
Rahul’s 
Topper’s Voice

B.Sc.
III Year V Sem

NO SQL DATA BASES
DATA SCIENCE PAPER - V(B)

 Study Manual

 Important Questions

 Short Question & Answers

 Multiple Choice Questions

 Fill in the blanks

 One Mark Answers

 Solved Model Papers

AS PER

CBCS SYLLABUS

All disputes are subjects to Hyderabad Jurisdiction only

Price

` 189-00

TM

Hyderabad. Ph : 66550071, 9391018098
Rahul Publications

Latest 2023 Edition

- by -

WELL EXPERIENCED LECTURER

Price `. 189-00

Sole Distributors :  : 66550071, Cell : 9391018098

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

B.Sc.
III Year V Sem

NO SQL DATA BASES
DATA SCIENCE PAPER - V(B)

C
O
N
T
E
N
T
S

STUDY MANUAL

Important Questions III - V

Unit - I 1 - 28

Unit - II 29 - 58

Unit - III 59 - 82

Unit - IV 83 - 100

Lab Practicals 101 - 134

SOLVED MODEL PAPERS

MODEL PAPER - I 135 - 136

MODEL PAPER - II 137 - 138

MODEL PAPER - III 139 - 140

NO SQL DATA
BASES

DATA SCIENCE PAPER - V(B)

SYLLABUS

UNIT - I

Why NoSQL: The Value of Relational Databases, Impedance Mismatch, Application and Integration
Databases, Attack of the Clusters, The Emergence of NoSQL Aggregate

Data Models: Aggregates, Column-Family Stores, Summarizing Aggregate Oriented

Databases More Details on Data Models: Relationships, Graph Databases, Schemaless Databases,
Materialized Views, Modeling for Data Access.

UNIT - II

Distribution Models: Single Server, Sharding, Master-Slave Replication, Peer-to-Peer
Replication, Combining Sharding and Replication.

Consistency: Update Consistency, Read Consistency, Relaxing Consistency, Relaxing
Durability, Quorums

Version Stamps: Business and System Transactions, Version Stamps on Multiple Nodes
Map-Reduce: Basic Map-Reduce, Partitioning and Combining, Composing Map-Reduce
Calculations

UNIT - III

Key-Value Databases: What Is a Key-Value Store, Key-Value Store Features, Suitable Use Cases,

When Not to Use Document Databases: What Is a Document Database, Features, Suitable Use
Cases, When Not to Use.

UNIT - IV

Column-Family Stores: What Is a Column-Family Data Store, Features, Suitable Use Cases,

When Not to Use Graph Databases: What Is a Graph Database, Features, Suitable Use
Cases, When Not to Use

I

Contents
Topic Page No.

UNIT - I

1.1 Why NoSQL ...1
1.1.1 The Value of Relational Databases ..1
1.1.2 Impedance Mismatch ...2
1.1.3 Application and Integration Data-bases ..3
1.1.4 Attack of the Clusters ...4
1.1.5 The Emergence of NoSQL ...5

1.2 Aggregate Data Models ...6
1.2.1 Aggregates ..6
1.2.2 Column-Family Stores ..7
1.2.3 Summarizing Aggregate-Oriented Databases in NoSQL ...9

1.3 More Details on Data Models ..10
1.3.1 Relations ..10
1.3.2 Graph Databases ..14
1.3.3 Schemaless Databases ..15
1.3.4 Materialized Views ..16
1.3.5 Modeling for Data Access ...17
 Short Questions and Answers ... 20 - 23
 Choose the Correct Answers .. 24 - 25
 Fill in the blanks ... 26 - 26
 One Mark Answers .. 27 - 28

UNIT - II

2.1 Distribution Models ...29
2.1.1 Single Server ..29
2.1.2 Sharding ..29
2.1.3 Master-Slave Replication ..31
2.1.4 Peer-to-Peer Replication ...32
2.1.5 Combining Sharding and Replication ...33

2.2 Consistency ..34
2.2.1 Update Consistency ..34
2.2.2 Read Consistency ...35
2.2.3 Relaxing Consistency ..35
2.2.4 Relaxing Durability ...36
2.2.5 Quorums ..37

2.3 Version Stamps ...39

II

Topic Page No.
2.3.1 Business and System Transactions ..39

2.4 Map-reduce ..41
2.4.1 Basic Map-Reduce ..41
2.4.2 Partitioning and Combining ...43
2.4.3 Composing Map-Reduce Calculations ..47
 Short Questions and Answers ... 50 - 53
 Choose the Correct Answers .. 54 - 55
 Fill in the blanks ... 56 - 56
 One Mark Answers .. 57 - 58

UNIT - III

3.1 Key-Value Databases ...59
3.1.1 What Is a Key-Value Store ..59
3.1.2 Key-Value Store Features ...63
3.1.3 Suitable Use Cases ...65
3.1.4 When Not to Use Document Data bases ..67

3.2 When Not to Use Document Data Base ..68
3.2.1 What Is a Document Database ...68
3.2.2 Features ...70
3.2.3 Suitable Use Cases ...71
3.2.4 When not use ...72
 Short Questions and Answers ... 73 - 77
 Choose the Correct Answers .. 78 - 79
 Fill in the blanks ... 80 - 80
 One Mark Answers .. 81 - 82

UNIT - IV
4.1 Column-Family Stores ..83

4.1.1 What Is a Column-Family Data Store ...83
4.1.2 Features ...87
4.1.3 Suitable Use Cases ...88
4.1.4 When Not to Use ...89

4.2 When Not to use Graph Databases ...89
4.2.1 What Is a Graph Database ...89
4.2.2 Features ...91
4.2.3 Suitable Use Cases ...92
4.2.4 When Not to Use ...93
 Short Questions and Answers ... 94 - 97
 Choose the Correct Answers .. 98 - 98
 Fill in the blanks ... 99 - 99
 One Mark Answers .. 100 - 100

IMPORTANT QUESTIONS NO SQL DATABASE

III
Rahul Publications

UNIT - I

1. What is a relational database? Explain the importance of it.

Ans :
Refer Unit-I, Q.No. 1

2. State the benefits of relational databases

Ans :
Refer Unit-I, Q.No. 2

3. Explain about the Applications and Integration of Databases?

Ans:
Refer Unit-I, Q.No. 5

4. What is Aggregate Data Model? Give with an example.

Ans:
Refer Unit-I, Q.No. 8

5. What is Aggregate-Oriented Databases in NoSQL?

Ans :
Refer Unit-I, Q.No. 10

6. Explain about the relations in NoSQL databases?

Ans:
Refer Unit-I, Q.No. 11

7. How does a schemaless database work?

Ans :
Refer Unit-I, Q.No. 13

8. Write about Modeling Access Techni- ques?

Ans :
Refer Unit-I, Q.No. 15

UNIT - II

1. Explain detail about single server in distribution models?

Ans :
Refer Unit-II, Q.No. 1

Important Questions

B.Sc. III YEAR V SEMESTER

IV
Rahul Publications

2. Elaborate on Master-Slave Replication in distribution models?

Ans :
Refer Unit-II, Q.No. 3

3. Explain in detail about Combining Sharding and Replication?

Ans:
Refer Unit-II, Q.No. 5

4. Explain Business and system Transac-tions with an example?

Ans :
Refer Unit-II, Q.No. 11

5. What are Version Stamps on Multiple Nodes in No SQL Database?

Ans :
Refer Unit-II, Q.No. 12

6. What is Basic Map-Reduce? Explain in detail how the data is processing?

Ans:
Refer Unit-II, Q.No. 13

7. Explain about Partitioning and Combin-ing with an example?

Ans :
Refer Unit-II, Q.No. 14

8. Explain Composing Map-Reduce Calculation with an example?

Ans :
Refer Unit-II, Q.No. 15

UNIT - III

1. What is a Key-Value (Model)Database? Explain with advantages and disadvantages.

Ans:
Refer Unit-III, Q.No. 1

2. What is a Key-Value Store? Explain the popular Key-Value Store databases

Ans:
Refer Unit-III, Q.No. 2

3. What are the Suitable Use Cases of Key - Value Database

Ans:
Refer Unit-III, Q.No. 4

IMPORTANT QUESTIONS NO SQL DATABASE

V
Rahul Publications

4. Explain about Document Database in NoSQL

Ans:
Refer Unit-III, Q.No. 7

5. Explain about Suitable Use Cases of Document Database

Ans :

Refer Unit-III, Q.No. 10

UNIT - IV

1. Explain in detail about Column-Family Data Store.

Ans:
Refer Unit-IV, Q.No. 1

2. What is column store database? Give its advantages and disadvantages.

Ans:
Refer Unit-IV, Q.No. 2

3. What are the Features of Column Store Databases.

Ans:
Refer Unit-IV, Q.No. 3

4. What is column store database? Explain about When Not to Use column-family databases.

Ans:

Refer Unit-IV, Q.No. 5

5. What are the features of Graph Data bases?

Ans:

Refer Unit-IV, Q.No. 7

6. What are the Use Cases of Graph Data bases? Explain its advantages and disadvantages?

Ans:
Refer Unit-IV, Q.No. 9

UNIT - I NO SQL DATA BASES

1
Rahul Publications

Rahul Publications
1.1 WHY NOSQL

1.1.1 The Value of Relational Databases

Q1. What is a relational database? Explain
the importance of it.

Ans : (Imp.)

Relational databases are a type of database
that allows users to access data that is stored in
various tables connected by a unique ID or “key.”
Using this key, users can unlock data entries related
to that key on another table, to help with inventory
management, shipping, and more. On relational
database management systems (RDBMS), users can
input SQL queries to retrieve the data needed for
specific job functions.

In a relational database, each row in the table
has a key. In the columns are data attributes. Each
record has a value for each attribute, so users can
understand the relationships between data entries
for functions like product marketing, manufacturing,
UX research, and more.

As an example, for a shoe store processing
online orders, a relational database might have two
tables with related data. In the first table, each record
includes the customer’s name, shipping address,
email, and billing information, in columns. A key is
assigned to each row. In the second table, that key
is listed alongside the product ordered, quantity, size,
color, and more. The two tables are related, and
toggled to each other, with the key. When an order
comes in, the key allows the warehouse to pull the
correct product from the shelf and ship it to the
customer.

UNIT
I

Why NoSQL: The Value of Relational Databases, Impedance Mismatch, Application

and Integration Databases, Attack of the Clusters, The Emergence of NoSQL Aggregate

Data Models: Aggregates, Column-Family Stores, Summarizing Aggregate Oriented

Databases More Details on Data Models: Relationships, Graph Databases,

Schemaless Databases, Materialized Views, Modeling for Data Access.

Importance of Relational Database

A relational database’s main benefit is the
ability to connect data from different tables to create
useful information. This approach helps
organizations of all sizes and industries decipher
relationships between different sets of data, from
various departments, to create meaningful insights.

Q2. State the benefits of relational
databases

Ans : (Imp.)

Relational databases provide plenty of benefits
for companies. Here are a few primary advantages
of relational databases:

(i) Simple and centralized database

Relational databases are simple. Toggling
between tables provides a wealth of
information that can be used for various
purposes. Plus, ERP systems are built on
relational databases, so they help users
manage clients, inventory, and much more.

(ii) Easy to use

Many companies use relational databases, and
ERP, to organize and manage large amounts
of data. Their continued use helps to drive
improvements to these systems-such as
migrating to the cloud. Using SQL, users can
easily navigate data sets to retrieve, filter, and
ideate the information they need.

Save time and money: By using
relational databases, companies can stay
organized and efficient. The unique IDs help

B.Sc. III YEAR V SEMESTER

2
Rahul Publications

Rahul Publications

eliminate duplicate information, whether it is
tracking a customer’s order or museum
visitors. Instead of taking time to input logs
of customer data, a relational database
reduces redundancy, thus saving employees
time. Companies can save money by
allocating that labor elsewhere.

Q3. Explain the Features of relational
databases.

Ans :
Relational databases tend to be used for

processing and managing transactions. They are
often used in retail, banking, and entertainment
industries, where an exact amount (of money,
tickets, or product) is withdrawn from one location
or account and deposited into another. Transactions
like these have properties that can be represented
by the acronym ACID, which stands for:

Atomicity

All parts of a transaction are executed
completely and successfully, or else the entire
transaction fails.

Consistency

Data remains consistent throughout the
relational database. Data integrity, or the accuracy
and completeness of the data at hand, is enforced
in relational databases with integrity constraints
(similar to rule enforcers).

Isolation

Each transaction is independent of other
transactions. Data from one record does not spill
onto another, so it is secure.

Durability

Even if the system fails, data from completed
transactions is safely stored.

By taking the relational approach to data
queries, analysts can perform specific functions to
obtain the information they need to organize query
results by name, date, size, and location. This
relational model also means that the logical data
structures, such as tables and indexes, are completely
separate from physical storage.

1.1.2 Impedance Mismatch

Q4. Explain in detail about Impedance
Mismatch in relational databases.

Ans :

Impedance mismatch is the term used to refer
to the problems that occurs due to differences
between the database model and the programming
language model. The practical relational model has
3 components these are:

1. Attributes and their data types

2. Tuples

3. Tables

Problems

Following problems may occur due to the
impedance mismatch:

1. The first problem that may occur is that is
data type mismatch means the programming
language attribute data type may differ from
the attribute data type in the data model.

Hence it is quite necessary to have a
binding for each host programming language
that specifies for each attribute type the
compatible programming language types. It
is necessary to have different data types, for
example, we have different data types
available in different programming languages
such as data types in C are different from
Java and both differ from SQL data types.

2. The second problem that may occur is because
the results of most queries are sets or multisets
of tuples and each tuple is formed of a
sequence of attribute values. In the program,
it is necessary to access the individual data
values within individual tuples for printing or
processing.

Hence there is a need for binding to map
the query result data structure which is a table
to an appropriate data structure in the

UNIT - I NO SQL DATA BASES

3
Rahul Publications

Rahul Publications

programming language. A mechanism is
needed to loop over the tuples in a query
result in order to access a single tuple at a
time and to extract individual values from the
tuple.

The extracted values are typically copied
to appropriate program variables for further
processing by the program.

A cursor or iterator is a variable which is
used for looping over the tuples in a query
result. Individual values within each tuple are
extracted into different or unique program
variables of the appropriate data type.

Impedance mismatch is less of a problem
when a special database programming
language is designed that uses the same data
model and data type as a database model
for example Oracle’s PL/SQL.

1.1.3 Application and Integration Data-
bases

Q5. Explain about the Applications and
Integration of Databases?

Ans: (Imp.)

Applications of NoSQL Databases

1. Data Mining

When it comes to data mining, NoSQL data-
bases are useful in retrieving information for data
mining uses. Particularly when it’s about large
amounts of data, NoSQL databases store data points
in both structured and unstructured formats leading
to efficient storage of big data.

Perhaps when a user wishes to mine a
particular dataset from large amounts of data, one
can make use of NoSQL databases, to begin with.
Data is the building block of technology that has
led mankind to such great heights.

Therefore, one of the most essential fields
where NoSQL databases can be put to use is data
mining and data storage.

2. Social Media Networking Sites

Social media is full of data, both structured
and unstructured. A field that is loaded with tons of
data to be discovered, social media is one of the
most effective applications of NoSQL databases.

From comments to posts, user-related
information to advertising, socialmedia marketing
requires NoSQL databases to be implemented in
certain ways to retrieve useful information that can
be helpful in certain ways.

Social media sites like Facebook and
Instagram often approach open-source NoSQL
databases to extract data that helps them keep track
of their users and the activities going on around
their platforms.

3. Software Development

The third application that we will be looking
at is software development. Software development
requires extensive research on users and the needs
of the masses that are met through software
development.

However, a developer must be able to scan
through data that is available.

Perhaps NoSQL databases are always useful
in helping software developers keep a tab on their
users, their details, and other user-related data that
is important to be noted. That said, NoSQL data
bases are surely helpful in software development.

Integration Databases in NoSQL

Nowadays, an enormous amount of informa-
tion is been made each second. This information is
of different schemes-unstructured, structured, and
semi-structured data. The variety and volume of
this information can’t be managed by traditional
databases. Therefore, NoSQL frameworks have
emerged, which is another age of database
framework.

To handle data that is heterogeneous, NoSQL
databases are more proficient at this. Tools that can
be used to scale for accommodating a large volume

B.Sc. III YEAR V SEMESTER

4
Rahul Publications

Rahul Publications

of information are required by NoSQL data
integration, however, manual complicated coding
is required by conventional SQL ETL tools. and also
they include methods disturbing creation sources.

A database serving as a store for numerous
applications is called an integration database and
therefore, data is integrated across applications. A
schema is needed by an integration database, and
all applications of clients are taken by the schema
into account. Either the resultant schema is general
or complicated or both.

Here is an example for a better understanding
of the integration database. For example, the
computation data of an organization is stored in the
Oracle database and client information is stored in
Salesforce. The employees can get the integrated
data of the two frameworks in a single spot with the
help of database integration processes. website
database integration is used by a few organizations
for managing and bringing together information
from different site pages. Database integration is only
viable with the consolidation of data from on-
premise systems, legacy systems, and cloud
databases. Different software is used by each
company.

Benefits

Here are a few benefits of database
integration:

 Database integration helps in managing a large
amount of data of an enterprise coming from
a central location hence improving the
experience for customers and also reducing
delivery time. It helps in gaining control of
data.

 Database integration makes it easy to ensure
compliance of the business by enabling
centralized management.

 The consolidation of data is allowed by the
tools of database integration from a vast
assortment of sources, which is then edited,
changed, and loaded into the selected target
database.

Data Integration Solutions for NoSQL
Systems

Here are some methods for solving data
integration problems in reference to NoSQL:

 Save Our Systems (SOS) is integration by a
Middleware system permitting access to data
stored in various NoSQL databases within a
single application utilizing an API.

 SQL++ is a unifying semi-structured data
model and query language for SQL-on-
Hadoop, NoSQL, and new SQL databases
following a uniform data access technique for
solving issues of variations of databases query
languages.

 A metamodel-based data merging approach
is another implementation of the constant
data access method. It is a user-friendly
interface that helps to query data from
heterogeneous databases without any
programming skills.

 Query Arrow is integrated by the Middleware
approach and is a generic software that
queries and updates data from numerous
databases.

1.1.4 Attack of the Clusters

Q6. Explain about Attack of the Clusters in
NoSQL?

Ans:

Websites started tracking activity and structure
in a very detailed way. Large sets of data appeared:
links, social networks, activity in logs, mapping data.
With this growth in data came a growth in users - as
the biggest websites grew to be vast estates regularly
serving huge numbers of visitors.

Coping with the increase in data and traffic
required more computing resources. To handle this
kind of increase, you have two choices: up or out.
Scaling up implies bigger machines, more

UNIT - I NO SQL DATA BASES

5
Rahul Publications

Rahul Publications

processors, disk storage, and memory. But bigger
machines get more and more expensive, not to
mention that there are real limits as your size
increases. The alternative is to use lots of small
machines in a cluster. A cluster of small machines
can use commodity hardware and ends up being
cheaper at these kinds of scales. It can also be more
resilient - while individual machine failures are
common, the overall cluster can be built to keep
going despite such failures, providing high reliability.

As large properties moved towards clusters,
that revealed a new problem - relational databases
are not designed to be run on clusters. Clustered
relational databases, such as the Oracle RAC or
Microsoft SQL Server, work on the concept of a
shared disk subsystem. They use a cluster-aware file
system that writes to a highly available disk subsystem
- but this means the cluster still has the disk
subsystem as a single point of failure. Relational
databases could also be run as separate servers for
different sets of data, effectively sharding the
database. While this separates the load, all the
sharding has to be controlled by the application
which has to keep track of which database server to
talk to for each bit of data. Also, we lose any
querying, referential integrity, transactions, or
consistency controls that cross shards. A phrase we
often hear in this context from people who’ve done
this is “unnatural acts.”

These technical issues are exacerbated by
licensing costs. Commercial relational databases are
usually priced on a single-server assumption, so
running on a cluster raised prices and led to
frustrating negotiations with purchasing
departments.

This mismatch between relational databases
and clusters led some organization to consider an
alternative route to data storage. Two companies in
particular - Google and Amazon - have been very
influential. Both were on the forefront of running

large clusters of this kind; furthermore, they were
capturing huge amounts of data. These things gave
them the motive. Both were successful and growing
companies with strong technical components, which
gave them the means and opportunity. It was no
wonder they had murder in mind for their relational
databases. As the 2000s drew on, both companies
produced brief but highly influential papers about
their efforts: BigTable from Google and Dynamo
from Amazon.

1.1.5 The Emergence of NoSQL

Q7. Explain in detail about Emergence of
NoSQL?

Ans :

NoSQL databases emerged in the late 2000s
as the cost of storage dramatically decreased. Gone
were the days of needing to create a complex,
difficult-to-manage data model in order to avoid
data duplication. Developers (rather than storage)
were becoming the primary cost of software
development, so NoSQL databases optimized for
developer productivity.

As storage costs rapidly decreased, the
amount of data that applications needed to store
and query increased. This data came in all shapes
and sizes - structured, semi-structured, and
polymorphic and defining the schema in advance
became nearly impossible. NoSQL databases allow
developers to store huge amounts of unstructured
data, giving them a lot of flexibility.

Additionally, the Agile Manifesto was rising in
popularity, and software engineers were rethinking
the way they developed software. They were
recognizing the need to rapidly adapt to changing
requirements. They needed the ability to iterate
quickly and make changes throughout their software
stack all the way down to the database. NoSQL
databases gave them this flexibility.

B.Sc. III YEAR V SEMESTER

6
Rahul Publications

Rahul Publications

Cloud computing also rose in popularity, and
developers began using public clouds to host their
applications and data. They wanted the ability to
distribute data across multiple servers and regions
to make their applications resilient, to scale out
instead of scale up, and to intelligently geo-place
their data. Some NoSQL databases like MongoDB
provides these capabilities.

Types

Over time, four major types of NoSQL
databases emerged: document databases, key-value
databases, wide-column stores, and graph
databases.

 Document databases store data in documents
similar to JSON (JavaScript Object Notation)
objects. Each document contains pairs of
fields and values. The values can typically be
a variety of types including things like strings,
numbers, booleans, arrays, or objects.

 Key-value databases are a simpler type of
database where each item contains keys and
values.

 Wide-column stores store data in tables, rows,
and dynamic columns.

 Graph databases store data in nodes and
edges. Nodes typically store information
about people, places, and things, while edges
store information about the relationships
between the nodes.

1.2 AGGREGATE DATA MODELS

1.2.1 Aggregates

Q8. What is Aggregate Data Model? Give
with an example.

Ans: (Imp.)

Meaning

NoSQL are databases that store data in
another format other than relational databases.

NoSQL deals in nearly every industry nowadays.
For the people who interact with data in databases,

the Aggregate Data model will help in that

interaction.

Features

 Schema Agnostic

NoSQL Databases do not require any specific

schema or s storage structure than traditional
RDBMS.

 Scalability

NoSQL databases scale horizontally as data
grows rapidly certain commodity hardware

could be added and scalability features could

be preserved for NoSQL.

 Performance

To increase the performance of the NoSQL

system one can add a different commodity
server than reliable and fast access of database

transfer with minimum overhead.

 High Availability

In traditional RDBMS it relies on primary and
secondary nodes for fetching the data, Some

NoSQL databases use master place

architecture.

 Global Availability

As data is replicated among multiple servers

and clouds the data is accessible to anyone,
this minimizes the latency period.

Aggregate Data Models

The term aggregate means a collection of
objects that we use to treat as a unit. An aggregate

is a collection of data that we interact with as a unit.

These units of data or aggregates form the
boundaries for ACID operation.

UNIT - I NO SQL DATA BASES

7
Rahul Publications

Rahul Publications

Example of Aggregate Data Model

Here in the diagram have two Aggregate

 Customer and Orders link between them represent an aggregate.

 The diamond shows how data fit into the aggregate structure.

 Customer contains a list of billing address

 Payment also contains the billing address

 The address appears three times and it is copied each time

 The domain is fit where we don’t want to change shipping and billing address.

Consequences of Aggregate Orientation

 Aggregation is not a logical data property It is all about how the data is being used by applications.

 An aggregate structure may be an obstacle for others but help with some data interactions.

 It has an important consequence for transactions.

 NoSQL databases don’t support ACID transactions thus sacrificing consistency.

 Aggregate-oriented databases support the atomic manipulation of a single aggregate at a time.

1.2.2 Column-Family Stores

Q9. What is Column-Family Stores? Explain in detail?

Ans:

Column-family databases store data in column families as rows. These rows have many columns
associated with a particular row. Column families basically contain the group of correlated data which we
can access together.

B.Sc. III YEAR V SEMESTER

8
Rahul Publications

Rahul Publications

 Each column family can be compared to a container of rows in an RDBMS table where the key
identifies the row and the row consists of multiple columns.

 Rows do not need to have the same columns, and columns can be added to any row at any time
without having to add it to other rows.

 When a column consists of a map of columns, we have a super column. A super column consists of
a name and a value which is a map of columns. Think of a super column as a container of columns.

 Some Column-family databases are:

 Cassandra

 Hbase

 Hypertable

 Amazon DynamoDB

Cassandra is faster and more scalable as compared to other column-family databases with write
operations because data is spread across the cluster.

Row

Row KeyX Column1

name1.value1

Column2

name2.value2

ColumnN

name2.valueN

Row

Row KeyY Column1

name1.value1

Column9

name9.value9

ColumnN

name2.valueN

Four Major Benefits of Column Family Database

 Compression: Column-based data storage stores data efficiently through data compression and
by using data partitioning.

 Aggregation Queries: Due to the structure of the column family data structure, they perform
particularly well with aggregation queries (such as SUM, COUNT, AVG etc).

 Scalability: Column databases are more scalable as compared to other databases. They are well
suited for a data structure where data is spread on a large cluster of machines, often thousands of
machines.

Fast to load and query

Columnar stores can be loaded fast. A table containing millions of rows can be loaded within a few
seconds. We can start querying and analyzing immediately on the loaded data.

UNIT - I NO SQL DATA BASES

9
Rahul Publications

Rahul Publications

1.2.3 Summarizing Aggregate-Oriented Databases in NoSQL

Q10. What is Aggregate-Oriented Databases in NoSQL?

Ans : (Imp.)

The Aggregate-Oriented database is the NoSQL database which does not support ACID transactions
and they sacrifice one of the ACID properties. Aggregate orientation operations are different compared to
relational database operations. We can perform OLAP operations on the Aggregate-Oriented database.
The efficiency of the Aggregate-Oriented database is high if the data transactions and interactions take
place within the same aggregate. Several fields of data can be put in the aggregates such that they can be
commonly accessed together. We can manipulate only a single aggregate at a time. We can not manipulate
multiple aggregates at a time in an atomic way.

Aggregate

Oriented databases are classified into four major data models. They are as follows:

1. Key-value

2. Document

3. Column family

4. Graph-based

Each of the Data models above has its own query language.

1. Key-value Data Model

Key-value and document databases were strongly aggregate-oriented. The key-value data model
contains the key or Id which is used to access the data of the aggregates. key-value Data Model is very
secure as the aggregates are opaque to the database. Aggregates are encrypted as the big blog of bits that
can be decrypted with key or id. In the key-value Data Model, we can place data of any structure and
datatypes in it. The advantage of the key-value Data Model is that we can store the sensitive information
in the aggregate. But the disadvantage of this model the database has some general size limits. We can
store only the limited data.

2. Document Data Model

In Document Data Model we can access the parts of aggregates. The data in this model can be
accessed inflexible manner. We can submit queries to the database based on the fields in the aggregate.
There is a restriction on the structure and data types of data to be paced in this data model. The structure
of the aggregate can be accessed by the Document Data Model.

3. Column family Data Model

The Column family is also called a two-level map. But, however, we think about the structure, it has
been a model that influenced later databases such as HBase and Cassandra. These databases with a big
table-style data model are often referred to as column stores. Column-family models divide the aggregate
into column families. The Column-family model is a two-level aggregate structure. The first level consists
of keys that act as a row identifier that selects the aggregate. The second-level values in the Column family
Data Model are referred to as columns.

B.Sc. III YEAR V SEMESTER

10
Rahul Publications

Rahul Publications

234

ROW Key

Customer Column Family

Name Bharat

Bill 1000

Address Noida

Order 1 Cycle

Order 2 Shirt

Order 3 Mobile

Order Column Family

in the above example, the row key is 234 which selects the aggregate. Here the row key selects the
column families customer and orders. Each column family contains the columns of data. In the orders
column family, we have the orders placed by the customers.

4. Graph Data Model

In a graph data model, the data is stored in nodes that are connected by edges. This model is
preferred to store a huge amount of complex aggregates and multidimensional data with many
interconnections between them. Graph Data Model has the application like we can store the Facebook
user accounts in the nodes and find out the friends of the particular user by following the edges of the
graph.

rahul

priya
rishi

ramya

easwar rasi

We can find the friends of a person by observing this graph data model. If there is an edge between
two nodes then we can say they are friends. Here we also consider the indirect links between the nodes to
determine the friend suggestions.

1.3 MORE DETAILS ON DATA MODELS

1.3.1 Relations

Q11. Explain about the relations in NoSQL databases?

Ans: (Imp.)

Relations are the crux of any database and relations in NoSQL databases are handled in a completely
different way compared to an SQL database. There is one very important difference that you need to
keep in mind while building a NoSQL database and that is, NoSQL databases usually always have a JSON

UNIT - I NO SQL DATA BASES

11
Rahul Publications

Rahul Publications

like Schema. Once you’re familiar with that, then handling relations will be a lot easier. ideally, there are
3 basic kinds of relationships, they are as below:

MongoDB Relations

One to One Relation One to Many Relation Many to Many Relation

1. One to One Relation

One to one relation, as the name suggests requires one entity to have an exclusive relationship with
another entity and vice versa. Let’s consider a simple example to understand this relationship better…
The relationship between a user and his account. One user can have one account associated with him and
one account can have only one user associated with it.

One to one relationships can be handled in two ways…

First and the easiest one is to have just one collection, the ‘user’ collection and the account of that
particular user will be stored as an object in the user document itself.

User Document

name : Joe,

gender: male,

age : 25,

account : {

name: account 1,

}

The second way is to create another collection named account and store a reference key (ideally
the ID of the account) in the user document.

User Document

name: Joe,
gender: male,
age: 25,
account : id1

Account Document

_id:id1,
Name:account1

This way is usually used when one of the following three scenarios occur...

1. The main document is too large (MongoDB documents have a size limit of 16mb)

2. When some sensitive information needs to be stored (you might not want to return account
information on every user GET request).

3. When there’s an exclusive need for getting the account data without the user data (when ‘account’
is requested you don’t want to send ‘user’ information with it and/or when a ‘user’ is requested you
don’t want to send ‘account’ information with it, even though both of them are connected).

B.Sc. III YEAR V SEMESTER

12
Rahul Publications

Rahul Publications

2. One to many Relation

One to many relation, requires one entity to have an exclusive relationship with another entity but
the other entity can have relations with multiple other entities. Let’s consider a simple example to understand
this relationship better…

Consider, a user has multiple accounts, but each account can have a single user associated with it
(think about these accounts as bank accounts, it’ll let you understand the example better). In this case,
again there are two ways to handle it.

The first is to store an array of accounts in the user collection itself. This will let you GET all the
accounts associated with a user in a single call. MongoDB also has features to push and pull data from an
array in a document, which makes it quite easy to add or remove accounts from the user if need be.

User Documnet

name: Joe,

gender: male,

age: 25,

account : [

name : account 1,

name : account 2

]

The second way is to create another collection named ‘account’ and store a reference key (ideally

the ID of the account) in the ‘user’ document. The reasons to do this are the same as in the case of one to
one relations.

User Document
name: Joe,
gender: male,
age: 25,
account: [

id1,
id2

]

_id:id1,
name: account1

_id: id2,
name: account2

Account Document

Account Document

One issue with this approach is that when a new account needs to be created for a particular user,
we need to create a new account and also update the existing user document with the id of this new
account (basically requires 2 database calls). Obviously you can store the user ID in Account collection as
well, in that way, you’ll only need one call to create a new account but it depends on the system you’re
planning to build.

UNIT - I NO SQL DATA BASES

13
Rahul Publications

Rahul Publications

Before building the schema, it’s important that you plan out what kind of calls will be used more in
your system and plan your schema accordingly.

For example, in this case, since this is a bank application (assumption), you know that most of the
calls you’ll make would be getting a single user (while logging in maybe) and another call to get the
accounts associated with that user (when he goes to the accounts tab maybe) and hence the above
schema seems a pretty good one for this use case. In fact, storing user_id in the accounts’ collection would
be an even better approach in this case.

Now consider another scenario, this time it’s a public forum, users can create posts and these posts
can be viewed by the public. In this case, it’s better to store user_id in posts collection, instead of storing
post_ids in users collection, since you know that your selling point is the posts list that the users can view
and hence the calls you mostly make would be to get the posts list, with the user data associated with it
(maybe in the homepage itself, like Facebook’s timeline). This way, while updating you wouldn’t need to
update two collections.

Another scenario would be that you need both of them, that is, you need posts in users’ data as well
and users in posts data as well. This will make creating new posts a bit slow (since you need to add IDs to
the users’ collection as well), but getting data in both cases would be fast.

3. Many to many Relation

Many to many relation, doesn’t require any entity to have exclusive relations. Both entities can
have multiple relations. Let’s consider a simple example to understand this relationship better.

Consider the relationship between users and products in an eCommerce environment. There is a
list of users and there is a list of products. Any user can buy any product, meaning a user can buy multiple
products and a product can be bought by multiple users. In this case, there is just one ideal way to handle
it.

There’ll be two collections, one a collection for users and the other a collection from products.
Whenever a user buys a product, add the ID of the product as a reference in the user’s collection, and
since the user can buy multiple products, these IDs need to be stored as an array.

User Document
name: Joe,
gender: male,
age: 25,
product : [

id1,
id2

]

_id:id1,
name: product 1

_id: id2,
name: product 2

Account Document

Account Document

_id: id3,
name: product 3

Account Document
User Document

name: John,
gender: male,
age: 27,
product : [

id2,
id3

]

B.Sc. III YEAR V SEMESTER

14
Rahul Publications

Rahul Publications

When a product needs to be updated, only
that product in the product collection needs to be
updated and every user who has bought the
product will automatically get the updated product.

1.3.2 Graph Databases

Q12. Graph Based Databases in NoSQL with
its applications.

(OR)

Graph Based Data Model in NoSQL with
its applications

Ans :
Graph Based Data Model in NoSQL is a type

of Data Model which tries to focus on building the
relationship between data elements. As the name
suggests Graph-Based Data Model, each element
here is stored as a node, and the association between
these elements is often known as Links. Association
is stored directly as these are the first-class elements
of the data model. These data models give us a
conceptual view of the data.

These are the data models which are based
on topographical network structure. Obviously, in
graph theory, we have terms like Nodes, edges, and
properties, let’s see what it means here in the Graph-
Based data model.

 Nodes: These are the instances of data that
represent objects which is to be tracked.

 Edges: As we already know edges represent
relationships between nodes.

 Properties: It represents information
associated with nodes.

The below image represents Nodes with
properties from relationships represented by edges.

University

Engineering MBBS

Dental Ayurvedic

College

Working of Graph Data Model

In these data models, the nodes which are
connected together are connected physically and
the physical connection among them is also taken
as a piece of data. Connecting data in this way
becomes easy to query a relationship. This data
model reads the relationship from storage directly
instead of calculating and querying the connection
steps. Like many different NoSQL databases these
data models don’t have any schema as it is
important because schema makes the model well
and good and easy to edit.

Examples

 JanusGraph: These are very helpful in big
data analytics. It is a scalable graph database
system open source too. JanusGraph has
different features like:

 Storage: Many options are available for
storing graph data like Cassandra.

 Support for transactions: There are many
supports available like ACID (Atomicity,
Consistency, Isolation, and Durability) which
can hold thousands of concurrent users.

 Searching options: Complex searching
options are available and optional support
too.

 Neo4j: It stands for Network Exploration and
Optimization 4 Java. As the name suggests
this graph database is written in Java with
native graph storage and processing. Neo4j
has different features like:

 Scalable: Scalable through data partition-
ing into pieces known as shards.

 Higher Availability: Availability is very
much high due to continuous backups and
rolling upgrades.

 Query Language: Uses programmer-
friendly query language Cypher graph query
language.DGraph main features are:

 DGraph: It is an open-source distributed
graph database system designed with
scalability.

UNIT - I NO SQL DATA BASES

15
Rahul Publications

Rahul Publications

 Query Language: It uses GraphQL, which
is solely made for APIs.

 Open-source system: support for many
open standards.

Applications

 Graph data models are very much used in
fraud detection which itself is very much useful
and important.

 It is used in Digital asset management which
provides a scalable database model to keep
track of digital assets.

 It is used in Network management which alerts
a network administrator about problems in a
network.

 It is used in Context-aware services by giving
traffic updates and many more.

 It is used in Real-Time Recommendation
Engines which provide a better user
experience.

1.3.3 Schemaless Databases

Q13. How does a schemaless database work?

Ans : (Imp.)

A schemaless database manages information
without the need for a blueprint. The onset of
building a schemaless database doesn’t rely on
conforming to certain fields, tables, or data model
structures. There is no Relational Database
Management System (RDBMS) to enforce any
specific kind of structure.

In schemaless databases, information is stored
in JSON-style documents which can have varying
sets of fields with different data types for each field.
So, a collection could look like this:

{

name : “Joe”, age : 30, interests : ‘football’ }

{

name : “Kate”, age : 25

 }

The data itself normally has a fairly consistent
structure. With the schemaless MongoDB database,
there is some additional structure the system
namespace contains an explicit list of collections and
indexes. Collections may be implicitly or explicitly
created indexes must be explicitly declared.

Benefits

 Greater flexibility over data types: By
operating without a schema, schemaless
databases can store, retrieve, and query any
data type perfect for big data analytics and
similar operations that are powered by
unstructured data. Relational databases apply
rigid schema rules to data, limiting what can
be stored.

 No pre-defined database schemas: The
lack of schema means that your NoSQL
database can accept any data type including
those that you do not yet use. This future-
proofs your database, allowing it to grow and
change as your data-driven operations
change and mature.

 No data truncation: A schemaless database
makes almost no changes to your data; each
item is saved in its own document with a partial
schema, leaving the raw information
untouched. This means that every detail is
always available and nothing is stripped to
match the current schema. This is particularly
valuable if your analytics needs to change at
some point in the future.

 Suitable for real-time analytics
functions: With the ability to process
unstructured data, applications built on
NoSQL databases are better able to process
real-time data, such as readings and
measurements from IoT sensors. Schemaless
databases are also ideal for use with machine
learning and artificial intelligence operations,
helping to accelerate automated actions in
your business.

B.Sc. III YEAR V SEMESTER

16
Rahul Publications

Rahul Publications

 Enhanced scalability and flexibility:
With NoSQL, you can use whichever data
model is best suited to the job. Graph
databases allow you to view relationships
between data points, or you can use
traditional wide table views with an
exceptionally large number of columns. You
can query, report, and model information
however you choose. And as your
requirements grow, you can keep adding
nodes to increase capacity and power.

When a record is saved to a relational
database, anything (particularly metadata) that does
not match the schema is truncated or removed.
Deleted at write, these details cannot be recovered
at a later point in time.

A lack of rigid schema allows for increased
transparency and automation when making
changes to the database or performing a data
migration. Say you want to add GPA attributes to
student objects held in your database. You simply
add the attribute, resave, and the GPA value has
been added to the NoSQL document. If you look
up an existing student and reference GPA, it will
return null. If you roll back your code, the new GPA
fields in the existing objects are unlikely to cause
problems and do not need to be removed if your
code is well written.

1.3.4 Materialized Views

Q14. Explain in detail about Materialized
View.

Ans :

A materialized view is a replica of a target
master from a single point in time. The master can
be either a master table at a master site or a master
materialized view at a materialized view site.
Whereas in multimaster replication tables are
continuously updated by other master sites,
materialized views are updated from one or more
masters through individual batch updates, known
as a refreshes, from a single master site or master
materialized view site, as illustrated in Figure The
arrows in Figure represent database links.

Materialized
View
Site

Master
Site

Master
Site

Master
Site

mv1.world orc3.world

orc2.worldorc1.world

Materialized
View
Site

Master
Site

Master
Site

Master
Site

mv1.world orc3.world

orc2.worldorc1.world

Fig.: Materialized View Connected to a
Single Master Site

When a materialized view is fast refreshed,
Oracle must examine all of the changes to the master
table or master materialized view since the last refresh
to see if any apply to the materialized view.
Therefore, if any changes where made to the master
since the last refresh, then a materialized view refresh
takes some time to apply the changes to the
materialized view. If, however, no changes at all were
made to the master since the last refresh of a
materialized view, then the materialized view refresh
should be very quick.

Use of Materialized Views

Materialized views to achieve one or more of
the following goals:

 Ease Network Loads

 Create a Mass Deployment Environment

 Enable Data Subsetting

 Enable Disconnected Computing

Ease Network Loads

If one of your goals is to reduce network loads,
then you can use materialized views to distribute
your corporate database to regional sites. Instead
of the entire company accessing a single database
server, user load is distributed across multiple
database servers. Through the use of multitier
materialized views, you can create materialized views
based on other materialized views, which enables
you to distribute user load to an even greater extent

UNIT - I NO SQL DATA BASES

17
Rahul Publications

Rahul Publications

because clients can access materialized view sites
instead of master sites. To decrease the amount of
data that is replicated, a materialized view can be a
subset of a master table or master materialized view.

Create a Mass Deployment Environment

Deployment templates allow you to precreate
a materialized view environment locally. You can
then use deployment templates to quickly and easily
deploy materialized view environments to support
sales force automation and other mass deployment
environments. Parameters allow you to create
custom data sets for individual users without
changing the deployment template. This technology
enables you to roll out a database infrastructure to
hundreds or thousands of users.

Enable Data Subsetting

Materialized views allow you to replicate data
based on column- and row-level subsetting, while
multimaster replication requires replication of the
entire table. Data subsetting enables you to replicate
information that pertains only to a particular site.
For example, if you have a regional sales office, then
you might replicate only the data that is needed in
that region, thereby cutting down on unnecessary
network traffic.

Enable Disconnected Computing

Materialized views do not require a dedicated
network connection. Though you have the option
of automating the refresh process by scheduling a
job, you can manually refresh your materialized
view on-demand, which is an ideal solution for sales
applications running on a laptop. For example, a
developer can integrate the replication management
API for refresh on-demand into the sales application.
When the salesperson has completed the day’s
orders, the salesperson simply dials up the network
and uses the integrated mechanism to refresh the
database, thus transferring the orders to the main
office.

1.3.5 Modeling for Data Access

Q15. Write about Modeling Access Techni-
ques?

Ans : (Imp.)

NoSQL Data Modeling Access Techniques

All NoSQL data modeling techniques are
grouped into three major groups:

i) Conceptual techniques

ii) General modeling techniques

iii) Hierarchy modeling techniques

(i) Conceptual Techniques

There are three conceptual techniques for
NoSQL data modeling:

 Denormalization: Denormalization is a
pretty common technique and entails copying
the data into multiple tables or forms in order
to simplify them. With denormalization, easily
group all the data that needs to be queried
in one place. Of course, this does mean that
data volume does increase for different
parameters, which increases the data volume
considerably.

 Aggregates: This allows users to form nested
entities with complex internal structures, as
well as vary their particular structure.
Ultimately, aggregation reduces joins by
minimizing one-to-one relationships.

Most NoSQL data models have some form
of this soft schema technique. For example,
graph and key-value store databases have
values that can be of any format, since those
data models do not place constraints on value.
Similarly, another example such as BigTable
has aggregation through columns and column
families.

 Application Side Joins: NoSQL doesn’t
usually support joins, since NoSQL databases
are question-oriented where joins are done
during design time. This is compared to

B.Sc. III YEAR V SEMESTER

18
Rahul Publications

Rahul Publications

relational databases where are performed at
query execution time. Of course, this tends
to result in a performance penalty and is
sometimes unavoidable.

(ii) General Modeling Techniques

There are five general techniques for NoSQL
data modeling:

 Enumerable Keys: For the most part,
unordered key values are very useful, since
entries can be partitioned over several
dedicated servers by just hashing the key.
Even so, adding some form of sorting
functionality through ordered keys is useful,
even though it may add a bit more complexity
and a performance hit.

 Dimensionality Reduction: Geographic
information systems tend to use R-
Tree indexes and need to be updated in-
place, which can be expensive if dealing with
large datavolumes. Another traditional
approach is to flatten the 2D structure into a
plain list, such as what is done with Geohash.

With dimensionality reduction, you can map
multidimensional data to a simple key-value
or even non-multidimensional models.

Use dimensionality reduction to map
multidimensional data to a Key-Value model
or to another non-multidimensional model.

 Index Table: With an index table, take
advantage of indexes in stores that don’t
necessarily support them internally. Aim to
create and then maintain a unique table with
keys that follow a specific access pattern. For
example, a master table to store user accounts
for access by user ID.

 Composite Key Index: While somewhat of
a generic technique, composite keys are
incredibly useful when ordered keys are used.
If you take it and combine it with secondary
keys, you can create a multidimensional index
that is pretty similar to the above-mentioned
Dimensionality Reduction technique.

 Inverted Search – Direct Aggregation:
The concept behind this technique is to use
an index that meets a specific set of criteria,
but then aggregate that data with full scans
or some form of original representation.

This is more of a data processing pattern than
data modeling, yet data models are certainly
affected by using this type of processing
pattern. Take into account that random
retrieval of records required for this technique
is inefficient. Use query processing in batches
to mitigate this problem.

(iii) Hierarchy Modeling Techniques

There are seven hierarchy modeling techni-
ques for NoSQL data:

 Tree Aggregation: Tree aggregation is
essentially modeling data as a single
document. This can be really efficient when
it comes to any record that is always accessed
at once, such as a Twitter thread or Reddit
post. Of course, the problem then becomes
that random access to any individual entry is
inefficient.

 Adjacency Lists: This is a straightforward
technique where nodes are modeled as
independent records of arrays with direct
ancestors. That’s a complicated way of saying
that it allows you to search nodes by their
parents or children. Much like tree
aggregation though, it is also quite inefficient
for retrieving an entire subtree for any given
node.

 Materialized Paths: This technique is a
sort of denormalization and is used to avoid
recursive traversals in tree structures. Mainly,

UNIT - I NO SQL DATA BASES

19
Rahul Publications

Rahul Publications

we want to attribute the parents or children to each node, which helps us determine any predecessors
or descendants of the node without worrying about traversal. Incidentally, we can store materialized
paths as IDs, either as a set or a single string.

 Nested Sets: A standard technique for tree-like structures in relational databases, it’s just as
applicable to NoSQL and key-value or document databases. The goal is to store the tree leaves as
an array and then map each non-leaf node to a range of leaves using start/end indexes.

Modeling it in this way is an efficient way to deal with immutable data as it only requires a small
amount of memory, and doesn’t necessarily have to use traversals. That being said, updates are
expensive because they require updates of indexes.

 Nested Documents Flattening: Numbe-red Field Names: Most search engines tend to work
with documents that are a flat list of fields and values, rather than something with a complex
internal structure. As such, this data modeling technique tries to map these complex structures to a
plain document, for example, mapping documents with a hierarchical structure, a common difficulty
you might encounter.

Of course, this type of work is pain-staking and not easily scalable, especially as the nested structures
increase.

 Nested Documents Flattening: Proximity Queries: One way to solve the potential problems
with the Numbered Field Names data modeling technique is to use a similar technique
called Proximity Queries. These limit the distance between words in a document, which helps
increase performance and decrease query speed impact.

 Batch Graph Processing: Batch graph processing is a great technique for exploring the
relationships up or down for a node, within a few steps. It is an expensive process and doesn’t
necessarily scale very well. By using Message Passing and MapReduce we can carry out this type of
graph processing.

B.Sc. III YEAR V SEMESTER

20
Rahul Publications

Rahul Publications

1. What is a NoSQL data model?How is
data stored in NoSQL?

Ans :
It’s a model that is not reinforced by a

Relational Database Management System
(RDBMS). Therefore, the model isn’t explicit about
how the data relates – how it all connects together.

In one of the main non-relational database
models, such as a key-value store, document store,
graph data model, time series store, column-
oriented. Data can be stored on disk, in-memory,
or both.

2. What are the advantages and disadvan-
tages of Aggregate Data Model?

Ans :
Advantage

 It can be used as a primary data source for
online applications.

 Easy Replication.

 No single point Failure.

 It provides fast performance and horizontal
Scalability.

 It can handle Structured semi-structured and
unstructured data with equal effort.

Disadvantage

 No standard rules.

 Limited query capabilities.

 Doesn’t work well with relational data.

 Not so popular in the enterprise.

 When the value of data increases it is difficult
to maintain unique values.

3. What are the Advantages and Disadvan-
tages of Graph Data Model?

Ans :
Advantages

 Structure: The structures are very agile and
workable too.

 Explicit Representation: The portrayal of
relationships between entities is explicit.

 Real-time O/P Results: Query gives us real-
time output results.

Disadvantages

 No standard query language: Since the
language depends on the platform that is used
so there is no certain standard query
language.

 Unprofessional Graphs: Graphs are very
unprofessional for transactional-based
systems.

 Small User Base: The user base is small
which makes it very difficult to get support
when running into a system.

4. What are the Applications of Graph Data
Model?

Ans:
Applications

 Graph data models are very much used in
fraud detection which itself is very much useful
and important.

 It is used in Digital asset management which
provides a scalable database model to keep
track of digital assets.

 It is used in Network management which
alerts a network administrator about problems
in a network.

Short Question & Answers

UNIT - I NO SQL DATA BASES

21
Rahul Publications

Rahul Publications

 It is used in Context-aware services by giving
traffic updates and many more.

 It is used in Real-Time Recommendation
Engines which provide a better user
experience.

5. What is a relational database?

Ans :
Relational databases are a type of database

that allows users to access data that is stored in
various tables connected by a unique ID or “key.”
Using this key, users can unlock data entries related
to that key on another table, to help with inventory
management, shipping, and more. On relational
database management systems (RDBMS), users can
input SQL queries to retrieve the data needed for
specific job functions.

In a relational database, each row in the table
has a key. In the columns are data attributes. Each
record has a value for each attribute, so users can
understand the relationships between data entries
for functions like product marketing, manufacturing,
UX research, and more.

As an example, for a shoe store processing
online orders, a relational database might have two
tables with related data. In the first table, each record
includes the customer’s name, shipping address,
email, and billing information, in columns. A key is
assigned to each row. In the second table, that key
is listed alongside the product ordered, quantity, size,
color, and more. The two tables are related, and
toggled to each other, with the key. When an order
comes in, the key allows the warehouse to pull the
correct product from the shelf and ship it to the
customer.

6. What areApplications of NoSQL
Databases?

Ans :
Applications of NoSQL Databases

(i) Data Mining : When it comes to data mining,
NoSQL databases are useful in retrieving

information for data mining uses. Particularly
when it’s about large amounts of data,
NoSQL databases store data points in both
structured and unstructured formats leading
to efficient storage of big data.

(ii) Social Media Networking Sites: Social
media is full of data, both structured and
unstructured. A field that is loaded with tons
of data to be discovered, social media is one
of the most effective applications of NoSQL
databases. From comments to posts, user-
related information to advertising, social
media marketing requires NoSQL databases
to be implemented in certain ways to retrieve
useful information that can be helpful in
certain ways.

(iii) Software Development: The third applica-
tion that we will be looking at is software
development. Software development
requires extensive research on users and the
needs of the masses that are met through
software development.

(iv) Integration Databases in NoSQL:
Nowadays, an enormous amount of
information is been made each second. This
information is of different schemes-
unstructured, structured, and semi-structured
data. The variety and volume of this
information can’t be managed by traditional
databases. Therefore, NoSQL frameworks
have emerged, which is another age of
database framework.

7. What are the Features of NoSQL
Databases?

Ans :
Features

 Schema Agnostic: NoSQL Databases do
not require any specific schema or s storage
structure than traditional RDBMS.

 Scalability: NoSQL databases scale
horizontally as data grows rapidly certain
commodity hardware could be added and
scalability features could be preserved for
NoSQL.

B.Sc. III YEAR V SEMESTER

22
Rahul Publications

Rahul Publications

 Performance: To increase the performance of the NoSQL system one can add a different commodity
server than reliable and fast access of database transfer with minimum overhead.

 High Availability: In traditional RDBMS it relies on primary and secondary nodes for fetching the
data, Some NoSQL databases use master place architecture.

 Global Availability: As data is replicated among multiple servers and clouds the data is accessible
to anyone, this minimizes the latency period.

Aggregate Data Models

The term aggregate means a collection of objects that we use to treat as a unit. An aggregate is a
collection of data that we interact with as a unit. These units of data or aggregates form the boundaries for
ACID operation.

8. What is Column-Family Stores?

Ans:
Column-family Stores (Database)

Column-family databases store data in column families as rows. These rows have many columns
associated with a particular row. Column families basically contain the group of correlated data which we
can access together.

 Each column family can be compared to a container of rows in an RDBMS table where the key
identifies the row and the row consists of multiple columns.

 Rows do not need to have the same columns, and columns can be added to any row at any time
without having to add it to other rows.

 When a column consists of a map of columns, we have a super column. A super column consists of
a name and a value which is a map of columns. Think of a super column as a container of columns.

 Some Column-family databases are -

 Cassandra

 Hbase

 Hypertable

 Amazon DynamoDB

9. What is graph based Data Model in NoSQL?

Ans :
Graph Based Data Model in NoSQL is a type of Data Model which tries to focus on building the

relationship between data elements. As the name suggests Graph-Based Data Model, each element here
is stored as a node, and the association between these elements is often known as Links. Association is
stored directly as these are the first-class elements of the data model. These data models give us a conceptual
view of the data.

UNIT - I NO SQL DATA BASES

23
Rahul Publications

Rahul Publications

These are the data models which are based on topographical network structure. Obviously, in
graph theory, we have terms like Nodes, edges, and properties, let’s see what it means here in the Graph-
Based data model.

 Nodes: These are the instances of data that represent objects which is to be tracked.

 Edges: As we already know edges represent relationships between nodes.

 Properties: It represents information associated with nodes.

The below image represents Nodes with properties from relationships represented by edges.

University

Engineering MBBS

Dental Ayurvedic

College

10. What are the Major Benefits of Column Family Database?

Ans :
Four Major Benefits of Column Family Database:

 Compression: Column-based data storage stores data efficiently through data compression and
by using data partitioning.

 Aggregation Queries: Due to the structure of the column family data structure, they perform
particularly well with aggregation queries (such as SUM, COUNT, AVG etc).

 Scalability: Column databases are more scalable as compared to other databases. They are well
suited for a data structure where data is spread on a large cluster of machines, often thousands of
machines.

 Fast to load and query: Columnar stores can be loaded fast. A table containing millions of rows
can be loaded within a few seconds. We can start querying and analyzing immediately on the
loaded data.

B.Sc. III YEAR V SEMESTER

24
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Which of the following is not a NoSQL database? [a]

(a) SQL Server (b) MongoDB

(c) Cassandra (d) None of the mentioned

2. Point out the correct statement. [d]

(a) Documents can contain many different key-value pairs, or key-array pairs, or even nested
documents

(b) MongoDB has official drivers for a variety of popular programming languages and development
environments

(c) When compared to relational databases, NoSQL databases are more scalable and provide
superior performance

(d) All of the mentioned

3. Which of the following is a NoSQL Database Type? [b]

(a) SQL (b) Document databases

(c) JSON (d) All of the mentioned

4. Which of the following is a wide-column store? [a]

(a) Cassandra (b) Riak

(c) MongoDB (d) Redis

5. Point out the wrong statement. [a]

(a) Non-Relational databases require that schemas be defined before you can add data

(b) NoSQL databases are built to allow the insertion of data without a predefined schema

(c) NewSQL databases are built to allow the insertion of data without a predefined schema

(d) All of the mentioned

6. “Sharding” a database across many server instances can be achieved with . [b]

(a) LAN (b) SAN

(c) MAN (d) All of the mentioned

7. Most NoSQL databases support automatic meaning that you get high availability and
disaster recovery. [c]

(a) processing (b) scalability

(c) replication (d) all of the mentioned

UNIT - I NO SQL DATA BASES

25
Rahul Publications

Rahul Publications

8. Which of the following are the simplest NoSQL databases? [a]

(a) Key-value (b) Wide-column

(c) Document (d) All of the mentioned

9. stores are used to store information about networks, such as social connections. [d]

(a) Key-value (b) Wide-column

(c) Document (d) Graph

10. NoSQL databases is used mainly for handling large volumes of data. [a]

(a) unstructured (b) structured

(c) semi-structured (d) all of the mentioned

B.Sc. III YEAR V SEMESTER

26
Rahul Publications

Rahul Publications

Fill in the Blanks

1. stores are used to store information about networks, such as social connections.

2. NoSQL databases is used mainly for handling large volumes of data.

3. is the simplest NoSQL databases.

4. “Sharding” a database across many server instances can be achieved with .

5. is not a NoSQL database.

6. NoSQL can be referred to as .

7. Which of the following represent column in NoSQL .

8. The core principle of NoSQL is .

9. NoSQL databases are most often referred to as databases

10. is a online NoSQL developed by Cloudera.

ANSWERS

1. Graph

2. unstructured

3. Key-value

4. SAN

5. SQL Server

6. Not Only SQL

7. Field

8. High availability

9. Network, Distributed and Object-oriented

10. Hbase

UNIT - I NO SQL DATA BASES

27
Rahul Publications

Rahul Publications

One Mark Answers
1. How many types of mechanism works in NoSQL? Write down their name?

Ans :
There are four types of mechanisms:

i) Graph database

ii) Key value calculation

iii) Document oriented and

iv) Column view presentation.

2. Write down the NoSQL’s different features.

Ans :
It can store a big amount of unstructured, structured, and semi-structured data.

It is object-oriented programming based, which is best for a web application.

3. Can we use NoSQL in an Oracle-based database.

Ans :
Yes, NoSQL is applicable in the Oracle database to record data. This database helps to find out the

data records through external table functions.

4. What is a hash table? How does it work in NoSQL?

Ans :
This is like a data structure that provides an associative array of abstract data types. This table uses

to function in a complex database.

5. What is the meaning of document-oriented DB?

Ans :
This is one of the features of the NoSQL database. It helps to store the data as schema-free. As a

result, JavaScript object notation will be used, and scalability will be higher.

6. What is a Graph database?

Ans :
A graph database is one of the most important of all databases. It is mainly specific for storing and

navigating data relationships.

7. Explain the CAP theorem in NoSQL.

Ans :
It is the most reliable three guarantees for a database. CAP theorem is expertise with skills like

consistency, availability, and partition tolerance.

B.Sc. III YEAR V SEMESTER

28
Rahul Publications

Rahul Publications

8. What is the main target of NoSQL?

Ans :

Create an alternate database in SQL. It helps to store textual data in a database easily that is also in
a non-structured format.

9. Name a few of the companies that are using NoSQL.

Ans :

Some Companies are:Google, Amazon, Netflix and Facebook

10. What is the main principle of NoSQL is?

Ans :

The main principle of NoSQL is to make the database high availability.

UNIT - II NO SQL DATA BASES

29
Rahul Publications

Rahul Publications

UNIT
II

Distribution Models: Single Server, Sharding, Master-Slave Replication, Peer-to-

Peer Replication, Combining Sharding and Replication. Consistency: Update

Consistency, Read Consistency, Relaxing Consistency, Relaxing Durability, Quorums

Version Stamps: Business and System Transactions, Version Stamps on Multiple

Nodes Map-Reduce: Basic Map-Reduce, Partitioning and Combining, Composing

Map-Reduce Calculations

2.1 DISTRIBUTION MODELS

2.1.1 Single Server

Q1. Explain detail about single server in
distribution models?

Ans : (Imp.)

The primary driver of interest in NoSQL has
been its ability to run databases on a large cluster.
As data volumes increase, it becomes more difficult
and expensive to scale up buy a bigger server to
run the database on. A more appealing option is to
scale outrun the database on a cluster of servers.
Aggregate orientation fits well with scaling out
because the aggregate is a natural unit to use for
distribution

Depending on your distribution model, you
can get a data store that will give you the ability to
handle larger quantities of data, the ability to process
a greater read or write traffic, or more availability in
the face of network slowdowns or breakages. These
are often important benefits, but they come at a
cost. Running over a cluster introduces complexity-
so it’s not something to do unless the benefits are
compelling.

Broadly, there are two paths to data
distribution: replication and sharding. Replication
takes the same data and copies it over multiple
nodes. Sharding puts different data on different
nodes. Replication and sharding are orthogonal
techniques: You can use either or both of them.
Replication comes into two forms: master-slave and
peer-to-peer. We will now discuss these techniques
starting at the simplest and working up to the more
complex: first single-server, then master-slave
replication, then sharding, and finally peer-to-peer
replication.

Single Server

The first and the simplest distribution option
is the one we would most often recommend no
distribution at all. Run the database on a single
machine that handles all the reads and writes to the
data store. We prefer this option because it eliminates
all the complexities that the other options introduce;
it’s easy for operations people to manage and easy
for application developers to reason about.

Although a lot of NoSQL databases are
designed around the idea of running on a cluster, it
can make sense to use NoSQL with a single-server
distribution model if the data model of the NoSQL
store is more suited to the application. Graph
databases are the obvious category here these work
best in a single-server configuration. If your data
usage is mostly about processing aggregates, then a
single-server document or key-value store may well
be worthwhile because it’s easier on application
developers.

2.1.2 Sharding

Q2. What is Sharding in distribution
models?

Ans :
Sharding is a partitioning pattern for the

NoSQL age. It’s a partitioning pattern that places
each partition in potentially separate servers
potentially all over the world. This scale out works
well for supporting people all over the world
accessing different parts of the data set with
performance.

Sharding Often, a busy data store is busy
because different people are accessing different parts
of the data set.In these circumstances we can support

B.Sc. III YEAR V SEMESTER

30
Rahul Publications

Rahul Publications

horizontal scalability by putting different parts of the
data onto different servers a technique that’s called
“sharding”.

Each shard reads and
Writes its own data

Fig: Sharding puts different data on separate nodes,
each of which does its own reads and writes.

In the ideal case, we have different users all
talking to different server nodes. Each user only has
totalk to one server, so gets rapid responses from
that server. The load is balanced out nicely between
servers for example, if we have tenservers, each one
only has to handle 10% of the load.

When it comes to arranging the data on the
nodes, there are several factors that can help
improve performance. If you know that most
accesses of certain aggregates are based on a physical
location, you can place the data close to where it’s
being accessed. If you have orders for some one
who lives in Boston, you can place that data in
your eastern US datacenter.

Another factor is trying to keep the load even.
This means that you should try to arrange aggregates
so they are evenly distributed across the nodes
which all get equal amounts of the load. This may
varyover time, for example if some data tends to
be accessed on certain days of the weekso there
maybe domain-specific rulesyou’dlike touse.

Historically most people have done shard in
gas part of application logic. You might put all us to
with surnames starting from A to

Don one shard and E to G on another. This
complicates the programming model, as application
code needs to ensure that queries are distributed
across the various shards. Further more, rebalancing
the sharding means changing the application code

andmigrating the data. Many NoSQL databases
offer auto-sharding, where the database takes on
the responsibility of allocating data to shards and
ensuring that data access goes to the right shard.
This can make it much easier to use shard in ginan
application.

Sharding is particularly valuable for
performance because it can improve both read and
write performance. Using replication, particularly
with caching, can greatly improve read performance
but does little for applications that have a lot of
writes. Sharding provides a way to horizontally scale
writes.

Sharding does little to improve resilience when
used alone. Although the data is on different nodes,a
node failure makes that shard’s data unavailable
just as surely as it does for a single server solution.
The resilience benefits it does provide is that only
the users of the data on that shard willsuffer
however, it’s not good to have a database with part
of its data missing. With a single server it’seasier to
pay the effort and cost to keep that server up and
running; clusters usually try to use less reliable
machines, and you’re more likely to get a node
failure. So in practice, sharding alone is likely to
decrease resilience.

Despite the fact that sharding is made much
easier with aggregates, it’s still not a step to be taken
lightly. Some databases are intended from the
beginning to use sharding, in which case it’s wise to
runthem on a cluster from the very beginning of
development, and certainly in production. Other
databases use sharding as a deliberate step up from
a single-server configuration, in which case it’sbest
to start single-server and only use sharding once
your load projections clearly indicate that you are
runningoutofheadroom.

In any case the step from a single node to
sharding is going to be tricky. We have heard tales
ofteams getting into trouble because they left
sharding to very late, so when they turned it on
inproduction their database became essentially
unavailable because the sharding support consumed
all the database resources for moving the data onto
new shards. The lesson here is to use sharding well.

UNIT - II NO SQL DATA BASES

31
Rahul Publications

Rahul Publications

2.1.3 Master-Slave Replication

Q3. Elaborate on Master-Slave Replication in distribution models?

Ans : (Imp.)

Master-slave NoSQL Data Replication. The master slave technique of NoSQL Data Replication creates
a copy (master copy) of your database and maintains it as the key data source. Any updates that you may
require are made to this master copy and later transferred to the slave copies.

With master-slave distribution, you replicate data across multiple nodes. One node is designated as
the master, or primary. This master is the authoritative source for the data and is usually responsible for
processing any updates to that data. The other nodes are slaves, or secondaries. A replication process
synchronizes the slaves with the master.

All updates are
made to the master

Master

Reads can be done
from Master or slave

Slaves

Changes
propogate
to slaves

Fig.: Data is replicated from master to slaves. The master services all
writes; reads may come from either master or slaves.

Master-slave replication is most helpful for scaling when you have a read-intensive dataset. You can
scale horizontally to handle more read requests by adding more slave nodes and ensuring that all read
requests are routed to the slaves. You are still, however, limited by the ability of the master to process
updates and its ability to pass those updates on. Consequently it isn’t such a good scheme for data sets
with heavy write traffic, although off loading the read traffic will help a bit with handling the write load.

A second advantage of master-slave replication is read resilience: Should the master fail, the slaves
can still handle read requests. Again, this is useful if most of your data access is reads. The failure of the
master does eliminate the ability to handle writes until either the master is restored ora new master is
appointed. However, having slaves as replicates of the master does speed up recovery after a failure of the
monsters in slave can be appointed a new master very quickly.

The ability to appoint a slave to replace a failed master means that master-slave replication is useful
even if you don’t need to scale out. All read and write traffic can go to the master while the slave acts as a
hot backup. In this case it’s easiest to think of the system as a single-server store with a hot backup. You get
the convenience of the single-server configuration but with greater resilience which is particularly handy if
you want to be able to handle server failures gracefully.

B.Sc. III YEAR V SEMESTER

32
Rahul Publications

Rahul Publications

Masters can be appointed manually or automatically. Manual appointing typically means that when
you configure your cluster, you configure one node as the master. With automatic appointment, you
create a cluster of nodes and they elect one of themselves to be the master. Apart from simpler configuration,
automatic appointment means that the cluster can automatically appoint a new master when a master
fails, reducing downtime.

In order to get read resilience, you need to ensure that the read and write paths into your application
are different, so that you can handle a failure in the write path and still read. This includes such things as
putting the reads and writes through separate database connections a facility that is not often supported
by database interaction libraries. As with any feature, you cannot be sure you have read resilience without
good tests that disable the writes and check that reads still occur.

Replication comes with some alluring benefits, but it also comes with an inevitable dark side
inconsistency. You have the danger that different clients, reading different slaves, will see different values
because the changes haven’t all propagated to the slaves. In the worst case, that can mean that a client
cannot read a write it just made. Even if you use master-slave replication just for hot backup this can be a
concern, because if the master fails, any updates not passed on to the backup are lost.

2.1.4 Peer-to-Peer Replication

Q4. Explain about Peer-to-Peer Replication Distribution Models?

Ans :
The Peer-to-Peer NoSQL Data Replication works in the concept that every database copy is

responsible to update its data. This can only work when every copy contains an identical format of
schema and stores the same type of data. Furthermore, Database Restoration is a key requirement of this
Data Replication technique.

Master-slave replication helps with read scalability but doesn’t help with scalability of writes. Itprovides
resilience against failure of a slave, but not of a master. Essentially, the master is still abottleneck and a
single point of failure. Peer-to-peer replication attacks theseproblems by not having a master. All the
replicas have equal weight, they can all accept writes, andthelossofanyofthemdoesn’tpreventaccesstothe
datastore.

All nodes read and
Write all data

Nodes
communicate
their writes

Fig.: Peer-to-peer replication has all nodes applying reads and writes to all the data

UNIT - II NO SQL DATA BASES

33
Rahul Publications

Rahul Publications

With a peer-to-peer replication cluster, you can ride over node failures without losing access to
data. Further more, you can easily add nodes to improve your per formance. There’s much to like here
but there are complications.

The biggest complication is, again, consistency. When you can write to two different places, you run
the risk that two people will attempt to update the same record at the same time a write write conflict.
Inconsistencies on read lead to problems but at least they are relatively transient. Inconsistent writes are
forever.
2.1.5 Combining Sharding and Replication
Q5. Explain in detail about Combining Sharding and Replication?

Ans: (Imp.)
Replication and sharding are strategies that can be combined. If we use both master-slave replication

and sharding this means that we have multiple masters, but each data item only has a single master.
Depending on your configuration, you may choose a node to be a master for some data and slaves for
others, or you may dedicate nodes for master or slave duties.

Master for two shards Slave for two shards Master for one shard

Master for two shard
and slave for a shard

slave for two shards slave for one shards

Fig.: Using master-slave replication together with sharding
Using peer-to-peer replication and sharding is a common strategy for column-family databases. In

a scenario like this you might have tensor hundreds of nodes in a cluster with data sharded over them.
A good starting point for peer-to-peer replication is to have a replication factor of 3, so each shard

is present on three nodes. Should a node fail, then the shards on that node will be built on the other
nodes .

Fig.: Using peer-to-peer replication together with sharding

B.Sc. III YEAR V SEMESTER

34
Rahul Publications

Rahul Publications

Key Points

There are two styles of distributing data:

 Sharding distributes different data across
multiple servers, so each server acts as the
single source for a subset of data.

 Replication copies data across multiple servers,
so each bit of data can be found in multiple
places.

A system may use either or both techniques.

Replication comes in two forms:

 Master-slave replication makes one node the
authoritative copy that handles writes while
slaves synchronize with the master and may
handle reads.

 Peer-to-peer replication allows writes to any
node; the nodes coordinate to synchronize
their copies of the data.

Master-slave replication reduces the chance
of update conflicts but peer-to-peer replication
avoids loading all writes onto a single point of failure.

2.2 CONSISTENCY

2.2.1 Update Consistency

Q6. What is consistency? Explain in detail
about Update Consistency.

Ans:
Meaning

Consistency can be simply defined by how
the copies from the same data may vary within the
same replicated database system. When the
readings on a given data object are inconsistent with
the last update on this data object, this is a consistency
anomaly.

For many years, system architects would not
compromise when it came to storing data and
retrieving it. The ACID (Atomicity, Consistency,
Isolation, and Durability) properties were the blue
prints for every database management system.
Therefore, strong consistency was not a choice. It
was a requirement for all systems.

The Internet has grown to a point where
billions of people have access to it, not only from a
desktop but also from smartphones, smartwatches,
and even other servers and services. Now-a-day’s

systems need to scale. The “traditional” monolithic
database architecture, based on a powerful server,
does not guarantees the high availability and network
partition required by today’s web-scale systems, as
demonstrated by the CAP (Consistency, Availability,
and Network Partition Tolerance) theorem. To
achieve such requirements, systems cannot impose
strong consistency.

Traditional relational database architectures
usually have a single database instance responding
to a few hundred clients. Relational databases
implement the strongest consistency model, where
each transaction must be immediately committed,
and all clients will operate over valid data states.
Reads from the same object will present the same
value to all simultaneous client requests. Although
strong consistency is the ideal requirement for a
database, it deeply compromises horizontal-
scalability. Horizontal scalability is a more affordable
approach when compared to vertical scalability, for
enabling higher throughput and the distribution/
replication of data across distinct database nodes.
On the other hand, vertical scalability relies on a
single powerful database server to store data and
answer all requests. Although horizontal scaling may
seem preferable, CAP theorem shows that when
network partitions occur, one has to opt between
availability and consistency.

To help solve this problem, NoSQL database
systems have emerged. These systems have been
created with a standard requirement in mind,
scalability. Some NoSQL databases designers have
chosen higher Availability over a more relaxed
consistency strategy, an approach known as BASE
(Basically Available, Soft-state and Eventually
consistent). The most common NoSQL database
systems can be organized into four categories,
document databases, column databases, key-value
stores, and graph databases.

There are also hybrid categories that mix
multiple data models known has multi-model
databases. In this work, our goal is to study how
consistency is implemented over different non-cloud
NoSQL databases. The designers of these database
systems have devised different strategies to handle
consistency, thus assuming variable trade offs
between consistency and other quality attributes,
such as availability, latency, and network partitioning
tolerance we compare the consistency models

UNIT - II NO SQL DATA BASES

35
Rahul Publications

Rahul Publications

provided by five of the most popular non-cloud
NoSQL database systems. One self-imposed
constraint was to select at least one database of each
sub-category: Key-value database (Redis); column
database (Cassandra); document database
(MongoDB), graph database (Neo4j), and multi-
model database (Orient DB).

2.2.2 Read Consistency

Q7. What is Read Consistency?

(OR)

Explain in detail about Read Consis-
tency

Ans :
Meaning

“Read Consistency” is one of the “Transaction
Isolation” levels that describe how good concurrent
transactions are isolated from each-other (i.e. in how
far they can treat the database as if only they work
on it) we can conclude that the probability of
consistency over time is constant, resulting in 100%.
That is because each write or read operation is
executed on every node available before
acknowledging the result to the client. Therefore,
this configuration makes the Cassandra cluster strong
consistent.

ONE Read Consistency Level and QUORUM

Write Consistency Level In, the consistency
of a given data object eventually gets to 100%. A
write operation needs three updated copies to
acknowledge a successful write operation and a read
operation returns the first copy the coordinator
funds. The time that it is needed to reach 100%
consistency is the time that the cluster needs to make
all the number of copies previously set on the
Replication Factor.

With Read Consistency Level ONE Cassandra
will depend on the periodically Read Repair routines
set by the Read Repair Chance to update all the
copies of the data object and return all the time the
same latest version.

QUORUM Read Consistency Level and ONE
Write Consistency Level From: we can conclude that
the time needed to reach full consistency of a given
data object is the shortest of all configurations here
(excluding the Figure 5 configuration). Three nodes

are approached by the coordinator and the most
updated version among them is returned. For each
read operation, Cassandra cluster uses its Read
Repair feature to propagate to all three nodes inside
the Quorum (the three nodes), so that they all have
the most updated version of the requested data
among them. Because Read Repair is always
triggered by a read, the cluster reaches full
consistency faster on the given data object.

ONE Read Consistency Level and ONE
Write Consistency Level: we have the strongest
form of eventual consistency configuration in
Cassandra. We need just one node with the updated
data to acknowledge the write operation. For the
reads, the first node the coordinator node chooses
will retrieve the requested data. This may or may
not be the most updated version of the data object.
Eventually, the most updated version will be
returned on all requests. The time needed to get to
a 100% probability of consistency will depend on
the Read Repair Chance and the Replication Factor.
The higher the probability of the Read Repair
Chance, the shorter the time to get to full consistency.
The lower the Replication Factor, the shorter the
time to get to full consistency. Modifying the Read
Repair Chance and the Replication Factor to reach
consistency faster will result in higher latencies
because more copies and nodes are involved in the
read and write operations for each client request.

2.2.3 Relaxing Consistency

Q8. What is Relaxing Consistency in
NoSQL?

Ans :
Distributed systems can be highly available

and durable. It’s possible for data to be inconsistent;
a query might return old or stale data. It might this
phenomenon described as being eventually
consistent.

Data analysis has replaced data acquisition as
the bottleneck to evidence-based decision making
we are drowning in it. Extracting knowledge from
large, heterogeneous, and noisy datasets requires
not only powerful computing resources, but the
programming abstractions to use them effectively.
The abstractions that emerged in the last decade
blend ideas from parallel databases, distributed
systems, and programming languages to create a

B.Sc. III YEAR V SEMESTER

36
Rahul Publications

Rahul Publications

new class of scalable data analytics platforms that
form the foundation for data science at realistic scales.
In this course, you will learn the landscape of
relevant systems, the principles on which they rely,
their tradeoffs, and how to evaluate their utility
against your requirements.

We will learn how practical systems were
derived from the frontier of research in computer
science and what systems are coming on the horizon.
Cloud computing, SQL and NoSQL databases, Map
Reduce and the ecosystem it spawned, Spark and
its contemporaries, and specialized systems for
graphs and arrays will be covered. we will also learn
the history and context of data science, the skills,
challenges, and methodologies the term implies, and
how to structure a data science project.

Learning Goals

1. Describe common patterns, challenges, and
approaches associated with data science
projects, and what makes them different from
projects in related fields.

2. Identify and use the programming models
associated with scalable data manipulation,
including relational algebra, MapReduce, and
other data flow models.

3. Use database technology adapted for large-
scale analytics, including the concepts driving
parallel databases, parallel query processing,
and in-database analytics

4. Evaluate key-value stores and NoSQL
systems, describe their tradeoffs with
comparable systems, the details of important
examples in the space, and future trends.

5. “Think” in MapReduce to effectively write
algorithms for systems including Hadoop and
Spark. You will understand their limitations,
design details, their relationship to databases,
and their associated ecosystem of algorithms,
extensions, and languages. write programs in
Spark.

6. Describe the landscape of specialized Big Data
systems for graphs, arrays, and streams.

2.2.4 Relaxing Durability

Q9. What is relaxing durability in NoSQL?

Ans:
Relaxed-durability databases trade the full

durability of committed transactions for enhanced
runtime performance for transactional workloads.
A relaxed-durability database created with the non
recovery level is similar to an in-memory database:
you cannot recover data or logs if the server
terminates or is shut down.

In-memory databases reside entirely in cache
and do not use disk storage for data or logs, and
therefore do not require disk I/O. This results in
potentially better performance than a traditional
disk-resident database, as well as other advantages.
However, since an in-memory database exists only
in cache, you cannot recover the database if the
supporting host is shut down or the database fails.

With relaxed-durability databases, Adaptive
Server extends the performance benefits of an in-
memory database to disk-resident databases. Disk-
resident databases perform writes to disk, and ensure
that the transactional ACID (atomicity, consistency,
integrity, and durability) properties are maintained.
A traditional disk-resident database operates at full
durability to guarantee transactional recovery from
a server failure. Relaxed-durability databases trade
the full durability of committed transactions for
enhanced runtime performance for transactional
workloads. A relaxed-durability database created
with the non recovery level is similar to an in-
memory database: you cannot recover data or logs
if the server terminates or is shut down. You can
also create a relaxed-durability database with the at
shutdown level, where transactions are written to
disk if there is a proper shutdown of the database.

Replication Server Support

Replication Server supports as the replicate
database the in-memory databases and relaxed-
durability databases set with durability at
nonrecovery.

Minimal DML Logging and Replication

To optimize the log records that are flushed
to the transaction log on disk, Adaptive Server can
perform minimal to no logging when executing

UNIT - II NO SQL DATA BASES

37
Rahul Publications

Rahul Publications

some data manipulation language (DML) commands: insert, update, delete, and slow upon all types of
low-durability databases, such as in-memory databases and relaxed-durability databases set with durability
of at shutdown or nonrecovery.

2.2.5 Quorums

Q10. Explain in detail about Quorum?

Ans :
Quorum is a relationship that exists when two or more server instances in a database mirroring

session are connected to each other. Typically, quorum involves three interconnected server instances.
When a witness is set, quorum is required to make the database available.

Whenever a witness is set for a database mirroring session, quorum is required. Quorum is a
relationship that exists when two or more server instances in a database mirroring session are connected
to each other. Typically, quorum involves three interconnected server instances. When a witness is set,
quorum is required to make the database available. Designed for high-safety mode with automatic fail
over, quorum makes sure that a database is owned by only one partner at a time.

If a particular server instance becomes disconnected from a mirroring session, that instance loses
quorum. If no server instances are connected, the session loses quorum and the database becomes
unavailable. Three types of quorum are possible:

 A full quorum includes both partners and the witness.

 A witness-to-partner quorum consists of the witness and either partner.

 A partner-to-partner quorum consists of the two partners.

The following figure shows these types of quorum.

Key
Partner = principal
or mirror server

witness

Full quorum

partner partner

witness

partnerpartner

Quorum of witness and one partner

Quorum of partners

witness

partner partner

B.Sc. III YEAR V SEMESTER

38
Rahul Publications

Rahul Publications

As long as the current principal server has
quorum, this server owns the role of principal and
continues to serve the database, unless the database
owner performs a manual failover. If the principal
server loses quorum, it stops serving the database.
Automatic failover can occur only if the principal
database has lost quorum, which guarantees that it
is no longer serving the database.

A disconnected server instance saves its most
recent role in the session. Typically, a disconnected
server instance reconnects to the session when it
restarts and regains quorum.

Quorum in High-Safety Mode Sessions

In high-safety mode, quorum allows auto-
matic failover by providing a context in which the
server instances with quorum arbitrate which partner
owns the role of principal. The principal server serves
the database if it has quorum. If the principal server
loses quorum when the synchronized mirror server
and witness retain quorum, automatic failover
occurs.

The quorum scenarios for high-safety mode
are as follows:

 A full quorum that consists of both partners
and the witness.

Ordinarily, all three server instances participate
in a three-way quorum, called a full quorum.
With a full quorum, the principal and mirror
servers continue to perform their respective
roles (unless manual failover occurs).

 A witness-to-partner quorum that consists of
the witness and either partner.

If the network connection between the
partners is lost because one of the partners
has been lost, the following cases are possible:

 The mirror server is lost, and the principal
server and witness retain quorum.

In this case, the principal sets its database to
DISCONNECTED and runs with mirroring
in a SUSPENDED state. (This is referred to
as running exposed, because the database
is currently not being mirrored.) When the
mirror server rejoins the session, the server
regains quorum as mirror and starts
resynchronizing its copy of the database.

 The principal server is lost, and the
witness and the mirror server retain
quorum.

In this case, automatic failover occurs.
For more information, see Database
Mirroring Operating Modes.

 All the server instances lose quorum, but
subsequently the mirror and witness
reconnect. The database will not be
served in this case.

Rarely, the network connection between
failover partners is lost while both partners
remain connected to the witness. In this event,
two, separate witness-to-partner quorums
exist, with the witness as a liaison. The witness
informs the mirror server that the principal
server is still connected. Therefore, automatic
failover does not occur. Instead, the mirror
server retains the mirror role and waits to
reconnect to the principal. If the redo queue
contains log records at this point, the mirror
server continues to roll forward the mirror
database. On reconnecting, the mirror server
will resynchronize the mirror database.

 A partner-to-partner quorum that consists of
the two partners.

As long as the partners retain quorum, the
database continues in a SYNCHRONIZED
state, and manual failover remains possible.
Without the witness, automatic failover is not
possible; but when the witness regains
quorum, the session resumes regular
operation, and automatic failover is supported
again.
The session loses quorum:

If all the server instances become discon-
nected from each other, the session is said to
have lost quorum. As server instances
reconnect to each other, they regain quorum
with each other.

 If the principal server reconnects with either
of the other server instances, the database
becomes available.

 If the principal server remains disconnected,
but the mirror and witness reconnect to each
other, automatic failover cannot occur

UNIT - II NO SQL DATA BASES

39
Rahul Publications

Rahul Publications

because data loss might occur. Therefore, the
database remains unavailable, until the
principal server rejoins the session.

 When all three server instances have
reconnected, full quorum is regained, and
the session resumes its regular operation.

2.3 VERSION STAMPS

2.3.1 Business and System Transactions

Q11. Explain Business and system Transac-
tions with an example?

Ans : (Imp.)

A NoSQL originally referring to non-SQL or
nonrelational is a database that provides a
mechanism for storage and retrieval of data. In this
article, we will see NoSQL transactions. There are
some features of NoSQL:

 It has the feature of Horizontal Scaling.

 The main advantage of using NoSQL is that
it is easy to use for developers.

 NoSQL has very flexible schemas.

Types of NoSQL Database

 Key-Value Databases: They contain only
keys and values which is why they are called
simpler types of databases.

 Document Database: In these databases,
they contain fields and values and they always
store the document similar to JSON.

 Wide Column Stores: These are the special
NoSQL databases because they store data in
form of tables, rows, and columns.

 Graph Databases: Here are Nodes and
Edges present where nodes are used for
storing information about places, things, and
people also. while edges are used for storing
information regarding the relationship
between the nodes.

Transactions in NoSQL

Here transactional semantics are described in
terms of ACID properties:

 Atomicity: It means the transaction can
either be completed or fails completely. There
is not a partial completion of the transaction
in it.

 Consistency: The database always is in a
consistent state while the transactions are at
the beginning and end. The data should be
consistent when the transaction begins and
ends.

 Isolation: Isolation is the main property as it
means when two transactions are being held
at the same time we get the same result when
the transaction is executed in sequence or the
transaction is executed in parallel.

 Durability: When the transaction is being
ended it cannot be reversed as stated by this
property of transaction. It also states that any
changes in transactions should be saved.

NoSQL database maintains all these
properties, Here in Consistency database provides
various different consistency policies. At one end
application can specify the absolute consistency
which actually guarantees that all reads return the
most recently written value for a given designated
key. wherever at the other end application has the
capability to tolerate the inconsistent data and can
specify weak consistency.

Isolation’s main aim is to ensure that an
operation is independent of other concurrent
operations and even has the capability of optimistic/
pessimistic locking.

Durability mainly tells us that data is stored in
a case when the system failure occurs. In durability
the data is durable enough if the disk fails the data
can be stored in any other case memory even the
memory sometimes can be crashed but if data is
durable the data can be saved anywhere and can
be fetched when it is to be used.

Importance of ACID Transactions

These all acid transactions we read above
have to ensure the highest possibility for reliability
and integrity of data. These acid transactions ensure
that our data never falls into an inconsistent state
because the operation or task is only partially
completed or cannot be completed. ACID properties
provide correctness and consistency to our database.

B.Sc. III YEAR V SEMESTER

40
Rahul Publications

Rahul Publications

Working of ACID Transactions:

We discuss the working of ACID transactions
by taking the example :

A = 100

S1

B = 50

S2

We have to send 50 from S1 to S2 so we
have to know here how the ACID transaction works
in such an operation:

1. Atomicity

The atomicity ensures that the full operation
takes place or is aborted back. It ensures that
both operations take place or neither even
one cannot take place.

 First operation S1: A – 50;

 Second operation S2: B + 50;

2. Consistency

Consistency property ensures that the integrity
of transactions is maintained properly. Such
as:

 Before transaction S1: A + B = 150.
(A = 100, B = 50).

 After transaction: S2: A + B = 150. (A
= 50, B = 100).

3. Isolation

Isolation ensures that if the two transactions
are going on no other transaction can be
accessed between them. It means two
operations can be done at one time and no
other operation or task can interfere with
them.

Such as if two operations such as A – 50 and
B + 50 are working no third transaction can
interfere with them.

4. Durability

As we discussed above one time it completes
the operation cannot be reversed after it. If
all transactions are completed it cannot go
back to its previous steps.

2.3.2 Version Stamps on Multiple Nodes

Q12. What are Version Stamps on Multiple
Nodes in No SQL Database?

Ans : (Imp.)

The basic version stamp works well when you
have a single authoritative source for data, such as
a single server or master-slave replication. In that
case the version stamp is controlled by the master.
Any slaves follow the master’s stamps. But this
system has to be enhanced in a peer-to-peer
distribution model because there’s no longer a single
place to set the version stamps.

If you’re two nodes for some data, you run
into the chance that they may give you different
answers. If this happens, your reaction may vary
depending on the cause of that difference. It may
be that an update has only reached one node but
not the other, in which case you can accept the latest
(assuming you can tell which one that is).
Alternatively, you may have run into an inconsistent
update, in which case you need to decide how to
deal with that. In this situation, a simple GUID, since
these don’t tell you enough about the relationships.

The simplest form of version stamp is a
counter. Each time a node updates the data, it
increments the counter and puts the value of the
counter into the version stamp. If you have blue
and green slave replicas of a single master, and the
blue node answers with a version stamp of 4 and
the green node with 6, you know that the green’s
answer is more recent.

In multiple-master cases, we need something
fancier. One approach, used by distributed version
control systems, is to ensure that all nodes contain
a history of version stamps. That way you can see if
the blue node’s answer is an ancestor of the green’s
answer. This would either require the clients to hold
onto version stamp histories, or the server nodes to
keep version stamp histories and include them when
asked for data. This also detects an inconsistency,
which we would see if we get two version stamps
and neither of them has the other in their histories.
Although version control systems keep these kinds
of histories, they aren’t found in NoSQL databases.

UNIT - II NO SQL DATA BASES

41
Rahul Publications

Rahul Publications

A simple but problematic approach is to use
timestamps. The main problem here is that it’s
usually difficult to ensure that all the nodes have a
consistent notion of time, particularly if updates can
happen rapidly. Should a node’s clock get out of
sync, it can cause all sorts of trouble. In addition,
you can’t detect write-write conflicts with timestamps,
so it would only work well for the single-master case-
and then a counter is usually better.

The most common approach used by peer-
to-peer NoSQL systems is a special form of version
stamp which we call a vector stamp. In essence, a
vector stamp is a set of counters, one for each node.
A vector stamp for three nodes (blue, green, black)
would look something like [blue: 43, green: 54,
black: 12]. Each time a node has an internal update,
it updates its own counter, so an update in the green
node would change the vector to [blue: 43, green:
55, black: 12]. Whenever two nodes communicate,
they synchronize their vector stamps. There are
several variations of exactly how this synchronization
is done. We’re coining the term “vector stamp” as a
general term in this book; you’ll also come across
vector clocks and version vectors—these are specific
forms of vector stamps that differ in how they
synchronize.

By using this scheme, you can tell if one
version stamp is newer than another because the
newer stamp will have all its counters greater than
or equal to those in the older stamp. So [blue: 1,
green: 2, black: 5] is newer than [blue:1, green: 1,
black 5] since one of its counters is greater. If both
stamps have a counter greater than the other, e.g.
[blue: 1, green: 2, black: 5] and [blue: 2, green: 1,
black: 5], then you have a write-write conflict.

There may be missing values in the vector, in
which case we use treat the missing value as 0. So
[blue: 6, black: 2] would be treated as [blue: 6,
green: 0, black: 2]. This allows you to easily add
new nodes without invalidating the existing vector
stamps.

Vector stamps are a valuable tool that spots
inconsistencies, but doesn’t resolve them. Any
conflict resolution will depend on the domain you
are working in. This is part of the consistency/latency
tradeoff. You either have to live with the fact that
network partitions may make your system
unavailable, or you have to detect and deal with
inconsistencies.

Key Points

 Version stamps help you detect concurrency
conflicts. When you read data, then update
it, you can check the version stamp to ensure
nobody updated the data between your read
and write.

 Version stamps can be implemented using
counters, GUIDs, content hashes, times
tamps, or a combination of these.

 With distributed systems, a vector of version
stamps allows you to detect when different
nodes have conflicting updates.

2.4 MAP-REDUCE

2.4.1 Basic Map-Reduce

Q13. What is Basic Map-Reduce? Explain in
detail how the data is processing?

Ans: (Imp.)

Meaning

A MapReduce is a data processing tool which
is used to process the data parallelly in a distributed
form. It was developed in 2004, on the basis of
paper titled as “MapReduce: Simplified Data
Processing on Large Clusters,” published by Google.

The MapReduce is a paradigm which has two
phases, the mapper phase, and the reducer phase.
In the Mapper, the input is given in the form of a
key-value pair. The output of the Mapper is fed to
the reducer as input. The reducer runs only after
the Mapper is over. The reducer too takes input in
key-value format, and the output of reducer is the
final output.

Steps in Map Reduce

 The map takes data in the form of pairs and
returns a list of <key, value> pairs. The keys
will not be unique in this case.

 Using the output of Map, sort and shuffle are
applied by the Hadoop architecture. This sort
and shuffle acts on these lists of <key, value>
pairs and sends out unique keys and a list of
values associated with this unique key <key,
list(values)>.

B.Sc. III YEAR V SEMESTER

42
Rahul Publications

Rahul Publications

 An output of sort and shuffle sent to the reducer phase. The reducer performs a defined function
on a list of values for unique keys, and Final output <key, value> will be stored/displayed.

MapReduce Algorithm

MapReduce paradigm is based on sending map-reduce programs to computers where the actual
data resides.

 During a MapReduce job, Hadoop sends Map and Reduce tasks to appropriate servers in the
cluster.

 The framework manages all the details of data-passing like issuing tasks, verifying task completion,
and copying data around the cluster between the nodes.

 Most of the computing takes place on the nodes with data on local disks that reduces the network
traffic.

 After completing a given task, the cluster collects and reduces the data to form an appropriate
result, and sends it back to the Hadoop server.

O
u
t
p
u
t

D
a
t
a

I
n
p
u
t

D
a
t
a

Reduce()

Reduce()

Map()

Map()

Map()

Usage

 It can be used in various application like document clustering, distributed sorting, and web link-
graph reversal.

 It can be used for distributed pattern-based searching.

 We can also use MapReduce in machine learning.

 It was used by Google to regenerate Google’s index of the World Wide Web.

 It can be used in multiple computing environments such as multi-cluster, multi-core, and mobile
environment

Data Flow in MapReduce

MapReduce is used to compute the huge amount of data . To handle the upcoming data in a
parallel and distributed form, the data has to flow from various phases.

Input Reader Map Function Partition
Function

Shuffling and
Sorting

Reduce
Function

Output
WriterInput Reader Map Function Partition

Function
Shuffling and

Sorting
Reduce
Function

Output
Writer

UNIT - II NO SQL DATA BASES

43
Rahul Publications

Rahul Publications

Phases of MapReduce data flow

1. Input reader

The input reader reads the upcoming data
and splits it into the data blocks of the appropriate
size (64 MB to 128 MB). Each data block is associated
with a Map function.

Once input reads the data, it generates the
corresponding key-value pairs. The input files reside
in HDFS.

2. Map function

The map function processes the upcoming
key-value pairs and generated the corresponding
output key-value pairs. The map input and output
type may be different from each other.

3. Partition function

The partition function assigns the output of
each Map function to the appropriate reducer. The
available key and value provide this function. It
returns the index of reducers.

4. Shuffling and Sorting

The data are shuffled between/within nodes
so that it moves out from the map and get ready to
process for reduce function. Sometimes, the shuffling
of data can take much computation time.

The sorting operation is performed on input
data for Reduce function. Here, the data is
compared using comparison function and arranged
in a sorted form.

5. Reduce function

The Reduce function is assigned to each
unique key. These keys are already arranged in
sorted order. The values associated with the keys
can iterate the Reduce and generates the
corresponding output.

6. Output writer

Once the data flow from all the above phases,
Output writer executes. The role of Output writer is
to write the Reduce output to the stable storage.

2.4.2 Partitioning and Combining

Q14. Explain about Partitioning and Combin-
ing with an example?

Ans : (Imp.)

A partitioner works like a condition in
processing an input dataset. The partition phase
takes place after the Map phase and before the
Reduce phase.

The number of partitioners is equal to the
number of reducers. That means a partitioner will
divide the data according to the number of reducers.
Therefore, the data passed from a single partitioner
is processed by a single Reducer.

Partitioner

A partitioner partitions the key-value pairs of
intermediate Map-outputs. It partitions the data using
a user-defined condition, which works like a hash
function. The total number of partitions is same as
the number of Reducer tasks for the job. Let us
take an example to understand how the partitioner
works.

MapReduce Partitioner Implementation

For the sake of convenience, let us assume
we have a small table called Employee with the
following data. We will use this sample data as our
input dataset to demonstrate how the partitioner
works.

Id Name Age Gender Salary

1201 gopal 45 Male 50,000

1202 manisha 40 Female 50,000

1203 khalil 34 Male 30,000

1204 prasanth 30 Male 30,000

1205 kiran 20 Male 40,000

1206 laxmi 25 Female 35,000

1207 bhavya 20 Female 15,000

1208 reshma 19 Female 15,000

1209 kranthi 22 Male 22,000

1210 Satish 24 Male 25,000

1211 Krishna 25 Male 25,000

1212 Arshad 28 Male 20,000

1213 lavanya 18 Female 8,000

B.Sc. III YEAR V SEMESTER

44
Rahul Publications

Rahul Publications

We have to write an application to process
the input dataset to find the highest salaried
employee by gender in different age groups (for
example, below 20, between 21 to 30, above 30).

Input Data

The above data is saved as input.txt in the “/
home/hadoop/hadoopPartitioner” directory and
given as input.

1201 gopal 45 Male 50000

1202 manisha 40 Female 51000

1203 khaleel 34 Male 30000

1204 prasanth 30 Male 31000

1205 kiran 20 Male 40000

1206 laxmi 25 Female 35000

1207 bhavya 20 Female 15000

1208 reshma 19 Female 14000

1209 kranthi 22 Male 22000

1210 Satish 24 Male 25000

1211 Krishna 25 Male 26000

1212 Arshad 28 Male 20000

1213 lavanya 18 Female 8000

Based on the given input, following is the
algorithmic explanation of the program.

Map Tasks

The map task accepts the key-value pairs as
input while we have the text data in a text file. The
input for this map task is as follows:

Input

The key would be a pattern such as “any
special key + filename + line number” (example:
key = @input1) and the value would be the data
in that line (example: value = 1201 \t gopal \t 45 \t
Male \t 50000).

Method

The operation of this map task is as follows:

 Read the value (record data), which comes
as input value from the argument list in a
string.

 Using the split function, separate the gender
and store in a string variable.

String[] str = value.toString().split(“\t”, -3);

String gender=str[3];

 Send the gender information and the record
data value as output key-value pair from
the map task to the partition task.

context.write(new Text(gender), new
Text(value));

Output

Finally, you will get a set of key-value pair
data in three collections of different age groups. It
contains the max salary from the Male collection
and the max salary from the Female collection in
each age group respectively.

After executing the Map, the Partitioner, and
the Reduce tasks, the three collections of key-value
pair data are stored in three different files as the
output.

All the three tasks are treated as MapReduce
jobs. The following requirements and specifications
of these jobs should be specified in the
Configurations:

 Job name

 Input and Output formats of keys and values

 Individual classes for Map, Reduce, and
Partitioner tasks

A Combiner, also known as a semi-
reducer, is an optional class that operates by
accepting the inputs from the Map class and
thereafter passing the output key-value pairs to the
Reducer class.

The main function of a Combiner is to
summarize the map output records with the same
key. The output (key-value collection) of the
combiner will be sent over the network to the actual
Reducer task as input.

Combiner

The Combiner class is used in between the
Map class and the Reduce class to reduce the volume
of data transfer between Map and Reduce. Usually,
the output of the map task is large and the data
transferred to the reduce task is high.

UNIT - II NO SQL DATA BASES

45
Rahul Publications

Rahul Publications

The following MapReduce task diagram shows the COMBINER PHASE.

M M M M M M M

Input I/P Input Input Input Input Input

k1:v k1:v k2:v k1:v k1:v k1:v k2:v k1:v k1:v k2:v k1:v k1:v k2:vk4:v

Group by KeyCOMBINER PHASE

k1:v,v,v,v k2:v k3:v,v k4:v,v,v k5:v

R R R R R

OUTPUT

Working of Combiner

Here is a brief summary on how MapReduce Combiner works:

 A combiner does not have a predefined interface and it must implement the Reducer interface’s
reduce() method.

 A combiner operates on each map output key. It must have the same output key-value types
as the Reducer class.

 A combiner can produce summary information from a large dataset because it replaces the
original Map output.

 Although, Combiner is optional yet it helps segregating data into multiple groups for Reduce
phase, which makes it easier to process.

MapReduce Combiner Implementation

The following example provides a theoretical idea about combiners. Let us assume we have the
following input text file named input.txt for MapReduce.

What do you mean by Object

What do you know about Java

What is Java Virtual Machine

How Java enabled High Performance

The important phases of the MapReduce program with Combiner are shown below.

Record Reader

This is the first phase of MapReduce where the Record Reader reads every line from the input text
file as text and yields output as key-value pairs.

Input: Line by line text from the input file.

Output: Forms the key-value pairs. The following is the set of expected key-value pairs.

<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

B.Sc. III YEAR V SEMESTER

46
Rahul Publications

Rahul Publications

Map Phase

The Map phase takes input from the Record Reader, processes it, and produces the output as
another set of key-value pairs.

Input

The following key-value pair is the input taken from the Record Reader.

<1, What do you mean by Object>

<2, What do you know about Java>

<3, What is Java Virtual Machine>

<4, How Java enabled High Performance>

The Map phase reads each key-value pair, divides each word from the value using StringTokenizer,
treats each word as key and the count of that word as value. The following code snippet shows the
Mapper class and the map function.

Output

The expected output is as follows:

<What,1><do,1><you,1><mean,1><by,1><Object,1>

<What,1><do,1><you,1><know,1><about,1><Java,1>

<What,1><is,1><Java,1><Virtual,1><Machine,1>

<How,1><Java,1><enabled,1><High,1><Performance,1>

The Combiner phase reads each key-value pair, combines the common words as key and values as
collection. Usually, the code and operation for a Combiner is similar to that of a Reducer. Following is the
code snippet for Mapper, Combiner and Reducer class declaration.

Reducer Phase

The Reducer phase takes each key-value collection pair from the Combiner phase, processes it,
and passes the output as key-value pairs. Note that the Combiner functionality is same as the Reducer.

Input

The following key-value pair is the input taken from the Combiner phase.

<What,1,1,1><do,1,1><you,1,1><mean,1><by,1><Object,1>

<know,1><about,1><Java,1,1,1>

<is,1><Virtual,1><Machine,1>

<How,1><enabled,1><High,1><Performance,1>

Output

The expected output from the Reducer phase is as follows:

<What,3><do,2><you,2><mean,1><by,1><Object,1>

<know,1><about,1><Java,3>

<is,1><Virtual,1><Machine,1>

<How,1><enabled,1><High,1><Performance,1>

UNIT - II NO SQL DATA BASES

47
Rahul Publications

Rahul Publications

Record Writer

This is the last phase of MapReduce where the Record Writer writes every key-value pair from the
Reducer phase and sends the output as text.

Input

Each key-value pair from the Reducer phase along with the Output format.

Output

It gives you the key-value pairs in text format. Following is the expected output.

What 3

do 2

you 2

mean 1

by 1

Object 1

know 1

about 1

Java 3

is 1

Virtual 1

Machine 1

How 1

enabled 1

High 1

Performance 1

2.4.3 Composing Map-Reduce Calculations

Q15. Explain Composing Map-Reduce Calculation with an example?

Ans : (Imp.)

MapReduce is a programming model used for efficient processing in parallel over large data-sets in
a distributed manner. The data is first split and then combined to produce the final result. The libraries for
MapReduce is written in so many programming languages with various different-different optimizations

A Word Count Example of MapReduceCalculation:

How a MapReduce works by taking an example a text file called example.txt whose contents are as
follows:

Dear, Bear, River, Car, Car, River, Deer, Car and Bear

Now, suppose, we have to perform a word count on the sample.txt using MapReduce. So, we will
be finding the unique words and the number of occurrences of those unique words.

B.Sc. III YEAR V SEMESTER

48
Rahul Publications

Rahul Publications First, we divide the input into three splits as shown in the figure. This will distribute the work among
all the map nodes.

 Then, we tokenize the words in each of the mappers and give a hardcoded value (1) to each of the
tokens or words. The rationale behind giving a hardcoded value equal to 1 is that every word, in
itself, will occur once.

 Now, a list of key-value pair will be created where the key is nothing but the individual words and
value is one. So, for the first line (Dear Bear River) we have 3 key-value pairs – Dear, 1; Bear, 1;
River, 1. The mapping process remains the same on all the nodes.

 After the mapper phase, a partition process takes place where sorting and shuffling happen so that
all the tuples with the same key are sent to the corresponding reducer.

 So, after the sorting and shuffling phase, each reducer will have a unique key and a list of values
corresponding to that very key. For example, Bear, [1,1]; Car, [1,1,1].., etc.

 Now, each Reducer counts the values which are present in that list of values. As shown in the figure,
reducer gets a list of values which is [1,1] for the key Bear. Then, it counts the number of ones in the
very list and gives the final output as – Bear, 2.

 Finally, all the output key/value pairs are then collected and written in the output file.

Advantages of MapReduce

The two biggest advantages of MapReduce are:

1. Parallel Processing

In MapReduce, we are dividing the job among multiple nodes and each node works with a part of
the job simultaneously. So, MapReduce is based on Divide and Conquer paradigm which helps us
to process the data using different machines. As the data is processed by multiple machines instead
of a single machine in parallel, the time taken to process the data gets reduced by a tremendous
amount as shown in the figure below (2).

UNIT - II NO SQL DATA BASES

49
Rahul Publications

Rahul Publications
Fig.: Traditional Way Vs. MapReduce Way - MapReduce Tutorial

2. Data Locality

In Data Locality Instead of moving data to the processing unit, we are moving the processing unit to
the data in the MapReduce Framework. In the traditional system, we used to bring data to the processing
unit and process it. But, as the data grew and became very huge, bringing this huge amount of data to the
processing unit posed the following issues:

 Moving huge data to processing is costly and deteriorates the network performance.

 Processing takes time as the data is processed by a single unit which becomes the bottleneck.

 The master node can get over-burdened and may fail.

Now, MapReduce allows us to overcome the above issues by bringing the processing unit to the
data. So, as you can see in the above image that the data is distributed among multiple nodes where each
node processes the part of the data residing on it. This allows us to have the following advantages:

 It is very cost-effective to move processing unit to the data.

 The processing time is reduced as all the nodes are working with their part of the data in parallel.

 Every node gets a part of the data to process and therefore, there is no chance of a node getting
overburdened.

B.Sc. III YEAR V SEMESTER

50
Rahul Publications

Rahul Publications

1. Explain about single server in distribu-
tion models?

Ans:
Single Server

The first and the simplest distribution option
is the one we would most often recommendno
distribution at all. Run the database on a single
machine that handles all the reads and writes to the
data store. We prefer this option because it eliminates
all the complexities that the other options introduce;
it’s easy for operations people to manage and easy
for application developers to reason about.

Although a lot of NoSQLdatabases are
designed around the idea of running on a cluster, it
can make sense to use NoSQLwith a single-server
distribution model if the data model of the NoSQL
store is more suited to the application. Graph
databases are the obvious category herethese work
best in a single-server configuration. If your data
usage is mostly about processing aggregates, then a
single-server document or key-value store may well
be worthwhile because it’s easier on application
developers.

2. What are theAdvantages and Disadvan-
tages of No SQL?

Ans:
Advantages of NoSQL

 Can be used as Primary or Analytic Data
Source

 Big Data Capability

 No Single Point of Failure

 Easy Replication

 No Need for Separate Caching Layer

 It provides fast performance and horizontal
scalability.

 Can handle structured, semi-structured, and
unstructured data with equal effect

 Object-oriented programming which is easy
to use and flexible

 NoSQL databases don’t need a dedicated
high-performance server

 Support Key Developer Languages and
Platforms

 Simple to implement than using RDBMS

 It can serve as the primary data source for
online applications.

 Handles big data which manages data
velocity, variety, volume, and complexity

 Excels at distributed database and multi-data
center operations

 Eliminates the need for a specific caching layer
to store data

 Offers a flexible schema design which can
easily be altered without downtime or service
disruption

Disadvantages of NoSQL

 No standardization rules

 Limited query capabilities

 RDBMS databases and tools are comparati-
vely mature

 It does not offer any traditional database
capabilities, like consistency when multiple
transactions are performed simultaneously.

 When the volume of data increases it is difficult
to maintain unique values as keys become
difficult

 Doesn’t work as well with relational data

 The learning curve is stiff for new developers

 Open source options so not so popular for
enterprises.

3. ExplainMaster-Slave Replication in
distribution models?

Ans:
Master-slave NoSQL Data Replication. The

master-slave technique of NoSQL Data Replication
creates a copy (master copy) of your database and

Short Question & Answers

UNIT - II NO SQL DATA BASES

51
Rahul Publications

Rahul Publications

maintains it as the key data source. Any updates that you may require are made to this master copy and
later transferred to the slave copies.

With master-slave distribution, you replicate data across multiple nodes. One node is designated as
the master, or primary. This master is the authoritative source for the data and isusually responsible for
processing any updates to that data. The other nodes are slaves, or secondaries. A replication
processsynchronizestheslaveswiththe master.

4. What is consistency?

Ans:
Consistency can be simply deûned by how the copies from the same data may vary within thesame

replicated database system. When the readings on a given data object are inconsistent withthe last update
on this data object, this is a consistency anomaly.

For many years, system architects would not compromise when it came to storing data andretrieving
it. The ACID (Atomicity, Consistency, Isolation, and Durability) properties were theblueprints for every
database management system. Therefore, strong consistency was not a choice.It was a requirement for all
systems.

The Internet has grown to a point where billions of people have access to it, not only froma desktop
but also from smartphones, smartwatches, and even other servers and services. Nowaday’s systems need
to scale. The “traditional” monolithic database architecture, based on a powerful server,does not guarantees
the high availability and network partition required by today’s web-scale systems,as demonstrated by the
CAP (Consistency, Availability, and Network Partition Tolerance) theorem. To achieve such requirements,
systems cannot impose strong consistency.

5. What are the Importance of ACID Transactions?

Ans:
Importance of ACID Transactions

ACID transactions we read above have to ensure the highest possibility for reliability and integrity of
data. These acid transactions ensure that our data never falls into an inconsistent state because the operation
or task is only partially completed or cannot be completed. ACID properties provide correctness and
consistency to our database.

Working of ACID Transactions

We discuss the working of ACID transactions by taking the example:

We have to send 50 from S1 to S2 so we have to know here how the ACID transaction works in
such an operation:

1. Atomicity: The atomicity ensures that the full operation takes place or is aborted back. It ensures
that both operations take place or neither even one cannot take place.

 First operation S1: A – 50;

 Second operation S2: B + 50;

2. Consistency: Consistency property ensures that the integrity of transactions is maintained properly.
Such as:

 Before transaction S1: A + B = 150. (A = 100, B = 50).

 After transaction: S2: A + B = 150. (A = 50, B = 100).

B.Sc. III YEAR V SEMESTER

52
Rahul Publications

Rahul Publications

3. Isolation: Isolation ensures that if the two
transactions are going on no other transaction
can be accessed between them. It means two
operations can be done at one time and no
other operation or task can interfere with
them.

Such as if two operations such as A – 50 and
B + 50 are working no third transaction can
interfere with them.

4. Durability: As we discussed above one time
it completes the operation cannot be reversed
after it. If all transactions are completed it
cannot go back to its previous steps.

6. What are the Learning Goals of
Relaxing Consistency?

Ans :
Learning Goals

1. Describe common patterns, challenges, and
approaches associated with data science
projects, and what makes them different from
projects in related fields.

2. Identify and use the programming models
associated with scalable data manipulation,
including relational algebra, MapReduce, and
other data flow models.

3. Use database technology adapted for large-
scale analytics, including the concepts driving
parallel databases, parallel query processing,
and in-database analytics

4. Evaluate key-value stores and NoSQL
systems, describe their tradeoffs with
comparable systems, the details of important
examples in the space, and future trends.

5. “Think” in MapReduce to effectively write
algorithms for systems including Hadoop and
Spark. You will understand their limitations,
design details, their relationship to databases,
and their associated ecosystem of algorithms,
extensions, and languages. write programs in
Spark.

6. Describe the landscape of specialized Big Data
systems for graphs, arrays, and streams.

7. What is Basic Map-Reduce?

Ans:
MapReduce

A MapReduce is a data processing tool which
is used to process the data parallelly in a distributed
form.

The MapReduce is a paradigm which has two
phases, the mapper phase, and the reducer phase.
In the Mapper, the input is given in the form of a
key-value pair. The output of the Mapper is fed to
the reducer as input. The reducer runs only after
the Mapper is over. The reducer too takes input in
key-value format, and the output of reducer is the
final output.

Steps in Map Reduce:

 The map takes data in the form of pairs and
returns a list of <key, value> pairs. The keys
will not be unique in this case.

 Using the output of Map, sort and shuffle are
applied by the Hadoop architecture. This sort
and shuffle acts on these lists of <key, value>
pairs and sends out unique keys and a list of
values associated with this unique key <key,
list(values)>.

 An output of sort and shuffle sent to the
reducer phase. The reducer performs a
defined function on a list of values for unique
keys, and Final output <key, value> will be
stored/displayed.

8. What are the phases of data flow in
MapReduce?

Ans :
Data Flow in MapReduce

MapReduce is used to compute the huge
amount of data . To handle the upcoming data in a
parallel and distributed form, the data has to flow
from various phases.

Phases of MapReduce data flow

Input reader

The input reader reads the upcoming data
and splits it into the data blocks of the appropriate

UNIT - II NO SQL DATA BASES

53
Rahul Publications

Rahul Publications

size (64 MB to 128 MB). Each data block is associated
with a Map function.

Once input reads the data, it generates the
corresponding key-value pairs. The input files reside
in HDFS.

Map function

The map function processes the upcoming
key-value pairs and generated the corresponding
output key-value pairs. The map input and output
type may be different from each other.

Partition function

The partition function assigns the output of
each Map function to the appropriate reducer. The
available key and value provide this function. It
returns the index of reducers.

Shuffling and Sorting

The data are shuffled between/within nodes
so that it moves out from the map and get ready to
process for reduce function. Sometimes, the shuffling
of data can take much computation time.

The sorting operation is performed on input
data for Reduce function. Here, the data is
compared using comparison function and arranged
in a sorted form.

Reduce function

The Reduce function is assigned to each
unique key. These keys are already arranged in
sorted order. The values associated with the keys
can iterate the Reduce and generates the
corresponding output.

Output writer

Once the data flow from all the above phases,
Output writer executes. The role of Output writer is
to write the Reduce output to the stable storage.

9. What is Shuffling and Sorting in
MapReduce?

Ans:
Shuffling and Sorting are two major processes

operating simultaneously during the working of
mapper and reducer.

The process of transferring data from Mapper
to reducer is Shuffling. It is a mandatory operation

for reducers to proceed their jobs further as the
shuffling process serves as input for the reduce tasks.

In MapReduce, the output key-value pairs
between the map and reduce phases (after the
mapper) are automatically sorted before moving
to the Reducer. This feature is helpful in programs
where you need sorting at some stages. It also saves
the programmer’s overall time.

10. What are the key differences between
Pig vs MapReduce?

Ans:
PIG is a data flow language, the key focus of

Pig is manage the flow of data from input source to
output store. As part of managing this data flow it
moves data feeding it to

Process 1

Taking output and feeding it to,

Process 2

The core features are preventing execution
of subsequent stages if previous stage fails, manages
temporary storage of data and most importantly
compresses and rearranges processing steps for
faster processing. While this can be done for any
kind of processing tasks Pig is written specifically for
managing data flow of Map reduce type of jobs.
Most if not all jobs in a Pig are map reduce jobs or
data movement jobs. Pig allows for custom functions
to be added which can be used for processing in
Pig, some default ones are like ordering, grouping,
distinct, count etc.

MapReduce on the other hand is a data
processing paradigm, it is a framework for application
developers to write code in so that its easily scaled
to PB of tasks, this creates a separation between the
developer that writes the application vs the
developer that scales the application. Not all
applications can be migrated to Map reduce but
good few can be including complex ones like k-
means to simple ones like counting unique in a
dataset.

B.Sc. III YEAR V SEMESTER

54
Rahul Publications

Rahul Publications

1. A node acts as the Slave and is responsible for executing a Task assigned to it by the Job

Tracker. [c]

(a) MapReduce (b) Mapper

(c) TaskTracker (d) JobTracker

2. Point out the correct statement. [a]

(a) MapReduce tries to place the data and the compute as close as possible

(b) Map Task in MapReduce is performed using the Mapper() function

(c) Reduce Task in MapReduce is performed using the Map() function

(d) All of the mentioned

3. part of the MapReduce is responsible for processing one or more chunks of data and
producing the output results. [a]

(a) Maptask (b) Mapper

(c) Task execution (d) All of the mentioned

4. function is responsible for consolidating the results produced by each of the Map()
functions/tasks. [a]

(a) Reduce (b) Map

(c) Reducer (d) All of the mentioned

5. Point out the wrong statement. [d]

(a) A MapReduce job usually splits the input data-set into independent chunks which are processed
by the map tasks in a completely parallel manner

(b) The MapReduce framework operates exclusively on <key, value> pairs

(c) Applications typically implement the Mapper and Reducer interfaces to provide the map and
reduce methods

(d) None of the mentioned

6. maps input key/value pairs to a set of intermediate key/value pairs. [a]

(a) Mapper (b) Reducer

(c) Both Mapper and Reducer (d) None of the mentioned

7. The number of maps is usually driven by the total size of [a]

(a) Inputs (b) Outputs

(c) tasks (d) None of the mentioned

Choose the Correct Answers

UNIT - II NO SQL DATA BASES

55
Rahul Publications

Rahul Publications

8. is the default Partitioner for partitioning key space. [c]

(a) HashPar (b) Partitioner

(c) HashPartitioner (d) None of the mentioned

9. Running a program involves running mapping tasks on many or all of the nodes in our
cluster. [a]

(a) MapReduce (b) Map

(c) Reducer (d) All of the mentioned

10. The framework groups Reducer inputs by key in stage. [a]

(a) Sort (b) Shuffle

(c) Reduce (d) None of the mentioned

B.Sc. III YEAR V SEMESTER

56
Rahul Publications

Rahul Publications

Fill in the Blanks

1. part of the MapReduce is responsible for processing one or more chunks of data and
producing the output results.

2. function is responsible for consolidating the results produced by each of the Map() functions/
tasks.

3. The number of maps is usually driven by the total size of

4. Running a program involves running mapping tasks on many or all of the nodes in our
cluster.

5. A node acts as the Slave and is responsible for executing a Task assigned to it by the
JobTracker.

6. The framework groups Reducer inputs by key in stage.

7. The mapper implementation processes one line at a time via method.

8. Applications can use the to report progress and set application level status messages.

9. The right level of parallelism for maps seems to be around maps per-node.

10. maps input key/value pairs to a set of intermediate key/value pairs.

ANSWERS

1. Maptask

2. Reduce

3. Inputs

4. MapReduce

5. Task Tracker

6. Sort

7. Map

8. Reporter

9. 10-100

10. Mapper

UNIT - II NO SQL DATA BASES

57
Rahul Publications

Rahul Publications

One Mark Answers

1. What are the main components of MapReduce Job?

Ans:
Main Driver Class: providing job configuration parameters

Mapper Class:must extend org.apache.hadoop.mapreduce.Mapper class and performs
execution.

2. What is Shuffling and Sorting in Map Reduce?

Ans:
Shuffling and Sorting are two major processes operating simultaneously during the working of

mapper and reducer.

3. What is Partitioner and its usage?

Ans:
Partitioner that controls the partitioning of the intermediate map-reduce output keys using a hash

function.

4. What is the difference between HDFS block and InputSplit?

Ans:
An HDFS block splits data into physical divisions while InputSplit in MapReduce splits input files

logically.

5. What is JobTracker?

Ans:
JobTracker is a Hadoop service used for the processing of MapReduce jobs in the cluster.

6. Define Writable data types in MapReduce.

Ans:
Hadoop reads and writes data in a serialized form in writable interface.

7. What is Output Committer?

Ans:
Output Committer describes the commit of MapReduce task.

8. What is a “map” in Hadoop?

Ans:
In Hadoop, a map is a phase in HDFS query solving. A map reads data from an input location, and

outputs a key value pair according to the input type.

B.Sc. III YEAR V SEMESTER

58
Rahul Publications

Rahul Publications

9. What is a “reducer” in Hadoop?

Ans:
In Hadoop, a reducer collects the output generated by the mapper, processes it, and creates a final

output of its own.

10. What are the parameters of mappers and reducers?

Ans:
The four parameters for mappers are:

 LongWritable (input)

 text (input)

 text (intermediate output)

 IntWritable (intermediate output)

The four parameters for reducers are:

 Text (intermediate output)

 IntWritable (intermediate output)

 Text (final output)

 IntWritable (final output)

59
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

UNIT
III

3.1 KEY-VALUE DATABASES

3.1.1 What Is a Key-Value Store

Q1. What is a Key-Value Store? Explain in detail.

 (OR)

 What is a Key-Value (Model)Database? Explain with advantages and disadvantages.

Ans: (Imp.)

A key-value data model or database is also referred to as a key-value store. It is a non-relational
type of database. In this, an associative array is used as a basic database in which an individual key is
linked with just one value in a collection. For the values, keys are special identifiers. Any kind of entity can
be valued. The collection of key-value pairs stored on separate records is called key-value databases and
they do not have an already defined structure.

Key-Value Database

A key-value database (sometimes called a key-value store) uses a simple key-value method to store
data. These databases contain a simple string (the key) that is always unique and an arbitrary large data
field (the value). They are easy to design and implement.

Key-Value Databases: What Is a Key-Value Store, Key-Value Store Features,
Suitable Use Cases, When Not to Use Document Databases: What Is a Document
Database, Features, Suitable Use Cases, When Not to Use.

60
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Fig. : An Example of Key-value database

As the name suggests, this type of NoSQL database implements a hash table to store unique keys
along with the pointers to the corresponding data values. The values can be of scalar data types such as
integers or complex structures such as JSON, lists, BLOB, and so on. A value can be stored as an integer,
a string, JSON, or an array—with a key used to reference that value. It typically offers excellent performance
and can be optimized to fit an organization’s needs. Key-value stores have no query language but they do
provide a way to add and remove key-value pairs. Values cannot be queried or searched upon. Only the
key can be queried.

Fig. : A simple example of key-value data store.

Working of key-value databases:

A number of easy strings or even a complicated entity are referred to as a value that is associated
with a key by a key-value database, which is utilized to monitor the entity. Like in many programming
paradigms, a key-value database resembles a map object or array, or dictionary, however, which is put
away in a tenacious manner and controlled by a DBMS.

An efficient and compact structure of the index is used by the key-value store to have the option to
rapidly and dependably find value using its key. For example, Redis is a key-value store used to track lists,
maps, heaps, and primitive types (which are simple data structures) in a constant database. Redis can
uncover a very basic point of interaction to query and manipulate value types, just by supporting a
predetermined number of value types, and when arranged, is prepared to do high throughput.

When to use a key-value database:

Here are a few situations in which you can use a key-value database: -

 Session management on a large scale.

 Using cache to accelerate application responses.

 Storing personal data on specific users.

61
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

 Product recommendations, storing personalized lists of items for individual customers.

 Managing each player’s session in massive multiplayer online games.

Features:

 One of the most un-complex kinds of NoSQL data models.

 For storing, getting, and removing data, key-value databases utilize simple functions.

 Querying language is not present in key-value databases.

 Built-in redundancy makes this database more reliable.

Some Examples of Key-value Databases:

Here are some popular key-value databases which are widely used:

 Couchbase: It permits SQL-style querying and searching for text.

 Amazon Dynamo DB

The key-value database which is mostly used is Amazon DynamoDB as it is a trusted database used
by a large number of users. It can easily handle a large number of requests every day and it also
provides various security options.

 Riak: It is the database used to develop applications.

 Aerospike: It is an open-source and real-time database working with billions of exchanges.

 Berkeley DB

It is a high-performance and open-source database providing scalability.

Advantages and disadvantages of key-value store.

Advantages:

 It is very easy to use. Due to the simplicity of the database, data can accept any kind, or even
different kinds when required.

 Its response time is fast due to its simplicity, given that the remaining environment near it is very
much constructed and improved.

 Key-value store databases are scalable vertically as well as horizontally.

 Built-in redundancy makes this database more reliable.

Disadvantages:

 As querying language is not present in key-value databases, transportation of queries from one
database to a different database cannot be done.

 The key-value store database is not refined. You cannot query the database without a key.

Q2. What is a Key-Value Store? Explain the popular Key-Value Store databases

Ans: (Imp.)

A key-value data model or database is also referred to as a key-value store. It is a non-relational
type of database. In this, an associative array is used as a basic database in which an individual key is
linked with just one value in a collection. For the values, keys are special identifiers. Any kind of entity can
be valued. The collection of key-value pairs stored on separate records is called key-value databases and
they do not have an already defined structure.

62
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul PublicationsKey-Value Database:

A key-value database (sometimes called a key-value store) uses a simple key-value method to store
data. These databases contain a simple string (the key) that is always unique and an arbitrary large data
field (the value). They are easy to design and implement.

Fig. : An Example of Key-value database

As the name suggests, this type of NoSQL database implements a hash table to store unique keys
along with the pointers to the corresponding data values. The values can be of scalar data types such as
integers or complex structures such as JSON, lists, BLOB, and so on. A value can be stored as an integer,
a string, JSON, or an array-with a key used to reference that value. It typically offers excellent performance
and can be optimized to fit an organization’s needs. Key-value stores have no query language but they do
provide a way to add and remove key-value pairs. Values cannot be queried or searched upon. Only the
key can be queried.

Fig.: A simple example of key-value data store.

63
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

Examples of Popular Key-Value Databases:

There are several different types of key-value database models to pick from, for example, some
store data on an SSD, while others store on RAM. The truth is, some of the most popular and widely-used
databases are key-value stores, and we rely on them on a daily basis in our day-to-day lives.

 Amazon Dynamo DB : Probably the most widely used key-value store database, in fact, it was
the research into DynamoDB that really started making NoSQL really popular.

 Aerospike : Open-source database that is optimized for in-memory storage.

 Berkeley DB : Another open-source database that is a high-performance database storage library,
although it’s relatively basic.

 Couchbase : Interestingly allows for text searches and SQL-style querying.

 Memcached : Helps speed up websites by storing cache data in RAM, plus it’s free and open-
source.

 Riak : Made for developing apps, it works well with other databases and apps.

 Redis : A multi-purpose database that also acts as memory cache and message broker.

3.1.2 Key-Value Store Features

Q3. Explain about Features of Key-Value Store.

Ans:
No SQL refers to a non-SQL or nonrelational database that main purpose of it is to provide a

mechanism for storage and retrieval of data. NoSQL database stores the information in JSON documents
instead of columns and rows. As we know the relational database use rows and columns for storing and
retrieval of data but in the case of NoSQL it uses JSON documents instead of rows and columns and that
is why it is also known as nonrelational SQL or database.

A NoSQL database includes simplicity of design, simpler horizontal scaling, and has fine control
over availability. The data structures used in the NoSQL database are different from those we used in the
relational database. the database used in NoSQL is more advanced which makes some operations faster
in No SQL.

Fig.: Graphical difference between SQL and NoSQL

64
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

No SQL is Using for the following reasons

 Relationships present in NoSQL are less complex as compared to relational database systems.

 Actions performed in NoSQL are fast as compared to other databases.

 Implementation of it is less costly than others.

 Programming in it is easy to use and more flexible.

 A high level of scalability is provided by NoSQL.

Types of NoSQL

These are some of the most popular types of NoSQL as follows:

 Document databases

Primary operation of it is to store the information in documents.

 Key-Value Store

These groups associate the data in collections with records that are identified with unique keys for
easy retrieval.

 Wide Column database

They use the tabular format yet allow a wide variance in how data is named and formatted in each
row and each table. It is different from relational databases because the names and format of the
columns vary from row to row in the table.

 Graph database

Its main aim is to use graph structures to define the relationships between data points.

Fig.: Diagram of Key-Value Store in NoSQL
Features of Key-Value Store:

 Consistency

Consistency is a feature only applicable for operations on a single key in a key-value store. There
are various implementations in the key-value store for example in RIAK, the eventually consistent
model of consistency is implemented.

65
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

 Transactions

In it, there are no guarantees on the writes as
many data stores implement transactions in
different ways for example RIAK uses the
concept of quorum implemented by using
the W value replication factor. (RIAK is an
open-source and distributed database that is
generally based on a NoSQL database
system.)

 Query

All the key-value stores can be query by the
key and that’s about it. If we have
requirements to query by using some of the
attributes of the column, it is not possible for
using the database in this condition, our
application needs to read the value to
recognize if the attribute meets the conditions.

 Scaling

Key values stored scale by a process called
sharding. Sharding means we can support
scalability by putting different parts of the data
onto different servers, this is called sharding.

Popular Key-Value Databases:

 REDIS

Redis is one of the popular key-value
databases as it is an open-source, in-memory
data structure, used as a database and
message broker. REDIS supports many data
structures such as lists, hashes, sets, strings.
REDIS has many more important features
such as it has built-in replication, LUA scripting
and it also supports LRU eviction.

 AEROSPIKE

It is the world’s leading enterprise-grade,
internet-scale, key-value store database, it is
popular for some of its advantages over other
databases such as aerospike gives strong
consistency, linear scalability, and higher
performance as compared to others.

 AMAZON DynamoDB

The main reason behind the popularity of this
database is that it is a fully-managed database
service that provides fast performance at any
scale. Many AWS customers chose
DynamoDB for web gaming, mobile, ed-
tech, IoT, and many other applications.

3.1.3 Suitable Use Cases

Q4. What are the Suitable Use Cases of Key
- Value Database

Ans: (Imp.)

Here are 10 enterprise use cases best
addressed by Key value Database

 Personalization

A personalized experience requires data, and
lots of it demographic, contextual, behavioral
and more. The more data available, the more
personalized the experience. However,
relational databases are overwhelmed by the
volume of data required for personalization.
In contrast, a distributed NoSQL database
can scale elastically to meet the most
demanding workloads and build and update
visitor profiles on the fly, delivering the low
latency required for real-time engagement
with your customers.

 Profile Management

User profile management is core to Web and
mobile applications to enable online
transactions, user preferences, user
authentication and more. Today, Web and
mobile applications support millions – or even
hundreds of millions – of users. While
relational databases can struggle to serve this
amount of user profile data as they are limited
to a single server, distributed databases can
scale out across multiple servers. With
NoSQL, capacity is increased simply by adding
commodity servers, making it far easier and
less expensive to scale.

 Real-Time Big Data

The ability to extract information from
operational data in real-time is critical for an
agile enterprise. It increases operational
efficiency, reduces costs, and increases
revenue by enabling you to act immediately
on current data. In the past, operational
databases and analytical databases were
maintained as different environments. The
operational database powered applications
while the analytical database was part of the
business intelligence and reporting

66
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

environment. Today, NoSQL is used as both
the front-end – to store and manage
operational data from any source, and to feed
data to Hadoop – as well as the back-end to
receive, store and serve analytic results from
Hadoop.

 Content Management

The key to effective content is the ability to
select a variety of content, aggregate it and
present it to the customer at the moment of
interaction. NoSQL document databases,
with their flexible data model, are perfect for
storing any type of content – structured, semi-
structured or unstructured – because NoSQL
document databases don’t require the data
model to be defined first. Not only does it
enable enterprises to easily create and
produce new types of content, it also enables
them to incorporate user-generated content,
such as comments, images, or videos posted
on social media, with the same ease and
agility.

 Catalog

Catalogs are not only referenced by Web and
mobile applications, they also enable point-
of-sale terminals, self-service kiosks and more.
As enterprises offer more products and
services, and collect more reference data,
catalogs become fragmented by application
and business unit or brand.Because relational
databases rely on fixed data models, it’s not
uncommon for multiple applications to access
multiple databases, which introduces
complexity and data management challenges.
By contrast, a NoSQL document database,
with its flexible data model, enables
enterprises to more easily aggregate catalog
data within a single database.

 Customer 360° View

Customers expect a consistent experience
regardless of channel, while the enterprise
wants to capitalize on upsell/cross-sell
opportunities and to provide the highest level
of customer service. However, as the number
of products and services, channels, brands
and business units increases, the fixed data
model of relational databases forces

enterprises to fragment customer data
because different applications work with
different customer data. NoSQL document
databases use a flexible data model that
enables multiple applications to access the
same customer data as well as add new
attributes without affecting other applications.

 Mobile Applications
With nearly two billion smartphone users,
mobile applications face scalability challenges
in terms of growth and volume. For instance,
it is not uncommon for mobile games to reach
tens of millions of users in a matter of months.
With a distributed, scale-out database, mobile
applications can start with a small deployment
and expand as the user base grows, rather
than deploying an expensive, large relational
database server from the beginning.

 Internet of Things
Today, some 20 billion devices are connected
to the Internet everything from smartphones
and tablets to home appliances and systems
installed in cars, hospitals and warehouses.
The volume, velocity, and variety of machine-
generated data are increasing with the
proliferation of digital telemetry, which is semi-
structured and continuous. Relational
databases struggle with the three well-known
challenges from big data IoT applications:
scalability, throughput, and data variety. By
contrast, NoSQL allows enterprises to scale
concurrent data access to millions of
connected devices and systems, store large
volumes of data, and meet the performance
requirements of mission-critical infrastructure
and operations.

 Digital Communications
In an enterprise environment, digital
communication may take the form of online
interaction via direct messaging to help visitors
find a product or complete the checkout
process. And as with mobile text messaging,
the application may need to support millions
of website visitors. Relational databases are
limited in responsiveness and scalability while
NoSQL databases, thanks to their distributed
architecture, deliver the sub-milli second
responsiveness and elastic scalability that digital
communication applications require.

67
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

 Fraud Detection

For financial service organizations, fraud
detection is essential to reducing profit loss,
minimizing financial exposure and complying
with regulations. When customers pay with a
credit or debit card, they expect immediate
confirmation. The process impacts both the
enterprise and its customers. Fraud Detection
relies on data – detection algorithm rules,
customer information, transaction infor-
mation, location, time of day and more –
applied at scale and in less than a millisecond.
While relational databases struggle to meet
this low latency requirement, elastically
scalable NoSQL databases can reliably deliver
the required performance.

3.1.4 When Not to Use Document Data
bases

Q5. Explain about When Not to Use
Document Databases.

Ans:
When to Use NoSQL:

Given below are the use cases where you
should prefer using Document databases:

 To handle a huge volume of structured, semi-
structured and unstructured data.

 Where there is a need to follow modern
software development practices like Agile
Scrum and if you need to deliver prototypes
or fast applications.

 If you prefer object-oriented programming.

 If your relational database is not capable
enough to scale up to your traffic at an
acceptable cost.

 If you want to have an efficient, scale-out
architecture in place of an expensive and
monolithic architecture.

 If you have local data transactions that need
not be very durable.

 If you are going with schema-less data and
want to include new fields without any
ceremony.

 When your priority is easy scalability and
availability.

When to Avoid :

Enlisted below are some pointers that would
guide you on when to avoid Document database.

 If you are required to perform complex and
dynamic querying and reporting, then you
should avoid using NoSQL as it has a limited
query functionality. For such requirements,
you should prefer SQL only.

 NoSQL also lacks in the ability to perform
dynamic operations. It can’t guarantee ACID
properties. In such cases like financial
transactions, etc., you may go with SQL
databases.

 You should also avoid NoSQL if your
application needs run-time flexibility.

 If consistency is a must and if there aren’t
going to be any large-scale changes in terms
of the data volume, then going with the SQL
database is a better option.

Q6. Explain Pros & Cons SQL & NoSQL

Ans:
Pros and Cons of SQL & NoSQL

Enlisted below are the various Pros and Cons
of SQL as well as NoSQL.

SQL Pros:

 It is highly suitable for relational databases.

 Has a predefined schema which is helpful in
many cases.

 Normalization can be greatly used here, thus
it also helps in removing redundancy and
organizing data in a better way.

 Transactions in SQL databases are ACID
compliant, thereby guarantees security and
stability.

 Follows well-defined standards like ISI and
ANSI which are accepted worldwide.

 Code-free.

 Unbeatable speed in retrieving database
records with great ease.

 Uses single standardized language i.e SQL
across different RDBMS.

68
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

SQL Cons:

 The process of interfacing is complex.

 As SQL is an object, it occupies space.

 Handling Big data is very costly as you will
have to increase the hardware for scaling.

 When a table is dropped, the view becomes
inactive.

NoSQL Pros:

 Capable of handling big data.

 As it is schema-less and table free, it offers a
high level of flexibility with data models.

 It is a low-cost database and the open source
NoSQL databases provide very affordable
solutions to small enterprises.

 Easier and low-cost scalability. You don’t need
to increase the hardware for scaling. You just
need to add more servers to the pool as
NoSQL is schema-free and built on distributed
systems.

 Detailed database modeling is not required
here. Hence it saves time and effort.

NoSQL Cons:

 The benefits of NoSQL come at the cost of
relaxing ACID properties. NoSQL offers only
eventual consistency.

 Relatively less community support.

 Lacks standardization, unlike SQL, which in
turn creates some issues during migration.

 Inter-operability is also a concern in the case
of NoSQL databases.

3.2 WHEN NOT TO USE DOCUMENT DATA

BASE

3.2.1 What Is a Document Database

Q7. Explain about Document Database in
NoSQL

Ans: (Imp.)

Document Databases in NoSQL

Document Database (Data Model)

A Document Data Model is a lot different
than other data models because it stores data in
JSON, BSON, or XML documents. in this data

model, we can move documents under one
document and apart from this, any particular
elements can be indexed to run queries faster. Often
documents are stored and retrieved in such a way
that it becomes close to the data objects which are
used in many applications which means very less
translations are required to use data in applications.
JSON is a native language that is often used to store
and query data too.

So, in the document data model, each
document has a key-value pair below is an example
for the same.

{

“Name” : “Kumar”,

“Address” : “Near Ushodaya Colony”,

“Email” : “hotmail123@yahoo.com”,

“Contact” : “1234567890”

}

Working of Document Data Model:

This is a data model which works as a semi-
structured data model in which the records and data
associated with them are stored in a single document
which means this data model is not completely
unstructured. The main thing is that data here is
stored in a document.

Features:

 Document Type Model

As we all know data is stored in documents
rather than tables or graphs, so it becomes
easy to map things in many programming
languages.

 Flexible Schema

Overall schema is very much flexible to
support this statement one must know that
not all documents in a collection need to have
the same fields.

 Distributed and Resilient

Document data models are very much
dispersed which is the reason behind
horizontal scaling and distribution of data.

69
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

 Manageable Query Language

These data models are the ones in which
query language allows the developers to
perform CRUD (Create Read Update
Destroy) operations on the data model.

Examples of Document Data Models :

 Amazon DocumentDB

 MongoDB

 Cosmos DB

 ArangoDB

 Couchbase Server

 CouchDB

Applications of Document Data Model:

 Content Management

These data models are very much used in
creating various video streaming platforms,
blogs, and similar services Because each is
stored as a single document and the database
here is much easier to maintain as the service
evolves over time.

 Book Database

These are very much useful in making book
databases because as we know this data model
lets us nest.

 Catalog

When it comes to storing and reading catalog
files these data models are very much used
because it has a fast reading ability if incase
Catalogs have thousands of attributes stored.

 Analytics Platform

These data models are very much used in
the Analytics Platform.

Q8. Define Document Database? How
document databases differ from
relational databases?

Ans:
Document Database (Data Model):

A Document Data Model is a lot different
than other data models because it stores data in
JSON, BSON, or XML documents. in this data

model, we can move documents under one
document and apart from this, any particular
elements can be indexed to run queries faster. Often
documents are stored and retrieved in such a way
that it becomes close to the data objects which are
used in many applications which means very less
translations are required to use data in applications.
JSON is a native language that is often used to store
and query data too.

Document databases differ from relational
databases:

Document databases are significantly different
in function to traditional relational databases.

Relational databases typically store data in
separate, linked tables (as defined by the
programmer), allowing single objects to be spread
across several tables. But, in document databases,
all information for a given document or object is
stored in a single instance there is no need to do
object-relational mapping when loading data into
the database, or when retrieving things.

Document databases are typically faster for
this reason, although this is incumbent on how you
use it: jump to the pros and cons for more on this.

Flexible Schemas

Rather than the tabular model, document
stores have a dynamic self-describing schema,
adaptable to change. No need to predefine it is the
database. Values and fields can alternate through
different documents; modify the design at any stage,
without fundamentally disrupting its structure no
need for schema migrations. Note: some document
stores allow JSON schema, letting you set governing
rules for managing document structures.

Better for Agile Developers

Due to the intuitive data model, document-
oriented databases are faster and easier for
developers. The objects in your code can be mapped
to the documents, making them more intuitive to
handle. Decomposition of data across tables is
eliminated as a necessity, along with the need to
integrate a separate ORM layer, or using costly
JOINs.

70
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Powerful Querying

Query in a flexible way, with the expressive
query language and multifaceted indexing feature.
This is an essential difference between relational
databases and document stores. The query language
has comprehensive abilities, letting you deal with
data however you think is best. Full-time
aggregations, ad hoc queries, and indexing are deep
ways of processing, modifying, and retrieving your
data. ACID transactions let you retain guarantees
you are accustomed to having in SQL databases,
whether this is manipulation of data in single
documents or in shard multiples.

Widely Compatible

JSON documents are used in every corner.
As a language-independent, human readable, and
non data-intensive standard, JSON is widely used
for data interchange and storage. Remember that
document stores are a subset or superset of other
existing data models which means that you can
codify data however your application requires key-
value pairs; rich objects; tables; geospatial and time-
series data; and graph edges/nodes. Only a single
query language is needed to work in documents,
adding a consistency to your development workflow
whatever data model you have chosen.

Distributed Systems

Distributed systems increase how massively
scalable and resilient your data is. While relational
databases have a more monolithic framework with
incremental scaling-up, document databases are
essentially a form of distributed systems. Each
document is an independent unit, more easily
distributed across servers without destroying data
locality. Retain a high level of availability of
applications using replication with self-healing
recovery. This also allows for isolation of several
workloads from one another in a cluster. And native
starting allows for application transparent, elastic
horizontal scale-out to facilitate workload scaling.

3.2.2 Features

Q9. What are the features of Document Data
Base (Data Model)?

Ans:
Working of Document Data Model

This is a data model which works as a semi-
structured data model in which the records and data
associated with them are stored in a single document
which means this data model is not completely
unstructured. The main thing is that data here is
stored in a document.

Features:

 Document Type Model

As we all know data is stored in documents
rather than tables or graphs, so it becomes
easy to map things in many programming
languages.

 Flexible Schema

Overall schema is very much flexible to
support this statement one must know that
not all documents in a collection need to have
the same fields.

 Distributed and Resilient

Document data models are very much
dispersed which is the reason behind
horizontal scaling and distribution of data.

 Manageable Query Language

These data models are the ones in which
query language allows the developers to
perform CRUD (Create Read Update
Destroy) operations on the data model.

Examples of Document Data Models :

 Amazon DocumentDB

 MongoDB

 Cosmos DB

 ArangoDB

 Couchbase Server

 CouchDB

71
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

Advantages

 Schema-less

These are very good in retaining existing data
at massive volumes because there are
absolutely no restrictions in the format and
the structure of data storage.

 Faster creation of document and main-
tenance

It is very simple to create a document and
apart from this maintenance requires is almost
nothing.

 Open formats

It has a very simple build process that uses
XML, JSON, and its other forms.

 Built-in versioning

It has built-in versioning which means as the
documents grow in size there might be a
chance they can grow in complexity.
Versioning decreases conflicts.

Disadvantages:

 Weak Atomicity

It lacks in supporting multi-document ACID
transactions. A change in the document data
model involving two collections will require
us to run two separate queries i.e. one for
each collection. This is where it breaks
atomicity requirements.

 Consistency Check Limitations

One can search the collections and
documents that are not connected to an
author collection but doing this might create
a problem in the performance of database
performance.

 Security

Nowadays many web applications lack
security which in turn results in the leakage
of sensitive data. So it becomes a point of
concern, one must pay attention to web app
vulnerabilities.

3.2.3 Suitable Use Cases:

Q10. Explain about Suitable Use Cases of
Document Database

Ans: (Imp.)

Document Database:

A document database, also known as a
document-oriented database or document store, is
a NoSQL database that stores data as structured
documents instead of rows and columns. Document
databases use JavaScript Object Notation (JSON),
extensive markup language (XML), binary JSON
(BSON), or yet another markup language (YAML)
formats to define, store, manage, and retrieve data.

Documents in a Document Database:

A document refers to a self-describing
record in a document database. Here’s an example
of what a document looks like in a document
database.

Example of a document written as a
JSON object:

{

“_id”: “navinkumar”,

“firstName”: “Navin”,

“lastName”: “Kumar”,

“email”: “navin@g2.com”,

“department”: “DataScience”

}

Documents store information about objects
and related metadata in field-value pairs. The values
include strings, dates, arrays, objects, and numbers.

Use Cases of document databases:

Document database software systems enable
organizations to access data immediately with fast
queries and flexible indexing. The flexibility of using
the same document model for application coding
and data query makes document database systems
even more lucrative for information technology (IT)
companies. Here’re the features that make
organizations choose document databases over SQL
databases.

72
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Intuitive document data model

Document databases store data using
documents instead of structures, like tables or
graphs. Programming languages map these
documents to objects via coding and enable you to
store data together so you can access them together.
This flexibility allows developers to write less code
and still deliver stellar end-user performance.

Besides empowering developers to rapidly
create applications, document databases eliminate
the need to integrate separate object-relational
mapping (ORM) layers, run expensive joins, or
decompose data across tables.

Document databases using JSON documents
for data storage enable you to structure data using
rich objects, key-value stores, graph nodes and
edges, geospatial, or time-series data. This data
modeling helps you create easy-to-access, language-
independent, lightweight, and human-readable
documents.

Flexible schema

Document databases come with dynamic and
self-describing schemas (implementation of a data
model in a specific database) that offer you the
flexibility to have documents with different fields in
a collection. This ability to accommodate varying
fields across documents eliminates the need for pre-
defining schemas in a database.

When developers don’t have to pre-define
schemas, they can easily modify structures without
causing disruptions during schema migration. Some
document databases come with a schema validation
feature that allows you to enforce document
structure rules and optionally lock down schemas.

Horizontal scaling and resiliency

Document stores facilitate horizontal scaling
or scale-out, enabling you to add nodes to share
the data load. The ability to spread data across nodes
without requiring queries to join nodes together
makes data distribution easier.

Furthermore, document databases support
replication and partitioning or sharding, both of
which help you to scale database performance.

Easy querying

Document databases ease the CRUD
operation execution by letting developers query
through an API or query language. This ease of
querying translates into easy data retrieval using field
values or unique identifiers.

Working of Document DataBase

A document database software stores or
fetches information in the form of a document or
semi-structured database. You can manage these
non-relational documents based on key-value pairs
instead of a tabular schema of rows and columns.

Document databases can parse documents,
regardless of the type of data they store. This data
storage flexibility makes querying, adding, editing,
and deleting easier for developers. However, you
can still use different file format schemas to define
document structures.

3.2.4 When not use

Q11. When should you not use a Document
DB?

Ans:
Not Use a Document DB

We shouldn’t use a document database when
any one of these criteria are true: your data is
structured as a hierarchy or a graph (network) of
arbitrary depth, the typical access pattern
emphasizes reading over writing, or. there’s no
requirement for ad-hoc queries.

When use a Document DB

A document database is a great choice
for content management applications such as blogs
and video platforms. With a document database,
each entity that the application tracks can be stored
as a single document. The document database is
more intuitive for a developer to update an
application as the requirements evolve.

73
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

Short Question & Answers

1. What is a Key-Value Store?

Ans:
A key-value data model or database is also referred to as a key-value store. It is a non-relational

type of database. In this, an associative array is used as a basic database in which an individual key is
linked with just one value in a collection. For the values, keys are special identifiers. Any kind of entity can
be valued. The collection of key-value pairs stored on separate records is called key-value databases and
they do not have an already defined structure.

2. What are the advantages and disadvantages of key-value store.

Ans:
Advantages:

 It is very easy to use. Due to the simplicity of the database, data can accept any kind, or even
different kinds when required.

 Its response time is fast due to its simplicity, given that the remaining environment near it is very
much constructed and improved.

 Key-value store databases are scalable vertically as well as horizontally.

 Built-in redundancy makes this database more reliable.

Disadvantages:

 As querying language is not present in key-value databases, transportation of queries from one
database to a different database cannot be done.

 The key-value store database is not refined. You cannot query the database without a key.

74
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

3. What are the NoSQL use cases

Ans :
 Fraud detection and identity authentication.

 Inventory and catalog management.

 Personalization, recommendations and customer experience.

 Internet of things (IoT) and sensor data.

 Financial services and payments.

 Messaging.

 Logistics and asset management.

 Content management systems.

4. State the Advantages of Document Database

Ans:
Below are some key advantages of document databases are :

Advantages

(i) Schema-less

(ii) Faster creation and care

(iii) No foreign keys

(iv) Open formats

(v) Built-in versioning

5. What are the challenges of Document database

Ans:
Some of the most common document database challenges stem from atomicity requirements,
consistency, and security.

1. Security

Today, data applications need to eliminate malware infections, tackle unauthorized access, maintain
integrity, and preserve confidentiality for data security purposes. Relational databases handle these
security issues with data authentication, authorization, database watermarking, and audit logs, while
document databases need database-level security and fine-grained control.

Common security issues for document database systems include lack of automatic data encryption
audit log, copyright preservation, and certificate-based authentication.

2. Lack of consistency checking

Document database systems contain documents with varying fields. These documents may not
have relations with one another. This lack of inter-relation reduces consistency checks, which cause
problems during database consistency audits.

75
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

3. Lack of atomicity

Relational databases make data changes with a single query or command. With document databases,
you have to run two separate queries to make changes in two data collections. The need for
running separate queries violates atomicity requirements, meaning you’ll have to break down a
requirement further to achieve the desired outcome.

6. What is Document Database?

Ans:
Document Database:

A document database, also known as a document-oriented database or document store, is a NoSQL
database that stores data as structured documents instead of rows and columns. Document databases use
JavaScript Object Notation (JSON), extensive markup language (XML), binary JSON (BSON), or yet
another markup language (YAML) formats to define, store, manage, and retrieve data.

Documents in a Document Database:

A document refers to a self-describing record in a document database. Here’s an example of what
a document looks like in a document database.

Example of a document written as a JSON object:

{

“_id”: “navinkumar”,

“firstName”: “Navin”,

“lastName”: “Kumar”,

“email”: “navin@g2.com”,

“department”: “DataScience”

}

Documents store information about objects and related metadata in field-value pairs. The values
include strings, dates, arrays, objects, and numbers.

7. What are the features of Document Data Base (Data Model)?

Ans:
Features

 Document Type Model

As we all know data is stored in documents rather than tables or graphs, so it becomes easy to map
things in many programming languages.

 Flexible Schema

Overall schema is very much flexible to support this statement one must know that not all documents
in a collection need to have the same fields.

 Distributed and Resilient

Document data models are very much dispersed which is the reason behind horizontal scaling and
distribution of data.

76
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

 Manageable Query Language

These data models are the ones in which query language allows the developers to perform CRUD
(Create Read Update Destroy) operations on the data model.

Examples of Document Data Models :

 Amazon DocumentDB

 MongoDB

 Cosmos DB

 ArangoDB

 Couchbase Server

 CouchDB

8. Write the Differences Between SQL And NoSQL

Ans:
Difference Between SQL And NoSQL

S.No SQL NoSQL

SQL databases are mainly relational NoSQL databases are mainly non-relational

1. database (RDBMS). or distributed databases.

2. An aged technology. Relatively young technology.

3. SQL databases are table based in the NoSQL databases can be based on

form of row & columns and must strictly documents, key-value pairs, graphs or

adhere to standard schema definitions. columns and they don’t have to stick to

They are a better option for applications standard schema definitions.

which need multi-row transactions.

4. They have a well-designed pre-defined They have the dynamic schema for unstructured

schema for structured data. data. Data can be flexibly stored without
having a pre-defined structure.

5. SQL databases favors normalized schema. NoSQL databases favors de-normalized schema.

Costly to scale. Cheaper to scale when compared to relational
databases.

6. SQL databases are vertically scalable. They NoSQL databases are horizontally scalable.

can be scaled by increasing the hardware They can be scaled by adding more servers

capacity (CPU, RAM, SSD, etc.) on a single to the infrastructure to manage large load

server. and lessen the heap.

7. Best fit for high transaction-based You can use NoSQL for heavy transactional

applications. purpose. However, it is not the best fit for this.

Not suitable for hierarchical data storage. Suitable for hierarchical data storage and
storing large data sets (E.g. Big Data).

8. Example of SQL databases: Examples of NoSQL databases:

MySQL, Oracle, MS-SQL, SQLite. MongoDB, Apache CouchDB, Redis, HBase.

77
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

9. When to Use NoSQL?

Ans:
Given below are the use cases where you should prefer using NoSQL databases:

 To handle a huge volume of structured, semi-structured and unstructured data.

 Where there is a need to follow modern software development practices like Agile Scrum and if you
need to deliver prototypes or fast applications.

 If you prefer object-oriented programming.

 If your relational database is not capable enough to scale up to your traffic at an acceptable cost.

 If you want to have an efficient, scale-out architecture in place of an expensive and monolithic
architecture.

 If you have local data transactions that need not be very durable.

 If you are going with schema-less data and want to include new fields without any ceremony.

 When your priority is easy scalability and availability.

10. When to Avoid NoSQL?

Ans:
Enlisted below are some pointers that would guide you on when to avoid NoSQL.

 If you are required to perform complex and dynamic querying and reporting, then you should
avoid using NoSQL as it has a limited query functionality. For such requirements, you should prefer
SQL only.

 NoSQL also lacks in the ability to perform dynamic operations. It can’t guarantee ACID properties.
In such cases like financial transactions, etc., you may go with SQL databases.

 You should also avoid NoSQL if your application needs run-time flexibility.

 If consistency is a must and if there aren’t going to be any large-scale changes in terms of the data
volume, then going with the SQL database is a better option.

11 . What does “Document-oriented” vs. Key-Value mean when talking about MongoDB vs
Cassandra?

Ans:
A key-value store provides the simplest possible data model and is exactly what the name suggests:

it’s a storage system that stores values indexed by a key. You’re limited to query by key and the values
are opaque, the store doesn’t know anything about them. This allows very fast read and write operations
(a simple disk access) and I see this model as a kind of non-volatile cache (i.e. well suited if you need fast
accesses by key to long-lived data).

A document-oriented database extends the previous model and values are stored in
a structured format (a document, hence the name) that the database can understand. For example, a
document could be a blog post and the comments and the tags stored in a denormalized way. Since
the data are transparent, the store can do more work (like indexing fields of the document) and you’re
not limited to query by key. As I hinted, such databases allows to fetch an entire page’s data with a single
query and are well suited for content oriented applications (which is why big sites like Facebook or Amazon
like them).

78
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Choose the Correct Answers

1. Which of the following is not an example of a NoSQL database? [d]

(a) CouchDB (b) MongoDB

(c) HBase (d) PostgreSQL

2. SQL databases are: [b]

(a) Horizontally scalable

(b) Vertically scalable

(c) Either horizontally or vertically scalable

(d) They don’t scale

3. NoSQL databases are most often referred to as: [b]

(a) Relational (b) Distributed

(c) Object-oriented (d) Network

4. Which of the following companies developed NoSQL database Apache Cassandra? [d]

(a) LinkedIn (b) Twitter

(c) MySpace (d) Facebook

5. When is it best to use a NoSQL database? [c]

(a) When providing confidentiality, integrity, and availability is crucial

(b) When the data is predictable

(c) When the retrieval of large quantities of data is needed

(d) When the retrieval speed of data is not critical

6. Which of the following is not a reason NoSQL has become a popular solution for some organizations?
[b]

(a) Better scalability

(b) Improved ability to keep data consistent

(c) Faster access to data than relational database management systems (RDBMS)

(d) More easily allows for data to be held across multiple servers

7. Which of the following format is supported by Mongo DB? [c]

(a) SQL (b) XML

(c) BSON (d) All of the mentioned

79
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

8. Which of the following is a primary classification for NoSQL architectures? [d]

(a) Document databases (b) Graph databases

(c) Key-value databases (d) All of the mentioned

9. Which is an advantage of NewSQL? [d]

(a) Less complex applications, greater consistency.

(b) Convenient standard tooling.

(c) SQL influenced extensions.

(d) All of the mentioned

10. ________ systems are scale-out file-based (HDD) systems moving to more uses of memory in the
nodes. [a]

(a) NoSQL (b) NewSQL

(c) SQL (d) All of the mentioned

80
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Fill in the Blanks

1. SQL databases are

2. No SQL databases are

3. Which of the format is supported by MongoDB

4. stores are used to store information about network like Facebook.

5. NoSQL databases is used mainly for handling large volumes of data.

6. Hadoop works in

7. The inter process communication between different nodes in Hadoop uses

8. In HDFS the files can’t be

9. Hadoop is a framework that works with a variety of related tools

10. command is used to interact and view Job Queue information in HDFS.

ANSWERS

1. Vertically scalable

2. Distributed

3. BSON

4. Graph

5. All kinds of data

6. Master-Slave fashion

7. RPC

8. Executed

9. Map Reduce, Hive and HBase

10. Queue

81
Rahul Publications

UNIT -III NO SQL DATA BASES

Rahul Publications

One Mark Questions

1. What do you understand by ‘Database’?

Ans:
Database is an organized collection of related data where the data is stored and organized to serve

some specific purpose.

2. What Is Key Value Database?

Ans:
A key value database or key value store is a row-based associative array with a core data model

comprised of key-value pairs.

3. What are the examples of key value databases?

Ans:
Aerospike, Amazon DynamoDB, Apache Cassandra, Couchbase and Redis.

4. What are the key value use cases?

Ans:
Data is denormalized, Relatively simple data models, Simple schema, High throughput and Low

latencies.

5. What are documents?

Ans:
A document is a record in a document database. A document typically stores information about

one object and any of its related metadata.

6. What are Collections?

Ans:
A collection is a group of documents. Collections typically store documents that have similar contents.

7. What are CRUD operations?

Ans:
Create: Documents can be created in the database.

Read: Documents can be read from the database.

Update: Existing documents can be updated.

Delete: Documents can be deleted from the database.

8. How much easier are documents to work with than tables?

Ans:
Working with data in documents to be easier and more intuitive than working with data in tables.

82
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

9. What are the use cases for document databases?

Ans:
 Customer data management and personalization

 Internet of Things (IoT) and time-series data

 Product catalogs and content management

 Payment processing

 Mobile apps

 Real-time analytics.

10. What are document databases good for?

Ans:
Document databases are general-purpose databases that can be used in a variety of use cases

across industries.

83
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

UNIT
IV

4.1 COLUMN-FAMILY STORES

4.1.1 What Is a Column-Family Data Store

Q1. Explain in detail about Column-Family Data Store.

Ans: (Imp.)

A column store database is a type of database that stores data using a column-oriented model. A
column store database can also be referred to as a:

 Column database

 Column family database

 Column oriented database

 Wide column store database

 Wide column store

 Columnar database

 Columnar store

The Structure of a Column Store Database:
Columns store databases use a concept called a keyspace. A key space is kind of like a schema in

the relational model. The keyspace contains all the column families (kind of like tables in the relational
model), which contain rows, which contain columns.

Fig. : A key space co: training column families

Column-Family Stores: What Is a Column-Family Data Store, Features,

Suitable Use Cases,

When Not to Use Graph Databases: What Is a Graph Database, Features,

Suitable Use Cases, When Not to Use

84
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Here’s a closer look at a column family:

Fig. : A column family containing 3 rows. Each row contains its own set of columns.

As the above diagram shows:

 A column family consists of multiple rows.

 Each row can contain a different number of columns to the other rows. And the columns don’t
have to match the columns in the other rows (i.e. they can have different column names, data
types, etc).

 Each column is contained to its row. It doesn’t span all rows like in a relational database. Each
column contains a name/value pair, along with a timestamp. Note that this example uses Unix/
Epoch time for the timestamp.

Here’s how each row is constructed

85
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

Here’s a breakdown of each element in the
row:

 Row Key

Each row has a unique key, which is a unique
identifier for that row.

 Column

Each column contains a name, a value, and
timestamp.

 Name

This is the name of the name/value pair.

 Value

This is the value of the name/value pair.

 Timestamp

This provides the date and time that the data
was inserted. This can be used to determine
the most recent version of data.

Some DBMSs expand on the column family
concept to provide extra functionality/storage
ability. For example, Cassandra has the concept
of composite columns, which allow you to nest
objects inside a column.

Benefits

Some key benefits of columnar data
bases include:

 Compression

Column stores are very efficient at data
compression and/or partitioning.

 Aggregation queries

Due to their structure, columnar databases
perform particularly well with aggregation
queries (such as SUM, COUNT, AVG, etc).

 Scalability

Columnar databases are very scalable. They
are well suited to massively parallel processing
(MPP), which involves having data spread
across a large cluster of machines – often
thousands of machines.

 Fast to load and query

Columnar stores can be loaded extremely
fast. A billion-row table could be loaded
within a few seconds. You can start querying
and analysing almost immediately.

These are just some of the benefits
that make columnar databases a popular choice
for organizations dealing with big data.

 Examples of Column Store DBMSs

• Bigtable

• Cassandra

• HBase

• Vertica

• Druid

• Accumulo

• Hypertable

Q2. What is column store database? Give its
advantages and disadvantages.

Ans: (Imp.)

Meaning

A column store database is a type of database
that stores data using a column-oriented model.

A columnar database is a database
management system (DBMS) that stores data in
columns instead of rows. The purpose of a columnar
database is to efficiently write and read data to and
from hard disk storage in order to speed up the
time it takes to return a query. Columnar databases
store data in a way that greatly improves disk I/O
performance. They are particularly helpful for data
analytics and data warehousing.

Unlike relational databases, columnar
databases store their data by columns, rather than
by rows. These columns are gathered to form
subgroups.

The keys and the column names of this type
of database are not fixed. Columns within the same
column family, or cluster of columns, can have a
different number of rows and can accommodate
different types of data and names.

These databases are most often utilized when
there is a need for a large data model. They are
very useful for data warehouses, or when there is
a need for high performance or handling intensive
querying.

86
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Working of Mechanism

 Relational databases have a set schema and
they function as tables of rows and columns.
Wide-column databases have a similar, but
different schema. They also have rows and
columns. However, they are not fixed within
a table, but have a dynamic schema.

 Each column is stored separately. If there are
similar (related) columns, they are joined into
column families and then the column families
are stored separately from other column
families.

 The row key is the first column in each column
family, and it serves as an identifier of a row.
Furthermore, each column after that has a
column key (name).

 It identifies columns within rows and thus
enables the querying of the columns. The
value and the timestamp come after the
column key, leaving a trace of when the data
was entered or modified.

 The number of columns pertaining to each
row, or their name, can vary. In other words,
not every column of a column family, and
thus a database, has the same number of
rows. In fact, even though they might share
their name, each column is contained within
one row and does not run across all rows.

 The column families are located in
a keyspace. Each keyspace holds an entire
NoSQL data store and it has a similar role or
importance that a schema has for a relational
database.

 However, as NoSQL datastores have no set
structure, keyspaces represent a schemaless
database containing the design of a data store
and its own set of attributes.

 One of the most popular columnar databases
available is MariaDB. It was created as a fork
of MySQL intended to be robust and scalable,
handle many different purposes and a large
volume of queries.

 Apache Cassandra is another example of a
columnar database handling heavy data
loads across numerous servers, making the
data highly available.

 Some of the other names on this list include
Apache HBase, Hypertable and Druid
specially designed for analytics. These
databases support certain features of
platforms such as Outbrain, Spotify and
Facebook.

Types

 Standard column family

This column family type is similar to a table; it
contains a key-value pair where the key is
the row key, and the values are stored in
columns using their names as their identifiers.

 Super column family

A super column represents an array of
columns. Each super column has a name and
a value mapping the super column out to
several different columns. Related super
columns are joined under a single row into
super column families. Compared to a
relational database, this is like a view of several
different tables within a database. Imagine you
had the view of the columns and values
available for a single row that is a single
identifier across many different tables and
were able to store them all in one place: That
is the super column family.

Advantages

 Scalability

This is a major advantage and one of the main
reasons this type of database is used to store
big data. With the ability to be spread over
hundreds of different machines depending
on the scale of the database, it supports
massively parallel processing. This means it
can employ many processors to work on the
same set of computations simultaneously.

 Compression

Not only are they infinitely scalable, but they
are also good at compressing data and thus
saving storage.

 Very responsive

The load time is minimal, and queries are
performed fast, which is expected given that
they are designed to hold big data and be
practical for analytics.

87
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

Disadvantages

 Online transactional processing

These databases are not very efficient with
online transactional processing as much as
they are for online analytical processing. This
means they are not very good with updating
transactions but are designed to analyze
them. This is why they can be found holding
data required for business analysis with a
relational database storing data in the back
end.

 Incremental data loading

As mentioned above, typically column-
oriented databases are used for analysis and
are quick to retrieve data, even when
processing complex queries, as it is kept close
together in columns. While incremental data
loads are not impossible, columnar databases
do not perform them in the most efficient
way. The columns first need to be scanned
to identify the right rows and scanned further
to locate the modified data which requires
overwriting.

 Row-specific queries

Like the potential downfalls mentioned above,
it all boils down to the same issue, which is
using the right type of database for the right
purposes. With row-specific queries, you are
introducing an extra step of scanning the
columns to identify the rows and then locating
the data to retrieve. It takes more time to get
to individual records scattered in multiple
columns, rather than accessing grouped
records in a single column. Frequent row-
specific queries might cause performance
issues by slowing down a column-oriented
database, which is particularly designed to
help you get to required pieces of information
quickly, thus defeating its purpose.

4.1.2 Features

Q3. What are the Features of Column Store
Databases.

Ans: (Imp.)

Key benefits of column store databases:

Key benefits of column store databases
include faster performance in load, search, and
aggregate functions. Column store databases are
scalable and can read billions of records in seconds.
Column store databases are also efficient in data
compression and partitioning.

Popular Column databases

Some of the popular column-oriented DBMS
include Bigtable, Cassandra, HBase, Druid,
Hypertable, MariaDB, Azure SQL Data Warehouse,
Google BigQuery, IBM Db2, MemSQL, SQL Server,
and SAP HANA.

Bigtable

Google Bigtable is a petabyte-scale, fully
managed NoSQL database service for large
analytical and operational workloads.

Key features include:

 Low latency, massively scalable NoSQL

 Consistent sub-10ms latency

 Replication provides higher availability, higher
durability, and resilience in the face of zonal
failures

 Ideal for Ad Tech, Fintech, and IoT

 Storage engine for machine learning
applications

 Easy integration with open source big data
tools

Cassandra

Apache Cassandra No SQL database is a
highly scalable and highly available without
compromising performance. Linear scalability and
proven fault-tolerance on commodity hardware or
cloud infrastructure make it the perfect platform for
mission-critical data. Cassandra’s support for
replicating across multiple datacenters is best-in-
class, providing lower latency for your users and
the peace of mind of knowing that you can survive
regional outages.

88
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

HBase

Apache HBase is an open-source, distributed, scalable, NoSQL big data store that allows billions of
rows of big data access in seconds.

Key features include:

 Linear and modular scalability

 Strictly consistent reads and writes

 Automatic and configurable sharding of tables

 Automatic failover support between Region Servers

 Convenient base classes for backing Hadoop Map Reduce jobs with Apache HBase tables

 Easy to use Java API for client access

 Block cache and Bloom Filters for real-time queries

 Query predicate push down via server-side Filters

 Thrift gateway and a REST-ful Web service that supports XML, Protobuf, and binary data encoding
options

 Extensible jruby-based (JIRB) shell.

4.1.3 Suitable Use Cases

Q4. What are the Suitable Use Cases of Column Store Data bases?

Ans :
Suitable Use Cases: some of the problems where column-family databases are a good fit.

(i) Event Logging

Column-family databases with their ability to store any data structures are a great choice to store
event information, such as application state or errors encountered by the application. Within the
enterprise, all applications can write their events to Cassandra with their own columns and the
rowkey of the form appname: timestamp. Since we can scale writes, Cassandra would work ideally
for an event logging system

(ii) Content Management Systems, Blogging Platforms

Using column families, you can store blog entries with tags, categories, links, and trackbacks in
different columns. Comments can be either stored in the same row or moved to a different keyspace;
similarly, blog users and the actual blogs can be put into different column families.

(iii) Counters

Often in web applications you need to count and categorize visitors of a page to calculate analytics.
You can use the Counter Column Type during creation of a column family.

CREATE COLUMN FAMILY visit_counter

WITH default_validation_ class= Counter ColumnType

AND key_validation_class=UTF8 Type AND comparator=UTF8Type;

Once a column family is created, you can have arbitrary columns for each page visited within the
web application for every user.

89
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

INCR visit_counter[‘mfowler’][home] BY 1;

 INCR visit_counter[‘mfowler’][products] BY 1;

INCR visit_counter[‘mfowler’][contactus] BY 1;

Incrementing counters using CQL:

UPDATE visit_counter SET home = home + 1 WHERE KEY=’mfowler’

4.1.4 When Not to Use

Q5. What is column store database? Explain about When Not to Use column-family databases.

Ans: (Imp.)

A column store database is a type of database that stores data using a column-oriented model.

A columnar database is a database management system (DBMS) that stores data in columns instead
of rows. The purpose of a columnar database is to efficiently write and read data to and from hard disk
storage in order to speed up the time it takes to return a query. Columnar databases store data in a way
that greatly improves disk I/O performance. They are particularly helpful for data analytics and data
warehousing.

Unlike relational databases, columnar databases store their data by columns, rather than by rows.
These columns are gathered to form subgroups.

The keys and the column names of this type of database are not fixed. Columns within the same
column family, or cluster of columns, can have a different number of rows and can accommodate different
types of data and names.

These databases are most often utilized when there is a need for a large data model. They are very
useful for data warehouses, or when there is a need for high performance or handling intensive querying.

When Not to use column-family databases:

There are problems for which column-family databases are not the best solutions, such as systems
that require ACID transactions for writes and reads. If you need the database to aggregate the data using
queries (such as SUM or AVG), you have to do this on the client side using data retrieved by the client
from all the rows.

Cassandra is not great for early prototypes or initial tech spikes: During the early stages, we are not
sure how the query patterns may change, and as the query patterns change, we have to change the
column family design. This causes friction for the product innovation team and slows down developer
productivity. RDBMS impose high cost on schema change, which is traded off for a low cost of query
change; in Cassandra, the cost may be higher for query change as compared to schema change.

4.2 WHEN NOT TO USE GRAPH DATABASES

4.2.1 What Is a Graph Database

Q6. What Is a Graph Database?

Ans:
A graph database ls a NoSQL-type data base system based on a topographical network structure.

The idea stems from graph theory in mathematics, where graphs represent data sets
using nodes, edges, and properties.

90
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

 Nodes or points are instances or entities of data which represent any object to be tracked, such as
people, accounts, locations, etc.

 Edges or lines are the critical concepts in graph databases which represent relationships between
nodes. The connections have a direction that is either unidirectional (one way) or bidirectional (two
way).

 Properties represent descriptive information associated with nodes. In some cases, edges have
properties as well.

For example, analyze some of the network locations

PhoenixNap
chicago

Ashburn

Ashburn

North
AmericaSeattle

Los

phoenixAngeles

Europe

Belgrade

Graph of (some) phoenixNap Network Locations

Nodes with descriptive properties form relationships represented by edges. Graph databases
provide a conceptual view of data more closely related to the real world. Modeling complex connections
becomes easier since relationships between data points are given an equal value of importance as the data
itself.

Working of Graph Databases

Graph databases work by treating data and relationships between data equally. Related nodes are
physically connected, and the physical connection is also treated as a piece of data.

Modeling data in this way allows querying relationships in the same manner as querying the data
itself. Instead of calculating and querying the connection steps, graph databases read the relationship
from storage directly.

Graph databases are more closely related to other NoSQL data modeling techniques in terms of
agility, performance, and flexibility. Like other NoSQL databases, graphs do not have schemas, which
makes the model flexible and easy to alter along the way.

The future of graph databases

Graph databases and graph techniques have been evolving as compute power and big data have
increased over the past decade. In fact, it’s become increasingly clear that they will become the standard
tool for analyzing a brave new world of complex data relationships. As businesses and organizations
continue pushing the capabilities of big data and analysis, the ability to derive insights in increasingly
complex ways makes graph databases a must-have for today’s needs and tomorrow’s successes.

Oracle makes it easy to adopt graph technologies. Oracle Database and Oracle Autonomous Database
include a graph database and graph analytics engine so users can discover more insights in their data by
using the power of graph algorithms, pattern matching queries, and visualization. Graphs are part of

91
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

Oracle’s converged database, which supports
multimodel, multiworkload, and multi-tenant
requirements–all in a single database engine.

Although all graph databases claim they are
high-performance, Oracle’s graph offerings are
performant both in query performance and
algorithms, as well as tightly integrated with Oracle
database. This makes it easy for developers to add
graph analytics to existing applications and make
use of the scalability, consistency, recovery, access
control, and security that the database provides by
default.

4.2.2 Features

Q7. What are the features of Graph Data
bases?

Ans: (Imp.)

Graph databases became more popular with
the rise of big data and social media analytics.
Many multi-model databases support graph
modeling. However, there are numerous graph
native databases available as well.

The Following features of Graph
Databases:

1. Janus Graph

Janus Graph is a distributed, open-source
and scalable graph database system with a
wide range of integration options catered to
big data analytics. Some of the main features
of JanusGraph include:

 Support for ACID transactions with the
ability to bear thousands of concurrent
users.

 Multiple options for storing the graph
data, such as Cassandra or HBase.

 Complex search available by default as
well as optional support for Elasticsearch.

 Full integration with Apache Spark for
advanced data analytics.

 JanusGraph uses the graph transversal
query language Gremlin, which is Turing
complete.

2. Neo4j

Neo4j (Network Exploration and Optimi-
zation 4 Java) is a graph database written
in Java with native graph storage and
processing. The main features of Neo4j are:

 The database is scalable through data
partitioning into pieces known as shards.

 High availability provided through
continuous backups and rolling
upgrades.

 Multiple instances of databases are
separable while remaining on
one dedicated server, providing a high
level of security.

 Neo4j uses the Cypher graph query
language, which is programmer friendly.

3. DGraph

DGraph (Distributed graph) is an open-
source distributed graph database system
designed with scalability in mind. Some
exciting features of DGraph include:

 Horizontal scalability for running in
production with ACID transactions.

 DGraph is an open-source system with
support for many open standards.

 The query language is GraphQL, which
is designed for APIs.

4. DataStax Enterprise Graph

The DataStax Enterprise Graph is a
distributed graph database based on
Cassandra and optimized for enterprises.
Features include:

 Data Stax provides continuous
availability for enterprise needs.

 The database integrates with offline
Apache Spark seamlessly.

 Real-time search and analytics are fully
integrated.

 Scalability available through multiple
data centers.

 It supports Gremlin as well as CQL for
querying.

92
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Q8. State Advantages and Disadvantages of
graph database.

Ans :
Every database type comes with strengths and

weaknesses. The most important aspect is to know
the differences as well as available options for specific
problems. Graph databases are a growing
technology with different objectives than other
database types.

Advantages

Some advantages of graph databases include:

 The structures are agile and flexible.

 The representation of relationships between
entities is explicit.

 Queries output real-time results. The speed
depends on the number of relationships.

Disadvantages

The general disadvantages of graph databases
are:

 There is no standardized query language. The
language depends on the platform used.

 Graphs are inappropriate for transactional-
based systems.

 The user-base is small, making it hard to find
support when running into a problem.

4.2.3 Suitable Use Cases

Q9. What are the Use Cases of Graph Data
bases? Explain its advantages and
disadvantages?

Ans: (Imp.)

Graph Database Use Cases

There are many notable examples where
graph databases outperform other database
modeling techniques, some of which include:

 Real-Time Recommendation Engines

Real-time product and ecommerce
recommendations provide a better user
experience while maximizing profitability.
Notable cases include Netflix, eBay, and
Walmart.

 Master Data Management

Linking all company data to one location for
a single point of reference provides data
consistency and accuracy. Master data
management is crucial for large-scale global
companies.

 GDPR and regulation compliances

Graphs make tracking of data movement and
security easier to manage. The databases
reduce the potential of data breaches and
provide better consistency when removing
data, improving the overall trust with sensitive
information.

 Digital asset management

The amount of digital content is massive and
constantly increasing. Graph databases
provide a scalable and straightforward
database model to keep track of digital assets,
such as documents, evaluations, contracts,
etc.

 Context-aware services

Graphs help provide services related to actual-
world characteristics. Whether it is natural
disaster warnings, traffic updates, or product
recommendations for a given location, graph
databases offer a logical solution to real-life
circumstances.

 Fraud detection

Finding suspicious patterns and uncovering
fraudulent payment transactions is done in
real-time using graph databases. Targeting
and isolating parts of graphs provide quicker
detection of deceptive behavior.

 Semantic search

Natural language processing is ambiguous.
Semantic searches help provide meaning
behind keywords for more relevant results,
which is easier to map using graph databases.

93
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

 Network management

Networks are linked graphs in their essence.
Graphs reduce the time needed to alert a
network administrator about problems in a
network.

 Routing

Information travels through a network by
finding optimal paths makes graph databases
the perfect choice for routing.

4.2.4 When Not to Use

Q10. Explain when not use Graph Databases.

Ans:
If you need to run frequent table scans and

searches for data that fits defined categories, a
graph database wouldn’t be very helpful. Graph
databases are well equipped to traverse relationships
when you have a specific starting point or at least a
set of points to start with (nodes with the same label).
They are not suited for traversing the whole graph
often. While it’s possible to run such queries, other
storage solutions may be more optimized for such
bulk scans.

If the majority of the queries in our example
include searches by property values over the entire
network, then a graph database wouldn’t be the
right fit.

2. When you Need Key/Value Storage

Very often, databases are used to lookup
information stored in key/value pairs. When
you have a known key and need to retrieve
the data associated with it, a graph database
is not particularly useful.

For example, if the sole purpose of your
database is storing a user’s personal
information and retrieving it by name or ID,
then refrain from using a graph. But if there
were other entities involved (visited locations
for example), and a large number of

connections is required to map them to users,
then a graph database could bring
performance benefits. A good rule of thumb
is, if most of your queries return a single node
via a simple identifier (key), then just skip
graph databases.

3. When you Need to Store Large Chunks
of Information

If the entities in your model have very large
attributes like BLOBs, CLOBs, long texts…
then graph databases aren’t the best solution.
While you can store those objects as nodes
and link them to other nodes to utilize the
power of traversing relationships, sometimes
it just makes more sense to store them directly
with the entities they are connected to.

When to Use Graph Database:

 Graph databases should be used for heavily
interconnected data.

 It should be used when amount of data is
larger and relationships are present.

 It can be used to represent the cohesive
picture of the data.

94
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Short Question & Answers

1. What is a Column-Family Data Store?

Ans:
A column store database is a type of database

that stores data using a column-oriented model.

The Structure of a Column Store Database:

Columns store databases use a concept called
a keyspace. A keyspace is kind of like a schema in
the relational model. The keyspace contains all the
column families (kind of like tables in the relational
model), which contain rows, which contain columns.

A column family consists of multiple rows:

 Each row can contain a different number of
columns to the other rows. And the columns
don’t have to match the columns in the other
rows (i.e. they can have different column
names, data types, etc).

 Each column is contained to its row. It
doesn’t span all rows like in a relational
database. Each column contains a name/
value pair, along with a timestamp. Note that
this example uses Unix/Epoch time for the
timestamp.

Here’s a breakdown of each element in the
row:

 Row Key

Each row has a unique key, which is a unique
identifier for that row.

 Column

Each column contains a name, a value, and
timestamp.

 Name

This is the name of the name/value pair.

 Value

This is the value of the name/value pair.

 Timestamp

This provides the date and time that the data
was inserted. This can be used to determine
the most recent version of data.

2. What are the advantages and dis-
advantages of column-oriented data
bases?

Ans:
Advantages

 Scalability

This is a major advantage and one of the main
reasons this type of database is used to store
big data. With the ability to be spread over
hundreds of different machines depending
on the scale of the database.

 Compression

Not only are they infinitely scalable, but they
are also good at compressing data and thus
saving storage.

 Very responsive

The load time is minimal, and queries are
performed fast, which is expected given that
they are designed to hold big data and be
practical for analytics.

Disadvantages

 Online transactional processing

These databases are not very efficient with
online transactional processing as much as
they are for online analytical processing. This
means they are not very good with updating
transactions but are designed to analyze them

 Incremental data loading

As mentioned above, typically column-
oriented databases are used for analysis and
are quick to retrieve data, even when
processing complex queries, as it is kept close
together in columns.

 Row-specific queries

Like the potential downfalls mentioned above,
it all boils down to the same issue, which is
using the right type of database for the right
purposes. With row-specific queries, you are
introducing an extra step of scanning the
columns to identify the rows and then locating
the data to retrieve.

95
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

3. What is a Graph Database?

Ans:
A graph database is a NoSQL-type data

base system based on a topographical network
structure. The idea stems from graph theory in
mathematics, where graphs represent data sets
using nodes, edges, and properties.

 Nodes or points are instances or entities of
data which represent any object to be
tracked, such as people, accounts, locations,
etc.

 Edges or lines are the critical concepts in
graph databases which represent relationships
between nodes. The connections have a
direction that is either unidirectional (one
way) or bidirectional (two way).

 Properties represent descriptive information
associated with nodes. In some cases, edges
have properties as well.

4. How Graph and Graph Databases
Work? Give the examples of Graph
Databases

Ans:
Graph databases provide graph models They

allow users to perform traversal queries since data
is connected. Graph algorithms are also applied to
find patterns, paths and other relationships this
enabling more analysis of the data. The algorithms
help to explore the neighboring nodes, clustering
of vertices analyze relationships and patterns.
Countless joins are not required in this kind of
database.

Example of Graph Database

 Recommendation engines in E commerce
use graph databases to provide customers
with accurate recommendations, updates
about new products thus increasing sales and
satisfying the customer’s desires.

 Social media companies use graph databases
to find the “friends of friends” or products
that the user’s friends like and send
suggestions accordingly to user.

 To detect fraud Graph databases, play a
major role. Users can create graph from the
transactions between entities and store other
important information. Once created,
running a simple query will help to identify
the fraud.

5. What are the Advantages and Dis-
advantages of Graph Database?

Ans:
Advantages
 Potential advantage of Graph Database is

establishing the relationships with external
sources as well

 No joins are required since relationships is
already specified.

 Query is dependent on concrete relationships
and not on the amount of data.

 It is flexible and agile.
 it is easy to manage the data in terms of graph.
Disadvantages
 Often for complex relationships speed

becomes slower in searching.
 The query language is platform dependent.
 They are inappropriate for transactional data
 It has smaller user base.
6. What are the types of Graph Databases?

Ans:
Types
 Property Graphs

These graphs are used for querying and
analyzing data by modelling the relationships
among the data. It comprises of vertices that
has information about the particular subject
and edges that denote the relationship. The
vertices and edges have additional attributes
called properties.

 RDF Graphs
It stands for Resource Description Framework.
It focuses more on data integration. They are
used to represent complex data with well-
defined semantics. It is represented by three
elements: two vertices, an edge that reflect
the subject, predicate and object of a
sentence. Every vertex and edge is
represented by URI (Uniform Resource
Identifier).

96
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

7. What are key benefits of Column Store Databases?

Ans:
Benefits

Some key benefits of columnar databases include:

 Compression. Column stores are very efficient at data compression and/or partitioning.

 Aggregation queries. Due to their structure, columnar databases perform particularly well with
aggregation queries (such as SUM, COUNT, AVG, etc).

 Scalability. Columnar databases are very scalable. They are well suited to massively parallel processing
(MPP), which involves having data spread across a large cluster of machines – often thousands of
machines.

 Fast to load and query. Columnar stores can be loaded extremely fast. A billion-row table could be
loaded within a few seconds. You can start querying and analysing almost immediately.

These are just some of the benefits that make columnar databases a popular choice for
organisations dealing with big data.

8. What are key features of Column Store Databases

Ans:
Features

 Low latency, massively scalable NoSQL

 Consistent sub-10ms latency

 Replication provides higher availability, higher durability, and resilience in the face of zonal failures

 Ideal for Ad Tech, Fintech, and IoT

 Storage engine for machine learning applications

 Easy integration with open source big data tools

9. What are differences between Graph and Relational Databases?

Ans:
The following table outlines the critical differences between graph and relational databases:

Type Graph Relational

Format Nodes and edges with properties Tables with rows and columns

Relationships Represented with edges between Created using foreign keys between tables

nodes

Flexibility Flexible Rigid

Complex Quick and responsive Requires complex joins

queries

Use-case Systems with highly connected Transaction focused systems with more

relationships straightforward relationships

97
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

10. What are the graph database use cases with an examples?

Ans:
Graph Database Use Case Examples

There are many notable examples where graph databases outperform other database modeling
techniques, some of which include:

 Real-Time Recommendation Engines

Real-time product and ecommerce recommendations provide a better user experience while
maximizing profitability. Notable cases include Netflix, eBay, and Walmart.

 Master Data Management

Linking all company data to one location for a single point of reference provides data consistency
and accuracy. Master data management is crucial for large-scale global companies.

 GDPR and regulation compliances

Graphs make tracking of data movement and security easier to manage. The databases reduce the
potential of data breaches and provide better consistency when removing data, improving the
overall trust with sensitive information.

 Digital asset management

The amount of digital content is massive and constantly increasing. Graph databases provide a
scalable and straightforward database model to keep track of digital assets, such as documents,
evaluations, contracts, etc.

 Context-aware services

Graphs help provide services related to actual-world characteristics. Whether it is natural disaster
warnings, traffic updates, or product recommendations for a given location, graph databases offer
a logical solution to real-life circumstances.

 Fraud detection

Finding suspicious patterns and uncovering fraudulent payment transactions is done in real-time
using graph databases. Targeting and isolating parts of graphs provide quicker detection of deceptive
behavior.

 Semantic search

Natural language processing is ambiguous. Semantic searches help provide meaning behind
keywords for more relevant results, which is easier to map using graph databases.

 Network management

Networks are linked graphs in their essence. Graphs reduce the time needed to alert a network
administrator about problems in a network.

 Routing

Information travels through a network by finding optimal paths makes graph databases the perfect
choice for routing.

98
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

Choose the Correct Answers
1. The full form of ‘CRUD’ is . [d]

(a) Create-Read-Update-Define (b) Create-Read-Update-Deliver

(c) Create-Run-Update-Delete (d) Create-Read-Update-Delete

2. distributes different data across multiple servers. [b]

(a) None of the options (b) Bucketing

(b) Sharding (d) Partitioning

3. NoSQL databases are designed to expand . [d]

(a) with increase of load (b) vertically

(c) hardware wise (d) horizontally

4. The key-value pair data storages include all, except . [b]

(a) in-memory (b) Network Attached Storage

(b) Disk Storage (c) Cache Storage

5. Cassandra has properties of both and . [c]

(a) Kudu and Hbase (b) Neo4j / Amazon Dynamo

(c) Google Bigtable / Amazon Dynamo (d) MongoDB / Google BigTable

6. A Riak Convergent Replicated Data Type (CRDT) includes . [c]

(a) JSON/Maps/Sets (b) JSON/Maps

(c) Maps/Sets/Counters (d) Sets

7. The RDBMS ‘table’ equivalent terminology in Riak is . [c]

(a) data store (b) data segment

(c) bucket (d) key-value

8. In column-oriented stores, data is stored on a basis. [b]

(a) Column (b) Column Family

(c) Row Key (d) Row

9. JSON documents are built up of . [c]

(a) arrays (b) objects

(c) All the options (d) values

10. Graph databases are generally built for use with . [b]

(a) Data Warehouse Batch Processing (b) OLTP

(c) OLAP (d) All the options

99
Rahul Publications

UNIT -IV NO SQL DATA BASES

Rahul Publications

Fill in the Blanks

1. In column-oriented stores, data is stored on a basis.

2. Cypher query language is associated with .

3. is a Columnar database that runs on a Hadoop cluster..

4. in Key-Value Databases are similar to ‘Tables’ in RDBMS.

5. Cassandra was developed by .

6. NoSQL can handle .

7. Hash Table Design is similar to .

8. Example(s) of Columnar Database is/are .

9. In the Master-Slave Replication model, the slave node services .

10. The Property Graph Model is similar to .

ANSWERS

1. Column Family

2. Neo4j

3. Apache HBase

4. Buckets

5. Facebook

6. Unstructured and Semi-structured data

7. Key Value datastore

8. Cassandra and HBase

9. Read operations

10. Entity Relationship Diagram

100
Rahul Publications

B.Sc. III YEAR V SEMESTER

Rahul Publications

One Mark Answers
1. Give few examples of Column-Family Stores.

Ans :
Cassandra, HBase, Hypertable, and Amazon SimpleDB

2. What Is a Column-Family Data Store?

Ans :
Column-family databases store data in column families as rows that have many columns associated

with a row key.
3. What are Columnar Databases?

Ans :
A column data store is also known as a column-oriented DBMS. Column store DBMS store data in

columns rather than rows.
4. What is Keyspace?

Ans :
Column store DBMS uses a keyspace that is like a database schema in RDBMS. The keyspace

contains all the column families.
5. What are the Key benefits of column store databases?

Ans :
Key benefits of column store databases include faster performance in load, search, and aggregate

functions.
6. What is HBase?

Ans :
Apache HBase is an open-source, distributed, scalable, NoSQL big data store that allows billions of

rows of big data access in seconds.
7. What is Bigtable?

Ans :
Google Bigtable is a petabyte-scale, fully managed NoSQL database service for large analytical and

operational workloads.
8. What is a graph database?

Ans :
A graph database is a database that uses graph structures for semantic queries with nodes, edges,

and properties to represent and store data.
9. How does a graph database store the data?

Ans :
A graph database uses a graph data structure to store data. This means that data is stored as nodes

and edges.
10. What are the advantages of using graph data structures to represent relationships between

entities?

Ans :
First, they can be used to easily represent complex relationships. Second, they offer a high degree

of flexibility.

101
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

Lab Practicals

1. Installation of NoSQL Databases: Redis,MongoDB, Cassandra, Neo4j on Windows

Ans :
(i) How to Install Redis on Windows

You can run Redis on Windows 10 using Windows Subsystem for Linux(a.k.a WSL2). WSL2 is a
compatibility layer for running Linux binary executables natively on Windows 10 and Windows Server
2019. WSL2 lets developers run a GNU/Linux environment (that includes command-line tools, utilities,
and applications) directly on Windows.

Follow these instructions to run a Redis database on Microsoft Windows 10.
Step 1: Turn on Windows Subsystem for Linux

In Windows 10, Microsoft replaced Command Prompt with PowerShell as the default shell. Open
PowerShell as Administrator and run this command to enable Windows Subsystem for Linux (WSL):
Enable-WindowsOptionalFeature-Online-FeatureName Microsoft-Windows-Subsystem-Linux
Reboot Windows after making the change — note that you only need to do this once.

Step 2: Launch Microsoft Windows Store
start ms-windows-store:
Then search for Ubuntu, or your preferred distribution of Linux, and download the latest version.

Step 3: Install Redis server
Installing Redis is simple and straightforward. The following example works with Ubuntu (you’ll
need to wait for initialization and create a login upon first use):
sudo apt-add-repository ppa:redislabs/redis
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install redis-server
Please note that the sudo command might or mightn’t be required based on the user configuration
of your system.

Step 4: Restart the Redis server
Restart the Redis server as follows:
sudo service redis-server restart

Step 5: Verify if your Redis server is running
Use the redis-cli command to test connectivity to the Redis database.
$ redis-cli
127.0.0.1:6379> set user:1 “Jane”
127.0.0.1:6379> get user:1
“Jane”
Please note: By default, Redis has 0-15 indexes for databases, you can change that number
databases NUMBER in redis.conf.

Step 6: Stop the Redis Server

sudo service redis-server stop

102
Rahul Publications

B.Sc. III YEAR V SEMESTER

(ii) Installation MongoDB

How to Download & Install MongoDB on Windows

Step 1: Download the MongoDB MSI Installer Package

Head over here and download the current version of MongoDB. Make sure you select MSI as
the package you want to download.

Step 2: Install MongoDB with the Installation Wizard

Make sure you are logged in as a user with Admin privileges. Then navigate to your downloads
folder and double click on the .msi package you just downloaded. This will launch the installation
wizard.

103
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

B. Click Next to start installation

C. Accept the licence agreement then click Next.

104
Rahul Publications

B.Sc. III YEAR V SEMESTER

D. Select the Complete setup.

E Select “Run service as Network Service user” and make a note of the data directory,
we’ll need this later.

105
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

F. We won’t need Mongo Compass, so deselect it and click Next.

G. Click Install to begin installation.

106
Rahul Publications

B.Sc. III YEAR V SEMESTER

F. Hit Finish to complete installation.

Step 3— Create the Data Folders to Store our Databases

A. Navigate to the C Drive on your computer using Explorer and create a new folder
called data here.

107
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

B. Inside the data folder you just created, create another folder called db.

Step 4: Setup Alias Shortcuts for Mongo and Mongod
Once installation is complete, we’ll need to set up MongoDB on the local system.

A. Open up your Hyper terminal running Git Bash.
B. Change directory to your home directory with the following command: cd ~
C. Here, we’re going to create a file called .bash_profile using the following command: touch

.bash_profile
D. Open the newly created .bash_profile with vim using the following command: vim .bash_profile
E. In vim, hit the I key on the keyboard to enter insert mode.
F. In your explorer go to C ’! Program Files ’! MongoDB ’! Server

Now you should see the version of your MongoDB.

108
Rahul Publications

B.Sc. III YEAR V SEMESTER

G. Paste in the following code into vim, make sure your replace the 4.0 with your version that you see
in explorer
alias mongod=”/c/Program\ files/MongoDB/Server/4.0/bin/mongod.exe”
alias mongo=”/c/Program\ Files/MongoDB/Server/4.0/bin/mongo.exe”

F. Hit the Escape key on your keyboard to exit the insert mode. Then type :wq! to save and exit Vim.

Step 5: Verify That Setup was Successful
A. Close down the current Hyper terminal and quit the application.
B. Re-launch Hyper.
C. Type the following commands into the Hyper terminal:

mongo —version
Once you’ve hit enter, you should see something like this:

This means that you have successfully installed and setup MongoDB on your local system!

109
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

(iii) Cassandra installation
The software required for the Cassandra installation are:
1. JDK 8 (Java SE Development Kit 8)
2. Python 2.7or latest versions
3. Apache Cassandra.

JDK 8 Installation
1. Download the latest JDK 8 here. When this article was written, the latest version was JDK 8u241.

 Click Accept License Agreement
 Select jdk-8u241 according to the operating system used. The picture shows the JDK for

Windows x64 selected.
 Perform Sign in by entering a username and password if you already have the Oracle

account, or click Create Account to create a new one.
2. Double-click the downloaded jdk-8u241-XXXXX.exe file to install. Follow the instructions as-is.
3. Determine the JAVA_HOME variable in Windows.

110
Rahul Publications

B.Sc. III YEAR V SEMESTER

 In File Explorer, right-click This PC, then select Properties.

 On the Systems screen, click the Advanced system settings button.

 On the System Properties screen, click the Environment Variables button.

 The Environmental Variables screen appears.

 Under System variables, click the New button.

 The New System Variable screen appears.

111
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

 In the Variable name text box, type JAVA_HOME.

 Click the Browse Directory… button.

 The Browse For Folder screen appears.

 Navigate to the C:\Program Files\Java\jdk1.8.0_241 folder.

 Click the OK button.

112
Rahul Publications

B.Sc. III YEAR V SEMESTER

 The New System Variable screen in the Variable value text box already contains text following
the previously selected folder.

 Then click the OK button.
 On the Environmental Variables screen, click the OK button.
 On the System Properties screen, click the OK button.
Python 2.7 Installation
1. Download the latest Python 2.7 or latest versions
(iv) Neo4j Installation

Windows installation
This section describes how to install Neo4j on Windows. Check System Requirements to see if
your setup is suitable.
Windows console application

1. If it is not already installed, get OpenJDK 8 or Oracle Java 8.
2. Download the latest release from Neo4j Download Center.

Select the appropriate ZIP distribution.
3. Make sure to download Neo4j from Neo4j Download Center and always check that the SHA

hash of the downloaded file is correct:
(a) To find the correct SHA hash, go to Neo4j Download Center and click on SHA-256 which

will be located below your downloaded file.
(b) Using the appropriate commands for your platform, display the SHA-256 hash for the file

that you downloaded.
(c) Ensure that the two are identical.

4. Right-click the downloaded file, click Extract All.
5. Place the extracted files in a permanent home on your server, for example D:\neo4j\. The top level

directory is referred to as NEO4J_HOME.
(a) To run Neo4j as a console application, use: <NEO4J_HOME>\bin\neo4j console.
(b) To install Neo4j as a service use: <NEO4J_HOME>\bin\neo4j install-service.
(c) For additional commands and to learn about the Windows PowerShell module included in the

Zip file, see Windows PowerShell module.
6. Visit http://localhost:7474 in your web browser.
7. Connect using the username ‘neo4j’ with default password ‘neo4j’. You’ll then be prompted to

change the password.
8. Stop the server by typing Ctrl-C in the console.
Windows service

Neo4j can also be run as a Windows service. Install the service with bin\neo4j install-service, and
start it with bin\neo4j start.

The available commands for bin\neo4j are: help, start, stop, restart, status, install-
service, uninstall-service, and update-service.

When installing a new release of Neo4j, you must first run bin\neo4j uninstall-service on any
previously installed versions.
Java options

When Neo4j is installed as a service, Java options are stored in the service configuration. Changes
to these options after the service is installed will not take effect until the service configuration is updated.

113
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

For example, changing the setting dbms.memory.heap.max_size in neo4j.conf will not take effect
until the service is updated and restarted. To update the service, run bin\neo4j update-service. Then
restart the service to run it with the new configuration.

The same applies to the path to where Java is installed on the system. If the path changes, for
example when upgrading to a new version of Java, it is necessary to run the update-service command
and restart the service. Then the new Java location will be used by the service.
Example 1. Update service example
1. Install service

bin\neo4j install-service
2. Change memory configuration
3. echo dbms.memory.heap.initial_size=8g >> conf\neo4j.conf

echo dbms.memory.heap.max_size=16g >> conf\neo4j.conf
4. Update service

bin\neo4j update-service
5. Restart service

bin\neo4j restart
Windows PowerShell module

The Neo4j PowerShell module allows administrators to:
 Install, start and stop Neo4j Windows® Services.
 Start tools, such as Neo4j Admin and Cypher Shell.
 The PowerShell module is installed as part of the ZIP file distributions of Neo4j.
System requirements
 Requires PowerShell v2.0 or above.
 Supported on either 32 or 64 bit operating systems.
Managing Neo4j on Windows

On Windows, it is sometimes necessary to Unblock a downloaded ZIP file before you can import
its contents as a module. If you right-click on the ZIP file and choose “Properties” you will get a dialog
which includes an “Unblock” button, which will enable you to import the module.

Running scripts has to be enabled on the system. This can, for example, be achieved by executing
the following from an elevated PowerShell prompt.
2. Practice CRUD (Create, Read, Update, and Delete) operations on the four databases:

Redis, MongoDB, Cassandra, Neo4j

Ans :
(i) Crud Operation using Redis
Step#1 : Create a Runner class to test all the methods

Now create a Runner class and test all methods that we defined in EmployeeDaoImpl.java class.
importjava.util.Map;
importorg.springframework.beans.factory.annotation.Autowired;
importorg.springframework.boot.CommandLineRunner;
importorg.springframework.stereotype.Component;
importcom.dev.springboot.redis.dao.IEmployeeDao;
importcom.dev.springboot.redis.model.Employee;

114
Rahul Publications

B.Sc. III YEAR V SEMESTER

@Component
public classRedisOpertionsRunnerimplementsCommandLineRunner {

@Autowired
private IEmployeeDaoempDao;
@Override
public voidrun(String... args) throws Exception {

//saving one employee
empDao.saveEmployee(newEmployee(500, "Emp0", 2150.0));

//saving multiple employees
empDao.saveAllEmployees(
Map.of(501, new Employee(501, "Emp1", 2396.0),

 502, newEmployee(502, "Emp2", 2499.5),
 503, newEmployee(503, "Emp4", 2324.75)
)

);
 //modifying employee with empId 503

empDao.updateEmployee(newEmployee(503, "Emp3", 2325.25));
//deleting employee with empID 500

empDao.deleteEmployee(500);
 //retrieving all employees

empDao.getAllEmployees().forEach((k,v)->System.out.println(k +" : "+v));
 //retrieving employee with empID 501
System.out.println("Emp details for 501 : "+empDao.getOneEmployee(501));
 }
}
Step#2 : Start Redis Server

In order to test the implemented method, we need to start the Redis Server.
Step#3 : Run Spring Boot Project

Right Click on the project, select Run As -> Spring Boot Project.
Step#4 : Check the output

Below is the final output after including all operations. However, we can test individual methods
separately by commenting other methods.
503 : Employee(empId=503, empName=Emp3, empSalary=2325.25)
501 : Employee(empId=501, empName=Emp1, empSalary=2396.0)
502 : Employee(empId=502, empName=Emp2, empSalary=2499.5)
Emp details for 501 : Employee(empId=501, empName=Emp1, empSalary=2396.0)

(ii) Crud Operation using MongoDB
Crud Operations
INSERT INDIVIDUAL DOCUMENTS

We’ll create two new documents. One for information about Mickey Mouse and one for Charlie
Brown .

115
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

Our import additions
import com.mongodb.ErrorCategory;

import com.mongodb.MongoWriteException;
import com.mongodb.client.MongoCollection;
import org.bson.Document;
ADDING DOCUMENTS
 //Insert a document into the "characters" collection.
MongoCollection collection = database.getCollection("characters");
 Document mickeyMouse = new Document();
 Document charlieBrown = new Document();
mickeyMouse.append("_id", 1)
.append("characterName", "Mickey Mouse")
.append("creator", new Document("firstName", "Walt").append("lastName", "Disney"))
.append("pet", "Goofy");
charlieBrown.append("_id", 2)
.append("characterName", "Charlie Brown")
.append("creator", new Document("firstName", "Charles").append("lastName", "Shultz"))
.append("pet", "Snoopy");

try {
collection.insertOne(mickeyMouse);
collection.insertOne(charlieBrown);
System.out.println("Successfully inserted documents. \n");
 } catch (MongoWriteExceptionmwe) {
 if (mwe.getError().getCategory().equals(ErrorCategory.DUPLICATE_KEY)) {
System.out.println("Document with that id already exists");
 }
 }
We expect the following output:
Successful database connection established.
Successfully inserted documents.

We can go to the Mongo Shell by running mongo cartoon from a command prompt we will open
a Mongo Shell and be using the cartoon database. We know that our data is in the characters
collection so if we do a find() on our collection, and pretty print it with db.characters.find().pretty()
we will get back our two documents.

{
 "_id" : 1,
 "characterName" : "Mickey Mouse",
 "creator" : {
 "firstName" : "Walt",
 "lastName" : "Disney"
 },

116
Rahul Publications

B.Sc. III YEAR V SEMESTER

 "pet" : "Goofy"
}
{
 "_id" : 2,
 "characterName" : "Charlie Brown",
 "creator" : {
 "firstName" : "Charles",
 "lastName" : "Shultz"
 },
 "pet" : "Snoopy"
}
Maintenance and Multiple Inserts

This next step we’re going to do a few things. Since we are inserting our documents with specific _id
values, we can’t run it again and try to again insert Mickey Mouse into our collection as we’ll
generate a Duplicate Key error. So, we’ll do a bit of maintenance at the beginning of our code to
delete the current characters collection each time we run our program and yet keep the data in the
database at the end.
Let’s get some output about our collection size and also generate multiple documents using the
insertMany() method of the driver. We’ll start with inserting documents starting at an _id of 3 (since
we already have a 1 and 2) and generate enough so we have 50 documents in our collection.

Our import additions
import java.util.ArrayList;
import java.util.List;
Multiple inserts
 // Delete the collection and start fresh - add before the initial inserts
collection.drop();
 // Basic data on collection
System.out.println("Collection size: " + collection.count() + " documents. \n");
// Create and insert multiple documents
 List documents = new ArrayList();
 for (int i = 3; i< 51; i++) {
documents.add(new Document ("_id", i)
.append("characterName", "")
.append("creator", "")
.append("pet", "")
);
 }
collection.insertMany(documents);
 // Basic data on collection
System.out.println("Collection size: " + collection.count() + " documents. \n");
Very nice. Now we get some output with data about our growing collection!
Successful database connection established.

117
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

Successfully inserted documents.
Collection size: 2 documents.
Collection size: 50 documents.
Updating Documents

We should probably how to update a document as well. After all, we have 50 documents in the
collection but only two of them have any useful data. We use the updateOne() method to update
a single document along with the $set operator. We’ll print out the document with the _id of 3,
update it, and print it out again to show the change. We can find our document to print using a eq
Query Filter, or equals filter.

Our import additions
import com.mongodb.client.model.Filters;
Updates, find with filter
 // Update a document
 // print the third document before update.
 Document third = collection.find(Filters.eq("_id", 3)).first();
System.out.println(third.toJson());
collection.updateOne(new Document("_id", 3),
 new Document("$set", new Document("characterName", "Dilbert")
.append("creator", new Document("firstName", "Scott").append("lastName", "Adams"))
.append("pet", "Dogbert"))
);
System.out.println("\nUpdated third document:");
 Document dilbert = collection.find(Filters.eq("_id", 3)).first();
System.out.println(dilbert.toJson());
Nice work! Our output now is:
Successful database connection established.
Successfully inserted documents.
Collection size: 2 documents.
Collection size: 50 documents.
Original third document:
{ "_id" : 3, "characterName" : "", "creator" : "", "pet" : "" }
Updated third document:
{ "_id" : 3, "characterName" : "Dilbert", "creator" : { "firstName" : "Scott", "lastName" : "Adams" }, "pet" :
"Dogbert" }

Whew! Almost there. Let’s print out the entirety of our collection. We do this with a MongoCursor
and iterate over all of the documents.

Our import additions
import com.mongodb.client.MongoCursor;
Find all with cursor
 // Find and print ALL documents in the collection
System.out.println("Print the documents.");
MongoCursor cursor = collection.find().iterator();

118
Rahul Publications

B.Sc. III YEAR V SEMESTER

 try {
 while (cursor.hasNext()) {
System.out.println(cursor.next().toJson());
 }
 } finally {
cursor.close();
 }

With all of the new output, and most of it empty, perhaps we should clean up our collection a bit.
We currently have 50 documents in there, but only three of them have any pertinent data. Let’s get
rid of all documents that don’t have data using the deleteMany() function. We’re going to need
another filter here to delete documents whose _id is greater than or equal to 4. Fortunately there is
a built in filter, gte that will do just that!

Our final code for this tutorial then is available here as a gist.
 //Delete data
System.out.println("\nDelete documents with an id greater than or equal to 4.");
collection.deleteMany(Filters.gte("_id", 4));
 // Find and print ALL documents in the collection
System.out.println("\nPrint all documents.");
MongoCursor cursor2 = collection.find().iterator();
 try {
 while (cursor2.hasNext()) {
System.out.println(cursor2.next().toJson());
 }
 } finally {
 cursor2.close();
 }

As we would expect, our collection is now left with only three documents, one each for Mickey
Mouse, Charlie Brown, and Dilbert.

(iii) CRUD Operation using Cassandra
Cassandra CRUD Operation stands for Create, Update, Read and Delete or Drop. These operations
are used to manipulate data in Cassandra. Apart from this, CRUD operations in Cassandra, a user
can also verify the command or the data.

(a) Create Operation
A user can insert data into the table using Cassandra CRUD operation. The data is stored in the
columns of a row in the table. Using INSERT command with proper what, a user can perform this
operation.
A Syntax of Create Operation-
INSERT INTO <table name>
(<column1>,<column2>....)
VALUES(<value1>,<value2>...)
USING<option>

create a table data to illustrate the operation. Example consist of a table with information about students
in college. The following table will give the details about the students.

119
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

Table.1 Cassandra Crud Operation – Create Operation

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 New York City

003 Kabir Applied Physics 7777777777 Philadelphia

EXAMPLE 1:

Creating a table and inserting the data into a table:

INPUT:

cqlsh:keyspace1> INSERT INTO student(en, name, branch, phone, city)

VALUES(001, 'Ayush', 'Electrical Engineering', 9999999999, 'Boston');

cqlsh:keyspace1> INSERT INTO student(en, name, branch, phone, city)

VALUES(002, 'Aarav', 'Computer Engineering', 8888888888, 'New York City');

cqlsh:keyspace1> INSERT INTO student(en, name, branch, phone, city)

VALUES(003, 'Kabir', 'Applied Physics', 7777777777, 'Philadelphia');

Table.2 Cassandra Crud Operation – OUTPUT After Verification (READ operation)

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 New York City

003 Kabir Applied Physics 7777777777 Philadelphia

(b) Update Operation

The second operation in the Cassandra CRUD operation is the UPDATE operation. A user can use
UPDATE command for the operation. This operation uses three keywords while updating the table.

Where: This keyword will specify the location where data is to be updated.

Set: This keyword will specify the updated value.

Must: This keyword includes the columns composing the primary key.

A Syntax of Update Operation-

UPDATE <table name>

SET <column name>=<new value>

<column name>=<value>...

WHERE <condition>

EXAMPLE 2:

Let’s change few details in the table ‘student’. In this example, we will update Aarav’s city from
‘New York City’ to ‘San Fransisco’.

INPUT:

cqlsh:keyspace1> UPDATE student SET city='San Fransisco'WHERE en=002;

120
Rahul Publications

B.Sc. III YEAR V SEMESTER

Table.3 Cassandra Crud Operation – OUTPUT After Verification

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 San Fransisco

003 Kabir Applied Physics 7777777777 Philadelphia

(c) Read Operation

This is the third Cassandra CRUD Operation – Read Operation. A user has a choice to read either
the whole table or a single column. To read data from a table, a user can use SELECT clause. This
command is also used for verifying the table after every operation.

SYNTAX to read the whole table-

SELECT * FROM <table name>;

EXAMPLE 3:

To read the whole table ‘student’.

INPUT:

cqlsh:keyspace1> SELECT * FROM student;

Table.4 Cassandra Crud Operation – OUTPUT After Verification

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 San Fransisco

003 Kabir Applied Physics 7777777777 Philadelphia

SYNTAX to read selected columns-

EXAMPLE 4:

To read columns of name and city from table ‘student’.

INPUT:

cqlsh:keyspace1> SELECT name, city FROM student;

Table.5 Cassandra Crud Operation – OUTPUT After Verification

NAME CITY

Ayush Boston

Aarav San Fransisco

Kabir Philadelphia

(d) Delete Operation

Delete operation is the last Cassandra CRUD Operation, allows a user to delete data from a table.
The user can use DELETE command for this operation.

A Syntax of Delete Operation-

DELETE <identifier> FROM <table name> WHERE <condition>;

121
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

EXAMPLE 5:

In the ‘student’ table let us delete the ‘phone’ or phone number from 003 row.

cqlsh:keyspace1> DELETE phone FROM student WHERE en=003;

Table.6 Cassandra Crud Operation – OUTPUT After Verification

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 San Fransisco

003 Kabir Applied Physics null Philadelphia

SYNTAX for deleting the entire row-

DELETE FROM <identifier> WHERE <condition>;

EXAMPLE 6:

In the ‘student’ table, let us delete the entire third row.

cqlsh:keyspace1> DELETE FROM student WHERE en=003;

Table.7 Cassandra Crud Operation – OUTPUT After Verification

EN NAME BRANCH PHONE CITY

001 Ayush Electrical Engineering 9999999999 Boston

002 Aarav Computer Engineering 8888888888 San Fransisco

So, this was all about Cassandra CRUD operations.

(iv) CRUD Operation using Neo4j

1. Introduction

CRUD operations in Neo4j.We are going to use SET, Remove, Delete and Merge(Create and MATCH)
clause.

2. Merge Command

Merge commend is used to either create a node with labels or properties if the node does not exist
in the database or select the nodes with particular conditions if the nodes are already presents in the
database.

Using Merge command with labels and properties.

Example

Bash

$ Merge(Jeson:Man)returnJeson, labels(Jeson)

Since it does not exists in the database, it will create a new node and a new label Man and return the
node and labels of that specific node.

Bash

$ Merge(Jack:Man{Name:"Jack",Gender:"male"})return Jack

When running this merge command, it will firstly look at if there exists a node jack with corresponding
key-value pairs, if it does not exits, it will create a new node and return the node.

122
Rahul Publications

B.Sc. III YEAR V SEMESTER

Bash

$ Merge(Jack:Man{Name:"Jack",Age:"30"})return Jack

It will seperately create a node with the same name as before but differnt properties.

Then, if we run the following comand

Bash

$ Merge(Man{Name:"Jack"})returnMan.Name, Man.Gender, Man.Age

It will find all the nodes with name Jack and label Man, and the properties related to jack

Using Merge command to create Node with existing node properties.

Bash

MATCH (n) WHERE EXISTS(n.Gender)

Merge (gender:Gender{Gender:n.Gender})

return gender

We could see that we have created all gender with matching all the nodes with Gender properties.

Merge command with on create clause.

When creating a new node, we would like to set the properties for this node at the same time, ON
CREATE clause will allows the user to set properties at creation time.

Bash

Merge (Yuki:Person{Name:"Yuki"})

ON CREATE SET Yuki.Gender="Female"

RETURN Yuki.Name,Yuki.Gender

Merge command with on match clause.

When traversing from the graph database to find some nodes with some conditions, we need to set
some properties to those node at the same time for updating the information regarding to this
node.

Bash

Merge (person:Person)

ON MATCH SET person.Is_Person= TRUE

RETURN person.Name, person.Is_Person

Using merge command we could find all the node with label Person and add a new property
Is_Person to be true

Merge command for relationships

Bash

Merge (mika:Person{Name:"mika"})

ON CREATE SET mika.Gender="Male"

RETURN mika.Name,mika.Gender

Suppose Yuki has a boyfriend mika. we want to create relationships between them.We could run
the following commands

123
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

Bash

MATCH (girl:Person),(boy:Person)

WHERE girl.Name="Yuki" AND boy.Name="mika"

MERGE (girl)-[relationship:Has_A_Boy_Friend]->(boy)

RETURN girl,boy

Smiley face

3. SET Command

SET Clause is to set and remove properties of nodes. If Yuki goes to Tokyo University, we could run
the following command. We could use set clause to add school properties to Yuki, and remove the
Is_Person property we have set before.

Bash

MATCH (Yuki:Person)

WHERE Yuki.Name="Yuki"

SET Yuki.School="Tokyo University"

SET Yuki.Is_Person= NULL

RETURN Yuki

We could also use SET Clause to set multiple labels for some nodes,e.g,add two labels to Yuki which
are Student and Gril.

Bash

MATCH (Yuki:Person)

WHERE Yuki.Name="Yuki"

SET Yuki:Student:Gril

RETURN Yuki

4. DELETE Command

DELETE command is to delete specific nodes or relationships between nodes. Here we will learn
some of the basic usage of delete clause in CQL.

DELETE ALL NODES

Bash

MATCH (node)

DETACH DELETE node

DETACH is to firstly delete the relationships between the nodes that we are going to delete.

DELETE GROUPS OF NODES WITH CONDITIONS

It is quite similar but still notice that when deleting a node, we should delete the relationships first.

Bash

MATCH (mika:Person)

WHERE mika.Name="mika"

DETACH DELETE mika

124
Rahul Publications

B.Sc. III YEAR V SEMESTER

3. Usage of Where Clause equivalent in MongoDB

Ans :
Where Clause in MongoDB

To query the document on the basis of some condition, you can use following operations.

Operation Syntax Example

Equality {<key>:{$eg;<value>}} db.mycol.find({"by":"tutorials point"}).pretty()

Less Than {<key>:{$lt:<value>}} db.mycol.find({"likes":{$lt:50}}).pretty()

Less Than Equals {<key>:{$lte:<value>}} db.mycol.find({"likes":{$lte:50}}).pretty()

Greater Than {<key>:{$gt:<value>}} db.mycol.find({"likes":{$gt:50}}).pretty()

Greater Than Equals {<key>:{$gte:<value>}} db.mycol.find({"likes":{$gte:50}}).pretty()

Not Equals {<key>:{$ne:<value>}} db.mycol.find({"likes":{$ne:50}}).pretty()

Values in an array {<key>:{$in:[<value1>, db.mycol.find({"name":{$in:["Raj", "Ram",
<value2>,……<valueN>]}} db.mycol.find({"name":{$in:["Raj", "Ram",

"Raghu"]}}).pretty()

Values not in an array {<key>:{$nin:<value>}} db.mycol.find({"name":{$nin:["Ramu",
"Raghav"]}}).pretty()

Example

Consider the following documents in the players collection:

db.players.insertMany([

{ _id: 12378, name: "Steve", username: "KumarNaveen", first_login: "2017-01-01" },

{ _id: 2, name: "adi", username: "sahasra", first_login: "2001-02-02" }

])

The following example uses $where and the hex_md5() JavaScript function to compare the value
of the name field to an MD5 hash and returns any matching document.

db.players.find({ $where: function() {

return (hex_md5(this.name) == "9b53e667f30cd329dca1ec9e6a83e994")

} });

The operation returns the following result:

{

"_id" : 2,

"name" :"adi",

"username" :"sahasra",

"first_login" :"2001-02-02"

}

125
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

4. Usage of operations in MongoDB – AND in MongoDB, OR in MongoDB, Limit Records
and Sort Records. Usage of operations in MongoDB – Indexing, Aggregation and Map
Reduce.

Ans :
 AND in MongoDB

Syntax

To query documents based on the AND condition, you need to use $and keyword. Following is the
basic syntax of AND -

>db.mycol.find({ $and: [{<key1>:<value1>}, { <key2>:<value2>}] })

Example

Following example will show all the tutorials written by 'tutorials point' and whose title is 'MongoDB
Overview'.

>db.mycol.find({$and:[{"by":"tutorials point"},{"title":"MongoDB Overview"}]}).pretty()

{

"_id":ObjectId("5dd4e2cc0821d3b44607534c"),

"title":"MongoDB Overview",

"description":"MongoDB is no SQL database",

"by":"tutorials point",

"url":"http://www.rahulpublication.com",

"tags":[

"mongodb",

"database",

"NoSQL"

],

"likes":100

}

>

For the above given example, equivalent where clause will be ' where by = 'tutorials point' AND title
= 'MongoDB Overview' '. You can pass any number of key, value pairs in find clause.

 OR in MongoDB

Syntax

To query documents based on the OR condition, you need to use $or keyword. Following is the
basic syntax of OR -

>db.mycol.find(

{

$or: [

126
Rahul Publications

B.Sc. III YEAR V SEMESTER

{key1: value1}, {key2:value2}

]

}

).pretty()

Example

Following example will show all the tutorials written by 'tutorials point' or whose title is 'MongoDB
Overview'.

>db.mycol.find({$or:[{"by":"tutorials point"},{"title":"MongoDB Overview"}]}).pretty()

{

"_id":ObjectId(7df78ad8902c),

"title":"MongoDB Overview",

"description":"MongoDB is no sql database",

"by":"tutorials point",

"url":"http://www.rahulpublication.com",

"tags":["mongodb","database","NoSQL"],

"likes":"100"

}

>

 Limit Records and Sort Records.

The Limit() Method

To limit the records in MongoDB, you need to use limit() method. The method accepts one number
type argument, which is the number of documents that you want to be displayed.

Syntax

The basic syntax of limit() method is as follows -

>db.COLLECTION_NAME.find().limit(NUMBER)

Example

Consider the collection myycol has the following data.

{_id :ObjectId("507f191e810c19729de860e1"), title:"MongoDB Overview"},

{_id :ObjectId("507f191e810c19729de860e2"), title:"NoSQL Overview"},

{_id :ObjectId("507f191e810c19729de860e3"), title:"Tutorials Point Overview"}

Following example will display only two documents while querying the document.

>db.mycol.find({},{"title":1,_id:0}).limit(2)

{"title":"MongoDB Overview"}

{"title":"NoSQL Overview"}

>

If you don't specify the number argument in limit() method then it will display all documents from
the collection.

127
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

The sort() Method

To sort documents in MongoDB, you need to use sort() method. The method accepts a document
containing a list of fields along with their sorting order. To specify sorting order 1 and -1 are used. 1 is used
for ascending order while -1 is used for descending order.

Syntax

The basic syntax of sort() method is as follows -

>db.COLLECTION_NAME.find().sort({KEY:1})

Example

Consider the collection myycol has the following data.

{_id :ObjectId("507f191e810c19729de860e1"), title:"MongoDB Overview"}

{_id :ObjectId("507f191e810c19729de860e2"), title:"NoSQL Overview"}

{_id :ObjectId("507f191e810c19729de860e3"), title:"Tutorials Point Overview"}

Following example will display the documents sorted by title in the descending order.

>db.mycol.find({},{"title":1,_id:0}).sort({"title":-1})

{"title":"Rahul Publisher Overview"}

{"title":"NoSQL Overview"}

{"title":"MongoDB Overview"}

>

Note:

if you don't specify the sorting preference, then sort() method will display the documents in ascending
order.

 Usage of operations in MongoDB – Indexing

Indexes support the efficient resolution of queries. Without indexes, MongoDB must scan every
document of a collection to select those documents that match the query statement. This scan is highly
inefficient and require MongoDB to process a large volume of data.

Indexes are special data structures, that store a small portion of the data set in an easy-to-traverse
form. The index stores the value of a specific field or set of fields, ordered by the value of the field as
specified in the index.

The createIndex() Method

To create an index, you need to use createIndex() method of MongoDB.

Syntax

The basic syntax of createIndex() method is as follows().

>db.COLLECTION_NAME.createIndex({KEY:1})

Here key is the name of the field on which you want to create index and 1 is for ascending order.
To create index in descending order you need to use -1.

Example

>db.mycol.createIndex({"title":1})

128
Rahul Publications

B.Sc. III YEAR V SEMESTER

{

"createdCollectionAutomatically":false,

"numIndexesBefore":1,

"numIndexesAfter":2,

"ok":1

}

>

In createIndex() method you can pass multiple fields, to create index on multiple fields.

>db.mycol.createIndex({"title":1,"description":-1})

>

Aggregation:

Aggregations operations process data records and return computed results. Aggregation operations
group values from multiple documents together, and can perform a variety of operations on the grouped
data to return a single result. In SQL count(*) and with group by is an equivalent of MongoDB aggregation.

The aggregate() Method

For the aggregation in MongoDB, you should use aggregate() method.

Syntax

Basic syntax of aggregate() method is as follows -

>db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

Example

In the collection you have the following data -

{

_id:ObjectId(7df78ad8902c)

title:'MongoDB Overview',

description:'MongoDB is no sql database',

by_user:‘navin',

url:'http://www.navin@123.com',

tags:['mongodb','database','NoSQL'],

likes:100

},

{

_id:ObjectId(7df78ad8902d)

title:'NoSQL Overview',

description:'No sql database is very fast',

by_user:'tutorials point',

129
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

url:'http://www.navin@123.com',

tags:['mongodb','database','NoSQL'],

likes:10

},

{

_id:ObjectId(7df78ad8902e)

title:'Neo4j Overview',

description:'Neo4j is no sql database',

by_user:'Neo4j',

url:'http://www.neo4j.com',

tags:['neo4j','database','NoSQL'],

likes:750

},

Now from the above collection, if you want to display a list stating how many tutorials are written by
each user, then you will use the following aggregate() method -

>db.mycol.aggregate([{$group :{_id :"$by_user",num_tutorial:{$sum :1}}}])

{"_id":"rahulpublication","num_tutorial":2}

{"_id":"Neo4j","num_tutorial":1}

>

MapReduce:

Map-reduce is a data processing paradigm for condensing large volumes of data into useful
aggregated results. MongoDB uses mapReduce command for map-reduce operations. MapReduce is
generally used for processing large data sets.

MapReduce Command

Following is the syntax of the basic mapReduce command -

>db.collection.mapReduce(

function(){emit(key,value);},//map function

function(key,values){returnreduceFunction},{//reduce function

out: collection,

query: document,

sort: document,

limit: number

}

)

The map-reduce function first queries the collection, then maps the result documents to emit key-
value pairs, which is then reduced based on the keys that have multiple values.

130
Rahul Publications

B.Sc. III YEAR V SEMESTER

In the above syntax -

 map is a javascript function that maps a value with a key and emits a key-value pair
 reduce is a javascript function that reduces or groups all the documents having the same key
 out specifies the location of the map-reduce query result
 query specifies the optional selection criteria for selecting documents
 sort specifies the optional sort criteria
 limit specifies the optional maximum number of documents to be returned
Using MapReduce

Consider the following document structure storing user posts. The document stores user_name of
the user and the status of post.

{
"post_text":"rahulpublication is an awesome website for tutorials",
"user_name":"mark",
"status":"active"
}

Now, we will use a mapReduce function on our posts collection to select all the active posts, group
them on the basis of user_name and then count the number of posts by each user using the following
code -

>db.posts.mapReduce(
function(){ emit(this.user_id,1);},
function(key, values){returnArray.sum(values)},{
query:{status:"active"},
out:"post_total"
}
)

The above mapReduce query outputs the following result -
{

"result" : "post_total",
"timeMillis" : 9,
"counts" : {

"input" : 4,
"emit" : 4,
"reduce" : 2,
"output" : 2

},
"ok" : 1,

}

The result shows that a total of 4 documents matched the query (status:"active"), the map function
emitted 4 documents with key-value pairs and finally the reduce function grouped mapped documents
having the same keys into 2.

To see the result of this mapReduce query, use the find operator -

131
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

>db.posts.mapReduce(

function(){ emit(this.user_id,1);},

function(key, values){returnArray.sum(values)},{

query:{status:"active"},

out:"post_total"

}

).find()

The above query gives the following result which indicates that both users tom and mark have two
posts in active states -

{"_id":"tom","value":2}

{"_id":"mark","value":2}

In a similar manner, MapReduce queries can be used to construct large complex aggregation queries.
The use of custom Javascript functions make use of MapReduce which is very flexible and powerful.

5. Write a program to count the number of occurrences of a word using MapReduce.

Ans :
MapReduce: A Word Count Example of MapReduce

Let us understand, how a MapReduce works by taking an example where I have a text file called
example.txt whose contents are as follows:

Dear, Bear, River, Car, Car, River, Deer, Car and Bear

Now, suppose, we have to perform a word count on the sample.txt using MapReduce. So, we will
be finding the unique words and the number of occurrences of those unique words.

132
Rahul Publications

B.Sc. III YEAR V SEMESTER

 First, we divide the input into three splits as shown in the figure. This will distribute the work among
all the map nodes.

 Then, we tokenize the words in each of the mappers and give a hardcoded value (1) to each of the
tokens or words. The rationale behind giving a hardcoded value equal to 1 is that every word, in
itself, will occur once.

 Now, a list of key-value pair will be created where the key is nothing but the individual words and
value is one. So, for the first line (Dear Bear River) we have 3 key-value pairs – Dear, 1; Bear, 1;
River, 1. The mapping process remains the same on all the nodes.

 After the mapper phase, a partition process takes place where sorting and shuffling happen so that
all the tuples with the same key are sent to the corresponding reducer.

 So, after the sorting and shuffling phase, each reducer will have a unique key and a list of values
corresponding to that very key. For example, Bear, [1,1]; Car, [1,1,1].., etc.

 Now, each Reducer counts the values which are present in that list of values. As shown in the figure,
reducer gets a list of values which is [1,1] for the key Bear. Then, it counts the number of ones in the
very list and gives the final output as – Bear, 2.

 Finally, all the output key/value pairs are then collected and written in the output file.

Explanation of MapReduce Program

The entire MapReduce program can be fundamentally divided into three parts:

 Mapper Phase Code

 Reducer Phase Code

 Driver Code

We will understand the code for each of these three parts sequentially.

Mapper code:

publicstaticclassMap extendsMapper<LongWritable,Text,Text,IntWritable> {

publicvoidmap(LongWritable key, Text value, Context context)

throwsIOException,InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = newStringTokenizer(line);

 while(tokenizer.hasMoreTokens()) {

 value.set(tokenizer.nextToken());

 context.write(value, newIntWritable(1));

 }

 We have created a class Map that extends the class Mapper which is already defined in

 the MapReduce Framework.

 We define the data types of input and output key/value pair after the class declaration using angle
brackets.

 Both the input and output of the Mapper is a key/value pair.

 Input:

133
Rahul Publications

LAB PRACTICALS NO SQL DATABASE

 The key is nothing but the offset of each line in the text file: LongWritable

 The value is each individual line (as shown in the figure at the right): Text

 Output:

 The key is the tokenized words: Text

 We have the hardcoded value in our case which is 1: IntWritable

 Example – Dear 1, Bear 1, etc.

 We have written a java code where we have tokenized each word and assigned them a hardcoded
value equal to 1.

Reducer Code:

publicstaticclassReduce extendsReducer<Text,IntWritable,Text,IntWritable> {

publicvoidreduce(Text key, Iterable<IntWritable> values,Context context)

throwsIOException,InterruptedException {

intsum=0;

for(IntWritable x: values)

{

sum+=x.get();

}

context.write(key, newIntWritable(sum));

}

}

 We have created a class Reduce which extends class Reducer like that of Mapper.

 We define the data types of input and output key/value pair after the class declaration using angle
brackets as done for Mapper.

 Both the input and the output of the Reducer is a key-value pair.

Input:

 The key nothing but those unique words which have been generated after the sorting and shuffling
phase: Text

 The value is a list of integers corresponding to each key: IntWritable

 Example – Bear, [1, 1], etc.

Output:

 The key is all the unique words present in the input text file: Text

 The value is the number of occurrences of each of the unique words: IntWritable

 Example – Bear, 2; Car, 3, etc.

 We have aggregated the values present in each of the list corresponding to each key and produced
the final answer.

 In general, a single reducer is created for each of the unique words, but, you can specify the
number of reducer in mapred-site.xml.

134
Rahul Publications

B.Sc. III YEAR V SEMESTER

Driver Code:

Configuration conf= newConfiguration();

Job job = newJob(conf,"My Word Count Program");

job.setJarByClass(WordCount.class);

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

Path outputPath = newPath(args[1]);

//Configuring the input/output path from the filesystem into the job

FileInputFormat.addInputPath(job, newPath(args[0]));

FileOutputFormat.setOutputPath(job, newPath(args[1]));

 In the driver class, we set the configuration of our MapReduce job to run in Hadoop.

 We specify the name of the job, the data type of input/output of the mapper and reducer.

 We also specify the names of the mapper and reducer classes.

 The path of the input and output folder is also specified.

 The method setInputFormatClass () is used for specifying how a Mapper will read the input data or
what will be the unit of work. Here, we have chosen TextInputFormat so that a single line is read by
the mapper at a time from the input text file.

 The main () method is the entry point for the driver. In this method, we instantiate a new Configuration
object for the job.

SOLVED MODEL PAPERS NO SQL DATA BASES

135
Rahul Publications

FACULTY OF SCIENCE
B.Sc. III Year V Semester (CBCS) Examination

Model Paper - I
NO SQL DATA BASES

PAPER - V(B) : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)

[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.

1. What is a NoSQL data model? How is data stored in NoSQL? (Unit-I, SQA-1)

2. What are the Advantages and Disadvantages of Graph Data Model. (Unit-I, SQA-3)

3. What are the Features of NoSQL Databases? (Unit-I, SQA-7)

4. Explain about single server in distribution models? (Unit-II, SQA-1)

5. Explain Master-Slave Replication in distribution models? (Unit-II, SQA-3)

6. What are the Importance of ACID Transactions? (Unit-II, SQA-5)

7. What are the NoSQL use cases. (Unit-III, SQA-3)

8. What is Document Database? (Unit-III, SQA-6)

9. Write the Differences Between SQL And NoSQL. (Unit-III, SQA-8)

10. What Is a Column-Family Data Store? (Unit-IV, SQA-1)

11. What are the Advantages and Disadvantages of Graph Database? (Unit-IV, SQA-5)

12. What are differences between graph and relational databases? (Unit-IV, SQA-9)

SECTION – B (4 × 12 = 48 Marks)

[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) What is a relational database? And Explain the importance of it. (Unit-I, Q.No. 1)

(OR)

(b) Explain Graph Based Databases in NoSQL with its applications. (Unit-I, Q.No. 12)

14. (a) What is Sharding in distribution models? (Unit-II, Q.No. 2)

(OR)

(b) Explain Composing Map-Reduce Calculation with an example? (Unit-II, Q.No. 15)

B.Sc. III YEAR V SEMESTER

136

15. (a) What is a Key-Value Store? Explain the popular Key-Value Store databases.(Unit-III, Q.No. 2)

(OR)

(b) What are the features of Document Data Base (Data Model)? (Unit-III, Q.No. 9)

16. (a) Explain in detail about Column-Family Data Store? (Unit-IV, Q.No. 1)

(OR)

(b) What are the features of Graph Databases? (Unit-IV, Q.No. 7)

SOLVED MODEL PAPERS NO SQL DATA BASES

137
Rahul Publications

FACULTY OF SCIENCE
B.Sc. III Year V Semester (CBCS) Examination

Model Paper - II
NO SQL DATA BASES

PAPER - V(B) : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)

[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.

1. What is Column-Family Stores? (Unit-I, SQA-8)

2. What are Applications of NoSQL Databases? (Unit-I, SQA-6)

3. What is Graph Based Data Model in NoSQL? (Unit-I, SQA-9)

4. What is Basic Map-Reduce? (Unit-II, SQA-7)

5. What are the phases of data flow in MapReduce? (Unit-II, SQA-8)

6. What are the Advantages and Disadvantages of No SQL? (Unit-II, SQA-2)

7. Compare the Advantages and Disadvantages of Document Database. (Unit-III, SQA-4)

8. What are the challenges of Document database? (Unit-III, SQA-5)

9. What does “Document-oriented” vs. Key-Value mean when talking about
MongoDB vs Cassandra? (Unit-III, SQA-11)

10. How Graph and Graph Databases Work? Give the examples of Graph
Databases. (Unit-IV, SQA-4)

11. What are key benefits of Column Store Databases? (Unit-IV, SQA-7)

12. What are the graph database use cases with an examples? (Unit-IV, SQA-10)

SECTION – B (4 × 12 = 48 Marks)

[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) Explain about the Applications and Integration of Databases? (Unit-I, Q.No. 5)

(OR)

(b) What is Aggregate-Oriented Databases in NoSQL? (Unit-I, Q.No. 10)

14. (a) Explain detail about single server in distribution models? (Unit-II, Q.No. 1)

(OR)

(b) What is quorum? Explore in detail. (Unit-II, Q.No. 10)

B.Sc. III YEAR V SEMESTER

138

15. (a) Explain about Features of Key-Value Store. (Unit-III, Q.No. 3)

(OR)

(b) Define Document Database? How document databases differ from
relational databases? (Unit-III, Q.No. 8)

16. (a) What are the Features of Column Store Databases. (Unit-IV, Q.No. 3)

(OR)

(b) What are the features of Graph Databases? (Unit-IV, Q.No. 7)

SOLVED MODEL PAPERS NO SQL DATA BASES

139
Rahul Publications

FACULTY OF SCIENCE
B.Sc. III Year V Semester (CBCS) Examination

Model Paper - III
NO SQL DATA BASES

PAPER - V(B) : (DATA SCIENCE)
Time: 3 Hours Max. Marks: 80

SECTION – A (8 × 4 = 32 Marks)

[Short Answer Type]

Note: Answer any EIGHT questions. All questions carry equal marks.

1. What is a relational database? (Unit-I, SQA-5)

2. What are the Applications of Graph Data Model? (Unit-I, SQA-4)

3. What are the Advantages and Disadvantages of Graph Data Model? (Unit-I, SQA-3)

4. What is consistency? (Unit-II, SQA-4)

5. What are the Learning Goals of Relaxing Consistency? (Unit-II, SQA-6)

6. What are the key differences between Pig vs MapReduce? (Unit-II, SQA-10)

7. What is a Key-Value Store? (Unit-III, SQA-1)

8. What are the advantages and disadvantages of key-value store. (Unit-III, SQA-2)

9. When to avoid NoSQL (Unit-III, SQA-10)

10. What Is a Graph Database? (Unit-IV, SQA-3)

11. What are the types of Graph Databases? (Unit-IV, SQA-6)

12. What are key features of Column Store Databases. (Unit-IV, SQA-8)

SECTION – B (4 × 12 = 48 Marks)

[Essay Answer Type]

Note: Attempt ALL questions. All questions carry equal marks.

13. (a) What is Aggregate Data Model? Give with an example. (Unit-I, Q.No. 8)

(OR)

(b) What is Column-Family Stores? Explain in detail? (Unit-I, Q.No. 9)

14. (a) What is relaxing durability in NoSQL? (Unit-II, Q.No. 8)

(OR)

(b) Explain Business and system Transactions with an example? (Unit-II, Q.No. 11)

B.Sc. III YEAR V SEMESTER

140

15. (a) What is a Key-Value (Model)Database? Explain with advantages and
disadvantages. (Unit-III, Q.No. 1)

(OR)

(b) Explain about Document Database in NoSQL. (Unit-III, Q.No. 7)

16. (a) What Is a Graph Database? Explain in detail. (Unit-IV, Q.No. 6)

(OR)

(b) What are the Use Cases of Graph Databases? Explain its advantages and
disadvantages? (Unit-IV, Q.No. 9)

