification is very important. It takes place at the starting of the
development process.

Needs and Expectation
of Customer

Specifications Process

Verification

Product

Validation

Software verification and validation

 It answers the questions like: Am I building the product right?

 Am I accessing the data right (in the right place; in the right way).

 It is a Low level activity

 Performed during development on key artifacts, like walk throughs, reviews and inspections, mentor
feedback, training, checklists and standards.

 Demonstration of consistency, completeness, and correctness of the software at each stage and
between each stage of the development life cycle.

UNIT - III SOFTWARE ENGINEERING

95
Rahul Publications

Rahul Publications

According to the Capability Maturity Model (CMM) we can also define verification as the process of
evaluating software to determine whether the products of a given development phase satisfy the conditions
imposed at the start of that phase.

Advantages of Software Verification:

1. Verification helps in lowering down the count of the defect in the later stages of development.

2. Verifying the product at the starting phase of the development will help in understanding the product
in a better way.

3. It reduces the chances of failures in the software application or product.

4. It helps in building the product as per the customer specifications and needs.

3.10 METRICS

Q12. What are metrics, Measurements & Models of Project Management & Software
Management?

Ans : (Imp.)

Once measures are collected they are converted into metrics for use. IEEE defines metric as ‘a
quantitative measure of the degree to which a system, component, or process possesses a given attribute.’
The goal of software metrics is to identify and control essential parameters that affect software development.
Other objectives of using software metrics are listed below.

 Measuring the size of the software quantitatively.

 Assessing the level of complexity involved.

 Assessing the strength of the module by measuring coupling.

 Assessing the testing techniques.

 Specifying when to stop testing.

 Determining the date of release of the software.

 Estimating cost of resources and project schedule.

Software metrics help project managers to gain an insight into the efficiency of the software process,
project, and product. This is possible by collecting quality and productivity data and then analyzing and
comparing these data with past averages in order to know whether quality improvements have occurred.
Also, when metrics are applied in a consistent manner, it helps in project planning and project management
activity. For example, schedule-based resource allocation can be effectively enhanced with the help of
metrics.

Difference in Measures, Metrics, and Indicators

Metrics is often used interchangeably with measure and measurement. However, it is important to
note the differences between them. Measure can be defined as quantitative indication of amount, dimension,
capacity, or size of product and process attributes. Measurement can be defined as the process of
determining the measure. Metrics can be defined as quantitative measures that allow software engineers
to identify the efficiency and improve the quality of software process, project, and product.

To understand the difference, let us consider an example. A measure is established when a number
of errors is (single data point) detected in a software component. Measurement is the process of collecting

MCA II YEAR III SEMESTER

96
Rahul Publications

Rahul Publications

one or more data points. In other words, measurement is established when many components are reviewed
and tested individually to collect the measure of a number of errors in all these components. Metrics are
associated with individual measure in some manner. That is, metrics are related to detection of errors
found per review or the average number of errors found per unit test.

Once measures and metrics have been developed, indicators are obtained. These indicators provide
a detailed insight into the software process, software project, or intermediate product. Indicators also
enable software engineers or project managers to adjust software processes and improve software products,
if required. For example, measurement dashboards or key indicators are used to monitor progress and
initiate change. Arranged together, indicators provide snapshots of the system’s performance.

Measured Data

Before data is collected and used, it is necessary to know the type of data involved in the software
metrics. Table lists different types of data, which are identified in metrics along with their description and
the possible operations that can be performed on them.

Absolute zero /Ratio

Differences +, -Interval

Ranking <, >Ordinal

Categories =,≠Nominal

Description of dataPossible operationsType of data

Absolute zero /Ratio

Differences +, -Interval

Ranking <, >Ordinal

Categories =,≠Nominal

Description of dataPossible operationsType of data

 Nominal data: Data in the program can be measured by placing it under a category. This category
of program can be a database program, application program, or an operating system program. For
such data, operation of arithmetic type and ranking of values in any order (increasing or decreasing)
is not possible. The only operation that can be performed is to determine whether program ‘X’ is
the same as program ‘Y’.

 Ordinal data: Data can be ranked according to the data values. For example, experience in
application domain can be rated as very low, low, medium, or high. Thus, experience can easily be
ranked according to its rating.

 Interval data: Data values can be ranked and substantial differences between them can also be
shown. For example, a program with complexity level 8 is said to be 4 units more complex than a
program with complexity level 4.

 Ratio data: Data values are associated with a ratio scale, which possesses an absolute zero and
allows meaningful ratios to be calculated. For example, program lines expressed in lines of code.

 It is desirable to know the measurement scale for metrics. For example, if metrics values are used to
represent a model for a software process, then metrics associated with the ratio scale may be preferred.

Guidelines for Software Metrics

Although many software metrics have been proposed over a period of time, ideal software metric
is the one which is easy to understand, effective, and efficient. In order to develop ideal metrics, software
metrics should be validated and characterized effectively. For this, it is important to develop metrics using
some specific guidelines, which are listed below.

UNIT - III SOFTWARE ENGINEERING

97
Rahul Publications

Rahul Publications

 Simple and computable: Derivation of software metrics should be easy to learn and should
involve average amount of time and effort.

 Consistent and objective: Unambiguous results should be delivered by software metrics.

 Consistent in the use of units and dimensions: Mathematical computation of the metrics
should involve use of dimensions and units in a consistent manner.

 Programming language independent: Metrics should be developed on the basis of the analysis
model, design model, or program’s structure.

 High quality: Effective software metrics should lead to a high-quality software product.

 Easy to calibrate: Metrics should be easy to adapt according to project requirements.

 Easy to obtain: Metrics should be developed at a reasonable cost.

 Validation: Metrics should be validated before being used for making any decisions.

 Robust: Metrics should be relatively insensitive to small changes in process, project, or product.

 Value: Value of metrics should increase or decrease with the value of the software characteristics
they represent. For this, the value of metrics should be within a meaningful range. For example,
metrics can be in a range of 0 to 5.

Q13. What are the different metrics used in software engineering in various stages?

Ans :
Measurement is done by metrics. Three parameters are measured: process measurement through

process metrics, product measurement through product metrics, and project measurement through project
metrics.

Process metrics assess the effectiveness and quality of software process, determine maturity of the
process, effort required in the process, effectiveness of defect removal during development, and so on.
Product metrics is the measurement of work product produced during different phases of software
development. Project metrics illustrate the project characteristics and their execution.

1) Process Metrics

To improve any process, it is necessary to measure its specified attributes, develop a set of meaningful
metrics based on these attributes, and then use these metrics to obtain indicators in order to derive
a strategy for process improvement.

Using software process metrics, software engineers are able to assess the efficiency of the software
process that is performed using the process as a framework. Process is placed at the centre of the
triangle connecting three factors (product, people, and technology), which have an important
influence on software quality and organization performance. The skill and motivation of the people,
the complexity of the product and the level of technology used in the software development have
an important influence on the quality and team performance. The process triangle exists within the
circle of environmental conditions, which includes development environment, business conditions,
and customer /user characteristics.

MCA II YEAR III SEMESTER

98
Rahul Publications

Rahul Publications

Customer characteristics

Product

Business Condition

ProcessPeople Technology

Developement Environment

To measure the efficiency and effectiveness of the software process, a set of metrics is formulated
based on the outcomes derived from the process. These outcomes are listed below.

 Number of errors found before the software release

 Defect detected and reported by the user after delivery of the software

 Time spent in fixing errors

 Work products delivered

 Human effort used

 Time expended

 Conformity to schedule

 Wait time

 Number of contract modifications

 Estimated cost compared to actual cost.

Note that process metrics can also be derived using the characteristics of a particular software
engineering activity. For example, an organization may measure the effort and time spent by
considering the user interface design.

It is observed that process metrics are of two types, namely, private and public. Private Metrics are
private to the individual and serve as an indicator only for the specified individual(s). Defect rates
by a software module and defect errors by an individual are examples of private process metrics.
Note that some process metrics are public to all team members but private to the project. These
include errors detected while performing formal technical reviews and defects reported about various
functions included in the software.

Public metrics include information that was private to both individuals and teams. Project-level
defect rates, effort and related data are collected, analyzed and assessed in order to obtain indicators
that help in improving the organizational process performance.

Process Metrics Etiquette

Process metrics can provide substantial benefits as the organization works to improve its process
maturity. However, these metrics can be misused and create problems for the organization. In

UNIT - III SOFTWARE ENGINEERING

99
Rahul Publications

Rahul Publications

order to avoid this misuse, some guidelines
have been defined, which can be used both
by managers and software engineers. These
guidelines are listed below.

 Rational thinking and organizational
sensitivity should be considered while
analyzing metrics data.

 Feedback should be provided on a
regular basis to the individuals or teams
involved in collecting measures and
metrics.

 Metrics should not appraise or threaten
individuals.

 Since metrics are used to indicate a need
for process improvement, any metric
indicating this problem should not be
considered harmful.

 Use of single metrics should be avoided.

As an organization becomes familiar with
process metrics, the derivation of simple
indicators leads to a stringent approach
called Statistical Software Process
Improvement (SSPI). SSPI uses software
failure analysis to collect information
about all errors (it is detected before
delivery of the software) and defects (it
is detected after software is delivered to
the user) encountered during the
development of a product or system.

2. Product Metrics

In software development process, a working
product is developed at the end of each
successful phase. Each product can be
measured at any stage of its development.
Metrics are developed for these products so
that they can indicate whether a product is
developed according to the user
requirements. If a product does not meet user
requirements, then the necessary actions are
taken in the respective phase.

Product metrics help software engineer to
detect and correct potential problems before
they result in catastrophic defects. In addition,
product metrics assess the internal product
attributes in order to know the efficiency of
the following.

 Analysis, design, and code model

 Potency of test cases

 Overall quality of the software under
development.

Various metrics formulated for products
in the development process are listed
below.

(i) Metrics for analysis model: These
address various aspects of the analysis
model such as system functionality,
system size, and so on.

(ii) Metrics for design model: These
allow software engineers to assess the
quality of design and include
architectural design metrics, component-
level design metrics, and so on.

(iii) Metrics for source code: These assess
source code complexity, maintainability,
and other characteristics.

(iv) Metrics for testing: These help to
design efficient and effective test cases
and also evaluate the effectiveness of
testing.

(v) Metrics for maintenance: These
assess the stability of the software
product.

(i) Metrics for the Analysis Model

There are only a few metrics that have been
proposed for the analysis model. However,
it is possible to use metrics for project
estimation in the context of the analysis
model. These metrics are used to examine
the analysis model with the objective of
predicting the size of the resultant system. Size
acts as an indicator of increased coding,
integration, and testing effort; sometimes it
also acts as an indicator of complexity
involved in the software design. Function
point and lines of code are the commonly
used methods for size estimation.

Function Point (FP) Metric

The function point metric, which was
proposed by A.J Albrecht, is used to measure

MCA II YEAR III SEMESTER

100
Rahul Publications

Rahul Publications

the functionality delivered by the system,
estimate the effort, predict the number of
errors, and estimate the number of
components in the system. Function point is
derived by using a relationship between the
complexity of software and the information
domain value. Information domain values
used in function point include the number of
external inputs, external outputs, external
inquires, internal logical files, and the number
of external interface files.

Lines of Code (LOC)

Lines of code (LOC) is one of the most widely
used methods for size estimation. LOC can
be defined as the number of delivered lines
of code, excluding comments and blank lines.
It is highly dependent on the programming
language used as code writing varies from one
programming language to another. Example,
lines of code written (for a large program) in
assembly language are more than lines of
code written in C++.

From LOC, simple size-oriented metrics can
be derived such as errors per KLOC
(thousand lines of code), defects per KLOC,
cost per KLOC, and so on. LOC has also been
used to predict program complexity,
development effort, programmer perfor-
mance, and so on. For example, Hasltead
proposed a number of metrics, which are
used to calculate program length, program
volume, program difficulty, and development
effort.

Metrics for Specification Quality

To evaluate the quality of analysis model and
requirements specification, a set of
characteristics has been proposed. These
characteristics include specificity, comple-
teness, correctness, under-standability,
verifiability, internal and external consistency,
&achievability, concision, traceability,
modifiability, precision, and reusability.

Most of the characteristics listed above are
qualitative in nature. However, each of these
characteristics can be represented by using
one or more metrics. For example, if there

are nr requirements in a specification, then nr

can be calculated by the following equation.

nr =nf +nrf

Where

nf = number of functional requirements

nnf = number of non-functional requirements.

In order to determine the specificity of
requirements, a metric based on the
consistency of the reviewer’s understanding
of each requirement has been proposed. This
metric is represented by the following
equation.

Q1 = nui/nr

Where nui = number of requirements for
which reviewers have same understanding,
Q1 = specificity.

Ambiguity of the specification depends on the
value of Q. If the value of Q is close to 1 then
the probability of having any ambiguity is less.

Completeness of the functional requirements
can be calculated by the following equation.

Q2 = nu / [nj*ns]

Where

nu = number of unique function require-
ments

ni = number of inputs defined by the
specification

ns = number of specified state.

Q2 in the above equation considers only
functional requirements and ignores non-
functional requirements. In order to consider
non-functional requirements, it is necessary
to consider the degree to which requirements
have been validated. This can be represented
by the following equation.

Q3 = nc/ [nc + nnv]

Where

nc= number of requirements validated as
correct

nnv= number of requirements, which are yet
to be validated.

UNIT - III SOFTWARE ENGINEERING

101
Rahul Publications

Rahul Publications

(ii) Metrics for Software Design

The success of a software project depends largely on the quality and effectiveness of the software
design. Hence, it is important to develop software metrics from which meaningful indicators can be
derived. With the help of these indicators, necessary steps are taken to design the software according
to the user requirements. Various design metrics such as architectural design metrics, component-
level design metrics, user-interface design metrics, and metrics for object-oriented design are used
to indicate the complexity, quality, and so on of the software design.

Architectural Design Metrics

These metrics focus on the features of the program architecture with stress on architectural structure
and effectiveness of components (or modules) within the architecture. In architectural design metrics,
three software design complexity measures are defined, namely, structural complexity, data
complexity, and system complexity.

In hierarchical architectures (call and return architecture), say module ‘j’, structural complexity is
calculated by the following equation.

S(j) =f2 out(j)

Where

f out(j) = fan-out of module ‘j’ [Here, fan-out means number of modules that are subordinating
module j].

Complexity in the internal interface for a module ‘j’ is indicated with the help of data complexity,
which is calculated by the following equation.

D(j) = V(j) / [fout(j)+l]

Where

V(j) = number of input and output variables passed to and from module ‘j’.

System complexity is the sum of structural complexity and data complexity and is calculated by the
following equation.

C(j) = S(j) + D(j)

The complexity of a system increases with increase in structural complexity, data complexity, and
system complexity, which in turn increases the integration and testing effort in the later stages.

Depth

Width

A

Morphology Metrics

A

A A

A A A

A A
A

A

MCA II YEAR III SEMESTER

102
Rahul Publications

Rahul Publications

In addition, various other metrics like simple morphology metrics are also used. These metrics allow
comparison of different program architecture using a set of straightforward dimensions. A metric can be
developed by referring to call and return architecture. This metric can be defined by the following equation.

Size = n+a

Where n = number of nodes, a= number of arcs.

For example, there are 11 nodes and 10 arcs. Here, Size can be calculated by the following equation.

Size = n+a = 11+10+21.

Depth is defined as the longest path from the top node (root) to the leaf node and width is defined
as the maximum number of nodes at any one level.

Coupling of the architecture is indicated by arc-to-node ratio. This ratio also measures the connectivity
density of the architecture and is calculated by the following equation.

r=a/n

Quality of software design also plays an important role in determining the overall quality of the
software. Many software quality indicators that are based on measurable design characteristics of a computer
program have been proposed. One of them is Design Structural Quality Index (DSQI), which is derived
from the information obtained from data and architectural design. To calculate DSQI, a number of steps
are followed, which are listed below.

1. To calculate DSQI, the following values must be determined.

 Number of components in program architecture (S1)

 Number of components whose correct function is determined by the Source of input data (S2)

 Number of components whose correct function· depends on previous processing (S3)

 Number of database items (S4)

 Number of different database items (S5)

 Number of database segments (S6)

 Number of components having single entry and exit (S7).

2. Once all the values from S1 to S7 are known, some intermediate values are calculated, which are
listed below.

Program structure (D1): If discrete methods are used for developing architectural design then
D1= 1, else D1 = 0

Module independence (D2): D2 = 1-(S2/S1)

Modules not dependent on prior processing (D3): D3 = 1-(S3/S1)

Database size (D4): D4 = 1-(S5/S4)

Database compartmentalization (D5):D5 = 1-(S6/S4)

Module entrance/exit characteristic (D6): D6 = 1-(S7/S1)

3. Once all the intermediate values are calculated, OSQI is calculated by the following equation.

DSQI = “WiDi

UNIT - III SOFTWARE ENGINEERING

103
Rahul Publications

Rahul Publications

Where

i = 1 to 6

“W i = 1 (W i is the weighting of the
importance of intermediate values).

In conventional software, the focus of
component – level design metrics is on the
internal characteristics of the software
components; The software engineer can
judge the quality of the component-level
design by measuring module cohesion,
coupling and complexity; Component-level
design metrics are applied after procedural
design is final. Various metrics developed for
component-level design are listed below.

 Cohesion metrics: Cohesiveness of a
module can be indicated by the definitions
of the following five concepts and measures.

 Data slice: Defined as a backward walk
through a module, which looks for values of
data that affect the state of the module as the
walk starts

 Data tokens: Defined as a set of variables
defined for a module

 Glue tokens: Defined as a set of data tokens,
which lies on one or more data slice

 Superglue tokens: Defined as tokens, which
are present in every data slice in the module

 Stickiness: Defined as the stickiness of the
glue token, which depends on the number
of data slices that it binds.

 Coupling Metrics: This metric indicates the
degree to which a module is connected to
other modules, global data and the outside
environment. A metric for module coupling
has been proposed, which includes data and
control flow coupling, global coupling, and
environmental coupling.

Complexity Metrics: Different types of
software metrics can be calculated to ascertain
the complexity of program control flow. One
of the most widely used complexity metrics
for ascertaining the complexity of the program
is cyclomatic complexity.

Many metrics have been proposed for user
inter face design. However, layout
appropriateness metric and cohesion metric
for user interface design are the commonly
used metrics. Layout Appropriateness (LA)
metric is an important metric for user interface
design. A typical Graphical User Interface
(GUI) uses many layout entities such as icons,
text, menus, windows, and so on. These
layout entities help the users in completing
their tasks easily. In to complete a given task
with the help of GUI, the user moves from
one layout entity to another.

Appropriateness of the interface can be
shown by absolute and relative positions of
each layout entities, frequency with which
layout entity is used, and the cost of
changeover from one layout entity to another.

Cohesion metric for user interface measures
the connection among the on screen
contents. Cohesion for user interface
becomes high when content presented on
the screen is from a single major data object
(defined in the analysis model). On the other
hand, if content presented on the screen is
from different data objects, then cohesion for
user interface is low.

In addition to these metrics, the direct
measure of user interface interaction focuses
on activities like measurement of time required
in completing specific activity, time required
in recovering from an error condition, counts
of specific operation, text density, and text
size. Once all these measures are collected,
they are organized to form meaningful user
interface metrics, which can help in improving
the quality of the user interface.

(iii) Metrics for Object-oriented Design

In order to develop metrics for object-
oriented (OO) design, nine distinct and
measurable characteristics of OO design are
considered, which are listed below.

MCA II YEAR III SEMESTER

104
Rahul Publications

Rahul Publications

 Complexity: Determined by assessing how classes are related to each other.

 Coupling: Defined as the physical connection between OO design elements.

 Sufficiency: Defined as the degree to which an abstraction possesses the features required of it.

 Cohesion: Determined by analyzing the degree to which a set of properties that the class possesses
is part of the problem domain or design domain.

 Primitiveness: Indicates the degree to which the operation is atomic.

 Similarity: Indicates similarity between two or more classes in terms of their structure, function,
behavior, or purpose.

 Volatility: Defined as the probability of occurrence of change in the OO design.

 Size: Defined with the help of four different views, namely, population, volume, length, and
functionality. Population is measured by calculating the total number of OO entities, which can be in
the form of classes or operations. Volume measures are collected dynamically at any given point of
time. Length is a measure of interconnected designs such as depth of inheritance tree. Functionality
indicates the value rendered to the user by the OO application.

(iv) Metrics for Coding

Halstead proposed the first analytic laws for computer science by using a set of primitive measures,
which can be derived once the design phase is complete and code is generated. These measures are
listed below.

nl = number of distinct operators in a program

n2 = number of distinct operands in a program

N1 = total number of operators

N2= total number of operands.

By using these measures, Halstead developed an expression for overall program length, program
volume, program difficulty, development effort, and so on.

Program length (N) can be calculated by using the following equation.

N = n1log2nl + n2 log2n2.

Program volume (V) can be calculated by using the following equation.

V = N log2 (n1+n2).

Note that program volume depends on the programming language used and represents the volume
of information (in bits) required to specify a program. Volume ratio (L)can be calculated by using
the following equation.

L =
Volume of the most compact form of a program

Volume of the actual program

Where, value of L must be less than 1. Volume ratio can also be calculated by using the following
equation.

L = (2/n1)* (n2/N2).

UNIT - III SOFTWARE ENGINEERING

105
Rahul Publications

Rahul Publications

Program difficulty level (D) and effort (E)can be calculated by using the following equations.

D = (n1/2)*(N2/n2).

E = D * V.

(v) Metrics for Software Testing

Majority of the metrics used for testing focus on testing process rather than the technical characteristics
of test. Generally, testers use metrics for analysis, design, and coding to guide them in design and
execution of test cases.

Function point can be effectively used to estimate testing effort. Various characteristics like errors
discovered, number of test cases needed, testing effort, and so on can be determined by estimating
the number of function points in the current project and comparing them with any previous project.

Metrics used for architectural design can be used to indicate how integration testing can be carried
out. In addition, cyclomatic complexity can be used effectively as a metric in the basis-path testing
to determine the number of test cases needed.

Halstead measures can be used to derive metrics for testing effort. By using program volume (V)
and program level (PL),Halstead effort (e)can be calculated by the following equations.

e = V/ PL Where

PL = 1/ [(n1/2) * (N2/n2)] … (1)

For a particular module (z), the percentage of overall testing effort allocated can be calculated by
the following equation.

Percentage of testing effort (z) = e(z)/”e(i)

Where, e(z) is calculated for module z with the help of equation (1). Summation in the denominator
is the sum of Halstead effort (e) in all the modules of the system.

For developing metrics for object-oriented (OO) testing, different types of design metrics that have
a direct impact on the testability of object-oriented system are considered. While developing metrics
for OO testing, inheritance and encapsulation are also considered. A set of metrics proposed for
OO testing is listed below.

 Lack of cohesion in methods (LCOM): This indicates the number of states to be tested. LCOM
indicates the number of methods that access one or more same attributes. The value of LCOM is 0,
if no methods access the same attributes. As the value of LCOM increases, more states need to be
tested.

 Percent public and protected (PAP): This shows the number of class attributes, which are public
or protected. Probability of adverse effects among classes increases with increase in value of PAP as
public and protected attributes lead to potentially higher coupling.

 Public access to data members (PAD): This shows the number of classes that can access attributes
of another class. Adverse effects among classes increase as the value of PAD increases.

 Number of root classes (NOR): This specifies the number of different class hierarchies, which
are described in the design model. Testing effort increases with increase in NOR.

 Fan-in (FIN): This indicates multiple inheritances. If value of FIN is greater than 1, it indicates that
the class inherits its attributes and operations from many root classes. Note that this situation (where
FIN> 1) should be avoided.

MCA II YEAR III SEMESTER

106
Rahul Publications

Rahul Publications

UNIT
IV

Coding and Unit Testing: Programming Principles and Guidelines, Incrementally

developing code, managing evolving code, unit testing, code inspection, Metrics.

Testing: Testing Concepts, Testing Process, Black Box testing, White box testing,

Metrics.

4.1 CODING

Q1. Explain various Programming Practices
used in Coding. What is meant by
Information Hiding?

Ans : (Imp.)

The primary goal of the coding phase is to
translate the given design into source code in a given
programming language, so that code is simple, easy
to test, and easy to understand and modify.
Simplicity and clarity are the properties that a
programmer should strive for. All designs contain
hierarchies, as creating a hierarchy is a natural way
to manage complexity. Most design methodologies
for software also produce hierarchies.

In a top down implementation, the
implementation starts from the top of the hierarchy
and proceeds to the lower levels. First the main
module is implemented, then its subordinates are
implemented, and their subordinates, and so on.
In a bottom up implementation, the process is the
reverse.

The development starts with implementing
the modules at the bottom of the hierarchy and
proceeds through the higher levels unit until it
reaches the top. We want to build the system in
parts, even though the design of the entire system
has been done. This is necessitated by the fact that
for large systems it is simply not feasible or desirable
to build the whole system and then test it.

When we proceed top down, for testing a set
of modules at the top of the hierarchy, stubs will
have to be written for the lower level modules that
the set of modules under testing invoke. On the
other hand when we proceed bottom up all modules
that are lower in the hierarchy have been developed

and driver modules are needed to invoke these
modules under testing. In practice in large systems,
a combination of the two approaches is used during
coding.

The top modules of the system generally
contain the overall view of the system and may even
contain the user interfaces. On the other hand, the
bottom level modules typically form the service
routines that provide the basic operations used by
higher level modules. A program has a static
structure as well as a dynamic structure. The static
structure is the structure of the text of the program,
which is usually just a linear organization of statement
of the program. The dynamic structure of the
program is the sequence of statements executed
during the execution of the program.

The goal of structured programming is to
ensure that the static structure and the dynamic
structures are the same. That is, statements executed
during the execution of a program are same as the
sequence of statements in the text of that program.
As the statements in a program text are linearly
organized, the objective of structured programming
becomes developing programs whose control flow
during execution is linearized and follows the linear
organization of the program text.

In structured programming a statement is not
a simple assignment statement, it is a structured
statement. The key property of a structured
statement is that it has a single entry and single exit.
That is, during execution, the execution of the
(structured) statement starts from one defined point
and the execution terminates at alone defined point.
With single entry and single exit statements, we can
view a program as a sequence of statements.

UNIT - IV SOFTWARE ENGINEERING

107
Rahul Publications

Rahul Publications

And if all statements are structured statements,
then during execution, the sequence of execution
of these statements will be the same as the sequence
in the program text. Hence, by using single entry
and single exit statement, the correspondence
between the static and dynamic structures can be
obtained.

Structured programming practice forms a
good basis and guideline for writing programs
clearly. A software solution to a problem always
contains data structures that are means to represent
information in the problem domain. That is when
software is developed to solve a problem; the
software uses some data structures to capture the
information in the problem domain.

With the problem information represented
internally as data structures, the required
functionality of the problem domain, which is in
terms of information in that domain, can be
implemented as software operations on the data
structures. Hence, any software solution to a
problem contains data structures that represent
information in the problem domain.

When the information is represented as data
structures, the same principle should be applied,
and only some defined operations should be
performed on the data structures. This essentially,
is the principle of information hiding. The
information captured in the data structures that
represent the operations performed on the
information should be visible. Information hiding
can reduce the coupling between modules and make
the system more maintainable.

4.1.1 Programming Principles

Q2. Explain the methodology of Coding in
Software Engineering. What are its
Features.

Ans :
The methodology refers to a set of well-

documented procedures and guidelines used in the
analysis, design, and implementation of programs.
Coding methodology includes a diagrammatic
notation for documenting the results of the
procedure. It also includes an objective set (ideally

quantified) of criteria for determining whether the
results of the procedure are of the desired quality.
The steps to use coding’ methodology are listed
below.

1. The software development team begins its
work by reviewing and understanding the
design and requirements specification
documents. These documents are essential
for understanding user requirements and
creating a framework for the software code.

2. In case the software development team is
unable to understand user requirements
correctly and further clarification is required,
the queries are sent back to the user. In
addition, the software development team also
returns the requirements that are understood
by them.

3. After the requirements are clearly understood
by the software development team, the
design and specifications are implemented in
source code, supporting files, and the header
files. Note that while writing the software code,
the coding style guidelines should be
followed. In some cases, there may be a
proposal of change in hardware or software
specifications. However, the requests for
change are implemented only after the
approval of the user.

4. When the software code is completely written,
it is compiled along with other required files.

5. Code inspection and reviews are conducted
after the compilation. These methods are
used to correct and verify errors in the
software code.

6. Software testing is carried out to detect and
correct errors in each module of the software
code.

7. After the software code is tested, the software
is delivered to the user along with the relevant
code files, header files, and documentation
files.

8. In Software Coding Process further change
and clarifications are required in the design
or SRS, the software development team
raises a query, which is sent to the user with

MCA II YEAR III SEMESTER

108
Rahul Publications

Rahul Publications

the document containing what the software development team understood from the documents
sent by the user. Changes are made only when the user has a positive response to the queries raised
by the software development team.

Receiving Design and SRS Document

Understand the Documents
Received by the User

Clarification
Required

Write Source code and Header files

Compilation of Software Code

Code Inception and Reviews

Is correction
Required

Software Delivery to user with
related files

Query

Correction and Verification

Flowchart of Software Coding

Receiving Design and SRS Document

Understand the Documents
Received by the User

Clarification
Required

Write Source code and Header files

Compilation of Software Code

Code Inception and Reviews

Is correction
Required

Software Delivery to user with
related files

Query

Correction and Verification

Flowchart of Software Coding

Features

The code written for software should be according to the requirements of the users. A program is
said to be good if the software code is flawless or contains minimum errors. For the effective performance
of the software, some particular features are required in almost all languages that are used to write the
software code. These features are listed below.

 Implicitly: Software code should be written in a simple and concise manner. Simplicity should be
maintained in the organization, implementation, and design of the software code.

 Modularity: Breaking the software into several modules not only makes it easy to understand but
also easy to debug. With the modularity feature, the same code segment can be reused in one or
more software programs.

UNIT - IV SOFTWARE ENGINEERING

109
Rahul Publications

Rahul Publications

 Design: Software code is properly designed if it is presented in a proper manner. The design of
the software should be decided before beginning to write the software code. Writing the software
code in a specific, consistent style helps other software developers in reviewing it.

 Efficiency: A program is said to be efficient if it makes optimal use of the available resources.

 Clarity: Software codes should be clear so that developers are able to understand the program
without any complexity. Clarity can be achieved by using features such as simplicity, readability and
modularity. Note that clarity comprises clarity of code, clarity of design, and clarity of purpose so
that one knows what occurs at each level in the software program.

 Accessibility: Software codes should be written in a way that the software components (for
example, files and functions) are easily available and accessible. For the files and functions to be
accessible, they should have meaningful names as well as supporting captions and text for each
image. Similarly, there should be hyperlinks and navigation aids to assist the users in
searching information from different sections of the software code.

 Stability: Software codes are said to be stable if they are able to work correctly on different
platforms without affecting their layout and consistency. To check for stability, software codes should
be tested for errors and inconsistency.

Features of
Software

Code

Simplicity

Modularity

Design

EfficiencyClarity

Accessibility

Stability

Features of
Software

Code

Simplicity

Modularity

Design

EfficiencyClarity

Accessibility

Stability

4.1.2 Guidelines

Q3. What are the Guidelines of Coding?

(OR)

Describe the Coding Guidelines in Software Engineering.

Ans :
Writing an efficient software code requires a thorough knowledge of programming. This knowledge

can be implemented by following a coding style which comprises several guidelines that help in writing the
software code efficiently and with minimum errors. These guidelines, known as coding guidelines, are

MCA II YEAR III SEMESTER

110
Rahul Publications

Rahul Publications

used to implement individual programming
language constructs, comments, formatting, and so
on. These guidelines, if followed, help in preventing
errors, controlling the complexity of the program,
and increasing the readability and understandability
of the program.

A set of comprehensive coding guidelines
encompasses all aspects of code development. To
ensure that all developers work in a harmonized
manner (the source code should reflect a
harmonized style as a single developer had written
the entire code in one session), the developers
should be aware of the coding guidelines before
starting a software project. Moreover, coding
guidelines should state how to deal with the existing
code when the software incorporates it or when
maintenance is performed.

Since there are numerous programming
languages for writing software codes, each having
different features and capabilities, coding style
guidelines differ from one language to another.
However, there are some basic guidelines which are
followed in all programming languages. These
include naming conventions, commenting
conventions, and formatting conventions.

There are certain rules for naming variables,
functions and methods in the software code. These
naming conventions help software; developers in
understanding the use of a particular variable or
function. The guidelines used to assign a name to
any variable, function, and method are listed below.

All the variables, functions, and methods
should be assigned names that make the code more
understandable to the reader. By using meaningful
names, the code can be self-explanatory, thus,
minimizing the effort of writing comments for
variables. For example, if two variables are required
to refer to ‘sales tax’ and ‘income tax’, they should
be assigned names such as ‘sales Tax’ and ‘income
Tax’.

 For names, a full description in a commonly
spoken language (for example, English)
should be used. In addition, the use of
abbreviations should be avoided. For
example, variable names like ‘contact
Number’ and ‘address’ should be used
instead of ‘cno’ and ‘add’.

 Short and clear names should be assigned in
place of long names. For ‘example, ‘multiply
The Two Numbers’ can be shortened to
‘multiply Numbers’ as it is clear and short
enough to be expressed in reasonable length.

 In every programming language, there is a
different naming convention for variables and
constants in the software code. The
commonly used conventions for naming
variables and constants are listed in Table.

(i) Variable Naming Conventions

 The variable names should be in camel
case letters starting with a lower case
letter. For example, use 'total Amount'
instead of 'Total Amount'.

 The temporary storage variables that are
restricted to a segment of code should
be short. For example, the variable
'temp' can be used for a temporary
variable. It is important to note that a
single temporary variable should not be
reused in the same program. For
example, variables 'i', j', or 'k' are declared
while using loops.

 The use of numbers in naming variables
should be avoided. For example, 'first
Number' should be used instead of
'number1'.

(ii) Constant Naming Conventions

 All the names of constants should be in
upper case. In case the name of constant
is too long, it should be separated by an
underscore. For example, sales tax rate
should be written as
'SALES_TAX_RATE'.

 The use of literal should be avoided.
Literal numbers such as '15'used in the
software code confuses the reader. These
numbers are counted as integers and
result in wrong output of the program.
However, the numbers '0' and '1' can
be used as constants.

As with variables and constants, there are
some guidelines that should be followed while
naming functions in the software code. These
conventions are listed below.

UNIT - IV SOFTWARE ENGINEERING

111
Rahul Publications

Rahul Publications

 The names of functions should be meaningful
and should describe the purpose of the
function with clarity and briefness. Like
variables, the names should be self-
explanatory so that no additional description
about the task of that function is required.

 The function name should begin with a verb.
For example, the verb ‘display’ can be used
for the function that displays the output on
the screen. In case the verb itself is not
descriptive, an additional noun or adjective
can be used with the verb.

 In case the function returns a Boolean value,
the helping verbs ‘is’ and ‘has’ should be
used as prefixes for the function name. For
example, the function name ‘is Deposited’
or has Deposited’ should be used for
functions that return true or false values.

 Comments are helpful in proper
understanding of the code segment used in
program. Commenting conventions should
be used efficiently to make the code easy to
grasp. Generally, two types of commenting
conventions are used: file header comments
and trailing comments.

 File header comments are useful in
providing information related to a file as a
whole and comprise identification information
such as date of creation, Dame of the creator,
and a brief description of the software code.

 Trailing comments are used to provide
explanation of a single line of code. These
comments are used to clarify the complex
code. These also specify the function of the
abbreviated variable names that are not clear.
In some languages, trailing comments are
used with the help of a double slash (//).The
commenting conventions that are commonly
followed in the software code are listed below.

o Comments should not be used to
include information that is clearly
understandable from the software.

o Comments should be used with
important segments of code and code
segments that are difficult to understand.

o Comments should be separated from the
code to enhance readability of the
software code.

o Formatting (way of arranging a program
in order to enhance readability) consists
of indentation, alignment, and use of
white spaces in the program.
Consistency plays an important role
while formatting a program in an
organized way. A program with
consistent formatting makes the code
easier to read and understand. The
commonly used formatting conventions
are listed below.

 Indentation: This refers to one or more
spaces left at the beginning of statements in
the program. Indentation is useful in making
the code easily readable. However, the spaces
used for indentation should be followed in
the entire program. The guidelines that are
commonly followed while indenting a
program are listed below. White
spaces: These improve readability by
minimizing the compactness of the code.
Some of the guidelines for proper usage of
spaces within the code are listed below.

Indentation should be used to highlight
a nested block. Some nested blocks can
be made with the help of ‘if-else’ and
‘do-while’ loops.

– Indentation is required if the
statement is large enough to fit in a
single line.

– Indentation should be consistent at
the beginning and at the end of the
braces in the program.

– There should be a space after
placing a comma between two
function arguments.

– There should be no space between
a function name and parenthesis.

– There should be spaces to align the
operators vertically to emphasize
program structure and semantics.

MCA II YEAR III SEMESTER

112
Rahul Publications

Rahul Publications

Q4. Explain the Implementing Coding
Guidelines.

Ans :
If coding guidelines are used in a proper

manner, errors can be detected at the time of writing
the software code. Such detection in early stages
helps in increasing the performance of the software
as well as reducing the additional and unplanned
costs of correcting and removing errors. Moreover,
if a well-defined coding guideline is applied, the
program yields a software system that is easy to
comprehend and maintain. Some of the coding
guidelines that are followed in a programming
language are listed below.

 All the codes should be properly commented
before being submitted to the review team.

 All curly braces should start from a new line.

 All class names should start with the
abbreviation of each group. For example, AA
and CM can be used instead of academic
administration and course management,
respectively.

 Errors should be mentioned in the following
format: [error code]: [explanation]. For
example, 0102: null pointer exception, where
0102 indicates the error code and null pointer
exception is the name of the error.

 Every ‘if statement should be followed by a
curly braces even if there exists only a single
statement.

 Every file should contain information about
the author of the file, modification date, and
version information.

 Similarly, some of the commonly used coding
guidelines in a database (organized collection
of information that is systematically organized
for easy access and analysis) are listed below.

 Table names should start with TBL. For
example, TBL_STUDENT.

 If table names contain one word, field names
should start with the first three characters of
the name of the table. For example,
STU_FIRSTNAME.

 Every table should have a primary key.

 Long data type (or database equivalent)
should be used for the primary key.

Q5. State the Advantages of Coding
Guidelines.

Ans : (Imp.)

Coding guidelines supplement the language
standard by defining acceptable and unacceptable
usage of the programming language used.
Acceptable usage avoids troublesome situations
while unacceptable usage is conducive to errors or
leads to misunderstanding of the written code.
Properly implemented coding guidelines help the
developer to limit program complexity, establish the
basis for code review, and guard against compiler
and common programming errors. Other
advantages associated with coding guidelines are
listed below and depicted.

Advantages of
coding

guidelines

Reduced
complexity

Reduced
costs

Automated
error

prevention

Reduced
hidden

cost

Code
reuse

Increased
efficiency

(i) Increased Efficiency: Coding guidelines
can be used effectively to save time spent on
gathering unnecessary details. These
guidelines increase the efficiency of the
software team while the software
development phase is carried out. An efficient
software code is fast and economical.
Software coding guidelines are used to
increase efficiency by making the team
productive, thus, ensuring that the software
is delivered to the user on time.

UNIT - IV SOFTWARE ENGINEERING

113
Rahul Publications

Rahul Publications

(ii) Reduced Costs: Coding guidelines are
beneficial in reducing the cost incurred on
the software project. This is possible since
coding guidelines help in detecting errors in
the early stages of the software development.
Note that if errors are discovered after the
software is delivered to the user, the process
of rectifying them becomes expensive as
additional costs are incurred on late detection,
rework, and retesting of the entire software
code.

(iii) Reduced Complexity: The written
software code can be either simple or
complex. Generally, it is observed that a
complex segment of software code is more
susceptible to errors than a segment
containing a simple software code. This is
because a complex software code reduces
readability as well as understandability. In
addition, the complex software code may be
inefficient in functioning and use of resources.
However, if the code is written using the given
coding guidelines, the problem of complexity
can be significantly avoided as the probability
of error occurrence reduces substantially.

(iv) Reduced Hidden Costs: Coding
guidelines, if adhered to in a proper manner,
help to achieve a high-quality software code.
The software quality determines the efficiency
of the software. Software quality is the degree
to which user requirements are accomplished
in the software along with conformity to
standards. Note that if quality is not considered
while developing the software, the cost for
activities such as fixing errors, redesigning the
software, and providing technical support
increases considerably.

(v) Code Reuse: Using coding guidelines,
software developers are able to write a code
that is more robust and create individual
modules of the software code. The reason
for making separate code segment is to enable
reusability of the modules used in the
software. A reusable module can be used a
number of times in different modules in one
or more software.

(vi) Automated Error Prevention: The coding
guidelines enable Automated Error

Prevention (AEP). This assures that each time
error occurs in software, the software
development activity is improved to prevent
similar errors in future. AEP begins with
detecting errors in the software, isolating its
cause, and then searching the cause of error
generation. Coding guidelines are useful in
preventing errors as they allow
implementation of requirements that prevent
the most common and damaging errors in
the software code.

In addition to the above mentioned
advantages, coding guidelines define appropriate
metric thresholds. These thresholds help in reducing
complexity, thus, minimizing the occurrence of
errors. Software developers face increasing
demands to demonstrate that development
practices meet the accepted coding guidelines. This
is essential for companies developing safety-critical
software as well as those seeking CMM and ISO
certification.

4.2 UNIT TESTING

Q6. What is Unit Testing? State the benefits
of unit tests.

Ans :
As a client, unit testing is not something you

will see in an end product it’s a type of testing
performed during the coding stage. You can always
specify that a potential developer you hire uses unit
testing during the development phase to ensure
your product has reduced logical bugs.

Without getting too technical, unit testing is a
form of coding that breaks your software down into
specific functions then tests each individually for any
logic flaws. The goal is to find bugs before your
customers find them.

A unit test would find any logic flaws (e.g.,
empty values that throw errors, input that throws
errors, or any inappropriate values) that
your human testers may not think to enter. From
this type of testing, developers can have the
confidence that their code is functional and, if there
are any errors, that they can be quickly found. This
type of assurance can be crucial when rolling out
large enterprise applications, and can ultimately
reduce costs associated with buggy software.

MCA II YEAR III SEMESTER

114
Rahul Publications

Rahul Publications

Check out
Code from
Repository

Fix Defects
and

Re-execute
Unit Tests

Unit Test
Life Cycle

Make
Changes

Execute
Unit

Tests

Check in
Code into
Repository

Code
Review

Check out
Code from
Repository

Fix Defects
and

Re-execute
Unit Tests

Unit Test
Life Cycle

Make
Changes

Execute
Unit

Tests

Check in
Code into
Repository

Code
Review

In many scenarios, the first thing a developer
cuts out when a deadline is looming is unit tests.
This is because unit tests are separate programs that
are written to test for any logic errors and functions,
and this code has to be maintained throughout the
lifecycle of your software project. But cutting out
this part of the testing process can lead to big
problems down the line.

There are several applications on the market
that plug into the coder’s code and help them
determine if any bugs exist for any specific function.
Benefits

1. Unit testing increases confidence in changing/
maintaining code. If good unit tests are written
and if they are run every time any code is
changed, we will be able to promptly
catch any defects introduced due to the
change. Also, if codes are already made less
interdependent to make unit testing possible,
the unintended impact of changes to any
code is less.

2. Codes are more reusable. In order to make
unit testing possible, codes need to be
modular. This means that codes are easier to
reuse.

3. Development is faster. How? If you do not
have unit testing in place, you write your
code and perform that fuzzy ‘developer test’
(You set some breakpoints, fire up the GUI,
provide a few inputs that hopefully hit your

code and hope that you are all set.) If you
have unit testing in place, you write the test,
write the code and run the test. Writing tests
takes time but the time is compensated by
the less amount of time it takes to run the
tests; You need not fire up the GUI and
provide all those inputs. And, of course, unit
tests are more reliable than ‘developer tests’.
Development is faster in the long run too.
How? The effort required to find and fix
defects found during unit testing is very less in
comparison to the effort required to fix
defects found during system testing or
acceptance testing.

4. The cost of fixing a defect detected during
unit testing is lesser in comparison to that of
defects detected at higher levels. Compare
the cost (time, effort, destruction, humiliation)
of a defect detected during acceptance testing
or when the software is live.

5. Debugging is easy. When a test fails, only the
latest changes need to be debugged. With
testing at higher levels, changes made over
the span of several days/ weeks/ months need
to be scanned.

6. Codes are more reliable. Why? I think there
is no need to explain this to a sane person.

4.3 CODE METRICS VALUES

Q7. What are the metrics of Coding?

Ans : (Imp.)

Code metrics is a set of software measures
that provide developers better insight into the code
they are developing. By taking advantage of code
metrics, developers can understand which types and/
or methods should be reworked or more
thoroughly tested. Development teams can identify
potential risks, understand the current state of a
project, and track progress during software
development.

Software Measurements

1. Maintainability Index

Calculates an index value between 0 and 100
that represents the relative ease of maintaining

UNIT - IV SOFTWARE ENGINEERING

115
Rahul Publications

Rahul Publications

the code. A high value means better
maintainability. Color coded ratings can be
used to quickly identify trouble spots in your
code. A green rating is between 20 and 100
and indicates that the code has good
maintainability. A yellow rating is between 10
and 19 and indicates that the code is
moderately maintainable. A red rating is a
rating between 0 and 9 and indicates low
maintainability.

2. Cyclomatic Complexity

Measures the structural complexity of the
code. It is created by calculating the number
of different code paths in the flow of the
program. A program that has complex control
flow will require more tests to achieve good
code coverage and will be less maintainable.

3. Depth of Inheritance

Indicates the number of class definitions that
extend to the root of the class hierarchy. The
deeper the hierarchy the more difficult it
might be to understand where particular
methods and fields are defined or/and
redefined.

4. Class Coupling

Measures the coupling to unique classes
through parameters, local variables, return
types, method calls, generic or template
instantiations, base classes, interface
implementations, fields defined on external
types, and attribute decoration. Good
software design dictates that types and
methods should have high cohesion and low
coupling. High coupling indicates a design that
is difficult to reuse and maintain because of
its many interdependencies on other types.

5. Lines of Code

Indicates the approximate number of lines in
the code. The count is based on the IL code
and is therefore not the exact number of lines
in the source code file. A very high count
might indicate that a type or method is trying
to do too much work and should be split up.
It might also indicate that the type or method
might be hard to maintain.

Code Metrics Values

 The new home for Visual Studio
documentation is Visual Studio 2017
Documentation on docs.microsoft.com.

 The latest version of this topic can be found
at Code Metrics Values.

 Code metrics is a set of software measures
that provide developers better insight into the
code they are developing. By taking
advantage of code metrics, developers can
understand which types and/or methods
should be reworked or more thoroughly
tested. Development teams can identify
potential risks, understand the current state
of a project, and track progress during
software development.

Software Measurements

The following list shows the code metrics results
that Visual Studio calculates:

1. Maintainability Index

Calculates an index value between 0 and 100
that represents the relative ease of maintaining
the code. A high value means better
maintainability. Color coded ratings can be
used to quickly identify trouble spots in your
code. A green rating is between 20 and 100
and indicates that the code has good
maintainability. A yellow rating is between 10
and 19 and indicates that the code is
moderately maintainable. A red rating is a
rating between 0 and 9 and indicates low
maintainability.

2. Cyclomatic Complexity

Measures the structural complexity of the
code. It is created by calculating the number
of different code paths in the flow of the
program. A program that has complex control
flow will require more tests to achieve good
code coverage and will be less maintainable.

3. Depth of Inheritance

Indicates the number of class definitions that
extend to the root of the class hierarchy. The
deeper the hierarchy the more difficult it
might be to understand where particular
methods and fields are defined or/and
redefined.

MCA II YEAR III SEMESTER

116
Rahul Publications

Rahul Publications

4. Class Coupling

Measures the coupling to unique classes
through parameters, local variables, return
types, method calls, generic or template
instantiations, base classes, interface
implementations, fields defined on external
types, and attribute decoration. Good
software design dictates that types and
methods should have high cohesion and low
coupling. High coupling indicates a design that
is difficult to reuse and maintain because of
its many interdependencies on other types.

5. Lines of Code

Indicates the approximate number of lines in
the code. The count is based on the IL code
and is therefore not the exact number of lines
in the source code file. A very high count
might indicate that a type or method is trying
to do too much work and should be split up.
It might also indicate that the type or method
might be hard to maintain.

6 Anonymous Methods

An anonymous method is just a method
that has no name. Anonymous methods are
most frequently used to pass a code block as
a delegate parameter. Metrics results for an
anonymous method that is declared in a
member, such as a method or access, are
associated with the member that declares the
method. They are not associated with the
member that calls the method.

Generated Code

Some software tools and compilers generate
code that is added to a project and that the project
developer either does not see or should not change.
Mostly, Code Metrics ignores generated code when
it calculates the metrics values. This enables the
metrics values to reflect what the developer can see
and change.

Code generated for Windows forms is not
ignored, because it is code that the developer can
see and change.

4.4 CODE VALIDATION OR CODE VERIFICATION

TECHNIQUES IN SOFTWARE ENGINEERING

Q8. Explain in detail the Code verification
Techniques in Software Engineering.

Ans : (Imp.)

Code verification is the process used for
checking the software code for errors introduced in
the coding phase. The objective of code verification
process is to check the software code in all aspects.
This process includes checking the consistency of
user requirements with the design phase. Note that
code verification process does not concentrate on
proving the correctness of programs. Instead, it
verifies whether the software code has been
translated according to the requirements of the user.

The code verification techniques are classified
into two categories, namely, dynamic and static. The
dynamic technique is performed by executing some
test data. The outputs of the program are tested to
find errors in the software code. This technique
follows the conventional approach for testing the
software code. In the static technique, the program
is executed conceptually and without any data. In
other words, the static technique does not use any
traditional approach as used in the dynamic
technique. Some of the commonly used static
techniques are code reading, static analysis, symbolic
execution, and code inspection and reviews.

Static
Technique

Code
Reading

Static
Analysis

Symbolic
Executor

Code
inspection and

Reviews

Static Techniques

I) Code Reading

Code reading is a technique that
concentrates on how to read and understand

UNIT - IV SOFTWARE ENGINEERING

117
Rahul Publications

Rahul Publications

a computer program. It is essential for a software
developer to know code reading. The process of
reading a software program in order to understand
it is known as code reading or program reading. In
this process, attempts are made to understand the
documents, software specifications, or software
designs. The purpose of reading programs is to
determine the correctness and consistency of the
code. In addition, code reading is performed to
enhance the software code without entirely
changing the program or with minimal disruption
in the current functionality of’ the program. Code
reading also aims at inspecting the code and
removing (fixing) errors from it.

Code reading is a passive process and needs
concentration. An effective code reading activity
primarily focuses on reviewing ‘what is important’.
The general conventions that can be followed while
reading the software code are listed below.

(i) Figure out what is important: While
reading the code, emphasis should be
on finding graphical techniques (bold,
italics) or positions (beginning or end of
the section). Important comments may
be highlighted in the introduction or at
the end of the software code. The level
of details should be according to the
requirements of the software code.

(ii) Read what is important: Code
reading should be done with the intent
to check syntax and structure such as
brackets, nested loops, and functions
rather than the non-essentials such as
name of the software developer who has
written the software code.

II) Static Analysis

Static analysis comprises a set of methods
used to analyze the source code or object code of
the software to understand how the software
functions and to set up criteria to check its
correctness. Static analysis studies the source code
without executing it and gives information about
the structure of model used, data and control flows,
syntactical accuracy, and much more. Due to this,
there are several kinds of static analysis methods,
which are listed below.

 Control Flow Analysis

This examines the control structures
(sequence, selection, and repetition) used in
the code. It identifies incorrect and inefficient
constructs and also reports unreachable code,
that is, the code to which the control never
reaches.

 Data Analysis

This ensures that-proper operations are
applied to data objects (for example, data
structures and linked lists). In addition, this
method also ensures that the defined data is
properly used. Data analysis comprises two
methods, namely, data dependency and
data-flow analysis. Data dependency (which
determines the dependency of one variable
on another) is essential for assessing the
accuracy of synchronization across multiple
processors. Dataflow analysis checks the
definition and references of variables.

 Fault/failure Analysis

This analyzes the fault (incorrect model
component) and failure (incorrect behavior
of a model component) in the model. This
method uses input-output transformation
descriptions to identify the conditions that are
the cause for the failure. To determine the
failures in certain conditions, the model design
specification is checked.

 Interface Analysis

This verifies and validates the interactive and
distributive simulations to check the software
code. There are two basic techniques for the
interface analysis, namely, model interface
analysis and user interface analysis. Model
interface analysis examines the sub-model
interfaces and determines the accuracy of the
interface structure. User interface analysis
examines the user interface model and checks
for precautionary steps taken to prevent
errors during the user’s interaction with the
model’. This method also concentrates on
how accurately the interface is integrated into.
the overall model and simulation.

MCA II YEAR III SEMESTER

118
Rahul Publications

Rahul Publications

III) Symbolic Execution

Symbolic execution concentrates on assessing
the accuracy of the model by using symbolic values
instead of actual data values for input. Symbolic
execution, also known as symbolic evaluation, is
performed by providing symbolic inputs, which
produce expressions for the output.

Symbolic execution uses a standard
mathematical technique for representing the
arbitrary program inputs (variables) in the form of
symbols. To perform the calculation, a machine is
employed to perform algebraic manipulation on the
symbolic expressions. These expressions include
symbolic data meant for execution. The symbolic
execution is represented as a symbolic state symbol
consisting of variable symbolic values, path, and the
path conditions. The symbolic state for each step in
the arbitrary input is updated. The steps that are
commonly followed for updating the symbolic state
considering all possible paths are listed below.

(i) The read or the input symbol is created.

(ii) The assignment creates a symbolic value
expression.

(iii) The conditions in symbolic state add
constraints to the path condition.

The output of symbolic execution is
represented in the form of a symbolic execution
tree. The branches of the tree represent the paths
of the model. There is a decision point to represent
the nodes of the tree. This node is labeled with the
symbolic values of the data at that junction. The
leaves of the tree are complete paths through the
model and they represent the output of symbolic
execution. Symbolic execution helps in showing the
correctness of the paths for all computations. Note
that in this method the symbolic execution tree
increases in size and creates complexity with growth
in the model.

IV) Code Inspection and Reviews

This technique is a formal and systematic
examination of the source code to detect errors.
During this process, the software is presented to the
project managers and the users for a comment of
approval. Before providing any comment, the
inspection team checks the source code for errors.
Generally, this team consists of the following.

(i) Moderator: Conducts inspection
meetings, checks errors-, and ensures
that the inspection process is followed.

(ii) Reader: Paraphrases the operation of
the software code.

(iii) Recorder: Keeps record of each error
in the software code. This frees the task
of other team members to think deeply
about the software code.

(iv) Author: Observes the code inspection
process silently and helps only when
explicitly required. The role of the
author is to understand the errors found
in the software code.

As mentioned above, the reader paraphrases
the meaning of small sections of code during the
code inspection process. In other words, the reader
translates the sections of code from a computer
language to a commonly spoken language (such as
English). The inspection process is carried out to
check whether the implementation of the software
code is done according to the user requirements.
Generally, to conduct code inspections the following
steps are performed.

(i) Planning: After the code is compiled
and there are no more errors and
warning messages in the software code,
the author submits the findings to the
moderator who is responsible for
forming the inspection team. After the
inspection team is formed, the
moderator distributes the listings as well
as other related documents like design
documentation to each team member.
The moderator plans the inspection
meetings and coordinates with the team
members.

(ii) Overview: This is an optional step and
is required only when the inspection
team members are not aware of the
functioning of the project. To familiarize
the team members, the author provides
details to make them understand the
code.

UNIT - IV SOFTWARE ENGINEERING

119
Rahul Publications

Rahul Publications

(iii) Preparation: Each inspection team member individually examines the code and its related
materials. They use a checklist to ensure that each problem area is checked. Each inspection
team member keeps a copy of this checklist, in which all the problematic areas are mentioned.

(iv) Inspection Meeting: This is carried out with all team members to review the software code.
The moderator discusses the code under review with the inspection team members.

There are two checklists for recording the result of the code inspection, namely, code inspection
checklist and inspection error list. The code inspection checklist contains a summary of all the errors of
different types found in the software code. This checklist is used to understand the effectiveness of inspection
process. The inspection error list provides the details of each error that requires rework. Note that this
list contains details only of those errors that require the whole coding process to be repeated.

All errors in the checklist are classified as major or minor. An error is said to be major if it results in
problems and later comes to the knowledge of the user. On the other hand, minor errors are spelling
errors and non-compliance with standards. The classification of errors is useful when the software is to be
delivered to the user and there is little time to review all the errors present in the software code.

At the conclusion of the inspection meeting, it is decided whether the code should be accepted in
the current form or sent back for rework. In case the software code needs reworking, the author makes all
the suggested corrections and then compiles the code. When the code becomes error-free, it is sent back
to the moderator. The moderator checks the code that has been reworked. If the moderator is completely
satisfied with the software code, inspection becomes formally complete and the process of testing the
software code begins.

4.5 SOFTWARE TESTING TECHNIQUES

Q9. Explain the concept of Software Testing.

Ans :
Once the software is developed it should be tested in a proper manner before the system is delivered

to the user. For this, two techniques that provide systematic guidance for designing tests are used. These
techniques are discussed here.

1. Once the internal working of software is known, tests are performed to ensure that all internal
operations of the software are performed according to specifications. This is referred to as white box
testing.

2. Once the internal working of software is known, tests are performed to ensure that all internal
operations of the software are performed according to specifications. This is referred to as white box
testing.

3. Once the specified function for which the software has been designed is known, tests are performed
to ensure that each function is working properly. This is referred to as black box testing.

White box
testing

Techniques
Black box

testing

Testing Techniques

MCA II YEAR III SEMESTER

120
Rahul Publications

Rahul Publications

4.5.1 White Box Testing

Q10. Describe white box testing in software engineering.

Ans : (Imp.)

White box testing (also called structural testing or glass box testing) is performed to test the program
internal structure. To perform white box testing, the tester should have a thorough knowledge of the
program internals along with the purpose of developing the software. During this testing, the entire software
implementation is also included with the specification. This helps in detecting errors even with unclear or
incomplete software specification.

Branches

Segments

Loops

Paths

White
Box

Testing

White Box Testing

The goal of white box testing is to ensure that the test cases (developed by software testers by using
white box testing) exercise each path through a program. That is, test cases ensure that all internal structures
in the program are developed according to design specifications. The test cases also ensure the following.

1. All independent paths within the program have been exercised at least once.

2. All internal data structures have been exercised.

3. All loops (simple loops, concatenated loops, and nested loops) have been executed at and within
their specified boundaries.

4. All segments present between the control structures (like ‘switch’ statement) have been executed at
least once.

5. Each branch (like ‘case’ statement) has been exercised at least once.

6. All the logical conditions as well as their combinations have been executed at least once for both
true and false paths.

7. Various advantages and disadvantages of white box testing are listed in Table.

Advantages

Covers the larger part of the program code while testing.

1. Uncovers typographical errors.

2. Detects design errors that occur when incorrect assumptions are made about execution paths.

Disadvantages

Tests that cover most of the program code may not be good for assessing the functionality of
surprise (unexpected) behaviors and other testing goals.

1. Tests based on design may miss other system problems.

2. Tests cases need to be changed if implementation changes.

UNIT - IV SOFTWARE ENGINEERING

121
Rahul Publications

Rahul Publications

The effectiveness of white box testing is usually measured in terms bf test or code coverage metrics,
that is, the fraction of code exercised by test cases. Various types of testing, which occur as part of white
box testing are basis path testing, control structure testing, and mutation testing.

Basis path testing enables to generate test cases such that every path of the program has been
exercised at least once. This technique is used to specify the basic set of execution paths that are required
to execute all the statements present in the program. Note that with the increase in the size of the software
the number of execution paths also increase, thereby degrading the effectiveness of basis path testing.

Creating Flow Graph

A flow graph represents the logical control flow within a program. For this, it makes use of a notation.

A flow graph uses different symbols, namely, circles and arrows to represent various statements and
flow of control within the program. Circles represent nodes, which are used to depict the procedural
statements present in the program. A sequence of process boxes and a decision box used in a flowchart
can be easily mapped into a single node. Arrows represent edges or links, which are used to depict the
flow of control within the program. It is necessary far every edge to end in a node irrespective of whether
it represents a procedural statement. In a flaw graph, the area bounded by edges and nodes is known as
a region. In addition, the area outside the graph is also counted as a region while counting regions. A flow
graph can be easily understood with the help of a diagram.

MCA II YEAR III SEMESTER

122
Rahul Publications

Rahul Publications

Note that a node that contains a condition is
known as predicated node, which contains one or
more edges emerging out of it.

Finding Independent Paths

A path through the program, which specifies
a new condition or a minimum of one new set of
processing statements, is known as an independent
path. For example, in nested ‘if’ statements there
are several conditions that represent independent
paths. Note that a set of all independent paths within
a program is known as its basis set.

A test case is developed to ensure that while
testing all statements of the program get exercised
at least once.

P1: 1-9

P2: 1-2-7-8-1-9

P3: 1-2-3-4-6-8-1-9

P4: 1-2-3-5-6-8-1-9

Where P1, P2, P3, and P4 represent different
independent paths present in the program.

To determine the number of independent
paths through a program, the cyclomatic complexity
metric is used that provides a quantitative measure
of the logical complexity of a program. The value
of this metric defines the number of test cases that
should be developed to’ ensure that all statements
in the program get exercised at least once during
testing.

Cyclomatic complexity of a program can be
computed using any of the following three methods.

 By counting the total number of regions in
the flow graph of a program. For example,
there are four regions represented by R1, R2,
R3, and R4; hence, the cyclomatic complexity
is four.

 By using the following formula.

CC = E - N + 2 Where

CC = the cyclomatic complexity of the
program

E = the number of edges in the flaw graph

N = the number of nodes in the flaw graph.

 For example, E = 11, N = 9.

Therefore, CC = 11 - 9 + 2 = 4.

 By using the following formula.

CC= P + 1
Where

P= the number of predicate nodes in the flow
graph.

For example, P = 3.
Therefore, CC = 3 + 1 = 4.

Deriving Test Cases

In this, basis path testing is presented as a
series of steps and test cases are developed to ensure
that all statements within the program get exercised
at least once while performing testing. While
performing basis path testing, initially the basis set
(independent paths in the program) is derived. The
basis set can be derived using the steps listed below.

1. Draw the Flow Graph of the Program

A flow graph is constructed using symbols
previously discussed. For example, a program to
find the greater of two numbers is given below.

1

2

3

6

4 5

R2

R1

1

2

3

6

4 5

R2

R1

For graph to Find the Greater between Two
Number

procedure greater;
integer: x, y, z = 0;
enter the value of x;
enter the value of y;
if x > y then
z = x;
else
z = y;
end greater

UNIT - IV SOFTWARE ENGINEERING

123
Rahul Publications

Rahul Publications

2. Compute the cyclomatic complexity
The cyclomatic complexity of the program can be computed using the flow graph depicted.
CC = 2 as there two regions R1 and R2 or
CC 6 edges - 6 nodes + 2 =2 or
CC 1 predicate node + 1 = 2.

3. Determine all independent paths through the program
For the flow graph depicted the independent paths are listed below.
P1: 1-2-3-4-6
P2: 1-2-3-5-6

4. Prepare test cases:
Test cases are prepared to implement the execution of all independent paths in the basis set. The

program is then tested for each test case and the produced output is compared with the desired output.
Graph matrix is used to develop software tool that in turn helps in carrying ‘out basis path testing.

It is defined as a data structure used to represent the flow graph of a program in a tabular form. This
matrix is also used to evaluate the control structures present in the program during testing.

Graph matrix is a square matrix of the size NxN, where Nis the number of nodes in the flow graph.
An entry is made in the matrix at the intersection of ith row and jth column if there exists an edge between
ith and jth node in the flow graph. Every entry in the graph matrix is assigned some value known as link
weight. Adding link weights to each entry makes the graph matrix a useful tool for evaluating the control
structure of the program during testing.

2

4

5 6

8

3

1

7

a b
i

d

j
fe

g h

(a) Flow graph

c

a b

c

i

e f

g

jd

h

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Graph matrix

2

4

5 6

8

3

1

7

a b
i

d

j
fe

g h

(a) Flow graph

c

a b

c

i

e f

g

jd

h

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(b) Graph matrix

In the flow graph, numbers and letters are used to identify each node and edge respectively. A letter
entry is made if there is an edge between two nodes of the flow graph. For example, node 3 is connected
to the node 6 by edge d and node 4 is connected to node 2 by edge c, and so on.

Control Structure Testing

Control structure testing is used to enhance the coverage area by testing various control structures
(which include logical structures and loops) present in the program. Note that basis path testing is used as
one of the techniques for control structure testing. Various types of testing performed under control
structure testing are condition testing, data-flow testing, and loop testing.

MCA II YEAR III SEMESTER

124
Rahul Publications

Rahul Publications

Condition Testing

In condition testing, the test cases are derived
to determine whether the logical conditions and
decision statements are free from errors. The errors
presenting logical conditions can be incorrect
Boolean operators, missing parenthesis in a Boolean
expression, error in relational operators, arithmetic
expressions, and so on.

The common types of logical conditions that
are tested using condition testing are listed below.

1. A relational expression such as E1 op E2,
where E1 and E2 are arithmetic expressions
and op is an operator.

2. A simple condition such as any relational
expression preceded by a NOT (~) operator
for example, (~E1), where E1 is an arithmetic
expression.

3. A compound condition, which is formed by
combining two or more simple conditions
using Boolean operators. For example, (E1
& E2) | (E2 & E3), where El, E2, and E3
are arithmetic expressions and & and |
represent AND and OR operators
respectively.

4. A Boolean expression consisting of operands
and a Boolean operator such as AND, OR,
or NOT. For example, A|B is a Boolean
expression, where A and B are operands and
| represents OR operator.

Condition testing is performed using different
strategies, namely, branch testing, domain testing,
and branch and relational operator testing. Branch
testing executes each branch (like ‘if statement)
present in the module of a program at least once to
detect all the errors present in the branch. Domain
testing tests relational expressions present in a
program. For this, domain testing executes all
statements of the program that contain relational
expressions. Branch and relational operator testing
tests the branches present in the module of a
program using condition constraints. For example,

if a > 10

then

print big

In this case, branch and relational operator
testing verifies when the above code is executed, it
produces the output ‘big’ only if the value of variable
a is greater than 10.

In data flow, testing, test cases are derived to
determine the validity of variables definitions and
their uses in the program. This testing ensures that
all variables are used properly in a program. To
specify test cases, data-flow-based testing
uses information such as location at which the
variables are defined and used in the program.

For performing data-flow testing, a definition-
use graph is built by associating the program
variables with nodes and edges of the control flow
graph. Once these variables are attached, test cases
can easily determine which variable is used in which
part of a program and how data is flowing in the
program. Thus, data-flow of a program can be
tested easily using specified test cases.

Loop Testing

Loop testing is used to check the validity of
loops present in the program modules. Generally,
there exist four types of loops, namely, simple loop,
nested loops, concatenated loops, and unstructured
loops.

TextText Text

Text

Text

Text

Simple
Loop

Nested
Loop

Concatenated
loop

Unstructured
Loop

Types of Loops

TextText Text

Text

Text

Text

Simple
Loop

Nested
Loop

Concatenated
loop

Unstructured
Loop

Types of Loops

UNIT - IV SOFTWARE ENGINEERING

125
Rahul Publications

Rahul Publications

Simple Loop

Refers to a loop that has no other loops in it.
Consider a simple loop of size n. Size n of the loop
indicates that the loop can be traversed n times,
that is, n number of passes are made through the
loop. The steps followed for testing simple loops
are listed below.

1. Skip the entire loop.

2. Traverse the loop only once.

3. Traverse the loop two times.

4. Make ill number of passes through the loop,
where ill < n.

5. Traverse the loop n - I, n, n + 1 times.

Nested Loops

Loops within loops are known as nested
loops. The numbers of tests required for testing
nesting loops depends on the level of nesting. More
is the level of nesting, more will be the number of
tests required. The steps followed for testing nested
loops are listed below.

1. Start with the inner loop and set values of all
the outer to minimum.

2. Test the inner loop using the steps followed
for testing simple loops while keeping the
iteration parameters of the outer loops at their
minimum values. Add other tests for values
that are either out-of-range or are eliminated.

3. Move outwards and perform tests for the next
loop while holding other nested loops to
‘typical’ values and the iteration parameters
of the outer loops at their minimum values.

4. Continue performing tests until all the loops
are tested.

5. Concatenated loops: The loops containing
several loops that may be dependent or
independent In case the loops are dependent
on each other, the steps in nested loops are
followed. On the other hand, if the loops are
independent of each other, the steps in simple
loops are followed.

6. Unstructured loops: Such loops of difficult
to test; therefore, they should be redesigned
so that the use of structured programming
constructs can be reflected.

7. Mutation testing is a white box method where
errors are ‘purposely’ inserted into a program
(under test) to verify whether the existing test
case is able to detect the error. In this testing,
mutants of the program are created by
making some changes in the original
program. The objective is to check whether
each mutant produces an output that is
different from the output produced by the
original program.

4.5.2 Black Box Testing

Q11. Explain Black Box Testing in detail.

Ans : (Imp.)

Black box (or functional) testing checks the
functional requirements and examines the input and
output data of these requirements. When black box
testing is performed, only the sets of ‘legal’ input
and corresponding outputs should be known to the
tester and not the internal logic of the program to
produce that output. Hence to determine the
functionality, the outputs produced for the given
sets of input are observed.

The black box testing is used to find the errors
listed below.

1. Interface errors such as functions, which are
unable to send or receive data to/from other
software.

2. Incorrect functions that lead to undesired
output when executed.

3. Missing functions and erroneous data
structures.

4. Erroneous databases, which lead to incorrect
outputs when the software uses the data
present in these databases for processing.

MCA II YEAR III SEMESTER

126
Rahul Publications

Rahul Publications

5. Incorrect conditions due to which the functions produce incorrect outputs when they are executed.

6. Termination errors such as certain conditions due to which a function enters a loop that forces it to
execute indefinitely.

In this testing, tester derives various test cases to exercise the functional requirements of the software
without considering implementation details of the code. Then, the software is run for the specified sets of
input and the outputs produced for each input set is compared against the specifications to conform the
correctness. If they are a specified by the user, then the software is considered to be correct else the
software is tested for the presence of errors in it. The advantages and disadvantages associated with black
box testing are listed in Table.

Advantages

Tester does not require knowledge of internal logic of the program and the programming language
used.

1. Reveals any ambiguities and inconsistencies in the functional specifications.

2. Efficient when used to larger systems.

3. A non-technical person can also perform black box testing.

Disadvantages

Exercising software for every possible test case requires a lot of time, thus, only a small number of
test cases are used to test the functional requirements.

1. As test cases are developed without looking at the internal logic of program, testing may leave
many paths in the program unexercised.

2. There may be duplication of test cases if tester is unaware of the test cases that have already
been tried by the software developer

3. Cannot be targeted towards particular code segments, hence is more error prone.

Various methods used in black box testing are equivalence class partitioning, boundary value analysis,
and cause-effect graphing. In equivalence class partitioning, the test inputs are classified into equivalence
classes such that one input checks (validates) all the input values in that class. In boundary value analysis,
the boundary values of the equivalence classes are considered and tested. In cause-effect graphing, cause-
effect graphs are used to design test cases, which provides all the possible combinations of inputs to the
program.

UNIT - IV SOFTWARE ENGINEERING

127
Rahul Publications

Rahul Publications
This method tests the validity of outputs by dividing the input domain into different classes of data

(known as equivalence classes) using which test cases can be easily generated. Test cases are designed with
the purpose of covering each partition at least once. A test case that is able to detect every error in a
specified partition is said to be an ideal test case.

An equivalence class depicts valid or invalid states for the input condition. An input condition can be
either a specific numeric value, a range of values, a Boolean condition, or a set of values. The general
guidelines that are followed for generating the equivalence classes are listed in Table.

One valid and one invalidTwoMember of a set

One valid and two invalidThreeRange

One valid and two invalidThreeSpecific numeric value

One valid and one invalidTwoBoolean

DescriptionNumber of
equivalence classes

Input Condition

One valid and one invalidTwoMember of a set

One valid and two invalidThreeRange

One valid and two invalidThreeSpecific numeric value

One valid and one invalidTwoBoolean

DescriptionNumber of
equivalence classes

Input Condition

To understand equivalence class partitioning properly, let us consider an example. This example is
explained in the series of steps listed below.

1. Suppose that a program P takes an integer X as input.

2. Now, either X < 0 or X >0.

3. In case X < 0, the program is required to perform task T1; otherwise, the task T2 is performed.

4. The input domain is as large as X and it can assume a large number of values. Therefore the input
domain (p) is partitioned into two equivalence classes and all test inputs in the X < 0 and X  0
equivalence classes are considered to be equivalent.

5. Now, as shown in Figure independent test cases are developed for X < 0 and X  0.

MCA II YEAR III SEMESTER

128
Rahul Publications

Rahul Publications
In boundary value analysis (BVA), test cases are derived on the basis of values that lie on an edge of

the equivalence partitions. These values can be input or output values either at the edge or within the
permissible range from the edge of an equivalence partition.

BVA is used since it has been observed that most errors occur at the boundary of input domain
rather than at the middle of the input domain. Note that boundary value analysis complements the
equivalence partitioning method. The only difference is that in BVA, test cases are derived for both input
domain and output domain while in equivalence partitioning test cases are derived only for input domain.

Generally, the test cases are developed in boundary value analysis using certain guidelines, which
are listed below.

1. If an input condition specifies a range of values, test cases should be developed on the basis of both
the values at the boundaries and the values that are just above and below the boundary values. For
example, for the range -0.5d”Xd”0.5, the input values for a test case can be ‘-0.4’, -’0.5', ‘0.5’,
‘0.6’.

2. If an input condition specifies a number of values, test cases should be designed to exercise the
minimum and maximum numbers as well as values just above and below these numbers.

3. If an input consists of certain data structures (like arrays), then the test case should be able to
execute all the values present at the boundaries of the data structures such as the maximum and
minimum value of an array.

Equivalence partitioning and boundary value analysis tests each input given to a program
independently. It means none .of these consider the case of combinations of inputs, which may produce
situations that need to be tested. This drawback is avoided in cause-effect graphing where combinations
of inputs are used instead of individual inputs. In this technique, the causes (input conditions) and effects
(output conditions) of the system are identified and a graph is created with each condition as the node of
the graph. This graph is called cause-effect graph. This graph is then used to derive test cases. To use the
cause-effect graphing method, a number of steps are followed, which are listed below.

1. List the cause (input conditions) and effects (outputs) of the program.

2. Create a cause-effect graph.

3. Convert the graph into a decision table.

4. Generate test cases from the decision table rules.

UNIT - IV SOFTWARE ENGINEERING

129
Rahul Publications

Rahul Publications

In order to generate test cases, all causes and effects are allocated unique numbers, which are used
to identify them. After allocating numbers, the cause due to which a particular effect occurred is determined.
Next, the combinations of various conditions that make the effect ‘true’ are recognized. A condition has
two states, ‘true’ and ‘false’. A condition is ‘true’ if it causes the effect to occur; otherwise, it is ‘false’. The
conditions are combined using Boolean operators such as ‘AND’ (&), ‘OR’ (|), and ‘NOT’ (~). Finally, a
test case is generated for all possible combinations of conditions.

Various symbols are used in the cause-effect graph. The figure depicts various logical associations
among causes ci and effects ei. The dashed notation in the figure indicates various constraint associations
that can be applied to either causes or effects.

a

b

a

b

c

a

b

Constraints

E O

ExclusiveExclusive Only one

a

b

Require

R

a

b

Masks

M

c1 e2

c1 b1

Logical

Identity

not

c1

c1
b1

or

c1

c1
e1

and

Logical and Constraints Associations

a

b

a

b

c

a

b

Constraints

E O

ExclusiveExclusive Only one

a

b

Require

R

a

b

Masks

M

c1 e2

c1 b1

Logical

Identity

not

c1

c1
b1

or

c1

c1
e1

and

a

b

a

b

c

a

b

Constraints

E O

ExclusiveExclusive Only one

a

b

Require

R

a

b

Masks

M

c1 e2

c1 b1

Logical

Identity

not

c1

c1
b1

or

c1

c1
e1

and

Logical and Constraints Associations

To understand cause-effect graphing properly, let us consider an example. Suppose a triangle is
drawn with inputs x, y, and z. The values of these inputs are given between ‘0’ and ‘100’. Using these
inputs, three outputs are produced, namely, isosceles triangle, equilateral triangle or no triangle is made (if
values of x, y, z are less than. 60°).

1. Using the steps of cause-effect graphing, initially the causes and effects of the problem are recognized,
which are listed in Table.

El: no triangle is formed.
E2: equilateral triangle is formed.
E3: isosceles triangle is formed.

C1: side x is less than the sum of
sides y and z.
C2: sides x, y, z are equal.
C3: side x is equal to side y.
C4: side y is equal to side z.
C5: side x is equal to side z.

EffectsCauses

El: no triangle is formed.
E2: equilateral triangle is formed.
E3: isosceles triangle is formed.

C1: side x is less than the sum of
sides y and z.
C2: sides x, y, z are equal.
C3: side x is equal to side y.
C4: side y is equal to side z.
C5: side x is equal to side z.

EffectsCauses

MCA II YEAR III SEMESTER

130
Rahul Publications

Rahul Publications
2. A decision table (a table that shows a set of conditions and the actions resulting from them) is drawn

as shown in Table.

111E3: isosceles triangle

1E2: equilateral triangle

1El: not a triangle

1XXXXC5: x=z

X1XXXC4: y=z

XX1XXC3: x=y

XXX1XC2: x=y=z

XXXX0C1: x < y + z

Conditions

111E3: isosceles triangle

1E2: equilateral triangle

1El: not a triangle

1XXXXC5: x=z

X1XXXC4: y=z

XX1XXC3: x=y

XXX1XC2: x=y=z

XXXX0C1: x < y + z

Conditions

3. Each combination of conditions for an effect in Table is a test case.

4.5.3 White Box Testing Vs Black Box Testing

Q12. What are the differences between White Box and Black Box Testing?

Ans : (Imp.)

Although both the testing techniques are used together to test many programs, there are several
considerations that make them different from each other. Black box testing detects errors of omission,

UNIT - IV SOFTWARE ENGINEERING

131
Rahul Publications

Rahul Publications

which are errors occurring due to non-accomplishment of user requirements. On the other hand, white
box testing detects errors of commission which are errors occurring due to non-implementation of some
part of software code. Other differences between these two techniques are listed in Table.

-----------The inner software present inside the
calculator (which is known by the
developer only) is checked by giving
inputs to the code.

Example

Internal structure of modules or
programs is not considered for selecting
test cases.

Test cases are generated on the basis
of the internal structure or code of the
module to be tested.

Test Cases

No knowledge of the internal structure
of a program is required to generate
test case.

Knowledge of the internal structure of
a program is required for generating
test case.

Requirement

Performed in the later stages of testing.Performed in the early stages of
testing.

Stage

To test the functionality of software.
Concerned with testing the
specifications and does not ensure that
all the components of software that are
implemented are tested. Addresses
validity, behavior and performance of
software

To test the internal structure of
software. Test the software but does
not ensure the complete
implementation of all the specifications
mentioned in user requirements.
Addresses flow and control structure of
a program.

Purpose

Black Box TestingWhite Box TestingBasis

-----------The inner software present inside the
calculator (which is known by the
developer only) is checked by giving
inputs to the code.

Example

Internal structure of modules or
programs is not considered for selecting
test cases.

Test cases are generated on the basis
of the internal structure or code of the
module to be tested.

Test Cases

No knowledge of the internal structure
of a program is required to generate
test case.

Knowledge of the internal structure of
a program is required for generating
test case.

Requirement

Performed in the later stages of testing.Performed in the early stages of
testing.

Stage

To test the functionality of software.
Concerned with testing the
specifications and does not ensure that
all the components of software that are
implemented are tested. Addresses
validity, behavior and performance of
software

To test the internal structure of
software. Test the software but does
not ensure the complete
implementation of all the specifications
mentioned in user requirements.
Addresses flow and control structure of
a program.

Purpose

Black Box TestingWhite Box TestingBasisS.No.

1

2

3

4

5

In this testing, it is checked whether the calculator is working properly by giving inputs by pressing
the buttons in the calculator.

4.6 SOFTWARE TESTING METRICS

Q13. What are Software Testing Metric?

Ans : (Imp.)

In software testing, Metric is a quantitative measure of the degree to which a system, system

component, or process possesses a given attribute.

In other words, metrics helps estimating the progress, quality and health of a software testing effort.

The ideal example to understand metrics would be a weekly mileage of a car compared to its ideal

mileage recommended by the manufacturer.

“Software testing metrics - Improves the efficiency and effectiveness of a software testing process.”

Software testing metrics or software test measurement is the quantitative indication of extent, capacity,

dimension, amount or size of some attribute of a process or product.

MCA II YEAR III SEMESTER

132
Rahul Publications

Rahul Publications
Cost Schedule

Quality

Scope

Cost Schedule

Quality

Scope

Steps to Test Metrics

The Test Case execution falls below the goal
set, we need to investigate the reason and
suggest the improvement measures

Identify the areas of improvement
depending on the interpretation of defined
metrics

5

The actual test cases executed per dayEffective calculation, management and
interpretation of the defined metrics

4

The actual test execution per day will be
captured by the test manager at the end of the
day

Determination of the information to be
followed, frequency of tracking and the
person responsible

3

The number of test cases planned to be
executed per day

In this Step, the tester uses the data as
baseline to define the metrics

2

Testing progress tracking processIdentify the key software testing processes
to be measured

1

ExampleSteps to test metricsS.No

The Test Case execution falls below the goal
set, we need to investigate the reason and
suggest the improvement measures

Identify the areas of improvement
depending on the interpretation of defined
metrics

5

The actual test cases executed per dayEffective calculation, management and
interpretation of the defined metrics

4

The actual test execution per day will be
captured by the test manager at the end of the
day

Determination of the information to be
followed, frequency of tracking and the
person responsible

3

The number of test cases planned to be
executed per day

In this Step, the tester uses the data as
baseline to define the metrics

2

Testing progress tracking processIdentify the key software testing processes
to be measured

1

ExampleSteps to test metricsS.No

Purpose

“We cannot improve what we cannot measure” and Test Metrics helps us to do exactly the same.

 Take decision for next phase of activities

 Evidence of the claim or prediction

 Understand the type of improvement required

 Take decision or process or technology change

Types of Metrics

(i) Process Metrics: It can be used to improve the process efficiency of the SDLC (Software
Development Life Cycle).

(ii) Product Metrics: It deals with the quality of the software product.

(iii) Project Metrics: It can be used to measure the efficiency of a project team or any testing tools
being used by the team members.

UNIT - IV SOFTWARE ENGINEERING

133
Rahul Publications

Rahul Publications

Manual Test Metrics

Manual test metrics is classified into two classes

(i) Base Metrics

(ii) Calculated Metrics

Manual Test
metrics

Base
metrics

Calculated
metrics

(i) Base Metrics

Base metrics is the raw data collected by Test Analyst during the test case development and execution
(# of test cases executed, # of test cases).

(ii) Calculated Metrics

While, calculated metrics is derived from the data collected in base metrics. Calculated metrics is
usually followed by the test manager for test reporting purpose (% Complete, % Test Coverage).

Depending on the project or business model some of the important metrics are

 Test case execution productivity metrics

 Test case preparation productivity metrics

 Defect metrics

 Defects by priority

 Defects by severity

 Defect slippage ratio

MCA II YEAR III SEMESTER

134
Rahul Publications

Rahul Publications

UNIT
V

Maintenance and Re-engineering: Software Maintenance, supportability,
Reengineering, Business process Reengineering, Software reengineering, Reverse
engineering; Restructuring, Forward engineering, Economics of Reengineering.

Software Process Improvement: Introduction, SPI process, CMMI, PCMM,
Other SPI Frameworks, SPI return on investment, SPI Trends.

5.1 SOFTWARE MAINTENANCE, SUPPORTABILITY

Q1. What is Software Maintenance?
Describe the types of Software Mainta-
nance.

Ans : (Imp.)

Software maintenance is widely accepted part
of SDLC now a days. It stands for all the
modifications and updations done after the delivery
of software product. There are number of reasons,
why modifications are required, some of them are
briefly mentioned below:

1. Market Conditions

Policies, which changes over the time, such
as taxation and newly introduced constraints
like, how to maintain bookkeeping, may
trigger need for modification.

2. Client Requirements

Over the time, customer may ask for new
features or functions in the software.

3. Host Modifications

If any of the hardware and/or platform (such
as operating system) of the target host
changes, software changes are needed to
keep adaptability.

4. Organization Changes

If there is any business level change at client
end, such as reduction of organization
strength, acquiring another company,
organization venturing into new business,
need to modify in the original software may
arise.

Types

In a software lifetime, type of maintenance
may vary based on its nature. It may be just a routine
maintenance tasks as some bug discovered by some
user or it may be a large event in itself based on
maintenance size or nature. Following are some
types of maintenance based on their characteristics:

1. Corrective Maintenance

This includes modifications and updations
done in order to correct or fix problems,
which are either discovered by user or
concluded by user error reports.

2. Adaptive Maintenance

This includes modifications and updations
applied to keep the software product up-to
date and tuned to the ever changing world
of technology and business environment.

3. Perfective Maintenance

This includes modifications and updates done
in order to keep the software usable over long
period of time. It includes new features, new
user requirements for refining the software
and improve its reliability and performance.

4. Preventive Maintenance

This includes modifications and updations to
prevent future problems of the software. It
aims to attend problems, which are not
significant at this moment but may cause
serious issues in future.

Cost of Maintenance

Reports suggest that the cost of maintenance
is high. A study on estimating software maintenance
found that the cost of maintenance is as high as
67% of the cost of entire software process cycle.

UNIT - V SOFTWARE ENGINEERING

135
Rahul Publications

Rahul Publications

Requirement
Designing

Implementation

Testing

On an average, the cost of software
maintenance is more than 50% of all SDLC phases.
There are various factors, which trigger maintenance
cost go high, such as:

Real-world Factors affecting Maintenance
Cost

 The standard age of any software is
considered up to 10 to 15 years.

 Older software’s, which were meant to work
on slow machines with less memory and
storage capacity cannot keep themselves
challenging against newly coming enhanced
software’s on modern hardware.

 As technology advances, it becomes costly to
maintain old software.

 Most maintenance engineers are newbie and
use trial and error method to rectify problem.

 Often, changes made can easily hurt the
original structure of the software, making it
hard for any subsequent changes.

 Changes are often left undocumented which
may cause more conflicts in future.

 Software-end factors affecting Maintenance
Cost

 Structure of Software Program

 Programming Language

 Dependence on external environment

 Staff reliability and availability

Maintenance Activities

IEEE provides a framework for sequential
maintenance process activities. It can be used in
iterative manner and can be extended so that
customized items and processes can be included.

Identification
& Tracing Analysis Design

Implemen-
tation

System
Testing

Delivery Acceptance
testing

Maintance
management

Maintenance
activities

Identification
& Tracing Analysis Design

Implemen-
tation

System
Testing

Delivery Acceptance
testing

Maintance
management

Maintenance
activities

These activities go hand-in-hand with each
of the following phase:

 Identification & Tracing : It involves
activities pertaining to identification of
requirement of modification or maintenance.
It is generated by user or system may itself
report via logs or error messages. Here, the
maintenance type is classified also.

 Analysis : The modification is analyzed for
its impact on the system including safety and
security implications. If probable impact is
severe, alternative solution is looked for. A
set of required modifications is then
materialized into requirement specifications.
The cost of modification/maintenance is
analyzed and estimation is concluded.

 Design : New modules, which need to be
replaced or modified, are designed against
requirement specifications set in the previous
stage. Test cases are created for validation and
verification.

 Implementation : The new modules are
coded with the help of structured design
created in the design step. Every programmer
is expected to do unit testing in parallel.

 System Testing : Integration testing is done
among newly created modules. Integration
testing is also carried out between new
modules and the system. Finally the system
is tested as a whole, following regressive
testing procedures.

MCA II YEAR III SEMESTER

136
Rahul Publications

Rahul Publications

 Acceptance Testing : After testing the
system internally, it is tested for acceptance
with the help of users. If at this state, user
complaints some issues they are addressed
or noted to address in next iteration.

 Delivery : After acceptance test, the system
is deployed all over the organization either
by small update package or fresh installation
of the system. The final testing takes place at
client end after the software is delivered.

Training facility is provided if required, in
addition to the hard copy of user manual.

 Maintenance management : Configur-
ation management is an essential part of
system maintenance. It is aided with version
control tools to control versions, semi-version
or patch management.

5.2 REENGINEERING

Q2. What is Re-engineering? Describe steps
followed by Reengineering.

Ans : (Imp.)

Meaning

Reengineering implies changes of various
types and depth to a system, from a slight renovation
to a total overhaul. Business process reengineering
(BPR) began as a private, sector technique to help
organizations fundamentally rethink how they do
their work in order to dramatically improve customer
service, cut operational costs, and become world-
class competitors. A key stimulus for reengineering
has been the continuing development and
deployment of sophisticated information systems
and networks.

Steps

There are six standard steps, which are useful
to guide a firm in its reengineering procedure,

Step 1: Target Identification

This is the most important aspect of the overall
reengineering procedure. It is very essential
to identify which work or operation is
required to be changed or improved. It is also
important to identify the known range of
potential improvement i.e. we should know
and be aware of limitations or extent of
scopes of improvements that can be made.

Step 2: Understand the work Sequence

Understanding the work sequence which is
being evaluated is the second step in the
reengineering procedure. The traditional gay
of doing this is to make a detailed flow chart
or process map of the various steps that are
required for performing a particular activity.
However in reengineering process only those
steps that are capable of potential
improvement are studied and alternative
suggested. In situations where the alternatives
suggested require capital commitment like
installing of new machinery the return on
investment is also taken in account.

Step 3 and 4: The Creative Aspect

A model of the activity which is being studied
for improvement is created. This is done to
identify best possible alternative design.
Simultaneously the firm should also initiate
steps to study and analyze external
benchmarking in order to find out improved
alternative approaches to the design. A final
combination of the suggested alternative
design of the activity would be a combination
of both the internal as well as external
perspectives.

Step 5: Evaluation the Modifications to the
Activity

The fifth step involves evaluation the
modifications to the activity which is being
reviewed on the cost benefit basis. During the
benchmarking exercise, various ideas would
be generated. Care should be taken only to

UNIT - V SOFTWARE ENGINEERING

137
Rahul Publications

Rahul Publications

adopt those ideas, which are practical and
meaningful. The focus of the evaluation
should be on the accurate assessment of the
expected benefits that will be accrued from
the implementation of the modified activity.

Step 6: Implementation

Depending upon the extent of the proposed
change, it may become necessary for the firm
to resort to suitable training for its employees.
How effective will be the implementation will
depend upon the risk involved in adopting
and managing the proposed change in the
activity.

5.3 BUSINESS PROCESS RE-ENGINEERING

Q3. What is the Business Process Re-
engineering?

Ans :
The globalization of the economy and the

liberalization of the trade markets have formulated
new conditions in the market place which are
characterized by instability and intensive competition
in the business environment. Competition is
continuously increasing with respect to price, quality
and selection, service and promptness of delivery.
Removal of barriers, international cooperation,
technological innovations cause competition to
intensify. All these changes impose the need for
organizational transformation, where the entire
processes, organization climate and organization
structure are changed. Hammer and Champy
provide the following definitions. Reengineering is
the fundamental rethinking and radical redesign of
business processes to achieve dramatic
improvements in critical contemporary measures of
performance such as cost, quality, service and speed.
¸ Process is a structured, measured set of activities
designed to produce a specified output for a
particular customer or market. It implies a strong
emphasis on how work is done within an
organization.”

Business processes are characterized by three
elements: the inputs, (data such customer inquiries
or materials), the processing of the data or materials
(which usually go through several stages and may
necessary stops that turns out to be time and money
consuming), and the outcome (the delivery of the
expected result). The problematic part of the process
is processing. Business process reengineering mainly
intervenes in the processing part, which is
reengineered in order to become less time and
money consuming.

The term “Business Process Reengineering”
has, over the past couple of year, gained Increasing
circulation. As a result, many find themselves faced
with the prospect of having to learn, plan,
implement and successfully conduct a real Business
Process Reengineering endeavor, whatever that
might entail within their own business organization.

How Business Process Reengineering works:

Business Process Reengineering is a dramatic
change initiative that contains five major steps.
Managers should:

 Refocus company values on customer needs

 Redesign core processes, often using
information technology to enable
improvements

 Reorganize a business into cross-functional
teams with end-to-end responsibility for a
process.

 Rethink basic organizational and people
issues.

 Improve business processes across the
organization.

Companies use Business Process Reenginee-
ring

Companies use Business Process Reenginee-
ring to improve performance substantially on key
processes that impact customers. Business Process
Reengineering can:

MCA II YEAR III SEMESTER

138
Rahul Publications

Rahul Publications

 Reduce Costs and Cycle Time: Business
Process Reengineering reduces costs and
cycle times by eliminating unproductive
activities and the employees who perform
them. Reorganization by teams decreases the
need for management layers, accelerates
information flows, and eliminates the errors
and rework caused by multiple handoffs.

 Improve Quality: Business Process
Reengineering improves quality by reducing
the fragmentation of work and establishing
clear ownership of processes. Workers gain
responsibility for their output and can
measure their performance based on prompt
feedback.

How to Re-Engineer the Corporation?

Information Availability: To fundamentally
redesign a process, one must know the details
involved. Details from internal and external sources
must be captured and provided to the relevant
people in the required time duration. This helps
them to identify the bottlenecks and work around
better ways of reaching the desired end.

Information Sharing

A BPR project is usually facilitated by a cross
functional team. Most of the times, teams are spread
across different geographic locations. Information
needs to be successfully shared amongst various
people to ensure the reengineering goes as planned
and without hiccups.

Technology as the Solution

The new processes that are developed as a
result of BPR initiatives deploy the latest technology
to achieve the desired end results. Usually it is e-
Commerce, automation or another technology
driven solution that is implemented.

Business Process Re-engineering has become
a very important buzzword in the BPM lexicon.
Many corporations who were late in realizing the
power and importance of BPM have to undergo
re-engineering initiatives to ensure that they are still
relevant to the marketplace. Re-engineering
initiatives are however expensive and may require
certain downtime. This is the reason they are
resented by many corporations.

Q4. What are the benefits of Business
Process Reengineering?

Ans :
The following are the benefits of reengineering

of a Business Process:

1. By reengineering, an organisation can
achieve radical changes in performance (as
measured by cost, cycle time, service and
quality).

2. It boosts competitiveness in the operations
network through simpler, leaner and more
productive processes.

3. Reengineering encourages organisations to
abandon conventional approaches to
problem solving and to “think big”
(revolutionary thinking).

4. The slow, cautious process of incremental
improvements leaves many organisations
unprepared to compete in today’s rapidly
changing market place. Reengineering helps
organisations make noticeable changes in the
pace and quality of their response to customer
needs (i.e. break-through improvements).

5. Through reengineering, an organisation can
be transformed from a rule driven and job
centred organisation structure to a marketing
organisation structure that focusses directly
on the customer.

6. Reengineering often results in radically new
organisational designs that can help
companies respond better to competitive
pressures, increase market share and
profitability and improve cycle times, cost
ratios and quality (organisational renewal).

7. The major accomplishment of the
reengineering effort is the change that occurs
in the corporate culture and the basic
principles by which departments operate.
Workers at all levels are encouraged to make
suggestions for improvement and to believe
that management will listen to what they have

UNIT - V SOFTWARE ENGINEERING

139
Rahul Publications

Rahul Publications

to say. Reengineering will eventually help the
culture in the organisation to evolve from an
insular one to one that accepts change and
knows how to deal with it.

8. Reengineering has helped create more
challenging and more rewarding jobs with
broader responsibilities for employees (job
redesign).

Q5. What are disadvantages of business
process Reengineering?

Ans :
Business process reengineering is a program

that systemically breaks down the process a business
uses and starts over with new, more efficient methods
basically a redesign or a reboot. A business process
is a collection of procedures, steps or activities the
business uses to get the product from development
to the customer. Businesses use BPR for various
reasons, including to cut costs and improve overall
production, but the program also has its drawbacks.

 Identifies Waste

The aim of BPR is to help businesses pinpoint
obsolete steps, items or workers in a business
process. For example, the business may
discover during reengineering that only two
workers can get the job done that four workers
were performing. BPR encourages employee
input and participation, as the workers who
have familiarity with the processes under
study can point out flaws and voice ideas for
improvement.

 Requires Investment

BPR typically requires an investment,
particularly in technology. Outdated
methods, such as doing a task by hand, face
replacement by computer programs. The
programs improve efficiency and reduce
errors, but the company must invest in the
software and training, a costly option for
companies looking to cut expenses

immediately. Not all business types benefit
from BPR. For example, a manufacturing
company may not have the option of
redesigning processes without sacrificing safety
or product quality.

 Cuts Costs and Improves Functionality

Removing unnecessary steps cuts down on
time and confusion among workers. Assigning
tasks that multiple workers would typically
handle to one worker gives customers a clear
point of contact for help or service. Even by
investing more money in technology at the
start, companies typically save money over
time with the redesigned methods. For
example, improving or updating electronic
components incurs an up-front cost, but saves
money over time by eliminating errors due
to outdated components.

 May Lower Worker Morale

Some workers may not adapt to the BPR
changes, and those assigned new
responsibilities can become overwhelmed.
Other workers become obsolete if their
primary function is eliminated as part of a
process overhaul. Management must provide
support and guidance during BPR. Failure of
the management team to assist workers and
set an example during the BPR process may
lead to failure, disorganization and staff
problems.

5.4 SOFTWARE REENGINEERING

Q6. Explain the concept of Software Re-
engineering.

Ans : (Imp.)

Legacy software cannot keep tuning with the
latest technology available in the market. As the
hardware become obsolete, updating of software
becomes a headache. Even if software grows old
with time, its functionality does not.

For example, initially Unix was developed in
assembly language. When language C came into
existence, Unix was re-engineered in C, because
working in assembly language was difficult.

MCA II YEAR III SEMESTER

140
Rahul Publications

Rahul Publications

Other than this, sometimes programmers
notice that few parts of software need more
maintenance than others and they also need re-
engineering.

Reverse
engineering

Re-
structuring

Re-engineered
software

Existing
software

Re-Engineering Process

 Decide what to re-engineer. Is it whole
software or a part of it?

 Perform Reverse Engineering, in order to
obtain specifications of existing software.

 Restructure Program if required. For
example, changing function-oriented
programs into object-oriented programs.

 Re-structure data as required.

 Apply Forward engineering concepts in
order to get re-engineered software.

There are few important terms used in
Software re-engineering

Reverse Engineering

It is a process to achieve system specification
by thoroughly analyzing, understanding the existing
system. This process can be seen as reverse SDLC
model, i.e. we try to get higher abstraction level by
analyzing lower abstraction levels.

Existing
software

Reverse
engineering

Program
specifications

An existing system is previously implemented
design, about which we know nothing. Designers
then do reverse engineering by looking at the code
and try to get the design. With design in hand, they
try to conclude the specifications. Thus, going in
reverse from code to system specification.

Program Restructuring

It is a process to re-structure and re-construct
the existing software. It is all about re-arranging the
source code, either in same programming language
or from one programming language to a different
one. Restructuring can have either source code-
restructuring and data-restructuring or both.

Re-structuring does not impact the
functionality of the software but enhance reliability
and maintainability. Program components, which
cause errors very frequently can be changed, or
updated with re-structuring.

The dependability of software on obsolete
hardware platform can be removed via re-
structuring.

Forward Engineering

Forward engineering is a process of obtaining
desired software from the specifications in hand
which were brought down by means of reverse
engineering. It assumes that there was some software
engineering already done in the past.

Forward engineering is same as software
engineering process with only one difference – it is
carried out always after reverse engineering.

Program
specifications
form reverse
engineering

Forward
engineering

Re-engineered
software

Component Reusability

A component is a part of software program
code, which executes an independent task in the
system. It can be a small module or sub-system itself.

Example

 The login procedures used on the web can
be considered as components, printing system
in software can be seen as a component of
the software.

UNIT - V SOFTWARE ENGINEERING

141
Rahul Publications

Rahul Publications

 Components have high cohesion of
functionality and lower rate of coupling, i.e.
they work independently and can perform
tasks without depending on other modules.

 In OOP, the objects are designed are very
specific to their concern and have fewer
chances to be used in some other software.

 In modular programming, the modules are
coded to perform specific tasks which can be
used across number of other software
programs.

 There is a whole new vertical, which is based
on re-use of software component, and is
known as Component Based Software
Engineering (CBSE).

Re-use can be done at various levels

 Application level: Where an entire
application is used as sub-system of new
software.

 Component level: Where sub-system of an
application is used.

 Modules level : Where functional modules
are re-used.

Software components provide interfaces, which can
be used to establish communication among different
components.

Reuse Process

Two kinds of method can be adopted: either
by keeping requirements same and adjusting
components or by keeping components same and
modifying requirements.

 Requirement Specification - The
functional and non-functional requirements
are specified, which a software product must
comply to, with the help of existing system,
user input or both.

 Design - This is also a standard SDLC
process step, where requirements are defined
in terms of software parlance. Basic
architecture of system as a whole and its sub-
systems are created.

 Specify Components - By studying the
software design, the designers segregate the
entire system into smaller components or sub-
systems. One complete software design turns
into a collection of a huge set of components
working together.

 Search Suitable Components - The
software component repository is referred by
designers to search for the matching
component, on the basis of functionality and
intended software requirements..

 Incorporate Components - All matched
components are packed together to shape
them as complete software.

5.5 REVERSE ENGINEERING

Q7. Define Reverse Engineering. State the
uses of Reengineering.

Ans :

Reverse engineering, the process of taking a
software program’s binary code and recreating it
so as to trace it back to the original source code, is
being widely used in computer hardware and
software to enhance product features or fix certain
bugs. For example, the programmer writes the code
in a high-level language such as C, C++ etc. In

MCA II YEAR III SEMESTER

142
Rahul Publications

Rahul Publications

short, the code written in high level language needs
to be interpreted into low level or machine
language.

Reverse engineering can be applied to several
aspects of the software and hardware development
activities to convey different meanings. In general,
it is defined as the process of creating representations
of systems at a higher level of abstraction and
understanding the basic working principle and
structure of the systems under study. With the help
of reverse engineering, the software system that is
under consideration can be examined thoroughly.
There are two types of reverse engineering; in the
first type, the source code is available, but high-
level aspects of the program are no longer available.
The efforts that are made to discover the source
code for the software that is being developed is
known as reverse engineering. In the second case,
the source code for the software is no longer
available; here, the process of discovering the
possible source code is known as reverse
engineering. To avoid copyright infringement,
reverse engineering makes use of a technique
called clean room design.

In the world of reverse engineering, we often
hear about black box testing. Even though the tester
has an API, their ultimate goal is to find the bugs by
hitting the product hard from outside.

Uses

Reverse engineering is used in a variety of
fields such as software design, software testing,
programming etc.

 In software design, reverse engineering
enables the developer or programmer to add
new features to the existing software with or
without knowing the source code. Different
techniques are used to incorporate new
features into the existing software.

 Reverse engineering is also very beneficial in
software testing, as most of the virus
programmers don’t leave behind instructions
on how they wrote the code, what they have
set out to accomplish etc. Reverse engineering
helps the testers to study the virus and other
malware code. The field of software testing,
while very extensive, is also interesting and

requires vast experience to study and analyze
virus code.

 The third category where reverse engineering
is widely used is in software security. Reverse
engineering techniques are used to make sure
that the system does not have any major
vulnerabilities and security flaws. The main
purpose of reverse engineering is to make
the system robust so as to protect it from
spywares and hackers. Infact, this can be
taken a step forward to Ethical hacking,
whereby you try to hack your own system to
identify vulnerabilities.

 While one needs a vast amount of knowledge
to become a successful reverse engineer, he
or she can definitely have a lucrative career
in this field by starting off with the basics. It is
highly suggested that you first become familiar
with assembly level language and gain
significant amount of practical knowledge in
the field of software designing and testing to
become a successful software engineer.

Tools
1. As mentioned above, reverse engineering is

the process of analyzing the software to
determine its components and their
relationships. The process of reverse
engineering is accomplished by making use
of some tools that are categorized into
debuggers or disassemblers, hex editors,
monitoring and decompile tools:

2. Disassemblers : A disassembler is used to
convert binary code into assembly code and
also used to extract strings, imported and
exported functions, libraries etc. The
disassemblers convert the machine language
into a user-friendly format. There are different
dissemblers that specialize in certain things.

3. Debuggers : This tool expands the
functionality of a disassembler by supporting
the CPU registers, the hex duping of the
program, view of stack etc. Using debuggers,
the programmers can set breakpoints and edit
the assembly code at run time. Debuggers
analyse the binary in a similar way as the
disassemblers and allow the reverser to step
through the code by running one line at a
time to investigate the results.

UNIT - V SOFTWARE ENGINEERING

143
Rahul Publications

Rahul Publications

4. Hex Editors : These editors allow the
binary to be viewed in the editor and change
it as per the requirements of the software.
There are different types of hex editors
available that are used for different functions.

5. PE and Resource Viewer : The binary
code is designed to run on a windows based
machine and has a very specific data which
tells how to set up and initialize a program.
All the programs that run on windows should
have a portable executable that supports the
DLLs the program needs to borrow from.

Reverse engineering has developed
significantly and taken a positive approach to creating
descriptive data set of the original object. Today,
there are numerous legitimate applications of reverse
engineering. Due to the development of numerous
digitizing devices, reverse engineering software
enables programmers to manipulate the data into
a useful form. The kind of applications in which
reverse engineering is used ranges from mechanical
to digital, each with its own advantages and
applications. Reverse engineering is also beneficial
for business owners as they can incorporate
advanced features into their software to meet the
demands of the growing markets.

5.6 SOFTWARE RESTRUCTURING

Q8. Explain the Process of Implementing a
code.

(OR)

Explain the concept of Restructuring.

Ans :
Software restructuring is a form of perfective

maintenance that modifies the structure of a
program’s source code. Its goal is increased
maintainability to better facilitate other maintenance
activities, such as adding new functionality to, or
correcting previously undetected errors within a
software system. Changes to the structure are
introduced through the application of
transformations. Manually transforming the source
code may introduce undesirable as well as
undetectable changes in the system’s behaviour. It
is very difficult to ensure that manual restructuring
preserves functionality and guaranteeing it is almost

impossible. The problems associated with manual
restructuring can be addressed by using a
restructuring tool to automatically apply
transformations. The majority of restructuring tools
apply transformations by manipulating abstract
program representations and specify the conditions
of the transformation in terms of the representation
structure. The context entity graph as program
representation was developed to support specific
language constructs, but can be adapted to support
a variety of programming languages. The
implementation of a code abstraction transforma-
tion in terms of this structure is examined and various
improvements are also suggested.

Restructuring

Restructuring involves the transformation of
unstructured code into structured code thereby
making it easier to understand and change.
Restructuring involves the following steps.

1. Static analysis is performed, which provides
information that is used to represent code as
a directed graph or associative (semantic)
network. The representation mayor may not
be in a human readable form; thus, an
automated tool is used.

2. Transformational techniques are used to
refine (simplify) the representation.

3. Refined representation is interpreted and
used to generate the structured code.

MCA II YEAR III SEMESTER

144
Rahul Publications

Rahul Publications

5.7 FORWARD REENGINEERING

Q9. What is forward engineering in
software?

Ans : (Imp.)

Forward engineering practice informal
requirements are some how converted into a semi-
formal specification using domain notations without
underlying precise semantics like e.g. data-flow
diagrams, entity-relationship diagrams, natural
language descriptions, or other problem specific
informal or semiformal notations. The program then
is constructed manually (i.e. in an error prone way)
from the specification by a creative agent, the
programmer.

Hidden in this creative construction of the
program from the specification are a set of obvious
as well as non-obvious design decisions about how
to encode certain parts of the specification in an
efficient way using available implementation
mechanisms to achieve performance criteria (the
why of the design decisions). As an example, a
specification fragment requiring associative retrieval
using numeric keys may be implemented using hash
tables, achieving good system reaction time. These
decisions are usually not documented.

Over time the program code is modified to
remove errors and to adapt the system to changed
requirements. The requirements may change to
allow usage of alphanumeric keys and to be able to
handle large amounts of data, and the
implementation revised to use disk-based B-trees.
Unfortunately, often these changes take place
without being reflected correctly in the specification.
The gap between the original specification and the
program becomes larger and larger. The result is a
program code without a proper specification and
with untrustworthy design information (such as
comments describing the hash tables!). The code
becomes difficult to understand and, thus, difficult
to maintain.

To overcome this deficiency, it is important
to change the specification first and then reflect the
changes in the program code. A necessary
precondition for this is to have reliable information
about the relationship between the specification and

the program code. The design and its rationale
describe the how and why of this relationship;
however, they are not documented in current
practice.

There are two known approaches to reduce
the gap between the specification and the program.

The first one is the development of software
by stepwise refinement introducing intermediate
descriptions of the system between the specification
and the final program code. The intermediate
descriptions should reflect major design decisions
during the construction, which helps to understand
the software and its design. However, this approach
has some important drawbacks: the development
steps are still manual, they are too large not to
contain hidden design decisions, there is no rationale
directly associated to the steps, the relation between
the descriptions can only be established a posteriori,
and there are a lot more documents to be
maintained for incorporating changes of the system
requirements.

Despite these drawbacks, the stepwise
refinement approach is not that bad. Consequently
attacking them leads us to the second approach:
the transformational development of software where
the fairly large manual development steps are
replaced by smaller formal correctness-preserving
transformations each of which reflects a small design
decision or optimization.

A necessary prerequisite for this approach is
to have a formal specification which may contain
domain notations (e.g. for the general purpose
domains of logical descriptions and data-flow
diagrams and for special application domains like
e.g. money management and loans) by giving them
a precise underlying semantics. Based on this the
program code can then be derived by making small
implementation steps using formal correctness-
preserving transformations leading from more
abstract specifications to more concrete
specifications. The final program code then is correct
by construction with respect to the formal
requirements specification. Each transformation falls
into one of three categories: refinements (i.e. maps
of concepts from an abstract level to a more concrete
one), optimizations (i.e. maps to reduce the
resources used at a level of abstraction according to
some criteria), and jittering transformations (that

UNIT - V SOFTWARE ENGINEERING

145
Rahul Publications

Rahul Publications

eventually enable the application of refinements
and optimizations). The decision to apply a particular
transformation is thus crucial design information.
The applied transformations coupled with the
rationale for the choice of them is the design
information that “explains” the code. It is called the
transformational design of the code from the
specification.

The selection of a transformation to apply to
a certain specification in general is still a creative
process but is guided by the performance criteria to
be achieved. This guided selection of the
transformations allows the development process to
be supported by a semiautomatic system that
contains a large repertoire of available transforms
by applying them to achieve or at least approach
the performance criteria. The transformations
needed for practical software engineering comprise
all those design decisions implicitly used by current
software developers including techniques like the
following ones:

 Decomposition : Most problems can be
decomposed to subproblems which in general
is possible in different ways. The actual
hierarchical structure of the code represents
only one particular choice from the set of
possible decomposition.

 Generalization/Specialization : If
different components are similar it may be
possible to construct a more general version
that comprises both of them as special cases.
Vice versa, for efficiency reasons it may be a
good choice to specialize a component for a
certain (part of the) application.

 Choice of Representation : To be able to
implement high-level data types in program
code it is often necessary to change its
representation. A common example is the
representation of sets by lists.

 Choice of Algorithm : High-level concepts
can be realized by an algorithm in many
different ways. The choice between which
may be enforced by badly documented or
even undocumented performance criteria
that have to be satisfied.

 Interleaving : For efficiency reasons it may
be useful to realize different concepts in the
same section of code or the same data
structure.

 Delocalization : Certain high-level concepts
may be spread throughout the whole code
introducing distracting details in other
concepts (see the study of the effects of
delocalization on comprehension in [LS86]).

 Resource Sharing : Interleaved code often
allows different concepts to share some
resources like e.g. control conditions,
intermediate data results, functions, names,
and other computational resources.

 Data caching/ Memorization : If some
data, that has to be computed, is needed
often or its computation is expensive it is
worth to cache the data, i.e. to memorize it
for later reuse.

Optimizations

To achieve highly efficient code (due to the
need of satisfying e.g. memory or reaction time
constraints) many different optimizations are used.
Such optimizations comprise

1. The folding and unfolding (in lining) program
code

2. The use of algebraic properties of functions,

3. The merging of computations by composing
or combining functions

4. Partial evaluation (often in the form of
context-dependent simplification)

5. Finite differencing

6. Result accumulation

7. Recursion simplification and elimination

8. Loop fusion

9. Optimizations typically performed by good
compilers (code motion, common sub-
expression elimination, partial redundancy
removal).

10 Domain specific optimizations like e.g.
minimizing a finite state machine recognizing
a certain language.

MCA II YEAR III SEMESTER

146
Rahul Publications

Rahul Publications

All these design decisions may overlap and
may be delocalized during the construction of the
program code from the specification. Whether these
methods are carried out mechanically by a tool or
informally by smart programmers, the resulting
software systems are very difficult to understand.

The transformational software development
approach has the advantage that it allows the
automatic recording of the design decisions made
during the derivation of the final program code from
the formal specification. Provided the selection of
the transformations that are applied during this
development are guided by the performance criteria
to be achieved and the relation between the
selection and the performance criteria is recorded
we get the complete design together with its rationale
as the product of software development. The code
itself is just a byproduct that is correct by
construction.

Recording this design information allows us
to modify the specification instead of the code and
then to modify the design to get a new
implementation of the modified specification. The
formal nature of transformations makes such design
modifications supportable by a semiautomatic tool
that increases the reliability and reduces the cost of
maintaining the system.

5.8 ECONOMICS OF RE-ENGINEERING

Q10. Explain the concept of Economics of
Reengineering.

Ans : (Imp.)

Every unmaintainable program would be
retired immediately, to be replaced by high-quality,
reengineered applications developed using modern
software engineering practices. But we live in a world
of limited resources. Reengineering drains resources
that can be used for other business purposes.
Therefore, before an organization attempts to
reengineer an existing application, it should perform
a cost/benefit analysis.

A cost/benefit analysis model for reenginee-
ring has been proposed by Sneed . Nine parameters
are defined.

 P1 = current annual maintenance cost for
an application.

 P2 = current annual operation cost for an
application.

 P3 = current annual business value of an
application.

 P4 = predicted annual maintenance cost
after reengineering.

 P5 = predicted annual operations cost after
reengineering.

 P6 = predicted annual business value after
reengineering.

 P7 = estimated reengineering costs.

 P8 = estimated reengineering calendar time.

 P9 = reengineering risk factor (P9 = 1.0 is
nominal).

 L = expected life of the system.

The cost associated with continuing
maintenance of a candidate application (i.e.,
reengineering is not performed) can be defined as

Cmaint = [P3 - (P1 + P2)] x L

L The costs associated with reengineering are
defined using the following relationship:

Creeng = [P6 - (P4 + P5) x (L - P8) - (P7 x
P9)]

Using the costs presented in equations, the
overall benefit of reengineering can be computed
as

cost benefit = Creeng - Cmaint

The cost/benefit analysis presented in the
equations can be performed for all high priority
applications identified during inventory analysis .
Those application that show the highest cost/benefit
can be targeted for reengineering, while work on
others can be postponed until resources are
available.

UNIT - V SOFTWARE ENGINEERING

147
Rahul Publications

Rahul Publications

5.9 SPI PROCESS

Q11. Discuss in detail about Process and Product Quality In Software Engineering.

Ans : (Imp.)

It is general, that the quality of the development process directly affects the quality of delivered
products. The quality of the product can be measured and the process is improved until the proper
quality level is achieved. The process of quality assessment based on this approach.

Define
process

Develop
product

Assess product
quality

Improve
process

Quality
OK?

Standardise
process

no yes

In manufacturing systems there is a clear relationship between production process and product
quality. However, quality of software is highly influenced by the experience of software engineers. In
addition, it is difficult to measure software quality attributes, such as maintainability, reliability, usability,
etc., and to tell how process characteristics influence these attributes. However, experience has shown that
process quality has a significant influence on the quality of the software.

Process quality management includes the following activities :

1. Defining process standards.

2. Monitoring the development process.

3. Reporting the software.

1. Quality Assurance and Standards

Quality assurance is the process of defining how software quality can be achieved and how the
development organization knows that the software has the required level of quality. The main activity of
the quality assurance process is the selection and definition of standards that are applied to the software
development process or software product. There are two main types of standards. The product standards
are applied to the software product, i.e. output of the software process. The process standards define the
processes that should be followed during software development. The software standards are based on
best practices and they provide a framework for implementing the quality assurance process.

The development of software engineering project standards is a difficult and time consuming process.
National and international bodies such as ANSI and the IEEE develop standards that can be applied to
software development projects. Organizational standards, developed by quality assurance teams, should
be based on these national and international standards.

Product standards Process standards

Requirements document structure Project plan approval process

Method header format Version release process

Java programming style Change control process

Change request form Test recording process

MCA II YEAR III SEMESTER

148
Rahul Publications

Rahul Publications

2. ISO

ISO 9000 is an international set of standards
that can be used in the development of a quality
management system in all industries. ISO 9000
standards can be applied to a range of organizations
from manufacturing to service industries. ISO 9001
is the most general of these standards. It can be
applied to organizations that design, develop and
maintain products and develop their own quality
processes. A supporting document (ISO 9000-3)
interprets ISO 9001 for software development.

The ISO 9001 standard isn’t specific to
software development but includes general principles
that can be applied to software development
projects. The ISO 9001 standard describes various
aspects of the quality process and defines the
organizational standards and procedures that a
company should define and follow during product
development. These standards and procedures are
documented in an organizational quality manual.

The ISO 9001 standard does not define the
quality processes that should be used in the
development process. Organizations can develop
own quality processes and they can still be ISO 9000
compliant companies. The ISO 9000 standard only
requires the definition of processes to be used in a
company and it is not concerned with ensuring that
these processes provide best practices and high
quality of products. Therefore, the ISO 9000
certification doesn’t means exactly that the quality
of the software produced by an ISO 9000 certified
companies will be better than that software from
an uncertified company.

3. Documentation Standards

Documentation standards in a software
project are important because documents can
represent the software and the software process.
Standardized documents have a consistent
appearance, structure and quality, and should
therefore be easier to read and understand. There
are three types of documentation standards:

1. Documentation process standards. These
standards define the process that should be
followed for document production.

2. Document standards. These standards
describe the structure and presentation of
documents.

3. Documents interchange standards. These
standards ensure that all electronic copies of
documents are compatible.

4. Quality planning

Quality planning is the process of developing
a quality plan for a project. The quality plan defines
the quality requirements of software and describes
how these are to be assessed. The quality plan selects
those organizational standards that are appropriate
to a particular product and development process.
Quality plan has the following parts:

1. Introduction of product.

2. Product plans.

3. Process descriptions.

4. Quality goals.

5. Risks and risk management.

The quality plan defines the most important
quality attributes for the software and includes a
definition of the quality assessment process. Table
shows generally used software quality attributes that
can be considered during the quality planning
process.

Maintainability

Learn abilityComplexityRobustness

EfficiencyModularityResilience

ReusabilityAdaptabilityReliability

UsabilityTestabilitySecurity

PortabilityUnderstandabilitySafety

Maintainability

Learn abilityComplexityRobustness

EfficiencyModularityResilience

ReusabilityAdaptabilityReliability

UsabilityTestabilitySecurity

PortabilityUnderstandabilitySafety

Quality control provides monitoring the
software development process to ensure that quality
assurance procedures and standards are being
followed. The deliverables from the software
development process are checked against the
defined project standards in the quality control
process. The quality of software project deliverables
can be checked by regular quality reviews and/or

UNIT - V SOFTWARE ENGINEERING

149
Rahul Publications

Rahul Publications

automated software assessment. Quality reviews are
performed by a group of people. They review the
software and software process in order to check that
the project standards have been followed and that
software and documents conform to these
standards. Automated software assessment
processes the software by a program that compares
it to the standards applied to the development
project.

Q12. What do you mean by Process Improve-
ment and Maturity? Explain the CMM
Model.

Ans :
It is believed that only by improving the

process can be quality & productivity be improved.
Process improvement required understanding the
current process & its deficiencies & then taking
actions to remove the deficiencies. This is possible
only if the current process is under statistical control.

Capability Maturity Model (CMM)

To improve its software process, an
organization needs to first understand the states &
then develop a plan to improve the process. It is
generally agreed that changes to a process must be
introduced in small increments. The changes that
take place depend on the current state of the
process. This concept of introducing changes in small
increments based on the current state of the process
has been captured in the capability Maturity Model
(CMM) framework. The CMM framework provides
a general roadmap for process improvement.

Software process capability describes the
range of expected results that can be achieved by
following the process. The process capability of an
organization determines what can be expected from
the organization in terms of quality & productivity.
The CMM framework provides process
improvement in small increments as processes go
from their current levels to the next higher level
when they are improved. Hence, during the course
of process improvement, a process moves from level
to level until it reaches Level 5.

The CMM provides characteristics of each
level, which can be used to assess the current level
of the process of an organization. As the movement
from one level is to the next level, the characteristics
of the levels also suggest the areas in which the
process should be improved so that it can move to
the next higher level. For each level, it specifies the
areas in which improvement can be absorbed &
will bring the maximum benefits.

 Level 1: The initial process is an ad-hoc
process that has no formalized method for
any activity. Basic project controls for:
ensuring that activities are being done properly
but the project plan is missing. Success in such
organizations depends solely on the quality
& capability of individuals. The process
capability is unpredictable as the process
constantly changes. Organizations at this level
can benefit most by improving project
management, quality assurance & change
control.

 Level 2: In a repeatable process, policies for
managing a software project & procedures
to implement those policies exist. That is,
project management is well developed in a
process at this level. Project commitments are
realistic & based on past experience with
similar projects. Cost & schedule are tracked
& problems resolved when they arise. Formal
configuration control mechanism exist results
obtains by this process can be repeated as
the project planning & tracking is formal.

 Level 3: At the defined level, the organization
has standardized on a software process, which
is properly documented. A software process
group exists in the organization that owns &
manages the process. In the process, each
step is carefully defined with verifiable entry
& exit criteria, methods for performing the
step, & verification mechanism for the output
of the step.

 Level 4: At the managed level, quantitative
goals exist for process & products Data is
collected from software processes, which is
used to build models to characterize the
process. Due to the models, the organization
has a good insight in the process. The results

MCA II YEAR III SEMESTER

150
Rahul Publications

Rahul Publications

of using such a process can be predicted in
quantitative terms.

 Level 5: At the optimizing level, the focus is
on continuous improvement. Data is collected
& routinely analyzed to identify areas that can
be strengthened to improve quality or
productivity. New technologies & tools are
introduced & their effects are measured to
improve the performance of the process. Best
software engineering & management
practices are used throughout the
organization.

Q13. What are measurements used for the
Process improvement in software?

Ans :
Software measurement provides a numeric

value for some quality attribute of a software
product or a software process. Comparison of these
numerical values to each other or to standards draws
conclusions about the quality of software or software
processes. Software product measurements can be
used to make general predictions about a software
system and identify anomalous software
components.

Software metric is a measurement that relates
to any quality attributes of the software system or
process. It is often impossible to measure the external
software quality attributes, such as maintainability,
understandability, etc., directly. In such cases, the
external attribute is related to some internal attribute
assuming a relationship between them and the
internal attribute is measured to predict the external
software characteristic. Three conditions must be
hold in this case:

1. The internal attribute must be measured
accurately.

2. A relationship must exist between what we
can measure and the external behavioural
attribute.

3. This relationship has to be well understood,
has been validated and can be expressed in
terms of a mathematical formula.

The Measurement Process

A software measurement process as a part of
the quality control process is shown in Figure 12.2.
The steps of measurement process are the
followings:

1. Select measurements to be made. Selection
of measurements that are relevant to answer
the questions to quality assessment.

2. Select components to be assessed. Selection
of software components to be measured.

3. Measure component characteristics. The
selected components are measured and the
associated software metric values computed.

4. Identify anomalous measurements. If any
metric exhibit high or low values it means that
component has problems.

5. Analyze anomalous components. If
anomalous values for particular metrics have
been identified these components have to be
examined to decide whether the anomalous
metric values mean that the quality of the
component is compromised.

Generally each of the components of the
system is analyzed separately. Anomalous
measurements identify components that may have
quality problems.

Product Metrics

The software characteristics that can be easily
measured such as size do not have a clear and
consistent relationship with quality attributes such
as understandability and maintainability. Product
metrics has two classes:

1. Dynamic metrics. These metrics (for example
execution time) are measured during the
execution of a program.

UNIT - V SOFTWARE ENGINEERING

151
Rahul Publications

Rahul Publications

2. Static metrics. Static metrics are based on measurements made of representations of the system
such as the design, program or documentation.

Dynamic metrics can be related to the efficiency and the reliability of a program. Static metrics such
as code size are related to software quality attributes such as complexity, understandability, maintainability,
etc.

5.10 PROCESS CHANGE MANAGEMENT (PCM)

Q14. What is Process Change Management? Explain in Detail.

Ans :
Changes in the process are unavoidable and should be made to improve the productivity and

quality of the process. These changes can be applied by using Process Change Management (PCM), which
is a technique to improve the software processes in the organization. Thus, this technique helps in increasing
productivity and quality by improving software processes for the developing software.

Process change management determines the process improvement goals, identifies, evaluates and
implements improvements to the standard software process in the organization and defines software
processes for the new projects to be developed. The organization follows a written policy for implementing
software process improvements. The policy follows the steps listed below.

 The organization has the quantitative and measurable goals to improve the software processes and
tracks performance against these goals.

 The organization’s process improvement is directed towards improving the quality, increasing
productivity and decreasing the time for the development of the product.

 The organization’s staff members participate in the process improvement.

 Process improvement does not take place in a single stage; it is a continuous process which goes
through different stages as listed in Table. The software process improvement activities are managed
according to a documented procedure, which is maintained in the central repository. Review of the
processes is conducted in a phased and structured manner to ensure that continuous process
improvement activities are conducted and monitored.

Evolve and improve process improvements.Change tuning

Train staff involved in new process proposals.Process change training

Compare outputs between previous and changed processes.Measure improvement

Modify the process to remove identified bottlenecks.Process change introduction

Identify quality, cost or schedule bottlenecks.Improvement identification

Model and analyze existing processes.Process analysis

DescriptionStages

Evolve and improve process improvements.Change tuning

Train staff involved in new process proposals.Process change training

Compare outputs between previous and changed processes.Measure improvement

Modify the process to remove identified bottlenecks.Process change introduction

Identify quality, cost or schedule bottlenecks.Improvement identification

Model and analyze existing processes.Process analysis

DescriptionStages

Training programs are established to enable and encourage individuals in the organization to
participate in the process improvement activities. Improvement opportunities are identified and evaluated,
which benefit the organization. When software process improvements are approved for general practice,
the organization standard software process and the project-defined software processes are revised
appropriately.

MCA II YEAR III SEMESTER

152
Rahul Publications

Rahul Publications

Software process change management follows
a procedure for improving the software processes
in the organization. This procedure specifies the
following steps.

1. The improvement of the software process
requires a proposal to be submitted, which
includes the organization’s software process
improvement goals and recommendations
for software process assessment. In addition,
it contains analysis of data on the performance
of the project as compared to the quality of
the software and the productivity goals.

2. The proposal is evaluated to ensure whether
to implement it. The decision for
implementing the proposal is then
documented.

3. The benefits expected from the software
process are determined. These benefits
include quality of the product, end user
satisfaction, and so on.

4. The priority of software process improvement
proposals is determined, according to which
selection for the implementation is made.

5. Implementation of the software process
improvement actions resulting from the
proposal is assigned and planned.

6. The actions for software process
improvement, which require significant effort,
are assigned to the team responsible for
implementing the actions.

7. The status of each process improvement
proposal is monitored.

8. Software process improvement proposals
whose responses are unusually long are
identified and acted upon.

9. The user reviews the changes before they are
implemented, which are estimated to have
an impact on the quality of the product.

10. When the actions of the software process
improvement are completed, they are
reviewed and verified.

11. The submitter of the software process
improvement proposal receives
acknowledgement of proposals and
notification of the disposition. of the
proposals.

When a decision is made to transfer software
process improvement into general practice, the
improvement is again implemented according to a
documented procedure, which specifies the
following steps.

1. The resources required to manage the
changes in the software process are
established.

2. The strategy to collect data for evaluating and
monitoring changes in the performance of
the software process is reviewed, agreed and
documented. The individuals, who are
implementing the software processes affected
by the change, agree to this strategy. The
support tools are instrumented accordingly
to record the required data automatically.

3. Training is provided before installing the
process change for general use. Training
courses are updated to reflect the current
software processes.

4. Appropriate process changes are
incorporated into the organization’s standard
software process and the project-defined
software processes.

5.11 CMM

Q15. What is the Capability Maturity Model?

Ans :
Capability Maturity Model (CMM) broadly

refers to a process improvement approach that is
based on a process model. CMM also refers
specifically to the first such model, developed by
the Software Engineering Institute (SEI) in the
mid-1980s, as well as the family of process models
that followed. A process model is a structured
collection of practices that describe the characteristics
of effective processes; the practices included are
those proven by experience to be effective.

CMM can be used to assess an organization
against a scale of five process maturity levels. Each
level ranks the organization according to its
standardization of processes in the subject area being
assessed. The subject areas can be as diverse as
software engineering, systems engineering, project
management, risk management, system acquisition,

UNIT - V SOFTWARE ENGINEERING

153
Rahul Publications

Rahul Publications

information technology (IT) services and personnel
management.

CMM was developed by the SEI at Carnegie
Mellon University in Pittsburgh. It has been used
extensively for avionics software and government
projects, in North America, Europe, Asia, Australia,
South America, and Africa.Currently, some
government departments require software
development contract organization to achieve and
operate at a level 3 standard.

History

The Capability Maturity Model was initially
funded by military research. The United States Air
Force funded a study at the Carnegie-Mellon
Software Engineering Institute to create a model
(abstract) for the military to use as an objective
evaluation of software subcontractors. The result was
the Capability Maturity Model, published as
Managing the Software Process in 1989. The CMM
is no longer supported by the SEI and has been
superseded by the more comprehensive Capability
Maturity Model Integration (CMMI).

Maturity Model

The Capability Maturity Model (CMM) is a
way to develop and refine an organization’s
processes. The first CMM was for the purpose of
developing and refining software development
processes. A maturity model is a structured collection
of elements that describe characteristics of effective
processes. A maturity model provides:

 A place to start the benefit of a community’s
prior experiences

 A common language and a shared vision

 A framework for prioritizing actions

 A way to define what improvement means
for your organization

A maturity model can be used as a benchmark
for assessing different organizations for equivalent
comparison. It describes the maturity of the
company based upon the project the company is
dealing with and the clients.

Context

In the 1970s, technological improvements
made computers more widespread, flexible, and
inexpensive. Organizations began to adopt more
and more computerized information systems and
the field of software development grew significantly.
This led to an increased demand for developers—
and managers which was satisfied with less
experienced professionals.

Unfortunately, the influx of growth caused
growing pains; project failure became more
commonplace not only because the field of
computer science was still in its infancy, but also
because projects became more ambitious in scale
and complexity. In response, individuals such as
Edward Yourdon, Larry Constantine, Gerald
Weinberg, Tom DeMarco, and David Parnas
published articles and books with research results
in an attempt to professionalize the software
development process.

Watts Humphrey’s Capability Maturity Model
(CMM) was described in the book Managing the
Software Process (1989). The CMM as conceived
by Watts Humphrey was based on the earlier work
of Phil Crosby. Active development of the model
by the SEI began in 1986.

The CMM was originally intended as a tool
to evaluate the ability of government contractors to
perform a contracted software project. Though it
comes from the area of software development, it
can be, has been, and continues to be widely
applied as a general model of the maturity of
processes in IS/IT (and other) organizations.

The model identifies five levels of process
maturity for an organisation. Within each of these
maturity levels are KPAs (Key Process Areas) which
characterise that level, and for each KPA there are
five definitions identified:

1. Goals

2. Commitment

3. Ability

4. Measurement

5. Verification

MCA II YEAR III SEMESTER

154
Rahul Publications

Rahul Publications

The KPAs are not necessarily unique to CMM, representing - as they do - the stages that organizations
must go through on the way to becoming mature.

The assessment is supposed to be led by an authorised lead assessor. One way in which companies
are supposed to use the model is first to assess their maturity level and then form a specific plan to get to
the next level. Skipping levels is not allowed.

Time line

 1987 SEI-87-TR-24 (SW-CMM questionnaire), released.

 1989 Managing the Software Process, published.

 1991 SW-CMM v1.0, released.

 1993 SW-CMM v1.1, released.

 1997 SW-CMM revisions halted in support for CMMI.

 2000 CMMI v1.02, released.

 2002 CMMI v1.1, released.

 2006 CMMI v1.2, released.

Current State

Although these models have proved useful to many organizations, the use of multiple models has
been problematic. Further, applying multiple models that are not integrated within and across an
organization is costly in terms of training, appraisals, and improvement activities. The CMM Integration
project was formed to sort out the problem of using multiple CMMs. The CMMI Product Team’s mission
was to combine three source models:

1. The Capability Maturity Model for Software (SW-CMM) v2.0 draft C

2. The Systems Engineering Capability Model (SECM)

3. The Integrated Product Development Capability Maturity Model (IPD-CMM) v0.98

4. Supplier sourcing

CMMI is the designated successor of the three source models. The SEI has released a policy to
sunset the Software CMM and previous versions of the CMMI. The same can be said for the SECM and
the IPD-CMM; these models were superseded by CMMI.

Levels of the CMM

There are five levels of the CMM:

Level 1 - Initial

1. Processes are usually ad hoc and the organization usually does not provide a stable environment.
Success in these organizations depends on the competence and heroics of the people in the
organization and not on the use of proven processes. In spite of this ad hoc, chaotic environment,
maturity level 1 organizations often produce products and services that work; however, they frequently
exceed the budget and schedule of their projects.

2. Organizations are characterized by a tendency to over commit, abandon processes in the time of
crisis, and not be able to repeat their past successes again.

3 Software project success depends on having quality people.

UNIT - V SOFTWARE ENGINEERING

155
Rahul Publications

Rahul Publications

Level 2 - Repeatable

1. Software development successes are
repeatable. The processes may not repeat for
all the projects in the organization. The
organization may use some basic project
management to track cost and schedule.

2. Process discipline helps ensure that existing
practices are retained during times of stress.
When these practices are in place, projects
are performed and managed according to
their documented plans.

3. Project status and the delivery of services are
visible to management at defined points (for
example, at major milestones and at the
completion of major tasks).

4. Basic project management processes are
established to track cost, schedule, and
functionality. The minimum process discipline
is in place to repeat earlier successes on
projects with similar applications and scope.
There is still a significant risk of exceeding cost
and time estimate.

Level 3 - Defined

1. The organization’s set of standard processes,
which is the basis for level 3, is established
and improved over time. These standard
processes are used to establish consistency
across the organization. Projects establish their
defined processes by the organization’s set of
standard processes according to tailoring
guidelines.

2. The organization’s management establishes
process objectives based on the organization’s
set of standard processes and ensures that
these objectives are appropriately addressed.

3. A critical distinction between level 2 and level3
is the scope of standards, process descriptions,
and procedures. At level 2, the standards,
process descriptions, and procedures may be
quite different in each specific instance of the
process (for example, on a particular project).
At level 3, the standards, process descriptions,
and procedures for a project are tailored from
the organization’s set of standard processes
to suit a particular project or organizational
unit.

Level 4 - Managed

1. Using precise measurements, management
can effectively control the software
development effor t. In particular,
management can identify ways to adjust and
adapt the process to particular projects
without measurable losses of quality or
deviations from specifications. At this level
organization set a quantitative quality goal for
both software process and software
maintenance.

2. Subprocesses are selected that significantly
contribute to overall process performance.
These selected subprocesses are controlled
using statistical and other quantitative
techniques.

3. A critical distinction between maturity level 3
and maturity level 4 is the predictability of
process performance. At maturity level 4, the
performance of processes is controlled using
statistical and other quantitative techniques,
and is quantitatively predictable. At maturity
level 3, processes are only qualitatively
predictable.

Level 5 - Optimizing

1. Focusing on continually improving process
performance through both incremental and
innovative technological improvements.
Quantitative process-improvement objectives
for the organization are established,
continually revised to reflect changing
business objectives, and used as criteria in
managing process improvement. The effects
of deployed process improvements are
measured and evaluated against the
quantitative process-improvement objectives.
Both the defined processes and the
organization’s set of standard processes are
targets of measurable improvement activities.

2. Process improvements to address common
causes of process variation and measurably
improve the organization’s processes are
identified, evaluated, and deployed.

3. Optimizing processes that are nimble,
adaptable and innovative depends on the
participation of an empowered workforce

MCA II YEAR III SEMESTER

156
Rahul Publications

Rahul Publications

aligned with the business values and
objectives of the organization. The
organization’s ability to rapidly respond to
changes and opportunities is enhanced by
finding ways to accelerate and share learning.

A critical distinction between maturity level 4
and maturity level 5 is the type of process variation
addressed. At maturity level 4, processes are
concerned with addressing special causes of process
variation and providing statistical predictability of
the results. Though processes may produce
predictable results, the results may be insufficient to
achieve the established objectives. At maturity level
5, processes are concerned with addressing
common causes of process variation and changing
the process (that is, shifting the mean of the process
performance) to improve process performance
(while maintaining statistical probability) to achieve
the established quantitative process-improvement
objectives.The most beneficial elements of CMM
Level 2 and 3:

1. Creation of Software Specifications, stating
what is going to be developed, combined with
formal sign off, an executive sponsor and
approval mechanism. This is NOT a living
document, but additions are placed in a
deferred or out of scope section for later
incorporation into the next cycle of software
development.

2. A Technical Specification, stating how precisely
the thing specified in the Software
Specifications is to be developed will be used.
This is a living document.

3. Peer Review of Code (Code Review) with
metrics that allow developers to walk through
an implementation, and to suggest
improvements or changes. Note - This is
problematic because the code has already
been developed and a bad design can not
be fixed by “tweaking”, the Code Review
gives complete code a formal approval
mechanism.

4. Version Control - a very large number of
organizations have no formal revision control
mechanism or release mechanism in place.

5. The idea that there is a “right way” to build
software, that it is a scientific process involving
engineering design and that groups of
developers are not there to simply work on
the problem du jour.

5.12 THE PEOPLE CAPABILITY

MATURITY MODEL

Q16. Describe in detail the frame work of
PCCM.

Ans : (Imp.)

The People Capability Maturity Model adapts
the maturity framework of the Capability Maturity
Model for Software (CMMSM), to managing and
developing an organization’s workforce. The
motivation for the P-CMM is to radically improve
the ability of organizations to attract, develop,
motivate, organize, and retain the talent needed to
continuously improve software development
capability.

Based on the best current practices in the
fields such as human resources and organizational
development, the P-CMM provides organizations
with guidance on how to gain control of their
processes for managing and developing their
workforce. The P-CMM helps organizations to
characterize the maturity of their workforce practices,
guide a program of continuous workforce
development, set priorities for immediate actions,
integrate workforce development with process
improvement, and establish a culture of excellence.
It describes an evolutionary improvement path from
adhoc, inconsistently performed practices, to a
mature, disciplined development of the knowledge,
skills, and motivation of the workforce.

The P-CMM consists of five maturity levels
that lay successive foundations for continuously
improving talent, developing effective teams, and
successfully managing the people assets of the
organization. Each maturity level is a well-defined
evolutionary plateau that institutionalizes a level of
capability for developing the talent within the
organization.

The five stages of the People CMM framework
are:

UNIT - V SOFTWARE ENGINEERING

157
Rahul Publications

Rahul Publications

1. P-CMM - Initial Level (Typical characteristics: Inconsistency in performing practices, Displacement
of responsibility, Ritualistic practices, and Emotionally detached workforce).

2. P-CMM - Managed Level (Typical characteristics: Work overload, Environmental distractions,
Unclear performance objectives or feedback, Lack of relevant knowledge, or skill, Poor
communication, Low morale)

3. P-CMM - Defined Level (Although there are performing basic workforce practices, there is
inconsistency in how these practices are performed across units and little synergy across the

organization. The organization misses opportunities to standardize workforce practices because the
common knowledge and skills needed for conducting its business activities have not been identified)

4. P-CMM - Predictable Level (The organization manages and exploits the capability created by
its framework of workforce competencies. The organization is now able to manage its capability and
performance quantitatively. The organization is able to predict its capability for performing work
because it can quantify the capability of its workforce and of the competency-based processes they

use in performing their assignments)

5. P-CMM - Optimizing Level (The entire organization is focused on continual improvement. These

improvements are made to the capability of individuals and workgroups, to the performance of
competency-based processes, and to workforce practices and activities. The organization uses the
results of the quantitative management activities established at Maturity Level 4 to guide improvements
at Maturity Level 5. Maturity Level 5 organizations treat change management as an ordinary business

process to be performed in an orderly way on a regular basis)

MCA II YEAR III SEMESTER

158
Rahul Publications

Rahul Publications

5.13 IDEAL MODEL

Q17. Explain in detail about Ideal Model and Spice in SPI.

Ans : (Imp.)

The IDEAL model is developed by Software Engineering Institute (SEI) of Carnegie Mellon University
in 1996 for software process improvement. It is an approach to continuous improvement which includes
some phases to build a successful improvement strategy. [4 5] This model consists of five phases i.e.
initiating, diagnosing, establishing, acting and leveraging phase.

All these phases are described as follows:

1. Initiating Phase

It is the starting point. In this phase, establishment of initial improvement infrastructure is done, the
roles and responsibilities of infrastructure are specified, and the initial resources are appointed. The
general objectives of SPI model are also specified in this initiating phase.

2. Diagnosing Phase

This phase starts the continuous software process improvement path and lays groundwork for the
later phases. In this phase, lessons are learned from the past improvements efforts, and according
to the organization’s view, strategic business plans and SPI action plan is initiated.

3. Establishing Phase

During the establishing phase, issues are prioritized which are decide by organization to include in
their improvement activities and also the solutions regarding those issues are developed. The general
goals which are defined in initiating phase are used to develop measurable goals and these measurable
goals are included in the final version of the SPI action plan.

UNIT - V SOFTWARE ENGINEERING

159
Rahul Publications

Rahul Publications

4. Acting Phase

In the acting phase, the solutions to improvements are created, controlled and arranged to see
whether it is going in a right direction or not, refined and then implement these solutions. This
phase is all about doing the work required to achieve the desired goals.

5. Leveraging Phase

The main goal of the leveraging phase is to make the next pass through the IDEAL model more
adequate. Solutions are made, and lessons are learned from the past and by adopting these ways
we can improve in the future.

Advantages

IDEAL model provides a disciplined strategy and for the improvement process and establishes a
long-term improvement strategy. It is the effective approach to software process improvement methods.

Disadvantages

Since, it is a continuous improvement model. No recovery phase exits in this model and hence
either it will be successful or fail all at once.

Q18. Describe briefly about SPICE Model.

Ans :

ISO/IEC validated a project under the working title SPICE (Software Process Improvement and
capability determination) in January 1993. It includes the participation of dominant world experts in the
field of software engineering. The main aim of this project was to determine a standard for determining
the ability of its continual improvement and software production process. Standard ISO/IEC 15504 or
SPICE provides a framework for the determination of software processes. This framework can be used by
organizations involved in devising, executing, monitoring, controlling and improving the attainment, supply,
development, operation, measurement and support of software.

SPICE has a process model architecture which is two dimensional structures: the process dimension
and the capability dimension. The process dimension includes the main processes and the base practices
under the process categories. These process categories are as follows:

1. Customers-Suppliers (CUS)

It consists of 8 CUS processes. These are the group of processes which directly affect the customers,
transition of the software to the customer, and support development.

2. Engineering (ENG)

It consists of 7 ENG processes. It defines straightaway, executes or maintains a system and software
product, also maintains its user documentation.

3. Project (PRO)

It consists of 8 PRO processes. It consist a group of processes that helps in building the project,
combine, and manages its resources to produce a product or provide a service that satisfies the
requirement of customer.

4. Supports (SUP)

It consists of 5 SUP processes. It supports and prepares the performance of the processes in a
project.

MCA II YEAR III SEMESTER

160
Rahul Publications

1. Phases in Software Development Project, Overview, Need, Coverage of Topics

Ans :
The software requirements for an automated teller machine network. ATM It is intended for the

designer developer and maintainer of the ATM.

Scope

The function of the ATM is to support a computerized banking network.

Overview

There will be some defnitions of important terms Section contains a general description of the
ATM Section identifies the specific functional requirements the external interfaces and performance
requirements of the ATM.

Definitions

 Account: A single account in a bank against which transactions can be applied Accounts may be of
various types with at least checking and savings A customer can hold more than one account.

 ATM: A station that allows customers to enter their own transactions using cash cards as identification
The ATM interacts with the customer to gather transaction information sends the transaction
information to the central computer for validation and processing and dispenses cash to the customer
We assume that an ATM need not operate independently of the network.

 Bank: A financial institution that holds accounts for customers and that issues cash cards authorizing
access to accounts over the ATM network.

 Bank computer: The computer owned by a bank that interfaces with the ATM network and the
banks own cashier stations A bank may actually have its own internal network of computers to
process accounts but we are only concerned with the one that interacts with the network.

 Cash card: A card assigned to a bank customer that authorizes access to accounts using an ATM
machine Each card contains a bank code and a card number coded in accordance with national
standards on credit cards and cash cards The bank code uniquely identifies the bank within the
consortium The card number determines the accounts that the card can access A card does not
necessarily access all of a customer s accounts Each cash card is owned by a single customer but
multiple copies of it may exist so the possibility of simultaneous use of the same card from different
machines must be considered.

 Customer: The holder of one or more accounts in a bank A customer can consist of one or more
persons or corporations the correspondence is not relevant to this problem The same person holding
an account at a different bank is considered a different customer.

 Transaction: A single integral request for operations on the accounts of a single customer. We only
specified that ATMs must dispense cash but we should not preclude the possibility of printing checks
or accepting cash or checks We may also want to provide the exibility to operate on accounts of
different customers although it is not required yet. The different operations must balance properly.

1. ATM APPLICATION

LAB PROGRAMS SOFTWARE ENGINEERING

161
Rahul Publications

User Characteristics

There are several users of the ATM network

 Customer: The customer interacts with the ATM network via the ATM It must be very easy for
them to use the ATM They should be supported by the system in every possible way.

 Maintainer: It should be easy to maintain the whole system The maintainer should be the only
person that is allowed to connect a new ATM to the network

Abbreviations

Throughout this document the following abbreviations are used

 k is the maximum withdrawal per day and account

 m is the maximum withdrawal per transaction

 n is the minimum cash in the ATM to permit a transaction t is the total fund in the ATM at start of
day.

2. To assign the requirement engineering tasks.

Ans :
Specific Requirements

Functional Requirements

The functional requirements are organized in two sections First requirements of the ATM and second
requirements of the bank.

Requirements of the automated teller machine

The requirements for the automated teller machine are organized in the following way General
requirements for authorization requirements for a transaction.

General Functional requirement

Description-Initialize parameters t, k, m, n.

 Input-ATM is initialized with t dollars, k, m, n, are entered

MCA II YEAR III SEMESTER

162
Rahul Publications

 Processing-Storing the parameters

 Output-Parameters are set

Performance Requirement

Description -Each bank may be processing transactions from several ATMs at the same time.

Attributes

 Availability- The ATM network has to be available hours a day.

 Security - The ATM network should provide maximal security. In order to make that much more
transparent there are the following requirements. It must be impossible to plug into the network.

 Maintainability- Only maintainers are allowed to connect new ATM s to the network.

 Transferability Conversions Not Applicable.

Other Requirements

 Data Base -The ATM must be able to use several data formats according to the data formats that
are provided by the data bases of different banks A transaction should have all the properties of a
data base transaction Atomicity Consistency Isolation Durability.

3. To perform the system analysis: Requirement analysis, SRS.

Ans :
Hardware Interface Requirements

There are various hardware components with which the machine is required to interact. Various
hardware interface requirements that need to be fulfilled for successful functioning of the software are as
follows:

 The ATM power supply shall have a 10/220 V AC manual switch.

 The ATM card should have the following physical dimensions:-

 Width - 85.47mm - 85.72mm

 Height - 53.92mm - 54.03mm

 Thickness - 0.76mm - 0.08mm

 The card reader shall be a magnetic stripe reader

 The card reader shall have Smart card option.

 The slot for a card in the card reader may include an extra indentation for the embossed area of the
card. In effect it acts as a polarization key and may be used to aid the correct insertion orientation of
the card. This is an additional characteristic to the magnetic field sensor which operates off the
magnetic stripe and is used to open a mechanical gate on devices such as ATMs.

 There shall be a 40 column dot matrix receipt printer.

 There shall be a 40 column dot matrix statement printer.

 The receipt dispenser shall be a maximum of 4" width and 0.5" thickness.

 The statement dispenser shall be a maximum of 5" width and 0.5" thickness.

 The envelope depository shall be a maximum of 4.5" width, 10" length and 0.5" thickness.

 Screen resolution of at least 800 × 600-required for proper and complete viewing of screens.
Higher resolution would not be a problem.

LAB PROGRAMS SOFTWARE ENGINEERING

163
Rahul Publications

Software Interface Requirements

In order to perform various different functions, this software needs to interact with various other
software’s. So there are certain software interface requirements that need to be fulfilled which are listed as
follows:-

 The transaction management software used to manage the transaction and keep track of resources
shall be BMS version 2.0.

 The card management software used to verify pin no and login shall be CMS version 3.0.

 Yamaha codecs 367/98 for active speakers.

 The database used to keep record of user accounts shall be Oracle version 7.0.

Communication Interface Requirements

The machine needs to communicate with the main branch for each session for various functions
such as login verification, account access etc. so the following are the various communication interface
requirements that are needed to be fulfilled in order to run the software successfully:

 The system will employ dial-up POS with the central server for low cost communication.

 The communication protocol used shall be TCP/IP.

 Protocol used for data transfer shall be File Transfer Protocol (FTP).

4. To perform the function-oriented diagram: DFD and Structured chart.

Ans :
DFD (Data Flow Diagram) of an ATM System consist of two levels of DFD. These levels are Level 0

DFD and Level 1 DFD. Both these levels are used for making the DFD of an ATM system.

 Level 0 DFD: This level is also known as Context Level DFD. At this level, only the interacting
inputs and outputs with a system are described. The DFD of this level is shown below:

MCA II YEAR III SEMESTER

164
Rahul Publications

 Level 1 DFD: At this level, more detailed information is given about the processing of the ATM
system. The DFD of this level is shown below:

5. To perform the user’s view analysis: Use case diagram

Customer (actor) uses bank ATM to Check Balances of his/her bank accounts, Deposit Funds,
Withdraw Cash and/or Transfer Funds (use cases). ATM Technician provides. Maintenance and Repairs.
All these use cases also involve Bank actor whether it is related to customer transactions or to the ATM
servicing.

LAB PROGRAMS SOFTWARE ENGINEERING

165
Rahul Publications

On most bank ATMs, the customer is authenticated by inserting a plastic ATM card and entering a
personal identification number (PIN). Customer Authentication use case is required for every ATM
transaction so we show it as include relationship. Including this use case as well as transaction generalizations
make the ATM Transaction an abstract use case.

Customer may need some help from the ATM. ATM Transaction use case is extended via extension
point called menu by the ATM Help use case whenever ATM Transaction is at the location specified by the
menu and the bank customer requests help, e.g. by selecting Help menu item.

ATM Technician maintains or repairs Bank ATM. Maintenance use case includes Replenishing ATM
with cash, ink or printer paper, Upgrades of hardware, firmware or software, and remote or on-site
Diagnostics. Diagnostics is also included in (shared with) Repair use case.

MCA II YEAR III SEMESTER

166
Rahul Publications

6. To draw the structural view diagram: Class diagram, object diagram.

Ans :
Class diagram

Class diagrams describe the static structure of a system, or how it is structured rather than how it
behaves. These diagrams contain the following elements:

 Classes: which represent entities with common characteristics or features. These features include
attributes, operations, and associations.

 Associations: which represent relationships that relate two or more other classes where the
relationships have common characteristics or features. These features include attributes and
operations.

7. To draw the behavioural view diagram: Sequence diagram, Collaboration diagram.

Ans :
Collaboration Diagrams

A Communication or Collaboration diagram, as shown is a directed graph that uses objects and
actors as graph nodes. The focus of the collaboration diagram is on the roles of the objects as they interact
to realize a system function. Directional links are used to indicate communication between objects.

These links are labelled using appropriate messages. Each message is prefixed with a sequence
number indicating the time ordering needed to realize the system function.

LAB PROGRAMS SOFTWARE ENGINEERING

167
Rahul Publications

Customer ATM

Bank

1: Check Balance

2: Balance Enquiry

3: Display Balance

Customer ATM

Bank

1: Check Balance

2: Balance Enquiry

3: Display Balance

Customer ATM

Bank

1: Deposit Cash

4: Display New Balance

2: Calculate Deposited Cash

3: Update Balance

Sequence Diagram

Sequence diagrams typically show the flow of functionality through a use case, and consist of the
following components:

 Actors: Involved in the functionality.

 Objects: That a system needs to provide the functionality.

 Messages: Which represent communication between objects.

MCA II YEAR III SEMESTER

168
Rahul Publications

8. To draw the behavioural view diagram: State-chart diagram, Activity diagram.

Ans :
State Diagram

State transition diagrams provide a way to model the various states in which an object can exist.
While the class diagram show a static picture of the classes and their relationships, state transition diagrams
model the dynamic behaviour of a system in response to external events (stimuli). State transition diagrams
consist of the following:

 States: Which show the possible situations in which an object can find itself

 Transitions: Which show the different events which cause a change in the state of an object?

Activity Diagram

Activity diagrams describe the activities of a class. They are similar to state transition diagrams and
use similar conventions, but activity diagrams describe the behavior/states of a class in response to internal
processing rather than external events. They contain the following elements:

 Swimlanes: Which delegate specific actions to objects within an overall activity.

 Action States: Which represent uninterruptible actions of entities, or steps in the execution of an
algorithm.

 Action Flows: Which represent relationships between the different action states on an entity.

 Object Flows: Which represent utilization of objects by action states, or influence of action states
on objects.

LAB PROGRAMS SOFTWARE ENGINEERING

169
Rahul Publications

MCA II YEAR III SEMESTER

170
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

171
Rahul Publications

9. To draw the implementation view diagram: Component diagram, Deployment diagram.

Ans :
Component Diagram

A component diagram depicts how components are wired together to form larger components or
software systems. This diagram illustrates the complex system in ATM.

Deployment Diagram

The UML Deployment Diagram is used for visualization of elements and components of a program,
that exist at the stage of its execution. It contains graphical representations of processors, devices, processes,
and relationships between them. The UML Deployment Diagram allows to determine the distribution of
system components on its physical nodes, to show the physical connections between all system nodes at
the stage of realization, to identify the system bottlenecks and reconfigure its topology to achieve the
required performance. The UML Deployment diagram is typically developed jointly by systems analysts,
network engineers and system engineers.

MCA II YEAR III SEMESTER

172
Rahul Publications

10. To perform various testing using the testing tool unit testing, integration testing

Ans :
Prerequisite – Types of Software Testing

Unit Testing

Unit Testing is a software testing technique by means of which individual units of software i.e.
group of computer program modules, usage procedures and operating procedures are tested to determine
whether they are suitable for use or not. It is a testing method using which every independent modules
are tested to determine if there are any issue by the developer himself. It is correlated with functional
correctness of the independent modules.

Unit Testing is defined as a type of software testing where individual components of a software are
tested.

Unit Testing of software product is carried out during the development of an application. An individual
component may be either an individual function or a procedure. Unit Testing is typically performed by the
developer.

In SDLC or V Model, Unit testing is first level of testing done before integration testing. Unit testing
is such type of testing technique that is usually performed by the developers. Although due to reluctance
of developers to tests, quality assurance engineers also do unit testing.

Objective of Unit Testing:

The objective of Unit Testing is:

1. To isolate a section of code.

2. To verify the correctness of code.

3. To test every function and procedure.

LAB PROGRAMS SOFTWARE ENGINEERING

173
Rahul Publications

4. To fix bug early in development cycle and to save costs.

5. To help the developers to understand the code base and enable them to make changes quickly.

6. To help for code reuse.

Types of Unit Testing

There are 2 type of Unit Testing: Manual, and Automated.

Test Cases for ATM

Given below are the various test cases for ATM.

1. Verify if the card reader is working correctly. A screen should ask you to insert the pin after inserting
the valid card.

2. Verify if the cash dispenser is working as expected.

3. Verify if the receipt printer is working correctly. Which means it can print the data on the paper and
the paper comes out properly.

4. Verify if the Screen buttons are working correctly. For touch screen: Verify if it is operational and
working as per the expectations.

5. Verify if the text on the screen button is visible clearly.

6. Verify the font of the text on the screen buttons.

7. Verify each number button on the Keypad.

8. Verify the functionality of the Cancel button on the Keypad.

9. Verify the text color of the keypad buttons. The numbers should be visible clearly.

10. Verify the text color and font of the data on the screen. The user should be able to read it clearly.

11. Verify the language selection option. If the messages or data are displayed in the selected language.

12. Insert the card, the correct pin, and print the receipt for available balance.

13. Verify the receipt printing functionality after a valid transaction. Whether the printed data is correct
or not.

14. Verify how much time the system takes to log out.

15. Verify the timeout session functionality.

16. Verify the deposit slot functionality depending on its capability (Cash or cheque or both) by inserting
a valid cheque.

17. Verify using different cards (Cards of different banks).

Verifying the Message

18. Insert the card and an incorrect PIN to verify the message.

19. Verify the message when there is no cash in the ATM.

20. Verify the messages after a transaction.

21. Verify if a user will get a correct message if a card is inserted incorrectly.

MCA II YEAR III SEMESTER

174
Rahul Publications

Messages for each and every scenario should be verified.

Cash Withdrawal

22. Verify the cash withdrawal functionality by inserting some valid amount.

23. Verify if a user can perform only one cash withdrawal transaction per PIN insert.

24. Verify the different combinations of operation and check if there will be a power loss in the middle
of the operation.

Negative Test cases

25. Verify the functionality by entering a wrong pin number for 3 or more times.

26. Verify the card reader functionality by inserting an expired card.

27. Verify the deposit slot functionality by inserting an invalid cheque.

28. Verify the cash withdrawal functionality by inserting invalid numbers like 10, 20, 50 etc.

29. Verify the cash withdrawal functionality by entering an amount greater than the per day limit,

30. Verify the cash withdrawal functionality by entering an amount greater than per transaction limit.

31. Verify the cash withdrawal functionality by entering an amount greater than the available balance in
the account.

Integration Testing

Integration Testing is defined as a type of testing where software modules are integrated logically
and tested as a group. A typical software project consists of multiple software modules, coded by different
programmers. The purpose of this level of testing is to expose defects in the interaction between these
software modules when they are integrated.

Integration Testing focuses on checking data communication amongst these modules. Hence it is
also termed as ‘I & T’ (Integration and Testing), ‘String Testing’ and sometimes ‘Thread Testing’.

Approaches, Strategies, Methodologies of Integration Testing

Software Engineering defines variety of strategies to execute Integration testing, viz.

 Big Bang Approach

 Incremental Approach: which is further divided into the following

 Top Down Approach

 Bottom Up Approach

 Sandwich Approach - Combination of Top Down and Bottom Up

ATM test cases may vary from one bank to another. Each back has its process. You can add test
cases based on your companies requirement document.

Test Cases for ATM

1. Verify the ‘ATM Card Insertion Slot’ is as per the specification.

2. Verify the ATM machine accepts card and PIN details.

3. Verify the error message by inserting a card incorrectly.

4. Verify the error message by inserting an invalid card (Expired Card)

5. Verify the error message by entering an incorrect PIN

LAB PROGRAMS SOFTWARE ENGINEERING

175
Rahul Publications

6. Verify that the user is asked to enter the PIN after inserting a valid ATM Card

7. Verify that PIN is encrypted

8. Verify that there is an action like blocking of card occurs when the total no. of incorrect PIN attempts
get surpassed

9. Verify the user is allowed to do only one cash withdrawal transaction per PIN request

10. Verify the machine logs out of the user session immediately after successful withdrawal

11. Verify the message when there is no money in the ATM

12. Verify the language selection functionality

13. Verify the cash withdrawal functionality by entering some valid amount

14. Verify the cash withdrawal functionality by entering an amount less than 100

15. Verify the cash withdrawal functionality by entering an amount greater than the total available
balance in the account.

16. Verify the cash withdrawal functionality by entering an amount greater than per day limit

17. Verify the user is allowed to enter the amount again in case the amount entered is not valid. A
proper message should be displayed.

18. Verify the ATM machine successfully takes out the money.

19. Verify the ATM machine takes out the balance printout after the withdrawal

20. Verify the font of the text displayed in ATM screen

21. Verify the text on the screen buttons visible clearly.

22. Verify the functionality of all the buttons on the keypad

23. Verify the text on the buttons visible clearly.

24. Verify that touch of the ATM screen is smooth and operational

25. Verify the user is allowed to choose different account types like Savings, Current etc.,

26. Verify the different combinations of operation and check if there will be an electricity loss in the
middle of the operation. If there is an electricity loss in the middle of the transaction then the
transaction should be marked as null and the amount shouldn’t be disclosed to others.

27. Verify the functionality of the cash dispenser

28. Verify the functionality of the receipt printer

29. Verify whether the printed data is correct or not in the receipt

30. Verify how much time the system takes to log out.

MCA II YEAR III SEMESTER

176
Rahul Publications

2. LIBRARY MANAGEMENT SYSTEM

1. Phases in software development project, overview, need, coverage of topics

Ans :

SystemPlanning

The developing process of the Library Management System will be carried.

Project Aims andObjectives

The project aims and objectives that will be achieved after completion of the system were carried
out. The succession of the system also will be evaluated.

The project objectives are :

 To eliminate the paper-work in library

 To record every transaction in computerized system so that problem such as record file missing
won’t happen again

 To implement BarCode, SMS technologies into thesystem

 To design a user friendly graphical user interface which suit theusers

 To complete the system according to project schedule

 To produce technical report that documents the phases, tasks and deliverables in the project

Background of Project

Library Management System is an application refer to other library system and it is suitable to use
by small and medium size library. It is use by librarian and library admin to manage the library using a
computerized system. The system was developed and designed to help librarian record every book
transaction so that the problem such as file missing or record missing will not happened again.

Barcode reader is equipped in this system so that users can enjoy the convenience without need to
key in the barcode of the book themselves. It is convenience and time saving as the users can direct scan
in the book’s barcode id when the members borrows few books in one time.

Book and member maintenance module also included in Library Management System. Users can
register or edit the member or book in the system. With this computerized maintenance, library will not
lost the book record or member record which always happen when no computerized system bring used.

Project Scope

Project scope will carried out what modules were contains inside the Library Management System.

LAB PROGRAMS SOFTWARE ENGINEERING

177
Rahul Publications

2. To assign the requirement engineering tasks

Ans :
Library system

Authorization and AuthenticationModule

This module is used by user which means librarian in the library. They need to login to the system
using their id and password. In order to distinguish the user’s level, user can access to different module
when successfully login. For example, only admin level users are able to access the report module.

Member Maintenance Module

This module can be accessed by either librarian or library admin to maintain member’s profile or
record such as search, add, edit and print ID card.

Book Maintenance Module

Book Module can access by any user from all levels. This module can used to maintain the book
inventory record such as search, add and edit. In addition, we can generate the barcode for particular
book and print it out so that librarian can stick the barcode on the book cover.

MCA II YEAR III SEMESTER

178
Rahul Publications

Publisher MaintenanceModule

This module allows user to add and edit the book’s publisher. Publisher is used when register a new
book.

Employee Maintenance Module

Employee Maintenance is only can carried out by admin level user. It can use to add the new
librarian to the library which means add the new user.

Book Transaction Module

LAB PROGRAMS SOFTWARE ENGINEERING

179
Rahul Publications

Book Transaction module is a main module in Library Management System. When member wants
to borrow books, return books or they want to register lost book, it is all under book Transaction module.
This module can be accessed by normal user or admin user. When member wants to borrow a book,
librarian needs to scan in their member id. After that, librarian will scan their book’s barcode id. If the
book is under reservation, the book is not available to rent.

For return module, librarian just needs to scan the book’s barcode id, and confirm the rental detail
with user. If the rental detail is correct, return module can be complete if no any fine issued.

Report Module

Report module is the main module for admin user. It is because normal user is not allowed to view
the report. The report divided into 3 types. First one is transaction report which can let admin views the
book transaction happen on particular date such as rental report and return report.

Top10 Report is the top rental rate’s book. Admin can filter the information based on book’s
category and also filter by date in type of daily, monthly and yearly.

Activity Log File is a log which records every process in the Library Management System such as
login / logout activity, register new book, new member or edit information or a member. All the activity
done by every user will be record so that when system crash, admin or system admin are able to check the
activity that may crash the system.

Library Web Site

At here, I will describe my friend’s part which is library website which used by librarian and member.

MCA II YEAR III SEMESTER

180
Rahul Publications

Authorization and Authentication Module

This module is used by user and also admin user for the website. They need to login to the website
using their id and password. In order to distinguish the user’s level, user can access to different module
when successfully login. For example, admin can implement News.

Member/Staff Maintenance Module

This module allows user and also admin to view their profile. Not only that, they allow to edit their
profile and also change their password.

Search Module

Search module allow user or guess who visit website to search the book. Not only that the user
allow viewing the detail of the book and also seeing the comment of the book. There are a few of type
allow users to search. They can search via ISBN, book title, author, publisher, and category.

Top 10 new book and recommended book Module

Top 10 new book modules allow guess and member to see the top 10 new book has brought by
the library and the recommended book module only can see by member after log in to the system. It
recommended based on their category example the user like to see action type book then it will recommend
some action book for

News Maintenance Module

This module allows user to add, edit and delete the news. So when the users visit the website the
website will have shown updated news.

LAB PROGRAMS SOFTWARE ENGINEERING

181
Rahul Publications

Book Maintenance Module

Book maintenance module allows the member to view the book currently they have borrowed and
also view the book they have borrowed. Not only that, there got reservation module which allow member
to reserve book. Members are allowing reserving book and deleting the reservation and also view currently
the book they reserve.

E-mailModule

E-mail module has implemented in FAQ and also forget password. So when the member forgot
their password they can get back their password via matching their ID and E-mail. Other than that, for
FAQ if guess or members have more questions to ask they can ask via E-mail.

Report Module

Report module is the module for admin user. There is two report which is Book Comment and
Member Expired.

For Book Comment report is to view the top book that has been commented. It allows the admin
to know the popularity of the book so that they can get more new books. It can view via day, month and
year.

Member Expired report is to view the member is expired via which date, month or year. So they
can remind their member to renew the membership and also can know the popularity of the library. So,
it can be estimate the popularity of the library currently is increasing or decreasing.

MCA II YEAR III SEMESTER

182
Rahul Publications

CommentModule
Comment Module created is for member to comment a book. So, if the member have opinion

about the book they can actually comment on the book. Not only that they can also delete their own
comment. Admin users can delete any comment of the book that member has already comment.

3. To perform the system analysis: Requirement analysis, SRS

Ans :
Product Description

Library Management System is a computerized system which can helps user (librarian) to manage
the library daily activity in electronic format. It reduces the risk of paper work such as file lost, file damaged
and time-consuming. It can help user to manage the transaction or record more effectively and time-
saving.
Problem Statement

The problem occurred before having computerized system includes:
File lost

When no computerizes system is implemented, the file always lost because of human and
environment. Sometimes librarian didn’t keep the record to its original place because of a lot member
queue up to borrow books. After that the file was missing due to messyenvironment.
File damaged

In the other possibility, the file/record will be damaged due to accident. For example the librarian
accidentally hit a glass of drink and pours onto the paper file. The record will be damaged. Besides this,
natural disaster such as flood also will cause damage to the file record.
Difficult to search record

Without computerized system, when member wants to borrow a book, librarian hard to search for
the member’s record. It will cause time-consuming when a lot member are waiting to borrow the books.
Space-consuming

After long operation time of the library, the records are getting more and more. Finally, the physical
record was space-consuming and no place to keep the file.
Difficult to viewreports

Report need to generate manually without computerizes system. Admin need to get the book
transaction record and find the information based on the time period. It is time consuming to generate
one report.
Cost consuming

Paper is needed to add every new record. After a long period of time, the cost to buy a paper can
be high. On the other hand, library needs to employ more staff to solve the long queue problem. If the
library only has one staff, it is not enough time to process the book transaction.
Systemobjectives
1. Improvement in control and performance

The system was developed to overcome the current problem occurred in library. The system must
be able to validate the user, store the record and bug free.

LAB PROGRAMS SOFTWARE ENGINEERING

183
Rahul Publications

2. Save cost
After implementing the computerized library system, library can only hire 1 or 2 staff to handle the

book transaction process. With the aids of computerized system, library can save the cost of hire employee
and also save the paper-cost.
3. Savetime

Librarian is able to search the record in short time by pressing only few keys. Compare to previous
time before implementing the system, librarian can save a lottime.
I) SystemRequirements (Non-functionalRequirements)
Products Requirements
1. Efficiencyrequirements

With the library management system, librarian should be able to process faster when they process
book transaction. In addition, with the use of bar code scanner, librarian can avoid to type the book
id one by one, bar code scanner enable librarian to scan the book id instantly.

2. Reliability requirements
The system must perform accurately towards member request. For example, when the librarian
saves the edited profile detail, after they review their detail, the details must be change according to
the latest details that they have updated. When member return the book after the expired date, the
fine should be calculate accurately. Besides that, in the registration form, it will have validity check to
check the input to prevent wrong data type.

3. Usability requirements
This system must be designed with user-friendly and easy to use by the staff so that the user can
perform their job nicely. It must have a clear instruction to guide user through the system. Besides
that, the description of error message should be clear.

II) Organizational Requirements(Implementationrequirements)
In implementing the system, it uses the vb.net as the main programming language and tools. Besides

that, the SQL language will be use to maintain the information in the database. On the other hand, SQL
Server 2008 needs to be installed.
1. Delivery requirements

The whole system is estimate to be done around 6 months time and the documentation will be
done in 2 months. The full system will be delivers in a softcopy method while the documentation
will be delivers in hardcopy and softcopy.

III) External Requirements
1. Legislativerequirements

The information that use must be acknowledge by the authorized people so that it has no violating
the law. This information is copyrighted and protected by the law. Besides that, when visitors wants
to become the member of the library, he or she must agree with the rules stated in the system.

2. Security requirements
This system must be highly secure in the login part. It is because the report can only view by admin
level. Staff can perform most of the process except viewing report module and log file module.

4. To perform the function-oriented diagram: DFD and Structured chart

Ans :
Data Flow Diagram (DFD) depicts the flow of information and the transformation applied when a

data moves in and out from a system. The overall system is represented and described using input,
processing and output in the DFD. The inputs can be:
 Book request when a student requests for a book.
 Library card when the student has to show or submit his/her identity as a proof.

MCA II YEAR III SEMESTER

184
Rahul Publications

The overall processing unit will contain the following output that a system will produce or generate:
 Book will be the output as the book demanded by the student will be given to them.
 Information of demanded book should be displayed by the library information system that can be

used by the student while selecting the book which makes it easier for the student.
Level 0 DFD –

Level 1 DFD –

At this level, the system has to show or exposed with more details of processing.

The processes that are important to be carried out are:

 Book delivery

 Search by topic

List of authors, List of Titles, List of Topics, the bookshelves from which books can be located are
some information that is required for these processes. Data store is used to represent this type of
information.

LAB PROGRAMS SOFTWARE ENGINEERING

185
Rahul Publications

Level 2 DFD –

5. To perform the user’s view analysis: Use case diagram

Ans :
Use Case Diagram Library System Project

We have three main actors in our system:
 Librarian: Mainly responsible for adding and modifying books, book items, and users. The Librarian

can also issue, reserve, and return book items.
 Member: All members can search the catalog, as well as check-out, reserve, renew, and return a

book.
 System: Mainly responsible for sending notifications for overdue books, canceled reservations,

etc.
Here are the top use cases of the Library Management System:

 Add/Remove/Edit book: To add, remove or modify a book or book item.
 Search catalog: To search books by title, author, subject or publication date.
 Register new account/cancel membership: To add a new member or cancel the membership

of an existing member.
 Check-out book: To borrow a book from the library.
 Reserve book: To reserve a book which is not currently available.
 Renew a book: To reborrow an already checked-out book.
 Return a book: To return a book to the library which was issued to a member.

MCA II YEAR III SEMESTER

186
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

187
Rahul Publications

6. To draw the structural view diagram: Class diagram, object diagram

Ans :

Here are the main classes of our Library Management System:

 Library: The central part of the organization for which this software has been designed. It has

attributes like ‘Name’ to distinguish it from any other libraries and ‘Address’ to describe its location.

 Book: The basic building block of the system. Every book will have ISBN, Title, Subject, Publishers,
etc.

 BookItem: Any book can have multiple copies, each copy will be considered a book item in our
system. Each book item will have a unique barcode.

 Account: We will have two types of accounts in the system, one will be a general member, and the

other will be a librarian.

 Library Card: Each library user will be issued a library card, which will be used to identify users

while issuing or returning books.

 Book Reservation: Responsible for managing reservations against book items.

 BookLending: Manage the checking-out of book items.

 Catalog: Catalogs contain list of books sorted on certain criteria. Our system will support searching

through four catalogs: Title, Author, Subject, and Publish-date.

 Fine: This class will be responsible for calculating and collecting fines from library members.

 Author: This class will encapsulate a book author.

 Rack: Books will be placed on racks. Each rack will be identified by a rack number and will have

a location identifier to describe the physical location of the rack in the library.

 Notification: This class will take care of sending notifications to library members.

MCA II YEAR III SEMESTER

188
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

189
Rahul Publications

7. To draw the behavioural view diagram: Sequence diagram, Collaboration diagram

Ans :
Sequence diagram

Sequence diagram for issuing book:

Sequence diagram for returning book:

MCA II YEAR III SEMESTER

190
Rahul Publications

Collaboration Diagram

Collaboration diagram for issuing Book:

Collaboration diagram for returning Book:

LAB PROGRAMS SOFTWARE ENGINEERING

191
Rahul Publications

8. To draw the behavioural view diagram: State-chart diagram, Activity diagram

Ans :
Activity Diagram

Check-out a book: Any library member or librarian can perform this activity. Here are the set of
steps to check-out a book:

MCA II YEAR III SEMESTER

192
Rahul Publications

Return a book: Any library member or librarian can perform this activity. The system will collect
fines from members if they return books after the due date. Here are the steps for returning a book:

LAB PROGRAMS SOFTWARE ENGINEERING

193
Rahul Publications

Renew a book: While renewing (re-issuing) a book, the system will check for fines and see if any
other member has not reserved the same book, in that case the book item cannot be renewed. Here are
the different steps for renewing a book:

MCA II YEAR III SEMESTER

194
Rahul Publications

State-Chart Diagram

State diagram for Library Management System is shown below. Here we have described different
states of following Objects: Librarian, Books, User

State Diagram For Librarian Object:

State Diagram For Books Object:

LAB PROGRAMS SOFTWARE ENGINEERING

195
Rahul Publications

State Diagram For User Object:

9. To draw the implementation view diagram: Component and Deployment diagram

Ans :
Deployment Diagram for Library management system

Component diagram for Library Management System

MCA II YEAR III SEMESTER

196
Rahul Publications

10. To perform various testing using the testing tool unit testing, integration testing

Ans :
Quality assurance is the review of the software product that checks for the correctness, reliability,

completeness and maintainability. The different sections under quality assurance are unit testing, integrated
testing, validation testing, output testing and user acceptance testing. Test cases gives an idea like on
perform of some tasks what will be the predicted output or result. It will help in predicting the result on
perform of certain tasks. The test cases below gives an idea of what result must be obtained on performing
a particular task.

 Login form: The test cases involved are whether valid password and name are entered or invalid
name and password entered.

 Book entry form: The test cases included are-on the click of add button, delete button, update
button, search button, clear button, exit button and next button.

 User account form: The test cases included are-on the click of add button, delete button, update
button, search button, clear button, exit button and next button.

 Book return form: The test cases included are-on the click of add button, delete button, update
button, search button, clear button, exit button and next button.

Test Cases For Library Management System

LOGIN FORM:

SL.No Test Case Excepted Result Test Result

1
Enter valid name and password & click on
login button

Software should display main
window

Successful

2 Enter invalid
Software should not display
main window

successful

BOOK ENTRY FORM:

S.No. Test Case Excepted Result Test Result

1 On the click of ADD button At first user have to fill all fields with proper data , if any
Error like entering text data instead of number or entering
number instead of text..is found then it gives proper message
otherwise Adds Record To the Database

successful

2. On the Click of DELETE Button This deletes the details of book by using Accession no. Successful

3. On the Click of UPDATE Button Modified records are Updated in database by clicking
UPDATE button.

Successful

4. On the Click of SEARCH Button Displays the Details of book for entered Accession no.
Otherwise gives proper Error message.

Successful

5. On the Click of CLEAR Button Clears all fields Successful

6. On the Click of EXIT button Exit the current book details form successful

7. On the Click of NEXT button Display the next form successful

LAB PROGRAMS SOFTWARE ENGINEERING

197
Rahul Publications

User Account Form:

S.No Test Case Excepted Result Test Result
1 On the click of ADD button At first user have to fill all fields

with proper data , if any Error like
entering text data instead of
number or entering number instead
of text..is found then it gives proper
message otherwise Adds Record
To the Database

successful

2. On the Click of DELETE Button This deletes the details of student
by using Register no.

Successful

3. On the Click of UPDATE Button Modified records are Updated in
database by clicking UPDATE
button.

Successful

4. On the Click of SEARCH Button Displays the Details of book for
entered Register no. Otherwise
gives proper Error message.

Successful

5. On the Click of CLEAR Button Clears all fields Successful

6. On the Click of EXIT button Exit the current book details form Successful

7. On the Click of NEXT button Display the next form Successful

BOOK ISSUE FORM:

S.No Test Case Excepted Result Test Result
1 On the click of ADD button At first user have to fill all fields

with proper data ,if the accession
number book is already issued
then it will giving proper msg.

Successful

2. On the Click of DELETE Button This deletes the details of book
by using Register no.

Successful

3. On the Click of UPDATE Button Modified records are Updated in
database by clicking UPDATE
button.

Successful

4. On the Click of SEARCH Button Displays the Details of issued
book..Otherwise gives proper
Error message.

Successful

5. On the Click of CLEAR Button Clears all fields Successful

6. On the Click of EXIT button Exit the current book details form Successful

7. On the Click of NEXT button Display the next form Successful

MCA II YEAR III SEMESTER

198
Rahul Publications

BOOK RETURN FORM:

S.No. Test Case Excepted Result Test Result
1 On the click of ADD button At first user have to fill all fields with

proper data , if any Error like entering
text data instead of number or entering
number instead of text..is found then it
gives proper message otherwise Adds
Record To the Database

Successful

2. On the Click of DELETE Button Which deletes the details of book by
using Register no.

Successful

3. On the Click of UPDATE Button Modified records are Updated in
database by clicking UPDATE button.

Successful

4. On the Click of SEARCH Button Displays the Details of returned book …
Otherwise gives proper Error message.

Successful

5. On the Click of CLEAR Button Clears all fields Successful

6. On the Click of EXIT button Exit the current book details form Successful

7. On the Click of NEXT button

LAB PROGRAMS SOFTWARE ENGINEERING

199
Rahul Publications

3. RAILWAY RESERVATION

1. Phases in software development project, overview, need, coverage of topics

Ans :
Our website has various kinds of information that helps regarding booking of tickets via railways.

Users will be able to search the train availability,the exact fare, the arrival and departure time of the
train and they can also book the ticket by using the debit, credit or master card and after booking the
ticket if the user want to cancel it then they can easily do it also.

Railway passengers frequently need to know about their ticket reservation status, ticket availability
on a particular train or for a place, train arrival or departure details, special trains etc.. Customer information
centers at the railway stations are unable to serve such queries at peak periods.

The number of the reservation counters available to the passengers and customers are very less.On
most of the reservation systems there are long queues, so it takes a long time for any individual to book
the ticket.As now there are no call centers facilities available to solve the queries of the passengers.

The online railway ticket reservation system aims to develop a web application which aims at providing
trains details, trains availability, as well as the facility to book ticket in online for customers.

So, we thought of developing a web based application which would provide the users all these
facilities from his terminal only as well as help them in booking their tickets. The Application was to be
divided into two parts namely the user part , and the administrator part. And each of these has their
corresponding features.

We decided to give the name of the website “ONLINE RAILWAY TICKET RESEVATION”.

The online railway ticket reservation system is developed using ASP.NET with C# as the backend in
the .NET Framework.

Objectives

The objective of the online railway ticket reservation system Project is to design software to fully
automate the process of issuing a railway ticket. That is:-

1. To create a database of thetrains

2. To search the trains it’s arrival and departure time, distance between source and destination.

3. To check the availability of theticket.

4. To calculate fare.

5. To book the ticket.

6. To cancel the ticket if necessary.

MCA II YEAR III SEMESTER

200
Rahul Publications

2. To assign the requirement engineering tasks

Ans :
Analysis

The track is one of the factors that strike to our mind when we speak about railways. The train may
reach the intended destination through different tracks or through the single track which connects the
source to the destination. Nowadays the passenger can book the railway tickets online easily than waiting
in long queues to obtain the ticket. This system should include the name of the train, source, destination,
time, date of arrival or departure etc. Nowadays the passenger can book the railway tickets online easily
than waiting in long queues to obtain the ticket. The passenger ticket booking system should include the
name of the train, source, destination, time, date of arrival or departure etc.

Online railway ticket reservation is a online ticket booking website, which is capable of booking
ticket and search the train availability. This website is mainly created to fulfil the following requirements, it
comprises of the following properties:-

 A central database that will store allinformation.

 An online website that will provide real- time information about the availability of tickets their
prices.

 Every registered user is able to view his booking id that has been made in his/her name.

 Every registered user can change his password any time he wants tochange.

 Every guest user can search train availability,price of the ticket, arrival and departure time,distance
between source and destinationetc.

 Every registered user has the facilities to print his ticket any time he wishes. Administrationlogin

 In admin mode the administrator can make changes in traindetails.

 He can also view all booking that has been made by differentusers.

The booking window contains all the facilities at one place, the user cansimply login to his account
and can book histicket.

The features of this system are as follows:

 Seats availability: The users through the use of this system can check whether the seats are
available in the particular train to travel.

 Train tickets: The users can access their train tickets through the online mode through the use of
this application.

 Stations: This application can also contain the details of the various stations from the source to the
destination of the passenger.

 Trains: The trains will be having the name and the id number.

 Train schedules: Even the schedules of different trains can be mentioned through this application.

 Time in and time out: For each train at every station there is a time in or time out time. It indicates
that passengers should get in and get out of the train only within that particular duration of time.

LAB PROGRAMS SOFTWARE ENGINEERING

201
Rahul Publications

3. To perform the system analysis: Requirement analysis, SRS

Ans :
System Concept Development Phase

The System Concept Development Phase begins after a business need or opportunity is validated
by the Agency/Organization Program Leadership and the Agency/Organization CIO.

The purpose of the System Concept Development Phase is to:

 Determine the feasibilityand appropriateness of the alternatives.

 Identify system interfaces.

 Identify basic functional and data requirements to satisfy the business need.

 Establish system boundaries, identifygoals, objectives, critical success factors, and performance
measures.

 Evaluate costs and benefits of alternative approaches to satisfy the basic functional requirements

 Assess project risks

 Identify and initiate risk mitigation actions, andDevelop high-level technical architecture,process
models, data models, and a concept of operations.

This phase explores potential technical solutions within the context of the business need. It may
include several trade-off decisions such as the decision to use COTS software products as opposed to
developing custom software or reusing software components, or the decision to use an incremental
delivery versus a complete, one- time deployment. Construction of executable prototypes is encouraged
to evaluate technology to support the business process.

The System Boundary Document serves as an important reference document to support the
Information Technology Project Request (ITPR) process. The ITPR must be approved by the State CIO
before the project can move forward.

DevelopmentEnvironments

Hardware

Intel Core™ i3 7020U 2.30GHz 64 bit with 8GB RAM, 500 GB hard disk space and other Standard
accessories.

Environment and Applications

 Microsoft Windows10.

 Microsoft Visual Studio2010.

 Microsoft SQL Server2005.

 Microsoft InternetExplorer.

Operating environment :

Hardware configuration

The minimum configuration for hardware is given below:

 Intel® Pentium® or higherprocessor.

 4 GB RAM or higher

MCA II YEAR III SEMESTER

202
Rahul Publications

Software configuration

 Microsoft® Windows® 10 or laterversions

 A standard web browser.

 .Net framework.

Functions of_ Project

There are seven functionalities provided by the Railway Reservation System.

 Create Reservations: A passenger should be able to reserve seats in the train. A reservation form
is filled by the passenger and given to the clerk, who then checks for the availability of seats for the
specified date of journey. If seats are available them the entries are mode in the system regarding
the train name, train number,date of journey, boarding station,destination,person name,sex and
total fare. Passenger is asked to pay the required fare and the tickets are printed. It the seats are not
available then the passenger is informed.

 Cancel Reservation: A passenger wishing to cancel a reservation is required to fill a form. The
passenger then submits the form and the ticket to the clerk. The clerk then deletes the entries in the
system and changes the reservation status of that train. The clerk crosses the ticket by hand to mark
as cancelled.

 Update Train Info: Only the administrator or manager enters any changes related to the train
information like change in the train name, train number,train route etc. in the system.

 Generate Report:Provision for generation of different reports should be given in the system. The
system should be able to generate reservation chart, monthly train report etc.

 Verify login:For security reasons all the users of the system are given a user id and a password.
Only if the id and password are correct is the user allowed entry to the system and select from the
options available in the system.

 View Reservation Status:All the users should be able to see the reservation status of the train
online. The users needs to enter the train number and the pin number printed on his ticket so that
the system can display his current reservation status like confirmed,RAC or Wait - Listed.

 View Train Schedule: Provision should be given to see information related to the train schedules
for the entire train network. The user should be able to see the train name, train number,boarding
and destination stations, duration of journey etc.

4. To perform the function-oriented diagram: DFD and Structured chart

Ans :
Data Flow Diagram

This is the Zero Level DFD of Railway Reservation System, where we have elaborated the high level
process of Railway Reservation. It’s a basic overview of the whole Railway Reservation System or process
being analyzed or modeled. It’s designed to be an at-a-glance view of Train Route,Customer and Payment
showing the system as a single high-level process, with its relationship to external entities of Trains,Booking
and Ticket. It should be easily understood by a wide audience, including Trains,Ticket and Train Route In
zero level DFD of Railway Reservation System, and we have described the high level flow of the Railway
Reservation system.

LAB PROGRAMS SOFTWARE ENGINEERING

203
Rahul Publications

High Level Entities and process flow of Railway Reservation System:

 Managing all the Trains

 Managing all the Booking

 Managing all the Ticket

 Managing all the Train Shedule

 Managing all the Train Route

 Managing all the Customer

 Managing all the Payment

Level 0:

CONTEXT DIAGRAM

Level 1 DFD

MCA II YEAR III SEMESTER

204
Rahul Publications

Level 2 DFD

Administrator

LAB PROGRAMS SOFTWARE ENGINEERING

205
Rahul Publications

Level 3 DFD

5. To perform the user’s view analysis: Use case diagram

Ans :
This Use Case Diagram is a graphic depiction of the interactions among the elements of Railway

Reservation System. It represents the methodology used in system analysis to identify, clarify, and organize
system requirements of Railway Reservation System. The main actors of Railway Reservation System in
this Use Case Diagram are: Super Admin, System User, Ticket Agent, Customers, who perform the different
type of use cases such as ManageTrain, Manage Ticket, Manage Booking, Manage Customer, Manage
Payment, Manage Train Route, Manage Train Schedule, Manage Users and Full Railway Reservation
System Operations. Major elements of the UML use case diagram of Railway Reservation System are
shown on the picture below.

The relationships between and among the actors and the use cases of Railway Reservation System:

 Super Admin Entity : Use cases of Super Admin are ManageTrain, Manage Ticket, Manage
Booking, Manage Customer, Manage Payment, Manage Train Route, Manage Train Schedule,
Manage Users and Full Railway Reservation System Operations

 System User Entity : Use cases of System User are ManageTrain, Manage Ticket, Manage Booking,
Manage Customer, Manage Payment, Manage Train Route, Manage Train Schedule

 Ticket Agent Entity : Use cases of Ticket Agent are Book Tickets, Search Vacant Seats, Collect
Payment

 Customers Entity : Use cases of Customers are Search Trains, Book Tickets, Make Payments

MCA II YEAR III SEMESTER

206
Rahul Publications

Ticket Booking

Ticket Cancellation

LAB PROGRAMS SOFTWARE ENGINEERING

207
Rahul Publications

6. To draw the structural view diagram: Class diagram, object diagram

Ans :
Railway Reservation System Class Diagram describes the structure of a Railway Reservation System

classes, their attributes, operations (or methods)and the relationships among objects.The main classes of
the Railway Reservation System are Train, Ticket, Booking, Customer, Payment, Train Route.

Classes of Railway Reservation System Class Diagram:

 Train Class : Manage all the operations of Train

 Ticket Class : Manage all the operations of Ticket

 Booking Class : Manage all the operations of Booking

 Customer Class : Manage all the operations of Customer

 Payment Class : Manage all the operations of Payment

 Train Route Class : Manage all the operations of Train Route

Classes and their attributes of Railway Reservation System Class Diagram:

 Train Attributes: train_id, train_name, train_number, train_seat_number, train_ticket, train_type,
train_description

 Ticket Attributes: ticket_id, ticket_customer_id, ticket_type, ticket_date, ticket_description

 Booking Attributes: booking_id, booking_title, booking_type, booking_ticket, booking_date,
booking_description

 Customer Attributes: customer_id, customer_name, customer_mobile, customer_email,
customer_username, customer_password, customer_address

 Payment Attributes: payment_id, payment_customer_id, payment_date,
payment_amount,payment_description

 Train Route Attributes:train_route_id, train_route_name, train_route_type, train_route_description

Classes and their methods of Railway Reservation System Class Diagram:

 Train Methods: addTrain(), editTrain(), deleteTrain(), updateTrain(), saveTrainQ, searchTrain()

 Ticket Methods: addTicket(), editTicketQ, deleteTicket(), updateTicketQ, saveTicket(),
searchTicket()

 Booking Methods: addBooking(), editBooking(), deleteBooking(), updateBookingQ,
saveBooking(), searchBooking()

 Customer Methods: addCustomer(), editCustomerQ, deleteCustomerQ, updateCustomerQ,
saveCustomer(), searchCustomer()

 Payment Methods: addPaymentQ, editPaymentQ, deletePayment(), updatePayment(),
savePayment(), searchPayment()

 Train Route Methods: addTrain Route(), editTrain Route(), deleteTrain Route(), updateTrain
Route(), saveTrain Route(), searchTrain Route()

MCA II YEAR III SEMESTER

208
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

209
Rahul Publications

7. To draw the behavioural view diagram: Sequence diagram, Collaboration diagram

Ans :
This is the UML sequence diagram of Railway Reservation System which shows the interaction

between the objects of Customer, Ticket, Train Route, Train Schedule, Booking. The instance of class
objects involved in this UML Sequence Diagram of Railway Reservation System are as follows:

 Customer Object

 Ticket Object

 Train Route Object

 Train Schedule Object

 Booking Object

Login Sequence Diagram OF Railway Reservation System:

This is the Login Sequence Diagram of Railway Reservation System, where admin will be
able to login in their account using their credentials. After login user can manage all the operations on
Train Route, Customer, Ticket, Booking, Train Schedule. All the pages such as Ticket, Booking, Train
Schedule are secure and user can access these page after login. The diagram below helps demonstrate
how the login page works in a Railway Reservation System. The various objects in the Booking, Train
Route, Customer, Ticket, and Train Schedule page—interact over the course of the sequence, and user
will not be able to access this page without verifying their identity.

This is the UML sequence diagram of Railway Reservation System which shows the interaction
between the objects of Customer, Ticket, Train Route, Train Schedule, Booking. The instance of class
objects involved in this UML Sequence Diagram of Railway Reservation System are as follows:

 Customer Object

 System Object

 Database Object

MCA II YEAR III SEMESTER

210
Rahul Publications

Collaboration Diagram

LAB PROGRAMS SOFTWARE ENGINEERING

211
Rahul Publications

8. To draw the behavioural view diagram: State-chart diagram, Activity diagram

Ans :
Login Activity Diagram

This is the Login Activity Diagram of Railway Reservation System, which shows the flows of
Login Activity, where admin will be able to login using their username and password. After login user can
manage all the operations on Payment, Ticket, Customer, Train Schedule, Booking. All the pages such as
Customer, Train Schedule, Booking are secure and user can access these page after login. The diagram
below helps demonstrate how the login page works in a Railway Reservation System. The various objects
in the Train Schedule, Payment, Ticket, Customer, and Booking page—interact over the course of the
Activity, and user will not be able to access this page without verifying their identity.

MCA II YEAR III SEMESTER

212
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

213
Rahul Publications

State Chart Diagram

MCA II YEAR III SEMESTER

214
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

215
Rahul Publications

9. To draw the implementation view diagram: Component diagram & Deployment diagram

Ans :
Railway Reservation System Component Diagram

This is a Component diagram of Railway Reservation System which shows components,
provided and required interfaces, ports, and relationships between the Train Schedule, Ticket, Booking,
Customer and Payment. This type of diagrams is used in Component-Based Development (CBD) to

describe systems with Service-Oriented Architecture (SOA). Railway Reservation System UML
component diagram, describes the organization and wiring of the physical components in a system.

Components of UML Component Diagram of Railway Reservation System:

 Train Schedule Component

 Ticket Component

 Booking Component

 Customer Component

 Payment Component

Features of Railway Reservation System Component Diagram:

 You can show the models the components of Railway Reservation System.

 Model the database schema of Railway Reservation System

 Model the executables of an application of Railway Reservation System

 Model the system’s source code of Railway Reservation System

MCA II YEAR III SEMESTER

216
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

217
Rahul Publications

Railway Reservation System Deployment Diagram

10. To perform various testing using the testing tool unit testing, integration testing

Ans :
Unit Tests

Starting from the bottom the first test level is “Unit Testing”. It involves checking that each feature
specified in the “Component Design” has been implemented in the component.

In theory an independent tester should do this, but in practice the developer usually does it, as they
are the only people who understand how a component works. The problem with a component is that it
performs only a small part of the functionality of a system, and it relies on co-operating with other parts of
the system, which may not have been built yet. To overcome this, the developer either builds, or uses
special software to trick the component into believe it is working in a fully functional system.
The summary of unit tests is provided below
For user

Unit Purpose
Search Train This unit search the trains.
Train details This unit shows the trains of a particular source to destination in a

particular date and a specific seat .
Book ticket This unit user can select a particulartrain and book ticket .
Login This unit login the registered user and create an account for a new user.
Fill the bookingform User fill the form to book ticket.
payment User fill the form and pay the money with the help of credit card.
Ticket no This unit allows to show his ticket no.
Cancel ticket This unit allows user to cancel ticket.

MCA II YEAR III SEMESTER

218
Rahul Publications

For Administrator

Unit Purpose

Administrator Login This unit detects the authorization of the Administrator.

Change the traindetails. This unit allows the administrator tochange the train
details.

Integration Testing

As the components are constructed and tested they are then linked together to check if they work
with each other. It is a fact that two components that have passed all their tests, when connected to each
other produce one new component full of faults. These tests can be done by specialists, or by the developers.

Integration Testing is not focused on what the components are doing but on how they communicate
with each other, as specified in the “System Design”. The “System Design” defines relationships between
components.

The tests are organized to check all the interfaces, until all the components have been built and
interfaced to each other producing the whole system.

System Testing

Once the entire system has been built then it has to be tested against the “System

Specification” to check if it delivers the features required. It is still developer focused, although
specialist developers known as systems testers are normally employed to do it.

In essence System Testing is not about checking the individual parts of the design, but about checking
the system as a whole. In fact it is one giant component.

System testing can involve a number of specialist types of test to see if all the functional and non -
functional requirements have been met. In addition to functional requirements these may include the
following types of testing for the non - functional requirements:

 Performance- Are the performance criteria met?

 Volume-Can large volumes of information be handled?

 Stress- Can peak volumes of information be handled?

 Documentation - Is the documentation usable for the system?

 Robustness - Does the system remain stable under adverse circumstances? The system was found
to perform its function properly under all conditions.

Acceptance Testing

Acceptance Testing checks the system against the “Requirements”. It is similar to systems testing in
that the whole system is checked but the important difference is the change in focus:

Systems testing checks that the system that was specified has been delivered. Acceptance Testing
checks that the system will deliver what was requested.

The customer should always do acceptance testing and not the developer. The customer knows
what is required from the system to achieve value in the business and is the only person qualified to make
that judgment. This testing is more of getting the answer forweather is the software delivered as defined by
the customer. It’s like getting a green flag from the customer that the software is up to the expectation and
ready to be used.

LAB PROGRAMS SOFTWARE ENGINEERING

219
Rahul Publications

4. E-COMMERCE SYSTEMS

1. Phases in software development project, overview, need, coverage of topics.

Ans :
Online Shopping System helps in buying of goods, products and services online by choosing the

listed products from website (E-Commerce site). The proposed system helps in building a website to buy,
sell products or goods online using internet connection. Purchasing of goods online, user can choose
different products based on categories, online payments, delivery services and hence covering the
disadvantages of the existing system and making the buying easier and helping the vendors to reach wider
market.

The system helps in buying of goods, products and services online by choosing the listed products
from website (E-Commerce site).

In day to day life, we will need to buy lots of goods or products from a shop. It may be food items,
electronic items, house hold items etc. Now a days, it is really hard to get some time to go out and get
them by ourselves due to busy life style or lots of works. In order to solve this, B2C E-Commerce websites
have been started. Using these websites, we can buy goods or products online just by visiting the website
and ordering the item online by making payments online.

This existing system of buying goods has several disadvantages. It requires lots of time to travel to
the particular shop to buy the goods. Since everyone is leading busy life now a days, time means a lot to
everyone. Also there are expenses for travelling from house to shop. More over the shop from where we
would like to buy some thing may not be open 24×7×365. Hence we have to adjust our time with the
shopkeeper’s time or vendor’s time.

In order to overcome these, we have e-commerce solution, i.e one place where we can get all
required goods/products online. The proposed system helps in building a website to buy, sell products or
goods online using internet connection. Purchasing of goods online, user can choose different products
based on categories, online payments, delivery services and hence covering the disadvantages of the
existing system and making the buying easier and helping the vendors to reach wider market.

Advantages of the new System Proposed

 Choose products faster and easier at one place.

 Saves time of travelling to the vendor/seller’s place.

 Good/Trusted & Tension free delivery services. Products bought online will be delivered to the
footsteps of the buyer free of cost (may be varied based on the vendor/seller).

 Alerts and real time reporting through Emails (to both vendor as well as buyer).

 Reports generated can be saved for future references.

 Inventory reports for the vendor/seller on daily, monthly, yearly basis.

Future Scope of the Project

 Most generic consumer to consumer e-commerce website, which covers almost all possible categories,
with 2 level listing.

 Maximize benefits and minimize the disadvantages of a common e-commerce website.

 User friendly, Vendor friendly environment.

MCA II YEAR III SEMESTER

220
Rahul Publications

2. To assign the requirement engineering tasks

Ans :
Any shopping website that is concerned will be able to attract more customers only if the items

purchased will be delivered on time. The user interface should be simple and easy to understand even by
the common people. The back end should have a strong database.

Functional Requirement

This section provides requirement overview of the system. Various functional modules that can be
implemented by the system will be:-

Description

 Registration: If customer wants to buy the product then he/she must be registered, unregistered
user can’t go to the shopping cart.

 Login: Customer logins to the system by entering valid user id and password for the shopping.

 Changes to Cart: Changes to cart means the customer after login or registration can make order
or cancel order of the product from the shopping cart.

 Payment: For customer there are many type of secure billing will be prepaid as debit or credit card,
post paid as after shipping, check or bank draft. The security will provide by the third party like Pay-
Pal etc.

 Logout: After the payment or surf the product the customer will logged out.

 Report Generation: After all transaction the system can generate the portable document file
(.pdf) and then sent one copy to the customer’s Email-address and another one for the system data
base to calculate the monthly transaction .

Technical Issues

This system will work on client-server architecture. It will require an internet server and which will be
able to run PHP application. The system should support some commonly used browser such as IE etc.

Interface Requirement

Various interfaces for the product could be-

 Login Page

 Registration Form

There will be a screen displaying information about product that the shop having. If the customers
select the buy button then another screen of shopping cart will be opened. After all transaction the system
makes the selling report as portable document file (.pdf) and sent to the customer E-mail address.

The features that can be included in the online shopping platform application are as
follows:

 Customer database management system: The information of the customers doing the online
shopping must be maintained in a well organized way.

 Description: There should be proper description that must be given to the items that are kept for
sale.

 Price: The price of the item should also be mentioned along with the description to prevent any
further confusion.

LAB PROGRAMS SOFTWARE ENGINEERING

221
Rahul Publications

 Category: There must be various categories like clothes, accessories, electronic gadgets and so on
which will help in easy searching for the items by the customers.

 Delivery boy: There should be some delivery boys available to deliver the items that have been
purchased by the customers. Each area must be assigned different delivery boys

 On time delivery: The items purchased by the customers must be delivered on time without any
delay.

Module Description

The system consists of the following modules :

 Master Maintenance: This module consists of information about the products and services. This
includes two sub-modules, Product master and Price master.

 Product master includes the information about particular product, such as product number, item,
name, category, images of products, description, features, and constraints of products. All these will
be entered to the database through product master and hence made available in the website. In
Other words product master is the admin area for the vendors/sellers where they can put information
about their products which are to be displayed in the website.

 Price master deals with the cost of the product, discounts applicable for the particular product of
a vendor/seller.

 Transactions: In this module, management of shopping cart is done. This module will add the
bought item to the shopping cart, where all items that are to be purchased can be reviewed once
again after the item is bought from the cart. Payment will be done on Delivery of the items (Cash
On Delivery).

 Reporting: In this module all reports will be generated. Whenever a item is sold, or customer
orders a product, its vendor should be sent an alert via email immediately so that he can ship that
item soon. This module has 3 sub modules; Stock Reports, Order Reports and Delivery Reports.

 Stock Report will produce reports of the quantity of the products available and product status.

 Order Report will have the list of products ordered and the customer details who have bought
that product, which are undelivered.

 Delivery Reports will generate products list, which are delivered to customers.

 House Keeping: This module takes care of data which are older than a certain period. It will allow
the vendor to archive the reports generated or transaction and business history reported by Reporting
module.

3. To perform the system analysis: Requirement analysis, SRS.

Ans :
User Characteristics

There are 3 kinds of users for the proposed system.

 Administrators: Administrators are the ones who adds or administers the categories for the products,
and administers the Vendors.

 Vendors/Sellers : Vendors/Sellers will add their products to the database, which will be seen in
the website to the end users or say customers who can buy the products by selecting the one they
need. Vendors will have the special privileges than the end users, and have ability to manage the
products added by them.

MCA II YEAR III SEMESTER

222
Rahul Publications

 End Users/Customers: The end user will be the one who visits the website and buys products
online from the ones added by the Vendors/Sellers.

User Interfaces

Each part of the user interface intends to be as user friendly as possible. The fonts and buttons used
will be intended to be very fast and easy to load on web pages. The pages will be kept light in space so that
it won’t take a long time for the page to load.

Hardware Interfaces

 Processor: Pentium or Higher.

 RAM: 312MB or Higher.

Software Interfaces

 Operating System: Unix, Linux, Mac, Windows etc..

 Development tool: PHP, Hypertext Preprocessor, JavaScript, Ajax

 Data Base: MySQL

Communication Interface

The Website Order system shall send an e-mail confirmation to the customer that the items they
ordered will be delivered to the shipping address along with user identification.

Functional Requirements

 Master Maintenance: This module consists of information about the products and services. This
includes two sub-modules, Product master and Price master.

 Product Master: Product master includes the information about particular product, such as product
number, item, name, category, images of products, description, features, constraints of products,
which are to be displayed on the website.

 Price master: Price master deals with the cost of the product, discounts applicable for the particular
product of a vendor/seller.

 Transactions: All transactions undergoing in the website will be controlled and managed by this
module. Transactions in the sense, Shopping Cart management.

 Reporting: This module deals with report management of the entire system. This includes three
sub-modules Stock Report, Order Report and Delivery Report.

 Order Report: Order Report will have the list of products ordered and the customer details who
have bought that product, which are undelivered.

 Delivery Report: Delivery Reports will generate products list, which are delivered to customers.

 Housekeeping Module: This module deals with backing up of data for future references and
hence to reduce the database size.

4. To perform the function-oriented diagram: DFD and Structured chart.

Ans :
The context level data flow diagram (dfd) is describe the whole system. The (o) level dfd describe

the all user module who operate the system. Below data flow diagram of online shopping site shows the
two user can operate the system Admin and Member user.

LAB PROGRAMS SOFTWARE ENGINEERING

223
Rahul Publications

DFD level-0

ADMIN USER
Online
Shoes

Shopping

0.0 Request for Registration

Response

Request for Login

ResponseADMIN USER
Online
Shoes

Shopping

0.0 Request for Registration

Response

Request for Login

Response

1st Level Admin Side DFD

The Admin side DFD describe the functionality of Admin, Admin is a owner of the website. Admin
can first add category of item and then add items by category wise. and admin can manage order and
payment detail.

MCA II YEAR III SEMESTER

224
Rahul Publications

2nd Level – Admin side DFD (3.0)

2nd Level – Admin side DFD (4.0)

LAB PROGRAMS SOFTWARE ENGINEERING

225
Rahul Publications

2nd Level – Admin side DFD (5.0)

1st level – User side Data flow Diagram

The user is all people who operate or visit our website. User is a customer of a website. User can first
select product for buy, user must have to register in our system for purchase any item from our website.
after register he can login to site and buy item by making online payment through any bank debit card or
credit card.

MCA II YEAR III SEMESTER

226
Rahul Publications

2nd level – User side DFD (4.0)

2nd level – User side DFD (5.0)

LAB PROGRAMS SOFTWARE ENGINEERING

227
Rahul Publications

5. To perform the user’s view analysis: Use case diagram.

Ans :
Use Case Diagram

Web Customer actor uses some web site to make purchases online. Top level use cases are View
Items, Make Purchase and Client Register. View Items use case could be used by customer as top level use
case if customer only wants to find and see some products. This use case could also be used as a part of
Make Purchase use case. Client Register use case allows customer to register on the web site, for example
to get some coupons or be invited to private sales. Note, that Checkout use case is included use case not
available by itself - checkout is part of making purchase. Except for the Web Customer actor there are
several other actors which will be described below with detailed use cases.

View Items use case is extended by several optional use cases - customer may search for items,
browse catalog, view items recommended for him/her, add items to shopping cart or wish list. All these
use cases are extending use cases because they provide some optional functions allowing customer to find
item.

Customer Authentication use case is included in View Recommended Items and Add to Wish List
because both require the customer to be authenticated. At the same time, item could be added to the
shopping cart without user authentication.

MCA II YEAR III SEMESTER

228
Rahul Publications

Checkout use case includes several required uses cases. Web customer should be authenticated. It
could be done through user login page, user authentication cookie (“Remember me”) or Single Sign-On
(SSO). Web site authentication service is used in all these use cases, while SSO also requires participation
of external identity provider.

LAB PROGRAMS SOFTWARE ENGINEERING

229
Rahul Publications

6. To draw the structural view diagram: Class diagram, object diagram

Ans :
Class Diagram

Each customer has unique id and is linked to exactly one account. Account owns shopping cart and
orders. Customer could register as a web user to be able to buy items online. Customer is not required to
be a web user because purchases could also be made by phone or by ordering from catalogues. Web user
has login name which also serves as unique id. Web user could be in several states - new, active, temporary
blocked, or banned, and be linked to a shopping cart. Shopping cart belongs to account.

Account owns customer orders. Customer may have no orders. Customer orders are sorted and
unique. Each order could refer to several payments, possibly none. Every payment has unique id and is
related to exactly one account.

Each order has current order status. Both order and shopping cart have line items linked to a
specific product. Each line item is related to exactly one product. A product could be associated to many
line items or no item at all.

MCA II YEAR III SEMESTER

230
Rahul Publications

Object Diagram

This is an example of object diagram which shows some runtime objects related to web user login
process. Class instance loginCtrl of the LoginController has several slots with structural features of Integer
and String types and corresponding value specifications.

The instance of LoginController is also associated with instances of UserManager, CookieManager,
and Logger. LoginController, UserManager, and HibernateUserDAO (Data Access Object) share a single
instance of Logger.

User Manager has private attribute defaultURIs which is ordered collection (array) of 5 unique
Strings. Instance of the CookieManager has two public structural features with specified values.

7. To draw the behavioural view diagram: Sequence diagram, Collaboration diagram.

Ans :
Draw a sequence diagram for online shopping. If the customer is using the website for the first time

to order he/she needs to register. After login a customer can select the items and view their details. The
items can be added to the shopping cart one by one. The order will be placed at the end. Once the
customer wishes to place the order the system will be requesting to enter the credit card details to finalize
the payment. The card details are verified from the bank. On receiving the verification of the payment the
order of the customer is acknowledged and shipped.

LAB PROGRAMS SOFTWARE ENGINEERING

231
Rahul Publications

MCA II YEAR III SEMESTER

232
Rahul Publications

Collaboration diagrams

They are also interaction diagrams. They convey the same information as sequence diagrams, but
they focus on object roles instead of the times that messages are sent. In a sequence diagram, object roles
are the vertices and messages are the connecting links.

 Collaboration diagrams show (used to model) how objects interact and their roles.

 They are very similar to sequence diagrams. Actually they are considered as a cross between class
and sequence diagram.

 Sequence Diagrams are arranged according to Time.

 Collaboration Diagrams represent the structural organization of object.

 Forms a context for interactions.

 May realize use cases.

 May be associated with operations.

 May describe the static structure of classes.

 Collaboration diagrams contain the following:

 Class roles (subsystems/objects/classes/actors/ external systems) as before.

 Association roles (pathways or links over which messages flow).

 Message flows (messages sent between class roles).

LAB PROGRAMS SOFTWARE ENGINEERING

233
Rahul Publications

MCA II YEAR III SEMESTER

234
Rahul Publications

8. To draw the behavioural view diagram: State-chart diagram, Activity diagram.

Ans :
Activity Diagram

The activity diagram used to describe flow of activity through a series of actions. Activity diagram is
a important diagram to describe the system. The activity described as a action or operation of the system.

Activity Diagram for User Side

In User side activity diagram describe all the functionality or operation of users can do on our
website.

LAB PROGRAMS SOFTWARE ENGINEERING

235
Rahul Publications

Activity diagram for Admin side

MCA II YEAR III SEMESTER

236
Rahul Publications

LAB PROGRAMS SOFTWARE ENGINEERING

237
Rahul Publications

9. To draw the implementation view diagram: Component and Deployment diagrams.

Ans :
Component Diagram

Component diagrams are different in terms of nature and behavior. Component diagrams are
used to model physical aspects of a system. Physical aspects are the elements like executables, libraries,
files, documents etc that resides in a node. So component diagrams are used to visualize the organization
and relationships among components in a system. These diagrams are also used to make executable
systems.

Description of the component diagram for online shopping system is as follows :

 Data base server contains all the database tables. It contains Administrator, Registered Customer,
Seller, Item and Payment.

 Application server contains Access classes package and Business classes package and view layer
classes, i.e. view classes package.

 Clients are the nodes having no processing capabilities. Only browser is there on this node to send
a request.

MCA II YEAR III SEMESTER

238
Rahul Publications

Deployment Diagram

Deployment diagrams are used to visualize the topology of the physical components of a system
where the software components are deployed.

So deployment diagrams are used to describe the static deployment view of a system.

Deployment diagrams consist of nodes and their relationships.

10. To perform various testing using the testing tool unit testing, integration testing

Ans :
eCommerce testing is defined as testing of an eCommerce (online shopping) application. It helps in

the prevention of errors and adds value to the product by ensuring conformity to client requirements.

The objective of testing is to ensure

 Software reliability

 Software quality

 System Assurance

 Optimum performance and capacity utilization

Setting up an E-commerce system is a complex process and subject to many market-specific variables.
To maintain the integrity of the E Commerce system, testing becomes compulsory

Types of Testing for E-commerce System

A common type of testing included into e commerce system is

LAB PROGRAMS SOFTWARE ENGINEERING

239
Rahul Publications

S.No. Type of Testing Testing Process

1 Browser compatibility Lack of support for early browsers
Browser specific extensions
Browser testing should cover the main platforms

2 Page display Incorrect display of pages
Runtime error messages
Poor page download time
Dead hyperlink, plugin dependency, font sizing, etc.

3 Session Management Session Expiration
Session storage

4 Usability Non-intuitive design
Poor site navigation
Catalog navigation
Lack of help-support

5 Content Analysis Misleading, offensive and litigious content
Royalty free images and copyright infringement
Personalization functionality
Availability 24/7

6 Availability Denial of service attacks
Unacceptable levels of unavailability

7 Back-up and Recovery Failure or fall over recovery
Backup failure
Fault tolerance

8 Transactions Transaction Integrity
Throughput
Auditing

9 Shopping order processing Shopping cart functionality
and purchasing Order processing

Payment processing
Order tracking

10 Internationalization Language support
Language display
Cultural sensitivity
Regional Accounting

11 Operational business procedures How well e-procedure copes
Observe for bottlenecks

12 System Integration Data Interface format
Interface frequency and activation
Updates
Interface volume capacity
Integrated performance

13 Performance Performance bottlenecks
Load handling
Scalability analysis

14 Login and Security Login capability
Penetration and access control
Insecure information transmission
Web attacks
Computer viruses
Digital signatures

MCA II YEAR III SEMESTER

240
Rahul Publications

The following are a few things to test

 Is it going to auto scroll?

 If yes, at what interval will the image be refreshed?

 When the user hovers over it, is it still going to scroll to the next one?

 Can it be hovered on?

 Can it be clicked on?

 If yes, is it taking you to the right page and right deal?

 Is it loading along with the rest of the page or loads last in comparison to the other elements on the
page?

 Can the rest of the content be viewed?

 Does it render the same way in different browsers and different screen resolutions?

Product Details Page

Once a user finds a product either through search or by browsing or by clicking on it from the
homepage, the user will be taken to the product information page.

Check

 Image or images of the product

 Price of the product

 Product specifications

 Reviews

 Check out options

 Delivery options

 Shipping information

 In-stock/Out of stock

 Multiple color or variations options

 Breadcrumb navigation for the categories (highlighted in Red below). If navigation such as that is
displayed, make sure every element of it is functional.

LAB PROGRAMS SOFTWARE ENGINEERING

241
Rahul Publications

5. BANKING SYSTEM

1. Phases in software development project, overview, need, coverage of topics

Ans :
A computer based management system is designed to handle all the primary information required

to calculate monthly statements of customer account which include monthly statement of any month.
Separate database is maintained to handle all the details required for the correct statement calculation
and generation.

This project intends to introduce more user friendliness in the various activities such as record
updation, maintenance, and searching. The searching of record has been made quite simple as all the
details of the customer can be obtained by simply keying in the identification or account number of that
customer. Similarly, record maintenance and updation can also be accomplished by using the account
number with all the details being automatically generated. These details are also being promptly
automatically updated in the master file thus keeping the record absolutely up-to-date.

The main objective of our project is providing the different typed of customers facility, the main
objective of this system is to find out the actual customer service. Etc.

 It should fulfill almost all the process requirements of any Bank.

 It should increase the productivity of bank by utilizing the working hours more and more, with
minimum manpower.

This project includes the entireupgraded feature required for the computerization banking system.
This system is very easy to use, so that any user can use without getting pre-knowledge about this. Its very
much user friendly and meet almost all daily working process requirements. This system is completely GUI
based and can be use by mouse and as well as keyboard. This system is melded in such a way that has got
all features to upgrade without making much change in existing components.

This banking process consists of five divisions. There are customer details, creating a new account,
withdrawing money, loan details and depositing money. The customer details consist of customer name,
address, phone number, account number.

To create a new account verifies the rules. Enter the account andthen get an account number from
a database. To withdraw money checks the balance in our account and then get the money. The loan
details consist of loan types like home loans, car loans, education loans etc.To deposit money enter
the account number and give the account to be deposited.

Some customers avoid online banking as they perceive it as being too vulnerable to fraud. The
security measures employed by most banks are never 100% safe, but in practice the number of fraud
victims due to online banking is very small.

The Existing System

 The system will check the user’s existence in the database and provide the set of services with
respect to the role of the user. The application is based on three-tier architecture. The cipher key obtained
will help to find the fraud application. The business logic helps in authenticating the application, authorizing
the users and providing services. The technologies are chosen by keeping the compatibility and performance
as the constraints for the application.

MCA II YEAR III SEMESTER

242
Rahul Publications

Further Drawbacks of the Existing System

The following are the drawbacks of the existing manual System.

 Time Delay: In the existing system, information related to all transactions is stored in different
registers. Since all the transactions are stored in different registers it takes lot of time to prepare
different reports.

 Redundancy: As the information passes through different registers, each register is consolidated
and sent to next register. So the same information is being tabulated at each register, which involves
lot of complication and duplication in work, thus it causes redundancy.

 Accuracy: Since the same data is compiled at different sections, the possibility of tabulating data
wrongly increases. Also if the data is more, validations become difficult. This may result in loss of
accuracy of data.

 Information Retrieval: As the information is stored in the particular Format, it can only be retrieved
in the same format. But if it is to be retrieve in different format, it is not possible.

 Storage Media: In the existing system, data transaction being stored on too long registers it is very
difficult to refer after some time.

 Reports: At the various reports are tabulated manually. They are not such Attractive and require
more time. They do not provide adequate help in maintaining the accounts.

 Enquiry: Enquiry for different level of information is much more difficult. On

 Line enquiry of data is not possible.

Proposed System

System analysis will be performed to determine if it is feasible to design information based on
policies and plans of the organization and on user requirements and to eliminate the weaknesses of the
present system.

General requirements are :

1. The new system should be cost effective.

2. To augment management, improve productivity and services.

3. To enhance User/System interface.

4. To improve information qualify and usability.

5. To upgrade system’s reliability, availability, flexibility and growth potential.

Developers Responsibilities Overview

The developer is responsible for :

1. Developing the system, which meets the SRS and solving all the requirements of the system?

2. Demonstrating the system and installing the system at client’s location after the acceptance testing is
successful.

3. Submitting the required user manual describing the system interfaces to work on it and also the
documents of the system.

4. Conducting any user training that might be needed for using the system.

5. Maintaining the system for a period of one year after installation

LAB PROGRAMS SOFTWARE ENGINEERING

243
Rahul Publications

2. To assign the requirement engineering tasks

Ans :
Functional Requirements

 Inputs: The major inputs for “Online Banking”can be categorized module wise. Basically all the
information is managed by the software and in order to access the information one has to produce
one’s identity by entering the user-id and password. Every user has theirown domain of access
beyond which the access is dynamically refrained rather denied.

 Output: The major outputs of the system are tables and reports. Tables are created dynamically to
meet the requirements on demand. Reports, as it is obvious, carry the gist of the whole information
that flows across the institution.

This application must be able to produce output at different modules for different inputs.

Performance Requirements

Performance is measured in terms of reports generated weekly and monthly.

Software and Hardware Specifications

Hardware

Processor : Intel Pentium III or Above

Ram : 256 MB or more

Cache : 512 KB

Hard disk : 16 GB hard disk recommended for primary partition.

Software

Operating system : Windows XP or later

Front End Software : ASP.NET (C# .NET)

Back End Software : SQL Server 2005

Feasibility Study

Techinical Feasibility

Evaluating the technical feasibility is the trickiest part of a feasibility study. This is because, at this
point in time, not too many-detailed design of the system, making it difficult to access issues like performance,
costs on (on account of the kind of technology to be deployed) etc.A number of issues have to be
considered while doing a technical analysis.

Understand the different technologies involved in the proposed system :

 Before commencing the project, we have to be very clear about what are the

 Technologies that are to be required for the development of the new system.

Find out whether the organization currently possesses the required technologies :

 Is the required technology available with the organization?

 If so is the capacity sufficient?

MCA II YEAR III SEMESTER

244
Rahul Publications

Operational Feasibility

Proposed projects are beneficial only if they can be turned into information systems that will meet
the organizations operating requirements. Simply stated, this test of feasibility asks if the system will work
when it is developed and installed. Are there major barriers to Implementation? Here are questions that
will help test the operational feasibility of a project :

 Is there sufficient support for the project from management from users?

 If the current system is well liked and used to the extent that persons will not be able to see reasons
for change, there may be resistance.

 Are the current business methods acceptable to the user? If they are not,

 Users may welcome a change that will bring about a more operational and useful systems.

 Have the user been involved in the planning and development of the project?

 Early involvement reduces the chances of resistance to the system and in General and increases the
likelihood of successful project.

Economic Feasibility

Economic feasibility attempts 2 weigh the costs of developing and implementing a new system,
against the benefits that would accrue from having the new system in place. This feasibility study gives the
top management the economic justification for the new system.

A simple economic analysis which gives the actual comparison of costs and benefits are much more
meaningful in this case. In addition, this proves to be a useful point of reference to compare actual costs
as the project progresses. There could be various types of intangible benefits on account of automation.
These could include increased customer satisfaction, improvement in product quality better decision making
timeliness of information, expediting activities, improved accuracy of operations, better documentation
and record keeping, faster retrieval of information, better employee morale.

3. To perform the system analysis: Requirement analysis, SRS

Ans :
Requirement Specification

Product Perspective

The Online Banking System is a package to be used by Bank customer to improve the efficiency of
customer, Bank employees and Bank. The Online Banking System to be developed benefits greatly the
members and the customer of Bank of baroda. The system provides money transfer catalog and Account
details to members and helps them on the Personal Account management. The real time system can keep
the account record catalog updated all the time so that the members get the updated information all the
time.

The complete overview of the system is as shown in the overview diagram below:

The product to be developed has interactions with the users: bank Members who are the customer and
worker in the bank.

The product has to interact with other systems like: Internet, Billing System and the Bank database
System.

LAB PROGRAMS SOFTWARE ENGINEERING

245
Rahul Publications

Product Functions

The Online banking System provides online real time information about the funds available in the
bank and the user information. The Product functions are more or less the same as described in the
product perspective. The functions of the system include the system providing different type of services
based on the type of users.

 The member should be provided with the updated information about the Accounts.

 Provisions for the members to borrow the books they want, if all the other required rules hold
good.

 The member is given a provision to check his account information and change the account information
any time in the given valid period.

 The members are provided with the books available roster and allowed to choose the books, which
they want to use in the coming up days.

 The Banker can get the information about the members who have performed fund transfer.

User characteristics

The users of the system are bank members, banker and the administrators who maintain the system.
The members and the banker are assumed to have basic knowledge of the computers and Internet

MCA II YEAR III SEMESTER

246
Rahul Publications

browsing. The administrators of the system to have more knowledge of the internals of the system and is
able to rectify the small problems that may arise due to disk crashes, power failures and other catastrophes
to maintain the system. The proper user interface, users manual, online help and the guide to install and
maintain the system must be sufficient to educate the users on how to use the system without any problems.

Constraints

 The infor mation of all the users must be stored in a database that is accessible by the Online
banking System.

 The banking information system must be compatible with the Internet applications.

 The Online banking System is connected to the server and is running all 24 hours a day.

 The users access the Online banking System from any computer that has Internet browsing capabilities
and an Internet connection.

 The users must have their correct usernames and passwords to enter into the Online banking
System.

Assumptions and dependencies

 The users have sufficient knowledge of computers.

 The computer should have Internet connection and Internet server capabilities.

 The users know the English language, as the user interface will be provided in English

Usability

 The system shall allow the users to access the system from the Internet using HTML or it’s derivative
technologies. The system uses a web browser as an interface.

 Since all users are familiar with the general usage of browsers, no specific training is required.

 The system is user friendly and self-explanatory.

Reliability

The system has to be very reliable due to the importance of data and the damages incorrect or
incomplete data can do.

Availability

The system is available 100% for the user and is used 24 hrs a day and 365 days a year. The system
shall be operational 24 hours a day and 7 days a week.

 Mean Time Between Failures (MTBF) - The system will be developed in such a way that it may
fail once in a year.

 Mean Time to Repair (MTTR) - Even if the system fails, the system will be recovered back up
within an hour or less.

Accuracy

The accuracy of the system is limited by the accuracy of the speed at which the employees of the
bank and users of the bank use the system.

 Maximum Bugs or Defect Rate - Not specified.

 Access Reliability - The system shall provide 100% access reliability.

LAB PROGRAMS SOFTWARE ENGINEERING

247
Rahul Publications

 Information Security Requirement - The system shall support the UHCL information security
requirements and use the same standard as the UHCL information security requirements.

 Billing System Data Compatibility - The member balance amount that will be calculated and
sent to the billing system shall be compatible with the data types and design constraints of the billing
system.

Maintenance

The maintenance of the system shall be done as per the maintenance contract.

 Standards - The coding standards and naming conventions will be as per the American standards.

4. To perform the function-oriented diagram: DFD and Structured chart.

Ans :

MCA II YEAR III SEMESTER

248
Rahul Publications

Architecture of On-Line Banking System

5. To perform the user’s view analysis: Use case diagram

Ans :

LAB PROGRAMS SOFTWARE ENGINEERING

249
Rahul Publications

MCA II YEAR III SEMESTER

250
Rahul Publications

6. To draw the structural view diagram: Class diagram, object diagram

Ans :
Static models of a system describe the structural relationships that hold between the Pieces of data

manipulated by the system. They describe how data is parcelled out into Objects, how those objects are
categorized, and what relationships can hold between them. They do not describe the behavior of the
system, nor how the data in a system evolves over time. These aspects are described by various types of
dynamic model. The most important kinds of static model are object diagrams and class diagrams. An
object diagram provides a ‘snapshot’ of a system, showing the objects that actually exist at a given moment
and the links between them. Many different object diagrams can be drawn for a system, each representing
the state of the system at a given instant. An object diagram shows the data that is held by a system at a
given moment. This data may be represented as individual objects, as attribute values stored inside these
objects, or as link between objects

LAB PROGRAMS SOFTWARE ENGINEERING

251
Rahul Publications

7. To draw the behavioural view diagram: Sequence diagram, Collaboration diagram

Ans :

Sequence Diagram

Because of the speed, flexibility, and efficiency that it offers, the Internet has become the means for
conducting growing numbers of transactions between suppliers and large international corporations. In
this way, the Internet has opened new markets to the world and has accelerated the diffusion of knowledge.
The meaning of Internet markets or online business has been widely used in these days. The success of the
business depends on its flexibility, availability and security. Since that the web-based systems should have
a special way to design the system and implement it. Now a days, the Internet Banking System widely
used and the banks looking to provide the best quality system with highly available, fast response, secure
and safe to use.

MCA II YEAR III SEMESTER

252
Rahul Publications

Collaboration Diagram

LAB PROGRAMS SOFTWARE ENGINEERING

253
Rahul Publications

8. To draw the behavioural view diagram: State-chart diagram, Activity diagram

Ans :

State-Chart Diagram

MCA II YEAR III SEMESTER

254
Rahul Publications

Activity Diagram

9. To draw the implementation view diagram: Component Diagram, Deployment Diagram

Ans :
Component Diagram

A component diagram shows the internal parts, connectors, and ports that implement a component.
When the component is instantiated, copies of its internal parts are also instantiated. The UML component

LAB PROGRAMS SOFTWARE ENGINEERING

255
Rahul Publications

diagram shows how a software system will be composed of a set of deployable components—dynamic-
link library (DLL) files, executable files, or web services—that interact through well-defined interfaces and
which have their internal details hidden.

The component diagram contains the following elements:

 Interface - specifies a contract consisting of a set of coherent public attributes and operations for a
class. Any instance of a class that realizes the interface must fulfill that contract. Since interfaces are
declarations, they are not instantiable. Instead, an interface specification is implemented by an
instance of a class. Each class may implement more than one interface and each interface may be
implemented by a number of different classes.

 Component—represents a modular part of a system that encapsulates its contents, it defines its
behavior in terms of provided and required interfaces. As such, a component serves as a type
whose conformance is defined by these provided and required interfaces (encompassing both their
static as well as dynamic semantics). One component may therefore be substituted by another only
if the two are type conformant.

 Port - an explicit window into an encapsulated component. All of the interactions into and out of
such component pass through ports. Each port provides or requires one or more specific interfaces.
There can be multiple ports providing or requiring the same interface. It allows greater control over
implementation and interaction with other components. Considers component with two named
ports that each requires the same interface. The first port Cash withdrawal is used when bank’s
client takes out cash from automated teller machine (ATM) using his card. The other port
named Payment in shop is used when making payments with card at shop.

MCA II YEAR III SEMESTER

256
Rahul Publications

 Internal structure - used to specify structure of a complex component, i.e., typically components
are composed of smaller components thus building up the system.

Deployment Diagram

LAB PROGRAMS SOFTWARE ENGINEERING

257
Rahul Publications

10. To perform various testing using the testing tool unit testing, integration testing

Ans :
The implementation phase of software development is concerned with translating design specification

into source code. The preliminary goal of implementation is to write source code and internal documentation
so that conformance of the code to its specifications can be easily verified, and so that debugging, testing
and modifications are eased. This goal can be achieved by making the source code as clear and
straightforword as possible. Simplicity, clarity and elegance are the hallmark of good programs, obscurity,
cleverness, and complexity are indications of inadequate design and misdirected thinking.

Source code clarity is enhanced by structured coding techniques, by good coding style, by,
appropriate supporting documents, by good internal comments, and by feature provided in modern
programming languages.

The implementation team should be provided with a well-defined set of software requirement, an
architectural design specification, and a detailed design description. Each team member must understand
the objectives of implementation.

Terms in Testing Fundamental

1. Error - The term error is used in two ways. It refers to the difference between the actual output of
software and the correct output, in this interpretation, error is essential a measure of the difference
between actual and ideal. Error is also toused to refer to human action that result in software
containing a defect or fault.

2. Fault - Fault is a condition that causes to fail in performing its required function. A fault is a basic
reason for software malfunction and is synonymous with the commonly used term Bug.

3. Failure - Failure is the inability of a system or component to perform a required function according
to its specifications. A software failure occurs if the behavior of the software is the different from the
specified behavior. Failure may be caused due to functional or performance reasons.

(a) Unit Testing - The term unit testing comprises the sets of tests performed by an individual
programmer prior to integration of the unit into a larger system.

A program unit is usually small enough that the programmer who developed it can test it in
great detail, and certainly in greater detail than will be possible when the unit is integrated into
an evolving software product. In the unit testing the programs are tested separately, independent
of each other. Since the check is done at the program level, it is also called program teasing.

(b) Module Testing - A module and encapsulates related component. So can be tested without
other system module.

(c) Subsystem Testing - Subsystem testing may be independently design and implemented
common problems are sub-system interface mistake in this checking we concentrate on it.

There are four categories of tests that a programmer will typically perform on a program unit.

1. Functional test

2. Performance test

3. Stress test

4. Structure test

MCA II YEAR III SEMESTER

258
Rahul Publications

Functional Test

Functional test cases involve exercising the code with Nominal input values for which expected
results are known; as well as boundary values (minimum values, maximum values and values on and just
outside the functional boundaries) and special values.

Performance Test

Performance testing determines the amount of execution time spent in various parts of the unit,
program throughput, response time, and device utilization by the program unit. A certain amount of
avoid expending too much effort on fine-tuning of a program unit that contributes little to the over all
performance of the entire system. Performance testing is most productive at the subsystem and system
levels.

Stress Test

Stress test are those designed to intentionally break the unit. A great deal can be learned about the
strengths and limitations of a program by examining the manner in which a program unit breaks.

Structure Test

Structure tests are concerned with exercising the internal logic of a program and traversing particular
execution paths. Some authors refer collectively to functional performance and stress testing as “black
box” testing. While structure testing is referred to as “white box” or “glass box” testing. The major activities
in structural testing are deciding which path to exercise, deriving test date to exercise those paths, determining
the test coverage criterion to be used, executing the test, and measuring the test coverage achieved when
the test cases are exercised.

Challenges in Testing Internet Banking Applications

Different internet connections and browsers - Customers would login from different system and
different browsers, like Mozilla, IE, Google chrome, Opera and the like. Also, user would be using different
operating systems. Internet connections is yet another parameter. Software testing need to consider all
these factors – browsers, Operating systems, internet connections and thorough testing need to be done.
Page performance and all functionalities need to be tested thoroughly to ensure that customer can continue
to operate the system smoothly.

Time to market - banks are constantly in a rush to update new features to entice customers. This
might result in less time to test the application. This may seriously affect the quality of the internet banking
application.

Different Types Of Testing In Internet Banking Applications

 Usability testing – Internet banking application would be used by many users- some would be
technically sound and others may lack technical skills. Application should be simple so that even
people who are not so much into technical side should be able to handle the application well.
Website need to be tested for simple and efficient design so that any user would be able to navigate
through internet banking application without assistance.

LAB PROGRAMS SOFTWARE ENGINEERING

259
Rahul Publications

 Security testing – Banking applications are the key targets of hackers and groups that commit
fraudulent activities. Vulnerability scanning and penetration testing can reveal proliferation of defects
and further system susceptibilities.

 Functional testing – functional testing encompasses checking for all the requirements and
specifications

 Performance testing – Some days may have spike in banking activities – especially in festivals or
period during which there is an offer. Performance failures can affect the reputation of the financial
institution badly.

 Database testing – This needs to be done to make sure that ensure that data integrity, data
migration, validation and rules testing is fine.

Testing Of Online Banking Application :

1. In each release, business critical scenarios need to be tested in multiple cycles to make sure that
functionalities are working as per the expectation.

2. Browser testing need to be done – for example Google chrome, Mozilla Firefox, Opera, IE and the
like. Version testing also need to be done. Testing also need to be done in android and iOS devices
to make sure that user interface is stable across all platforms.

3. Test cases need to be reviewed and modified after each release according to the new functionalities
and changes.

4. If any defect is identified in production, that scenario need to be incorporated into the test scenario
to make sure that issue will not occur in future releases.

5. Shakedown testing need to be performed after every build to make sure that environment is stable.

6. Latest versions of supporting tools and internal banking tools need to be tested that online banking
application works fine across all platforms.

7. Once a defect is raised, it need to be captured and logs need to be attached. This would make it
easier for the development team to analyze the root cause.

8. Major functionalities need to be tested after signoff till release to make sure that every functionality
is working as per the expectation.

9. Clarification documents and emails need to be saved to make it useful for future releases.

10. Previous release learning or functionality need to be documented in a shared document.

11. Different types of test data needs to be saved in a shared document.

12. It would also be good if you have test data set up process in a shared location so that people in team
can refer to and understand

MCA II YEAR III SEMESTER

260
Rahul Publications

Sample Test Cases For Net Banking Application :

1. Verify that user is able to login with valid username and password

2. Verify that user is able to perform basic financial transactions

3. Verify that user is able to add a beneficiary with valid name and account details

4. Verify that user is able to make financial transactions to added beneficiary

5. Verify that user is able to add decimal number into amount (limited by 2 numbers)

6. Verify that user is not able to add negative number into amount field.

7. Verify that user is allowed to transfer money only if there is proper account balance.

8. Verify that there is a confirmation check for financial transactions

9. Verify that user is given an acknowledgment receipt upon successful financial transaction.

10. Verify that customer is able to send money to multiple people

11. Verify that user is allowed to change password

12. Verify that account details reflect financial transactions also.

13. Verify that user with invalid password is not allowed to login.

14. Verify that after repeated attempts to login with incorrect password(as per the limits), user should
be blocked.

15. Verify that time-out feature is implemented

16. Verify that if either of the username or password is blank, user is not allowed to login. User should
be given an alert also.

Debugging

Defect testing is intended to find areas where the program does not confirm to its specifications.

Tests are designed to reveal the presence of defect in the system.When defect have been found in the
program. There must be discovered and removed. This is called “Debugging”.

SOLVED MODEL PAPERS SOFTWARE ENGINEERING

261
Rahul Publications

FACULTY OF INFORMATICS
M.C.A II Year III - Semester Examination

MODEL PAPER - I

SOFTWARE ENGINEERING

Time : 3 Hours] [Max. Marks : 70

Answer all the question according to the internal choice (5 × 14 = 70)

ANSWERS

1. (a) Define Software. (Unit-I, Q.No.1)

(b) Define Schdule. (Unit-I, Q.No.2)

OR

2. Describe Waterfall Model. (Unit-I, Q.No.9)

3. (a) Explain about Requirement Process. (Unit-II, Q.No.4)

(b) Explain the concept of Software Architecture Document (SAD). (Unit-II, Q.No.19)

OR

4. (a) Describe Various advantages of an SRS. What are various types of errors

that occur in SRS? (Unit-II, Q.No.7)

(b) Explain different approaches of Analysis in Software Engineering. (Unit-II, Q.No.13)

5. Explain about Effort and Schedule estimates of Software Projects. (Unit-III, Q.No.2)

OR

6. What are different methods used for monitoring a project? (Unit-III, Q.No.6)

7. What are the metrics of Coding? (Unit-IV, Q.No.6)

OR

8. Explain Black Box Testing in detail. (Unit-IV, Q.No.11)

9. What is the Capability Maturity Model? (Unit-V, Q.No.15)

OR

10. Define Reverse Engineering. State the uses of Reengineering. (Unit-V, Q.No.7)

MCA II YEAR III SEMESTER

262
Rahul Publications

FACULTY OF INFORMATICS
M.C.A II Year III - Semester Examination

MODEL PAPER - II

SOFTWARE ENGINEERING

Time : 3 Hours] [Max. Marks : 70

Answer all the question according to the internal choice (5 × 14 = 70)

ANSWERS

1. What are various Software Engineering Problems? Explain. (Unit-I, Q.No.3)

OR

2. Explain in detail about Rational Unified Process Model and Time Box Model. (Unit-I, Q.No.11)

3. (a) What are Software Requirements Specification and Describe various

characteristics of software requirements specification? (Unit-II, Q.No.1)

(b) Explain the SRS with use case Modeling. (Unit-II, Q.No.10)

OR

4. (a) Explain the role of software architecture. (Unit-II, Q.No.15)

(b) Explain the process of developing use cases. (Unit-II, Q.No.12)

5. Explain the concept of detailed scheduling. (Unit-III, Q.No.7)

OR

6. What are the different metrics used in software engineering in various stages? (Unit-III, Q.No.13)

7. Describe white box testing in software engineering. (Unit-IV, Q.No.10)

OR

8. Explain the methodology of Coding in Software Engineering. What are its

Features? (Unit-IV, Q.No.2)

9. Explain the concept of Software Re-engineering. (Unit-V, Q.No.6)

OR

10. Describe in detail the frame work of PCCM. (Unit-V, Q.No.16)

SOLVED MODEL PAPERS SOFTWARE ENGINEERING

263
Rahul Publications

FACULTY OF INFORMATICS
M.C.A II Year III - Semester Examination

MODEL PAPER - III

SOFTWARE ENGINEERING

Time : 3 Hours] [Max. Marks : 70

Answer all the question according to the internal choice (5 × 14 = 70)

ANSWERS

1. (a) Explain the Paradigm of Software Engineering and needs. (Unit-I, Q.No.5)

(b) What are the differences between computer science and software

engineering? (Unit-I, Q.No.15)

OR

2. Explain Prototype Model and Iterative Development Model. (Unit-I, Q.No.10)

3. (a) What is Software Requirements Specification? Explain Structure and

Characteristics of SRS. (Unit-II, Q.No.6)

(b) How would you build software architecture document? (Unit-II, Q.No.18)

OR

4. (a) List & Explain various components of an SRS. (Unit-II, Q.No.8)

(b) What are the different views of Software Architecture? (Unit-II, Q.No.16)

5. Explain briefly about software design and different types of approaches. (Unit-III, Q.No.8)

OR

6. What are metrics, Measurements & Models of Project Management & Software

Management? (Unit-III, Q.No.12)

7. Describe the Coding Guidelines in Software Engineering. (Unit-IV, Q.No.3)

OR

8. What are Software Testing Metric? (Unit-IV, Q.No.13)

9. What is Software Maintenance? Describe the types of Software Maintanance. (Unit-V, Q.No.1)

OR

10. What is Process Change Management? Explain in Detail. (Unit-V, Q.No.14)

M.C.A II YEAR III SEMESTER

264
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. (2 years Course) III - Semester (CBCS) (Main) Examination

April/May - 2023

SOFTWARE ENGINEERING
Time : 3 Hours Max. Marks : 70

Note : I. Answer one question from each unit. All questions carry equal marks.
II. Missing data, if any, may be suitably assumed.

Answers
Unit-I

1. (a) Define software engineering. What are the major objectives of software engineering?
(Unit-I, Q.No. 4)

Ans :
The main goal of Software Engineering is to develop software applications for improving quality, budget,

and time efficiency. Software Engineering ensures that the software that has to be built should be consistent,
correct, also on budget, on time, and within the required requirements.

(b) Explain cost schedule and quality of software. (Unit-I, Q.No. 3)

(OR)

2. (a) Write about waterfall model and its disadvantages. (Unit-I, Q.No. 9)

(b) Explain about project management process. (Unit-I, Q.No. 14)

Unit-II

3. (a) Give a use case scenario with an example. (Unit-II, Q.No. 12)

(b) Explain the general structure of an SRS. (Unit-II, Q.No. 1)

(OR)

4. (a) Write short note on shared data styles.

Ans :
In the shared-data style, the pattern of interaction is dominated by the exchange of persistent data. The data

has multiple accessors and at least one shared-data store for retaining persistent data.

Database systems and knowledge-based systems are examples of this style. One feature of a shared-data
style is the method by which the data consumer discovers that data of interest is available. If the shared-data store
informs data consumers of the arrival of interesting data, the shared-data style is called a blackboard. If the
consumer has responsibility for retrieving data, the shared-data style is called a repository. In modern systems, these
distinctions have been blurred, as many database management systems that were originally repositories now
provide a triggering mechanism that turns them into blackboards.

The shared-data style, summarized in Table is organized around one or more shared-data stores, which store
data that other components may read and write. Component types include shared-data stores and data accessors.
The general computational model associated with shared-data systems is that data accessors perform calculations
that require data from the data store and writing results to one or more data stores. That data can be viewed and
acted on by other data accessors. In a pure shared-data system, data accessors interact only through the shared-
data store(s). However, many shared-data systems also allow direct interactions between nonstore elements. The
data-store components of a shared-data system provide shared access to data, support data persistence, manage
concurrent access to data, provide fault tolerance, support access control, and handle the distribution and caching
of data values.

SOLVED PREVIOUS QUESTION PAPERS SOFTWARE ENGINEERING

265
Rahul Publications

Summary of the shared-data style

Elements • Component types: shared-data repositories and data accessors.

• Connector types: data reading and writing.

Relations Attachment relation determines which data accessors are connected to which

data repositories.

Computational Communication between data accessors is mediated by a shared-data store.

model Control may be initiated by the data accessors or the data store.

Properties Same as defined by the C&C viewtype and refined as follows: types of data

stored, data performance-oriented properties, data distribution.

Topology Data accessors are attached to connectors that are attached to the data store(s).

(b) Explain peer to peer and publish subscribe styles.

Ans :
The peer-to-peer style presents a view of the system that partitions the application by area of collaboration.

Peers interact directly among themselves and can play the role of both clients and servers, assuming whatever role
is needed for the task at hand. This partitioning provides flexibility for deploying the system across a distributed
system platform. Because peers have access to the latest data, the load on any given component acting as a server
is reduced, and the responsibilities that might have required more server capacity and infrastructure to support it are
distributed. This can decrease the need for other communication for updating data and for central server storage
but at the expense of storing the data locally.

Unit-III
5. (a) Explain project monitoring. (Unit-III, Q.No. 6)

(b) Briefly describe about quality planning. (Unit-III, Q.No. 4)
(OR)

6. (a) Describe about function oriented design. (Unit-III, Q.No. 10)
(b) Explain about detailed scheduling. (Unit-III, Q.No. 7)

Unit-IV
7. (a) Explain the testing objectives and its principles.

Ans :
Objectives

 Detecting bugs as soon as feasible in any situation.

 Avoiding errors in a project’s and product’s final versions.

 Inspect to see whether the customer requirements criterion has been satisfied.

 Last but not least, the primary purpose of testing is to gauge the project and product level of quality.

There are seven principles in software testing:

1. Testing shows the presence of defects

The goal of software testing is to make the software fail. Software testing reduces the presence of defects.
Software testing talks about the presence of defects and doesn’t talk about the absence of defects. Software
testing can ensure that defects are present but it can not prove that software is defect-free. Even multiple
testing can never ensure that software is 100% bug-free. Testing can reduce the number of defects but not
remove all defects.

M.C.A II YEAR III SEMESTER

266
Rahul Publications

2. Exhaustive testing is not possible

It is the process of testing the functionality of the software in all possible inputs (valid or invalid) and pre-
conditions is known as exhaustive testing. Exhaustive testing is impossible means the software can never test
at every test case. It can test only some test cases and assume that the software is correct and it will produce
the correct output in every test case. If the software will test every test case then it will take more cost, effort,
etc., which is impractical.

3. Early Testing

To find the defect in the software, early test activity shall be started. The defect detected in the early phases
of SDLC will be very less expensive. For better performance of software, software testing will start at the
initial phase i.e. testing will perform at the requirement analysis phase.

4. Defect clustering

In a project, a small number of modules can contain most of the defects. Pareto Principle to software testing
state that 80% of software defect comes from 20% of modules.

5. Pesticide paradox

Repeating the same test cases, again and again, will not find new bugs. So it is necessary to review the test
cases and add or update test cases to find new bugs.

6. Testing is context-dependent

The testing approach depends on the context of the software developed. Different types of software need to
perform different types of testing. For example, The testing of the e-commerce site is different from the
testing of the Android application.

7. Absence of errors fallacy

If a built software is 99% bug-free but it does not follow the user requirement then it is unusable. It is not only
necessary that software is 99% bug-free but it is also mandatory to fulfill all the customer requirements.

(b) Explain code inspection and summarize the report of an inspection. (Unit-IV, Q.No. 8)

(OR)

8. (a) What do you mean by system testing? Explain in detail.

Ans :
System Testing is a type of software testing that is performed on a complete integrated system to evaluate

the compliance of the system with the corresponding requirements. In system testing, integration testing passed
components are taken as input.

The goal of integration testing is to detect any irregularity between the units that are integrated together.
System testing detects defects within both the integrated units and the whole system. The result of system testing is
the observed behavior of a component or a system when it is tested.

System Testing is carried out on the whole system in the context of either system requirement specifications
or functional requirement specifications or in the context of both. System testing tests the design and behavior of
the system and also the expectations of the customer.

(b) Write short note on white box testing? (Unit-IV, Q.No. 10)

Unit-V

9. (a) Justify the statement “Software maintenance is costlier”. (Unit-V, Q.No. 1)

(b) What is reengineering? (Unit-V, Q.No. 2)

10. Write short note on :

(a) CMMI (Unit-V, Q.No. 12)

(b) SPI trends (Unit-V, Q.No. 11)

SOLVED PREVIOUS QUESTION PAPERS SOFTWARE ENGINEERING

267
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. (2 years Course) III - Semester (CBCS) (Main) Examination

October / November - 2023

SOFTWARE ENGINEERING

Time : 3 Hours Max. Marks : 70

Note : I. Answer one question from each unit. All questions carry equal marks.

II. Missing data, if any, may be suitably assumed.

Unit-I

1. (a) Define software engineering. Explain the changing nature of software. (Unit-I, Q.No. 4)

(b) Explain cost, schedule and quality of software. (Unit-I, Q.No. 3)

(OR)

2. (a) Differentiate between process and project.

Ans :
S.No. Nature Process Project

1. Objective A “process” has an objective that is typically A “project” has an objective or outcome to be
defined around the ongoing operation of the process. accomplished and the project ends when that objective
For example, “provide ongoing maintenance for GM is accomplished. That objective might be broadly-defined
vehicles” and might change or be further elaborated as the project

 is in progress. For example, “find a replacement ignition
switch that will solve the problem with GM vehicles”.

2. Time A “process” is generally ongoing and doesn’t A “project” has a beginning and an end (although the
Duration normally have an end. beginning and end may not be well-defined when the

project starts and the end might be a long time in the future).

3. Process A “process” is a repetitive sequence of tasks The sequence of tasks in a “project” is not normally
Orientation and the tasks are known at the outset since it is repetitive and may not be known at the outset of the

repetitive. project.

(b) Explain prototyping model of software development model. (Unit-I, Q.No. 10)

Unit-II

3. (a) Explain the components of SRS. (Unit-II, Q.No. 8)

(b) Mention the values of good SRS. (Unit-II, Q.No. 3)

(OR)

4. (a) Explain component and connector view. (Unit-II, Q.No. 16)

(b) Explain the role of software architecture. (Unit-II, Q.No. 15)

Unit-III

5. (a) Discuss the concept of Risk assessment and Risk control. (Unit-III, Q.No. 5)

(b) Explain quality planning. (Unit-III, Q.No. 4)

(OR)

M.C.A II YEAR III SEMESTER

268
Rahul Publications

6. (a) Explain main object oriented concepts. (Unit-III, Q.No. 10)

(b) Describe structured Design Methodology and function oriented design. (Unit-III, Q.No. 8,10)

Unit-IV

7. (a) Explain about unit testing. (Unit-IV, Q.No. 6)

(b) Explain code inspection. (Unit-IV, Q.No. 8)

(OR)

8. (a) Explain different levels of testing. (Unit-IV, Q.No. 9, 10)

(b) Write about black box testing? (Unit-IV, Q.No. 11)

Unit-V

9. (a) Explain the concept of software maintenance process. (Unit-V, Q.No. 1)

(b) Write short note on software reengineering. (Unit-V, Q.No. 2)

(OR)

10. (a) Explain about SPI process. (Unit-V, Q.No. 11)

(b) Write short note on PCMM. (Unit-V, Q.No. 14)

