
- by -

WELL EXPERIENCED LECTURER

 Study Manual

 Important Questions

 Lab Practicals

 Solved Model Papers

 Previous Question Papers

Rahul’s 
Topper’s Voice

Price

 `. 199-00

M.C.A.
I Year II Sem

(Osmania University)

OPERATING
SYSTEMS

Latest 2023 Edition

TM

Hyderabad. Cell : 9391018098, 9505799122.
Rahul Publications

All disputes are subjects to Hyderabad Jurisdiction only

Price ` : 199-00

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written permission
of the publisher

C

M.C.A.
I Year II Sem

OPERATING
SYSTEMS

C
O
N
T
E
N
T
S

OPERATING
SYSTEMS

STUDY MANUAL

Important Questions III - VIII

Unit - I 1 - 74

Unit - II 75 - 94

Unit - III 95 - 134

Unit - IV 135 - 164

Unit - V 165 - 177

SOLVED MODEL PAPERS

Model Paper - I 178 - 178

Model Paper - II 179 - 179

Model Paper - III 180 - 180

Lab Practicals 181 - 224

PREVIOUS QUESTION PAPERS

November - 2021 225 - 225

April - 2022 226 - 227

April / May - 2023 228 - 228

UNIT - I

Unix: Introduction, commands, file system, security and file permission, regular expression
and grep, shell programming, awk.

Introduction to Operating Systems: OS structure and strategies, Process concepts,
Multithreaded Programming, Process scheduling, Process synchronization, Deadlocks.

UNIT - II

Memory management strategies with example architectures: Swapping, Contiguous
allocation, Paging, Segmentation, Segmentation with paging,

Virtual memory management: Demand paging, Page replacement, Thrashing.

UNIT - III

File System Interface: File concepts, Access methods and protection. File system
implementation: File system structure, Allocation methods, Directory implementation of file
systems, Mass storage structures, I/O systems

UNIT - IV

System Protection : Principles and Domain, Access Matrix and implementation, Access control
and access rights, Capability based systems, Language based Protection,

System Security: Problem, Program threats, cryptography, user authentication, implementing
security defenses, Firewalling, Computer security Classification

UNIT - V

Case Studies: The Linux System–Design principles, Kernel modules, Process management,
Scheduling, Memory management, File systems, Input and Output, Inter process
communication. Windows 7 –Design principles, System components, Terminal services and
fast user switching File systems, Networking, Programmer interface.

SYLLABUS

I

Contents
UNIT - I

Topic Page No.

1.1 Unix .. 1

1.1.1 Introduction, Commands ..1

1.1.2 File System .. 3
1.1.3 Security and File Permission ..3

1.1.4 Regular Expression and Grep ...8

1.1.5 Shell Programming, awk ...10
1.2 Introduction to Operating Systems ..29

1.2.1 Os Structure And Strategies...29

1.2.2 Process Concepts ..37
1.2.3 Multithreaded Programming ..44

1.2.4 Process Scheduling ..47

1.2.5 Process Synchronization ..56

1.2.6 Deadlocks ..64

UNIT - II

2.1 Memory Management Strategies with Example Architectures ...75

2.1.1 Swapping ..75

2.1.2 Contiguous Allocation ...77

2.1.3 Paging Segmentation ..80

2.1.4 Segmentation With Paging ..84

2.2 Virtual Memory Management ...87
2.2.1 Demand Paging ...87

2.2.2 Page Replacement ...87

2.2.3 Thrashing ..93

UNIT - III

3.1 File System Interface ...95

3.1.1 File Concepts ..95

3.1.2 Access Methods And Protection...96

3.2 File System Implementation ..100
3.2.1 File System Structure ..100

3.2.2 Allocation Methods ..102

3.2.3 Directory Implementation of File Systems ...108

II

Topic Page No.

3.2.4 Mass Storage Structures ..114

3.2.5 I/O Systems ..127

UNIT - IV

4.1 System Protection ...135

4.1.1 Principles and Domain ..135

4.1.2 Domain of Protection ..135

4.1.3 Access Matrix And Implementation ...136

4.1.4 Access Control And Access Rights ...139

4.1.5 Capability Based Systems ..141
4.1.6 Language Based Protection ...142

4.2 System Security ...144

4.2.1 Problem ..144
4.2.2 Program Threats ...146

4.2.3 Cryptography ..149

4.2.4 User Authentication ...157
4.2.5 Implementing Security Defenses ...159

4.2.6 Firewalling ...162

4.2.7 Computer Security Classification ...163

UNIT - V

5.1 Case Studies ..165
5.1.1 The Linux System ...165
5.1.2 Design Principles ...166
5.1.3 Kernel Modules ...166
5.1.4 Process Management ..167
5.1.5 Scheduling ..168
5.1.6 Memory Management ...168
5.1.7 File Systems ..169
5.1.8 Input and Output ..170
5.1.9 Inter Process Communication ...170

5.2 Windows 7 – ..171
5.2.1 Design Principles ...171
5.2.2 System Components ...173
5.2.3 Terminal Services And Fast User Switching File Systems174
5.2.4 Networking ...175
5.2.5 Programmer Interface ...176

IMPORTANT QUESTIONS OPERATING SYSTEMS

III
Rahul Publications

UNIT - I

1. Explain various basic unix commands with an examples.

Ans :

Refer Unit-I, Q.No. 2

2. Explain about File System in unix.

Ans :

Refer Unit-I, Q.No. 3

3. Explain about File Permission of unix.

Ans :

Refer Unit-I, Q.No. 4

4. Explain about Regular Expression in Grep of unix.

Ans :

Refer Unit-I, Q.No. 5

5. Explain briefly about various shell variables.

Ans :

Refer Unit-I, Q.No. 7

6. Explain briefly about awk.

Ans :

Refer Unit-I, Q.No. 9

7. Explain the basic syntax of awk.

Ans :

Refer Unit-I, Q.No. 11

8. What is Thread? Explain about various type of threads.

Ans :

Refer Unit-I, Q.No.23

Important Questions

MCA I YEAR II SEMESTER

IV
Rahul Publications

9. Explain the concept of Process Scheduling.

Ans :

Refer Unit-I, Q.No. 26

10. Explain about various scheduling algorithms.

Ans :

Refer Unit-I, Q.No. 29

11. What is process synchronization? Explain critical section problem with its different
solutions.

Ans :

Refer Unit-I, Q.No. 31

12. What is dining philosophers problem? Write about it.

Ans :

Refer Unit-I, Q.No. 36

13. Write about deadlock prevention techniques.

Ans :

Refer Unit-I, Q.No. 41

UNIT - II

1. What is Memory management? Explain briefly.

Ans :

Refer Unit-II, Q.No. 1

2. What is Swapping? Explain.

Ans :

Refer Unit-II, Q.No. 3

3. How memory is allocated to the process? Explain how to resolve dynamic storage
allocation problem?

Ans :

Refer Unit-II, Q.No. 5

IMPORTANT QUESTIONS OPERATING SYSTEMS

V
Rahul Publications

4. Explain the mechanism of paging segmentation.

Ans :

Refer Unit-II, Q.No. 7

5. Explain about Segmented Paging.

Ans :

Refer Unit-II, Q.No. 9

6 What is the use of page replacement algorithm? Explain about various page replacement
algorithms.

Ans :

Refer Unit-II, Q.No. 11

7. Explain Belady’s Anomaly with an example.

Ans :

Refer Unit-II, Q.No. 13

8. Define thrashing. Explain the techniques of thrashing.

Ans :

Refer Unit-II, Q.No. 14

UNIT - III

1. What is file? Explain about the structure of the file and its attributes.

Ans :

Refer Unit-III, Q.No. 1

2. What is file protection? Explain various types of file access control techniques

Ans :

Refer Unit-III, Q.No. 4

3. Explain the concept of file system structure.

Ans :

Refer Unit-III, Q.No. 5

MCA I YEAR II SEMESTER

VI
Rahul Publications

4. Write about Directory structure of file system.

Ans :

Refer Unit-III, Q.No. 8

5. What are Mass (Secondary) Storage Devices? Explain.

Ans :

Refer Unit-III, Q.No. 11

6. Write about various communication I/O devices.

Ans :

Refer Unit-III, Q.No. 17

7. What is application I/O Interface? Describe various application I/O interfaces

Ans :

Refer Unit-III, Q.No. 19

UNIT - IV

1. What are the Goals and Principles of Protection?

Ans :

Refer Unit-IV, Q.No. 1

2. What is the Security Problem? Explain about the various types of Security Violations.

Ans :

Refer Unit-IV, Q.No. 9

3. What is Cryptography? Write about it.

Ans :

Refer Unit-IV, Q.No. 11

4. What is Encryption? Write about Symmetric and Asymmetric Encrption.

Ans :

Refer Unit-IV, Q.No. 12

IMPORTANT QUESTIONS OPERATING SYSTEMS

VII
Rahul Publications

5. Write about the implementation of cryptography in secure soket layers (SSL).

Ans :

Refer Unit-IV, Q.No. 14

6. Write about various user authentication processes.

Ans :

Refer Unit-IV, Q.No. 15

7. What is security policy? Write various security policies.

Ans :

Refer Unit-IV, Q.No. 16

8. Write about the use of firewalling in Operating system.

Ans :

Refer Unit-IV, Q.No. 17

9. Write about the Levels of Computer Security Classification.

Ans :

Refer Unit-IV, Q.No. 18

UNIT - V

1. What are the various components of Linux System ?

Ans :

Refer Unit-V, Q.No. 1

2. Discuss about the kernel modules of Linux Systems.

Ans :

Refer Unit-V, Q.No. 3

3. Write about the process management of Linux System.

Ans :

Refer Unit-V, Q.No. 4

MCA I YEAR II SEMESTER

VIII
Rahul Publications

4. Discuss how scheduling can happen in Linux System.

Ans :

Refer Unit-V, Q.No. 5

5. Explain about the inter process communication in LINUX.

Ans :

Refer Unit-V, Q.No. 9

6. Describe briefly about Windows Architecture.

Ans :

Refer Unit-V, Q.No. 11

7. Write about Windows File System.

Ans :

Refer Unit-V, Q.No. 14

8. Write about programmer interface of Windows 7.

Ans :

Refer Unit-V, Q.No. 16

UNIT - I OPERATING SYSTEMS

1
Rahul Publications

Rahul Publications

UNIT
I

Unix: Introduction, commands, file system, security and file permission,
regular expression and grep, shell programming, awk

Introduction to Operating Systems: OS structure and strategies, Process concepts.
Multithreaded Programming, Process scheduling. Process synchronization,
Deadlocks.

1.1 UNIX

1.1.1 Introduction, Commands

Q1. What is Unix ?

Ans :
The Unix operating system is a set of programs

that act as a link between the computer and the user.

The computer programs that allocate the
system resources and coordinate all the details of
the computer's internals is called the operating system
or the kernel.

Users communicate with the kernel through a
program known as the shell. The shell is a command
line interpreter; it translates commands entered by
the user and converts them into a language that is
understood by the kernel.

 Unix was originally developed in 1969
by a group of AT&T employees Ken
Thompson, Dennis Ritchie, Douglas
McIlroy, and Joe Ossanna at Bell Labs.

 There are various Unix variants available
in the market. Solaris Unix, AIX, HP Unix
and BSD are a few examples. Linux is
also a flavor of Unix which is freely
available.

 Several people can use a Unix computer
at the same time; hence Unix is called a
multiuser system.

 A user can also run multiple programs
at the same time; hence Unix is a
multitasking environment.

Q2. Explain various basic unix commands
with an examples.

Ans : (Imp.)

1. Displaying a Directory

ls–Lists the names of files in a particular Unix
directory. If you type the ls command with no
parameters or qualifiers, the command displays the
files listed in your current working directory. When
you give the ls command, you can add one or more
modifiers to get additional information.

Example: ls

Result: Lists the names of files in your default
directory, in alphabetical order.

Example: ls -l

Result: Gives a "long listing" of the files in
your directory. In addition to the file name, the long
listing shows protection information, file owner,
number of characters in file, and the date and time
of the last change to the file.

Example: ls -a

Result: Causes all your files to be listed,
including those files that begin with a period (i.e.,
hidden files).

2. Displaying and Concatenating
(Combining) Files

more–Enables examination of a continuous
text one screenful at a time on a terminal. It normally
pauses after each screenful, printing -- More -- at the
bottom of the screen. Press RETURN to display one
more line. Press the SPACE BAR to display another
screenful. Press the letter Q to stop displaying the
file.

MCA I YEAR II SEMESTER

2
Rahul Publications

Rahul Publications

Example: more newfile

Result: Displays the contents of "newfile" one
screen ("page") at a time.

cat-- Displays the contents of a file on your
terminal.

Example: cat newfile

Result: Displays the contents of the file
"newfile" on your terminal.

Example: cat newfile oldfile

Result: Displays the contents of two files–
"newfile" and "oldfile"–on your terminal as one
continuous display.

While a file is being displayed, you can
interrupt the output by pressing CTRL + C and return
to the Unix system prompt. CTRL + S suspends the
terminal display of the file and the processing of the
command. To resume display, press CTRL + Q. The
interrupted command displays lines beginning at the
point at which processing was interrupted.

The cat command is also used to concatenate
(combine) files and put them into another file. If you
concatenate files to another one that already exists,
the existing contents are permanently lost.

Example: cat fileone filetwo filethree > newfile

Result: Links together three files–fileone,
filetwo, and filethree–into a new file called "newfile."
The original files remain intact.

3. Copying Files

cp–Makes copies of your files. You can use it
to make copies of files in your default directory, to
copy files from one directory to another directory,
or to copy files from other devices.

Example: cp fileone filetwo

Result: Copies the contents of fileone to a
file named filetwo. Two separate files now exist.

Example: cp /usr/neighbor/testfile .

Result: Copies the file testfile from the
directory /user/neighbor to your Unix account. The
period(.) at the end of the command line indicates
that the file is to be copied to your current working
directory and the name will remain the same.

Example: cp ~username/file1 yourfile

Result: Copies the file "file1" from user to
your Unix account. The name of the file in your
directory becomes yourfile. (Protections must be set
for file to be readable by you in the other user's
directory in order to be able to copy the file.)

4. Deleting Files

rm–Deletes specific files. You can enter more
than one file specification on a command line by
separating the file specifications with spaces.

Example: rm newfile

Result: Deletes the file named "newfile."

Example: rm newfile oldfile

Result: Deletes two files–"newfile" and
"oldfile."

Example: rm new*

Result: Deletes all files that begin with the
prefix new.

5. Renaming Files

mv–This command changes the identification
(name) of one or more files.

Example: mv oldfile newfile

Result: Changes the name of the file "oldfile"
to "newfile." Only one file will exist.

Example: mv oldfile bin/newfile

Result: Changes the name of the file "oldfile"
to "newfile" and places it in the directory /bin. Only
one file will exist.

6. Printing from Unix

The lpr command prints files on Unix. Use
the -Pqueuename option to select a printer.

Example: lpr -Ppittprint sample.file

Result: This is the default output. Single-sided
output, one page-worth of text per side, portrait
format. Output is queued to the Pitt Print Stations.

The Unix operating system is case sensitive;
type all commands in lower-case letters unless noted
otherwise.

UNIT - I OPERATING SYSTEMS

3
Rahul Publications

Rahul Publications

1.1.2 File System

Q3. Explain about File System in unix.

Ans : (Imp.)

File System provide efficient access to the disk
by allowing data to be stored, located and retrieved
in a convenient way. A file System must be able to
store the file, locate the file and retrieve the file.

Most of the Operating Systems use layering
approach for every task including file systems. Every
layer of the file system is responsible for some
activities.

The image shown below, elaborates how the
file system is divided in different layers, and also the
functionality of each layer.

 When an application program asks for a file,
the first request is directed to the logical file
system. The logical file system contains the
Meta data of the file and directory structure.
If the application program doesn’t have the
required permissions of the file then this layer
will throw an error. Logical file systems also
verify the path to the file.

 Generally, files are divided into various logical
blocks. Files are to be stored in the hard disk
and to be retrieved from the hard disk. Hard
disk is divided into various tracks and sectors.
Therefore, in order to store and retrieve the
files, the logical blocks need to be mapped to
physical blocks. This mapping is done by File
organization module. It is also responsible for
free space management.

 Once File organization module decided which
physical block the application program needs,
it passes this information to basic file system.
The basic file system is responsible for issuing
the commands to I/O control in order to fetch
those blocks.

 I/O controls contain the codes by using which
it can access hard disk. These codes are known
as device drivers. I/O controls are also
responsible for handling interrupts.

1.1.3 Security and File Permission

Q4. Explain about File Permission of unix.

Ans : (Imp.)
1. The Permission Indicators

While using ls -l command, it displays various
information related to file permission as follows -

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10
myfile

drwxr-xr--- 1 amrood users 1024 Nov 2
00:10 mydir

Here, the first column represents different
access modes, i.e., the permission associated with a
file or a directory.

The permissions are broken into groups of
threes, and each position in the group denotes a
specific permission, in this order: read (r), write (w),
execute (x) -

MCA I YEAR II SEMESTER

4
Rahul Publications

Rahul Publications

 The first three characters (2-4) represent the permissions for the file's owner. For example, -
rwxr-xr-- represents that the owner has read (r), write (w) and execute (x) permission.

 The second group of three characters (5-7) consists of the permissions for the group to which
the file belongs. For example, -rwxr-xr-- represents that the group has read (r) and execute (x)
permission, but no write permission.

 The last group of three characters (8-10) represents the permissions for everyone else. For
example, -rwxr-xr-- represents that there is read (r) only permission.

2. File Access Modes

The permissions of a file are the first line of defense in the security of a Unix system. The basic
building blocks of Unix permissions are the read, write, and execute permissions, which have been described
below -

Read

Grants the capability to read, i.e., view the contents of the file.

Write

Grants the capability to modify, or remove the content of the file.

Execute

User with execute permissions can run a file as a program.

3. Directory Access Modes

Directory access modes are listed and organized in the same manner as any other file. There are a
few differences that need to be mentioned -

Read

Access to a directory means that the user can read the contents. The user can look at the filenames
inside the directory.

Write

Access means that the user can add or delete files from the directory.

Execute

Executing a directory doesn't really make sense, so think of this as a traverse permission.

A user must have execute access to the bin directory in order to execute the ls or the cd command.

4. Changing Permissions

To change the file or the directory permissions, you use the chmod (change mode) command. There
are two ways to use chmod — the symbolic mode and the absolute mode.

5. Using chmod in Symbolic Mode

The easiest way for a beginner to modify file or directory permissions is to use the symbolic mode.
With symbolic permissions you can add, delete, or specify the permission set you want by using the operators
in the following table.

UNIT - I OPERATING SYSTEMS

5
Rahul Publications

Rahul Publications

=
Sets the designated permission(s).

3

-
Removes the designated permission(s) from a file or directory.

2

+
Adds the designated permission(s) to a file or directory.

1

Chmod operator & DescriptionSr.No.

=
Sets the designated permission(s).

3

-
Removes the designated permission(s) from a file or directory.

2

+
Adds the designated permission(s) to a file or directory.

1

Chmod operator & DescriptionSr.No.

Here's an example using testfile. Running ls -1 on the testfile shows that the file's permissions are as
follows -

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile, followed by ls –
l, so you can see the permission changes -

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod g = rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you can combine these commands on a single line -

$chmod o+wx,u-x,g = rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

6. Using chmod with Absolute Permissions

The second way to modify permissions with the chmod command is to use a number to specify each
set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each set of
permissions provides a number for that set.

MCA I YEAR II SEMESTER

6
Rahul Publications

Rahul Publications
rwxAll permissions: 4 (read) +

2 (write) + 1 (execute) = 7
7

rw-Read and write permission:
4 (read) + 2 (write) = 6

6

r-xRead and execute
permission: 4 (read) + 1
(execute) = 5

5

r--Read permission4

-wxExecute and write
permission: 1 (execute) + 2
(write) = 3

3

-w-Write permission2

--xExecute permission1

---No permission0

RefOctal Permission
Representation

Number

rwxAll permissions: 4 (read) +
2 (write) + 1 (execute) = 7

7

rw-Read and write permission:
4 (read) + 2 (write) = 6

6

r-xRead and execute
permission: 4 (read) + 1
(execute) = 5

5

r--Read permission4

-wxExecute and write
permission: 1 (execute) + 2
(write) = 3

3

-w-Write permission2

--xExecute permission1

---No permission0

RefOctal Permission
Representation

Number

Here's an example using the testfile. Running ls -1 on the testfile shows that the file's permissions are
as follows -

$ls -l testfile
-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile, followed by ls –
l, so you can see the permission changes -

$ chmod 755 testfile

$ls -l testfile
-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile
$chmod 743 testfile
$ls -l testfile
-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile
$chmod 043 testfile
$ls -l testfile
----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

7. Changing Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All the
permissions mentioned above are also assigned based on the Owner and the Groups.

Two commands are available to change the owner and the group of files -

 chown - The chown command stands for "change owner" and is used to change the owner of
a file.

 chgrp - The chgrp command stands for "change group" and is used to change the group of a
file.

UNIT - I OPERATING SYSTEMS

7
Rahul Publications

Rahul Publications

8. Changing Ownership

The chown command changes the ownership of a file. The basic syntax is as follows -

$ chown user filelist

The value of the user can be either the name of a user on the system or the user id (uid) of a user on
the system.

The following example will help you understand the concept -

$ chown amrood testfile

$

Changes the owner of the given file to the user amrood.

Note: The super user, root, has the unrestricted capability to change the ownership of any file but
normal users can change the ownership of only those files that they own.

9. Changing Group Ownership

The chgrp command changes the group ownership of a file. The basic syntax is as follows -

$ chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID) of a group on
the system.

Following example helps you understand the concept -

$ chgrp special testfile
$

Changes the group of the given file to special group.

10. SUID and SGID File Permission

Often when a command is executed, it will have to be executed with special privileges in order to
accomplish its task.

As an example, when you change your password with the passwd command, your new password is
stored in the file /etc/shadow.

As a regular user, you do not have read or write access to this file for security reasons, but when you
change your password, you need to have the write permission to this file. This means that the passwd
program has to give you additional permissions so that you can write to the file /etc/shadow.

Additional permissions are given to programs via a mechanism known as the Set User ID (SUID) and
Set Group ID (SGID) bits.

When you execute a program that has the SUID bit enabled, you inherit the permissions of that
program's owner. Programs that do not have the SUID bit set are run with the permissions of the user who
started the program.

This is the case with SGID as well. Normally, programs execute with your group permissions, but
instead your group will be changed just for this program to the group owner of the program.

The SUID and SGID bits will appear as the letter "s" if the permission is available. The SUID "s" bit
will be located in the permission bits where the owners’ execute permission normally resides.

For example, the command -

$ ls -l /usr/bin/passwd
-r-sr-xr-x 1 root bin 19031 Feb 7 13:47 /usr/bin/passwd*
$

MCA I YEAR II SEMESTER

8
Rahul Publications

Rahul Publications

Shows that the SUID bit is set and that the command is owned by the root. A capital letter S in the
execute position instead of a lowercase s indicates that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if you are one of the following
users -

 The owner of the sticky directory

 The owner of the file being removed

 The super user, root

To set the SUID and SGID bits for any directory try the following command -

$ chmod ug+s dirname
$ ls -l
drwsr-sr-x 2 root root 4096 Jun 19 06:45 dirname
$

1.1.4 Regular Expression and Grep

Q5. Explain about Regular Expression in Grep of unix.

Ans : (Imp.)

Regular Expression provides an ability to match a “string of text” in a very flexible and concise
manner. A “string of text” can be further defined as a single character, word, sentence or particular pattern
of characters.

Like the shell’s wild–cards which match similar filenames with a single expression, grep uses an
expression of a different sort to match a group of similar patterns.

 []: Matches any one of a set characters

 [] with hyphen: Matches any one of a range characters

 ^: The pattern following it must occur at the beginning of each line

 ^ with [] : The pattern must not contain any character in the set specified

 $: The pattern preceding it must occur at the end of each line

 . (dot): Matches any one character

 \ (backslash): Ignores the special meaning of the character following it

 *: zero or more occurrences of the previous character

 (dot).*: Nothing or any numbers of characters.

Examples

(a) [] : Matches any one of a set characters

1. $grep “New[abc]” filename

It specifies the search pattern as :

Newa , Newb or Newc

2. $grep “[aA]g[ar][ar]wal” filename

It specifies the search pattern as

Agarwal , Agaawal , Agrawal , Agrrwal

agarwal , agaawal , agrawal , agrrwal

UNIT - I OPERATING SYSTEMS

9
Rahul Publications

Rahul Publications

(b) Use [] with hyphen: Matches any one of a range characters

1. $grep “New[a-e]” filename

It specifies the search pattern as

Newa , Newb or Newc , Newd, Newe

2. $grep “New[0-9][a-z]” filename

It specifies the search pattern as: New followed by a number and then an alphabet.

New0d, New4f etc

(c) Use ^: The pattern following it must occur at the beginning of each line

1. $grep “^san” filename

Search lines beginning with san. It specifies the search pattern as

sanjeev ,sanjay, sanrit , sanchit , sandeep etc.

2. $ls –l |grep “^d”

Display list of directories only

3. $ls –l |grep “^-”

Display list of regular files only

(d) Use ^ with []: The pattern must not contain any character in the set specified

1. $grep “New[^a-c]” filename

It specifies the pattern containing the word “New” followed by any character other than an
‘a’,’b’, or ‘c’

2. $grep “^[^a-z A-Z]” filename

Search lines beginning with an non-alphabetic character

(e) Use $: The pattern preceding it must occur at the end of each line

$ grep "vedik$" file.txt

(f) Use . (dot): Matches any one character

$ grep "..vik" file.txt

$ grep "7..9$" file.txt

(g) Use \ (backslash): Ignores the special meaning of the character following it

1. $ grep "New\.\[abc\]" file.txt

It specifies the search pattern as New.[abc]

2. $ grep "S\.K\.Kumar" file.txt

It specifies the search pattern as

S.K.Kumar

(h) Use *: zero or more occurrences of the previous character

$ grep "[aA]gg*[ar][ar]wal" file.txt

(i) Use (dot).*: Nothing or any numbers of characters.

$ grep "S.*Kumar" file.txt

MCA I YEAR II SEMESTER

10
Rahul Publications

Rahul Publications

1.1.5 Shell Programming, awk

Q6. What is Shell?

Ans :
A Shell provides you with an interface to the

Unix system. It gathers input from you and executes
programs based on that input. When a program
finishes executing, it displays that program's output.

Shell is an environment in which we can run
our commands, programs, and shell scripts. There
are different flavors of a shell, just as there are
different flavors of operating systems. Each flavor of
shell has its own set of recognized commands and
functions.

Shell Prompt

The prompt, $, which is called the command
prompt, is issued by the shell. While the prompt is
displayed, you can type a command.

Shell reads your input after you press Enter. It
determines the command you want executed by
looking at the first word of your input. A word is an
unbroken set of characters. Spaces and tabs separate
words.

Example

Following is a simple example of the date
command, which displays the current date and time-

$date

Thu Jun 25 08:30:19 MST 2009

Q7. Explain briefly about various shell
variables.

Ans : (Imp.)

A variable is a character string to which we
assign a value. The value assigned could be a
number, text, filename, device, or any other type of
data.

A variable is nothing more than a pointer to
the actual data. The shell enables you to create,
assign, and delete variables.

Variable Names

The name of a variable can contain only letters
(a to z or A to Z), numbers (0 to 9) or the underscore
character (_).

By convention, Unix shell variables will have
their names in UPPERCASE.

Example :

The following examples are valid variable
names -

_ALI

TOKEN_A

VAR_1

VAR_2

Following are the examples of invalid variable
names -

2_VAR

-VARIABLE

VAR1-VAR2

VAR_A!

The reason you cannot use other characters
such as !, *, or - is that these characters have a special
meaning for the shell.

Defining Variables

Variables are defined as follows -

variable_name=variable_value

For example

NAME="Zara Ali"

The above example defines the variable
NAME and assigns the value "Zara Ali" to it. Variables
of this type are called scalar variables. A scalar
variable can hold only one value at a time.

Shell enables you to store any value you want
in a variable. For example -

VAR1="Zara Ali"

VAR2=100

Accessing Values

To access the value stored in a variable, prefix
its name with the dollar sign ($) -

For example, the following script will access
the value of defined variable NAME and print it on
STDOUT -

#!/bin/sh

NAME="Zara Ali"

echo $NAME

UNIT - I OPERATING SYSTEMS

11
Rahul Publications

Rahul Publications

The above script will produce the following value -

Zara Ali

Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command. After a variable
is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of NAME -

#!/bin/sh

NAME="Zara Ali"

readonly NAME

NAME="Qadiri"

The above script will generate the following result -

/bin/sh: NAME: This variable is read only.

Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of variables that
it tracks. Once you unset a variable, you cannot access the stored value in the variable.

Following is the syntax to unset a defined variable using the unset command -

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example that demonstrates
how the command works -

#!/bin/sh

NAME="Zara Ali"

unset NAME

echo $NAME

The above example does not print anything. You cannot use the unset command to unset variables
that are marked readonly.

Variable Types

When a shell is running, three main types of variables are present -

(i) Local Variables - A local variable is a variable that is present within the current instance of the
shell. It is not available to programs that are started by the shell. They are set at the command
prompt.

(ii) Environment Variables - An environment variable is available to any child process of the
shell. Some programs need environment variables in order to function correctly. Usually, a shell
script defines only those environment variables that are needed by the programs that it runs.

(iii) Shell Variables - A shell variable is a special variable that is set by the shell and is required by
the shell in order to function correctly. Some of these variables are environment variables whereas
others are local variables.

MCA I YEAR II SEMESTER

12
Rahul Publications

Rahul Publications

The following table shows a number of special variables that you can use in your shell scripts -

$!
The process number of the last background command.

8

$$
The process number of the current shell. For shell scripts, this is the process ID
under which they are executing.

7

$?
The exit status of the last command executed.

6

$@
All the arguments are individually double quoted. If a script receives two
arguments, $@ is equivalent to $1 $2.

5

$*
All the arguments are double quoted. If a script receives two arguments, $* is
equivalent to $1 $2.

4

$#
The number of arguments supplied to a script.

3

$n
These variables correspond to the arguments with which a script was invoked.
Here n is a positive decimal number corresponding to the position of an
argument (the first argument is $1, the second argument is $2, and so on).

2

$0
The filename of the current script.

1

Variable & DescriptionSl. No.

$!
The process number of the last background command.

8

$$
The process number of the current shell. For shell scripts, this is the process ID
under which they are executing.

7

$?
The exit status of the last command executed.

6

$@
All the arguments are individually double quoted. If a script receives two
arguments, $@ is equivalent to $1 $2.

5

$*
All the arguments are double quoted. If a script receives two arguments, $* is
equivalent to $1 $2.

4

$#
The number of arguments supplied to a script.

3

$n
These variables correspond to the arguments with which a script was invoked.
Here n is a positive decimal number corresponding to the position of an
argument (the first argument is $1, the second argument is $2, and so on).

2

$0
The filename of the current script.

1

Variable & DescriptionSl. No.

Q8. Explain various operators of shell.

Ans :
Arithmetic Operators

The following arithmetic operators are supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then -

`expr $b / $a` will give 2Divides left hand operand by right hand
operand

/ (Division)

`expr $a * $b` will give 200Multiplies values on either side of the
operator

* (Multiplication)

`expr $a - $b` will give -10Subtracts right hand operand from left hand
operand

- (Subtraction)

`expr $a + $b` will give 30Adds values on either side of the operator+ (Addition)

ExampleDescriptionOperator

`expr $b / $a` will give 2Divides left hand operand by right hand
operand

/ (Division)

`expr $a * $b` will give 200Multiplies values on either side of the
operator

* (Multiplication)

`expr $a - $b` will give -10Subtracts right hand operand from left hand
operand

- (Subtraction)

`expr $a + $b` will give 30Adds values on either side of the operator+ (Addition)

ExampleDescriptionOperator

UNIT - I OPERATING SYSTEMS

13
Rahul Publications

Rahul Publications

[$a != $b] would return true.Compares two numbers, if both are different
then returns true.

!= (Not Equality)

[$a == $b] would return
false.

Compares two numbers, if both are same
then returns true.

== (Equality)

a = $b would assign value of
b into aAssigns right operand in left operand= (Assignment)

`expr $b % $a` will give 0Divides left hand operand by right hand
operand and returns remainder

% (Modulus)

[$a != $b] would return true.Compares two numbers, if both are different
then returns true.

!= (Not Equality)

[$a == $b] would return
false.

Compares two numbers, if both are same
then returns true.

== (Equality)

a = $b would assign value of
b into aAssigns right operand in left operand= (Assignment)

`expr $b % $a` will give 0Divides left hand operand by right hand
operand and returns remainder

% (Modulus)

It is very important to understand that all the conditional expressions should be inside square braces

with spaces around them, for example [$a == $b] is correct whereas, [$a==$b] is incorrect.

All the arithmetical calculations are done using long integers.

Relational Operators

Bourne Shell supports the following relational operators that are specific to numeric values. These

operators do not work for string values unless their value is numeric.

For example, following operators will work to check a relation between 10 and 20 as well as in

between "10" and "20" but not in between "ten" and "twenty".

Assume variable a holds 10 and variable b holds 20 then -

[$a -le $b] is true.
Checks if the value of left operand is less
than or equal to the value of right operand;
if yes, then the condition becomes true.

-le

[$a -ge $b] is not true.
Checks if the value of left operand is greater
than or equal to the value of right operand;
if yes, then the condition becomes true.

-ge

[$a -lt $b] is true.
Checks if the value of left operand is less
than the value of right operand; if yes, then
the condition becomes true.

-lt

[$a -gt $b] is not true.
Checks if the value of left operand is greater
than the value of right operand; if yes, then
the condition becomes true.

-gt

[$a -ne $b] is true.
Checks if the value of two operands are
equal or not; if values are not equal, then
the condition becomes true.

-ne

[$a -eq $b] is not true.Checks if the value of two operands are
equal or not; if yes, then the condition
becomes true.

-eq

ExampleDescriptionOperator

[$a -le $b] is true.
Checks if the value of left operand is less
than or equal to the value of right operand;
if yes, then the condition becomes true.

-le

[$a -ge $b] is not true.
Checks if the value of left operand is greater
than or equal to the value of right operand;
if yes, then the condition becomes true.

-ge

[$a -lt $b] is true.
Checks if the value of left operand is less
than the value of right operand; if yes, then
the condition becomes true.

-lt

[$a -gt $b] is not true.
Checks if the value of left operand is greater
than the value of right operand; if yes, then
the condition becomes true.

-gt

[$a -ne $b] is true.
Checks if the value of two operands are
equal or not; if values are not equal, then
the condition becomes true.

-ne

[$a -eq $b] is not true.Checks if the value of two operands are
equal or not; if yes, then the condition
becomes true.

-eq

ExampleDescriptionOperator

MCA I YEAR II SEMESTER

14
Rahul Publications

Rahul Publications

It is very important to understand that all the conditional expressions should be placed inside square

braces with spaces around them. For example, [$a <= $b] is correct whereas, [$a <= $b] is incorrect.

Boolean Operators

The following Boolean operators are supported by the Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then -

[$a -lt 20 -a $b -gt 100] is
false.

This is logical AND. If both the operands are
true, then the condition becomes true
otherwise false.

-a

[$a -lt 20 -o $b -gt 100] is
true.

This is logical OR. If one of the operands is
true, then the condition becomes true.

-o

[! false] is true.This is logical negation. This inverts a true
condition into false and vice versa.

!

ExampleDescriptionOperator

[$a -lt 20 -a $b -gt 100] is
false.

This is logical AND. If both the operands are
true, then the condition becomes true
otherwise false.

-a

[$a -lt 20 -o $b -gt 100] is
true.

This is logical OR. If one of the operands is
true, then the condition becomes true.

-o

[! false] is true.This is logical negation. This inverts a true
condition into false and vice versa.

!

ExampleDescriptionOperator

String Operators

The following string operators are supported by Bourne Shell.

Assume variable a holds "abc" and variable b holds "efg" then -

[$a] is not false.Checks if str is not the empty string; if it is
empty, then it returns false.

str

[-n $a] is not false.Checks if the given string operand size is
non-zero; if it is nonzero length, then it
returns true.

-n

[-z $a] is not true.Checks if the given string operand size is
zero; if it is zero length, then it returns true.

-z

[$a != $b] is true.Checks if the value of two operands are
equal or not; if values are not equal then the
condition becomes true.

!=

[$a = $b] is not true.Checks if the value of two operands are
equal or not; if yes, then the condition
becomes true.

=

ExampleDescriptionOperator

[$a] is not false.Checks if str is not the empty string; if it is
empty, then it returns false.

str

[-n $a] is not false.Checks if the given string operand size is
non-zero; if it is nonzero length, then it
returns true.

-n

[-z $a] is not true.Checks if the given string operand size is
zero; if it is zero length, then it returns true.

-z

[$a != $b] is true.Checks if the value of two operands are
equal or not; if values are not equal then the
condition becomes true.

!=

[$a = $b] is not true.Checks if the value of two operands are
equal or not; if yes, then the condition
becomes true.

=

ExampleDescriptionOperator

File Test Operators

We have a few operators that can be used to test various properties associated with a Unix file.

Assume a variable file holds an existing file name "test" the size of which is 100 bytes and has read,

write and execute permission on -

UNIT - I OPERATING SYSTEMS

15
Rahul Publications

Rahul Publications

[-e $file] is true.Checks if file exists; is true even if file is a
directory but exists.

-e file

[-s $file] is true.Checks if file has size greater than 0; if yes,
then condition becomes true.

-s file

[-x $file] is true.Checks if file is executable; if yes, then the
condition becomes true.

-x file

[-w $file] is true.Checks if file is writable; if yes, then the
condition becomes true.

-w file

[-r $file] is true.Checks if file is readable; if yes, then the
condition becomes true.

-r file

[-u $file] is false.Checks if file has its Set User ID (SUID) bit
set; if yes, then the condition becomes true.

-u file

[-t $file] is false.Checks if file descriptor is open and
associated with a terminal; if yes, then the
condition becomes true.

-t file

[-p $file] is false.Checks if file is a named pipe; if yes, then
the condition becomes true.

-p file

[-k $file] is false.Checks if file has its sticky bit set; if yes, then
the condition becomes true.

-k file

[-g $file] is false.Checks if file has its set group ID (SGID) bit
set; if yes, then the condition becomes true.

-g file

[-f $file] is true.Checks if file is an ordinary file as opposed
to a directory or special file; if yes, then the
condition becomes true.

-f file

[-d $file] is not true.Checks if file is a directory; if yes, then the
condition becomes true.

-d file

[-c $file] is false.Checks if file is a character special file; if yes,
then the condition becomes true.

-c file

[-b $file] is false.Checks if file is a block special file; if yes,
then the condition becomes true.

-b file

ExampleDescriptionOperator

[-e $file] is true.Checks if file exists; is true even if file is a
directory but exists.

-e file

[-s $file] is true.Checks if file has size greater than 0; if yes,
then condition becomes true.

-s file

[-x $file] is true.Checks if file is executable; if yes, then the
condition becomes true.

-x file

[-w $file] is true.Checks if file is writable; if yes, then the
condition becomes true.

-w file

[-r $file] is true.Checks if file is readable; if yes, then the
condition becomes true.

-r file

[-u $file] is false.Checks if file has its Set User ID (SUID) bit
set; if yes, then the condition becomes true.

-u file

[-t $file] is false.Checks if file descriptor is open and
associated with a terminal; if yes, then the
condition becomes true.

-t file

[-p $file] is false.Checks if file is a named pipe; if yes, then
the condition becomes true.

-p file

[-k $file] is false.Checks if file has its sticky bit set; if yes, then
the condition becomes true.

-k file

[-g $file] is false.Checks if file has its set group ID (SGID) bit
set; if yes, then the condition becomes true.

-g file

[-f $file] is true.Checks if file is an ordinary file as opposed
to a directory or special file; if yes, then the
condition becomes true.

-f file

[-d $file] is not true.Checks if file is a directory; if yes, then the
condition becomes true.

-d file

[-c $file] is false.Checks if file is a character special file; if yes,
then the condition becomes true.

-c file

[-b $file] is false.Checks if file is a block special file; if yes,
then the condition becomes true.

-b file

ExampleDescriptionOperator

Q9. Explain briefly about awk.

Ans : (Imp.)

AWK is an interpreted programming language. It is very powerful and specially designed for text
processing. Its name is derived from the family names of its authors - Alfred Aho, Peter Weinberger, and
Brian Kernighan.

The version of AWK that GNU/Linux distributes is written and maintained by the Free Software
Foundation (FSF); it is often referred to as GNU AWK.

MCA I YEAR II SEMESTER

16
Rahul Publications

Rahul Publications

Types of AWK

Following are the variants of AWK -

AWK - Original AWK from AT & T Laboratory.

NAWK - Newer and improved version of AWK from AT & T Laboratory.

GAWK - It is GNU AWK. All GNU/Linux distributions ship GAWK. It is fully compatible with AWK
and NAWK.

Q10. Explain the working mechanism of awk.

Ans :
To become an expert AWK programmer, you need to know its internals. AWK follows a simple

workflow - Read, Execute, and Repeat. The following diagram depicts the workflow of AWK -

Read

AWK reads a line from the input stream (file, pipe, or stdin) and stores it in memory.

Execute

All AWK commands are applied sequentially on the input. By default AWK execute commands on
every line. We can restrict this by providing patterns.

Repeat

This process repeats until the file reaches its end.

Program Structure

Let us now understand the program structure of AWK.

BEGIN block

The syntax of the BEGIN block is as follows -

UNIT - I OPERATING SYSTEMS

17
Rahul Publications

Rahul Publications

Syntax

BEGIN {awk-commands}

The BEGIN block gets executed at program start-up. It executes only once. This is good place to
initialize variables. BEGIN is an AWK keyword and hence it must be in upper-case. Please note that this
block is optional.

Body Block

The syntax of the body block is as follows -

Syntax

/pattern/ {awk-commands}

The body block applies AWK commands on every input line. By default, AWK executes commands
on every line. We can restrict this by providing patterns. Note that there are no keywords for the Body
block.

END Block

The syntax of the END block is as follows -

Syntax

END {awk-commands}

The END block executes at the end of the program. END is an AWK keyword and hence it must be
in upper-case. Please note that this block is optional.

Let us create a file marks.txt which contains the serial number, name of the student, subject name,
and number of marks obtained.

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

Let us now display the file contents with header by using AWK script.

Example

[jerry]$ awk 'BEGIN{printf "Sr No\tName\tSub\tMarks\n"} {print}' marks.txt

When this code is executed, it produces the following result -

Output

Sr No Name Sub Marks

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

MCA I YEAR II SEMESTER

18
Rahul Publications

Rahul Publications

At the start, AWK prints the header from the BEGIN block. Then in the body block, it reads a line
from a file and executes AWK's print command which just prints the contents on the standard output
stream. This process repeats until file reaches the end.

Q11. Explain the basic syntax of awk.

Ans : (Imp.)

AWK is simple to use. We can provide AWK commands either directly from the command line or in
the form of a text file containing AWK commands.

AWK Command Line

We can specify an AWK command within single quotes at command line as shown -

awk [options] file ...

Example

Consider a text file marks.txt with the following content -

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

Let us display the complete content of the file using AWK as follows -

Example

[jerry]$ awk '{print}' marks.txt

On executing this code, you get the following result -

Output

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

AWK Program File

We can provide AWK commands in a script file as shown -

awk [options] -f file

First, create a text file command.awk containing the AWK command as shown below -

{print}

Now we can instruct the AWK to read commands from the text file and perform the action. Here, we
achieve the same result as shown in the above example.

UNIT - I OPERATING SYSTEMS

19
Rahul Publications

Rahul Publications

Example

[jerry]$ awk -f command.awk marks.txt

On executing this code, you get the following result -

Output

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

AWK Standard Options

AWK supports the following standard options which can be provided from the command line.

The -v option

This option assigns a value to a variable. It allows assignment before the program execution. The
following example describes the usage of the -v option.

Example

[jerry]$ awk -v name=Jerry 'BEGIN{printf "Name = %s\n", name}'

On executing this code, you get the following result -

Output

Name = Jerry

The --dump-variables[=file] option

It prints a sorted list of global variables and their final values to file. The default file is awkvars.out.

Example

[jerry]$ awk --dump-variables ''

[jerry]$ cat awkvars.out

On executing the above code, you get the following result -

Output

ARGC: 1
ARGIND: 0
ARGV: array, 1 elements
BINMODE: 0
CONVFMT: "%.6g"
ERRNO: ""
FIELDWIDTHS: ""
FILENAME: ""
FNR: 0
FPAT: "[^[:space:]]+"
FS: " "

MCA I YEAR II SEMESTER

20
Rahul Publications

Rahul Publications

IGNORECASE: 0
LINT: 0
NF: 0
NR: 0
OFMT: "%.6g"
OFS: " "
ORS: "\n"
RLENGTH: 0
RS: "\n"
RSTART: 0
RT: ""
SUBSEP: "\034"
TEXTDOMAIN: "messages"

The --help option

This option prints the help message on standard output.

Example

[jerry]$ awk --help

On executing this code, you get the following result -

Output

Usage: awk [POSIX or GNU style options] -f progfile [--] file ...

Usage: awk [POSIX or GNU style options] [--] 'program' file ...

POSIX options : GNU long options: (standard)

 -f progfile --file=progfile

 -F fs --field-separator=fs

 -v var=val --assign=var=val

Short options : GNU long options: (extensions)

 -b --characters-as-bytes

 -c --traditional

 -C --copyright

 -d[file] --dump-variables[=file]

 -e 'program-text' --source='program-text'

 -E file --exec=file

 -g --gen-pot

 -h --help

 -L [fatal] --lint[=fatal]

 -n --non-decimal-data
 -N --use-lc-numeric

 -O --optimize

 -p[file] --profile[=file]

UNIT - I OPERATING SYSTEMS

21
Rahul Publications

Rahul Publications

 -P --posix

 -r --re-interval

 -S --sandbox

 -t --lint-old

 -V --version

The --lint[=fatal] option

This option enables checking of non-portable or dubious constructs. When an argument fatal is
provided, it treats warning messages as errors. The following example demonstrates this -

Example

[jerry]$ awk --lint '' /bin/ls

On executing this code, you get the following result -

Output

awk: cmd. line:1: warning: empty program text on command line

awk: cmd. line:1: warning: source file does not end in newline

awk: warning: no program text at all!

The --posix option

This option turns on strict POSIX compatibility, in which all common and gawk-specific extensions
are disabled.

The --profile[=file] option

This option generates a pretty-printed version of the program in file. Default file is awkprof.out.
Below simple example illustrates this -

Example

[jerry]$ awk --profile 'BEGIN{printf"---|Header|--\n"} {print}

END{printf"---|Footer|---\n"}' marks.txt > /dev/null

[jerry]$ cat awkprof.out

On executing this code, you get the following result -

Output

gawk profile, created Sun Oct 26 19:50:48 2014
 # BEGIN block(s)
 BEGIN {
 printf "---|Header|--\n"
 }
 # Rule(s) {
 print $0
 }
 # END block(s)
 END {

MCA I YEAR II SEMESTER

22
Rahul Publications

Rahul Publications

 printf "---|Footer|---\n"

 }

The --traditional option

This option disables all gawk-specific extensions.

The --version option

This option displays the version information of the AWK program.

Example

[jerry]$ awk --version

When this code is executed, it produces the following result -

Output

GNU Awk 4.0.1

Copyright (C) 1989, 1991-2012 Free Software Foundation.

Q12. What are the built in variables present in awk?

Ans :
AWK provides several built-in variables. They play an important role while writing AWK scripts. This

chapter demonstrates the usage of built-in variables.

Standard AWK Variables

The standard AWK variables are discussed below.

ARGC

It implies the number of arguments provided at the command line.

Example

[jerry]$ awk 'BEGIN {print "Arguments =", ARGC}' One Two Three Four

On executing this code, you get the following result -

Output

Arguments = 5

But why AWK shows 5 when you passed only 4 arguments? Just check the following example to
clear your doubt.

ARGV

It is an array that stores the command-line arguments. The array's valid index ranges from 0 to
ARGC-1.

Example

[jerry]$ awk 'BEGIN {
 for (i = 0; i < ARGC - 1; ++i) {
 printf "ARGV[%d] = %s\n", i, ARGV[i]
 }
}' one two three four

UNIT - I OPERATING SYSTEMS

23
Rahul Publications

Rahul Publications

On executing this code, you get the following result -

Output

ARGV[0] = awk
ARGV[1] = one
ARGV[2] = two
ARGV[3] = three

CONVFMT

It represents the conversion format for numbers. Its default value is %.6g.

Example

[jerry]$ awk 'BEGIN { print "Conversion Format =", CONVFMT }'

On executing this code, you get the following result -

Output

Conversion Format = %.6g

ENVIRON

It is an associative array of environment variables.

Example

[jerry]$ awk 'BEGIN { print ENVIRON["USER"] }'

On executing this code, you get the following result -

Output

jerry

To find names of other environment variables, use env command.

FILENAME

It represents the current file name.

Example

[jerry]$ awk 'END {print FILENAME}' marks.txt

On executing this code, you get the following result -

Output

marks.txt

Please note that FILENAME is undefined in the BEGIN block.

FS

It represents the (input) field separator and its default value is space. You can also change this by
using -F command line option.

Example

[jerry]$ awk 'BEGIN {print "FS = " FS}' | cat -vte

On executing this code, you get the following result -

Output

FS = $

MCA I YEAR II SEMESTER

24
Rahul Publications

Rahul Publications

NF

It represents the number of fields in the current record. For instance, the following example prints
only those lines that contain more than two fields.

Example

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NF > 2'

On executing this code, you get the following result -

Output

One Two Three

One Two Three Four

NR

It represents the number of the current record. For instance, the following example prints the record
if the current record number is less than three.

Example

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NR < 3'

On executing this code, you get the following result -

Output

One Two
One Two Three

FNR

It is similar to NR, but relative to the current file. It is useful when AWK is operating on multiple files.
Value of FNR resets with new file.

OFMT

It represents the output format number and its default value is %.6g.

Example

[jerry]$ awk 'BEGIN {print "OFMT = " OFMT}'

On executing this code, you get the following result -

Output

OFMT = %.6g

OFS

It represents the output field separator and its default value is space.

Example

[jerry]$ awk 'BEGIN {print "OFS = " OFS}' | cat -vte

On executing this code, you get the following result -

Output

OFS = $

ORS

It represents the output record separator and its default value is newline.

UNIT - I OPERATING SYSTEMS

25
Rahul Publications

Rahul Publications

Example

[jerry]$ awk 'BEGIN {print "ORS = " ORS}' | cat -vte

On executing the above code, you get the following result -

Output

ORS = $
$

RLENGTH

It represents the length of the string matched by match function. AWK's match function searches for
a given string in the input-string.

Example

[jerry]$ awk 'BEGIN { if (match("One Two Three", "re")) { print RLENGTH } }'

On executing this code, you get the following result -

Output

2

RS

It represents (input) record separator and its default value is newline.

Example

[jerry]$ awk 'BEGIN {print "RS = " RS}' | cat -vte

On executing this code, you get the following result -

Output

RS = $

$

RSTART

It represents the first position in the string matched by match function.

Example

[jerry]$ awk 'BEGIN { if (match("One Two Three", "Thre")) { print RSTART } }'

On executing this code, you get the following result -

Output

9

SUBSEP

It represents the separator character for array subscripts and its default value is \034.

Example

[jerry]$ awk 'BEGIN { print "SUBSEP = " SUBSEP }' | cat -vte

On executing this code, you get the following result -

Output

SUBSEP = ^\$

MCA I YEAR II SEMESTER

26
Rahul Publications

Rahul Publications

$0

It represents the entire input record.

Example

[jerry]$ awk '{print $0}' marks.txt

On executing this code, you get the following result -

Output

1) Amit Physics 80
2) Rahul Maths 90
3) Shyam Biology 87
4) Kedar English 85
5) Hari History 89

$n

It represents the nth field in the current record where the fields are separated by FS.

Example

[jerry]$ awk '{print $3 "\t" $4}' marks.txt

On executing this code, you get the following result -

Output

Physics 80
Maths 90
Biology 87
English 85
History 89

GNU AWK Specific Variables

GNU AWK specific variables are as follows -

ARGIND

It represents the index in ARGV of the current file being processed.

Example

[jerry]$ awk '{
 print "ARGIND = ", ARGIND; print "Filename = ", ARGV[ARGIND]
}' junk1 junk2 junk3

On executing this code, you get the following result -

Output

ARGIND = 1
Filename = junk1
ARGIND = 2
Filename = junk2
ARGIND = 3
Filename = junk3

UNIT - I OPERATING SYSTEMS

27
Rahul Publications

Rahul Publications

BINMODE

It is used to specify binary mode for all file I/O on non-POSIX systems. Numeric values of 1, 2, or 3
specify that input files, output files, or all files, respectively, should use binary I/O. String values of r or w
specify that input files or output files, respectively, should use binary I/O. String values of rw or wr specify
that all files should use binary I/O.

ERRNO

A string indicates an error when a redirection fails for getline or if close call fails.

Example

[jerry]$ awk 'BEGIN { ret = getline < "junk.txt"; if (ret == -1) print "Error:", ERRNO }'

On executing this code, you get the following result -

Output

Error: No such file or directory

FIELDWIDTHS

A space separated list of field widths variable is set, GAWK parses the input into fields of fixed width,
instead of using the value of the FS variable as the field separator.

IGNORECASE

When this variable is set, GAWK becomes case-insensitive. The following example demonstrates
this-

Example

[jerry]$ awk 'BEGIN{IGNORECASE = 1} /amit/' marks.txt

On executing this code, you get the following result -

Output

1) Amit Physics 80

LINT

It provides dynamic control of the --lint option from the GAWK program. When this variable is set,
GAWK prints lint warnings. When assigned the string value fatal, lint warnings become fatal errors, exactly
like --lint=fatal.

Example

[jerry]$ awk 'BEGIN {LINT = 1; a}'

On executing this code, you get the following result -

Output

awk: cmd. line:1: warning: reference to uninitialized variable `a'
awk: cmd. line:1: warning: statement has no effect

PROCINFO

This is an associative array containing information about the process, such as real and effective UID
numbers, process ID number, and so on.

Example

[jerry]$ awk 'BEGIN { print PROCINFO["pid"] }'

On executing this code, you get the following result -

MCA I YEAR II SEMESTER

28
Rahul Publications

Rahul Publications

Output

4316

TEXTDOMAIN

It represents the text domain of the AWK program. It is used to find the localized translations for the
program's strings.

Example

[jerry]$ awk 'BEGIN { print TEXTDOMAIN }'

On executing this code, you get the following result -

Output

messages

Q13. Explain the various operators of awk.

Ans :

S.No. Operators & Description

1 Arithmetic Operators
AWK supports the following arithmetic operators.

2 Increment and Decrement Operators
AWK supports the following increment and decrement operators.

3 Assignment Operators
AWK supports the following assignment operators.

4 Relational Operators
AWK supports the following relational operators.

5 Logical Operators
AWK supports the following logical operators.

6 Ternary Operator
We can easily implement a condition expression using ternary operator.

7 Unary Operators
AWK supports the following unary operators.

8 Exponential Operators
There are two formats of exponential operators.

9 String Concatenation Operator
Space is a string concatenation operator that merges two strings.

10 Array Membership Operator
It is represented by in. It is used while accessing array elements.

11 Regular Expression Operators
This example explains the two forms of regular expressions operators.

UNIT - I OPERATING SYSTEMS

29
Rahul Publications

Rahul Publications

1.2 INTRODUCTION TO OPERATING SYSTEMS

1.2.1 Os Structure And Strategies

Q14. What is Operating System? Explain about it.

Ans :
Meaning

Operating System is software that works as an interface between a user and the computer hardware.
The primary objective of an operating system is to make computer system convenient to use and to
utilize computer hardware in an efficient manner. The operating system performs the basic tasks such as
receiving input from the keyboard, processing instructions and sending output to the screen.

Operating system is software that is required in order to run application programs and utilities. It
works as a bridge to perform better interaction between application programs and hardware of the
computer. Various types of operating systems’ are UNIX, MS-DOS, MS-Windows - 98/XP/Vista, Windows-
NT/2000, OS/2 and Mac OS.

Operating system manages overall activities of a computer and the input/output devices attached
to the computer. It is the first software you see when you turn on the computer, and the last software you
see when the computer is turned off. It is the software that enables all the programs you use. At the
simplest level, an operating system does two things:

 The first, it manages the hardware and software resources of the computer system. These resources
include the processor, memory, disk space, etc.

 The second, it provides a stable, consistent way for applications to deal with the hardware without
having-to know all the details of the hardware.

 The first task is very important i.e. managing the hardware and software resources, as various
processes compete to each other for getting the CPU time and memory space to complete the
task. In this regard; the operating system acts as a manager to allocate the available resources to
‘satisfy the require-ments of each process.

 The second task i.e. providing a consistent application interface is especially important. A consistent
application program interface (API) allows a user (or S/W developer) to write an application program
on any computer and to run this program on another computer, even if the hardware configuration
is different like as amount of memory, type of CPU or storage disk. It shields the user of the machine
from the low-level details of the machine’s operation and provides frequently needed facilities.

MCA I YEAR II SEMESTER

30
Rahul Publications

Rahul Publications

 When you turn on the computer, the
operating system program is loaded into the
main memory. This program is called the
kernel. Once initialized, the system program
is prepared to run the user programs and
permits them to use the hardware efficiently.
Windows 98/XP is an excellent example that
supports different types of hardware
configurations from thousands of vendors
and accommodates thousands of different I/
O devices like printers, disk drives, scanners
and cameras.

 Operating systems may be classified based on
if multiple tasks can be performed simultan-
eously, and if the system can be used by
multiple users. It can be termed as single-user
or multi-user OS, and single-tasking or multi-
tasking OS.A multi-user system must be multi-
tasking. MS-DOS and Windows 3x are
examples of single user operating system.
Whereas UNIX is an example of multi-user
and multitasking operating system.

For Better understanding you can see the
Working of the Operating System.

So we can say that the Operating System have
the Following Characteristics:

1. Operating System is a Collection of Programs
those are Responsible for the Execution of
other Programs.

2. Operating System is that which Responsible
is for Controlling all the Input and Output
Devices those are connected to the System.

3. Operating System is that which Responsible
is for Running all the Application Software’s.

4. Operating System is that which Provides
Scheduling to the Various Processes Means
Allocates the Memory to various Process those
Wants to Execute.

5. Operating System is that which provides the
Communication between the user and the
System.

6. Operating System is Stored into the BIOS
Means in the Basic Input and Output System
means when a user Starts his System then
this will Read all the instructions those are
Necessary for Executing the System Means
for Running the Operating System,
Operating System Must be Loaded into the
Computer For this, this will use the Floppy
or Hard Disks Which Stores the Operating
System.

Q15. Explain the structure of the Operating
system.

Ans :
Operating System Structure

In MS-DOS, applications may bypass the
operating system.

 Operating systems such as MS-DOS and the
original UNIX did not have well-defined
structures.

 There was no CPU Execution Mode (user
and kernel), and so errors in applications
could cause the whole system to crash.

Monolithic Approach

 Functionality of the OS is invoked with simple
function calls within the kernel, which is one
large program.

 Device drivers are loaded into the running
kernel and become part of the kernel.

UNIT - I OPERATING SYSTEMS

31
Rahul Publications

Rahul PublicationsA monolithic kernel, such as Linux and other Unix systems

Layered Approach

This approach breaks up the operating system into different layers.

 This allows implementers to change the inner workings, and increases modularity.

 As long as the external interface of the routines don’t change, developers have more freedom to
change the inner workings of the routines.

 With the layered approach, the bottom layer is the hardware, while the highest layer is the user
interface.

 The main advantage is simplicity of construction and debugging.

 The main difficulty is defining the various layers.

 The main disadvantage is that the OS tends to be less efficient than other implementations.

The Microsoft Windows NT Operating System. The lowest level is a monolithic kernel, but many OS
components are at a higher level, but still part of the OS.

MCA I YEAR II SEMESTER

32
Rahul Publications

Rahul Publications

Microkernels

This structures the operating system by removing all nonessential portions of the kernel and
implementing them as system and user level programs.

 Generally they provide minimal process and memory management, and a communications facility.

 Communication between components of the OS is provided by message passing.

The benefits of the microkernel are as follows:

 Extending the operating system becomes much easier.

 Any changes to the kernel tend to be fewer, since the kernel is smaller.

 The microkernel also provides more security and reliability.

Main disadvantage is poor performance due to increased system overhead from message passing.

A Microkernel architecture.

Q16. Write about the strategies performed by the OS.

Or

Write about various types of Operating Systems.

Ans :
Operating system strategies

Depending on the needs of its users, a computer’s operating system may be designed to use different
strategies to serve the users’ needs best.

Types of Operating Systems

Following are some of the most widely used types of Operating system.

1. Simple Batch System

2. Multiprogramming Batch System

UNIT - I OPERATING SYSTEMS

33
Rahul Publications

Rahul Publications

3. Multiprocessor System

4. Desktop System

5. Distributed Operating System

6. Client Server

7. Realtime Operating System

8. Handheld System

1. Simple Batch Systems

 In this type of system, there is no direct
interaction between user and the computer.

 The user has to submit a job (written on cards
or tape) to a computer operator.

 Then computer operator places a batch of
several jobs on an input device.

 Jobs are batched together by type of
languages and requirement.

 Then a special program, the monitor,
manages the execution of each program in
the batch.

 The monitor is always in the main memory
and available for execution.

Following are some disadvantages of this type
of system :

1. No interaction between user and computer.

2. No mechanism to prioritise the processes.

2. Multiprogramming Batch Systems

 In this the operating system picks up and
begins to execute one of the jobs from
memory.

 Once this job needs an I/O operation
operating system switches to another job
(CPU and OS always busy).

 Jobs in the memory are always less than the
number of jobs on disk(Job Pool).

 If several jobs are ready to run at the same
time, then the system chooses which one to
run through the process of CPU Scheduling.

 In Non-multiprogrammed system, there are
moments when CPU sits idle and does not
do any work.

 In Multiprogramming system, CPU will never
be idle and keeps on processing.

Time-Sharing Systems are very similar to
Multiprogramming batch systems. In fact time
sharing systems are an extension of multiprogra-
mming systems.

In time sharing systems the prime focus is on
minimizing the response time, while in multiprogra-
mming the prime focus is to maximize the CPU
usage.

3. Multiprocessor Systems

A multiprocessor system consists of several
processors that share a common physical memory.
Multiprocessor system provides higher computing
power and speed. In multiprocessor system all
processors operate under single operating system.
Multiplicity of the processors and how they do act
together are transparent to the others.

Following are some advantages of this type
of system.

1. Enhanced performance

2. Execution of several tasks by different
processors concurrently, increases the
system’s throughput without speeding up the
execution of a single task.

MCA I YEAR II SEMESTER

34
Rahul Publications

Rahul Publications

3. If possible, system divides task into many subtasks and then these subtasks can be executed in
parallel in different processors. Thereby speeding up the execution of single tasks.

4. Desktop Systems

Earlier, CPUs and PCs lacked the features needed to protect an operating system from user programs.
PC operating systems therefore were neither multiuser nor multitasking. However, the goals of these
operating systems have changed with time; instead of maximizing CPU and peripheral utilization, the
systems opt for maximizing user convenience and responsiveness. These systems are called Desktop
Systems and include PCs running Microsoft Windows and the Apple Macintosh. Operating systems
for these computers have benefited in several ways from the development of operating systems for main-
frames.

Microcomputers were immediately able to adopt some of the technology developed for larger
operating systems. On the other hand, the hardware costs for microcomputers are sufficiently low that
individuals have sole use of the computer, and CPU utilization is no longer a prime concern. Thus, some
of the design decisions made in operating systems for mainframes may not be appropriate for smaller
systems.

5. Distributed Operating Systems

The motivation behind developing distributed operating systems is the availability of powerful and
inexpensive microprocessors and advances in communication technology.

These advancements in technology have made it possible to design and develop distributed systems
comprising of many computers that are inter connected by communication networks. The main benefit of
distributed systems is its low price/performance ratio.

Following are some advantages of this type of system.

1. As there are multiple systems involved, user at one site can utilize the resources of systems at other
sites for resource-intensive tasks.

2. Fast processing.

3. Less load on the Host Machine.

The two types of Distributed Operating Systems are: Client-Server Systems and Peer-to-Peer
Systems.

6. Client-Server Systems

Centralized systems today act as server systems to satisfy requests generated by client
systems. The general structure of a client-server system is depicted in the figure below:

Server Systems can be broadly categorized as compute servers and file servers.

UNIT - I OPERATING SYSTEMS

35
Rahul Publications

Rahul Publications

 Compute-server systems provide an interface to which clients can send requests to perform an
action, in response to which they execute the action and send back results to the client.

 File-server systems provide a file-system interface where clients can create, update, read, and
delete files.

Peer-to-peer Systems

The growth of computer networks - especially the Internet and World Wide Web (WWW) – has had
a profound influence on the recent development of operating systems. When PCs were introduced in the
1970s, they were designed for personal use and were generally considered standalone computers.
With the beginning of widespread public use of the Internet in the 1980s for electronic mail and ftp many
PCs became connected to computer networks.

In contrast to the tightly coupled systems, the computer networks used in these applications
consist of a collection of processors that do not share memory or a clock. Instead, each processor has its
own local memory. The processors communicate with one another through various communication lines,
such as high-speed buses or telephone lines. These systems are usually referred to as loosely coupled
systems (or distributed systems). The general structure of a client-server system is depicted in the figure
below:

Clustered Systems

 Like parallel systems, clustered systems gather together multiple CPUs to accomplish computational
work.

 Clustered systems differ from parallel systems, however, in that they are composed of two or more
individual systems coupled together.

 The definition of the term clustered is not concrete; the general accepted definition is that clustered
computers share storage and are closely linked via LAN networking.

 Clustering is usually performed to provide high availability.

 A layer of cluster software runs on the cluster nodes. Each node can monitor one or more of the
others. If the monitored machine fails, the monitoring machine can take ownership of its storage,
and restart the application(s) that were running on the failed machine. The failed machine can
remain down, but the users and clients of the application would only see a brief interruption of
service.

 Asymmetric Clustering - In this, one machine is in hot standby mode while the other is running
the applications. The hot standby host (machine) does nothing but monitor the active server. If that
server fails, the hot standby host becomes the active server.

MCA I YEAR II SEMESTER

36
Rahul Publications

Rahul Publications

 Symmetric Clustering - In this, two or
more hosts are running applications, and they
are monitoring each other. This mode is
obviously more efficient, as it uses all of the
available hardware.

 Parallel Clustering - Parallel clusters allow
multiple hosts to access the same data on the
shared storage. Because most operating
systems lack support for this simultaneous
data access by multiple hosts, parallel clusters
are usually accomplished by special versions
of software and special releases of
applications.

Clustered technology is rapidly changing.
Clustered system use and features should expand
greatly as Storage Area Networks(SANs). SANs
allow easy attachment of multiple hosts to multiple
storage units. Current clusters are usually limited to
two or four hosts due to the complexity of
connecting the hosts to shared storage.

7. Real-time Operating System

It is defined as an operating system known to
give maximum time for each of the critical
operations that it performs, like OS calls and interrupt
handling.

The Real-Time Operating system which
guarantees the maximum time for critical operations
and complete them on time are referred to as Hard
Real-Time Operating Systems.

While the real-time operating systems that can
only guarantee a maximum of the time, i.e. the
critical task will get priority over other tasks, but no
assurity of completeing it in a defined time. These
systems are referred to as Soft Real-Time
Operating Systems.

8. Handheld Systems

Handheld systems include Personal Digital
Assistants(PDAs), such as Palm-Pilots or
Cellular. Telephones with connectivity to a network
such as the Internet. They are usually of limited size
due to which most handheld devices have a small
amount of memory, include slow processors, and
feature small display screens.

 Many handheld devices have between 512
KB and 8 MB of memory. As a result, the
operating system and applications must
manage memory efficiently. This includes
returning all allocated memory back to the
memory manager once the memory is no
longer being used.

 Currently, many handheld devices do not
use virtual memory techniques, thus
forcing program developers to work within
the confines of limited physical memory.

 Processors for most handheld devices often
run at a fraction of the speed of a processor
in a PC. Faster processors require more
power. To include a faster processor in a
handheld device would require a larger
battery that would have to be replaced
more frequently.

 The last issue confronting program designers
for handheld devices is the small display
screens typically available. One approach for
displaying the content in web pages is web
clipping, where only a small subset of a web
page is delivered and displayed on the
handheld device.

Some handheld devices may use wireless
technology such as BlueTooth, allowing
remote access to e-mail and web
browsing. Cellular telephones with
connectivity to the Internet fall into this
category. Their use continues to expand as
network connections become more available
and other options such as cameras and MP3
players, expand their utility.

Q17. Explain various functions of OS.

Ans :
There are Many Functions those are

Performed by the Operating System But the Main
Goal of Operating System is to Provide the
Interface between the user and the hardware Means
Provides the Interface for Working on the System
by the user. The various Functions those are
Performed by the Operating Systemare as
Explained below:

UNIT - I OPERATING SYSTEMS

37
Rahul Publications

Rahul Publications

1. Operating System as a Resource
Manager

Operating System Also Known as the
Resource Manager Means Operating
System will Manages all the Resources those
are Attached to the System means all the
Resource like Memory and Processor and
all the Input output Devices those are Attached
to the System are Known as the Resources
of the ComputerSystem and the Operating
system will Manage all the Resources of the
System. The Operating System will identify
at which Time the CPU will perform which
Operation and in which Time the Memory is
used by which Programs. And which Input
Device will respond to which Request of the
user means When the Input and Output
Devices are used by the which Programs. So
this will manage all the Resources those are
attached to the Computer System.

2. Storage Management

Operating System also Controls the all the
Storage Operations means how the data or
files will be Stored into the computers and
how the Files will be Accessed by the users
etc. All the Operations those are Responsible
for Storing and Accessing the Files is
determined by the Operating System
Operating System also Allows us Creation of
Files, Creation of Directories and Reading and
Writing the data of Files and Directories and
also Copy the contents of the Files and the
Directories from One Place to Another
Place.

3. Process Management

The Operating System also Treats the
Process Management means all the Processes
those are given by the user or the Process
those are System ‘s own Process are Handled
by the Operating System. The Operating
SystemwillCreate the Priorities foe the user
and also Start or Stops the Execution of the
Process and Also Makes the Child Process
after dividing the Large Processes into the
Small Processes

4. Memory Management

Operating System also Manages the Memory
of the Computer System means Provide the
Memory to the Process and Also Deallocate
the Memory from the Process. And also
defines that if a Process gets completed then
this will deallocate the Memory from the
Processes.

5. Extended Machine

Operating System also behaves like an
Extended Machine means Operating
system also Provides us Sharing of Files
between Multiple Users, also Provides Some
Graphical Environments and also Provides
Various Languages for Communications and
also Provides Many Complex Operations like
using Many Hardware’s and Software’s.

Operating System also controls the Errors
those have been Occurred into the Program
and Also Provides Recovery of the System
when the System gets Damaged Means When
due to Some Hardware Failure.

1.2.2 Process Concepts

Q18. What is a Process? Explain about it.

Ans :
A program in the execution is called a Process.

Process is not the same as program. A process is
more than a program code. A process is an ‘active’
entity as opposed to program which is considered
to be a ‘passive’ entity. Attributes held by process
include hardware state, memory, CPU etc.

Process memory is divided into four sections
for efficient working :

 The text section is made up of the compiled
program code, read in from non-volatile
storage when the program is launched.

 The data section is made up the global and
static variables, allocated and initialized prior
to executing the main.

 The heap is used for the dynamic memory
allocation, and is managed via calls to new,
delete, malloc, free, etc.

 The stack is used for local variables. Space
on the stack is reserved for local variables
when they are declared.

MCA I YEAR II SEMESTER

38
Rahul Publications

Rahul Publications

Q19. What is process state? And Explain Various Process States.

Ans :
A process which is Executed by the Process have various States, the State of the Process is also

called as the Status of the process, The Status includes whether the Process has Executed or Whether
the process is Waiting for Some input and output from the user and whether the Process is Waiting for
the CPUto Run the Program after the Completion of the Process.

The various States of the Process are as Followings :

1. New State

When a user request for a Service from the System , then the System will first initialize the process
or the System will call it an initial Process . So Every new Operation which is Requested to the
System is known as the New Born Process.

2. Running State

When the Process is Running under the CPU, or When the Program is Executed by the CPU , then
this is called as the Running process and when a process is Running then this will also provides us
Some Outputs on the Screen.

3. Waiting

When a Process is Waiting for Some Input and Output Operations then this is called as the Waiting
State. And in this process is not under the Execution instead the Process is Stored out of Memory
and when the user will provide the input then this will Again be on ready State.

4. Ready State

When the Process is Ready to Execute but he is waiting for the CPU to Execute then this is called as
the Ready State. After the Completion of the Input and outputs the Process will be on Ready State
means the Process will Wait for the Processor to Execute.

5. Terminated State

After the Completion of the Process , the Process will be Automatically terminated by the CPU . So
this is also called as the Terminated State of the Process. After Executing the Whole Process the
Processor will Alsodeallocate the Memory which is allocated to the Process. So this is called as the
Terminated Process.

As we know that there are many processes those are running at a Time, this is not true. A processor
can execute only one Process at a Time. There are the various States of the Processes those determined

UNIT - I OPERATING SYSTEMS

39
Rahul Publications

Rahul Publications

which Process will be executed. The Processor will Execute all the processes by using the States of the
Processes, the Processes those are on the Waiting State will not be executed and CPU will Also divides his
time for Execution if there are Many Processes those are Ready to Execute.

When a Process Change his State from one State to Another, then this is also called as the Process
State Transition. In this a Running Process may goes on Wait and a ready Process may goes on the Wait
State and the Wait State can be goes on the Running State.

Q20. Write a note on Process Control Black (PCB).

Ans :
Process Control block is used for storing the collection of information about the Processes and

this is also called as the Data Structure which Stores the information about the process. The information of
the Process is used by the CPU at the Run time. The various information which is Stored into the PCB as
followings:

1. Name of the Process.

2. State of the Process. Means Ready, Active, Wait.

3. Resources allocated to the Process

4. Memory which is provided to the Process.

5. Scheduling information.

6. Input and Output Devices used by the Process.

7. Process ID or a Identification Number which is given by the CPU when a Process Request for a
Service.

Q21. What are the various operations performed on the processor?

Ans :
i) Process Creation

Through appropriate system calls, such as fork or spawn, processes may create other processes.
The process which creates other process, is termed the parent of the other process, while the created
sub-process is termed its child.

MCA I YEAR II SEMESTER

40
Rahul Publications

Rahul Publications

Each process is given an integer identifier, termed as process identifier, or PID. The parent PID
(PPID) is also stored for each process.

A child process may receive some amount of shared resources with its parent depending on system
implementation. To prevent runaway children from consuming all of a certain system resource, child
processes may or may not be limited to a subset of the resources originally allocated to the parent.

A Tree of Processes on a typical Linux System

There are two options for the parent process after creating the child :

 Wait for the child process to terminate before proceeding. Parent process makes a wait() system
call, for either a specific child process or for any particular child process, which causes the parent
process to block until the wait() returns. UNIX shells normally wait for their children to complete
before issuing a new prompt.

 Run concurrently with the child, continuing to process without waiting. When a UNIX shell runs a
process as a background task, this is the operation seen. It is also possible for the parent to run for
a while, and then wait for the child later, which might occur in a sort of a parallel processing
operation.

ii) Process Termination

By making the exit(system call), typically returning an int, processes may request their own
termination. This int is passed along to the parent if it is doing a wait(), and is typically zero on successful
completion and some non-zero code in the event of any problem.

Processes may also be terminated by the system for a variety of reasons, including :

 The inability of the system to deliver the necessary system resources.

 In response to a KILL command or other unhandled process interrupts.

 A parent may kill its children if the task assigned to them is no longer needed i.e. if the need of
having a child terminates.

 If the parent exits, the system may or may not allow the child to continue without a parent (In UNIX
systems, orphaned processes are generally inherited by init, which then proceeds to kill them.)

UNIT - I OPERATING SYSTEMS

41
Rahul Publications

Rahul Publications

When a process ends, all of its system resources are freed up, open files flushed and closed, etc. The
process termination status and execution times are returned to the parent if the parent is waiting for the
child to terminate, or eventually returned to init if the process already became an orphan.

The processes which are trying to terminate but cannot do so because their parent is not waiting for
them are termed zombies. These are eventually inherited by init as orphans and killed off.

iii) Context Switch

A context switch is the mechanism to store and restore the state or context of a CPU in Process
Control block so that a process execution can be resumed from the same point at a later time. Using this
technique, a context switcher enables multiple processes to share a single CPU. Context switching is an
essential part of a multitasking operating system features.

When the scheduler switches the CPU from executing one process to execute another, the state
from the current running process is stored into the process control block. After this, the state for the
process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that point, the
second process can start executing.

Context switches are computationally intensive since register and memory state must be saved and
restored. To avoid the amount of context switching time, some hardware systems employ two or more
sets of processor registers. When the process is switched, the following information is stored for later use.

 Program Counter

 Scheduling information

MCA I YEAR II SEMESTER

42
Rahul Publications

Rahul Publications

 Base and limit register value

 Currently used register

 Changed State

 I/O State information

 Accounting information

Q22. Explain how the processes will
communicate with each other.

Ans :
The OS provides the means for cooperating

processes to communicate with each other via an
interprocess communication (IPC) facility. IPC
provides a mechanism to allow processes to
communicate and to synchronize their actions
without sharing the same address space. IPC is
particularly useful in a distributed environment
where the communicating processes may reside on
different computers connected with a network e.g.
chat program used on the world wide web. IPC is
best provided by a message passing system, and
the message systems can be defined in many ways.

Message Passing System

Message system allows processes to
communicate with one another without the need
to resort to shared data. Services are provided as
ordinary user processes operate outside the kernel.

Communication among the user processes is
accomplishedthrough the passing of messages.

An IPC facility provides at least two
operations: send (message) and receive (message).

Messages sent by a process can be of either
fixed or variable size.

If processes P and Q want to communicate,
they must send messages to send and receive from
each other; a communication link must exist
between them. There are several methods for logical
implementation of a link as follows:

 Direct or indirect communication.

 Symmetric or asymmetric communication.

 Automatic or explicit buffering

 Send by copy or send by reference.

 Fixed-sized or variable-sized message.

(a) Direct Communication

Each process that wants to communicate must
explicitly name the recipient or sender of the
communication. The send and receive primitives are
defied as:

 send (P, message) – Send a message to
process P.

 receive (Q, message)–Receive a message from
process Q.

A communication link in this scheme has the
following properties:

 A link is established automatically between
every pair of processes that want to
communicate. The processes need to know
only each other’s identity to communicate.

 A link is associated with exactly two processes.

 Exactly one link exists between each pair of
processes.

This scheme exhibits symmetry in addressing;
that is, both the sender and the receiver processes
must name the other to communicate.

A variant of this scheme employs asymmetry
in addressing. Only the sender names the recipient;
the recipient is not required to name the sender. In
this scheme, the send and receive primitives are as
follows:

 send (P, message) – Send a message to
process P.

 receive (id, message) – Receive a message
from any process; the variable id is set to the
name of the process with which
communication has taken place.

The disadvantage in both schemes:

Changing the name of a process may
necessitate examining all other process definitions.
All references to the old name must be found, so
that they can be modified to the new name. This
situation is not desirable from the viewpoint of
separate compilation.

(b) Indirect Communication

The messages are sent to and received from
mailboxes, or ports. Each mailbox has a unique
identification. Two processes can communicate only

UNIT - I OPERATING SYSTEMS

43
Rahul Publications

Rahul Publications

if they share a mailbox. The send and receive
primitives are defined as follows:

 send (A, message) - Send a message to
mailbox A.

 receive (A,message) – Receive a message
from mailbox A.

In this scheme, a communication link has the
following properties:

 A link is established between a pair of
processes only if both members of the pair
have a shared mailbox.

 A link may be associated with more than two
processes.

 A number of different links may exist between
each pair of communicating processes, with
each link corresponding to one mailbox.

If processes P1, P2 and P3 all share mailbox
A. Process P1 sends a message to A, while P2 and
P3 each execute and receive from A.

The process to receive the message depends
on one of the scheme that:

 Allows a link to be associated with at most
two processes.

 Allows utmost one process at a time to execute
a receive operation.

 Allows the system to select arbitrarily which
process will receive the message (that is either
P2 or P3, but not both, will receive the
message). The system may identify the
receiver to the sender.

If the mailbox is owned by process (that is,
the mailbox is part of the address space of the
process), then we distinguish between the owner
(who can only receive messages through this
mailbox) and the user (who can only send messages
to the mailbox). When a process that owns a mailbox
terminates, the mailbox disappears. Any process that
subsequently sends a message to this mailbox must
be notified that the mailbox no longer exists. On
the other hand, a mailbox owned by the OS is
independent and is not attached to any particular
process. The OS then must provide a mechanism
that allows a process to do the following:

 Create a new mailbox.

 Send and receive messages through the
mailbox.

 Delete a mailbox

Process who create a mailbox is the owner
by default and receives messages through this mail
box. Ownership can be changed by OS through
appropriate system calls to provide multiple receivers
for each mailbox.

(c) Synchronization

The send and receive system calls are used to
communicate between processes but there are
different design options for implementing these calls.
Message passing may be either

blockingor non-blocking - also known as
synchronous and asynchronous.

 Blocking send

The sending process is blocked until the
message is received by the receiving process
or by the mailbox.

 Non-blocking send:

The sending process sends the message and
resumes operation.

 Blocking receive

The receiver blocks until a message is
available.

 Non-blocking receive

The receiver retrieves either a valid message
or a null. Different combinations of send and
receive are possible. When both the send and
receive are blocking, we have a rendezvous
(to meet) between the sender and receiver.

(d) Buffering

During direct or indirect communication,
messages exchanged between communicating
processes reside in a temporary queue which are
implemented in the following three ways:

 Zero capacity

The queue has maximum length 0; thus, the
link cannot have any message waiting in it.
In this case, the sender must block until the
recipient receives the message. This is referred
to as no buffering.

MCA I YEAR II SEMESTER

44
Rahul Publications

Rahul Publications

 Bounded capacity
The queue has finite length n; thus, at most n messages can reside in it. If the queue is not full when
a new message is sent, the latter is placed in the queue (either the message is copied or a pointer to
the message is kept), and the sender can continue execution without waiting. If the link is full, the
sender must block until space is available in the queue. This is referred to as auto buffering

 Unbounded capacity
The queue has potentially infinite length; thus, any number of messages can wait in it. The sender
never blocks. This also referred to as auto buffering.

1.2.3 Multithreaded Programming
Q23. What is Thread? Explain about various type of threads.

Ans : (Imp.)

A thread is a flow of execution through the process code, with its own program counter that keeps
track of which instruction to execute next, system registers which hold its current working variables, and a
stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and open
files. When one thread alters a code segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to improve application
performance through parallelism. Threads represent a software approach to improving performance of
operating system by reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each thread
represents a separate flow of control. Threads have been successfully used in implementing network
servers and web server. They also provide a suitable foundation for parallel execution of applications on
shared memory multiprocessors. The following figure shows the working of a single-threaded and a
multithreaded process.

UNIT - I OPERATING SYSTEMS

45
Rahul Publications

Rahul Publications

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

Threads are implemented in following two ways

1. User Level Threads – User managed threads.

2. Kernel Level Threads – Operating System managed threads acting on kernel, an operating system
core.

1. User Level Threads

In this case, the thread management kernel is not aware of the existence of threads. The thread
library contains code for creating and destroying threads, for passing message and data between threads,
for scheduling thread execution and for saving and restoring thread contexts. The application starts with
a single thread.

MCA I YEAR II SEMESTER

46
Rahul Publications

Rahul Publications

Advantages

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

Disadvantages

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

2. Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread management code in the
application area. Kernel threads are supported directly by the operating system. Any application can be
programmed to be multithreaded. All of the threads within an application are supported within a single
process.

The Kernel maintains context information for the process as a whole and for individuals threads
within the process. Scheduling by the Kernel is done on a thread basis. The Kernel performs thread
creation, scheduling and management in Kernel space. Kernel threads are generally slower to create and
manage than the user threads.

Advantages

 Kernel can simultaneously schedule multiple threads from the same process on multiple processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the same process.

 Kernel routines themselves can be multithreaded.

Disadvantages

 Kernel threads are generally slower to create and manage than the user threads.

 Transfer of control from one thread to another within the same process requires a mode switch to
the Kernel.

Q24. What are the differences between user level threods and kernel level thread?

Ans :

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to create and
manage.

Kernel-level threads are slower to
create and manage.

2 Implementation is by a thread library at the
user level.

Operating system supports creation
of Kernel threads.

3 User-level thread is generic and can run on
any operating system.

Kernel-level thread is specific to the
operating system.

4 Multi-threaded applications cannot take
advantage of multiprocessing.

Kernel routines themselves can be
multithreaded.

UNIT - I OPERATING SYSTEMS

47
Rahul Publications

Rahul Publications

Q25. Discuss briefly about various multi
threading issues.

Ans :
1. Thread Cancellation

Thread cancellation means terminating a
thread before it has finished working. There
can be two approaches for this, one
is Asynchronous cancellation, which
terminates the target thread immediately. The
other is Deferred cancellation allows the
target thread to periodically check if it should
be cancelled.

2. Signal Handling

Signals are used in UNIX systems to notify a
process that a particular event has occurred.
Now in when a Multithreaded process receives
a signal, to which thread it must be delivered?
It can be delivered to all, or a single thread.

3. fork() System Call

fork() is a system call executed in the kernel
through which a process creates a copy of
itself. Now the problem in Multithreaded
process is, if one thread forks, will the entire
process be copied or not?

4. Security Issues

Because of extensive sharing of resources
between multiple threads

5. Thread-Local Storage

Most data is shared among threads, and this
is one of the major benefits of using threads
in the first place. Most major thread libraries
(pThreads, Win32, Java) provide support
for thread-specific data, known as thread-
local storage or TLS. Note that this is more
like static data than local variables,because it
does not cease to exist when the function
ends.

Scheduler Activations

Many implementations of threads provide a
virtual processor as an interface between the user
thread and the kernel thread, particularly for the
many-to-many or two-tier models.

This virtual processor is known as a
“Lightweight Process”, LWP. There is a one-to-one
correspondence between LWPs and kernel threads.
The number of kernel threads available may change
dynamically. The application (user level thread
library) maps user threads onto available LWPs.
kernel threads are scheduled onto the real
processor(s) by the OS.

The kernel communicates to the user-level
thread library when certain events occur (such as a
thread about to block) via an upcall, which is
handled in the thread library by an upcall handler.
The upcall also provides a new LWP for the upcall
handler to run on, which it can then use to
reschedule the user thread that is about to become
blocked. The OS will also issue upcalls when a thread
becomes unblocked, so the thread library can make
appropriate adjustments. If the kernel thread blocks,
then the LWP blocks, which blocks the user thread.

1.2.4 Process Scheduling

Q26. Explain the concept of Process
Scheduling.

Ans : (Imp.)

A Single Process may also contain sub
Processes those are also known as the Child Process.
So that we can say that a Process which is given to
the System is also known as the Parent Process and
all the other Parts of the Single Process are known
as the Child Process. So that Every Process may
also Contains Some Child process.

For Example, if we are giving a Command
to Print the File, and if a Single File Contains 8 pages
to print. Then there are 8 small or child processes
to print; and the Whole Process will be over when
all of the 8 pages will be printed.

When a user Request for a Service from the
System, then the System Automatically initializes the
Process by using the initial State and the System
also provides the various types of input and output
Resources to the Process, Provides also Some
Memory and also Control the Execution and Also
Controls the State of the Process. So that in the
Execution of Process, we doesn’t implement only
the Process creation but we also use the various
Controlling Mechanism for the Process.

MCA I YEAR II SEMESTER

48
Rahul Publications

Rahul Publications

There are Many Types of Operating
Systems which executed the Process either Single
or Multiple Processes are executed at a Single time.
And For Executing the Multiple Processes we must
have to use Some Controlling Mechanisms.

There are Two Types of Scheduling

1. Preemptive

In this all the Processes are executed by using
some Amount of Time of CPU. The Time of
CPU is divided into the Number of Minutes
and Time of CPU divided into the Process by
using Some Rules. if the time is divided into
equal interval than it is called Quantum Time.
in the Preemptive Scheduling

Jobs are Executed one by one according to
the Scheduling Techniques, But in this when
the Higher Priority will Request for a Service.
To the CPU, then CPU will transfer the Control
to the Request Job, Means the Running job
will wait for Some Time.

2. NON-Primitive

In this No Time Scheduling is used and in
this CPU will be automatically free after
Executing the Whole Process Means When
the Execution of the Process will Completed
then the CPU will be Free. When two or more
Process are given then this will first Complete
the Process and after Completing the First
Process, this will Automatically start the
Second Process.

Non-Preemptive Scheduling means No
scheduling then all the Jobs are Executed
One by One. And in this when the First Job
will be Completed, after that second Job will
Started.

1. First Come First Serve

As the name Suggest, the Processes those are
Coming first, will be Executed first and Means
CPU Will Creates a Queue, means all the
Process are Inserted into the Queue and the
CPU will Perform all the Process by using their
Coming Order.. In this all the Process are
arranged by the CPU and After Executing a

Single Process, then this will Automatically
Execute second Process by Picking up the
next Process.

2. Shortest Job first

In this Scheduling, All the Process are
Arranged into their Size Means How Many
Time a Process require, of CPU for Executing.
CPU Arrange all the Processes according to
the Requirement Time. CPU Executes the
Processes by Examining the Time Required
by Process. CPU Prepare a queue in which
all the Processes are arranged by using the
Number of Time Units Requires by the
Process.

3. Priority Scheduling

When the Process are Given, then Each
Process have a Priority means Some
Preference issue. Which Job will be executed
first, is determined by the CPU. After
Examining the Priority of the CPU. Each
Process takes different Time of CPU and also
the Number of Inputs those are needed by
the CPU. So CPU Maintains the Priority Level
after Examining the Total time which a Process
will consume. All the Processes are Arranged
by using Some Priority,. Then CPU Executes
the Process by using the Process Priority.

4. Round Robin

In this Scheduling the Time of CPU is divided
into the Equal Parts and Assign to various
Processes. In this Time of CPU is also known
as Quantum Time. In the Round Robin, when
the time of First Process has finished, then
the CPU will execute the Second Process. But
there also be possibility that the Process
doesn’t End, up to The Time. So that if
process doesn’t end at the End of Time. Then
CPU uses the Context Switching, Means CPU
Record the State of Process. After executing
the other Processes, he will execute the First
Process Again until the Process never ends.

5. Multilevel Queue Scheduling

In this The Time of CPU is divided by using
Some Process Categories. In this the Process
those are executed on the Foreground or on
the Screen, have a higher Priority and the

UNIT - I OPERATING SYSTEMS

49
Rahul Publications

Rahul Publications

Process those are running in the Background
to fill the Request the user. When we Input
the data into the Computer. Then the Data is
displayed on the Screen after Processing.

Q27. Explain different types of Schedulers.

Ans :
Schedulers are special system software which

handle process scheduling in various ways. Their
main task is to select the jobs to be submitted into
the system and to decide which process to run.
Schedulers are of three types

i) Long-Term Scheduler

ii) Short-Term Scheduler

iii) Medium-Term Scheduler

i) Long Term Scheduler

It is also called a job scheduler. A long-term
scheduler determines which programs are admitted
to the system for processing. It selects processes from
the queue and loads them into memory for
execution. Process loads into the memory for CPU
scheduling.

The primary objective of the job scheduler is
to provide a balanced mix of jobs, such as I/O
bound and processor bound. It also controls the
degree of multiprogramming. If the degree of
multiprogramming is stable, then the average rate
of process creation must be equal to the average
departure rate of processes leaving the system.

On some systems, the long-term scheduler
may not be available or minimal. Time-sharing
operating systems have no long term scheduler.
When a process changes the state from new to
ready, then there is use of long-term scheduler.

ii) Short Term Scheduler

It is also called as CPU scheduler. Its main
objective is to increase system performance in
accordance with the chosen set of criteria. It is the
change of ready state to running state of the process.
CPU scheduler selects a process among the processes
that are ready to execute and allocates CPU to one
of them.

Short-term schedulers, also known as
dispatchers, make the decision of which process to
execute next. Short-term schedulers are faster than
long-term schedulers.

iii) Medium Term Scheduler

Medium-term scheduling is a part
of swapping. It removes the processes from the
memory. It reduces the degree of
multiprogramming. The medium-term scheduler is
in-charge of handling the swapped out-processes.

A running process may become suspended if
it makes an I/O request. A suspended processes
cannot make any progress towards completion. In
this condition, to remove the process from memory
and make space for other processes, the suspended
process is moved to the secondary storage. This
process is called swapping, and the process is said
to be swapped out or rolled out. Swapping may be
necessary to improve the process mix.

Q28. Write about scheduling criteria.

Ans :
There are many different criteria’s to check

when considering the “best” scheduling algorithm :

 CPU utilization

To make out the best use of CPU and not to
waste any CPU cycle, CPU would be working
most of the time(Ideally 100% of the time).
Considering a real system, CPU usage should
range from 40% (lightly loaded) to 90%
(heavily loaded.)

 Throughput

It is the total number of processes completed
per unit time or rather say total amount of
work done in a unit of time. This may range
from 10/second to 1/hour depending on the
specific processes.

 Turnaround time

It is the amount of time taken to execute a
particular process, i.e. The interval from time
of submission of the process to the time of
completion of the process(Wall clock time).

 Waiting time

The sum of the periods spent waiting in the

MCA I YEAR II SEMESTER

50
Rahul Publications

Rahul Publications

ready queue amount of time a process has been waiting in the ready queue to acquire get control
on the CPU.

 Load average

It is the average number of processes residing in the ready queue waiting for their turn to get into
the CPU.

 Response time

Amount of time it takes from when a request was submitted until the first response is produced.
Remember, it is the time till the first response and not the completion of process execution(final
response).

In general CPU utilization and Throughput are maximized and other factors are reduced for proper
optimization.

Q29. Explain about various scheduling algorithms.

Ans : (Imp.)

1. First Come First Serve(FCFS) Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. Priority Based Scheduling

4. Shortest Remaining Time Scheduling

5. Round Robin(RR) Scheduling

6. Multilevel Queue Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are
designed so that once a process enters the running state, it cannot be preempted until it completes its
allotted time, whereas the preemptive scheduling is based on priority where a scheduler may preempt a
low priority running process anytime when a high priority process enters into a ready state.

1. First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

UNIT - I OPERATING SYSTEMS

51
Rahul Publications

Rahul Publications

Wait time of each process is as follows

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

2. Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take.

Wait time of each process is as follows

MCA I YEAR II SEMESTER

52
Rahul Publications

Rahul Publications

Process Wait Time : Service Time - Arrival Time

P0 3 - 0 = 3

P1 0 - 0 = 0

P2 16 - 2 = 14

P3 8 - 3 = 5

Average Wait Time: (3+0+14+5) / 4 = 5.50

3. Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common scheduling
algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first and so
on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other
resource requirement.

Wait time of each process is as follows

Process Wait Time : Service Time - Arrival Time

P0 9 - 0 = 9

P1 6 - 1 = 5

P2 14 - 2 = 12

P3 0 - 0 = 0

Average Wait Time: (9+5+12+0) / 4 = 6.5

UNIT - I OPERATING SYSTEMS

53
Rahul Publications

Rahul Publications

4. Shortest Remaining Time Scheduling

 Shortest remaining time (SRT) is the pre-emptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by a newer
ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU time is not known.

 It is often used in batch environments where short jobs need to give preference.

Example 1:

Process Burst Time Arrival Start Wait Finish TA
1 8 0 0 9 17 17
2 4 1 1 0 5 4
3 9 2 17 15 26 24
4 5 3 5 2 10 7

 Gantt chart

average waiting time: (9+0+15+2)/4 = 6.5

average turnaround time: (17+4+24+7)/4 = 13

Example 2 :

Process Burst Time Arrival Start Wait Finish TA
1 7 0 0 9 16 16
2 4 2 2 1 7 5
3 1 4 4 0 5 1
4 4 5 7 2 11 6

 Gantt chart

 average waiting time: (9+1+0+2)/4 = 3

 average turnaround time: (16+5+1+6)/4 = 7

MCA I YEAR II SEMESTER

54
Rahul Publications

Rahul Publications

5. Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process executes
for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Example : (q = 20):

Process Burst Time Arrival Start Wait Finish TA
1 53 0 0 ? 134 134
2 17 0 20 ? 37 37
3 68 0 37 ? 162 162
4 24 0 57 ? 121 121

Gantt chart :

waiting times:

p1: (77-20) + (121-97) = 81

p2: (20-0) = 20

UNIT - I OPERATING SYSTEMS

55
Rahul Publications

Rahul Publications

p3: (37-0) + (97-57) + (134-117) = 94

p4: (57-0) + (117-77) = 97

average waiting time: (81+20+94+97)/4 = 73

6. Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing
algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another
queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to
the CPU based on the algorithm assigned to the queue.

Q30. What is multi processor scheduling explain?

Ans :
 CPU scheduling more complex when multiple CPUs are available

 Most current general purpose processors are multiprocessors (i.e. multicore processors)

 No single ‘best’ solution to multiple-processor scheduling

 A multicore processor typically has two or more homogeneous processor cores

 Because the cores are all the same, any available processor can be allocated to any process in
the system. Approaches to Multiple-Processor Scheduling

 Asymmetric multiprocessing

 All scheduling decisions, I/O processing, and other system activities handled by a single processor

 Only one processor accesses the system data structures, alleviating the need for data sharing

MCA I YEAR II SEMESTER

56
Rahul Publications

Rahul Publications

 Symmetric multiprocessing (SMP)

 Each processor is self-scheduling

 All processes may be in a common ready queue, or each processor may have its own private
queue of ready processes

 Currently, most common approach to multiple-processor scheduling

 Multithreaded Multicore System

 A processor core with a single hardware thread doesn’t accomplish any work during a memory
stall

 A processor core with multiple hardware threads can work on another thread while waiting for
a memory read to complete

Scheduling Multithreaded Multicore Systems

Two levels of scheduling must take place

1. Operating system is still scheduling tasks based on its scheduling algorithms

2. Second level of scheduling decides which hardware threads to run

 Coarse-grained multithreading - a thread executes on a processor until a long-latency event
occurs (i.e. reading from memory)

 Fine-grained multithreading

1.2.5 Process Synchronization

Q31. What is process synchronization? Explain critical section problem with its different
solutions.

Ans : (Imp.)

Process Synchronization means sharing system resources by processes in a such a way that,
Concurrent access to shared data is handled thereby minimizing the chance of inconsistent data. Maintaining
data consistency demands mechanisms to ensure synchronized execution of cooperating processes.

UNIT - I OPERATING SYSTEMS

57
Rahul Publications

Rahul Publications

Process Synchronization was introduced to handle problems that arose while multiple process
executions. Some of the problems are discussed below.

Critical Section Problem

 Consider a system consisting of n processes P0, P1, ...,Pn.

 Each process has a segment of code, called a critical section, in which the process may be changing
common variables, updating a table, writing a file, and so on. It is section of code that requires
access to shared resources.

 An important fact regarding this system is that when a process A is executing in its critical section, no
other process except A is allowed to execute in its critical section.

 However many processes may have a critical section code and all of them needs to be executed.
So, The Critical Section Problem deals with creating a set of protocols so as to help the process
cooperate.

 The code –body shown below depicts how and where the Critical Section code is implemented.

 Entry Condition: Process requests for permission to enter the critical section

 Critical section: A portion of code within a process that needs access to shared resources and
that must not be executed while another process is in its critical section.

 Exit Condition: Every critical section must end with an exit condition which alerts the system
regarding the exit.

A solution to a critical section problem must satisfy three conditions;

(a) Mutual Exclusion: If a process A is executing in its critical section, then no other processes must
execute in its critical section.

(b) Progress: If no process is currently in its critical section, then only those process which are currently
not in its remainder section can participate in deciding who will enter the Critical section next.

(c) Bounded waiting: There exists a bound with regards to the number of times other process can
enter its critical section between when a process has requested for critical section and when that
request is granted

MCA I YEAR II SEMESTER

58
Rahul Publications

Rahul Publications

The various solutions to it are:

(a) Petersons solution

Peterson’s solution is restricted to two processes that alternate execution between their critical sections
and remainder sections. The processes are named P0 and P1. The Petersons solutions asks both the
processes to share two data items

int turn; //to indicate whose turn is to enter the CS

boolean flag[2]; //to indicate if a process is ready

//to enter its CS

The algorithm for Peterson solution is:

do {

//entry condition

Flag[i]=true;

Turn=j;

while(flag[j] && turn == j)

CRITICAL SECTION

//exit condition

Flag[i]=false;

//remainder section

} while(true);

(b) Hardware based

Many modern computer systems provide a special hardware instruction that allows us either to test
and modify the content of a word or to swap the contents of two words atomically—that is, as one
uninterruptible unit. It is implemented using either of the two instructions:

test_and_set(): this instruction can be executed atomically. Therefore if two such instructions are
executed simultaneously on a different PC, then it will be executed in some arbitrary order
compare_and_swap(): it also operates atomically as a single uninterruptible unit. It operates on
three operands unlike test_and_set and also returns the original value of the variable value

(c) Mutex lock

The hardware locks are generally inaccessible to application programmers; instead of it we use
software tools-the simplest being mutex. It is short form for mutual exclusion. We use mutex lock to
protect critical regions and thus avoid race conditions.

Every process will have to acquire a lock before entering the Critical section (using acquire ()
function) and release the lock when exiting (using the release () function) . Calls to the two functions
mentioned above must be done atomically which is done by the hardware methods described in
method (b) above.

(d) Semaphores

Semaphores are similar to the mutex lock except that they are much robust and can provide
sophisticated ways for the process to synchronize their activities. A semaphore S is an integer variable
and can only be accessed and modified by two functions wait() and signal(). It can be initialized to
a non-negative value. The wait operation decrements the semaphore value while the signal operation
increments the semaphore value

UNIT - I OPERATING SYSTEMS

59
Rahul Publications

Rahul Publications

Q32. Explain briefly about semaphores.

Ans :
Dijkestra proposed a significant technique for managing concurrent processes for complex mutual

exclusion problems. He introduced a new synchronization tool called Semaphore.

Semaphores are of two types

1. Binary semaphore

2. Counting semaphore

Binary semaphore can take the value 0 & 1 only. Counting semaphore can take nonnegative
integer values.

Two standard operations, wait and signal are defined on the semaphore. Entry to the critical section
is controlled by the wait operation and exit from a critical region is taken care by signal operation. The
wait, signal operations are also called P and V operations. The manipulation of semaphore (S) takes place
as following:

1. The wait command P(S) decrements the semaphore value by 1. If the resulting value becomes
negative then P command is delayed until the condition is satisfied.

2. The V(S) i.e. signals operation increments the semaphore value by 1.

Mutual exclusion on the semaphore is enforced within P(S) and V(S). If a number of processes
attempt P(S) simultaneously, only one process will be allowed to proceed & the other processes will be
waiting.These operations are defined as under “

P(S) or wait(S):

If S > 0 then

Set S to S-1

Else

Block the calling process (i.e. Wait on S)

V(S) or signal(S):

If any processes are waiting on S

Start one of these processes

Else

Set S to S+1

The semaphore operation are implemented as operating system services and so wait and signal are
atomic in nature i.e. once started, execution of these operations cannot be interrupted.

Thus semaphore is a simple yet powerful mechanism to ensure mutual exclusion among concurrent
processes.

Q33. Explain briefly about Monitors.

Ans :
Monitor is one of the ways to achieve Process synchronization. Monitor is supported by

programming languages to achieve mutual exclusion between processes. For example Java Synchronized
methods. Java provides wait() and notify() constructs.

MCA I YEAR II SEMESTER

60
Rahul Publications

Rahul Publications

1. It is the collection of condition variables and procedures combined together in a special kind of
module or a package.

2. The processes running outside the monitor can’t access the internal variable of monitor but can call
procedures of the monitor.

3. Only one process at a time can execute code inside monitors.

Syntax of Monitor

Monitor Demo IIName of Monitor

{

variables;

condition variables;

procedure p1

prodecure p2 {....}

}

Syntax of Monitor

Condition Variables

Two different operations are performed on the condition variables of the monitor.

Wait.

signal.

let say we have 2 condition variables

condition x, y; //Declaring variable

 Wait operation

x.wait() : Process performing wait operation on any condition variable are suspended. The suspended
processes are placed in block queue of that condition variable.

Note: Each condition variable has its unique block queue.

Signal operation

x.signal(): When a process performs signal operation on condition variable, one of the blocked
processes is given chance.

If (x block queue empty)

// Ignore signal

else

// Resume a process from block queue.

UNIT - I OPERATING SYSTEMS

61
Rahul Publications

Rahul Publications

Q34. What is bounded buffer problem? Write about it.

Ans :
This problem is also called the Producers and Consumers problem. A finite supply of containers is

available. Producers take an empty container and fill it with a product. Consumers take a full container,
consume the product and leave an empty container. The main complexity of this problem is that we must
maintain the count for both the number of empty and full containers that are available.

Application : A pipe or other finite queue (buffer), is an example of the bounded buffer problem.

Solution to this problem is, creating two counting semaphores “full” and “empty” to keep track of
the current number of full and empty buffers respectively.

Producers produce a product and consumers consume the product, but both use of one of the
containers each time.

Problem: There is a set of resource buffers shared by producer and consumer threads

 Producer inserts resources into the buffer set

 Output, disk blocks, memory pages, processes, etc.

 Consumer removes resources from the buffer set

 Whatever is generated by the producer

 Producer and consumer execute at different rates

 No serialization of one behind the other

 Tasks are independent (easier to think about)

The buffer set allows each to run without explicit handoff

 Use three semaphores:

 mutex – mutual exclusion to shared set of buffers

 Binary semaphore

 empty – count of empty buffers

 Counting semaphore

MCA I YEAR II SEMESTER

62
Rahul Publications

Rahul Publications

 full – count of full buffers

 Counting semaphore

Q35. What is readers writers problem explain about it?

Ans :
The Readers Writers Problem

 In this problem there are some processes(called readers) that only read the shared data, and never
change it, and there are other processes(called writers) who may change the data in addition to
reading or instead of reading it.

 There are various type of the readers-writers problem, most centred on relative priorities of readers
and writers

Application : A message distribution system is an example of Readers and Writers. We must keep
track of how many messages are in the queue.

 Writers have mutual exclusion, but multiple readers at the same time is allowed.

A semaphore solution to the readers’ priority version (without addressing starvation):

 Writers have mutual exclusion, but multiple readers at the same time is allowed.

A semaphore solution to the readers’ priority version (without addressing starvation):

UNIT - I OPERATING SYSTEMS

63
Rahul Publications

Rahul Publications If there is a writer

 First reader blocks on w_or_r

 All other readers block on mutex

 Once a writer exits, all readers can fall through

 Which reader gets to go first?

 The last reader to exit signals a waiting writer

 If no writer, then readers can continue

 If readers and writers are waiting on w_or_r, and a writer exits,

Q36. What is dining philosophers problem? Write about it.

Ans : (Imp.)

 The dining philosopher’s problem involves the allocation of limited resources from a group of
processes in a deadlock-free and starvation-free manner.

 There are five philosophers sitting around a table, in which there are five chopsticks kept beside
them and a bowl of rice in the centre, When a philosopher wants to eat, he uses two chopsticks -
one from their left and one from their right. When a philosopher wants to think, he keeps down
both chopsticks at their original place.

Application : The dining philosophers problem represents a situation that can occur in large
communities of processes that share a sizeable pool of resources.

MCA I YEAR II SEMESTER

64
Rahul Publications

Rahul Publications

A Philosopher needs both the fork on his left and on his right to eat. The forks are shared with the
neighbours on either side.

 It can be observed that a straightforward solution, when forks are implemented by semaphores, is
exposed to deadlock. There exist two deadlock states when all five philosophers are sitting at the
table holding one fork each. One deadlock state is when each philosopher has grabbed the fork left
of him, and another is when each has the fork on his right.

A semaphore solution:

// represent each chopstick with a semaphore

Semaphore chopstick[] = new Semaphore[5]; // all = 1 initially

processphilosopher_i {

while (true) {

// pick up left chopstick

chopstick[i].acquire();

// pick up right chopstick

chopstick[(i+1) % 5].acquire();

// eat

// put down left chopstick

chopstick[i].release();

// put down right chopstick

chopstick[(i+1) % 5].release();

// think

 }

}

This solution guarantees no two neighbouring philosophers eat simultaneously, but has the possibility
of creating a deadlock.

1.2.6 Deadlocks

Q37. What is Dead Lock? Explain it briefly.

Ans :
In a multi programming environment, several processes may compete for a finite number of resources.

A process requests resources, and if the resources are not available at that time, process enters in a waiting
state. Sometimes a waiting process is never again able to change state, because the resources it has
requested are held by another processes. This situation is called Deadlock.

System Model

A system consists of a finite number of resources to be distributed among a number of competing
processes. The resources are partitioned into several types, each consisting of some number of identical

UNIT - I OPERATING SYSTEMS

65
Rahul Publications

Rahul Publications

instances. for example if a system has five printer
then printer is a resource type and it has five
instances.

Identical Resources

If a process requests an instance of a resource
type, and allocation of any instance of that resource
type will satisfy the request, then the resource
instance are identical. Otherwise, the resource type
classes have not been defined properly.

Under the normal mode of operation, a
process may utilize a resource in only the following
sequence:

1. Request : If the request can not be granted
immediately (for example, if the resource is
being used by another process), then the
requesting process must wait until it can
acquire the resource.

2. Use : The process can operate on the
resource (for example, if the resource is a
printer, the process can print on the printer).

3. Release : The process release the resource.

Q38. What are the necessary conditions for
deadlocks?

Ans :
A deadlock situation can arise if the following

four conditions hold simultaneously in a system.

(i) Mutual Exclusion

At least one resource must be held in a
nonsharable mode, that is, only one process
at a time can use the resource. If another
process requests that resource, the requesting
process must be delayed until the resource
has been released.

(ii) Hold and Wait

A process must be holding at least one
resource and waiting to acquire additional
resources that are currently being held by
other processes.

(iii) No Preemption

Resources can not be preempted, that is, a
resource can be released only voluntarily by
the process holding it, after that process has
completed its task.

(iv) Circular Wait

A set {P0,P1,P2,…,Pn} of waiting processes
must exist such that P0 is waiting for a
resource held by P1, P1 is waiting for a
resource held by P2, …, Pn”1 is waiting for
a resource held by Pn and Pn is waiting for
a resource held by P0.

These four conditions must hold
simultanously for a deadlock to occur. The circular-
wait condition implies the hold and wait condition,
so these four conditions are not completely
independent.

Q39. What is the use of resource allocation
graphs in OS.

Ans :
Deadlock can be described more precisely in

terms of a directed graph called a system resource
allocation graph. This graph consists of a set of
vertices V and a set of edges E. The set of vertices
is partioned into two different types of nodes

 P={P1,P2,…,Pn}, the set consisting of all the
active processes in the system.

 R={R1,R2,…,Rn}, the set consisting of all
resource types in the system.

A directed edge from process Pi to resource
type Rj is denoted by Pi’!Rj, it signifies that
process Pi has requested an instance of resource
type Rj, and is currently waiting for the resource.
This type of edge is called a request edge.

A directed edge from resource type Rj to
process Pi is denoted by Rj’!Pi, it signifies that an
instance of resource type Rj has been allocate to
process Pi. This type of edge is called
an assignment edge.

Pictorially,we represent each process Pi as a
circle and each resource type Rj as a rectangle.
Since resource type Rj may have more than one
instance, we represent each such instance as a dot
within the rectngle. Note that a request edge points
to only the rectangle Rj, whereas an assignment
edge must also designate one of the dots in the
rectangle.

MCA I YEAR II SEMESTER

66
Rahul Publications

Rahul Publications
Resource Allocation Graph

If each resource type has exactly one insance,
then a cycle implies that a deadlock has occured. if
the cycle involves only a set of resource type, each
of which has only a single instance, then a deadlock
has occured. Each process involves in the cycle is
deadlocked. In this case a cycle in the graph is
necessay and sufficient condition for the existence
of deadlock.

RAG with a Cycle But no Deadlock

If each resource type has several instances,
then a cycle does not necessarily imply that a
deadlock has occurred. In this case a cycle in the
graph is a necessary but not a sufficient condition
for existence of deadlock.

Q40. What are the various methods for
handling the deadlocks ?

Ans :
we can handle the deadlock in one of the

three ways:

 We can use a protocol to prevent or avoid
the deadlocks, ensuring that the system will
never enter in a deadlock states.

 We can allow the system to enter in a
deadlock state, detect it and recover.

 We can ignore the problem altogether and
pretend that deadlocks never occur in the
system.

The third solution is the one used by most
operating system, including UNIX, and WINDOWS,
it is then up to the application developer to write
programs that handle the deadlocks.

To ensures that deadlocks never occur, the
system can use either a deadlock-prevention
or deadlock-avoidence scheme.

Deadlock prevention provides a set of
methods for ensuring that at least one of the
necessary conditions can not hold. These methods
prevent deadlocks by constraining how requests for
the resources can be made.

Deadlock avoidence requires that the
operating system be given in advance additional
information concerning which resources a process
will request and use during its lifetime. With this
additional knowledge, it can decide for each request
whether or not the process should wait. To decide
whether the current request can be satisfied or must
be delayed, the system must consider the resources
currently available, the resources currently allocated
to each process, and the future requests and releases
of each processes.

If a system does not employ either a deadlock
prevention or a deadlock avoidence algorithm, then
a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines
the state of the system to determine whether a
deadlock has occurred and an algorithm to recover
from the deadlock

If a system neither ensures that a deadlock
will never occur nor provides a mechanism for
deadlock detection and recovery, then we may
arrive at a situation where the system is in
deadlocked state, yet has no way of recognizing
what has happened. In this case, the undetected
deadlock will result in deterioration of the system’s
performance, because resources are being held

UNIT - I OPERATING SYSTEMS

67
Rahul Publications

Rahul Publications

by processes that can not run and because more
and more processes, as they make requests for
resources, will enter in a deadlocked state.
Eventually, the system will stop functioning and will
need to be restarted normally. Although this method
may not seem to be viable approach to the deadlock
problem, it is nevertheless used in most operating
system.

Q41. Write about deadlock prevention
techniques.

Ans : (Imp.)

By ensuring that atleast one of these
conditions can not hold, we can prevent the
occurence of a deadlock.

i) Mutual Exclusion

The mutual exclusion condition must hold for
non sharable resources. For example, a printer can
not be simultaneously shared by several
processes. Sharable resources, in contrast, do not
require mutually exclusive access and thus can
notinvolved in a deadlock. Read only files are a
good example of a sharable resource. However, in
general, we can not prevent deadlocks by denying
the mutual-exclusion condition, because some
resources are intrinsically non sharable.

ii) Hold and Wait

To ensure that hold and wait condition never
occurs in the system, we must gurantee that,
whenever a process requests a resource, it does not
hold any other resurces.

One protocal that can be used requires each
process to request and be allocated all its resourcees
before it begins execution. We can implement this
provision by requiring that system calls requesting
resources for a process precede all other system calls.

An alternative protocol allows a process to
request resources only when it has none. A process
may request some resources and use them. Before
it can request any additional resources, however, it
must release all the resources that it is currently
allocated.

Both these protocols have two main
disadvantage.

 Resource utilization may be low, since
resources may be allocated but unused for a
long period.

 Starvation is possible. A process that needs
several popular resources may have to wait
indefintely, because at least one of the
resources that it needs is always allocated to
some other process.

iii) No preemption

To ensure that no preemption condition does
not hold, we can use one of the following two
approaches:

 If a process is holding some resources and
requests another resource that can not be
immediately allocated to it, then all the
resources currently being held are
preempted. In other words, these resources
are implicitely released. The preempted
resources are added to the list of resources
for which the process is waiting. The process
will be restarted only when it can regain its
old resources, as well as the new ones that it
is requesting.

 If a process requests some resources, we first
check whether they are available. If they are
we allocate them. If they are not, we check
whether they are allocated to some other
process that is waiting for additional resources.
If so we preempt the desired resource from
the waiting process and allocate them to the
requesting process. If the resources are
neither available nor held by waiting process,
the requesting process must wait. While it is
waiting, some of its resources may be
preempted, but only if another process
requests them. A process can be restarted only
when it is allocated the new resources it is
requesting and recovers any resources that
were preempted while it is waiting.

These protocol is often applied to resources
whose state can be easily saved and restarted later
such as CPU registers and memory spaces. It cannot
generally be applied to such resources as printers
and tape drives.

MCA I YEAR II SEMESTER

68
Rahul Publications

Rahul Publications

iv) Circular Wait

To ensures that circular wait condition never
holds is to impose a total ordering of all resource
types and to require that each process requests
resources in an increasing order of enumeration.

To illustrate it, Lets assume that
R={R1,R2,R3,…,Rm} be a set of resource types.
We assign to each resource type a unique integer
number, which allows us to compare two resources
and to determine whether one precedes another in
our ordering. Formally we define a one-to-one
function F:R’!N, where N is the set of the natural
numbers. For example,

If the resource type R includes tape–
drives, disk–drives and printers then, the
function Fmay be define as

 F(tape–drive)=1F(disk–drives)=5F(printer)=12

We can now consider the following protocol
to prevent deadlocks.

 Each process can request resources only in
an increasing order of enumeration. That is,
aprocess can initially request any number of
instances of a resource type say, Ri, after that
the process can request instances of resource
type, Rj, if and only if, F(Rj)e”F(Ri). If
several instaces of the same resource type are
needed a single request for all of them must
be issued.

 Whenever, a process requests an instance of
resource type Rj it has released any
resources Ri such that F(Ri)e”F(Rj).

If these two protocols are used, then the
circular wait condition can not hold.

Q42. Explain deadlock avoidance techniques.

Ans :
Deadlock prevention algorithms, prevent

deadlock by restraining how request can be made.
for more details read Methods for Handling
Deadlocks and Introduction to Deadlocks. An
alternative method for avoiding deadlocks is to
require additional information about how resources
are to be requested. Each request requires that in
making this decision the system consider the

resources currently available, the resources currently
allocated to each process, and the future requests
and releases of each process.

A deadlock avoidance algorithm dynamically
examines the resource allocation state to ensure that
a circular wait condition can never exist. The
resource allocation state is defined by the number
of available and allocate resources and the
maximum demands of the processes.

1. Safe State

A state is safe if the system can allocate
resources to each process(Up to its
maximum) in some order and still avoid a
deadlock. More formally, a system is in a safe
state only if there exists a safe sequence.

A sequences of processes <P1,P2,…,Pn> is
a safe sequence for the current allocation state
if, for each Pi, the resource requests
that Pi can still make can be satisfied by the
currently available resources plus the
resources held by all Pj, with j<i. If no such
sequence exists then the system state is said
to be unsafe.

Safe, Unsafe and Deadlock State Spaces

A safe state is never a deadlocked state.
Conversely, a deadlocked state is an unsafe
state. Not all unsafe states are deadlocks,
however, an unsafe state may leads to a
deadlock. As long as the state is safe, the
operating system can avoid unsafe (and
deadlocked) state. In an unsafe state, the
operating system can not prevent processes
from requesting resources such that a
deadlock occurs: The behavior of the
processes controls unsafe states.

UNIT - I OPERATING SYSTEMS

69
Rahul Publications

Rahul Publications

For example, consider a system with 12 tape
drives, allocated as follows. Is this a safe state?
What is the safe sequence?

Maximum Needs Current Allocation

P0 10 5

P1 4 2

P2 9 2

What happens to the above table if process
P2 requests and is granted one more tape
drive?

Key to the safe state approach is that when a
request is made for resources, the request is
granted only if the resulting allocation state is
a safe one.

2 Resource-Allocation Graph Algorithm

 If resource categories have only single
instances of their resources, then deadlock
states can be detected by cycles in the
resource-allocation graphs.

 In this case, unsafe states can be recognized
and avoided by augmenting the resource-
allocation graph with claim edges, noted by
dashed lines, which point from a process to a
resource that it may request in the future.

 In order for this technique to work, all claim
edges must be added to the graph for any
particular process before that process is
allowed to request any resources.

 When a process makes a request, the claim
edge Pi->Rj is converted to a request edge.
Similarly when a resource is released, the
assignment reverts back to a claim edge.

 This approach works by denying requests that
would produce cycles in the resource-
allocation graph, taking claim edges into
effect.

Consider for example what happens when
process P2 requests resource R2:

Fig.: Resource allocation graph for deadlock
avoidance

Fig.: An unsafe state in a resource allocation graph

Q43. Explain Banker’s Algorithm with an
example.

Ans :
Banker’s algorithm is a deadlock avoidance

algorithm. It is named so because this algorithm is
used in banking systems to determine whether a
loan can be granted or not.

Consider there are n account holders in a bank
and the sum of the money in all of their accounts is
S. Everytime a loan has to be granted by the bank,
it subtracts the loan amount from the total money
the bank has. Then it checks if that difference is
greater than S. It is done because, only then, the
bank would have enough money even if all the n
account holders draw all their money at once.

Banker’s algorithm works in a similar way in
computers. Whenever a new process is created, it
must exactly specify the maximum instances of each
resource type that it needs.

Let us assume that there are n processes
and m resource types. Some data structures are
used to implement the banker’s algorithm. They
are:

MCA I YEAR II SEMESTER

70
Rahul Publications

Rahul Publications

 Available: It is an array of length m. It
represents the number of available resources
of each type. If Available[j] = k, then there
are k instances available, of resource
type Rj.

 Max: It is an n x m matrix which represents
the maximum number of instances of each
resource that a process can request.
If Max[i][j] = k, then the process Pi can
request atmost k instances of resource
type Rj.

 Allocation: It is an n x m matrix which
represents the number of resources of each
type currently allocated to each process.
If Allocation[i][j] = k, then process Pi is
currently allocated k instances of resource
type Rj.

 Need: It is an n x m matrix which indicates
the remaining resource needs of each process.
If Need[i][j] = k, then process Pi may
need k more instances of resource
type Rj to complete its task.

Need[i][j] = Max[i][j] - Allocation [i][j]

Resource Request Algorithm:

This describes the behavior of the system
when a process makes a resource request in the
form of a request matrix. The steps are:

1. If number of requested instances of each
resource is less than the need (which was
declared previously by the process), go to
step 2.

2. If number of requested instances of each
resource type is less than the available
resources of each type, go to step 3. If not,
the process has to wait because sufficient
resources are not available yet.

3. Now, assume that the resources have been
allocated. Accordingly do,

Available = Available - Requesti

Allocationi = Allocationi + Requesti

Needi = Needi - Requesti

This step is done because the system needs
to assume that resources have been allocated. So
there will be less resources available after allocation.

The number of allocated instances will increase. The
need of the resources by the process will reduce.
That’s what is represented by the above three
operations.

After completing the above three steps, check
if the system is in safe state by applying the safety
algorithm. If it is in safe state, proceed to allocate
the requested resources. Else, the process has to
wait longer.

Safety Algorithm :

1. Let Work and Finish be vectors of
length m and n, respectively. Initially,

2. Work = Available

3. Finish[i] = false for i = 0, 1, ... , n - 1.

This means, initially, no process has finished
and the number of available resources is
represented by the Available array.

4. Find an index i such that both

5. Finish[i] ==false

6. Needi<= Work

If there is no such i present, then proceed to
step 4.

It means, we need to find an unfinished
process whose need can be satisfied by the
available resources. If no such process exists,
just go to step 4.

7. Perform the following:

8. Work = Work + Allocation;

9. Finish[i] = true;

Go to step 2.

When an unfinished process is found, then
the resources are allocated and the process is
marked finished. And then, the loop is
repeated to check the same for all other
processes.

10. If Finish[i] == true for all i, then the system
is in a safe state.

That means if all processes are finished, then
the system is in safe state.

UNIT - I OPERATING SYSTEMS

71
Rahul Publications

Rahul Publications

Example:

Considering a system with five processes P0 through P4 and three resources types A, B, C. Resource
type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t0 following
snapshot of the system has been taken:

Q44. Explain briefly about deadlock detection techniques.

Ans :
If a system does not employ either a deadlock-prevention or a deadlock-avoidance algorithm ,then

deadlock situation may occur. In this environment, the system must provide:

 An algorithm that examines the state of the system to determine whether a deadlock has occurred.

 An algorithm to recover from the deadlock.

In the following discussion we elaborate these two requirements as they pertain to system with only
a single instances of each type as well as to system with several instances of each resource type. Detection
and recovery algorithm require overheads, in addition to the performance hit of constantly checking for
deadlocks, a policy / algorithm must be in place for recovering from deadlocks, and there is potential for
lost work when processes must be aborted or have their resources preempted.

1. Single Instance of Each Resource Type

If each resource category has a single instance, then we can use a variation of the resource-allocation
graph known as a wait-for graph. A wait-for graph can be constructed from a resource-allocation graph
by eliminating the resources and collapsing the associated edges, as shown in the figure below.

(a) Resource Allocation Graph (b) Corresponding Wait For Graph

MCA I YEAR II SEMESTER

72
Rahul Publications

Rahul Publications

An arc from Pi to Pj in a wait-for graph
indicates that process Pi is waiting for a resource
that process Pj is currently holding. As before,

cycles in the wait-for graph indicate deadlocks. This

algorithm must maintain the wait-for graph, and
periodically search it for cycles. An algorithm to

detect a cycle in a graph requires an order

of n2 operations, where n is the number of
vertices in the graph.

2. Several Instances of a Resource Type

The wait-for graph scheme is not applicable

to a resource allocation system with multiple

instances of each resource type. Now, we describe
deadlock detection algorithm for multiple instances

of a resource type. The algorithm employs several

time-varying data structures that are similar to those
used in the banker’s algorithm.

Available: A vector of length m indicates

the number of available resources of each type.

Allocation: An n×m matrix defines the

number of resources of each type currently
allocated to each process.

Request: An n×m matrix indicates the

current request of each process. If Request[i][j]=k,

then process Pi is rquesting k more instances of
resource type Rj.

The algorithm is as follows :

(i) Let Work and Finish be vector of

length m and n, respectively. Initialize

 Work=Available

 For i=0,1,…,n”1, if Allocationi‘“0,
t h e n F i n i s h [i] = F a l s e ;

otherwise, Finish[i]=True.

(ii) Find an i such that both

 Finish[i]==False

 Requestid”Work
if no such i exists, go to step 4.

(iii) Set Work=Allocationi and Finish[i]= True

Go to Step 2.

(iv) If Finish[i]==False for some i,0d”i<n, then

the system is in a deadlocked state. Moreover,

if Finish[i]==False, then the process Pi is
deadlocked.

This algorithm requires an order of m × n2

operations to detect whether the system is in

deadlocked state.

3. Deadlock-Detection Algorithm Usage

When should the deadlock detection be

done? Frequently, or infrequently? The answer may

depend on how frequently deadlocks are expected
to occur, as well as the possible consequences of

not catching them immediately (If deadlocks are not

removed immediately when they occur, then more
and more processes can “back up” behind the

deadlock, making the eventual task of unblocking

the system more difficult and possibly damaging to
more processes).

There are two obvious approaches, each with

trade-offs:

1. Do deadlock detection after every resource

allocation which cannot be immediately
granted. This has the advantage of detecting

the deadlock right away, while the minimum

number of processes are involved in the
deadlock (One might consider that the process

UNIT - I OPERATING SYSTEMS

73
Rahul Publications

Rahul Publications

whose request triggered the deadlock
condition is the “cause” of the deadlock, but

realistically all of the processes in the cycle

are equally responsible for the resulting
deadlock.) The down side of this approach is

the extensive overhead and performance hit

caused by checking for deadlocks so
frequently.

2. Do deadlock detection only when there is

some clue that a deadlock may have

occurred, such as when CPU utilization
reduces to 40% or some other magic

number. The advantage is that deadlock

detection is done much less frequently, but
the down side is that it becomes impossible

to detect the processes involved in the original

deadlock, and so deadlock recovery can be
more complicated and damaging to more

processes.

Q45. Discuss various deadlock recovery
techniques.

Ans :

Recovery From Deadlock

There are three basic approaches to recovery

from deadlock:

1. Inform the system operator, and allow him/

her to take manual intervention.

2. Terminate one or more processes involved in
the deadlock(Process Termination).

3. Preempt resources.

Process Termination

Two basic approaches, both of which recover

resources allocated to terminated processes:

1. Terminate all processes involved in the
deadlock. This definitely solves the deadlock,

but at the expense of terminating more

processes than would be absolutely necessary.

2. Terminate processes one by one until the

deadlock is broken. This is more conservative,
but requires doing deadlock detection after

each step.

In the latter case there are many factors that
can go into deciding which processes to terminate

next:

 Process priorities.

 How long the process has been running, and
how close it is to finishing.

 How many and what type of resources is the
process holding(Are they easy to preempt

and restore?).

 How many more resources does the process

need to complete.

 How many processes will need to be

terminated

 Whether the process is interactive or batch.

 Whether or not the process has made non-

restorable changes to any resource.

Resource Preemption

When preempting resources to relieve

deadlock, there are three important issues to be

addressed:

1. Selecting a victim

Deciding which resources to preempt from

which processes involves many of the same

decision criteria outlined above.

MCA I YEAR II SEMESTER

74
Rahul Publications

Rahul Publications

2. Rollback

Ideally one would like to roll back a preempted process to a safe state prior to the point at which

that resource was originally allocated to the process. Unfortunately it can be difficult or impossible

to determine what such a safe state is, and so the only safe rollback is to roll back all the way back
to the beginning(i.e. abort the process and make it start over).

3. Starvation

How do you guarantee that a process won’t starve because its resources are constantly being

preempted? One option would be to use a priority system, and increase the priority of a process

every time its resources get preempted. Eventually it should get a high enough priority that it won’t
get preempted any more.

UNIT - II OPERATING SYSTEMS

75
Rahul Publications

Rahul Publications

UNIT
II

2.1 MEMORY MANAGEMENT STRATEGIES WITH

EXAMPLE ARCHITECTURES

2.1.1 Swapping

Q1. What is Memory management? Explain
briefly.

Ans : (Imp.)

There are two types of memories first is the
logical memory and second is the physical memory
the memory which is temporary such as ram is also
known as the temporary memory and the memory
which is permanent such as hard disk is also known
as the physical memory of system.

When we wants to execute any programs
then that programs must be brought from the
physical memory into the logical memory. So that
we uses the concept of the memory management.
this is the responsibility of the operating system to
provide the memory spaces to each and every
program. Also manage which process will be
executed at that time.

Operating system translates the physical
address into the logical address, if he wants to
perform the operation, then he must translate the
physical address into the logical address. This is the
also known as binding. Means when a physical
address is mapped or convert into the logical
address, and then this is called as the binding.

There is also a concept which is also known
as the dynamic loading, in this a program doesn’t
reside into the memory of the computer and we
must have to load that process for processing. So
that when a process is loaded only when a request
has found, then it is called as the loading of the
process.

Q2. What is process address space.?

Ans :
Process Address Space

The process address space is the set of logical
addresses that a process references in its code.

The operating system takes care of mapping
the logical addresses to physical addresses at the
time of memory allocation to the program.

There are three types of addresses used in a
program before and after memory is allocated.

 Logical address – generated by the CPU;
also referred to as virtual address

 Physical address – address seen by the
memory unit

 Virtual Address – is a binary number
in virtual memory that enables a process
to use a location in primary storage (main
memory) independently of other processes
and to use more space than actually exists in
primary storage by temporarily relegating
some contents to a hard disk or internal flash
drive.

Logical and physical addresses are the same
in compile-time and load time address-binding
schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme

Virtual and physical addresses are the same
in compile-time and load-time address-binding
schemes. Virtual and physical addresses differ in
execution-time address-binding scheme.

The set of all logical addresses generated by
a program is referred to as a logical address
space. The set of all physical addresses

Memory management strategies with example architectures:
Swapping, Contiguous allocation, Paging, Segmentation, Segmentation with

paging. Virtual memory management: Demand paging, Page replacement.

Thrashing.

MCA I YEAR II SEMESTER

76
Rahul Publications

Rahul Publications

corresponding to these logical addresses is referred to as a physical address space.

The runtime mapping from virtual to physical address is done by the memory management unit
(MMU) which is a hardware device. MMU uses following mechanism to convert virtual address to physical
address.

 The value in the base register is added to every address generated by a user process, which is
treated as offset at the time it is sent to memory. For example, if the base register value is 10000,
then an attempt by the user to use address location 100 will be dynamically reallocated to location
10100.

 The user program deals with virtual addresses; it never sees the real physical addresses.

Q3. What is Swapping? Explain.

Ans : (Imp.)

Swapping is a mechanism in which a process can be swapped temporarily out of main memory (or
move) to secondary storage (disk) and make that memory available to other processes. At some later
time, the system swaps back the process from the secondary storage to main memory.

Though performance is usually affected by swapping process but it helps in running multiple and
big processes in parallel and that’s the reason Swapping is also known as a technique for memory
compaction.

When there is a situation to perform swapping, then we uses the sweeper. The sweeper is used for

1. Selecting which process to be out

2. Selecting which process to be in

3. Providing the memory space to the processes those are newly entered.

In this sweeper will select the suspended process then brings the ready process in memory and after
the execution that suspended process will be again entered into the memory by the sweeper.

For swapping the sweeper also uses some address those are also known as the logical and physical
address of processes. For providing the logical address into the physical address there the following two
approaches used.

1. Static relocation

In the static relocation swapping never to be performed because the process are always have a
memory. Which is not to be changed at the execution time. For example the memory which is
provided to the input and output operations and the memory which is provided to the cpu for
executing the processes will not be changed so that this is also known as the static relocation of the
memory.

2. Dynamic relocation

The dynamic relocation is also known as the memory which is changed and relocates by the processes
at the time of execution. So that there must be some mechanism to provide memory those processes
those are running. The mapping of the logical address into the physical address will be performed
at the time of execution or at run time.

When the memory is provided to the process then the particular address is stored by the cpu which
is also have a entry into the partition description table means in which partitions a process is running
because when the process needs swapping that particular address must be reloaded.

UNIT - II OPERATING SYSTEMS

77
Rahul Publications

Rahul Publications

The total time taken by swapping process includes the time it takes to move the entire process to a
secondary disk and then to copy the process back to memory, as well as the time the process takes
to regain main memory.

Let us assume that the user process is of size 2048KB and on a standard hard disk where swapping
will take place has a data transfer rate around 1 MB per second. The actual transfer of the 1000K
process to or from memory will take

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds plus other overhead
where the process competes to regain main memory.

2.1.2 Contiguous Allocation

Q4. Describe briefly about contiguous allocation.

Ans :
The contiguous allocation means the memory spaces is divided into the small and equal size and the

different process uses the various partitions for running their applications process. And when a request has

MCA I YEAR II SEMESTER

78
Rahul Publications

Rahul Publications

found then the process will allocate the space. And
in this the contiguous spaces is provided to each
and every process. Means all the process will reside
in the memory of the computer and when a process
will request for the memory then this available
memory or free memory will be allotted to him.

But there will be problem when the memory
which is required by the process is not enough for
him or when the size of memory is less which is
required for the process. So this problem is also
known as the internal fragmentation. The main
reason for the internal fragmentation is, all the
memory is divided into the fixed and continuous
sizes. So that if a process requires large memory
then that process will not be fit into the small area.

The second problem is also occurred in the
continues allocation. This is also known as the
external fragmentation. In this when the memory is
not enough after combing the multiple parts of single
memory. In this when the required memory is high
after combining the various areas of memory then
this is called as external fragmentation. So there are
the following problems arise when we use the
contiguous memory allocation.

1. Wasted memory

The wasted memory is that memory which is
unused and which can’t be given to the
process. When the various process comes
which require memory which is not available
this is called as the wasted memory.

2. Time complexity

There is also wastage of time for allocating
and de-allocating the memory spaces to the
process.

3. Memory access

There must be some operations those are
performed for providing the memory to the
processes.

Q5. How memory is allocated to the
process? Explain how to resolve dynamic
storage allocation problem?

Ans : (Imp.)

Memory Allocation and Dynamic Storage-
Allocation Problem:

Main memory usually has two partitions
 Low Memory - Operating system resides in

this memory.
 High Memory - User processes are held in

high memory.
Operating system uses the following memory

allocation mechanism.
One method of allocating contiguous memory

is to divide all available memory into equal sized
partitions, and to assign each process to their own
partition. This restricts both the number of
simultaneous processes and the maximum size of
each process, and is no longer used.
 Single-partition allocation

In this type of allocation, relocation-register
scheme is used to protect user processes from
each other, and from changing operating-
system code and data. Relocation register
contains value of smallest physical address
whereas limit register contains range of logical
addresses. Each logical address must be less
than the limit register.

 Multiple-partition allocation
In this type of allocation, main memory is
divided into a number of fixed-sized partitions
where each partition should contain only one
process. When a partition is free, a process is
selected from the input queue and is loaded
into the free partition. When the process
terminates, the partition becomes available
for another process.
An alternate approach is to keep a list of

unused (free) memory blocks (holes), and to
find a hole of a suitable size whenever a process
needs to be loaded into memory. There are many
different strategies for finding the “best” allocation
of memory to processes, including the three most
commonly discussed:
1. First fit

Search the list of holes until one is found that
is big enough to satisfy the request, and assign
a portion of that hole to that process.
Whatever fraction of the hole not needed by
the request is left on the free list as a smaller
hole. Subsequent requests may start looking
either from the beginning of the list or from
the point at which this search ended.

UNIT - II OPERATING SYSTEMS

79
Rahul Publications

Rahul Publications

2. Best fit

Allocate the smallest hole that is big enough to satisfy the request. This saves large holes for other
process requests that may need them later, but the resulting unused portions of holes may be too
small to be of any use, and will therefore be wasted. Keeping the free list sorted can speed up the
process of finding the right hole.

3. Worst fit

Allocate the largest hole available, thereby increasing the likelihood that the remaining portion will
be usable for satisfying future requests.

Q6. Write a briefly note on fragmentation.

Ans :
As processes are loaded and removed from memory, the free memory space is broken into little

pieces. It happens after sometimes that processes cannot be allocated to memory blocks considering their
small size and memory blocks remains unused. This problem is known as Fragmentation.

Fragmentation is of two types :

 External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it is not contiguous,
so it cannot be used.

 Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused, as it cannot be
used by another process.

The following diagram shows how fragmentation can cause waste of memory and a compaction
technique can be used to create more free memory out of fragmented memory

External fragmentation can be reduced by compaction or shuffle memory contents to place all free
memory together in one large block. To make compaction feasible, relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest partition but large
enough for the process.

MCA I YEAR II SEMESTER

80
Rahul Publications

Rahul Publications

2.1.3 Paging Segmentation

Q7. Explain the mechanism of paging segmentation.

Ans : (Imp.)

A computer can address more memory than the amount physically installed on the system. This
extra memory is actually called virtual memory and it is a section of a hard that’s set up to emulate the
computer’s RAM. Paging technique plays an important role in implementing virtual memory.

Paging is a memory management technique in which process address space is broken into blocks of
the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The size of the process
is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory called frames
and the size of a frame is kept the same as that of a page to have optimum utilization of the main memory
and to void external fragmentation.

UNIT - II OPERATING SYSTEMS

81
Rahul Publications

Rahul Publications

Address Translation

Page address is called logical address and represented by page number and the offset.

Logical Address = Page Number + Page Offset

Frame address is called physical address and represented by a frame number and the offset.

Physical Address = Frame Number +Page Offset

A data structure called page map table is used to keep track of the relation between a page of a
process to a frame in physical memory.

When the system allocates a frame to any page, it translates this logical address into a physical
address and create entry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a given
point in time, then the paging concept will come into picture.

When a computer runs out of RAM, the operating system (OS) will move idle or unwanted pages
of memory to secondary memory to free up RAM for other processes and brings them back when
needed by the program.

This process continues during the whole execution of the program where the OS keeps removing
idle pages from the main memory and write them onto the secondary memory and bring them back
when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging :

 Paging reduces external fragmentation, but still suffer from internal fragmentation.

MCA I YEAR II SEMESTER

82
Rahul Publications

Rahul Publications

 Paging is simple to implement and assumed as an efficient memory management technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having small RAM.

Q8. Explain about the characteristics and process of segmentation.

Ans :
Segmentation

 Like Paging, Segmentation is another non-contiguous memory allocation technique.

 In segmentation, process is not divided blindly into fixed size pages.

 Rather, the process is divided into modules for better visualization.

Characteristics

 Segmentation is a variable size partitioning scheme.

 In segmentation, secondary memory and main memory are divided into partitions of unequal size.

 The size of partitions depend on the length of modules.

 The partitions of secondary memory are called as segments.

Example:

Consider a program is divided into 5 segments as

Segment Table

 Segment table is a table that stores the information about each segment of the process.

 It has two columns.

 First column stores the size or length of the segment.

 Second column stores the base address or starting address of the segment in the main memory.

 Segment table is stored as a separate segment in the main memory.

 Segment table base register (STBR) stores the base address of the segment table.

UNIT - II OPERATING SYSTEMS

83
Rahul Publications

Rahul Publications

For the above illustration, consider the
segment table is -

Here,

 Limit indicates the length or size of the
segment.

 Base indicates the base address or starting
address of the segment in the main memory.

 In accordance to the above segment table,
the segments are stored in the main memory
as -

Translating Logical Address into Physical
Address -

 CPU always generates a logical address.

 A physical address is needed to access the
main memory.

Following steps are followed to translate
logical address into physical address

Step-01:

CPU generates a logical address consisting of
two parts -

1. Segment Number

2. Segment Offset

Logical Address

Segment Number Segment Offset

 Segment Number specifies the specific
segment of the process from which CPU
wants to read the data.

 Segment Offset specifies the specific word in
the segment that CPU wants to read.

Step-02:

 For the generated segment number,
corresponding entry is located in the segment
table.

 Then, segment offset is compared with the
limit (size) of the segment.

 Now, two cases are possible-

Case-01: Segment Offset >= Limit

 If segment offset is found to be greater than
or equal to the limit, a trap is generated.

Case-02: Segment Offset < Limit

 If segment offset is found to be smaller than
the limit, then request is treated as a valid
request.

 The segment offset must always lie in the
range [0, limit-1],

 Then, segment offset is added with the base
address of the segment.

 The result obtained after addition is the
address of the memory location storing the
required word.

MCA I YEAR II SEMESTER

84
Rahul Publications

Rahul Publications

The following diagram illustrates the above steps of translating logical address into physical address

Fig. : Translating Logical Address into Physical Address

Advantages

The advantages of segmentation are :

 It allows to divide the program into modules which provides better visualization.

 Segment table consumes less space as compared to Page Table in paging.

 It solves the problem of internal fragmentation.

Disadvantages

The disadvantages of segmentation are :

 There is an overhead of maintaining a segment table for each process.

 The time taken to fetch the instruction increases since now two memory accesses are required.

 Segments of unequal size are not suited for swapping.

 It suffers from external fragmentation as the free space gets broken down into smaller pieces with
the processes being loaded and removed from the main memory.

2.1.4 Segmentation With Paging

Q9. Explain about Segmented Paging.

Ans : (Imp.)

 Process is first divided into segments and then each segment is divided into pages.

 These pages are then stored in the frames of main memory.

 A page table exists for each segment that keeps track of the frames storing the pages of that
segment.

 Each page table occupies one frame in the main memory.

 Number of entries in the page table of a segment = Number of pages that segment is divided.

UNIT - II OPERATING SYSTEMS

85
Rahul Publications

Rahul Publications

 A segment table exists that keeps track of the frames storing the page tables of segments.

 Number of entries in the segment table of a process = Number of segments that process is divided.

 The base address of the segment table is stored in the segment table base register.

 Each Page table contains the various information about every page of the segment. The Segment
Table contains the information about every segment. Each segment table entry points to a page
table entry and every page table entry is mapped to one of the page within a segment.

Translation of logical address to physical address

The CPU generates a logical address which is divided into two parts: Segment Number and Segment
Offset. The Segment Offset must be less than the segment limit. Offset is further divided into Page number
and Page Offset. To map the exact page number in the page table, the page number is added into the
page table base.

Following steps are followed to translate logical address into physical address

Step-01:

CPU generates a logical address consisting of three parts :

1. Segment Number

2. Page Number

3. Page Offset

MCA I YEAR II SEMESTER

86
Rahul Publications

Rahul Publications

 Segment Number specifies the specific segment from which CPU wants to reads the data.

 Page Number specifies the specific page of that segment from which CPU wants to read the data.

 Page Offset specifies the specific word on that page that CPU wants to read.

Step-02:

 For the generated segment number, corresponding entry is located in the segment table.

 Segment table provides the frame number of the frame storing the page table of the referred
segment.

 The frame containing the page table is located.

Step-03:

 For the generated page number, corresponding entry is located in the page table.

 Page table provides the frame number of the frame storing the required page of the referred
segment.

 The frame containing the required page is located.

Step-04:

 The frame number combined with the page offset forms the required physical address.

 For the generated page offset, corresponding word is located in the page and read.

The following diagram illustrates the above steps of translating logical address into physical address

UNIT - II OPERATING SYSTEMS

87
Rahul Publications

Rahul Publications

Advantages

The advantages of segmented paging are

 Segment table contains only one entry
corresponding to each segment.

 It reduces memory usage.

 The size of Page Table is limited by the
segment size.

 It solves the problem of external fragmen-
tation.

Disadvantages

The disadvantages of segmented paging are

 Segmented paging suffers from internal
fragmentation.

 The complexity level is much higher as
compared to paging.

2.2 VIRTUAL MEMORY MANAGEMENT

2.2.1 Demand Paging

Q10. What is Demand Paging?

Ans :
Demand Paging is the Concept in which a

Process is Copied into the Logical Memory from
the Physical Memory when we needs them. A
Process can load either Entire, Copied into the Main
Memory or the part of single Process is copied into
the Memory so that is only the single Part of the
Process is copied into the Memory then this is also
called as the Lazy Swapping.

For Swapping the Process from the Main
Memory or from the Physical Memory, a Page Table
must be used. The Page Table is used for Storing
the Entries which Contains the Page or Process
Number and also the offset Number which indicates
the address of the Process where a Process is Stored
and there will also be the Special or Extra Bit which
is also Known as the Flag Bit which indicates whether
the Page is Stored into the Physical Memory.

The Page Table Contains two Entries those
are used as valid and invalid means whether the
Process is Stored into the Page Table. Or Whether
the Demand Program is Stored into the Physical
Memory So that they can be easily swapped. If the

Requested Program is not stored into the Page Table
then the Page Table must Contains the Entries as v
and I means valid and invalid along the Page
Number.

When a user Request for any Operation then
the Operating System perform the following
instructions

1. First of all this will fetch all the instructions
from the Physical Memory into the Logical
Memory.

2. Decode all the instructions means this will find
out which Operation has to be performed
on the instructions.

3. Perform Requested Operation.

4. Stores the Result into the Logical Memory
and if needed the Results will be Stored into
the Physical Memory.

2.2.2 Page Replacement

Q11. What is the use of page replacement
algorithm? Explain about various page
replacement algorithms.

Ans : (Imp.)

Page replacement algorithms are the
techniques using which an Operating System
decides which memory pages to swap out, write to
disk when a page of memory needs to be allocated.
Paging happens whenever a page fault occurs and
a free page cannot be used for allocation purpose
accounting to reason that pages are not available
or the number of free pages is lower than required
pages.

When the page that was selected for
replacement and was paged out, is referenced again,
it has to read in from disk, and this requires for I/O
completion. This process determines the quality of
the page replacement algorithm: the lesser the time
waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the
limited information about accessing the pages
provided by hardware, and tries to select which
pages should be replaced to minimize the total
number of page misses, while balancing it with the
costs of primary storage and processor time of the
algorithm itself. There are many different page
replacement algorithms.

MCA I YEAR II SEMESTER

88
Rahul Publications

Rahul Publications

Reference String

The string of memory references is called reference string. Reference strings are generated artificially
or by tracing a given system and recording the address of each memory reference. For a given page size,
we need to consider only the page number, not the entire address.

 If we have a reference to a page p, then any immediately following references to page p will
never cause a page fault. Page p will be in memory after the first reference; the immediately following
references will not fault.

 For example, consider the following sequence of addresses “ 23,215,600,1234,76,96

 If page size is 100, then the reference string is 1,2,6,12,0,0

1. First In First Out (FIFO) algorithm

 Oldest page in main memory is the one which will be selected for replacement.

 Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

Drawback

 FIFO page replacement algorithm =s performance is not always good.

 To illustrate this, consider the following example:

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

If No.of available frames -= 3 then the no.of page faults =9

If No.of available frames =4 then the no.of page faults =10

Here the no. of page faults increases when the no.of frames increases .This is called as
Belady’s Anomaly.

2. Optimal page replacement algorithm

Replace the page that will not be used for the longest period of time.

UNIT - II OPERATING SYSTEMS

89
Rahul Publications

Rahul Publications

Example:

Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

No.of available frames = 3

Drawback

 It is difficult to implement as it requires future knowledge of the reference string.

3. Least Recently Used (LRU) algorithm

 Page which has not been used for the longest time in main memory is the one which will be
selected for replacement.

 Easy to implement, keep a list, replace pages by looking back into time.

LRU page replacement can be implemented using

(i) Counters

 Every page table entry has a time-of-use field and a clock or counter is associated with the
CPU.

 The counter or clock is incremented for every memory reference.

 Each time a page is referenced, copy the counter into the time-of-use field.

 When a page needs to be replaced, replace the page with the smallest counter value.

MCA I YEAR II SEMESTER

90
Rahul Publications

Rahul Publications

(ii) Stack

Keep a stack of page numbers. Whenever
a page is referenced, remove the page from
the stack and put it on top of the stack.

When a page needs to be replaced, replace
the page that is at the bottom of the stack.(LRU
page).

Use of A Stack to Record The Most
Recent Page References

4. Page Buffering algorithm

 To get a process start quickly, keep a pool
of free frames.

 On page fault, select a page to be
replaced.

 Write the new page in the frame of free
pool, mark the page table and restart
the process.

 Now write the dirty page out of disk and
place the frame holding replaced page
in free pool.

5. LRU Approximation Page Replacement

With each page associate a reference bit,
initially set to 0. When page is referenced,
the bit is set to 1

When a page needs to be replaced, replace
the page whose reference bit is 0.The order
of use is not known , but we know which
pages were used and which were not used.

(i) Additional Reference Bits Algorithm

Keep an 8-bit byte for each page in a table in
memory. At regular intervals , a timer interrupt
transfers control to OS. The OS shifts
reference bit for each page into higher- order
bit shifting the other bits right 1 bit and
discarding the lower-order bit.

Example:

If reference bit is 00000000 then the page
has not been used for 8 time periods.

If reference bit is 11111111 then the page
has been used atleast once each time period.

If the reference bit of page 1 is 11000100
and page 2 is 01110111 then page 2 is the
LRU page.

(ii) Second Chance Algorithm

Basic algorithm is FIFO

When a page has been selected , check its
reference bit.

If 0 proceed to replace the page

If 1 give the page a second chance and move
on to the next FIFO page.

When a page gets a second chance, its
reference bit is cleared and arrival time is reset
to current time.

Hence a second chance page will not be
replaced until all other pages are replaced.

(iii) Enhanced Second Chance Algorithm

Consider both reference bit and modify bit

 There are four possible classes

(iv) 1.(0,0) – neither recently used nor
modified Best page to replace

(0,1) – not recently used but modified page
has to be written out before replacement.

(1,0) - recently used but not modified page
may be used again

(1,1) – recently used and modified page may
be used again and page has to be written to
disk.

6. Counting-Based Page Replacement

Keep a counter of the number of references
that have been made to each page

Least Frequently Used (LFU)Algorithm:
replaces page with smallest count

Most Frequently Used (MFU)Algorithm:
replaces page with largest count

It is based on the argument that the page with
the smallest count was probably just brought
in and has yet to be used.

Q12. Consider a main memory with five page
frames and the following sequence of
page references: 3, 8, 2, 3, 9, 1, 6, 3, 8,
9, 3, 6, 2, 1, 3. which one of the following
is true with respect to page replacement
policies First-In-First-out (FIFO) and
Least Recently Used (LRU)?

UNIT - II OPERATING SYSTEMS

91
Rahul Publications

Rahul Publications

A. Both incur the same number of page faults

B. FIFO incurs 2 more page faults than LRU

C. LRU incurs 2 more page faults than FIFO

D. FIFO incurs 1 more page faults than LRU

Ans :
Number of frames = 5

FIFO

According to FIFO, the page which first comes in the memory will first goes out.

Number of Page Faults = 9

Number of hits = 6

LRU

According to LRU, the page which has not been requested for a long time will get replaced with the
new one.

MCA I YEAR II SEMESTER

92
Rahul Publications

Rahul Publications

Number of Page Faults = 9

Number of Hits = 6

The Number of page faults in both the cases is equal therefore the Answer is option (A).

Q13. Explain Belady’s Anomaly with an example.

Ans : (Imp.)

In the case of LRU and optimal page replacement algorithms, it is seen that the number of page
faults will be reduced if we increase the number of frames. However, Balady found that, In FIFO page
replacement algorithm, the number of page faults will get increased with the increment in number of
frames.

This is the strange behavior shown by FIFO algorithm in some of the cases. This is an Anomaly
called as Belady’sAnomaly.

Let’s examine such example :

The reference String is given as 0 1 5 3 0 1 4 0 1 5 3 4. Let’s analyze the behavior of FIFO algorithm
in two cases.

Case 1: Number of frames = 3

Request 0 1 5 3 0 1 4 0 1 5 3 4

Frame 3 5 5 5 1 1 1 1 1 3 3

Frame 2 1 1 1 0 0 0 0 0 5 5 5

Frame 1 0 0 0 3 3 3 4 4 4 4 4 4

Miss/Hit Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Hit

Number of Page Faults = 9

Case 2: Number of frames = 4

Request 0 1 5 3 0 1 4 0 1 5 3 4

Frame 4 3 3 3 3 3 3 5 5 5

Frame 3 5 5 5 5 5 5 1 1 1 1

Frame 2 1 1 1 1 1 1 0 0 0 0 4

Frame 1 0 0 0 0 0 0 4 4 4 4 3 3

Miss/Hit Miss Miss Miss Miss Hit Hit Miss Miss Miss Miss Miss Miss

UNIT - II OPERATING SYSTEMS

93
Rahul Publications

Rahul Publications

Number of Page Faults = 10

Therefore, in this example, the number of
page faults is increasing by increasing the
number of frames hence this suffers from
Belady’sAnomaly.

2.2.3 Thrashing

Q14. Define thrashing. Explain the techniques
of thrashing.

Ans : (Imp.)

When a program need space larger than RAM
or it need space when RAM is full, Operating System
will try to allocate space from secondary memory
and behaves like it has that much amount of memory
by serving to that program. This concept is called
virtual memory. To know about thrashing we first
need to know what is page fault and swapping.

Page fault and swapping: We know every
program divided into some pages. When a program
need a page which is not in RAM that is called page
fault. Whenever a page fault happens, operating
system will try to fetch that page from secondary
memory and try to swap it with one of the page in
RAM. This is called swapping.

If this page fault and then swapping
happening very frequently at higher rate, then
operating system has to spend more time to swap
these pages. This state is called thrashing. Because
of this, CPU utilization is going to be reduced.

Effect of Thrashing

Whenever thrashing starts, operating system
tries to apply either Global page replacem-
ent Algorithm or Local page replacement
algorithm.

Global Page Replacement

Since global page replacement can access to
bring any page, it tries to bring more pages whenever
thrashing found. But what actually will happen is,
due to this, no process gets enough frames and by
result thrashing will be increase more and more. So
global page replacement algorithm is not suitable
when thrashing happens.

Local Page Replacement

Unlike global page replacement algorithm,
local page replacement will select pages which only
belongs to that process. So there is a chance to
reduce the thrashing. But it is proven that there are
many disadvantages if we use local page
replacement. So local page replacement is just
alternative than global page replacement in thrashing
scenario.

Techniques to Handle Thrashing

Working Set Model

This model is based on the above-stated
concept of the Locality Model.

The basic principle states that if we allocate
enough frames to a process to accommodate its
current locality, it will only fault whenever it moves
to some new locality. But if the allocated frames are
lesser than the size of the current locality, the process
is bound to thrash.

According to this model, based on a
parameter A, the working set is defined as the set of
pages in the most recent ‘A’ page references. Hence,
all the actively used pages would always end up
being a part of the working set.

The accuracy of the working set is dependant
on the value of parameter A. If A is too large, then
working sets may overlap. On the other hand, for
smaller values of A, the locality might not be covered
entirely.

If D is the total demand for frames and is the
working set size for a process i,

MCA I YEAR II SEMESTER

94
Rahul Publications

Rahul Publications

Now, if ‘m’ is the number of frames available
in the memory, there are 2 possibilities:

(i) D>m i.e. total demand exceeds the number
of frames, then thrashing will occur as some
processes would not get enough frames.

(ii) D<=m, then there would be no thrashing.

If there are enough extra frames, then some
more processes can be loaded in the memory. On
the other hand, if the summation of working set
sizes exceeds the availability of frames, then some
of the processes have to be suspended(swapped
out of memory).

1. This technique prevents thrashing along with
ensuring the highest degree of multi
programming possible. Thus, it optimizes CPU
utilisation.

2. Page Fault Frequency

A more direct approach to handle thrashing
is the one that uses Page-Fault Frequency
concept.

The problem associated with Thrashing is the
high page fault rate and thus, the concept here is to
control the page fault rate.

If the page fault rate is too high, it indicates
that the process has too few frames allocated to it.
On the contrary, a low page fault rate indicates that
the process has too many frames.

Upper and lower limits can be established on
the desired page fault rate as shown in the diagram.

If the page fault rate falls below the lower limit,
frames can be removed from the process. Similarly,
if the page fault rate exceeds the upper limit, more
number of frames can be allocated to the process.

In other words, the graphical state of the
system should be kept limited to the rectangular
region formed in the given diagram.

Here too, if the page fault rate is high with no
free frames, then some of the processes can be
suspended and frames allocated to them can be
reallocated to other processes. The suspended
processes can then be restarted later.

UNIT - III OPERATING SYSTEMS

95
Rahul Publications

Rahul Publications

UNIT
III

3.1 FILE SYSTEM INTERFACE

3.1.1 File Concepts

Q1. What is file? Explain about the structure
of the file and its attributes.

Ans : (Imp.)

A file can be defined as a data structure which
stores the sequence of records. Files are stored in a
file system, which may exist on a disk or in the main
memory. Files can be simple (plain text) or complex
(specially-formatted).

The collection of files is known as Directory.
The collection of directories at the different levels, is
known as File System.

File Structure

A file has various kinds of structure. Some of
them can be :

 Simple Record Structure with lines of
fixed or variable lengths.

 Complex Structures like formatted
document or reloadable load files.

 No Definite Structure like sequence of
words and bytes etc.

Attributes of a File

Following are some of the attributes of a file :

1. Name

Every file carries a name by which the file is
recognized in the file system. One directory
cannot have two files with the same name.

2. Identifier

Along with the name, Each File has its own
extension which identifies the type of the file.
For example, a text file has the extension .txt, A
video file can have the extension .mp4.

3. Type

In a File System, the Files are classified in
different types such as video files, audio files,
text files, executable files, etc.

4. Location

In the File System, there are several locations
on which, the files can be stored. Each file
carries its location as its attribute.

5. Size

The Size of the File is one of its most important
attribute. By size of the file, we mean the
number of bytes acquired by the file in the
memory.

File system interface: File concepts, Access methods and protection.

File system implementation: File system structure, Allocation methods.
Directory implementation of file systems, Mass storage structures, I/O systems

MCA I YEAR II SEMESTER

96
Rahul Publications

Rahul Publications

6. Protection

The Admin of the computer may want the
different protections for the different files.
Therefore each file carries its own set of
permissions to the different group of Users.

7. Time and Date

Every file carries a time stamp which contains
the time and date on which the file is last
modified.

Q2. Write about Different Types of Files.

Ans :
File type refers to the ability of the operating

system to distinguish different types of file such as
text files source files and binary files etc. Many
operating systems support many types of files.
Operating system like MS-DOS and UNIX have the
following types of files -

1. Ordinary files

 These are the files that contain user
information.

 These may have text, databases or executable
program.

 The user can apply various operations on such
files like add, modify, delete or even remove
the entire file.

2. Directory files

 These files contain list of file names and other
information related to these files.

3. Special files

 These files are also known as device files.

 These files represent physical device like disks,
terminals, printers, networks, tape drive etc.

These files are of two types -

 Character special files ” data is handled
character by character as in case of terminals
or printers.

 Block special files ” data is handled in
blocks as in the case of disks and tapes.

Operations on the File

There are various operations which can be
implemented on a file. We will see all of them in
detail.

1. Create

Creation of the file is the most important
operation on the file. Different types of files
are created by different methods for example
text editors are used to create a text file, word
processors are used to create a word file and
Image editors are used to create the image
files.

2. Write

Writing the file is different from creating the
file. The OS maintains a write pointer for
every file which points to the position in the
file from which, the data needs to be written.

3. Read

Every file is opened in three different modes
Read, Write and append. A Read pointer is
maintained by the OS, pointing to the
position up to which, the data has been read.

4. Re-position

Re-positioning is simply moving the file
pointers forward or backward depending
upon the user’s requirement. It is also called
as seeking.

5. Delete

Deleting the file will not only delete all the
data stored inside the file, It also deletes all
the attributes of the file. The space which is
allocated to the file will now become available
and can be allocated to the other files.

6. Truncate

Truncating is simply deleting the file except
deleting attributes. The file is not completely
deleted although the information stored
inside the file get replaced.

3.1.2 Access Methods And Protection

Q3. What are the various File Access
Mechanisms ?

Ans : (Imp.)

File Access Mechanisms

File access mechanism refers to the manner
in which the records of a file may be accessed. There
are several ways to access files -

UNIT - III OPERATING SYSTEMS

97
Rahul Publications

Rahul Publications

1. Sequential access

2. Direct/Random access

3. Indexed sequential access

1. Sequential Access

Most of the operating systems access the file sequentially. In other words, we can say that most of
the files need to be accessed sequentially by the operating system.

In sequential access, the OS read the file word by word. A pointer is maintained which initially
points to the base address of the file. If the user wants to read first word of the file then the pointer
provides that word to the user and increases its value by 1 word. This process continues till the end of the
file.

Modern word systems do provide the concept of direct access and indexed access but the most
used method is sequential access due to the fact that most of the files such as text files, audio files, video
files, etc need to be sequentially accessed.

2. Direct Random Access

The Direct Access is mostly required in the case of database systems. In most of the cases, we need
filtered information from the database. The sequential access can be very slow and inefficient in such
cases.

Suppose every block of the storage stores 4 records and we know that the record we needed is
stored in 10th block. In that case, the sequential access will not be implemented because it will traverse all
the blocks in order to access the needed record.

Direct access will give the required result despite of the fact that the operating system has to perform
some complex tasks such as determining the desired block number. However, that is generally implemented
in database applications.

MCA I YEAR II SEMESTER

98
Rahul Publications

Rahul Publications
iii) Indexed Seqential Access

If a file can be sorted on any of the filed then an index can be assigned to a group of certain records.
However, A particular record can be accessed by its index. The index is nothing but the address of a
record in the file.

In index accessing, searching in a large database became very quick and easy but we need to have
some extra space in the memory to store the index value.

Q4. What is file protection? Explain various types of file access control techniques

Ans : (Imp.)

Protection

 Files must be kept safe for reliability (against accidental damage), and protection (against deliberate
malicious access.) The former is usually managed with backup copies. This section discusses the
latter.

 One simple protection scheme is to remove all access to a file. However this makes the file unusable,
so some sort of controlled access must be arranged.

Types of Access

 The following low-level operations are often controlled:

• Read - View the contents of the file

• Write - Change the contents of the file.

• Execute - Load the file onto the CPU and follow the instructions contained therein.

• Append - Add to the end of an existing file.

• Delete - Remove a file from the system.

• List -View the name and other attributes of files on the system.

UNIT - III OPERATING SYSTEMS

99
Rahul Publications

Rahul Publications

 Higher-level operations, such as copy, can generally be performed through combinations of the
above.

Access Control

 One approach is to have complicated Access Control Lists, ACL, which specify exactly what
access is allowed or denied for specific users or groups.

• The AFS uses this system for distributed access.

• Control is very finely adjustable, but may be complicated, particularly when the specific users
involved are unknown. (AFS allows some wild cards, so for example all users on a certain
remote system may be trusted, or a given username may be trusted when accessing from any
remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R, W, and X
permissions for each of the Owner, Group, and Others. The RWX bits control the following privileges
for ordinary files and directories:

Access detailed directory information. Required to get a long
listing, or to access any specific file in the directory. Note that
if a user has X but not R permissions on a directory, they can
still access specific files, but only if they already know the
name of the file they are trying to access.

Execute file contents as a program.X

Change directory contents. Required to create or delete files.Write (change) file contents.W

Read directory contents. Required to get a listing of the
directory.

Read (view) file contents.R

DirectoriesFilesBit

Access detailed directory information. Required to get a long
listing, or to access any specific file in the directory. Note that
if a user has X but not R permissions on a directory, they can
still access specific files, but only if they already know the
name of the file they are trying to access.

Execute file contents as a program.X

Change directory contents. Required to create or delete files.Write (change) file contents.W

Read directory contents. Required to get a listing of the
directory.

Read (view) file contents.R

DirectoriesFilesBit

 In addition there are some special bits that can also be applied:

• The set user ID (SUID) bit and/or the set group ID (SGID) bits applied to executable files
temporarily change the identity of whoever runs the program to match that of the owner /
group of the executable program.

• The sticky bit on a directory modifies write permission, allowing users to only delete files for
which they are the owner.

• The SUID, SGID, and sticky bits are indicated with an S, S, and T in the positions for execute
permission for the user, group, and others, respectively. If the letter is lower case, (s, s, t),
then the corresponding execute permission is not also given. If it is upper case, (S, S, T),
then the corresponding execute permission IS given.

• The numeric form of chmod is needed to set these advanced bits.

Sample permissions in a UNIX system.

MCA I YEAR II SEMESTER

100
Rahul Publications

Rahul Publications

3.2 FILE SYSTEM IMPLEMENTATION

3.2.1 File System Structure

Q5. Explain the concept of file system
structure.

Ans : (Imp.)

File System provide efficient access to the disk
by allowing data to be stored, located and retrieved
in a convenient way. A file System must be able to
store the file, locate the file and retrieve the file.

Most of the Operating Systems use layering
approach for every task including file systems. Every
layer of the file system is responsible for some
activities.

The image shown below, elaborates how the
file system is divided in different layers, and also the
functionality of each layer.

 When an application program asks for a file,
the first request is directed to the logical file
system. The logical file system contains the
Meta data of the file and directory structure.
If the application program doesn’t have the
required permissions of the file then this layer
will throw an error. Logical file systems also
verify the path to the file.

 Generally, files are divided into various logical
blocks. Files are to be stored in the hard disk
and to be retrieved from the hard disk. Hard
disk is divided into various tracks and sectors.
Therefore, in order to store and retrieve the
files, the logical blocks need to be mapped to
physical blocks. This mapping is done by File
organization module. It is also responsible for
free space management.

 Once File organization module decided which
physical block the application program needs,
it passes this information to basic file system.
The basic file system is responsible for issuing
the commands to I/O control in order to fetch
those blocks.

 I/O controls contain the codes by using which
it can access hard disk. These codes are known
as device drivers. I/O controls are also
responsible for handling interrupts.

Q6. Explain about file system implemen-
tation techniques

Ans :
 File systems store several important data

structures on the disk

• A boot-control block, (per volume)
a.k.a. the boot block in UNIX or
the partition boot sector in Windows
contains information about how to boot
the system off of this disk. This will
generally be the first sector of the
volume if there is a bootable system
loaded on that volume, or the block will
be left vacant otherwise.

• A volume control block, (per volume)
a.k.a. the master file table in UNIX
or the superblock in Windows, which
contains information such as the

UNIT - III OPERATING SYSTEMS

101
Rahul Publications

Rahul Publications

partition table, number of blocks on each
filesystem, and pointers to free blocks
and free FCB blocks.

• A directory structure (per file system),
containing file names and pointers to
corresponding FCBs. UNIX uses inode
numbers, and NTFS uses a master
file table.

• The File Control Block, FCB, (per
file) containing details about ownership,
size, permissions, dates, etc. UNIX stores
this information in inodes, and NTFS in
the master file table as a relational
database structure.

 There are also several key data structures
stored in memory:

• An in-memory mount table.

• An in-memory directory cache of
recently accessed directory information.

• A system-wide open file table,
containing a copy of the FCB for every
currently open file in the system, as well
as some other related information.

• A per-process open file table,
containing a pointer to the system open
file table as well as some other
information.

• When a new file is created, a new FCB
is allocated and filled out with important
information regarding the new file. The
appropriate directory is modified with
the new file name and FCB information.

• When a file is accessed during a
program, the open() system call reads
in the FCB information from disk, and
stores it in the system-wide open file
table. An entry is added to the per-
process open file table referencing the
system-wide table, and an index into the
per-process table is returned by the
open() system call. UNIX refers to this
index as a fi le descriptor, and
Windows refers to it as a file handle.

• If another process already has a file
open when a new request comes in for

the same file, and it is sharable, then a
counter in the system-wide table is
incremented and the per-process table
is adjusted to point to the existing entry
in the system-wide table.

• When a file is closed, the per-process
table entry is freed, and the counter in
the system-wide table is decremented.
If that counter reaches zero, then the
system wide table is also freed. Any data
currently stored in memory cache for
this file is written out to disk if necessary.

Partitions and Mounting

 Physical disks are commonly divided into
smaller units called partitions. They can also
be combined into larger units, but that is most
commonly done for RAID installations and is
left for later chapters.

 Partitions can either be used as raw devices
or they can be formatted to hold a file system
. Raw partitions are generally used for swap
space, and may also be used for certain
programs such as databases that choose to
manage their own disk storage system.

 The boot block is accessed as part of a raw
partition, by the boot program prior to any
operating system being loaded. Modern boot
programs understand multiple OSes and
filesystem formats, and can give the user a
choice of which of several available systems
to boot.

 The root partition contains the OS kernel
and at least the key portions of the OS
needed to complete the boot process. At boot
time the root partition is mounted, and control
is transferred from the boot program to the
kernel found there.

 Continuing with the boot process, additional
filesystems get mounted, adding their
information into the appropriate mount table
structure..Filesystems may be mounted either
automatically or manually. In UNIX a mount
point is indicated by setting a flag in the in-
memory copy of the inode, so all future
references to that inode get re-directed to the
root directory of the mounted filesystem.

MCA I YEAR II SEMESTER

102
Rahul Publications

Rahul Publications

Virtual File Systems

 Virtual File Systems, VFS, provide a common interface to multiple different filesystem types. In
addition, it provides for a unique identifier (vnode) for files across the entire space, including across all
filesystems of different types. (UNIXinodes are unique only across a single filesystem, and certainly do not
carry across networked file systems.)

 The VFS in Linux is based upon four key object types:

• The inode object, representing an individual file

• The file object, representing an open file.

• The superblock object, representing a filesystem.

• The dentry object, representing a directory entry.

 Linux VFS provides a set of common functionalities for each filesystem, using function pointers
accessed through a table.

3.2.2 Allocation Methods

Q7. Explain different file allocation methods

Ans :
There are various methods which can be used to allocate disk space to the files. Selection of an appropriate
allocation method will significantly affect the performance and efficiency of the system. Allocation method
provides a way in which the disk will be utilized and the files will be accessed.

There are following methods which can be used for allocation.

1. Contiguous Allocation.

2. Linked List Allocation

3. FAT

4. Indexed Allocation Scheme

5. Linked Indexed Allocation

6. Multilevel Indexed Allocation

7. Inode

1. Contiguous Allocation

If the blocks are allocated to the file in such a way that all the logical blocks of the file get the
contiguous physical block in the hard disk then such allocation scheme is known as contiguous allocation.

In the image shown below, there are three files in the directory. The starting block and the length of
each file are mentioned in the table. We can check in the table that the contiguous blocks are assigned to
each file as per its need.

UNIT - III OPERATING SYSTEMS

103
Rahul Publications

Rahul PublicationsContiguous Allocation

Advantages

1. It is simple to implement.

2. We will get Excellent read performance.

3. Supports Random Access into files.

Disadvantages

1. The disk will become fragmented.

2. It may be difficult to have a file grow.

2. Linked List Allocation

Linked List allocation solves all problems of contiguous allocation. In linked list allocation, each file
is considered as the linked list of disk blocks. However, the disks blocks allocated to a particular file need
not to be contiguous on the disk. Each disk block allocated to a file contains a pointer which points to the
next disk block allocated to the same file.

Linked List Allocation

Advantages

1. There is no external fragmentation with linked allocation.

2. Any free block can be utilized in order to satisfy the file block requests.

3. File can continue to grow as long as the free blocks are available.

4. Directory entry will only contain the starting block address.

MCA I YEAR II SEMESTER

104
Rahul Publications

Rahul Publications

Disadvantages

1. Random Access is not provided.

2. Pointers require some space in the disk blocks.

3. Any of the pointers in the linked list must not be broken otherwise the file will get corrupted.

4. Need to traverse each block.

3. File Allocation Table (FAT)

The main disadvantage of linked list allocation is that the Random access to a particular block is not
provided. In order to access a block, we need to access all its previous blocks.

File Allocation Table overcomes this drawback of linked list allocation. In this scheme, a file allocation
table is maintained, which gathers all the disk block links. The table has one entry for each disk block and
is indexed by block number.

File allocation table needs to be cached in order to reduce the number of head seeks. Now the
head doesn’t need to traverse all the disk blocks in order to access one successive block.

It simply accesses the file allocation table, read the desired block entry from there and access that
block. This is the way by which the random access is accomplished by using FAT. It is used by MS-DOS and
pre-NT Windows versions.

Advantages

1. Uses the whole disk block for data.

2. A bad disk block doesn’t cause all successive blocks lost.

3. Random access is provided although its not too fast.

4. Only FAT needs to be traversed in each file operation.

UNIT - III OPERATING SYSTEMS

105
Rahul Publications

Rahul Publications

Disadvantages

1. Each Disk block needs a FAT entry.

2. FAT size may be very big depending upon the number of FAT entries.

3. Number of FAT entries can be reduced by increasing the block size but it will also increase Internal
Fragmentation.

4. File allocation table tries to solve as many problems as possible but leads to a drawback. The more
the number of blocks, the more will be the size of FAT.

5. Therefore, we need to allocate more space to a file allocation table. Since, file allocation table needs
to be cached therefore it is impossible to have as many space in cache. Here we need a new
technology which can solve such problems.

4. Indexed Allocation Scheme

Instead of maintaining a file allocation table of all the disk pointers, Indexed allocation scheme
stores all the disk pointers in one of the blocks called as indexed block. Indexed block doesn’t hold the file
data, but it holds the pointers to all the disk blocks allocated to that particular file. Directory entry will only
contain the index block address.

Advantages

1. Supports direct access

2. A bad data block causes the lost of only that block.

Disadvantages

1. A bad index block could cause the lost of entire file.

2. Size of a file depends upon the number of pointers, a index block can hold.

MCA I YEAR II SEMESTER

106
Rahul Publications

Rahul Publications

3. Having an index block for a small file is totally wastage.

4. More pointer overhead

5. Linked Indexed Allocation

 Single level linked Index Allocation

In index allocation, the file size depends on the size of a disk block. To allow large files, we have
to link several index blocks together. In linked index allocation,

 Small header giving the name of the file

 Set of the first 100 block addresses

 Pointer to another index block

For the larger files, the last entry of the index block is a pointer which points to another index block.
This is also called as linked schema.

Advantage: It removes file size limitations

Disadvantage: Random Access becomes a bit harder

6. Multilevel Index Allocation

In Multilevel index allocation, we have various levels of indices. There are outer level index blocks
which contain the pointers to the inner level index blocks and the inner level index blocks contain
the pointers to the file data.

• The outer level index is used to find the inner level index.

• The inner level index is used to find the desired data block.

Advantage: Random Access becomes better and efficient.

Disadvantage: Access time for a file will be higher.

UNIT - III OPERATING SYSTEMS

107
Rahul Publications

Rahul Publications
7. Inode

In UNIX based operating systems, each file is indexed by an Inode. Inode are the special disk block
which is created with the creation of the file system. The number of files or directories in a file system
depends on the number of Inodes in the file system.
An Inode includes the following information
1. Attributes (permissions, time stamp, ownership details, etc) of the file
2. A number of direct blocks which contains the pointers to first 12 blocks of the file.
3. A single indirect pointer which points to an index block. If the file cannot be indexed entirely by the

direct blocks then the single indirect pointer is used.
4. A double indirect pointer which points to a disk block that is a collection of the pointers to the disk

blocks which are index blocks. Double index pointer is used if the file is too big to be indexed
entirely by the direct blocks as well as the single indirect pointer.

5. A triple index pointer that points to a disk block that is a collection of pointers. Each of the pointers
is separately pointing to a disk block which also contains a collection of pointers which are separately
pointing to an index block that contains the pointers to the file blocks.

MCA I YEAR II SEMESTER

108
Rahul Publications

Rahul Publications

3.2.3 Directory Implementation of File Systems

Q8. Write about Directory structure of file system.

Ans : (Imp.)

Storage Structure

 A disk can be used in its entirety for a file system.

 Alternatively a physical disk can be broken up into multiple partitions, slices, or mini-disks,
each of which becomes a virtual disk and can have its own file system.

 Or, multiple physical disks can be combined into one volume, i.e. a larger virtual disk, with its own
file system spanning the physical disks.

Fig . A typical file-system organization.

Directory Overview

 Directory operations to be supported include:

• Search for a file

• Create a file - add to the directory

• Delete a file - erase from the directory

• List a directory - possibly ordered in different ways.

• Rename a file - may change sorting order

• Traverse the file system.

Single-Level Directory

 Simple to implement, but each file must have a unique name.

UNIT - III OPERATING SYSTEMS

109
Rahul Publications

Rahul Publications

Fig . Single-level directory

Two-Level Directory

 Each user gets their own directory space.

 File names only need to be unique within a given user’s directory.

 A master file directory is used to keep track of each users directory, and must be maintained when

users are added to or removed from the system.

 A separate directory is generally needed for system (executable) files.

 Systems may or may not allow users to access other directories besides their own

• If access to other directories is allowed, then provision must be made to specify the directory

being accessed.

• If access is denied, then special consideration must be made for users to run programs located

in system directories. A search path is the list of directories in which to search for executable

programs, and can be set uniquely for each user.

Fig . Two-level directory structure.

Tree-Structured Directories

 An obvious extension to the two-tiered directory structure, and the one with which we are all most
familiar.

 Each user / process has the concept of a current directory from which all (relative) searches
take place.

MCA I YEAR II SEMESTER

110
Rahul Publications

Rahul Publications

 Files may be accessed using either absolute pathnames .

 Directories are stored the same as any other file in the system, except there is a bit that identifies
them as directories, and they have some special structure that the OS understands.

 One question for consideration is whether or not to allow the removal of directories that are not
empty - Windows requires that directories be emptied first, and UNIX provides an option for deleting
entire sub-trees.

Fig . Tree-structured directory structure.

Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure.

 UNIX provides two types of links for implementing the acyclic-graph structure.

• A hard link (usually just called a link) involves multiple directory entries that both refer to
the same file. Hard links are only valid for ordinary files in the same filesystem.

• A symbolic link, that involves a special file, containing information about where to find the
linked file. Symbolic links may be used to link directories and/or files in other filesystems, as
well as ordinary files in the current filesystem.

 Windows only supports symbolic links, termed shortcuts.

 Hard links require a reference count, or link count for each file, keeping track of how many
directory entries are currently referring to this file. Whenever one of the references is removed the
link count is reduced, and when it reaches zero, the disk space can be reclaimed.

 For symbolic links there is some question as to what to do with the symbolic links when the original
file is moved or deleted:

UNIT - III OPERATING SYSTEMS

111
Rahul Publications

Rahul Publications

• One option is to find all the symbolic links and adjust them also.

• Another is to leave the symbolic links dangling, and discover that they are no longer valid the
next time they are used.

• What if the original file is removed, and replaced with another file having the same name
before the symbolic link is next used?

Fig. Acyclic-graph directory structure.

General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise:

• Search algorithms can go into infinite loops. One solution is to not follow links in search
algorithms.

• Sub-trees can become disconnected from the rest of the tree and still not have their reference
counts reduced to zero. Periodic garbage collection is required to detect and resolve this problem

Fig . General graph directory.

MCA I YEAR II SEMESTER

112
Rahul Publications

Rahul Publications

Q9. What is File System Mounting ?

Ans :

 The basic idea behind mounting file systems is to combine multiple file systems into one large tree

structure.

 The mount command is given a filesystem to mount and a mount point (directory) on which to

attach it.

 Once a file system is mounted onto a mount point, any further references to that directory actually

refer to the root of the mounted file system.

 Any files (or sub-directories) that had been stored in the mount point directory prior to mounting

the new filesystem are now hidden by the mounted filesystem, and are no longer available. For this

reason some systems only allow mounting onto empty directories.

 Filesystems can only be mounted by root, unless root has previously configured certain filesystems

to be mountable onto certain pre-determined mount points. (E.g. root may allow users to mount

floppy filesystems to /mnt or something like it.) Anyone can run the mount command to see what

filesystems are currently mounted.

 Filesystems may be mounted read-only, or have other restrictions imposed.

Figure - File system. (a) Existing system. (b) Unmounted volume.

UNIT - III OPERATING SYSTEMS

113
Rahul Publications

Rahul Publications
Fig . Mount point

 The traditional Windows OS runs an extended two-tier directory structure, where the first tier of
the structure separates volumes by drive letters, and a tree structure is implemented below that
level.

 Macintosh runs a similar system, where each new volume that is found is automatically mounted
and added to the desktop when it is found.

 More recent Windows systems allow file systems to be mounted to any directory in the file system,
much like UNIX.

Q10. Explain about directory implementation methods

Ans :
Directories need to be fast to search, insert, and delete, with a minimum of wasted disk space.

1. Linear List

Characteristics

 When a new file is created, then the entire list is checked whether the new file name is matching to
a existing file name or not. In case, it doesn’t exist, the file can be created at the beginning or at the
end. Therefore, searching for a unique name is a big concern because traversing the whole list
takes time.

 The list needs to be traversed in case of every operation (creation, deletion, updating, etc) on the
files therefore the systems become inefficient.

MCA I YEAR II SEMESTER

114
Rahul Publications

Rahul Publications
2. Hash Table

To overcome the drawbacks of singly linked list implementation of directories, there is an alternative
approach that is hash table. This approach suggests to use hash table along with the linked lists.

A key-value pair for each file in the directory gets generated and stored in the hash table. The key
can be determined by applying the hash function on the file name while the key points to the
corresponding file stored in the directory.

Now, searching becomes efficient due to the fact that now, entire list will not be searched on every
operating. Only hash table entries are checked using the key and if an entry found then the
corresponding file will be fetched using the value.

3.2.4 Mass Storage Structures

Q11. What are Mass (Secondary) Storage Devices? Explain.

Ans : (Imp.)

Secondary storage devices are those devices whose memory is non volatile, meaning, the stored
data will be intact even if the system is turned off. Here are a few things worth noting about secondary
storage.

UNIT - III OPERATING SYSTEMS

115
Rahul Publications

Rahul Publications

 Secondary storage is also called auxiliary
storage.

 Secondary storage is less expensive when
compared to primary memory like RAMs.

 The speed of the secondary storage is also
lesser than that of primary storage.

 Hence, the data which is less frequently
accessed is kept in the secondary storage.

 A few examples are magnetic disks, magnetic
tapes, removable thumb drives etc.

Magnetic Disk Structure

In modern computers, most of the secondary
storage is in the form of magnetic disks. Hence,
knowing the structure of a magnetic disk is necessary
to understand how the data in the disk is accessed
by the computer.

Structure of a magnetic disk

A magnetic disk contains several platters.
Each platter is divided into circular shaped tracks.
The length of the tracks near the centre is less than
the length of the tracks farther from the centre. Each
track is further divided into sectors, as shown in
the figure.

Tracks of the same distance from centre form
a cylinder. A read-write head is used to read data
from a sector of the magnetic disk.

The speed of the disk is measured as two
parts:

 Transfer rate: This is the rate at which the
data moves from disk to the computer.

 Random access time: It is the sum of the
seek time and rotational latency.

Seek time is the time taken by the arm to
move to the required track. Rotational latency is
defined as the time taken by the arm to reach the
required sector in the track.

Even though the disk is arranged as sectors
and tracks physically, the data is logically arranged
and addressed as an array of blocks of fixed size.
The size of a block can be 512 or 1024 bytes.
Each logical block is mapped with a sector on the
disk, sequentially. In this way, each sector in the disk
will have a logical address.

Solid-State Disks - New

 As technologies improve and economics
change, old technologies are often used in
different ways. One example of this is the
increasing used of solid state disks, or
SSDs.

 SSDs use memory technology as a small fast
hard disk. Specific implementations may use
either flash memory or DRAM chips
protected by a battery to sustain the
information through power cycles.

 Because SSDs have no moving parts they are
much faster than traditional hard drives, and
certain problems such as the scheduling of
disk accesses simply do not apply.

 However SSDs also have their weaknesses:
They are more expensive than hard drives,
generally not as large, and may have shorter
life spans.

 SSDs are especially useful as a high-speed
cache of hard-disk information that must be
accessed quickly. One example is to store
filesystem meta-data, e.g. directory and
inodeinformation, that must be accessed
quickly and often. Another variation is a boot
disk containing the OS and some application
executables, but no vital user data. SSDs are
also used in laptops to make them smaller,
faster, and lighter.

 Because SSDs are so much faster than
traditional hard disks, the throughput of the
bus can become a limiting factor, causing
some SSDs to be connected directly to the
system PCI bus for example.

Magnetic Tapes

 Magnetic tapes were once used for common
secondary storage before the days of hard
disk drives, but today are used primarily for
backups.

 Accessing a particular spot on a magnetic tape
can be slow, but once reading or writing
commences, access speeds are comparable
to disk drives.

MCA I YEAR II SEMESTER

116
Rahul Publications

Rahul Publications

 Capacities of tape drives can range from 20
to 200 GB, and compression can double that
capacity.

Q12. Write about the disk structure

Ans :
 The traditional head-sector-cylinder, HSC

numbers are mapped to linear block
addresses by numbering the first sector on
the first head on the outermost track as sector
0. Numbering proceeds with the rest of the
sectors on that same track, and then the rest
of the tracks on the same cylinder before
proceeding through the rest of the cylinders
to the center of the disk. In modern practice
these linear block addresses are used in place
of the HSC numbers for a variety of reasons:

1. The linear length of tracks near the outer
edge of the disk is much longer than for
those tracks located near the center, and
therefore it is possible to squeeze many
more sectors onto outer tracks than onto
inner ones.

2. All disks have some bad sectors, and
therefore disks maintain a few spare
sectors that can be used in place of the
bad ones. The mapping of spare sectors
to bad sectors in managed internally to
the disk controller.

3. Modern hard drives can have thousands
of cylinders, and hundreds of sectors per
track on their outermost tracks. These
numbers exceed the range of HSC
numbers for many (older) operating
systems, and therefore disks can be
configured for any convenient
combination of HSC values that falls
within the total number of sectors
physically on the drive.

 There is a limit to how closely packed
individual bits can be placed on a physical
media, but that limit is growing increasingly
more packed as technological advances are
made.

 Modern disks pack many more sectors into
outer cylinders than inner ones, using one of
two approaches:

• With Constant Linear Velocity,
CLV, the density of bits is uniform from
cylinder to cylinder. Because there are
more sectors in outer cylinders, the disk
spins slower when reading those
cylinders, causing the rate of bits passing
under the read-write head to remain
constant. This is the approach used by
modern CDs and DVDs.

• With Constant Angular Velocity,
CAV, the disk rotates at a constant
angular speed, with the bit density
decreasing on outer cylinders. (These
disks would have a constant number of
sectors per track on all cylinders.)

Q13. Write about Disk Attachment.

Ans :
Disk drives can be attached either directly to

a particular host (a local disk) or to a network.

1. Host-Attached Storage

• Local disks are accessed through I/O
Ports as described earlier.

• The most common interfaces are IDE
or ATA, each of which allow up to two
drives per host controller.

• SATA is similar with simpler cabling.

• High end workstations or other systems
in need of larger number of disks
typically use SCSI disks:

 The SCSI standard supports up to
16 targets on each SCSI bus,
one of which is generally the host
adapter and the other 15 of which
can be disk or tape drives.

 A SCSI target is usually a single
drive, but the standard also
supports up to 8 units within
each target. These would generally
be used for accessing individual
disks within a RAID array.

UNIT - III OPERATING SYSTEMS

117
Rahul Publications

Rahul Publications

 The SCSI standard also supports multiple host adapters in a single computer, i.e. multiple
SCSI busses.

 Modern advancements in SCSI include “fast” and “wide” versions, as well as SCSI-2.

 SCSI cables may be either 50 or 68 conductors. SCSI devices may be external as well as

internal.

 FC is a high-speed serial architecture that can operate over optical fiber or four-conductor

copper wires, and has two variants:

 A large switched fabric having a 24-bit address space. This variant allows for multiple
devices and multiple hosts to interconnect, forming the basis for the storage-area
networks, SANs.

 The arbitrated loop, FC-AL, that can address up to 126 devices.

2. Network-Attached Storage

• Network attached storage connects storage devices to computers using a remote procedure

call, RPC, interface, typically with something like NFS file system mounts.

• NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols and standard
network connections, allowing long-distance remote access to shared files.

• NAS allows computers to easily share data storage, but tends to be less efficient than standard
host-attached storage.

Fig . Network-attached storage

3. Storage-Area Network

• A Storage-Area Network, SAN, connects computers and storage devices in a network,
using storage protocols instead of network protocols.

• One advantage of this is that storage access does not tie up regular networking bandwidth.

• SAN is very flexible and dynamic, allowing hosts and devices to attach and detach on the fly.

• SAN is also controllable, allowing restricted access to certain hosts and devices.

MCA I YEAR II SEMESTER

118
Rahul Publications

Rahul PublicationsFig . Storage-area network

Q14. What is Disk Scheduling? Explain various Disk Scheduling Algorithms

Ans :
 As mentioned earlier, disk transfer speeds are limited primarily by seek times and rotational

latency. When multiple requests are to be processed there is also some inherent delay in waiting
for other requests to be processed.

 Bandwidth is measured by the amount of data transferred divided by the total amount of time from
the first request being made to the last transfer being completed, (for a series of disk requests.)

 Both bandwidth and access time can be improved by processing requests in a good order.

 Disk requests include the disk address, memory address, number of sectors to transfer, and whether
the request is for reading or writing.

Various disk scheduling algorithms are-

1. FCFS Algorithm

2. SSTF Algorithm

3. SCAN Algorithm

4. C-SCAN Algorithm

5. LOOK Algorithm

6. C-LOOK Algorithm

1. FCFS Disk Scheduling Algorithm-

 As the name suggests, this algorithm entertains requests in the order they arrive in the disk queue.

 It is the simplest disk scheduling algorithm.

Advantages-

 It is simple, easy to understand and implement.

 It does not cause starvation to any request.

UNIT - III OPERATING SYSTEMS

119
Rahul Publications

Rahul Publications

Disadvantages -

 It results in increased total seek time.

 It is inefficient.

Example

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The FCFS scheduling algorithm is used. The head is initially at cylinder number 53. The cylinders are
numbered from 0 to 199. The total head movement (in number of cylinders) incurred while servicing
these requests is _______.

Solution :

Total head movements incurred while servicing these requests

= (98 – 53) + (183 – 98) + (183 – 41) + (122 – 41) + (122 – 14)

+ (124 – 14) + (124 – 65) + (67 – 65)

= 45 + 85 + 142 + 81 + 108 + 110 + 59 + 2 = 632

2. SSTF Disk Scheduling Algorithm-

 SSTF stands for Shortest Seek Time First.

 This algorithm services that request next which requires least number of head movements from its
current position regardless of the direction.

 It breaks the tie in the direction of head movement.

Advantages-

 It reduces the total seek time as compared to FCFS.

 It provides increased throughput.

 It provides less average response time and waiting time.

MCA I YEAR II SEMESTER

120
Rahul Publications

Rahul Publications

Disadvantages-

 There is an overhead of finding out the closest request.

 The requests which are far from the head might starve for the CPU.

 It provides high variance in response time and waiting time.

 Switching the direction of head frequently slows down the algorithm.

Example 1:

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The SSTF scheduling algorithm is used. The head is initially at cylinder number 53 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

Solution :

Total head movements incurred while servicing these requests

= (65 – 53) + (67 – 65) + (67 – 41) + (41 – 14) + (98 – 14) + (122 – 98) + (124 – 122)

+ (183 – 124)

= 12 + 2 + 26 + 27 + 84 + 24 + 2 + 59

= 236

Example 2 :

Consider a disk system with 100 cylinders. The requests to access the cylinders occur in following
sequence-

4, 34, 10, 7, 19, 73, 2, 15, 6, 20

Assuming that the head is currently at cylinder 50, what is the time taken to satisfy all requests if it
takes 1 ms to move from one cylinder to adjacent one and shortest seek time first policy is used?

1. 95 ms

2. 119 ms

3. 233 ms

4. 276 ms

UNIT - III OPERATING SYSTEMS

121
Rahul Publications

Rahul Publications

Solution :

Total head movements incurred while servicing these requests

= (50 – 34) + (34 – 20) + (20 – 19) + (19 – 15) + (15 – 10) + (10 – 7) + (7 – 6)

+ (6 – 4) + (4 – 2) + (73 – 2)

= 16 + 14 + 1 + 4 + 5 + 3 + 1 + 2 + 2 + 71

= 119

 Time taken for one head movement = 1 msec. So,

Time taken for 119 head movements

= 119 × 1 msec

= 119 msec

3. SCAN Disk Scheduling Algorithm

 As the name suggests, this algorithm scans all the cylinders of the disk back and forth.

 Head starts from one end of the disk and move towards the other end servicing all the requests in
between.

 After reaching the other end, head reverses its direction and move towards the starting end servicing
all the requests in between.

 The same process repeats.

NOTE - SCAN Algorithm is also called as Elevator Algorithm.This is because its working resembles
the working of an elevator.

Advantages-

 It is simple, easy to understand and implement.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

MCA I YEAR II SEMESTER

122
Rahul Publications

Rahul Publications

Disadvantages-

 It causes long waiting time for the cylinders just visited by the head.

 It causes the head to move till the end of the disk even if there are no requests to be serviced.

Example

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The SCAN scheduling algorithm is used. The head is initially at cylinder number 53 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

Solution :

Total head movements incurred while servicing these requests

= (65 – 53) + (67 – 65) + (98 – 67) + (122 – 98) + (124 – 122) + (183 – 124)

+ (199 – 183) + (199 – 41) + (41 – 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 16 + 158 + 27

= 331

Alternatively,

Total head movements incurred while servicing these requests

= (199 – 53) + (199 – 14)

= 146 + 185

= 331

4. C-SCAN Disk Scheduling Algorithm-

 Circular-SCAN Algorithm is an improved version of the SCAN Algorithm.

 Head starts from one end of the disk and move towards the other end servicing all the requests in
between.

 After reaching the other end, head reverses its direction.

UNIT - III OPERATING SYSTEMS

123
Rahul Publications

Rahul Publications

 It then returns to the starting end without servicing any request in between.

 The same process repeats.

Advantages-

 The waiting time for the cylinders just visited by the head is reduced as compared to the SCAN
Algorithm.

 It provides uniform waiting time.

 It provides better response time.

Disadvantages-

 It causes more seek movements as compared to SCAN Algorithm.

 It causes the head to move till the end of the disk even if there are no requests to be serviced.

Example-

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The C-SCAN scheduling algorithm is used. The head is initially at cylinder number 53 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

Solution :

 Total head movements incurred while servicing these requests

= (65 – 53) + (67 – 65) + (98 – 67) + (122 – 98) + (124 – 122) + (183 – 124)

 + (199 – 183) + (199 – 0) + (14 – 0) + (41 – 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 16 + 199 + 14 + 27

= 386

Alternatively,

Total head movements incurred while servicing these requests

= (199 – 53) + (199 – 0) + (41 – 0)

= 146 + 199 + 41

= 386.

MCA I YEAR II SEMESTER

124
Rahul Publications

Rahul Publications

5. LOOK Disk Scheduling Algorithm-

 LOOK Algorithm is an improved version of the SCAN Algorithm.

 Head starts from the first request at one end of the disk and moves towards the last request at the
other end servicing all the requests in between.

 After reaching the last request at the other end, head reverses its direction.

 It then returns to the first request at the starting end servicing all the requests in between.

 The same process repeats.

NOTE

The main difference between SCAN Algorithm and LOOK Algorithm is-

 SCAN Algorithm scans all the cylinders of the disk starting from one end to the other end even if
there are no requests at the ends.

 LOOK Algorithm scans all the cylinders of the disk starting from the first request at one end to the
last request at the other end.

Advantages

 It does not causes the head to move till the ends of the disk when there are no requests to be
serviced.

 It provides better performance as compared to SCAN Algorithm.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

Disadvantages

 There is an overhead of finding the end requests.

 It causes long waiting time for the cylinders just visited by the head.

Example

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The LOOK scheduling algorithm is used. The head is initially at cylinder number 53 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

Solution:

UNIT - III OPERATING SYSTEMS

125
Rahul Publications

Rahul Publications

Total head movements incurred while servicing these requests

= (65 – 53) + (67 – 65) + (98 – 67) + (122 – 98) + (124 – 122) + (183 – 124)

+ (183 – 41) + (41 – 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 142 + 27

= 299

Alternatively,

Total head movements incurred while servicing these requests

= (183 – 53) + (183 – 14)

= 130 + 169

= 299

6. C-LOOK Disk Scheduling Algorithm-

 Circular-LOOK Algorithm is an improved version of the LOOK Algorithm.

 Head starts from the first request at one end of the disk and moves towards the last request at the
other end servicing all the requests in between.

 After reaching the last request at the other end, head reverses its direction.

 It then returns to the first request at the starting end without servicing any request in between.

 The same process repeats.

Advantages-

 It does not causes the head to move till the ends of the disk when there are no requests to be
serviced.

 It reduces the waiting time for the cylinders just visited by the head.

 It provides better performance as compared to LOOK Algorithm.

 It does not lead to starvation.

 It provides low variance in response time and waiting time.

Disadvantages-

 There is an overhead of finding the end requests.

Example 1:

Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14, 124, 65,
67. The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 53 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

MCA I YEAR II SEMESTER

126
Rahul Publications

Rahul Publications

Solution:

Total head movements incurred while servicing these requests

= (65 – 53) + (67 – 65) + (98 – 67) + (122 – 98) + (124 – 122) + (183 – 124)

+ (183 – 14) + (41 – 14)

= 12 + 2 + 31 + 24 + 2 + 59 + 169 + 27= 326

Alternatively,

Total head movements incurred while servicing these requests

= (183 – 53) + (183 – 14) + (41 – 14)

= 130 + 169 + 27= 326

Example 2 :

Consider a disk queue with requests for I/O to blocks on cylinders 47, 38, 121, 191, 87, 11, 92, 10.
The C-LOOK scheduling algorithm is used. The head is initially at cylinder number 63 moving towards
larger cylinder numbers on its servicing pass. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is _______.

Solution :

UNIT - III OPERATING SYSTEMS

127
Rahul Publications

Rahul Publications

Total head movements incurred while servicing these requests

= (87 – 63) + (92 – 87) + (121 – 92) + (191 – 121) + (191 – 10) + (11 – 10) + (38 – 11) +
 (47 – 38)

= 24 + 5 + 29 + 70 + 181 + 1 + 27 + 9

= 346

Alternatively,

Total head movements incurred while servicing these requests

= (191 – 63) + (191 – 10) + (47 – 10)

= 128 + 181 + 37

= 346

3.2.5 I/O Systems

Q15. What is I/O Hardware?

Ans :
One of the important jobs of an Operating System is to manage various I/O devices including

mouse, keyboards, touch pad, disk drives, display adapters, USB devices, Bit-mapped screen, LED, Analog-
to-digital converter, On/off switch, network connections, audio I/O, printers etc.

An I/O system is required to take an application I/O request and send it to the physical device, then
take whatever response comes back from the device and send it to the application. I/O devices can be
divided into two categories “

 Block devices - A block device is one with which the driver communicates by sending entire
blocks of data. For example, Hard disks, USB cameras, Disk-On-Key etc.

 Character devices - A character device is one with which the driver communicates by sending
and receiving single characters (bytes, octets). For example, serial ports, parallel ports, sounds cards
etc

Q16. Write a Short Note on Device Controllers.

Ans :
Device Controllers

Device drivers are software modules that can be plugged into an OS to handle a particular device.
Operating System takes help from device drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a device driver. I/O units
(Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an electronic component
where electronic component is called the device controller.

There is always a device controller and a device driver for each device to communicate with the
Operating Systems. A device controller may be able to handle multiple devices. As an interface its main
task is to convert serial bit stream to block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket, and the socket is connected
to a device controller. Following is a model for connecting the CPU, memory, controllers, and I/O devices
where CPU and device controllers all use a common bus for communication.

MCA I YEAR II SEMESTER

128
Rahul Publications

Rahul Publications
Synchronous vs asynchronous I/O

 Synchronous I/O - In this scheme CPU execution waits while I/O proceeds

 Asynchronous I/O - I/O proceeds concurrently with CPU execution

Q17. Write about various communication I/O devices.

Ans : (Imp.)

The CPU must have a way to pass information to and from an I/O device. There are three approaches
available to communicate with the CPU and Device.

1. Special Instruction I/O

2. Memory-mapped I/O

3. Direct memory access (DMA)

1. Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O devices. These instructions
typically allow data to be sent to an I/O device or read from an I/O device.

2. Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by memory and I/O devices.
The device is connected directly to certain main memory locations so that I/O device can transfer block of
data to/from memory without going through CPU.

UNIT - III OPERATING SYSTEMS

129
Rahul Publications

Rahul Publications

While using memory mapped IO, OS allocates buffer in memory and informs I/O device to use that
buffer to send data to the CPU. I/O device operates asynchronously with CPU, interrupts CPU when
finished.

The advantage to this method is that every instruction which can access memory can be used to
manipulate an I/O device. Memory mapped IO is used for most high-speed I/O devices like disks,
communication interfaces.

3. Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU after each byte is transferred.
If a fast device such as a disk generated an interrupt for each byte, the operating system would spend most
of its time handling these interrupts. So a typical computer uses direct memory access (DMA) hardware to
reduce this overhead.

Direct Memory Access (DMA) means CPU grants I/O module authority to read from or write to
memory without involvement. DMA module itself controls exchange of data between main memory and
the I/O device. CPU is only involved at the beginning and end of the transfer and interrupted only after
entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller (DMAC) that manages the
data transfers and arbitrates access to the system bus. The controllers are programmed with source and
destination pointers (where to read/write the data), counters to track the number of transferred bytes,
and settings, which includes I/O and memory types, interrupts and states for the CPU cycles.

MCA I YEAR II SEMESTER

130
Rahul Publications

Rahul Publications

The operating system uses the DMA hardware as follows -

Step Description

1 Device driver is instructed to transfer disk data to a buffer address X.

2 Device driver then instruct disk controller to transfer data to buffer.

3 Disk controller starts DMA transfer.

4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address,
decreases the counter C until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer completion.

Q18. Write a Short Note on Polling and Interrupts I/O.

Ans :
Polling vs Interrupts I/O

A computer must have a way of detecting the arrival of any type of input. There are two ways that
this can happen, known as polling and interrupts. Both of these techniques allow the processor to
deal with events that can happen at any time and that are not related to the process it is currently running.

Polling I/O

Polling is the simplest way for an I/O device to communicate with the processor. The process of
periodically checking status of the device to see if it is time for the next I/O operation, is called polling. The
I/O device simply puts the information in a Status register, and the processor must come and get the
information.

Most of the time, devices will not require attention and when one does it will have to wait until it is
next interrogated by the polling program. This is an inefficient method and much of the processors time
is wasted on unnecessary polls.

Compare this method to a teacher continually asking every student in a class, one after another, if
they need help. Obviously the more efficient method would be for a student to inform the teacher
whenever they require assistance.

Interrupts I/O

An alternative scheme for dealing with I/O is the interrupt-driven method. An interrupt is a signal to
the microprocessor from a device that requires attention.

A device controller puts an interrupt signal on the bus when it needs CPU’s attention when CPU
receives an interrupt, It saves its current state and invokes the appropriate interrupt handler using the
interrupt vector (addresses of OS routines to handle various events). When the interrupting device has
been dealt with, the CPU continues with its original task as if it had never been interrupted.

UNIT - III OPERATING SYSTEMS

131
Rahul Publications

Rahul Publications

Q19. What is application I/O Interface? Describe various application I/O interfaces

Ans : (Imp.)

User application access to a wide variety of different devices is accomplished through layering, and
through encapsulating all of the device-specific code into device drivers, while application layers are presented
with a common interface for all devices.

Fig . A kernel I/O structure.

 Devices differ on many different dimensions, as outlined in Figure.

Fig . Characteristics of I/O devices.

MCA I YEAR II SEMESTER

132
Rahul Publications

Rahul Publications

 Most devices can be characterized as either block I/O, character I/O, memory mapped file access, or
network sockets. A few devices are special, such as time-of-day clock and the system timer.

1. Block and Character Devices

 Block devices are accessed a block at a time, and are indicated by a “b” as the first character in

a long listing on UNIX systems. Operations supported include read(), write (), and seek().

• Accessing blocks on a hard drive directly (without going through the filesystem structure) is

called raw I/O, and can speed up certain operations by bypassing the buffering and locking

normally conducted by the OS. (It then becomes the application’s responsibility to manage
those issues.)

• A new alternative is direct I/O, which uses the normal filesystem access, but which disables
buffering and locking operations.

 Memory-mapped file I/O can be layered on top of block-device drivers.

• Rather than reading in the entire file, it is mapped to a range of memory addresses, and then

paged into memory as needed using the virtual memory system.

• Access to the file is then accomplished through normal memory accesses, rather than through

read() and write() system calls. This approach is commonly used for executable program
code.

 Character devices are accessed one byte at a time, and are indicated by a “c” in UNIX long
listings. Supported operations include get() and put(), with more advanced functionality such as

reading an entire line supported by higher-level library routines.

2. Network Devices

 Because network access is inherently different from local disk access, most systems provide a separate

interface for network devices.

 One common and popular interface is the socket interface, which acts like a cable or pipeline

connecting two networked entities. Data can be put into the socket at one end, and read out
sequentially at the other end. Sockets are normally full-duplex, allowing for bi-directional data

transfer.

 The select() system call allows servers (or other applications) to identify sockets which have data

waiting, without having to poll all available sockets.

3. Clocks and Timers

 Three types of time services are commonly needed in modern systems:

UNIT - III OPERATING SYSTEMS

133
Rahul Publications

Rahul Publications

o Get the current time of day.

o Get the elapsed time (system or wall clock) since a previous event.

o Set a timer to trigger event X at time T.

 Unfortunately time operations are not standard across all systems.

 A programmable interrupt timer, PIT can be used to trigger operations and to measure elapsed

time. It can be set to trigger an interrupt at a specific future time, or to trigger interrupts periodically
on a regular basis.

• The scheduler uses a PIT to trigger interrupts for ending time slices.

• The disk system may use a PIT to schedule periodic maintenance cleanup, such as flushing
buffers to disk.

• Networks use PIT to abort or repeat operations that are taking too long to complete. I.e.

resending packets if an acknowledgement is not received before the timer goes off.

• More timers than actually exist can be simulated by maintaining an ordered list of timer events,

and setting the physical timer to go off when the next scheduled event should occur.

 On most systems the system clock is implemented by counting interrupts generated by the PIT.

Unfortunately this is limited in its resolution to the interrupt frequency of the PIT, and may be
subject to some drift over time. An alternate approach is to provide direct access to a high frequency

hardware counter, which provides much higher resolution and accuracy, but which does not support

interrupts.

4. Blocking and Non-blocking I/O

 With blocking I/O a process is moved to the wait queue when an I/O request is made, and
moved back to the ready queue when the request completes, allowing other processes to run in the

meantime.

 With non-blocking I/O the I/O request returns immediately, whether the requested I/O operation

has (completely) occurred or not. This allows the process to check for available data without
getting hung completely if it is not there.

 One approach for programmers to implement non-blocking I/O is to have a multi-threaded
application, in which one thread makes blocking I/O calls (say to read a keyboard or mouse), while

other threads continue to update the screen or perform other tasks.

A subtle variation of the non-blocking I/O is the asynchronous I/O, in which the I/O request

returns immediately allowing the process to continue on with other tasks, and then the process is notified
when the I/O operation has completed and the data is available for use.

MCA I YEAR II SEMESTER

134
Rahul Publications

Rahul Publications
Fig. Two I/O methods: (a) synchronous and (b) asynchronous

UNIT - IV OPERATING SYSTEMS

135
Rahul Publications

Rahul Publications

UNIT
IV

4.1 SYSTEM PROTECTION

4.1.1 Principles and Domain

Q1. What are the Goals and Principles of
Protection?

Ans : (Imp.)

Goals

 Obviously to prevent malicious misuse of the
system by users or programs.

 To ensure that each shared resource is used
only in accordance with system policies, which
may be set either by system designers or by
system administrators.

 To ensure that errant programs cause the
minimal amount of damage possible.

Principles

 The principle of least privilege dictates
that programs, users, and systems be given
just enough privileges to perform their tasks.

 This ensures that failures do the least amount
of harm and allow the least of harm to be
done.

 For example, if a program needs special
privileges to perform a task, it is better to make
it a SGID program with group ownership of
“network” or “backup” or some other pseudo
group, rather than SUID with root ownership.
This limits the amount of damage that can
occur if something goes wrong.

 Typically each user is given their own account,
and has only enough privilege to modify their
own files.

 The root account should not be used for
normal day to day activities - The System
Administrator should also have an ordinary
account, and reserve use of the root account
for only those tasks which need the root
privileges

4.1.2 Domain of Protection

Q2. Write about the Domain of Protection.

Ans :
 A computer can be viewed as a collection

of processes and objects.

 The need to know principle states that a
process should only have access to those
objects it needs to accomplish its task, and
furthermore only in the modes for which it
needs access and only during the time frame
when it needs access.

 The modes available for a particular object
may depend upon its type.

Domain Structure

 A protection domain specifies the
resources that a process may access.

 Each domain defines a set of objects and the
types of operations that may be invoked on
each object.

 An access right is the ability to execute an
operation on an object.

 A domain is defined as a set of < object,
{ access right set } > pairs, as shown below.
Note that some domains may be disjoint while
others overlap.

System Protection : Principles and Domain, Access Matrix and implementation,
Access control and access rights, Capability based systems.

Language based Protection, System Security : Problem, Program threats,
cryptography, user authentication, implementing security defenses, Firewalling,
Computer security Classification

MCA I YEAR II SEMESTER

136
Rahul Publications

Rahul Publications

Fig. System with three protection domains.

 The association between a process and a domain may be static or dynamic.

• If the association is static, then the need-to-know principle requires a way of changing the
contents of the domain dynamically.

• If the association is dynamic, then there needs to be a mechanism for domain switching.

 Domains may be realized in different fashions - as users, or as processes, or as procedures. E.g. if
each user corresponds to a domain, then that domain defines the access of that user, and changing
domains involves changing user ID.

An Example: UNIX

 UNIX associates domains with users.

 Certain programs operate with the SUID bit set, which effectively changes the user ID, and therefore
the access domain, while the program is running. (and similarly for the SGID bit.) Unfortunately
this has some potential for abuse.

 An alternative used on some systems is to place privileged programs in special directories, so that
they attain the identity of the directory owner when they run. This prevents crackers from placing
SUID programs in random directories around the system.

 Yet another alternative is to not allow the changing of ID at all. Instead, special privileged daemons
are launched at boot time, and user processes send messages to these daemons when they need
special tasks performed.

4.1.3 Access Matrix And Implementation

Q3. Explain briefly about access matrix implementation.

Ans :
 The model of protection that we have been discussing can be viewed as an access matrix, in

which columns represent different system resources and rows represent different protection domains.
Entries within the matrix indicate what access that domain has to that resource.

Fig . Access matrix

UNIT - IV OPERATING SYSTEMS

137
Rahul Publications

Rahul Publications

 Domain switching can be easily supported under this model, simply by providing “switch” access to
other domains:

Fig . Access matrix of above figure with domains as objects

 The ability to copy rights is denoted by an asterisk, indicating that processes in that domain have
the right to copy that access within the same column, i.e. for the same object. There are two
important variations:

• If the asterisk is removed from the original access right, then the right is transferred, rather
than being copied. This may be termed a transfer right as opposed to a copy right.

• If only the right and not the asterisk is copied, then the access right is added to the new
domain, but it may not be propagated further. That is the new domain does not also receive
the right to copy the access. This may be termed a limited copy right, as shown in Figure
below:

Figure - Access matrix with copy rights.

MCA I YEAR II SEMESTER

138
Rahul Publications

Rahul Publications

 The owner right adds the privilege of adding new rights or removing existing ones:

Fig. Access matrix with owner rights.

 Copy and owner rights only allow the modification of rights within a column. The addition of control
rights, which only apply to domain objects, allow a process operating in one domain to affect the
rights available in other domains. For example in the table below, a process operating in domain D2
has the right to control any of the rights in domain D4.

Fig . Modified access matrix of above Figure

UNIT - IV OPERATING SYSTEMS

139
Rahul Publications

Rahul Publications

Q4. Discuss, how to implement access
matrix.

Ans :
Implementation of Access Matrix

1. Global Table

 The simplest approach is one big global table
with < domain, object, rights > entries.

 Unfortunately this table is very large (even if
sparse) and so cannot be kept in memory
(without invoking virtual memory techniques.)

 There is also no good way to specify groupings
- If everyone has access to some resource,
then it still needs a separate entry for every
domain.

2. Access Lists for Objects

 Each column of the table can be kept as a list
of the access rights for that particular object,
discarding blank entries.

 For efficiency a separate list of default access
rights can also be kept, and checked first.

3. Capability Lists for Domains

 In a similar fashion, each row of the table can
be kept as a list of the capabilities of that
domain.

 Capability lists are associated with each
domain, but not directly accessible by the
domain or any user process.

 Capability lists are themselves protected
resources, distinguished from other data in
one of two ways:

• A tag, possibly hardware implemen-
ted, distinguishing this special type of
data.

• The address space for a program may
be split into multiple segments.

4. A Lock-Key Mechanism

 Each resource has a list of unique bit patterns,
termed locks.

 Each domain has its own list of unique bit
patterns, termed keys.

 Access is granted if one of the domain’s keys
fits one of the resource’s locks.

 Again, a process is not allowed to modify its
own keys.

5. Comparison

 Each of the methods here has certain
advantages or disadvantages, depending on
the particular situation and task at hand.

 Many systems employ some combination of
the listed methods.

4.1.4 Access Control And Access Rights

Q5. Write about Access Control Mechanism.

Ans :
The access control is just another name for

compartmentalization of resources. It is useful to
group general problems involved in making certain
that files are not read or modified by unauthorized
personnel or by less privileged programs running
on the operating system. There are two major
aspects of access control:

1. Access control policies

Access control policy defined “which data is
to be protected from whom”. In simplest
form this is a matrix in which rows define users
and columns define files or directories. If
value of a sell in this matrix is zero the access
to particular file/directory by a particular user
is prohibited. Higher value define what type
of access is allowed (real-only, read-write,
execute, etc). Of course this simple model is
unrealistic in filesystems with thousand or
millions files and directories. In this case
inheritance mechanisms are usually defined
to simplify it.

2. Access control mechanisms

The manner by which the operating system
enforces the access control policy. Among
them the following are the most important

 Accounts security mechanisms

 Root Security mechanisms

 Role-Based Access Control, RBAC,
assigns privileges to users, programs, or roles

MCA I YEAR II SEMESTER

140
Rahul Publications

Rahul Publications

as appropriate, where “privileges” refer to the
right to call certain system calls, or to use
certain parameters with those calls.

 RBAC supports the principle of least privilege,
and reduces the susceptibility to abuse as
opposed to SUID or SGID programs.

Fig . Role-based access control in Solaris 10.

Q6. How to Revoke Access Rights? Explain.

Ans :
Revocation of Access Rights

 The need to revoke access rights dynamically
raises several questions:

• Immediate versus delayed - If
delayed, can we determine when the
revocation will take place?

• Selective versus general - Does
revocation of an access right to an object
affect all users who have that right, or
only some users?

• Partial versus total - Can a subset of
rights for an object be revoked, or are
all rights revoked at once?

• Temporary versus permanent - If rights
are revoked, is there a mechanism for
processes to re-acquire some or all of
the revoked rights?

 With an access list scheme revocation is easy,
immediate, and can be selective, general,
partial, total, temporary, or permanent, as
desired.

 With capabilities lists the problem is more
complicated, because access rights are
distributed throughout the system. A few
schemes that have been developed include:

• Reacquisition - Capabilities are
periodically revoked from each domain,
which must then re-acquire them.

• Back-pointers - A list of pointers is
maintained from each object to each
capability which is held for that object.

• Indirection - Capabilities point to an
entry in a global table rather than to the
object. Access rights can be revoked by
changing or invalidating the table entry,
which may affect multiple processes,
which must then re-acquire access rights
to continue.

• Keys - A unique bit pattern is associated
with each capability when created, which
can be neither inspected nor modified
by the process.

 A master key is associated with
each object.

 When a capability is created, its
key is set to the object’s master key.

 As long as the capability’s key
matches the object’s key, then the
capabilities remain valid.

 The object master key can be
changed with the set-key
command, thereby invalidating all
current capabilities.

 More flexibility can be added to
this scheme by implementing
a list of keys for each object,
possibly in a global table.

UNIT - IV OPERATING SYSTEMS

141
Rahul Publications

Rahul Publications

4.1.5 Capability Based Systems

Q7. Explain briefly about Capability Based Systems.

Ans :
There are two capability-based protection systems.These systems vary in their complexity and in

the types of policies that can be implemented on them. Neither system is widely used, but they are
interesting proving grounds for protection theories.

An Example: Hydra Hydra is a capability-based protection system that provides considerable
flexibility. A fixed set of possible access rights is known to and interpreted by the system. These rights
include such basic forms of access as the right to read, write, or execute a memory segment. In addition,
a user (of the protection system) can declare other rights.

The interpretation of user-defined rights is performed solely by the user’s program, but the system
provides access protection for the use of these rights, as well as for the use of system-defined rights.
These facilities constitute a significant development in protection technology. Operations on objects are
defined procedurally.

 The procedures that implement such operations are themselves a form of object, and they are
accessed indirectly by capabilities. The names of user-defined procedures must be identified to
the protection system if it is to deal with objects of the userdefined type.

When the definition of an object is made known to Hydra, the type become auxiliary rights. Auxiliary
rights can be described in a capability for an instance of the type. For a process to perform an operation
on a typed object, the capability it holds for that object must contain the name of the operation being
invoked among its auxiliary rights. This restriction enables discrimination of access rights to be made on an
instance-by-instance and process-by-process basis.

Hydra also provides rights amplification. This scheme allows a procedure to be certified as trustworthy
to act on a formal parameter of a specified type on behalf of any process that holds a right to execute the
procedure. The rights held by a trustworthy procedure are independent of, and may exceed, the rights

MCA I YEAR II SEMESTER

142
Rahul Publications

Rahul Publications

held by the calling process. However, such a
procedure must not be regarded as universally
trustworthy (the procedure is not allowed to act on
other types, for instance), and the trustworthiness
must not be extended to any other procedures or
program segments that might be executed by a
process.

Amplification allows implementation
procedures access to the representation variables
of an abstract data type. If a process holds
a capability to a typed object A, for instance,
this capability may include an auxiliary right to
invoke some operation P but would not include any
of the so-called kernel rights, such as read, write, or
execute, on the segment that represents A. Such
a capability gives a process a means of indirect
access (through the operation P) to the
representation of A, but only for specific purposes.

When a process invokes the operation P on
an object A, however, the capability for access to
A may be amplified as control passes to the code
body of P. This amplification may be necessary to
allow P the right to access the storage segment
representing A so as to implement the operation
that P defines on the abstract data type.

4.1.6 Language Based Protection

Q8. What is Language Based Protection?
Explain.

Ans :
 As systems have developed, protection

systems have become more powerful, and
also more specific and specialized.

 To refine protection even further requires
putting protection capabilities into the hands
of individual programmers, so that protection
policies can be implemented on the
application level, i.e. to protect resources in
ways that are known to the specific
applications but not to the more general
operating system.

Compiler-Based Enforcement

 In a compiler-based approach to protection
enforcement, programmers directly specify
the protection needed for different resources
at the time the resources are declared.

 This approach has several advantages:

1. Protection needs are simply declared, as
opposed to a complex series of
procedure calls.

2. Protection requirements can be stated
independently of the support provided
by a particular OS.

3. The means of enforcement need not be
provided directly by the developer.

4. Declarative notation is natural, because
access privileges are closely related to the
concept of data types.

 Regardless of the means of implementation,
compiler-based protection relies upon the
underlying protection mechanisms provided
by the underlying OS, such as the Cambridge
CAP or Hydra systems.

 Even if the underlying OS does not provide
advanced protection mechanisms, the
compiler can still offer some protection, such
as treating memory accesses differently in
code versus data segments.(E.g. code
segments cant be modified, data segments
can’t be executed.)

 There are several areas in which compiler-
based protection can be compared to kernel-
enforced protection:

• Security. Security provided by the
kernel offers better protection than that
provided by a compiler. The security of
the compiler-based enforcement is
dependent upon the integrity of the
compiler itself, as well as requiring that
files not be modified after they are
compiled. The kernel is in a better
position to protect itself from
modification, as well as protecting access
to specific files. Where hardware support
of individual memory accesses is
available, the protection is stronger still.

• Flexibility. A kernel-based protection
system is not as flexible to provide the
specific protection needed by an
individual programmer, though it may
provide support which the programmer

UNIT - IV OPERATING SYSTEMS

143
Rahul Publications

Rahul Publications

may make use of. Compilers are more
easily changed and updated when
necessary to change the protection
services offered or their implementation.

• Efficiency. The most efficient
protection mechanism is one supported
by hardware and microcode. Insofar as
software based protection is concerned,
compiler-based systems have the
advantage that many checks can be
made off-line, at compile time, rather
that during execution.

The concept of incorporating protection
mechanisms into programming languages is in its
infancy, and still remains to be fully developed.
However the general goal is to provide mechanisms
for three functions:

1. Distributing capabilities safely and
efficiently among customer processes. In
particular a user process should only be
able to access resources for which it was
issued capabilities.

2. Specifying the type of operations a
process may execute on a resource,
such as reading or writing.

3. Specifying the order in which
operations are performed on the
resource, such as opening before
reading.

Protection in Java

 Java was designed from the very beginning
to operate in a distributed environment,
where code would be executed from a variety
of trusted and untrusted sources. As a result
the Java Virtual Machine, JVM incorporates
many protection mechanisms

 When a Java program runs, it load up classes
dynamically, in response to requests to
instantiates objects of particular types. These
classes may come from a variety of different
sources, some trusted and some not, which
requires that the protection mechanism be
implemented at the resolution of individual
classes, something not supported by the basic
operating system.

 As each class is loaded, it is placed into a
separate protection domain. The capabilities
of each domain depend upon whether the
source URL is trusted or not, the presence or
absence of any digital signatures on the class
(Chapter 15), and a configurable policy
file indicating which servers a particular user
trusts, etc.

 When a request is made to access a restricted
resource in Java, (e.g. open a local file), some
process on the current call stack must
specifically assert a privilege to perform the
operation. In essence this method assumes
responsibility for the restricted access.
Naturally the method must be part of a class
which resides in a protection domain that
includes the capability for the requested
operation. This approach is termed stack
inspection, and works like this:

• When a caller may not be trusted, a
method executes an access request
within a do Privileged() block, which
is noted on the calling stack.

• When access to a protected resource is
requested, checkPermissions() inspects
the call stack to see if a method has
asserted the privilege to access the
protected resource.

 If a suitable doPriveleged block is
encountered on the stack before
a domain in which the privilege is
disallowed, then the request is
granted.

 If a domain in which the request
is disallowed is encountered first,
then the access is denied and a
AccessControl Exception is
thrown.

 If neither is encountered, then the
response is implementation
dependent.

 In the example below the untrusted applet’s
call to get() succeeds, because the trusted
URL loader asserts the privilege of opening
the specific URL lucent.com. However when

MCA I YEAR II SEMESTER

144
Rahul Publications

Rahul Publications

the applet tries to make a direct call to open() it fails, because it does not have privilege to access
any sockets.

Fig - Stack inspection

4.2 SYSTEM SECURITY

4.2.1 Problem

Q9. What is the Security Problem? Explain about the various types of Security Violations.

Ans : (Imp.)

Security refers to providing a protection system to computer system resources such as CPU, memory,
disk, software programs and most importantly data/information stored in the computer system. If a
computer program is run by an unauthorized user, then he/she may cause severe damage to computer or
data stored in it. So a computer system must be protected against unauthorized access, malicious access to
system memory, viruses, worms etc.

 Some of the most common types of violations include:

• Breach of Confidentiality - Theft of private or confidential information, such as credit-
card numbers, trade secrets, patents, secret formulas, manufacturing procedures, medical
information, financial information, etc.

• Breach of Integrity - Unauthorized modification of data, which may have serious indirect
consequences. For example a popular game or other program’s source code could be modified
to open up security holes on users systems before being released to the public.

• Breach of Availability - Unauthorized destruction of data, often just for the “fun” of causing
havoc and for bragging rites. Vandalism of web sites is a common form of this violation.

• Theft of Service - Unauthorized use of resources, such as theft of CPU cycles, installation of
daemons running an unauthorized file server, or tapping into the target’s telephone or
networking services.

• Denial of Service, DOS - Preventing legitimate users from using the system, often by
overloading and overwhelming the system with an excess of requests for service.

UNIT - IV OPERATING SYSTEMS

145
Rahul Publications

Rahul Publications

 One common attack is masquerading, in which the attacker pretends to be a trusted third party. A
variation of this is the man-in-the-middle, in which the attacker masquerades as both ends of the
conversation to two targets.

 A replay attack involves repeating a valid transmission. Sometimes this can be the entire attack,
(such as repeating a request for a money transfer) or other times the content of the original
message is replaced with malicious content.

Fig. Standard security attacks.

MCA I YEAR II SEMESTER

146
Rahul Publications

Rahul Publications

 There are four levels at which a system must
be protected:

1. Physical - The easiest way to steal data is
to pocket the backup tapes. Also, access to
the root console will often give the user special
privileges, such as rebooting the system as
root from removable media. Even general
access to terminals in a computer room offers
some opportunities for an attacker, although
today’s modern high-speed networking
environment provides more and more
opportunities for remote attacks.

2. Human - There is some concern that the
humans who are allowed access to a system
be trustworthy, and that they cannot be
coerced into breaching security. However
more and more attacks today are made
via social engineering, which basically
means fooling trustworthy people into
accidentally breaching security.

 Phishing involves sending an
innocent-looking e-mail or web site
designed to fool people into revealing
confidential information. E.g. spam e-
mails pretending to be from e-Bay,
PayPal, or any of a number of banks or
credit-card companies.

 Dumpster Diving involves searching
the trash or other locations for passwords
that are written down. (Note: Passwords
that are too hard to remember, or which
must be changed frequently are more
likely to be written down somewhere
close to the user’s station.)

 Password Cracking involves divining
users passwords, either by watching
them type in their passwords, knowing
something about them like their pet’s
names, or simply trying all words in
common dictionaries. (Note: “Good”
passwords should involve a minimum
number of characters, include non-
alphabetical characters, and not appear
in any dictionary (in any language), and
should be changed frequently. Note also
that it is proper etiquette to look away
from the keyboard while someone else
is entering their password.)

3. Operating System - The OS must protect
itself from security breaches, such as runaway
processes (denial of service), memory-
access violations, stack overflow violations, the
launching of programs with excessive
privileges, and many others.

4. Network - As network communications
become ever more important and pervasive
in modern computing environments, it
becomes ever more important to protect this
area of the system. (Both protecting the
network itself from attack, and protecting the
local system from attacks coming in through
the network.) This is a growing area of
concern as wireless communications and
portable devices become more and more
prevalent.

4.2.2 Program Threats

Q10. Explain about various types of program
threats.

Ans :
Operating system’s processes and kernel do

the designated task as instructed. If a user program
made these process do malicious tasks, then it is
known as Program Threats. One of the common
example of program threat is a program installed in
a computer which can store and send user
credentials via network to some hacker. Following
is the list of some well-known program threats.

Types of Program Threats –

1. Virus

An infamous threat, known most widely. It is
a self-replicating and a malicious thread which
attaches itself to a system file and then rapidly
replicates itself, modifying and destroying
essential files leading to a system breakdown.

Further, Types of computer viruses can be
described briefly as follows:

• File/parasitic – appends itself to a file

• Boot/memory – infects the boot sector

• Macro – written in a high-level language
like VB and affects MS Office files

• Source code – searches and modifies
source codes

UNIT - IV OPERATING SYSTEMS

147
Rahul Publications

Rahul Publications

• Polymorphic – changes in copying each time

• Encrypted – encrypted virus + decrypting code

• Stealth – avoids detection by modifying parts of the system that can be used to detect it, like
the read system call

• Tunneling – installs itself in the interrupt service routines and device drivers

• Multipartite – infects multiple parts of the system

2. Trojan Horse

A code segment that misuses its environment is called a Trojan Horse. They seem to be attractive
and harmless cover program but are a really harmful hidden program which can be used as the
virus carrier. In one of the versions of Trojan, User is fooled to enter its confidential login details on
an application. Those details are stolen by a login emulator and can be further used as a way of
information breaches.

Another variance is Spyware, Spyware accompanies a program that the user has chosen to install
and downloads ads to display on the user’s system, thereby creating pop-up browser windows and
when certain sites are visited by the user, it captures essential information and sends it over to the
remote server. Such attacks are also known as Covert Channels.

3. Trap Door

The designer of a program or system might leave a hole in the software that only he is capable of
using, the Trap Door works on the similar principles. Trap Doors are quite difficult to detect as to
analyze them, one needs to go through the source code of all the components of the system.

4. Logic Bomb

A Logic Bomb is code that is not designed to cause havoc all the time, but only when a certain set
of circumstances occurs, such as when a particular date or time is reached or some other noticeable
event.

A classic example is the Dead-Man Switch, which is designed to check whether a certain person
(e.g. the author) is logging in every day, and if they don’t log in for a long time (presumably
because they’ve been fired), then the logic bomb goes off and either opens up security holes or
causes other problems.

Stack and Buffer Overflow

This is a classic method of attack, which exploits bugs in system code that allows buffers to overflow.
Consider what happens in the following code, for example, if argv[1] exceeds 256 characters:

 The strcpy command will overflow the buffer, overwriting adjacent areas of memory.

 So how does overflowing the buffer cause a security breach? Well the first step is to understand the
structure of the stack in memory:

• The “bottom” of the stack is actually at a high memory address, and the stack grows towards
lower addresses.

• However the address of an array is the lowest address of the array, and higher array elements
extend to higher addresses. (I.e. an array “grows” towards the bottom of the stack.

• In particular, writing past the top of an array, as occurs when a buffer overflows with too much
input data, can eventually overwrite the return address, effectively changing where the program
jumps to when it returns.

MCA I YEAR II SEMESTER

148
Rahul Publications

Rahul PublicationsFig . The layout for a typical stack frame

 Now that we know how to change where the program returns to by overflowing the buffer, the
second step is to insert some nefarious code, and then get the program to jump to our inserted
code.

 Our only opportunity to enter code is via the input into the buffer, which means there isn’t room for
very much. One of the simplest and most obvious approaches is to insert the code for “exec(/bin/
sh)”. To do this requires compiling a program that contains this instruction, and then using an
assembler or debugging tool to extract the minimum extent that includes the necessary instructions.

 The bad code is then padded with as many extra bytes as are needed to overflow the buffer to the
correct extent, and the address of the buffer inserted into the return address location. (Note, however,
that neither the bad code or the padding can contain null bytes, which would terminate the strcpy.)

 The resulting block of information is provided as “input”, copied into the buffer by the original
program, and then the return statement causes control to jump to the location of the buffer and
start executing the code to launch a shell.

Fig. Hypothetical stack frame for Figure (a) before and (b) after.

UNIT - IV OPERATING SYSTEMS

149
Rahul Publications

Rahul Publications

4.2.3 Cryptography

Q11. What is Cryptography? Write about it.

Ans : (Imp.)

• Cryptography is a technique to provide message confidentiality.

• The term cryptography is a Greek word which means “secret writing”.

• It is an art and science of transforming messages so as to make them secure and immune to attacks.

• Cryptography involves the process of encryption and decryption. This process is depicted.

 The terminology used in cryptography is given below:

1. Plaintext. The original message or data that is fed into the algorithm as input is called plaintext.

2. Encryption algorithm. The encryption algorithm is the algorithm that performs various substitutions
and transformations on the plaintext. Encryption is the process of changing plaintext into cipher
text.

3. Ciphertext. Ciphertext is the encrypted form the message. It is the scrambled message produced
as output. It depends upon the plaintext and the key.

4. Decryption algorithm. The process of changing Ciphertext into plain text is known as decryption.
Decryption algorithm is essentially the encryption algorithm run in reverse. It takes the Ciphertext
and the key and produces the original plaintext.

5. Key. It also acts as input to the encryption algorithm. The exact substitutions and transformations
performed by the algorithm depend on the key. Thus a key is a number or a set of number that the
algorithm uses to perform encryption and decryption.

 There are two different approaches to attack an encryption scheme:

1. Cryptanalysis

2. Brute-force attack

1. Cryptanalysis

 The process of attempting to discover the plaintext or key IS known as cryptanalysis.

 The strategy used by cryptanalyst depends on the nature of the encryption scheme and
the information available to the cryptanalyst.

 Cryptanalyst can do any or all of six different things:

MCA I YEAR II SEMESTER

150
Rahul Publications

Rahul Publications

 Attempt to break a single message.

 Attempt to recognize patterns in encrypted messages, to be able to break subsequent ones by
applying a straight forward decryption algorithm.

 Attempt to infer some meaning without even breaking the encryption, such as noticing an unusual-
frequency of communication or determining something by whether the communication was short
or long.

 Attempt to deduce the key, in order to break subsequent messages easily.

 Attempt to find weaknesses in the implementation or environment of use encryption.

 Attempt to find general weaknesses in an encryption algorithm without necessarily having intercepted
any messages.

2. Brute-force attack

 This method tries every possible key on a piece of Ciphertext until an intelligible translation into
plaintext is obtained.

Q12. What is Encryption? Write about Symmetric and Asymmetric Encrption.

Ans : (Imp.)

 The basic idea of encryption is to encode a message so that only the desired recipient can decode
and read it. Encryption has been around since before the days of Caesar, and is an entire field of
study in itself. Only some of the more significant computer encryption schemes will be covered
here.

 The basic process of encryption is shown in Figure and will form the basis of most of our discussion
on encryption. The steps in the procedure and some of the key terminology are as follows:

1. The sender first creates a message, m in plaintext.

2. The message is then entered into an encryption algorithm, E, along with the encryption
key, Ke.

3. The encryption algorithm generates the ciphertext, c, = E(Ke)(m). For any key k, E(k) is
an algorithm for generating ciphertext from a message, and both E and E(k) should be efficiently
computable functions.

4. The ciphertext can then be sent over an unsecure network, where it may be received
by attackers.

5. The recipient enters the ciphertext into a decryption algorithm, D, along with
the decryption key, Kd.

6. The decryption algorithm re-generates the plaintext message, m, = D(Kd)(c). For any key k,
D(k) is an algorithm for generating a clear text message from a ciphertext, and both D and
D(k) should be efficiently computable functions.

7. The algorithms described here must have this important property: Given a ciphertext c, a
computer can only compute a message m such that c = E(k)(m) if it possesses D(k). (In other
words, the messages can’t be decoded unless you have the decryption algorithm and the
decryption key.)

UNIT - IV OPERATING SYSTEMS

151
Rahul Publications

Rahul Publications

Fig. A secure communication over an insecure medium.

A) Symmetric Encryption

 With symmetric encryption the same key is used for both encryption and decryption, and
must be safely guarded. There are a number of well-known symmetric encryption algorithms that
have been used for computer security:

• The Data-Encryption Standard, DES, developed by the National Institute of Standards,
NIST, has been a standard civilian encryption standard for over 20 years. Messages are broken
down into 64-bit chunks, each of which are encrypted using a 56-bit key through a series of
substitutions and transformations. Some of the transformations are hidden (black boxes),
and are classified by the U.S. government.

MCA I YEAR II SEMESTER

152
Rahul Publications

Rahul Publications

• DES is known as a block cipher, because it works on blocks of data at a time. Unfortunately
this is a vulnerability if the same key is used for an extended amount of data. Therefore an
enhancement is to not only encrypt each block, but also to XOR it with the previous block, in
a technique known as cipher-block chaining.

• As modern computers become faster and faster, the security of DES has decreased, to where
it is now considered insecure because its keys can be exhaustively searched within a reasonable
amount of computer time. An enhancement called triple DES encrypts the data three times
using three separate keys (actually two encryptions and one decryption) for an effective key
length of 168 bits. Triple DES is in widespread use today.

• The Advanced Encryption Standard, AES, developed by NIST in 2001 to replace DES
uses key lengths of 128, 192, or 256 bits, and encrypts in blocks of 128 bits using 10 to 14
rounds of transformations on a matrix formed from the block.

• The twofishalgorithm, uses variable key lengths up to 256 bits and works on 128 bit blocks.

• RC5 can vary in key length, block size, and the number of transformations, and runs on a
wide variety of CPUs using only basic computations.

• RC4 is a stream cipher, meaning it acts on a stream of data rather than blocks. The key is
used to seed a pseudo-random number generator, which generates a keystream of keys.
RC4 is used in WEP, but has been found to be breakable in a reasonable amount of computer
time.

B) Asymmetric Encryption

 With asymmetric encryption, the decryption key, Kd, is not the same as the encryption key, ke,
and more importantly cannot be derived from it, which means the encryption key can be made
publicly available, and only the decryption key needs to be kept secret. (or vice-versa, depending
on the application.)

 One of the most widely used asymmetric encryption algorithms is RSA, named after its developers
- Rivest, Shamir, and Adleman.

 RSA is based on two large prime numbers, p and q, (on the order of 512 bits each), and their
product N.

• Ke and Kd must satisfy the relationship:

(Ke * Kd) % [(p - 1) * (q - 1)] = = 1

• The encryption algorithm is:

c = E(Ke)(m) = m^Ke % N

• The decryption algorithm is:

m = D(Kd)(c) = c^Kd % N

 An example using small numbers:

• p = 7

• q = 13

• N = 7 * 13 = 91

• (p - 1) * (q - 1) = 6 * 12 = 72

• Select Ke< 72 and relatively prime to 72, say 5

UNIT - IV OPERATING SYSTEMS

153
Rahul Publications

Rahul Publications

• Now select Kd, such that (Ke * Kd) % 72 = = 1, say 29

• The public key is now (5, 91) and the private key is (29, 91)

• Let the message, m = 42

• Encrypt: c = 42^5 % 91 = 35

• Decrypt: m = 35^29 % 91 = 42

Fig. Encryption and decryption using RSA asymmetric cryptography

 Note that asymmetric encryption is much more computationally expensive than symmetric
encryption, and as such it is not normally used for large transmissions. Asymmetric encryption is
suitable for small messages, authentication, and key distribution, as covered in the following sections.

MCA I YEAR II SEMESTER

154
Rahul Publications

Rahul Publications

Q13. Write a note on authentication and key
distribution.

Ans :
Authentication

 Authentication involves verifying the identity
of the entity who transmitted a message.

 For example, if D(Kd)(c) produces a valid
message, then we know the sender was in
possession of E(Ke).

 This form of authentication can also be used
to verify that a message has not been
modified

 Authentication revolves around two functions,
used for signatures (or signing),
and verification:

• A signing function, S(Ks) that
produces an authenticator, A, from
any given message m.

• A Verification function, V(Kv,m,A) that
produces a value of “true” if A was
created from m, and “false” otherwise.

• Obviously S and V must both be
computationally efficient.

• More importantly, it must not be
possible to generate a valid
authenticator, A, without having
possession of S(Ks).

• Furthermore, it must not be possible to
divine S(Ks) from the combination of (
m and A), since both are sent visibly
across networks.

 Understanding authenticators begins with an
understanding of hash functions, which is the
first step:

• Hash functions, H(m) generate a
small fixed-size block of data known as
a message digest, or hash value
from any given input data.

• For authentication purposes, the hash
function must be collision resistant
on m. That is it should not be
reasonably possible to find an alternate
message m’ such that H(m’) = H(m).

• Popular hash functions are MD5, which
generates a 128-bit message digest,
and SHA-1, which generates a 160-
bit digest.

 Message digests are useful for detecting (
accidentally) changed messages, but are not
useful as authenticators, because if the hash
function is known, then someone could easily
change the message and then generate a new
hash value for the modified message.
Therefore authenticators take things one step
further by encrypting the message digest.

 A message-authentication code,
MAC, uses symmetric encryption and
decryption of the message digest, which
means that anyone capable of verifying an
incoming message could also generate a new
message.

 An asymmetric approach is the digital-
signature algorithm, which produces
authenticators called digital signatures. In
this case Ks and Kv are separate, Kv is the
public key, and it is not practical to determine
S(Ks) from public information. In practice the
sender of a message signs it (produces a digital
signature using S(Ks)), and the receiver uses
V(Kv) to verify that it did indeed come from
a trusted source, and that it has not been
modified.

 There are three good reasons for having
separate algorithms for encryption of
messages and authentication of messages:

1. Authentication algorithms typically
require fewer calculations, making
verification a faster operation than
encryption.

2. Authenticators are almost always smaller
than the messages, improving space
efficiency.

3. Sometimes we want authentication
only, and not confidentiality, such as
when a vendor issues a new software
patch.

Another use of authentication is non-
repudiation, in which a person filling out an
electronic form cannot deny that they were the
ones who did so.

UNIT - IV OPERATING SYSTEMS

155
Rahul Publications

Rahul Publications

Key Distribution

 Key distribution with symmetric cryptography is a major problem, because all keys must be kept
secret, and they obviously can’t be transmitted over unsecure channels. One option is to send
them out-of-band, say via paper or a confidential conversation.

 Another problem with symmetric keys, is that a separate key must be maintained and used for each
correspondent with whom one wishes to exchange confidential information.

 Asymmetric encryption solves some of these problems, because the public key can be freely
transmitted through any channel, and the private key doesn’t need to be transmitted anywhere.
Recipients only need to maintain one private key for all incoming messages, though senders must
maintain a separate public key for each recipient to which they might wish to send a message.
Fortunately the public keys are not confidential, so this key-ring can be easily stored and managed.

 Unfortunately there are still some security concerns regarding the public keys used in asymmetric
encryption. Consider for example the following man-in-the-middle attack involving phony public
keys:

 One solution to the above problem involves digital certificates, which are public keys that have
been digitally signed by a trusted third party. But wait a minute - How do we trust that third party,
and how do we know they are really who they say they are? Certain certificate authorities have
their public keys included within web browsers and other certificate consumers before they are
distributed.

Fig. A man-in-the-middle attack on asymmetric cryptography

MCA I YEAR II SEMESTER

156
Rahul Publications

Rahul Publications

Q14. Write about the implementation of
cryptography in secure soket layers
(SSL).

Ans : (Imp.)

Implementation of Cryptography

 Network communications are implemented
in multiple layers - Physical, Data Link,
Network, Transport, and Application being
the most common breakdown.

 Encryption and security can be implemented
at any layer in the stack, with pros and cons
to each choice:

• Because packets at lower levels contain
the contents of higher layers, encryption
at lower layers automatically encrypts
higher layer information at the same
time.

• However security and authorization may
be important to higher levels
independent of the underlying transport
mechanism or route taken.

 At the network layer the most common
standard is IPSec, a secure form of the IP
layer, which is used to set up Virtual
Private Networks, VPNs.

 At the transport layer the most common
implementation is SSL, described below.

An Example: SSL

 SSL (Secure Sockets Layer) 3.0 was first
developed by Netscape, and has now
evolved into the industry-standard TLS
protocol. It is used by web browsers to
communicate securely with web servers,
making it perhaps the most widely used
security protocol on the Internet today.

 SSL is quite complex with many variations,
only a simple case of which is shown here.

 The heart of SSL is session keys, which are
used once for symmetric encryption and then
discarded, requiring the generation of new
keys for each new session. The big challenge
is how to safely create such keys while avoiding
man-in-the-middle and replay attacks.

 Prior to commencing the transaction, the
server obtains a certificate from
a certification authority, CA, containing:

• Server attributes such as unique and
common names.

• Identity of the public encryption
algorithm, E(), for the server.

• The public key, k_e for the server.

• The validity interval within which the
certificate is valid.

• A digital signature on the above issued
by the CA:

  a = S(K_CA)((attrs, E(k_e),
interval)

 In addition, the client will have obtained a
public verification algorithm,V(K_CA),
for the certifying authority. Today’s modern
browsers include these built-in by the browser
vendor for a number of trusted certificate
authorities.

 The procedure for establishing secure
communications is as follows:

1. The client, c, connects to the server, s,
and sends a random 28-byte number,
n_c.

2. The server replies with its own random
value, n_s, along with its certificate of
authority.

3. The client uses its verification algorithm
to confirm the identity of the sender, and
if all checks out, then the client generates
a 46 byte random premaster secret,
pms, and sends an encrypted version
of it as cpms = E(k_s)(pms)

4. The server recovers pms as D(k_s)
(cpms).

5. Now both the client and the server can
compute a shared 48-byte master
secret, ms, = f(pms, n_s, n_c)

6. Next, both client and server generate the
following from ms:

UNIT - IV OPERATING SYSTEMS

157
Rahul Publications

Rahul Publications

 Symmetric encryption keys
k_sc_crypt and k_cs_crypt for
encrypting messages from the
server to the client and vice-versa
respectively.

 MAC generation keys k_sc_mac
and k_cs_mac for generating
authenticators on messages from
server to client and client to server
respectively.

7. To send a message to the server, the
client sends:

 c = E(k_cs_crypt)(m, S(k_cs_mac)
)(m)))

8. Upon receiving c, the server recovers:

 (m,a) = D(k_cs_crypt)(c)

 and accepts it if V(k_sc_mac)(m,a)
is true.

This approach enables both the server and
client to verify the authenticity of every incoming
message, and to ensure that outgoing messages are
only readable by the process that originally
participated in the key generation.

SSL is the basis of many secure
protocols,including Virtual Private Networks,
VPNs, in which private data is distributed over the
insecure public internet structure in an encrypted
fashion that emulates a privately owned network.

4.2.4 User Authentication

Q15. Write about various user authentication
processes.

Ans : (Imp.)

Authentication is the process of determining
whether someone or something is, in fact, who or
what it declares itself to be. Authentication
technology provides access control for systems by
checking to see if a user’s credentials match the
credentials in a database of authorized users or in a
data authentication server.

Passwords

 Passwords are the most common form of user
authentication. If the user is in possession of

the correct password, then they are
considered to have identified themselves.

 In theory separate passwords could be
implemented for separate activities, such as
reading this file, writing that file, etc. In
practice most systems use one password to
confirm user identity, and then authorization
is based upon that identification. This is a result
of the classic trade-off between security and
convenience.

Password Vulnerabilities

 Passwords can be guessed.

• Intelligent guessing requires knowing
something about the intended target in
specific, or about people and commonly
used passwords in general.

• Brute-force guessing involves trying
every word in the dictionary, or every
valid combination of characters. For this
reason good passwords should not be
in any dictionary (in any language),
should be reasonably lengthy, and
should use the full range of allowable
characters by including upper and lower
case characters, numbers, and special
symbols.

 “Shoulder surfing” involves looking over
people’s shoulders while they are typing in
their password.

• Even if the lurker does not get the entire
password, they may get enough clues
to narrow it down, especially if they
watch on repeated occasions.

• Common courtesy dictates that you look
away from the keyboard while someone
is typing their password.

• Passwords echoed as stars or dots still
give clues, because an observer can
determine how many characters are in
the password.

 “Packet sniffing” involves putting a monitor
on a network connection and reading data
contained in those packets.

MCA I YEAR II SEMESTER

158
Rahul Publications

Rahul Publications

• SSH encrypts all packets, reducing the
effectiveness of packet sniffing.

• However you should still never e-mail a
password, particularly not with the word
“password” in the same message or
worse yet the subject header.

• Beware of any system that transmits
passwords in clear text. (”Thank you
for signing up for XYZ. Your new account
and password information are shown
below”.) You probably want to have a
spare throw-away password to give these
entities, instead of using the same high-
security password that you use for
banking or other confidential uses.

 Long hard to remember passwords are often
written down, particularly if they are used
seldomly or must be changed frequently.
Hence a security trade-off of passwords that
are easily divined versus those that get written
down.

 Passwords can be given away to friends or
co-workers, destroying the integrity of the
entire user-identification system.

 Most systems have configurable parameters
controlling password generation and what
constitutes acceptable passwords.

• They may be user chosen or machine
generated.

• They may have minimum and/or
maximum length requirements.

• They may need to be changed with a
given frequency. (In extreme cases for
every session.)

• A variable length history can prevent
repeating passwords.

• More or less stringent checks can be
made against password dictionaries.

Encrypted Passwords

 Modern systems do not store passwords in
clear-text form, and hence there is no
mechanism to look up an existing password.

 Rather they are encrypted and stored in that
form. When a user enters their password, that
too is encrypted, and if the encrypted version
match, then user authentication passes.

 The encryption scheme was once considered
safe enough that the encrypted versions were
stored in the publicly readable file “/etc/
passwd”.

• They always encrypted to a 13 character
string, so an account could be disabled
by putting a string of any other length
into the password field.

• Modern computers can try every
possible password combination in a
reasonably short time, so now the
encrypted passwords are stored in files
that are only readable by the super user.
Any password-related programs run as
setuid root to get access to these files.
(/etc/shadow)

• A random seed is included as part of
the password generation process, and
stored as part of the encrypted
password. This ensures that if two
accounts have the same plain-text
password that they will not have the
same encrypted password. However
cutting and pasting encrypted passwords
from one account to another will give
them the same plain-text passwords.

One-Time Passwords

 One-time passwords resist shoulder surfing
and other attacks where an observer is able
to capture a password typed in by a user.

• These are often based on a challenge
and a response. Because the challenge
is different each time, the old response
will not be valid for future challenges.

 For example, The user may be in
possession of a secret function
f(x). The system challenges with
some given value for x, and the
user responds with f(x), which the
system can then verify. Since the

UNIT - IV OPERATING SYSTEMS

159
Rahul Publications

Rahul Publications

challenger gives a different
(random) x each time, the answer
is constantly changing.

 A variation uses a map (e.g. a
road map) as the key. Today’s
question might be “On what
corner is SEO located?”, and
tomorrow’s question might be
“How far is it from Navy Pier to
Wrigley Field?” Obviously “Taylor
and Morgan” would not be
accepted as a valid answer for the
second question!

• Another option is to have some sort of
electronic card with a series of constantly
changing numbers, based on the current
time. The user enters the current
number on the card, which will only be
valid for a few seconds. A two-factor
authorization also requires a
traditional password in addition to the
number on the card, so others may not
use it if it were ever lost or stolen.

• A third variation is a code book,
or one-time pad. In this scheme a
long list of passwords is generated, and
each one is crossed off and cancelled as
it is used. Obviously it is important to
keep the pad secure.

Biometrics

 Biometrics involve a physical characteristic of
the user that is not easily forged or duplicated
and not likely to be identical between multiple
users.

• Fingerprint scanners are getting faster,
more accurate, and more economical.

• Palm readers can check thermal
properties, finger length, etc.

• Retinal scanners examine the back of the
users’ eyes.

• Voiceprint analyzers distinguish
particular voices.

• Difficulties may arise in the event of
colds, injuries, or other physiological
changes.

4.2.5 Implementing Security Defenses

Q16. What is security policy? Write various
security policies.

Ans : (Imp.)

Security Policy

 A security policy should be well thought-out,
agreed upon, and contained in a living
document that everyone adheres to and is
updated as needed.

 Examples of contents include how often port
scans are run, password requirements, virus
detectors, etc.

Vulnerability Assessment

 Periodically examine the system to detect
vulnerabilities.

• Port scanning.

• Check for bad passwords.

• Look for suid programs.

• Unauthorized programs in system
directories.

• Incorrect permission bits set.

• Program checksums / digital signatures
which have changed.

• Unexpected or hidden network
daemons.

• New entries in startup scripts, shutdown
scripts, cron tables, or other system
scripts or configuration files.

• New unauthorized accounts.

 The government considers a system to be only
as secure as its most far-reaching component.
Any system connected to the Internet is
inherently less secure than one that is in a
sealed room with no external communi-
cations.

 Some administrators advocate “security
through obscurity”, aiming to keep as much
information about their systems hidden as
possible, and not announcing any security
concerns they come across. Others announce

MCA I YEAR II SEMESTER

160
Rahul Publications

Rahul Publications

security concerns from the rooftops, under
the theory that the hackers are going to find
out anyway, and the only one kept in the
dark by obscurity are honest administrators
who need to get the word.

Intrusion Detection

 Intrusion detection attempts to detect attacks,
both successful and unsuccessful attempts.
Different techniques vary along several axes:

• The time that detection occurs, either
during the attack or after the fact.

• The types of information examined to
detect the attack(s). Some attacks can
only be detected by analyzing multiple
sources of information.

• The response to the attack, which may
range from alerting an administrator to
automatically stopping the attack (e.g.
killing an offending process), to tracing
back the attack in order to identify the
attacker.

 Another approach is to divert the
attacker to a honeypot, on
a honeynet. The idea behind a
honeypot is a computer running
normal services, but which no one
uses to do any real work. Such a
system should not see any network
traffic under normal conditions, so
any traffic going to or from such a
system is by definition suspicious.
Honeypots are normally kept on a
honeynet protected by a reverse
firewall, which will let potential
attackers in to the honeypot, but
will not allow any outgoing traffic.
(So that if the honeypot is
compromised, the attacker cannot
use it as a base of operations for
attacking other systems.)
Honeypots are closely watched,
and any suspicious activity carefully
logged and investigated.

 Intrusion Detection Systems, IDSs, raise the
alarm when they detect an intrusion.
Intrusion Detection and Prevention Systems,

IDPs, act as filtering routers, shutting down
suspicious traffic when it is detected.

 There are two major approaches to detecting
problems:

• Signature-Based Detection scans
network packets, system files, etc.
looking for recognizable characteristics
of known attacks, such as text strings for
messages or the binary code for “exec /
bin/sh”. The problem with this is that it
can only detect previously encountered
problems for which the signature is
known, requiring the frequent update
of signature lists.

• Anomaly Detection looks for
“unusual” patterns of traffic or
operation, such as unusually heavy load
or an unusual number of logins late at
night.

 The benefit of this approach is that
it can detect previously unknown
attacks, so called zero-day
attacks.

 One problem with this method is
characterizing what is “normal” for
a given system. One approach is
to benchmark the system, but if
the attacker is already present
when the benchmarks are made,
then the “unusual” activity is
recorded as “the norm.”

 Another problem is that not all
changes in system performance
are the result of security attacks. If
the system is bogged down and
really slow late on a Thursday
night, does that mean that a
hacker has gotten in and is using
the system to send out SPAM, or
does it simply mean that a CS 385
assignment is due on Friday? :-)

 To be effective, anomaly detectors
must have a very low false
alarm (false positive) rate,
lest the warnings get ignored, as
well as a low false negative rate
in which attacks are missed.

UNIT - IV OPERATING SYSTEMS

161
Rahul Publications

Rahul Publications

Virus Protection

 Modern anti-virus programs are basically

signature-based detection systems, which also
have the ability (in some cases)

of disinfecting the affected files and

returning them back to their original
condition.

 Both viruses and anti-virus programs are

rapidly evolving. For example viruses now
commonly mutate every time they propagate,

and so anti-virus programs look for families

of related signatures rather than specific ones.

 Some antivirus programs look for anomalies,

such as an executable program being opened

for writing (other than by a compiler.)

 Avoiding bootleg, free, and shared software

can help reduce the chance of catching a virus,

but even shrink-wrapped official software has
on occasion been infected by disgruntled

factory workers.

 Some virus detectors will run suspicious

programs in a sandbox, an isolated and
secure area of the system which mimics the

real system.

 Rich Text Format, RTF, files cannot carry
macros, and hence cannot carry Word macro

viruses.

 Known safe programs (e.g. right after a fresh
install or after a thorough examination) can

be digitally signed, and periodically the files

can be re-verified against the stored digital
signatures. (Which should be kept secure, such

as on off-line write-only medium.)

Auditing, Accounting, and Logging

 Auditing, accounting, and logging records can

also be used to detect anomalous behavior.

 Some of the kinds of things that can be
logged include authentication failures and

successes, logins, running of suid or sgid

programs, network accesses, system calls, etc.
In extreme cases almost every keystroke and

electron that moves can be logged for future

analysis.

 “The Cuckoo’s Egg” tells the story of how Cliff
Stoll detected one of the early UNIX break

ins when he noticed anomalies in the

accounting records on a computer system
being used by physics researchers.

Tripwire Filesystem (New Sidebar)

 The tripwire filesystem monitors files and

directories for changes, on the assumption

that most intrusions eventually result in some
sort of undesired or unexpected file changes.

 The tw.config file indicates what directories

are to be monitored, as well as what properties
of each file are to be recorded. (E.g. one may

choose to monitor permission and content

changes, but not worry about read access
times.)

 When first run, the selected properties for all

monitored files are recorded in a database.

Hash codes are used to monitor file contents
for changes.

 Subsequent runs report any changes to the

recorded data, including hash code changes,

and any newly created or missing files in the
monitored directories.

 For full security it is necessary to also protect

the tripwire system itself, most importantly the

database of recorded file properties. This
could be saved on some external or write-

MCA I YEAR II SEMESTER

162
Rahul Publications

Rahul Publications

only location, but that makes it harder to change the database when legitimate changes are made.

 It is difficult to monitor files that are supposed to change, such as log files. The best tripwire can do
in this case is to watch for anomalies, such as a log file that shrinks in size.

4.2.6 Firewalling

Q17. Write about the use of firewalling in Operating system.

Ans : (Imp.)

 Firewalls are devices (or sometimes software) that sit on the border between two security domains
and monitor/log activity between them, sometimes restricting the traffic that can pass between them
based on certain criteria.

 For example a firewall router may allow HTTP: requests to pass through to a web server inside a
company domain while not allowing telnet, ssh, or other traffic to pass through.

 A common architecture is to establish a de-militarized zone, DMZ, which sort of sits “between” the
company domain and the outside world, as shown below. Company computers can reach either
the DMZ or the outside world, but outside computers can only reach the DMZ. Perhaps most
importantly, the DMZ cannot reach any of the other company computers, so even if the DMZ is
breached, the attacker cannot get to the rest of the company network.

Fig. Domain separation via firewall

UNIT - IV OPERATING SYSTEMS

163
Rahul Publications

Rahul Publications

 Firewalls themselves need to be resistant to attacks, and unfortunately have several vulnerabilities:

• Tunneling, which involves encapsulating forbidden traffic inside of packets that are allowed.

• Denial of service attacks addressed at the firewall itself.

Spoofing, in which an unauthorized host sends packets to the firewall with the return address
of an authorized host.

 In addition to the common firewalls protecting a company internal network from the outside world,
there are also some specialized forms of firewalls that have been recently developed:

• A personal firewall is a software layer that protects an individual computer. It may be a
part of the operating system or a separate software package.

• An application proxy firewall understands the protocols of a particular service and acts as
a stand-in (and relay) for the particular service. For example, and SMTP proxy firewall
would accept SMTP requests from the outside world, examine them for security concerns,
and forward only the “safe” ones on to the real SMTP server behind the firewall.

• XML firewalls examine XML packets only, and reject ill-formed packets. Similar firewalls
exist for other specific protocols.

• System call firewalls guard the boundary between user mode and system mode, and
reject any system calls that violate security policies.

4.2.7 Computer Security Classification

Q18. Write about the Levels of Computer Security Classification.

Ans : (Imp.)

The U.S. Department of Defense Trusted Computer System Evaluation Criteria specify
four security classifications in systems: A, B, C, and D. This specification is widely used to determine
the security of a facility and to model security solutions, so we explore it here.

The lowest-level classification is division D, or minimal protection. Division D includes only one class
and is used for systems that have failed to meet the requirements of any of the other security classes. For
instance, MS-DOS and Windows 3.1 are in division D. Division C, the next level of security, provides
discretionary protection and accountability of users and their actions through the use of audit capabilities.

Division C has two levels

Cl and C2. A Cl-class system incorporates some form of controls that allow users to protect private
information and to keep other users from accidentally reading or destroying their data. A Cl environment
is one in which cooperating users access data at the same levels of sensitivity. Most versions of UNIX are Cl
class.

MCA I YEAR II SEMESTER

164
Rahul Publications

Rahul Publications

S.N. Classification Type & Description

1. Type A

Highest Level. Uses formal design specifications and verification techniques.

 Grants a high degree of assurance of process security.

2. Type B

Provides mandatory protection system. Have all the properties of a class C2

system. Attaches a sensitivity label to each object. It is of three types.

• B1 – Maintains the security label of each object in the system. Label is

used for making decisions to access control.·

• B2 – Extends the sensitivity labels to each system resource, such as storage

objects, supports covert channels and auditing of events.·

• B3 – Allows creating lists or user groups for access-control to grant access

or revoke access to a given named object.

3. Type CProvides protection and user accountability using audit capabilities. It is of

two types.·

• C1 – Incorporates controls so that users can protect their private information

and keep other users from accidentally reading / deleting their data. UNIX versions
are mostly Cl class.·

• C2 – Adds an individual-level access control to the capabilities of a Cl level system.

4. Type D

Lowest level. Minimum protection. MS-DOS, Window 3.1 fall in this category.

UNIT - V OPERATING SYSTEMS

165
Rahul Publications

Rahul Publications

UNIT
V

5.1 CASE STUDIES

5.1.1 The Linux System

Q1. What are the various components of Linux System ?

Ans : (Imp.)

 Like most UNIX implementations, Linux is composed of three main bodies of code; the most

important distinction between the kernel and all other components.

 The kernel is responsible for maintaining the important abstractions of the operating system

• Kernel code executes in kernel mode with full access to all the physical resources of the computer

All kernel code and data structures are kept in the same single address space

 The system libraries define a standard set of functions through which applications interact with

the kernel, and which implement much of the operating-system functionality that does not need

the full privileges of kernel code

 The system utilities perform individual specialized management tasks

User-mode programs rich and varied, including multiple shells like the bourne-again (bash)

Case Studies : The Linux System-Design principles. Kernel modules, Process
management.

Scheduling, Memory management : File systems, Input and Output, Inter
process communication.

Windows 7 -Design principles : System components, Terminal services
and fast user switching File systems, Networking, Programmer interface.

MCA I YEAR II SEMESTER

166
Rahul Publications

Rahul Publications

5.1.2 Design Principles

Q2. Write about the history of linux system
and its design principles.

Ans :
History

 Linux uses many tools developed as part of
Berkeley’s BSD operating system, MIT’s X
Window System, and the Free Software
Foundation’s GNU project

 The main system libraries were started by the
GNU project, with improvements provided
by the Linux community

 Linux networking-administration tools were
derived from 4.3BSD code; recent BSD
derivatives such as Free BSD have borrowed
code from Linux in return

 The Linux system is maintained by a loose
network of developers collaborating over the
Internet, with a small number of public ftp
sites acting as de facto standard repositories

 File System Hierarchy Standard
document maintained by the Linux
community to ensure compatibility across the
various system components
Specifies overall layout of a standard Linux

file system, determines under which directory names
configuration files, libraries, system binaries, and run-
time data files should be stored
Design Principles
 Linux is a multiuser, multitasking system with

a full set of UNIX-compatible tools
 Its file system adheres to traditional UNIX

semantics, and it fully implements the
standard UNIX networking model

 Main design goals are speed, efficiency, and
standardization

 Linux is designed to be compliant with the
relevant POSIX documents; at least two Linux
distributions have achieved official POSIX
certification
• Supports Pthreads and a subset of

POSIX real-time process control
The Linux programming interface adheres to

the SVR4 UNIX semantics, rather than to BSD
behavior

5.1.3 Kernel Modules

Q3. Discuss about the kernel modules of
Linux Systems.

Ans : (Imp.)

 Sections of kernel code that can be compiled,
loaded, and unloaded independent of the
rest of the kernel.

 A kernel module may typically implement a
device driver, a file system, or a networking
protocol

 The module interface allows third parties to
write and distribute, on their own terms,
device drivers or file systems that could not
be distributed under the GPL.

 Kernel modules allow a Linux system to be
set up with a standard, minimal kernel,
without any extra device drivers built in.

 Four components to Linux module support:

• module-management system

• module loader and unloader

• driver-registration system

• conflict-resolution mechanism

Module Management

 Supports loading modules into memory and
letting them talk to the rest of the kernel

 Module loading is split into two separate
sections:

• Managing sections of module code in
kernel memory

• Handling symbols that modules are
allowed to reference

The module requestor manages loading
requested, but currently unloaded, modules; it also
regularly queries the kernel to see whether a
dynamically loaded module is still in use, and will
unload it when it is no longer actively needed

Driver Registration

 Allows modules to tell the rest of the kernel
that a new driver has become available

UNIT - V OPERATING SYSTEMS

167
Rahul Publications

Rahul Publications

 The kernel maintains dynamic tables of all
known drivers, and provides a set of routines
to allow drivers to be added to or removed
from these tables at any time

 Registration tables include the following items:

• Device drivers

• File systems

• Network protocols

• Binary format

Conflict Resolution

 A mechanism that allows different device
drivers to reserve hardware resources and to
protect those resources from accidental use
by another driver.

 The conflict resolution module aims to:

• Prevent modules from clashing over
access to hardware resources

• Prevent autoprobesfrom interfering with
existing device drivers

• Resolve conflicts with multiple drivers
trying to access the same hardware:

• Kernel maintains list of allocated HW
resources

• Driver reserves resources with kernel
database first

• Reservation request rejected if resource
not available

5.1.4 Process Management

Q4. Write about the process management of
Linux System.

Ans : (Imp.)

 UNIX process management separates the
creation of processes and the running of a
new program into two distinct operations.

• The fork() system call creates a new
process

• A new program is run after a call to exec()

 Under UNIX, a process encompasses all the
information that the operating system must

maintain to track the context of a single
execution of a single program

 Under Linux, process properties fall into three
groups: the process’s identity, environment,
and context

Process Identity

 Process ID (PID) - The unique identifier for
the process; used to specify processes to the
operating system when an application makes
a system call to signal, modify, or wait for
another process

 Credentials - Each process must have an
associated user ID and one or more group
IDs that determine the process’s rights to
access system resources and files

 Personality - Not traditionally found on
UNIX systems, but under Linux each process
has an associated personality identifier that
can slightly modify the semantics of certain
system calls

• Used primarily by emulation libraries to
request that system calls be compatible
with certain specific flavors of UNIX

 Namespace – Specific view of file system
hierarchy

• Most processes share common
namespace and operate on a shared file-
system hierarchy

• But each can have unique file-system
hierarchy with its own root directory and
set of mounted file systems

Process Context

 The (constantly changing) state of a running
program at any point in time

 The scheduling context is the most
important part of the process context; it is
the information that the scheduler needs to
suspend and restart the process

 The kernel maintains accounting
information about the resources currently
being consumed by each process, and the
total resources consumed by the process in
its lifetime so far

MCA I YEAR II SEMESTER

168
Rahul Publications

Rahul Publications

 The file table is an array of pointers to kernel
file structures

When making file I/O system calls, processes
refer to files by their index into this table, the
file descriptor (fd)

 Whereas the file table lists the existing open
files, the file-system context applies to
requests to open new files

• The current root and default directories
to be used for new file searches are
stored here

 The signal-handler table defines the
routine in the process’s address space to be
called when specific signals arrive

 The virtual-memory context of a process
describes the full contents of the its private
address space

5.1.5 Scheduling

Q5. Discuss how scheduling can happen in
Linux System.

Ans : (Imp.)

 The job of allocating CPU time to different
tasks within an operating system

 While scheduling is normally thought of as
the running and interrupting of processes, in
Linux, scheduling also includes the running
of the various kernel tasks

 Running kernel tasks encompasses both tasks
that are requested by a running process and
tasks that execute internally on behalf of a
device driver

 As of 2.5, new scheduling algorithm –
preemptive, priority-based, known as O(1)

• Real-time range

• nice value

• Had challenges with interactive
performance

Completely Fair Scheduler (CFS)

 Eliminates traditional, common idea of time
slice

 Instead all tasks allocated portion of
processor’s time

 CFS calculates how long a process should run
as a function of total number of tasks

 N runnable tasks means each gets 1/N of
processor’s time

 Then weights each task with its nice value

 Smaller nice value -> higher weight (higher
priority)

 Then each task run with for time proportional
to task’s weight divided by total weight of all
runnable tasks

 Configurable variable target latency is desired
interval during which each task should run at
least once

• Consider simple case of 2 runnable tasks
with equal weight and target latency of
10ms – each then runs for 5ms

• If 10 runnable tasks, each runs for 1ms

 Minimum granularity ensures each run has
reasonable amount of time (which actually
violates fairness idea)

5.1.6 Memory Management

Q6. Write a note on memory management of
Linux system.

Ans :
 Linux’s physical memory-management

system deals with allocating and freeing
pages, groups of pages, and small blocks of
memory

 It has additional mechanisms for handling
virtual memory, memory mapped into the
address space of running processes

 Splits memory into four different zones due
to hardware characteristics

Managing Physical Memory

 The page allocator allocates and frees all
physical pages; it can allocate ranges of
physically-contiguous pages on request

 The allocator uses a buddy-heap algorithm
to keep track of available physical pages

UNIT - V OPERATING SYSTEMS

169
Rahul Publications

Rahul Publications

• Each allocatable memory region is
paired with an adjacent partner

• Whenever two allocated partner regions
are both freed up they are combined to
form a larger region

 If a small memory request cannot be satisfied
by allocating an existing small free region,
then a larger free region will be subdivided
into two partners to satisfy the request

 Memory allocations in the Linux kernel occur
either statically (drivers reserve a contiguous
area of memory during system boot time) or
dynamically (via the page allocator)

 Also uses slab allocator for kernel memory

 Page cache and virtual memory system also
manage physical memory

• Page cache is kernel’s main cache for
files and main mechanism for I/O to
block devices

• Page cache stores entire pages of file
contents for local and network file I/O

 Memory allocations in the Linux kernel occur
either statically (drivers reserve a contiguous
area of memory during system boot time) or
dynamically (via the page allocator)

 Also uses slab allocator for kernel memory

 Page cache and virtual memory system also
manage physical memory

• Page cache is kernel’s main cache for
files and main mechanism for I/O to
block devices

• Page cache stores entire pages of file
contents for local and network file I/O

5.1.7 File Systems

Q7. Write about the file system of Linux
System.

Ans :
 To the user, Linux’s file system appears as a

hierarchical directory tree obeying UNIX
semantics

 Internally, the kernel hides implementation
details and manages the multiple different file
systems via an abstraction layer, that is, the
virtual file system (VFS)

 The Linux VFS is designed around object-
oriented principles and is composed of four
components:

• A set of definitions that define what a
file object is allowed to look like

 The inode object structure
represent an individual file

 The file object represents an
open file

 The superblock object
represents an entire file system

A dentry object represents an individual
directory entry

 To the user, Linux’s file system appears as a
hierarchical directory tree obeying UNIX
semantics

 Internally, the kernel hides implementation
details and manages the multiple different file
systems via an abstraction layer, that is, the
virtual file system (VFS)

 The Linux VFS is designed around object-
oriented principles and layer of software to
manipulate those objects with a set of
operations on the objects

The Linux ext3 File System

 ext3 is standard on disk file system for Linux

• Uses a mechanism similar to that of BSD
Fast File System (FFS) for locating data
blocks belonging to a specific file

• Supersedes older extfs, ext2 fi le
systems

• Work underway on ext4 adding features
like extents of course, many other file
system choices with Linux distros

 The main differences between ext2fs and FFS
concern their disk allocation policies

 In ffs, the disk is allocated to files in blocks of
8Kb, with blocks being subdivided into

MCA I YEAR II SEMESTER

170
Rahul Publications

Rahul Publications

fragments of 1Kb to store small files or
partially filled blocks at the end of a file

 ext3 does not use fragments; it performs its
allocations in smaller units

 The default block size on ext3 varies as a
function of total size of file system with
support for 1, 2, 4 and 8 KB blocks

 ext3 uses cluster allocation policies designed
to place logically adjacent blocks of a file into
physically adjacent blocks on disk, so that it
can submit an I/O request for several disk
blocks as a single operation on a block group

 Maintains bit map of free blocks in a block
group, searches for free byte to allocate at
least 8 blocks at a time

5.1.8 Input and Output

Q8. Describe Linux Input and Output system.

Ans :
 The Linux device-oriented file system accesses

disk storage through two caches:

• Data is cached in the page cache, which
is unified with the virtual memory
system

• Metadata is cached in the buffer cache,
a separate cache indexed by the physical
disk block

 Linux splits all devices into three classes:

• block devices allow random access to
completely independent, fixed size
blocks of data

• character devices include most other
devices; they don’t need to support the
functionality of regular files

• network devices are interfaced via the
kernel’s networking subsystem

Block Devices

 Provide the main interface to all disk devices
in a system

 The block buffer cache serves two main
purposes:

• it acts as a pool of buffers for active I/O

• it serves as a cache for completed I/O

 The request manager manages the reading
and writing of buffer contents to and from a
block device driver

 Kernel 2.6 introduced Completely Fair
Queueing(CFQ)

• Now the default scheduler

• Fundamentally different from elevator
algorithms

• Maintains set of lists, one for each process
by default

• Uses C-SCAN algorithm, with round
robin between all outstanding I/O from
all processes

• Four blocks from each process put on
at once

5.1.9 Inter Process Communication

Q9. Explain about the inter process
communication in LINUX.

Ans : (Imp.)

 Like UNIX, Linux informs processes that an
event has occurred via signals

 There is a limited number of signals, and they
cannot carry information: Only the fact that
a signal occurred is available to a process

 The Linux kernel does not use signals to
communicate with processes with are running
in kernel mode, rather, communication within
the kernel is accomplished via scheduling
states and wait_queue structures

 Also implements System V Unix semaphores

• Process can wait for a signal or a
semaphore

• Semaphores scale better

• Operations on multiple semaphores can
be atomic Passing Data Between
Processes

UNIT - V OPERATING SYSTEMS

171
Rahul Publications

Rahul Publications

 The pipe mechanism allows a child process
to inherit a communication channel to its
parent, data written to one end of the pipe
can be read a the other

 Shared memory offers an extremely fast way
of communicating; any data written by one
process to a shared memory region can be
read immediately by any other process that
has mapped that region into its address space

 To obtain synchronization, however, shared
memory must be used in conjunction with
another Interprocess-communication
mechanism

Q10. Discuss the Network Structure of LINUX

Ans :
 Networking is a key area of functionality for

Linux

• It supports the standard Internet
protocols for UNIX to UNIX
communications

• It also implements protocols native to
non-UNIX operating systems, in
particular, protocols used on PC
networks, such as Appletalk and IPX

 Internally, networking in the Linux kernel is
implemented by three layers of software:

• The socket interface

• Protocol drivers

• Network device drivers

 Most important set of protocols in the Linux
networking system is the internet protocol
suite

• It implements routing between different
hosts anywhere on the network

• On top of the routing protocol are built
the UDP, TCP and ICMP protocols

• Packets also pass to firewall
management for filtering based on
firewall chains of rules

5.2 WINDOWS 7 –

5.2.1 Design Principles

Q11. Describe briefly about Windows
Architecture.

Ans : (Imp.)

Windows Architecture Layered system of
modules.

Protected mode — hardware abstraction
layer (HAL) , kernel, executive. Executive includes
file systems, network stack, and device drivers.

User mode — collection of subsystems,
services, DLLs, and the GUI Environmental
subsystems emulate different operating systems
Protection subsystems provide security functions
Windows services provide facilities for networking,
device interfaces, background execution, and
extension of the system Rich shared libraries with
thousands of APIs are implemented using DLLs to
allow code sharing and simplify updates A graphical
user interface is built into Win32 and used by most
programs that interact directly with the us.

 The Win32 environment subsystem can run
32-bit Windows applications. It contains the
console as well as text window support,
shutdown and hard-error handling for all
other environment subsystems. It also
supports Virtual DOS Machines (VDMs),
which allow MS-DOS and 16-bit Windows
(Win16) applications to run on Windows NT.
There is a specific MS-DOS VDM that runs in
its own address space and which emulates
an Intel 80486 running MS-DOS 5.0.
Win16 programs, however, run in a Win16
VDM. Each program, by default, runs in the
same process, thus using the same address
space, and the Win16 VDM gives each
program its own thread on which to run.
However, Windows NT does allow users to
run a Win16 program in a separate Win16
VDM, which allows the program to be
preemptively multitasked, as Windows NT will
pre-empt the whole VDM process, which only
contains one running application. The Win32
environment subsystem process (csrss.exe)
also includes the window management
functionality, sometimes called a “window

MCA I YEAR II SEMESTER

172
Rahul Publications

Rahul Publications

manager”. It handles input events (such as from the keyboard and mouse), then passes messages
to the applications that need to receive this input. Each application is responsible for drawing or
refreshing its own windows and menus, in response to these messages.

 The OS/2 environment subsystem supports 16-bit character-based OS/2 applications and emulates
OS/2 1.x, but not 32-bit or graphical OS/2 applications as used with OS/2 2.x or later, on x86
machines only.[3] To run graphical OS/2 1.x programs, the Windows NT Add-On Subsystem for
Presentation Manager must be installed.[3] The last version of Windows NT to have an OS/2
subsystem was Windows 2000; it was removed as of Windows XP.

 The POSIX environment subsystem supports applications that are strictly written to either the POSIX.1
standard or the related ISO/IEC standards. This subsystem has been replaced by Interix, which is
a part of Windows Services for UNIX.[4] This was in turn replaced by the Windows Subsystem for
Linux.

Fig.: Win 32 Architecture

UNIT - V OPERATING SYSTEMS

173
Rahul Publications

Rahul Publications

Q12. Write about the design principles of
windows.

Ans :
Design Principles

Design Principles Extensibility layered
architecture Kernel layer runs in protected mode
and provides access to the CPU by supporting
threads, interrupts, and traps. Executive runs in
protected mode above the Kernel layer and,
provides the basic system services On top of the
executive, environmental subsystems operate in user
mode providing different OS APIs (as with Mach)
Modular structure allows additional environmental
subsystems to be added without affecting the
executive Portability Windows 7 can be moved
from one hardware platform to another with
relatively few changes Written in C and C++
Platform-dependent code is isolated in a dynamic
link library (DLL) called the “hardware abstraction
layer” (HAL)

 Reliability – Windows uses hardware
protection for virtual memory, and software
protection mechanisms for operating system
resources

 Compatibility – applications that follow the
IEEE 1003.1 (POSIX) standard can be
complied to run on Windows without
changing the source code. Applications
created for previous versions of Windows run
using various virtual machine techniques This
is deprecated in Windows 8.

 Performance – Windows subsystems can
communicate with one another via high-
performance message passing Preemption of
low priority threads enables the system to
respond quickly to external events Designed
for symmetrical multiprocessing,

 scaling to 100s of cores International support
– supports different locales via the national
language support (NLS) API, use of
UNICODE throughout, and providing
facilities for differences in date formats,
currency, etc.

5.2.2 System Components

Q13. Write about Windows Kernel.

Ans :
System Components — Kernel

System Components — Kernel Foundation
for the executive and the subsystems Never paged
out of memory; execution is never preempted Four
main responsibilities: thread scheduling interrupt
and exception handling low-level processor
synchronization recovery after a power failure Kernel
is object-oriented, uses two sets of objects dispatcher
objects control dispatching and synchronization
(events, mutexes, semaphores, threads and timers)
control objects (asynchronous procedure calls,
interrupts, power notify, process and profile objects)

Kernel — Process and Threads

Kernel — Process and Threads The process
has a virtual memory address space, information
(such as a base priority), and an affinity for one or
more processors. Threads are the unit of execution
scheduled by the kernel’s dispatcher. Each thread
has its own state, including a priority, processor
affinity, and accounting information. A thread can
be one of six states: ready , standby, running,
waiting, transition , and terminated.

Kernel — Scheduling

Kernel — Scheduling Windows scheduler:
Pre-emptive (since Windows NT) Multilevel feedback
queue The dispatcher uses a 32-level priority
scheme to determine the order of thread execution.
Priorities are divided into two classes The real-time
class contains threads with priorities ranging from
16 to 31 The variable class contains threads having
priorities from 0 to 15 Characteristics of Windows
7’s priority strategy Gives very good response times
to interactive threads that are using the mouse and
windows Enables I/O-bound threads to keep the I/
O devices busy Compute-bound threads soak up
the spare CPU cycles in the background.

Scheduling can occur when a thread enters
the ready or wait state, when a thread terminates,
or when an application changes a thread’s priority
or processor affinity. Real-time threads are given
preferential access to the CPU; but Windows 7 does
not guarantee that a real-time thread will start to
execute within any particular time limit. This is
known as soft real-time.

MCA I YEAR II SEMESTER

174
Rahul Publications

Rahul Publications

5.2.3 Terminal Services And Fast User
Switching File Systems

Q14. Write about Windows File System.

Ans : (Imp.)

File System

1. The fundamental structure of the Windows 7
file system (NTFS) is a volume

a. Created by the Windows 7 disk
administrator utility

b. Based on a logical disk partition

c. May occupy a portions of a disk, an
entire disk, or span across several disks

2. All metadata, such as information about the
volume, is stored in a regular file

3. NTFS uses clusters as the underlying unit of
disk allocation

a. A cluster is a number of disk sectors that
is a power of two

Because the cluster size is smaller than for the
16-bit FAT file system, the amount of internal
fragmentation is reduced

Internal Layout

1. NTFS uses logical cluster numbers (LCNs) as
disk addresses

2. A file in NTFS is not a simple byte stream, as
in MS-DOS or UNIX, rather, it is a structured
object consisting of attributes

3. Every file in NTFS is described by one or more
records in an array stored in a special file
called the Master File Table (MFT)

4. Each file on an NTFS volume has a unique
ID called a file reference.

a. 64-bit quantity that consists of a 48-bit
file number and a 16-bit sequence
number

b. Can be used to perform internal
consistency checks

5. The NTFS name space is organized by a
hierarchy of directories; the index root
contains the top level of the B+ tree

Recovery

1. All file system data structure updates are
performed inside transactions that are logged.

a. Before a data structure is altered, the
transaction writes a log record that
contains redo and undo information.

b. After the data structure has been
changed, a commit record is written to
the log to signify that the transaction
succeeded.

2. After a crash, the file system data structures
can be restored to a consistent state by
processing the log records.

3. This scheme does not guarantee that all the
user file data can be recovered after a crash,
just that the file system data structures (the
metadata files) are undamaged and reflect
some consistent state prior to the crash.

4. The log is stored in the third metadata file at
the beginning of the volume.

The logging functionality is provided by the
Windows 7 log file service.

Security

1. Security of an NTFS volume is derived from
the Windows 7 object model.

2. Each file object has a security descriptor
attribute stored in this MFT record.

This attribute contains the access token of the
owner of the file, and an access control list that states
the access privileges that are granted to each user
that has access to the file.

File System — Compression

1. To compress a file, NTFS divides the file’s data
into compression units, which are blocks of
16 contiguous clusters.

2. For sparse files, NTFS uses another technique
to save space.

a. Clusters that contain all zeros are not
actually allocated or stored on disk.

b. Instead, gaps are left in the sequence of
virtual cluster numbers stored in the
MFT entry for the file.

UNIT - V OPERATING SYSTEMS

175
Rahul Publications

Rahul Publications

When reading a file, if a gap in the virtual
cluster numbers is found, NTFS just zero-fills that
portion of the caller’s buffer.

File System — Reparse Points

1. A reparse point returns an error code when
accessed. The reparse data tells the I/O
manager what to do next.

2. Reparse points can be used to provide the
functionality of UNIX mounts.

Reparse points can also be used to access files
that have been moved to offline storage.

5.2.4 Networking

Q15. Explain, how networking will be done in
windows 7.

Ans :
 The server message block (SMB) protocol is

used to send I/O requests over the network.
It has four message types:

1. Session control

2. File

3. Printer

4. Message

 The network basic Input/Output system
(NetBIOS) is a hardware abstraction interface
for networks

5. Used to:

 Establish logical names on the
network

 Establish logical connections of
sessions between two logical names
on the network

 Support reliable data transfer for
a session via NetBIOS requests or
SMBs

 Windows 7 uses the TCP/IP Internet protocol
version 4 and version 6 to connect to a wide
variety of operating systems and hardware
platforms.

 PPTP (Point-to-Point Tunneling Protocol) is
used to communicate between Remote

Access Server modules running on Windows
7 machines that are connected over the
Internet.

The Data Link Control protocol (DLC) is used
to access IBM mainframes and HP printers that are
directly connected to the network (possible on 32-
bit only versions using unsigned drivers).

Distributed Processing Mechanisms

 Windows 7 supports distributed applications
via named NetBIOS, named pipes and
mailslots, Windows Sockets, Remote
Procedure Calls (RPC), and Network
Dynamic Data Exchange (NetDDE).

 NetBIOS applications can communicate over
the network using TCP/IP.

 Named pipes are connection-oriented
messaging mechanism that are named via the
uniform naming convention (UNC).

 Mailslots are a connectionless messaging
mechanism that are used for broadcast
applications, such as for finding components
on the network.

 Winsock, the windows sockets API, is a session-
layer interface that provides a standardized
interface to many transport protocols that
may have different addressing schemes.

 The Windows 7 RPC mechanism follows the
widely-used Distributed Computing
Environment standard for RPC messages, so
programs written to use Windows 7 RPCs are
very portable.

• RPC messages are sent using NetBIOS,
or Winsock on TCP/IP networks, or
named pipes on LAN Manager
networks.

 Windows 7 provides the Microsoft Interface
DefinitionLanguage to describe the remote
procedure names, arguments, and results.

Redirectors and Servers

 In Windows 7, an application can use the
Windows 7 I/O API to access files from a
remote computer as if they were local,
provided that the remote computer is running
an MS-NET server.

MCA I YEAR II SEMESTER

176
Rahul Publications

Rahul Publications

 A redirector is the client-side object that
forwards I/O requests to remote files, where
they are satisfied by a server.

For performance and security, the redirectors
and servers run in kernel mode

Access to a Remote File

 The application calls the I/O manager to
request that a file be opened (we assume that
the file name is in the standard UNC format).

 The I/O manager builds an I/O request
packet.

 The I/O manager recognizes that the access is
for a remote file, and calls a driver called a
Multiple Universal Naming Convention
Provider (MUP).

 The MUP sends the I/O request packet
asynchronously to all registered redirectors.

 A redirector that can satisfy the request
responds to the MUP

To avoid asking all the redirectors the same
question in the future, the MUP uses a cache to
remember with redirector can handle this file.

 The redirector sends the network request to
the remote system.

 The remote system network drivers receive
the request and pass it to the server driver.

 The server driver hands the request to the
proper local file system driver.

 The proper device driver is called to access
the data.

The results are returned to the server driver,
which sends the data back to the requesting
redirector

Domains

 NT uses the concept of a domain to manage
global access rights within groups.

 A domain is a group of machines running NT
server that share a common security policy
and user database.

 Windows 7 provides three models of setting
up trust relationships

• One way, A trusts B

• Two way, transitive, A trusts B, B trusts
C so A, B, C trust each other

Crosslink – allows authentication to bypass
hierarchy to cut down on authentication traffic.

5.2.5 Programmer Interface

Q16. Write about programmer interface of
Windows 7.

Ans : (Imp.)

Programmer Interface - Access to Kernel Obj.

 A process gains access to a kernel object
named XXX by calling the CreateXXX
function to open a handle to XXX; the handle
is unique to that process.

 A handle can be closed by calling the
CloseHandle function; the system may delete
the object if the count of processes using the
object drops to 0.

 Windows 7 provides three ways to share
objects between processes

• A child process inherits a handle to the
object

• One process gives the object a name
when it is created and the second
process opens that name

• DuplicateHandle function

Given a handle to process and the handle’s
value a second process can get a handle to the same
object, and thus share it

Process Management

 Process is started via the CreateProcess
routine which loads any dynamic link libraries
that are used by the process, and creates a
primary thread.

 Additional threads can be created by the
CreateThread function.

Every dynamic link library or executable file
that is loaded into the address space of a process is
identified by an instance handle.

UNIT - V OPERATING SYSTEMS

177
Rahul Publications

Rahul Publications

Scheduling in Win32 utilizes four priority
classes:

1. IDLE_PRIORITY_CLASS (priority level 4)

2. NORMAL_PRIORITY_CLASS (level8 —
typical for most processes

3. HIGH_PRIORITY_CLASS (level 13)

4. REALTIME_PRIORITY_CLASS (level 24)

 To provide performance levels needed
for interactive programs, 7 has a special
scheduling rule for processes in the
NORMAL_PRIORITY_CLASS

5. 7 distinguishes between the foreground
process that is currently selected on the
screen, and the background processes that
are not currently selected.

When a process moves into the foreground,
7 increases the scheduling quantum by some factor,
typically 3.

Programmer Interface - Interprocess Commu-
nication

 Win32 applications can have interprocess
communication by sharing kernel objects.

 An alternate means of interprocess
communications is message passing, which is
particularly popular for Windows GUI
applications

 One thread sends a message to another
thread or to a window.

 A thread can also send data with the message.

 Every Win32 thread has its own input queue
from which the thread receives messages.

This is more reliable than the shared input
queue of 16-bit windows, because with separate
queues, one stuck application cannot block input
to the other applications

Programmer Interface — Memory Manage-
ment

 Virtual memory:

• VirtualAlloc reserves or commits virtual
memory

• VirtualFreedecommits or releases the
memory

• These functions enable the application
to determine the virtual address at
which the memory is allocated

 An application can use memory by memory
mapping a file into its address space

• Multistage process

 Two processes share memory by mapping the
same file into their virtual memory

 A heap in the Win32 environment is a region
of reserved address space

• A Win 32 process is created with a 1
MB default heap

• Access is synchronized to protect the
heap’s space allocation data structures
from damage by concurrent updates by
multiple threads

 Because functions that rely on global or static
data typically fail to work properly in a
multithreaded environment, the thread-local
storage mechanism allocates global storage
on a per-thread basis

The mechanism provides both dynamic and
static methods of creating thread-local storage.

LAB PRACTICALS OPERATING SYSTEMS

181
Rahul Publications

1. Unix Shell Commands

Ans :
(a) File handling commands
1. Files Listing

To perform Files listings or to list files and directories ls command is used
$ls

All your files and directories in the current directory would be listed and each type of file would be displayed
with a different color. Like in the output directories are displayed with dark blue color.
$ls -l

It returns the detailed listing of the files and directories in the current directory. The command gives os the
owner of the file and even which file could be managed by which user or group and which user/group has the
right to access or execute which file.

2. Creating Files
touch command can be used to create a new file. It will create and open a new blank file if the file with a
filename does not exist. And in case the file already exists then the file will not be affected.

Lab Practicals

MCA I YEAR II SEMESTER

182
Rahul Publications

$touch filename

3. Displaying File Contents

cat command can be used to display the contents of a file. This command will display the contents of the
‘filename’ file. And if the output is very large then we could use more or less to fit the output on the terminal
screen otherwise the content of the whole file is displayed at once.

$cat filename

4. Copying a File

cp command could be used to create the copy of a file. It will create the new file in destination with the
same name and content as that of the file ‘filename’.

$cp source/filename destination/

5. Moving a File

mv command could be used to move a file from source to destination. It will remove the file filename from
the source folder and would be creating a file with the same name and content in the destination folder.

$mv source/filename destination/

6. Renaming a File

mv command could be used to rename a file. It will rename the filename to new_filename or in other
words, it will remove the filename file and would be creating a new file with the new_filename with the same
content and name as that of the filename file.

$mv filename new_filename

LAB PRACTICALS OPERATING SYSTEMS

183
Rahul Publications

7. Deleting a File
rm command could be used to delete a file. It will remove the filename file from the directory.
$rm filename

1. chmod: change file access permissions
 description: This command is used to change the file permissions. These permissions are read, write and

execute permission for the owner, group, and others.
 syntax (symbolic mode):

chmod [ugoa][[+-=][mode]] file
 The first optional parameter indicates who – this can be (u)ser, (g)roup, (o)thers or (a)ll
 The second optional parameter indicates opcode – this can be for adding (+), removing (-) or assigning (=)

permission.
 The third optional parameter indicates the mode – this can be (r)ead, (w)rite, or e(x)ecute.

Example: Add write permission for user, group, and others for file1
$ ls -l
-rw-r–r– 1 user staff 39 Jun 21 15:37 file1
-rw-r–r– 1 user staff 35 Jun 21 15:32 file2
$ chmod ugo+w file1
$ ls -l
-rw-rw-rw- 1 user staff 39 Jun 21 15:37 file1
-rw-r–r– 1 user staff 35 Jun 21 15:32 file2
$ chmod o-w file1
$ ls -l
-rw-rw-r– 1 user staff 39 Jun 21 15:37 file1
-rw-r–r– 1 user staff 35 Jun 21 15:32 file2

 syntax (numeric mode):
chmod [mode] file

 The mode is a combination of three digits – the first digit indicates the permission for the user, the second
digit for the group, and the third digit for others.

 Each digit is computed by adding the associated permissions. Read permission is ‘4’, write permission is ‘2’
and execute permission is ‘1’.

MCA I YEAR II SEMESTER

184
Rahul Publications

 Example: Give read/write/execute permission to
the user, read/execute permission to the group,
and execute permission to others.
$ ls -l
-rw-r–r– 1 user staff 39 Jun 21 15:37 file1
-rw-r–r– 1 user staff 35 Jun 21 15:32 file2
$ chmod 777 file1
$ ls -l
-rwxrwxrwx 1 user staff 39 Jun 21 15:37 file1
-rw-r–r– 1 user staff 35 Jun 21 15:32 file2

2. chown: change ownership of the file.
 description: Only the owner of the file has the

right to change the file ownership.
 syntax: chown [owner] [file]
 Example: Change the owner of file1 to user2

assuming that it is currently owned by the current
user
$ chown user2 file1

3. chgrp: change the group ownership of the file.
 description: Only the owner of the file has the

right to change the file ownership.
 syntax: chgrp [group] [file]
 Example: Change group of file1 to group2

assuming it is currently owned by the current user.
$ chgrp group2 file1
While creating a new file, Unix sets the default
file permissions. Unix uses the value stored in a
variable called umask to decide the default
permissions. The umask value tells Unix which
of the three sets of permissions need to be
disabled.
The flag consists of three octal digits, each
representing the permissions masks for the user,
the group, and others. The default permissions
are determined by subtracting the umask value
from ‘777’ for directories and ‘666’ for files. The
default value of the umask is ‘022’.

4. umask: change default access permissions
 description: This command is used to set the

default file permissions. These permissions are
read, write and execute permission for the owner,
group, and others.

 syntax: umask [mode]
 The mode is a combination of three digits – the

first digit indicates the permission for the user,
the second digit for the group, and the third digit
for others.

 Each digit is computed by adding the associated
permissions. Read permission is ‘4’, write
permission is ‘2’ and execute permission is ‘1’.

Example: Give read/write/execute permission to
the user, and no permissions to group or others.
i.e. the permission for files will be 600, and for
directories will be 700.

$ umask 077

 Example: Give read/write/execute permission to
the user, read/execute permissions to group or
others for directories and read-only permission to
group or others for other files. i.e. the permission
for files will be 644, and for directories will be
755.

$ umask 022

(b) Directory handling commands

pwd

This command displays the present working
directory where you are currently in.

In the following example I am inside yusuf
shakeel directory which is inside the home directory.

$ pwd

/home/yusufshakeel

ls

This command will list the content of a directory.

In the following example we are listing the content
of a directory.

$ ls

happy helloworld.txt super

ls -la

This command will list all the content of a
directory including the hidden files and directories.

In the following example we are listing all the
content of a directory.

$ ls -la

total 0

drwxr-xr-x 5 yusufshakeel yusufshakeel 160 Sep
6 02:53 .

drwx------+ 8 yusufshakeel yusufshakeel 256 Sep
6 02:53 ..

drwxr-xr-x 2 yusufshakeel yusufshakeel 64 Sep
6 02:53 happy

-rw-r--r-- 1 yusufshakeel yusufshakeel 0 Sep 6
02:53 helloworld.txt

LAB PRACTICALS OPERATING SYSTEMS

185
Rahul Publications

drwxr-xr-x 2 yusufshakeel yusufshakeel 64 Sep
6 02:53 super

mkdir
This command will create a new directory,

provided it doesn’t exists.
In the following example we are creating a new

directory example.
$ mkdir example
mkdir -p
This command will create nested directories.
In the following example we are creating

world directory which is inside the hello directory which
is inside the example directory.

$ mkdir -p example/hello/world
rmdir
This command will remove/delete an existing

directory, provided it is empty.
In the following example will are removing/deleting

an existing directory example.
$ rmdir example
cd
This command is used to change directory.
In the following command we are moving to root

directory.
$ cd /
In the following command we are moving to /

var/www/html directory.
$ cd /var/www/html
cd ..
This command will take us one level up the

directory tree.
$ cd ..
Example: If we are inside world directory which

is inside the hello directory i.e. /hello/world then, cd
.. will take us one level up to the hello directory.
(c) General purpose commands
1) cal: Displays the calendar.
 Syntax: cal [[month] year]
 Example: display the calendar for April 2018
 $ cal 4 2018
2) date: Displays the system date and time.
 Syntax: date [+format]
 Example: Display the date in dd/mm/yy format
 $ date +%d/%m/%y

3) banner: Prints a large banner on the standard
output.

 Syntax: banner message
 Example: Print “Unix” as the banner
 $ banner Unix
4) who: Displays the list of users currently logged

in
 Syntax: who [option] … [file][arg1]
 Example: List all currently logged-in users
 $ who
5) whoami: Displays the user id of the currently

logged-in user.
 Syntax: whoami [option]
 Example: List currently logged-in user
 $ whoami
6) Is: List directory contents
 Syntax: ls [OPTION] [FILE]
 Example: list all (including hidden files) directory

contents, in long format, sorted by time,
 $ ls -alt
7) which: Locate a command
 Syntax: which [-a] filename
 Example: List all paths from where ‘cat’ can run
 $ which -a cat
8) man: Interface for working with the online

reference manuals.
 Syntax: man [-s section] item
 Example: Show the manual page for the ‘cat’

command
 $ man cat
9) su: Change user-id or become super-user.
 Syntax: su [options] [username]
 Example: Change user-id to ‘user1’ (if it exists)
 $ su user1
10) sudo: Execute a command as some other user

or super-user
 Syntax: sudo [options] [command]
 Example: Get a file listing of an unlisted directory
 $ sudo ls /usr/local/protected
11) find:Used to search for files and directories as

mentioned in the ‘expression’
 Syntax: find [starting-point] [expression]
 Example: In ‘/usr’ folder, find character device

files, of the name ‘backup’

MCA I YEAR II SEMESTER

186
Rahul Publications

 $ find /usr -type c -name backup
12) du: Estimate disk usage is blocks
 Syntax: du [options] [file]
 Example: Show the number of blocks occupied

by files in the current directory
 $ du
13) df: Show the number of free blocks for the

mounted file system
 Syntax: df [options] [file]
 Example: Show the number of free blocks in

local file systems
 $ df -l
2. Unix Shell Scripts

Ans :
(a) Print Multiplication table of a given no. using all

loops
echo “Enter Number to Generate Multiplication
Table”
read -p “Enter the number : “ number
echo “***********************”
i=1
while [$i -le 10]
do
echo “ $number * $i =`expr $number * $i ̀ “
i=‘expr $i + 1‘
done
echo “***********************”
Input: 5

Output: 5 * 1 = 5
 5 * 2 = 10
 5 * 3 = 15
 5 * 4 = 20
 5 * 5 = 25
 5 * 6 = 30
 5 * 7 = 35
 5 * 8 = 40
 5 * 9 = 45
 5 * 10 = 50
(b) Perform all arithmetic operations

clear
sum=0
i=”y”
echo “ Enter one no.”

read n1
echo “Enter second no.”
read n2
while [$i = “y”]
do
echo “1.Addition”
echo “2.Subtraction”
echo “3.Multiplication”
echo “4.Division”
echo “Enter your choice”
read ch
case $ch in

 1) sum=‘expr $n1 + $n2‘
echo “Sum =”$sum;;

 2) sum=‘expr $n1 - $n2‘
echo “Sub = “$sum;;

 3) sum=‘expr $n1 * $n2‘
echo “Mul = “$sum;;

 4) sum=‘expr $n1 / $n2‘
echo “Div = “$sum;;
*)echo “Invalid choice”;;
esac
echo “Do u want to continue ?”
read i
if [$i != “y”]
then
exit
fi
done

Output

[04mca58@LINTEL 04mca58]$ sh calculator.sh
Enter any no.
121
Enter one no.
21
Enter second no.
58
1. Addition
2. Subtraction
3. Multiplication
4. Division

LAB PRACTICALS OPERATING SYSTEMS

187
Rahul Publications

 Enter your choice
1
Sum =79
Do u want to continue ?
 y
1. Addition
2. Subtraction
3. Multiplication
 4. Division
Enter your choice
2
Sub = -37
Do u want to continue ?
 y
1. Addition
2. Subtraction
3. Multiplication
4. Division
Enter your choice
3
Mul = 1218
Do u want to continue ?
y
1. Addition
2. Subtraction
3. Multiplication
4. Division
Enter your choice
4
 Div = 0
 Do u want to continue ?
 n

(c) Print the type of a file
#!/bin/bash
read -p “Enter file name : “ filename
while read line
do
echo $line
done < $filename

MCA I YEAR II SEMESTER

188
Rahul Publications

(d) Rename all files whose names end with .c as .old
#!/bin/bash
for f in *.txt;
do mv — “$f” “${f%.c}.old”
done

(e) Display the no. of lines in each of text file in a given dir
#!/usr/bin/bash
path to the file
file_path=”/home/amninder/Desktop/demo.txt”
using wc command to count number of lines
number_of_lines=‘wc —lines < $file_path‘
using wc command to count number of words
number_of_words=‘wc —word < $file_path‘
Displaying number of lines and number of words
echo “Number of lines: $number_of_lines”
echo “Number of words: $number_of_words”

Output:

3. Simulate the following CPU scheduling algorithms.

Ans :
(a) FCFS

include<stdio.h>
intmain()

{
 intn,bt[20],wt[20],tat[20],avwt=0,avtat=0,i,j;
 printf(“Enter total number of processes(maximum 20):”);
 scanf(“%d”,&n);
 printf(“\nEnter Process Burst Time\n”);
 for(i=0;i<n;i++)
 {
 printf(“P[%d]:”,i+1);
 scanf(“%d”,&bt[i]);
 }
 wt[0]=0; //waiting time for first process is 0
 //calculating waiting time
 for(i=1;i<n;i++)
 {

LAB PRACTICALS OPERATING SYSTEMS

189
Rahul Publications

 wt[i]=0;
 for(j=0;j<i;j++)
 wt[i]+=bt[j];
 }
 printf(“\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time”);
 //calculating turnaround time
 for(i=0;i<n;i++)
 {

Video Player is loading.
Pause
Unmute
Loaded: 2.91%
Remaining Time -3:20
Auto(360pLQ)
ShareFullscreen
FIFO Coding in STL - first in first out PLC Logic - Siemens Tia Portal

 tat[i]=bt[i]+wt[i];
 avwt+=wt[i];
 avtat+=tat[i];
 printf(“\nP[%d]\t\t%d\t\t%d\t\t%d”,i+1,bt[i],wt[i],tat[i]);
 }
 avwt/=i;
 avtat/=i;
 printf(“\n\nAverage Waiting Time:%d”,avwt);
 printf(“\nAverage Turnaround Time:%d”,avtat);
 return0;
}
Output:

MCA I YEAR II SEMESTER

190
Rahul Publications

(b) SJF
#include<stdio.h>
void main()

{
 int bt[20],p[20],wt[20],tat[20],i,j,n,total=0,pos,temp;
 float avg_wt,avg_tat;
 printf(“Enter number of process:”);
 scanf(“%d”,&n);
 printf(“\nEnter Burst Time:\n”);
 for(i=0;i<n;i++)
 {
 printf(“p%d:”,i+1);
 scanf(“%d”,&bt

[i]);
 p[i]=i+1; //contains process number
 }
 //sorting burst time in ascending order using selection sort
 for(i=0;i<n;i++)
 {
 pos=i;
 for(j=i+1;j<n;j++)
 {
 if(bt[j]<bt[pos])
 pos=j;
 }
 temp=bt[i];
 bt[i]=bt[pos];
 bt[pos]=temp;
 temp=p[i];
 p[i]=p[pos];
 p[pos]=temp;
 }
 wt[0]=0; //waiting time for first process will be zero
 //calculate waiting time
 for(i=1;i<n;i++)
 {
 wt[i]=0;
 for(j=0;j<i;j++)
 wt[i]+=bt[j];
 total+=wt[i];
 }
 avg_wt=(float)total/n; //average waiting time
 total=0;
 printf(“\nProcess\t Burst Time \tWaiting Time\tTurnaround Time”);
 for(i=0;i<n;i++)
 {
 tat[i]=bt[i]+wt[i]; //calculate turnaround time

LAB PRACTICALS OPERATING SYSTEMS

191
Rahul Publications

 total+=tat[i];
 printf(“\np%d\t\t %d\t\t %d\t\t\t%d”,p[i],bt[i],wt[i],tat[i]);
 }
 avg_tat=(float)total/n; //average turnaround time
 printf(“\n\nAverage Waiting Time=%f”,avg_wt);
 printf(“\nAverage Turnaround Time=%f\n”,avg_tat);

}

(c) Round Robin
#include<stdio.h>
int main()

{
 int count,j,n,time,remain,flag=0,time_quantum;
 int wait_time=0,turnaround_time=0,at[10],bt[10],rt[10];
 printf(“Enter Total Process:\t “);
 scanf(“%d”,&n);
 remain=n;
 for(count=0;count<n;count++)
 {
 printf(“Enter Arrival Time and Burst Time for Process Process Number %d :”,count+1);
 scanf(“%d”,&at[count]);
 scanf(“%d”,&bt[count]);
 rt[count]=bt[count];
 }
 printf(“Enter Time Quantum:\t”);
 scanf(“%d”,&time_quantum);
 printf(“\n\nProcess\t|Turnaround Time|Waiting Time\n\n”);
 for(time=0,count=0;remain!=0;)
 {
 if(rt[count]<=time_quantum && rt[count]>0)

MCA I YEAR II SEMESTER

192
Rahul Publications

 {
 time+=rt[count];
 rt[count]=0;
 flag=1;
 }
 else if(rt[count]>0)
 {
 rt[count]-=time_quantum;
 time+=time_quantum;
 }
 if(rt[count]==0 && flag==1)
 {
 remain—;
 printf(“P[%d]\t|\t%d\t|\t%d\n”,count+1,time-at[count],time-at[count]-bt[count]);
 wait_time+=time-at[count]-bt[count];
 turnaround_time+=time-at[count];
 flag=0;
 }
 if(count==n-1)
 count=0;
 else if(at[count+1]<=time)
 count++;
 else
 count=0;
 }
 printf(“\nAverage Waiting Time= %f\n”,wait_time*1.0/n);
 printf(“Avg Turnaround Time = %f”,turnaround_time*1.0/n);
 return 0;
}

LAB PRACTICALS OPERATING SYSTEMS

193
Rahul Publications

(d) Priority.
include<stdio.h>
int main()

{
 int bt[20],p[20],wt[20],tat[20],pr[20],i,j,n,total=0,pos,temp,avg_wt,avg_tat;
 printf(“Enter Total Number of Process:”);
 scanf(“%d”,&n);
 printf(“\nEnter Burst Time and Priority\n”);
 for(i=0;i<n;i++)
 {
 printf(“\nP[%d]\n”,i+1);
 printf(“Burst Time:”);
 scanf(“%d”,&bt[i]);
 printf(“Priority:”);
 scanf(“%d”,&pr[i]);
 p[i]=i+1; //contains process number
 }
 //sorting burst time, priority and process number in ascending order using selection sort
 for(i=0;i<n;i++)
 {
 pos=i;
 for(j=i+1;j<n;j++)
 {
 if(pr[j]<pr[pos])
 pos=j;
 }
 temp=pr[i];
 pr[i]=pr[pos];
 pr[pos]=temp;
 temp=bt[i];
 bt[i]=bt[pos];
 bt[pos]=temp;
 temp=p[i];
 p[i]=p[pos];
 p[pos]=temp;
 }
 wt[0]=0; //waiting time for first process is zero
 //calculate waiting time
 for(i=1;i<n;i++)
 {
 wt[i]=0;
 for(j=0;j<i;j++)

MCA I YEAR II SEMESTER

194
Rahul Publications

 wt[i]+=bt[j];
 total+=wt[i];
 }
 avg_wt=total/n; //average waiting time
 total=0;
 printf(“\nProcess\t Burst Time \tWaiting Time\tTurnaround Time”);
 for(i=0;i<n;i++)
 {
 tat[i]=bt[i]+wt[i]; //calculate turnaround time
 total+=tat[i];
 printf(“\nP[%d]\t\t %d\t\t %d\t\t\t%d”,p[i],bt[i],wt[i],tat[i]);
 }
 avg_tat=total/n; //average turnaround time
 printf(“\n\nAverage Waiting Time=%d”,avg_wt);
 printf(“\nAverage Turnaround Time=%d\n”,avg_tat);

return 0;
}

4. Write a C program to simulate producer-consumer problem using Semaphores

Ans :
#include<stdio.h>
int mutex=1,full=0,empty=3,x=0;
main()

{
 int n;
 void producer();

LAB PRACTICALS OPERATING SYSTEMS

195
Rahul Publications

 void consumer();
 int wait(int);
 int signal(int);
 printf(“\n 1.Producer \n 2.Consumer \n 3.Exit”);
 while(1)
 {
 printf(“\n Enter your choice:”);
 scanf(“%d”,&n);
 switch(n)
 {
 case 1:
 if((mutex==1)&&(empty!=0))
 producer();
 else
 printf(“Buffer is full”);
 break;
 case 2:
 if((mutex==1)&&(full!=0))
 consumer();
 else
 printf(“Buffer is empty”);
 break;
 case 3:
 exit(0);
 break;
 }
 }
}
int wait(int s)
{
 return (—s);
}
int signal(int s)
{
 return(++s);
}
void producer()
{
 mutex=wait(mutex);
 full=signal(full);
 empty=wait(empty);
 x++;

 printf(“\n Producer produces the item %d”,x);
 mutex=signal(mutex);
}
void consumer()
{
 mutex=wait(mutex);
 full=wait(full);
 empty=signal(empty);
 printf(“\n Consumer consumes item %d”,x);
 x—;
 mutex=signal(mutex);
}
Output:
[examuser35@localhost Jebastin]$ cc pc.c
 1.Producer
 2.Consumer
 3.Exit
 Enter your choice:1
 Producer produces the item 1
 Enter your choice:1
 Producer produces the item 2
 Enter your choice:1
 Producer produces the item 3
 Enter your choice:1
 Buffer is full
 Enter your choice:2
 Consumer consumes item 3
 Enter your choice:2
 Consumer consumes item 2
 Enter your choice:2
 Consumer consumes item 1
 Enter your choice: 2
 Buffer is empty
 Enter your choice: 3
5. Write a C program to simulate the concept

of Dining-philosophers problem.

Ans :
#include<stdio.h>

 #define n 4
int compltedPhilo = 0,i;
struct fork{
int taken;

MCA I YEAR II SEMESTER

196
Rahul Publications

}ForkAvil[n];
struct philosp{
int left;
int right;
}Philostatus[n];
void goForDinner(int philID){ //same like threads concept here cases implemented
if(Philostatus[philID].left==10 && Philostatus[philID].right==10)

 printf(“Philosopher %d completed his dinner\n”,philID+1);
//if already completed dinner
else if(Philostatus[philID].left==1 && Philostatus[philID].right==1){

 //if just taken two forks
 printf(“Philosopher %d completed his dinner\n”,philID+1);
 Philostatus[philID].left = Philostatus[philID].right = 10; //remembering that he completed dinner by

assigning value 10
 int otherFork = philID-1;
 if(otherFork== -1)
 otherFork=(n-1);
 ForkAvil[philID].taken = ForkAvil[otherFork].taken = 0; //releasing forks
 printf(“Philosopher %d released fork %d and fork %d\n”,philID+1,philID+1,otherFork+1);
 compltedPhilo++;
 }
 else if(Philostatus[philID].left==1 && Philostatus[philID].right==0){ //left already taken, trying for right

fork
 if(philID==(n-1)){
 if(ForkAvil[philID].taken==0){ //KEY POINT OF THIS PROBLEM, THAT LAST PHILOSOPHER
TRYING IN reverse DIRECTION
 ForkAvil[philID].taken = Philostatus[philID].right = 1;
 printf(“Fork %d taken by philosopher %d\n”,philID+1,philID+1);
 }else{
 printf(“Philosopher %d is waiting for fork %d\n”,philID+1,philID+1);
 }
 }else{ //except last philosopher case
 int dupphilID = philID;
 philID-=1;
 if(philID== -1)
 philID=(n-1);
 if(ForkAvil[philID].taken == 0){
 ForkAvil[philID].taken = Philostatus[dupphilID].right = 1;
 printf(“Fork %d taken by Philosopher %d\n”,philID+1,dupphilID+1);
 }else{
 printf(“Philosopher %d is waiting for Fork %d\n”,dupphilID+1,philID+1);
 }
 }

LAB PRACTICALS OPERATING SYSTEMS

197
Rahul Publications

 }
 else if(Philostatus[philID].left==0){ //nothing taken yet
 if(philID==(n-1)){
 if(ForkAvil[philID-1].taken==0){ //KEY POINT OF THIS PROBLEM, THAT LAST PHILOSOPHER
TRYING IN reverse DIRECTION
 ForkAvil[philID-1].taken = Philostatus[philID].left = 1;
 printf(“Fork %d taken by philosopher %d\n”,philID,philID+1);
 }else{
 printf(“Philosopher %d is waiting for fork %d\n”,philID+1,philID);
 }
 }else{ //except last philosopher case
 if(ForkAvil[philID].taken == 0){
 ForkAvil[philID].taken = Philostatus[philID].left = 1;
 printf(“Fork %d taken by Philosopher %d\n”,philID+1,philID+1);
 }else{
 printf(“Philosopher %d is waiting for Fork %d\n”,philID+1,philID+1);
 }
 }
 }else{}
}
int main(){
for(i=0;i<n;i++)
 ForkAvil[i].taken=Philostatus[i].left=Philostatus[i].right=0;

while(compltedPhilo<n){
/* Observe here carefully, while loop will run until all philosophers complete dinner
Actually problem of deadlock occur only thy try to take at same time
This for loop will say that they are trying at same time. And remaining status will print by go for dinner

function
*/
for(i=0;i<n;i++)
 goForDinner(i);

printf(“\nTill now num of philosophers completed dinner are %d\n\n”,compltedPhilo);
}

return 0;
}

#include<stdio.h>
#define n 4
int compltedPhilo = 0,i;
struct fork{
int taken;
}ForkAvil[n];
struct philosp{
int left;

MCA I YEAR II SEMESTER

198
Rahul Publications

int right;
}Philostatus[n];
void goForDinner(int philID){ //same like threads concept here cases implemented
if(Philostatus[philID].left==10 && Philostatus[philID].right==10)

 printf(“Philosopher %d completed his dinner\n”,philID+1);
//if already completed dinner
else if(Philostatus[philID].left==1 && Philostatus[philID].right==1){
 //if just taken two forks
 printf(“Philosopher %d completed his dinner\n”,philID+1);
 Philostatus[philID].left = Philostatus[philID].right = 10; //remembering that he completed dinner by assigning
value 10
 int otherFork = philID-1;
 if(otherFork== -1)
 otherFork=(n-1);
 ForkAvil[philID].taken = ForkAvil[otherFork].taken = 0; //releasing forks
 printf(“Philosopher %d released fork %d and fork %d\n”,philID+1,philID+1,otherFork+1);
 compltedPhilo++;
 }
 else if(Philostatus[philID].left==1 && Philostatus[philID].right==0){ //left already taken, trying for right fork
 if(philID==(n-1)){
 if(ForkAvil[philID].taken==0){ //KEY POINT OF THIS PROBLEM, THAT LAST PHILOSOPHER TRYING
IN reverse DIRECTION
 ForkAvil[philID].taken = Philostatus[philID].right = 1;
 printf(“Fork %d taken by philosopher %d\n”,philID+1,philID+1);
 }else{
 printf(“Philosopher %d is waiting for fork %d\n”,philID+1,philID+1);
 }
 }else{ //except last philosopher case
 int dupphilID = philID;
 philID-=1;
 if(philID== -1)
 philID=(n-1);
 if(ForkAvil[philID].taken == 0){
 ForkAvil[philID].taken = Philostatus[dupphilID].right = 1;
 printf(“Fork %d taken by Philosopher %d\n”,philID+1,dupphilID+1);
 }else{
 printf(“Philosopher %d is waiting for Fork %d\n”,dupphilID+1,philID+1);
 }
 }
 }
 else if(Philostatus[philID].left==0){ //nothing taken yet
 if(philID==(n-1)){
 if(ForkAvil[philID-1].taken==0){ //KEY POINT OF THIS PROBLEM, THAT LAST PHILOSOPHER
TRYING IN reverse DIRECTION

LAB PRACTICALS OPERATING SYSTEMS

199
Rahul Publications

 ForkAvil[philID-1].taken = Philostatus[philID].left = 1;
 printf(“Fork %d taken by philosopher %d\n”,philID,philID+1);
 }else{
 printf(“Philosopher %d is waiting for fork %d\n”,philID+1,philID);
 }
 }else{ //except last philosopher case
 if(ForkAvil[philID].taken == 0){
 ForkAvil[philID].taken = Philostatus[philID].left = 1;
 printf(“Fork %d taken by Philosopher %d\n”,philID+1,philID+1);
 }else{
 printf(“Philosopher %d is waiting for Fork %d\n”,philID+1,philID+1);
 }
 }
 }else{}
}
int main(){
for(i=0;i<n;i++)
 ForkAvil[i].taken=Philostatus[i].left=Philostatus[i].right=0;
while(compltedPhilo<n){
/* Observe here carefully, while loop will run until all philosophers complete dinner
Actually problem of deadlock occur only thy try to take at same time
This for loop will say that they are trying at same time. And remaining status will print by go for dinner function
*/
for(i=0;i<n;i++)
 goForDinner(i);
printf(“\nTill now num of philosophers completed dinner are %d\n\n”,compltedPhilo);
}
return 0;
}

Till now num of philosophers completed dinner are 0
Fork 4 taken by Philosopher 1
Philosopher 2 is waiting for Fork 1
Philosopher 3 is waiting for Fork 2
Philosopher 4 is waiting for fork 3
Till now num of philosophers completed dinner are 0
Philosopher 1 completed his dinner
Philosopher 1 released fork 1 and fork 4
Fork 1 taken by Philosopher 2
Philosopher 3 is waiting for Fork 2
Philosopher 4 is waiting for fork 3
Till now num of philosophers completed dinner are 1
Philosopher 1 completed his dinner
Philosopher 2 completed his dinner
Philosopher 2 released fork 2 and fork 1
Fork 2 taken by Philosopher 3
Philosopher 4 is waiting for fork 3

MCA I YEAR II SEMESTER

200
Rahul Publications

6. Simulate MVT and MFT.

Ans :
#include<stdio.h>
#include<conio.h>
main()

{
int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;
clrscr();
printf(“Enter the total memory available (in Bytes) — “);
scanf(“%d”,&ms);
printf(“Enter the block size (in Bytes) — “);
scanf(“%d”, &bs);
nob=ms/bs;
ef=ms - nob*bs;
printf(“\nEnter the number of processes — “);
scanf(“%d”,&n);
for(i=0;i<n;i++)

{
printf(“Enter memory required for process %d (in Bytes)— “,i+1);
scanf(“%d”,&mp[i]);

}
printf(“\nNo. of Blocks available in memory — %d”,nob);
printf(“\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL
FRAGMENTATION”);
for(i=0;i<n && p<nob;i++)

{
printf(“\n %d\t\t%d”,i+1,mp[i]);
if(mp[i] > bs)
printf(“\t\tNO\t\t—”);
else

{
printf(“\t\tYES\t%d”,bs-mp[i]);
tif = tif + bs-mp[i];
p++;

}
}

if(i<n)
#include<stdio.h>
#include<conio.h>
main()

{

LAB PRACTICALS OPERATING SYSTEMS

201
Rahul Publications

int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;
clrscr();
printf(“Enter the total memory available (in Bytes) — “);
scanf(“%d”,&ms);
printf(“Enter the block size (in Bytes) — “);
scanf(“%d”, &bs);
nob=ms/bs;
ef=ms - nob*bs;
printf(“\nEnter the number of processes — “);
scanf(“%d”,&n);
for(i=0;i<n;i++)

{
printf(“Enter memory required for process %d (in Bytes)— “,i+1);
scanf(“%d”,&mp[i]);

}
printf(“\nNo. of Blocks available in memory — %d”,nob);
printf(“\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL
FRAGMENTATION”);
for(i=0;i<n && p<nob;i++)

{
printf(“\n %d\t\t%d”,i+1,mp[i]);
if(mp[i] > bs)
printf(“\t\tNO\t\t—”);
else

{
printf(“\t\tYES\t%d”,bs-mp[i]);
tif = tif + bs-mp[i];
p++;

}
}

if(i<n)
PROGRAM
MFT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>
main()

{
int ms, bs, nob, ef,n, mp[10],tif=0;
int i,p=0;
clrscr();
printf(“Enter the total memory available (in Bytes) — “);

MCA I YEAR II SEMESTER

202
Rahul Publications

scanf(“%d”,&ms);
printf(“Enter the block size (in Bytes) — “);
scanf(“%d”, &bs);
nob=ms/bs;
ef=ms - nob*bs;
printf(“\nEnter the number of processes — “);
scanf(“%d”,&n);
for(i=0;i<n;i++)

{
printf(“Enter memory required for process %d (in Bytes)— “,i+1);
scanf(“%d”,&mp[i]);

}
printf(“\nNo. of Blocks available in memory — %d”,nob);
printf(“\n\nPROCESS\tMEMORY REQUIRED\t ALLOCATED\tINTERNAL FRAGMENTATION”);
for(i=0;i<n && p<nob;i++)

{
printf(“\n %d\t\t%d”,i+1,mp[i]);
if(mp[i] > bs)
printf(“\t\tNO\t\t—”);
else

{
printf(“\t\tYES\t%d”,bs-mp[i]);
tif = tif + bs-mp[i];
p++;

}
}

if(i<n)
printf(“\nMemory is Full, Remaining Processes cannot be accomodated”);
printf(“\n\nTotal Internal Fragmentation is %d”,tif);
printf(“\nTotal External Fragmentation is %d”,ef);
getch();

}

Input

Enter the total memory available (in Bytes) — 1000
Enter the block size (in Bytes)— 300
Enter the number of processes – 5
Enter memory required for process 1 (in Bytes) — 275
Enter memory required for process 2 (in Bytes) — 400
Enter memory required for process 3 (in Bytes) — 290
Enter memory required for process 4 (in Bytes) — 293
Enter memory required for process 5 (in Bytes) — 100
No. of Blocks available in memory — 3

LAB PRACTICALS OPERATING SYSTEMS

203
Rahul Publications

Output
PROCESS MEMORY-REQUIRED ALLOCATED INTERNAL-FRAGMENTATION

1 275 YES 25
2 400 NO -----
3 290 YES 10
4 293 YES 7
Memory is Full, Remaining Processes cannot be accommodated
Total Internal Fragmentation is 42
Total External Fragmentation is 100

MVT MEMORY MANAGEMENT TECHNIQUE
#include<stdio.h>
#include<conio.h>
main()

{
int ms,mp[10],i, temp,n=0;
char ch = ‘y’;
clrscr();
printf(“\nEnter the total memory available (in Bytes)— “);
scanf(“%d”,&ms);
temp=ms;
for(i=0;ch==’y’;i++,n++)

{
printf(“\nEnter memory required for process %d (in Bytes) — “,i+1);
scanf(“%d”,&mp[i]);
if(mp[i]<=temp)

{
printf(“\nMemory is allocated for Process %d “,i+1);
temp = temp - mp[i];

}
else

{
printf(“\nMemory is Full”);
break;

}
printf(“\nDo you want to continue(y/n) — “);
scanf(“ %c”, &ch);

}
printf(“\n\nTotal Memory Available — %d”, ms);
printf(“\n\n\tPROCESS\t\t MEMORY ALLOCATED “);
for(i=0;i<n;i++)
printf(“\n \t%d\t\t%d”,i+1,mp[i]);
printf(“\n\nTotal Memory Allocated is %d”,ms-temp);

MCA I YEAR II SEMESTER

204
Rahul Publications

printf(“\nTotal External Fragmentation is %d”,temp);
 getch();
}
Input

Enter the total memory available (in Bytes) — 1000
Enter memory required for process 1 (in Bytes) — 400
Memory is allocated for Process 1
Do you want to continue(y/n) — y
Enter memory required for process 2 (in Bytes) — 275
Memory is allocated for Process 2
Do you want to continue(y/n) — y
Enter memory required for process 3 (in Bytes) — 550

Output
Memory is Full
Total Memory Available — 1000
Process Memory - allocated
1 400
2 275
Total Memory Allocated is 675
Total External Fragmentation is 325

7. Write a C program to simulate the following contiguous memory allocation techniques.

Ans :
(a) WORST-FIT

#include<stdio.h>
#include<conio.h>
#define max 25
void main()

{
int frag[max],b[max],f[max],i,j,nb,nf,temp;
static int bf[max],ff[max];
clrscr();
printf(“\n\tMemory Management Scheme - First Fit”);
printf(“\nEnter the number of blocks:”);
scanf(“%d”,&nb);
printf(“Enter the number of files:”);
scanf(“%d”,&nf);
printf(“\nEnter the size of the blocks:-\n”);
for(i=1;i<=nb;i++)

{
printf(“Block %d:”,i);
scanf(“%d”,&b[i]);

}

LAB PRACTICALS OPERATING SYSTEMS

205
Rahul Publications

printf(“Enter the size of the files :-\n”);

for(i=1;i<=nf;i++)

{

printf(“File %d:”,i);

scanf(“%d”,&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

{

ff[i]=j;

break;

}

}

}

frag[i]=temp;

bf[ff[i]]=1;

}

printf(“\nFile_no:\tFile_size:\ tBlock _ no: \ tBlock _size:\tFragement”); for(i=1;i<=nf;i++)

printf(“\n%d\t\t%d\t\t%d\t\t%d\t\t%d”, i,f[i],ff[i],b[ff[i]], frag[i]);

getch();

}

Input

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

Output
File No File Size Block No Block Size Fragment

1 1 3 7 6

2 4 1 5 1

MCA I YEAR II SEMESTER

206
Rahul Publications

(b) Best-fit
#include<stdio.h>
#include<conio.h>
#define max 25
void main()

{
int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;
static int bf[max],ff[max];
clrscr();
printf(“\nEnter the number of blocks:”);
scanf(“%d”,&nb);
printf(“Enter the number of files:”);
scanf(“%d”,&nf);
printf(“\nEnter the size of the blocks:-\n”);
for(i=1;i<=nb;i++)

{
printf(“Block %d:”,i);
scanf(“%d”,&b[i]);

}
printf(“Enter the size of the files :-\n”);
for(i=1;i<=nf;i++)

{
printf(“File %d:”,i);
scanf(“%d”,&f[i]);

}
for(i=1;i<=nf;i++)

{
for(j=1;j<=nb;j++)

{
if(bf[j]!=1)

{
temp=b[j]-f[i];
if(temp>=0)
if(lowest>temp)

{
ff[i]=j;
lowest=temp;

}
}
}

frag[i]=lowest;
bf[ff[i]]=1;
lowest=10000;

}
printf(“\nFile No\tFile Size \tBlock No\tBlock Size\tFragment”);
for(i=1;i<=nf && ff[i]!=0;i++)

LAB PRACTICALS OPERATING SYSTEMS

207
Rahul Publications

printf(“\n%d\t\t%d\t\t%d\t\t%d\t\t%d”,i,f[i],ff[i],b[ff[i]],frag[i]);
getch();

}
Input

Enter the number of blocks: 3
Enter the number of files: 2
Enter the size of the blocks:-
Block 1: 5
Block 2: 2
Block 3: 7
Enter the size of the files:-
File 1: 1
File 2: 4

Output
File No. File Size Block No Block Size Fragment

1 1 3 7 6
2 4 1 5 1

(c) First-fit
#include<stdio.h>
#include<conio.h>
#define max 25
void main()

{
int frag[max],b[max],f[max],i,j,nb,nf,temp,highest=0;
static int bf[max],ff[max];
clrscr();
printf(“\n\tMemory Management Scheme - Worst Fit”);
printf(“\nEnter the number of blocks:”);
scanf(“%d”,&nb);
printf(“Enter the number of files:”);
scanf(“%d”,&nf);
printf(“\nEnter the size of the blocks:-\n”);
for(i=1;i<=nb;i++)

{
printf(“Block %d:”,i);
scanf(“%d”,&b[i]);

}
printf(“Enter the size of the files :-\n”);
for(i=1;i<=nf;i++)

{
printf(“File %d:”,i);
scanf(“%d”,&f[i]);

}
for(i=1;i<=nf;i++)

{
for(j=1;j<=nb;j++)

MCA I YEAR II SEMESTER

208
Rahul Publications

{
if(bf[j]!=1) //if bf[j] is not allocated

{
temp=b[j]-f[i];
if(temp>=0)
if(highest<temp)

{
ff[i]=j;
highest=temp;

}
}
}

frag[i]=highest;
bf[ff[i]]=1;
highest=0;

}
printf(“\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement”);
for(i=1;i<=nf;i++)
printf(“\n%d\t\t%d\t\t%d\t\t%d\t\t%d”,i,f[i],ff[i],b[ff[i]],frag[i]);
getch();

}
Input

Enter the number of blocks: 3
Enter the number of files: 2
Enter the size of the blocks:-
Block 1: 5
Block 2: 2
Block 3: 7
Enter the size of the files:-
File 1: 1
File 2: 4

Output
File No File Size Block No Block Size Fragment
1 1 3 7 6
2 4 1 5 1

8. Simulate following page replacement algorithms.

Ans :
(a) FIFO

#include<stdio.h>
int main()

{
int i,j,n,a[50],frame[10],no,k,avail,count=0;

LAB PRACTICALS OPERATING SYSTEMS

209
Rahul Publications

 printf(“\n ENTER THE NUMBER OF PAGES:\n”);
scanf(“%d”,&n);

 printf(“\n ENTER THE PAGE NUMBER :\n”);
 for(i=1;i<=n;i++)
 scanf(“%d”,&a[i]);
 printf(“\n ENTER THE NUMBER OF FRAMES :”);
 scanf(“%d”,&no);

for(i=0;i<no;i++)
 frame[i]= -1;
 j=0;
 printf(“\tref string\t page frames\n”);

for(i=1;i<=n;i++)
 {
 printf(“%d\t\t”,a[i]);
 avail=0;
 for(k=0;k<no;k++)

if(frame[k]==a[i])
 avail=1;
 if (avail==0)
 {
 frame[j]=a[i];
 j=(j+1)%no;
 count++;
 for(k=0;k<no;k++)
 printf(“%d\t”,frame[k]);
}
 printf(“\n”);
}
 printf(“Page Fault Is %d”,count);
 return 0;
}
Output:

ENTER THE NUMBER OF PAGES: 20
ENTER THE PAGE NUMBER : 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
ENTER THE NUMBER OF FRAMES :3

 ref string page frames
7 7 -1 -1
0 7 0 -1
1 7 0 1
2 2 0 1
0
3 2 3 1
0 2 3 0
4 4 3 0
2 4 2 0
3 4 2 3

MCA I YEAR II SEMESTER

210
Rahul Publications

0 0 2 3
3
2
1 0 1 3
2 0 1 2
0
1
7 7 1 2
0 7 0 2
1 7 0 1
Page Fault Is 15

(b) LRU
#include<stdio.h>
main()

{
int q[20],p[50],c=0,c1,d,f,i,j,k=0,n,r,t,b[20],c2[20];
printf(“Enter no of pages:”);
scanf(“%d”,&n);
printf(“Enter the reference string:”);
for(i=0;i<n;i++)

 scanf(“%d”,&p[i]);
printf(“Enter no of frames:”);
scanf(“%d”,&f);
q[k]=p[k];
printf(“\n\t%d\n”,q[k]);
c++;
k++;
for(i=1;i<n;i++)

 {
 c1=0;
 for(j=0;j<f;j++)
 {
 if(p[i]!=q[j])
 c1++;
 }
 if(c1==f)
 {
 c++;
 if(k<f)
 {
 q[k]=p[i];
 k++;
 for(j=0;j<k;j++)
 printf(“\t%d”,q[j]);
 printf(“\n”);
 }
 else

LAB PRACTICALS OPERATING SYSTEMS

211
Rahul Publications

 {
 for(r=0;r<f;r++)
 {
 c2[r]=0;
 for(j=i-1;j<n;j—)
 {
 if(q[r]!=p[j])
 c2[r]++;
 else
 break;
 }
 }
 for(r=0;r<f;r++)
 b[r]=c2[r];
 for(r=0;r<f;r++)
 {
 for(j=r;j<f;j++)
 {
 if(b[r]<b[j])
 {
 t=b[r];
 b[r]=b[j];
 b[j]=t;
 }
 }
 }
 for(r=0;r<f;r++)
 {
 if(c2[r]==b[0])
 q[r]=p[i];
 printf(“\t%d”,q[r]);
 }
 printf(“\n”);
 }
 }
}

printf(“\nThe no of page faults is %d”,c);
}
Output:
Enter no of pages:10
Enter the reference string:7 5 9 4 3 7 9 6 2 1
Enter no of frames:3

MCA I YEAR II SEMESTER

212
Rahul Publications

 7
 7 5
 7 5 9
 4 5 9
 4 3 9
 4 3 7
 9 3 7
 9 6 7
 9 6 2
 1 6 2

The no of page faults is 10
(c) OPTIMAL

#include<stdio.h>
int main()

{
int n,pg[30],fr[10]; int count[10], i,j,k, fault, f,

flag, temp,current,c,dist,
max,m,
cnt,p,x;
fault=0;
dist=0;
k=0;
printf(“Enter the total no pages:\t”);
scanf(“%d”,&n);
printf(“Enter the sequence:”);
for(i=0;i<n;i++)
scanf(“%d”,&pg[i]);
printf(“\nEnter frame size:”);
scanf(“%d”,&f);
for(i=0;i<f;i++)

{
count[i]=0;
fr[i]=-1;

}
for(i=0;i<n;i++)

{
flag=0;
temp=pg[i];
for(j=0;j<f;j++)

{
if(temp==fr[j])

{

flag=1;
break;

}
}

if((flag==0)&&(k<f))
{

fault++;
fr[k]=temp;
k++;

}
else if((flag==0)&&(k==f))

{
fault++;
for(cnt=0;cnt<f;cnt++)

{
current=fr[cnt];
for(c=i;c<n;c++)

{
if(current!=pg[c])
count[cnt]++;
else
break;

}
}

max=0;
for(m=0;m<f;m++)

{
if(count[m]>max)

{
max=count[m];
p=m;

}
}

fr[p]=temp;
}

printf(“\npage %d frame\t”,pg[i]);
for(x=0;x<f;x++)

{
printf(“%d\t”,fr[x]);

}
}

printf(“\nTotal number of faults=%d”,fault);
return 0;

}

LAB PRACTICALS OPERATING SYSTEMS

213
Rahul Publications

Output:

9. Simulate following File Organization
Techniques

Ans :
(a) Single level directory b. Two level directory

Single Level Directory Organization
#include<stdio.h>
struct

{
char dname[10],fname[10][10];
int fcnt;

}dir;
void main()

{
int i,ch;
char f[30];
clrscr();
dir.fcnt = 0;
printf(“\nEnter name of directory — “);
scanf(“%s”, dir.dname);
while(1)

{
printf(“\n\n 1. Create File\t2. Delete File\t3. Search

File \n 4. Display Files\t5. Exit\nEnter your choice — “);
scanf(“%d”,&ch);

switch(ch)
{

case 1: printf(“\n Enter the name of the file — “);
scanf(“%s”,dir.fname[dir.fcnt]);

dir.fcnt++;
break;
case 2: printf(“\n Enter the name of the file — “);
scanf(“%s”,f);
for(i=0;i<dir.fcnt;i++)

{
if(strcmp(f, dir.fname[i])==0)

{
printf(“File %s is deleted “,f);
strcpy(dir.fname[i],dir.fname[dir.fcnt-1]);
break;

}
}

if(i==dir.fcnt)
printf(“File %s not found”,f);
else
dir.fcnt—;
break;
case 3: printf(“\n Enter the name of the file — “);
scanf(“%s”,f);
for(i=0;i<dir.fcnt;i++)

{
if(strcmp(f, dir.fname[i])==0)

{
printf(“File %s is found “, f);
break;

}
}

if(i==dir.fcnt)
printf(“File %s not found”,f);
break;
case 4: if(dir.fcnt==0)
printf(“\n Directory Empty”);
else

{
printf(“\n The Files are — “);
for(i=0;i<dir.fcnt;i++)
printf(“\t%s”,dir.fname[i]);

}
break;
default: exit(0);

}

MCA I YEAR II SEMESTER

214
Rahul Publications

}
getch();

}
Output:

Enter name of directory — CSE
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 1
Enter the name of the file — A
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 1
Enter the name of the file — B
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 1
Enter the name of the file — C
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 4
The Files are — A B C
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 3
Enter the name of the file – ABC
File ABC not found
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 2
Enter the name of the file – B
File B is deleted
1. Create File 2. Delete File 3. Search File
4. Display Files 5. Exit
Enter your choice – 5

2. Two Level Directory Organization
#include<stdio.h>
struct

{
char dname[10],fname[10][10];
int fcnt;
}dir[10];
void main()

{
int i,ch,dcnt,k;
char f[30], d[30];
clrscr();
dcnt=0;
while(1)

{
printf(“\n\n 1. Create Directory\t 2. Create File\t

3. Delete File”);
printf(“\n 4. Search File \t \t 5. Display \t 6. Exit \t

Enter your choice — “);
scanf(“%d”,&ch);
switch(ch)

{
case 1: printf(“\n Enter name of directory — “);
scanf(“%s”, dir[dcnt].dname);
dir[dcnt].fcnt=0;
dcnt++;
printf(“Directory created”);
break;

 case 2: printf(“\n Enter name of the directory — “);
scanf(“%s”,d);
for(i=0;i<dcnt;i++)
if(strcmp(d,dir[i].dname)==0)

{
printf(“Enter name of the file — “);
scanf(“%s”,dir[i].fname[dir[i].fcnt]);
dir[i].fcnt++;
printf(“File created”);
break;

}
if(i==dcnt)
printf(“Directory %s not found”,d);
break;

 case 3: printf(“\nEnter name of the directory — “);
scanf(“%s”,d);
for(i=0;i<dcnt;i++)

{
if(strcmp(d,dir[i].dname)==0)

{
printf(“Enter name of the file — “);
scanf(“%s”,f);
for(k=0;k<dir[i].fcnt;k++)

LAB PRACTICALS OPERATING SYSTEMS

215
Rahul Publications

{
if(strcmp(f, dir[i].fname[k])==0)

{
printf(“File %s is deleted “,f);
dir[i].fcnt—;
strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);
goto jmp;

}
}

printf(“File %s not found”,f);
goto jmp;

}
}

printf(“Directory %s not found”,d);
jmp : break;

 case 4: printf(“\nEnter name of the directory — “);
scanf(“%s”,d);
for(i=0;i<dcnt;i++)

{
if(strcmp(d,dir[i].dname)==0)

{
printf(“Enter the name of the file — “);
scanf(“%s”,f);
for(k=0;k<dir[i].fcnt;k++)

{
if(strcmp(f, dir[i].fname[k])==0)

{
printf(“File %s is found “,f);
goto jmp1;

}
}

printf(“File %s not found”,f);
goto jmp1;

}
}

printf(“Directory %s not found”,d);
jmp1: break;
case 5: if(dcnt==0)
printf(“\nNo Directory’s “);
else

{
printf(“\nDirectory\tFiles”);
for(i=0;i<dcnt;i++)

{

printf(“\n%s\t\t”,dir[i].dname);
for(k=0;k<dir[i].fcnt;k++)
printf(“\t%s”,dir[i].fname[k]);

}
}

break;
default:exit(0);

}
}

getch();
}
Output:

1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 1
Enter name of directory — DIR1
Directory created
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 1
Enter name of directory — DIR2

Directory created
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 2
Enter name of the directory – DIR1
Enter name of the file — A1
File created
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 2
Enter name of the directory – DIR1
Enter name of the file — A2
File created
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 2
Enter name of the directory – DIR2
Enter name of the file — B1
File created
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit

MCA I YEAR II SEMESTER

216
Rahul Publications

Enter your choice — 5
Directory Files
DIR1 A1 A2
DIR2 B1
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 4
Enter name of the directory – DIR
Directory not found
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice — 3
Enter name of the directory – DIR1
Enter name of the file — A2
File A2 is deleted
1. Create Directory 2. Create File 3. Delete File
4. Search File 5. Display 6. Exit
Enter your choice – 6

10. Simulate following file allocation strategies

Ans :
(a) Sequential

/* Program to simulate sequential file allocation
strategy */

Program Code:
#include < stdio.h>
#include<conio.h>
void main()

{
int f[50], i, st, len, j, c, k, count = 0;
clrscr();
for(i=0;i<50;i++)
f[i]=0;
printf(“Files Allocated are : \n”);
x: count=0;
printf(“Enter starting block and length of files: “);
scanf(“%d%d”, &st,&len);
for(k=st;k<(st+len);k++)
if (f[k]==0)
count++;
if(len==count)

{
for(j=st;j<(st+len);j++)

if(f[j]==0)
{

f[j]=1;
printf(“%d\t%d\n”,j,f[j]);

}
if (j!=(st+len-1))
printf(“ The file is allocated to disk\n”);

}
else
printf(“ The file is not allocated \n”);
printf(“Do you want to enter more file
(Yes - 1/No - 0)”);
scanf(“%d”, &c);
if(c==1)
goto x;
else
exit();
getch();

}
Output:

Files Allocated are :
Enter starting block and length of files: 14 3
14 1
15 1
16 1
The file is allocated to disk
Do you want to enter more file(Yes - 1/No - 0)1
Enter starting block and length of files: 14 1
The file is not allocated
Do you want to enter more file(Yes - 1/No - 0)1
Enter starting block and length of files: 14 4
The file is not allocated
Do you want to enter more file(Yes - 1/No - 0)0

(b) Indexed
/* Program to simulate indexed file allocation
strategy */
Program Code:
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()

{
int f[50], index[50],i, n, st, len, j, c, k, ind,
 count=0;

LAB PRACTICALS OPERATING SYSTEMS

217
Rahul Publications

clrscr();
for(i=0;i<50;i++)
f[i]=0;
x:printf(“Enter the index block: “);
scanf(“%d”,&ind);
if(f[ind]!=1)

{
printf(“Enter no of blocks needed and no of files

for the index %d on the disk : \n”, ind);
scanf(“%d”,&n);

}
else

{
printf(“%d index is already allocated \n”,ind);
goto x;

}
y: count=0;
for(i=0;i<n;i++)

{
scanf(“%d”, &index[i]);
if(f[index[i]]==0)
count++;

}
if(count==n)

{
for(j=0;j<n;j++)
f[index[j]]=1;
printf(“Allocated\n”);
printf(“File Indexed\n”);
for(k=0;k<n;k++)
printf(“%d————>%d :
%d\n”,ind,index[k],f[index[k]]);

}
else

{
printf(“File in the index is already allocated \n”);

printf(“Enter another file indexed”);
goto y;

}
printf(“Do you want to enter more file
(Yes - 1/No - 0)”);
scanf(“%d”, &c);

if(c==1)
goto x;
else
exit(0);
getch();

}
Output:

Enter the index block: 5
Enter no of blocks needed and no of files for the

index 5 on the disk :
4
1 2 3 4
Allocated
File Indexed
5 ————> 1 : 1
5 ————> 2 : 1
5 ————> 3 : 1
5 ————> 4 : 1
Do you want to enter more file(Yes - 1/No - 0)1
Enter the index block: 4
4 index is already allocated
Enter the index block: 6
Enter no of blocks needed and no of files for the

index 6 on the disk :
2
7 8
A5llocated
File Indexed
6 ————> 7 : 1
6 ————> 8 : 1
Do you want to enter more file(Yes - 1/No - 0)0

(c) Linked.
/* Program to simulate linked file allocation
strategy */
Program Code:
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void main()

{
int f[50], p,i, st, len, j, c, k, a;
clrscr();
for(i=0;i<50;i++)

MCA I YEAR II SEMESTER

218
Rahul Publications

f[i]=0;
 printf(“Enter how many blocks already allocated: “);

scanf(“%d”,&p);
printf(“Enter blocks already allocated: “);
for(i=0;i<p;i++)

{
scanf(“%d”,&a);
f[a]=1;

}
 x: printf(“Enter index starting block and length: “);

scanf(“%d%d”, &st,&len);
k=len;
if(f[st]==0)

{
for(j=st;j<(st+k);j++)

{
if(f[j]==0)

{
f[j]=1;
printf(“%d————>%d\n”,j,f[j]);

}
else

{
printf(“%d Block is already allocated \n”,j);
k++;

}
}
}

else
printf(“%d starting block is already allocated
\n”,st);
printf(“Do you want to enter more file
(Yes - 1/No - 0)”);
scanf(“%d”, &c);
if(c==1)
goto x;
else
exit(0);
getch();

}
Output:

Enter how many blocks already allocated: 3
Enter blocks already allocated: 1 3 5

Enter index starting block and length: 2 2

2  1
3 Block is already allocated

4  1
Do you want to enter more file(Yes - 1/No - 0)0

11. Simulate Bankers Algorithm for Dead Lock
Avoidance.

Ans :
#include<stdio.h>
struct file

{
int all[10];

 int max[10];
 int need[10];

int flag;
};

void main()
{

struct file f[10];
 int fl;

int i, j, k, p, b, n, r, g, cnt=0, id, newr;
int avail[10],seq[10];
clrscr();
printf(“Enter number of processes — “);
scanf(“%d”,&n);
printf(“Enter number of resources — “);
scanf(“%d”,&r);
for(i=0;i<n;i++)

{
printf(“Enter details for P%d”,i);

 printf(“\nEnter allocation\t — \t”);
for(j=0;j<r;j++)
scanf(“%d”,&f[i].all[j]);
printf(“Enter Max\t\t — \t”);

 for(j=0;j<r;j++)
scanf(“%d”,&f[i].max[j]);

 f[i].flag=0;
}

printf(“\nEnter Available Resources\t — \t”);
 for(i=0;i<r;i++)

scanf(“%d”,&avail[i]);

LAB PRACTICALS OPERATING SYSTEMS

219
Rahul Publications

printf(“\nEnter New Request Details — “);
 printf(“\nEnter pid \t — \t”);

scanf(“%d”,&id);
printf(“Enter Request for Resources \t — \t”);
for(i=0;i<r;i++)

{
scanf(“%d”,&newr);
f[id].all[i] += newr;
vail[i]=avail[i] - newr;

}
for(i=0;i<n;i++)

{
for(j=0;j<r;j++)
{f[i].need[j]=f[i].max[j]-f[i].all[j]; if(f[i].need[j]<0)
f[i].need[j]=0;

}
cnt=0;

 fl=0;
while(cnt!=n)

{
g=0;
for(j=0;j<n;j++)

{
if(f[j].flag==0)

{
b=0;
for(p=0;p<r;p++)

{
if(avail[p]>=f[j].need[p])

 b=b+1;
else
b=b-1;

}
if(b==r)

{
printf(“\nP%d is visited”,j); seq[fl++]=j;
f[j].flag=1; for(k=0;k<r;k++)
avail[k]=avail[k]+f[j].all[k];

 cnt=cnt+1;
printf(“(“); for(k=0;k<r;k++)
printf(“%3d”,avail[k]);
printf(“)”);
 g=1;

}
}
}

if(g==0)
{

printf(“\n REQUEST NOT GRANTED —
DEADLOCK OCCURRED”);

printf(“\n SYSTEM IS IN UNSAFE STATE”);
goto y;

}
}

printf(“\nSYSTEM IS IN SAFE STATE”);
printf(“\nThe Safe Sequence is — (“);

 for(i=0;i<fl;i++)
printf(“P%d “,seq[i]);
printf(“)”);

 y: printf(“\nProcess\t\tAllocation\t\tMax\t\t\tNeed\n”);
 for(i=0;i<n;i++)
{

printf(“P%d\t”,i);
 for(j=0;j<r;j++)

printf(“%6d”,f[i].all[j]);
 for(j=0;j<r;j++)

printf(“%6d”,f[i].max[j]);
 for(j=0;j<r;j++)

printf(“%6d”,f[i].need[j]);
 printf(“\n”);
}

getch();
}
Output :
Enter the no of processes:4
Enter the no ofresource classes:3
Enter the total existed resource in each class:3 2 2
Enter the allocated resources:1 0 0 5 1 1 2 1 1 0 0 2
Enter the process making the new request:2
Enter the requested resource:1 1 2
Enter the process which are n blocked or running:
process 2:
1 2
process 4:
1 0
process 5:
1 0
Deadlock will occur

MCA I YEAR II SEMESTER

220
Rahul Publications

12. Simulate Bankers Algorithm for Dead Lock
Prevention.

Ans :
#include< stdio.h>
#include< conio.h>
void main()
{int allocated[15][15],max[15][15], need

[15][15], avail[15], tres[15], work[15], flag[15];
 int pno,rno,i,j,prc,count,t,total;
 count=0;
 clrscr();
 printf(“\n Enter number of process:”);
 scanf(“%d”,&pno);
 printf(“\n Enter number of resources:”);
 scanf(“%d”,&rno);
 for(i=1;i< =pno;i++)
 {
 flag[i]=0;
 }
 printf(“\n Enter total numbers of each resources:”);
 for(i=1;i<= rno;i++)
 scanf(“%d”,&tres[i]);
 printf(“\n Enter Max resources for each process:”);
 for(i=1;i<= pno;i++)
 {
 printf(“\n for process %d:”,i);
 for(j=1;j<= rno;j++)
 scanf(“%d”,&max[i][j]);
 }
 printf(“\n Enter allocated resources for each process:”);
 for(i=1;i<= pno;i++)
 {
 printf(“\n for process %d:”,i);
 for(j=1;j<= rno;j++)
 scanf(“%d”,&allocated[i][j]); }
 printf(“\n available resources:\n”);
 for(j=1;j<= rno;j++)
 {
 avail[j]=0;
 total=0;
 for(i=1;i<= pno;i++)
 {

 total+=allocated[i][j];
 }
 avail[j]=tres[j]-total;
 work[j]=avail[j];
 printf(“ %d \t”,work[j]);
 }
 do
 {
 for(i=1;i<= pno;i++)
 {
 for(j=1;j<= rno;j++)
 {
 need[i][j]=max[i][j]-allocated[i][j];
 }
 }
 printf(“\n Allocated matrix Max need”);
 for(i=1;i<= pno;i++)
 {
 printf(“\n”);
 for(j=1;j<= rno;j++)
 {
 printf(“%4d”,allocated[i][j]);
 }
 printf(“|”);
 for(j=1;j<= rno;j++)
 {
 printf(“%4d”,max[i][j]);
 }
 printf(“|”);
 for(j=1;j<= rno;j++)
 {
 printf(“%4d”,need[i][j]);
 }
 }
 prc=0;
 for(i=1;i<= pno;i++)
 {
 if(flag[i]==0)
 {
 prc=i;
 for(j=1;j<= rno;j++)
 {

LAB PRACTICALS OPERATING SYSTEMS

221
Rahul Publications

 if(work[j]< need[i][j])

 {

 prc=0;

 break;

 }

 }

 }

 if(prc!=0)

 break;

 }

 if(prc!=0)

 {

 printf(“\n Process %d completed”,i);

 count++;

 printf(“\n Available matrix:”);

 for(j=1;j<= rno;j++)

 {

 work[j]+=allocated[prc][j];

 allocated[prc][j]=0;

 max[prc][j]=0;

 flag[prc]=1;

 printf(“ %d”,work[j]);

 }

 }

 }while(count!=pno&&prc!=0);

 if(count==pno)

 printf(“\nThe system is in a safe state!!”);

 else

 printf(“\nThe system is in an unsafe state!!”);

getch();

}

Output
Enter number of process:5

 Enter number of resources:3

 Enter total numbers of each resources:10 5 7

 Enter Max resources for each process:

 for process 1:7 5 3

 for process 2:3 2 2

 for process 3:9 0 2

 for process 4:2 2 2

 for process 5:4 3 3

 Enter allocated resources for each process:

 for process 1:0 1 0

 for process 2:3 0 2

 for process 3:3 0 2

 for process 4:2 1 1

 for process 5:0 0 2

 available resources:

 2 3 0

Allocated matrix Max need

 0 1 0| 7 5 3| 7 4 3

 3 0 2| 3 2 2| 0 2 0

 3 0 2| 9 0 2| 6 0 0

 2 1 1| 2 2 2| 0 1 1

 0 0 2| 4 3 3| 4 3 1

Process 2 completed

 Available matrix: 5 3 2

 Allocated matrix Max need

 0 1 0| 7 5 3| 7 4 3

 0 0 0| 0 0 0| 0 0 0

 3 0 2| 9 0 2| 6 0 0

 2 1 1| 2 2 2| 0 1 1

 0 0 2| 4 3 3| 4 3 1

Process 4 completed

 Available matrix: 7 4 3

 Allocated matrix Max need

 0 1 0| 7 5 3| 7 4 3

 0 0 0| 0 0 0| 0 0 0

 3 0 2| 9 0 2| 6 0 0

 0 0 0| 0 0 0| 0 0 0

 0 0 2| 4 3 3| 4 3 1

Process 1 completed

 Available matrix: 7 5 3

 Allocated matrix Max need

 0 0 0| 0 0 0| 0 0 0

 0 0 0| 0 0 0| 0 0 0

 3 0 2| 9 0 2| 6 0 0

 0 0 0| 0 0 0| 0 0 0

 0 0 2| 4 3 3| 4 3 1

MCA I YEAR II SEMESTER

222
Rahul Publications

Process 3 completed
 Available matrix: 10 5 5
 Allocated matrix Max need
 0 0 0| 0 0 0| 0 0 0
 0 0 0| 0 0 0| 0 0 0
 0 0 0| 0 0 0| 0 0 0
 0 0 0| 0 0 0| 0 0 0
 0 0 2| 4 3 3| 4 3 1
Process 5 completed
Available matrix: 10 5 7
The system is in a safe state!!
13. Write a C program to simulate disk

scheduling algorithms.

Ans :
(a) FCFS

#include<stdio.h>
#include<stdlib.h>
int main()

{
int RQ[100],i,n,TotalHeadMoment=0,initial;
printf(“Enter the number of Requests\n”);
scanf(“%d”,&n);
printf(“Enter the Requests sequence\n”);
for(i=0;i<n;i++)
scanf(“%d”,&RQ[i]);
printf(“Enter initial head position\n”);
scanf(“%d”,&initial);
// logic for FCFS disk scheduling
for(i=0;i<n;i++)

{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
 printf(“Total head moment is %d”,TotalHeadMoment);
return0;
}
Output

Enter the number of Request
8
Enter the Requests Sequence
9518034119111236264

Enter initial head position
50
Total head movement is 644
(b) SCAN

#include<stdio.h>
#include<stdlib.h>
int main()

{
int RQ[100],i,j,n,TotalHead Moment = 0, initial,

size, move;
printf(“Enter the number of Requests\n”);
scanf(“%d”,&n);
printf(“Enter the Requests sequence\n”);
for(i=0;i<n;i++)

 scanf(“%d”,&RQ[i]);
 printf(“Enter initial head position\n”);
 scanf(“%d”,&initial);
 printf(“Enter total disk size\n”);
 scanf(“%d”,&size);
 printf(“Enter the head movement direction for high 1
and for low 0\n”);
 scanf(“%d”,&move);
// logic for Scan disk scheduling
/*logic for sort the request array */
for(i=0;i<n;i++)
{
for(j=0;j<n-i-1;j++)
{
if(RQ[j]>RQ[j+1])
{
int temp;
 temp=RQ[j];
 RQ[j]=RQ[j+1];
 RQ[j+1]=temp;
}
}
}
int index;
for(i=0;i<n;i++)
{
if(initial<RQ[i])
{
 index=i;

LAB PRACTICALS OPERATING SYSTEMS

223
Rahul Publications

break;
}
}
// if movement is towards high value
if(move==1)
{
for(i=index;i<n;i++)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
// last movement for max size
 TotalHeadMoment=TotalHeadMoment+abs(size-
RQ[i-1]-1);
 initial = size-1;
for(i=index-1;i>=0;i—)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
}
// if movement is towards low value
else
{
for(i=index-1;i>=0;i—)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
// last movement for min size
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i+1]-
0);
 initial =0;
for(i=index;i<n;i++)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
}

 printf(“Total head movement is %d”, Total Head
Moment);
return0;
}
Output
Enter the number of Request
8
Enter the Requests Sequence
9518034119111236264
Enter initial head position
50
Enter total disk size
200
Enter the head movement direction for high 1 and for
low 0
1
Total head movement is 337
(c) C-SCAN
#include<stdio.h>
#include<stdlib.h>
int main()
{

int RQ[100],i,j,n,Total Head Moment=0, initial,
size, move;
 printf(“Enter the number of Requests\n”);
 scanf(“%d”,&n);
 printf(“Enter the Requests sequence\n”);
for(i=0;i<n;i++)
 scanf(“%d”,&RQ[i]);
 printf(“Enter initial head position\n”);
 scanf(“%d”,&initial);
 printf(“Enter total disk size\n”);
 scanf(“%d”,&size);
 printf(“Enter the head movement direction for high 1
and for low 0\n”);
 scanf(“%d”,&move);
// logic for C-Scan disk scheduling
/*logic for sort the request array */
for(i=0;i<n;i++)
{
for(j=0;j<n-i-1;j++)
{
if(RQ[j]>RQ[j+1])

MCA I YEAR II SEMESTER

224
Rahul Publications

{
int temp;
 temp=RQ[j];
 RQ[j]=RQ[j+1];
 RQ[j+1]=temp;
}

}
}
int index;
for(i=0;i<n;i++)
{
if(initial<RQ[i])
{
 index=i;
break;
}
}
// if movement is towards high value
if(move==1)
{
for(i=index;i<n;i++)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
// last movement for max size
 TotalHeadMoment=TotalHeadMoment+abs(size-
RQ[i-1]-1);
/*movement max to min disk */
 TotalHeadMoment=TotalHeadMoment+abs(size-
1-0);
 initial=0;
for(i=0;i<index;i++)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
}
// if movement is towards low value
else

{
for(i=index-1;i>=0;i—)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
// last movement for min size
 TotalHeadMoment=Total Head Moment+abs
(RQ[i+1]-0);
/*movement min to max disk */
 Total Head Moment = Total Head Moment +
abs (size-1-0);
 initial =size-1;
for(i=n-1;i>=index;i—)
{
 TotalHeadMoment=TotalHeadMoment+abs(RQ[i]-
initial);
 initial=RQ[i];
}
}
 printf(“Total head movement is %d”, Total Head
Moment);
return0;
}
Output

Enter the number of Request
8
Enter the Requests Sequence
9518034119111236264
Enter initial head position
50
Enter total disk size
200
Enter the head movement direction for high 1

and for low 0
1
Total head movement is 382

MCA I YEAR II SEMESTER

178
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - I

OPERATING SYSTEMS
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. Explain various basic unix commands with an examples. (Unit-I, Q.No.2)

OR

2. Explain the structure of the Operating system. (Unit-I, Q.No15)

3. What is the use of page replacement algorithm? Explain about various page

replacement algorithms. (Unit-II, Q.No.11)

OR

4. How memory is allocated to the process? Explain how to resolve dynamic storage

allocation problem? (Unit-II, Q.No.5)

5. What is file? Explain about the structure of the file and its attributes. (Unit-III, Q.No.1)

OR

6. Write about Directory structure of file system. (Unit-III, Q.No.8)

7. What are the Goals and Principles of Protection? (Unit-IV, Q.No.1)

OR

8. What is Encryption? Write about Symmetric and Asymmetric Encrption. (Unit-IV, Q.No.12)

9. Discuss about the kernel modules of Linux Systems (Unit-V, Q.No.3)

OR

10. Write about programmer interface of Windows 7. (Unit-V, Q.No.16)

SOLVED MODEL PAPERS OPERATING SYSTEMS

179
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - II

OPERATING SYSTEMS
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. Explain about File Permission of unix. (Unit-I, Q.No.4)

OR

2. Discuss briefly about various multi threading issues. (Unit-I, Q.No.25)

3. Write a briefly note on fragmentation. (Unit-II, Q.No.6)

OR

4. Define thrashing. Explain the techniques of thrashing. (Unit-II, Q.No.14)

5. What are the various File Access Mechanisms? (Unit-III, Q.No.3)

OR

6. Explain about directory implementation methods. (Unit-III, Q.No.10)

7. Write about Access Control Mechanism. (Unit-IV, Q.No.5)

OR

8. Write about various user authentication processes. (Unit-IV, Q.No.15)

9. Write about the design principles of windows. (Unit-V, Q.No.12)

OR

10. What are the various components of Linux System ? (Unit-V, Q.No.1)

MCA I YEAR II SEMESTER

180
Rahul Publications

FACULTY OF INFORMATICS
M.C.A. I Year II Semester Examination

Model Paper - III

OPERATING SYSTEMS
Time : 3 Hours] Max. Marks : 70

(5 × 14 = 70 Marks)

Note : Answer all the question according to the internal choice

ANSWERS

1. Explain briefly about awk. (Unit-I, Q.No.9)

OR

2. What is multi processor scheduling explain? (Unit-I, Q.No.30)

3. What is Swapping? Explain. (Unit-II, Q.No.3)

OR

4. Consider a main memory with five page frames and the following sequence of
page references: 3, 8, 2, 3, 9, 1, 6, 3, 8, 9, 3, 6, 2, 1, 3. which one of the
following is true with respect to page replacement policies First-In-First-out (FIFO)
and Least Recently Used (LRU)? (Unit-II, Q.No.12)

5. What are Mass (Secondary) Storage Devices? Explain. (Unit-III, Q.No.11)

OR

6. Write about various communication I/O devices. (Unit-III, Q.No.17)

7. Write about the implementation of cryptography in secure soket layers (SSL). (Unit-IV, Q.No.14)

OR

8. What is Language Based Protection? Explain. (Unit-IV, Q.No.8)

9. Write about the process management of Linux System. (Unit-V, Q.No.4)

OR

10. Describe briefly about Windows Architecture. (Unit-V, Q.No.11)

PREVIOUS QUESTION PAPERS

225
Rahul Publications

FACULTY OF INFORMATICS
M.C.A II-Semester(CBCS) Examination

November - 2021
OPERATING SYSTEMS

Time : 2 Hours] [Max. Marks : 70

PART - A - (4 × 171/2 = 70 Marks)

Note : Answer any four Questions.

1. (a) What are the Operating System services and AWK Explain in detail.

(b) Solve the dining philosopher’s problem using monitors instead of
semaphores.

2. (a) What is process synchronization and monitors.

(b) A system has four processes and five locatable resources. The current

application and maximum needs are as follows :

Allocated Maximum Available

Process A 10211 112113 00X11

Process B 20110 22210

Process C 11010 21310

Process D 11110 11221

What is the smallest value of x for which this is a safe state?
3. (a) How the fragmentation is avoided give an examples

(b) If FIFO page replacement is used with four page frames and eight pages
how many page fault will occur with the reference string 0 1 7 2 3 2 7 1 0 3
if the four frames are initially empty? Now repeat this problem for optimal.

4. (a) Elaborate segmentation with paging.

(b) Explain demand paging with a suitable example.

5. (a) State the allocation methods and which method is best.

(b) Tell about the mass storage structures.

6. (a) Describe I/O systems and file concepts.

(b) Illustrate directory implementation of file systems.

7. (a) What are the goals and domain of protection ?

(b) Mention the access control and access rights.

8. (a) How to implement the security defenses brief.

(b) List the computer security classification and discuss them.

9. (a) Show the design principles of Linux systems.

(b) Discuss the windows 7 design principles.

10. (a) Differentiate the terminal services and fast user switching file systems.

(b) Why are the kernel modules what they do? Define input and output.

MCA I YEAR II SEMESTER

226
Rahul Publications

FACULTY OF INFORMATICS
M.C.A II - Semester (CBCS) Examination,

April - 2022

OPERATING SYSTEMS
Time : 3 Hours] [Max. Marks : 70

Note : Answer any five questions from the following. All questions carry equal marks.

1. (a) What are system components and regular expressions. Explain in detail.

(b) Define grep? Why A.W.K. give an example?

2 (a) Write about file permissions? Show how counting semaphores (i.e
semaphores that can hold an arbitrary value) can be implemented using
only binary or ordinary machine instructions.

(b) Define CPU scheduling criteria. Consider the following set of prdcesses, with
the length of the CPU-burst time given in milliseconds.

Process Burst time

P1 10

P2 1

P3 2

P4 1

P5 5

The processes are assumed to have arrived in the order P1, P2, P3, P4 and P5

all at time O.Draw Gantt Chart illustrating the Execution of these processes
using FCFS and SJF, under preemptive scheduling and calculate TAT of
each process and waiting time of each process and response time of each
process.

3 (a) List the memory management strategies with example architecture?

(b) If L R U page replacement is used with four page frames and eight pages
how many page fault will occur with the reference string 0 1 7 2 3 2 7 1 0 3
if the four frams are initially empty? Now repeat this problem for optimal.

4 (a) Define thrashing? Discuss paging.

(b) What is page fault and how it is handled give an explanation.

5 (a) How many access methods are there in file and which one is the best access
method give an example.

(b) Illustrate file system implementation.

6 (a) Differ file system structure and mass storage structure.

(b) Why allocation methods? Which method is the best method explain?

PREVIOUS QUESTION PAPERS

227
Rahul Publications

7 (a) Mentions the principles and domains of system protection.

(b) Elaborate cryptography.

8 (a) What are the features of language based protection.

(b) Tell about firewalling.

9. (a) Brief about design principles and kernel module.

(b) Illustrate the case study of Linux systems.

10. (a) What is the design principals of windows 7 brief

(b) State the networking and programmer interface.

MCA I YEAR II SEMESTER

228
Rahul Publications

FACULTY OF INFORMATICS
MCA II - Semester (CBCS) Examinations,

April / May - 2023
OPERATING SYSTEMS

Time : 3 Hours] [Max. Marks : 70

Note: I. Answer one question from each unit. All questions carry equal marks.

II. Missing data, if any, may be suitably assumed.

UNIT - I

1. (a) Write the syntax and examples to all the commands related to directories.
(b) Illustrate process states with its figure.

(OR)
2. (a) Describe and explain priority scheduling with an illustration.

(b) Explain the functionality of chmod command.
UNIT - II

3. (a) Illustrate segmentation mechanism with its figure.
(b) Explain the concept of thrashing.

(OR)
4. (a) Illustrate the FIFO page replacement algorithm.

(b) Explain the steps of demand paging with its diagram.
UNIT - III

5. (a) Write about the implementation of tree structured directory system.
(b) Illustrate the SCAN disk scheduling algorithm with a request queue (0-199):

98,183,37,122,14,124,64,67. The head pointer is at 53.
(OR)

6. (a) Explain with illustration the concept of linked list allocation method.
(b) Describe the characteristics of I/O devices.

UNIT - IV
7. (a) Implement an access matrix for system protection.

(b) Classify the security methods for the computer.
(OR)

8. (a) Write notes on cryptography and its applications.
(b) Explain the concept of firewalls.

UNIT - V
9. (a) Explain the kernel module of linux system.

(b) Discuss about the programmer interface.
(OR)

10. (a) Explain the file system of windows 7.
(b) Write notes on memory management in linux.

