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UNIT - I

1. Prove that the set GL (2, R) = 
 
 
 

a b
c d

a, b, c, d   R, ad – bc   0




 is a non abelian

group with respect to matrix multiplication.

Ans : (May/June-2019)

Refer Unit-I, Q.No.6

2. Let G be a group and let H be a non empty subset of G. If ab is in H whenever a and b are
in H and a–1 is in H whenever a is in H then H is a subgroup of G.

Ans : (June-2019)

Refer Unit-I, Q.No.27

3. Let  G be a group and let a be an element of order n in G, if ak = e then n divides K.

Ans : (Jan.-2021)

Refer Unit-I, Q.No.38
4. Let ‘a’ be an element of order n in a group and let k be a positive integer. Then prove that

(a) <ak> = <agcd (n, k)> (b)   |ak| = 
n

gcd (n, k)

Ans : (Jan.-21)

Refer Unit-I, Q.No.39

5. State and prove fundamental theorem of cyclic group.

Ans : (Jan.-21)

Refer Unit-I, Q.No.43

UNIT - II

1. Prove that for n > 1, An has order 
n!
2

 .

Ans : (May/June-19)

Refer Unit-II, Q.No.13

2. Let   be an isomorphism from G to G . If K is a subgroup of G. Then (k) = (k) / k 
K} is a subgroup of G

Ans : (Jan.-21)

Refer Unit-II, Q.No.33

Frequently Asked & Important Questions
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3. The set of Automorphism of a group and the set of inner Automorphism of  group are
both group under the operation of function  composition.

Ans : (Jan.-21)

Refer Unit-II, Q.No.39

4. The order of a subgroup of a finite group divides the order of the group

Ans : (Jan.-21, May/June-19)

Refer Unit-II, Q.No.54

5. Prove that a group of prime order is cyclic.

Ans : (Jan.-21)

Refer Unit-II, Q.No.57

6. Prove that the group rotation of a cube is isomorphic to S4.

Ans : (May/June-19)

Refer Unit-II, Q.No.67

UNIT - III

1. Prove that a subgroup N of a group G is a normal subgroup of G iff g N g–1 = N   g  G.

Ans : (May/June-19)

Refer Unit-III, Q.No.5

2. If G is a group and N is a normal subgroup of G. Then prove that 
G
N

 = {Nx / x  G} forms

a group w.r.to coset multiplication as the binary operation

Ans : (Imp.)

Refer Unit-III, Q.No.8

3. Let  f : G   G  be an onto homomorphism then prove that f is an isomorphism iff K = {e}

Ans : (Imp.)

Refer Unit-III, Q.No.17

4. Fundamental theorem of homomorpic in group.

Ans : (Imp.)

Refer Unit-III, Q.No.20

5. A nonempty subset S of a ring R. is a subring if  S is closed subtraction and multiplication

i.e., (i) a – bS (ii)   abS   when  a, bS

Ans : (Imp.)

Refer Unit-III, Q.No.30
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6. Prove that Q  
 2  = {a + b 2  / a, b  Q] is a field with respect to ordinary addition

and multiplication of numbers.

Sol : (Imp.)

Refer Unit-III, Q.No.43

7. The characteristic of an integral domain is the 0 or prime.

Ans : (Jan-21, May/June-19)

Refer Unit-III, Q.No.46

8. If D is an integral domain, Then prove that D[x] is an integral domain.

Sol : (May/June-19)

Refer Unit-III, Q.No.48

9. Prove that Z3 [i] = {a + ib / a,bZ3 } is a field of order 9?

Sol : (May/June-19)

Refer Unit-III, Q.No.50

UNIT - IV

1. Let R be a commutative ring with Unity and let A be an ideal of R. Then 
R
A

 is an integral

domain if and only if A is Prime

Ans : (May/June-19)

Refer Unit-IV, Q.No.8

2. Let  R be a commutative ring with Unity and Let A be an ideal of R.

Then 
R
A

 is a field if and only if A is maximal.

Ans : (Nov.-20)

Refer Unit-IV, Q.No.10

3. Let   be a ring homomarphism from a ring R to a ring S. Let A be a subring of R and Let
B be an ideal of S If  is an isomurphism If and only if is onto and Ker {r  R /
(r) = 0}  ={0}

Ans : (May/June-19)

Refer Unit-IV, Q.No.16

4. Let R be a commutative Ring of characteristics 2,

Then prove that the mapping a   a2 is a ring homomorphism from R to R.

Ans : (Nov.-20)

Refer Unit-IV, Q.No.22
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5. Let   be a ring homomorphism from Ring R to ring S. If R is commutative ring prove that
(R) is commutative.

Ans : (Jan.-21)

Refer Unit-IV, Q.No.26

6. Prove that ring with unity contains zn or z.

Ans : (Jan.-21, May/June.-19)

Refer Unit-IV, Q.No.27

7. Let  be a ring homomorphism from a ring R to a ring S. Then Ker  = {r  R / (r) = 0}
is an ideal of R.

Ans : (May/June-19)

Refer Unit-IV, Q.No.28

8. If F is a field of characteristic zero then prove that F contains a subfield isomorphic to
the rational numbers.

Ans : (Jan.-21)

Refer Unit-IV, Q.No.29

9. Show that the set M2(z) of 2 × 2 matrices with integer entries is a non commutative ring
with unity.

Ans : (Jan.-21)

Refer Unit-IV, Q.No.32

10. Define ring homomorphism show that   : C   M2 [R] given by

  (a + ib) = 
a b

b a
 
  

   a, bR, is an isomorphism of C into M2 [R].

Sol : (May/June-19)

Refer Unit-IV, Q.No.33

11. Prove that Z7, the ring of integers modulo 7 is a field.

Ans : (Jan.-21)

Refer Unit-IV, Q.No.34
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UNIT
I

Groups: Definition and Examples of Groups - Elementary Properties of
Groups- Finite Groups - Subgroups - Terminology and Notation - Subgroup
Tests -Examples of Subgroups.

Cyclic Groups: Properties of Cyclic Groups -Classification of Subgroups
Cyclic Groups.

1.1  GROUPS

1.1.1  Binary Operation

Q1. Define binary operation with examples.

Ans :
A binary operation (*) on any non empty set

‘G’ is a mapping * : G × G   G is the Cartesian
product of G into itself. They are also denoted by
o, .,  , etc.

Properties

(i) A binary operation (*) is commutative on a
set ‘G’ iff

a * b = b * a   a, b   G

(ii) A binary operation (*) is associative on a set
‘G’ iff

(a * b) * c = a * (b * c)   a, b, c   G

Example

i) Natural numbers

  = +

aN, bN

a+bN 1+2N

a = 1; b = 2      3N

1 2N

2N

 + is binary operation on S

ii) N

= –

aN, bN

a  bN

a – 1N

a = 1; b = 2

1 – 2N

‘–’ is not binary operations on S

iii) Whole Numbers

a  bN =+

a = 1, b = 2

a + bW

‘+’ is binary operation on W

iv) a  bW

= X

a = 1, b = 2

a  b = a×b

= 1×2

= 2W

 X is binary operation on W.

1.1.2 Definition and Examples of Groups

Q2. Write some examples of groups.

Ans :
Let ‘G’ be any non-empty set, * be binary

operation on G. If (G,  ) is said to be group it
satisfies four properties.

1. Closure law

2. Associative law

3. Identity law

4. Inverse law
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1. Closure Law

If ‘G’ is any non-empty set and ‘*’ is binary
operation, then for aG, bG a  bG it
is called closure law.

Note: If ‘ ’ is a binary operation on G if and
only if it satisfies closure law.

Ex: (N, +) (R, –)

2. Associative Law

If ‘*’ is any binary operation on non empty
set ‘G’ If a,b,cG; (a  b) c = a  (b c) is
called associative law, otherwise ‘  ’ is not
satisfies associative law on G.

Example

i) N

=+

a = 2, b = 3, c = 5

(a+b)+c = a+(b+c)

(2+3)+5= 2+(3+5)

  5+5= 2+8

10 = 10

‘+’ satisfies associative law on N.

Q = Rational

  = –

  a = 
5
3

, b = 
10
3

, c = –
7
2

  (a – b) – c = a – (b – c)

5 10
3 3

  
 

–
7
2

  
 

= 
5
3

–
10
3 2

  
 

5 7 5 20 21
3 2 3 6

      
 

10 21
6


  = 
5 41
3 6


    
11
6

= 
10 41

6


11
6  –

31
6

 – does not satisfies associative law on Q.

3. Identity Law

Let ‘G’ be any non empty set and ‘*’ be any
binary operation on G. a G  e G   
e  a = a  e = a. Here ‘e’ is called identity
element.

Eg:

i) (N,  ), ‘1’ is identity element

a = 2

1 × 2 = 2 × 1 = 2

a = 3  1 × 3 = 3×1 = 3

 (N,  ) here ‘1’ is identity element

ii) (W, +) + {0, 1, 2, ....}

0 + 2 = 2 + 0 = 2

 (W, +) has an identity with

respect to addition i.e., ‘0’

Note:

(i) ‘0’ is called additive identity element.

(ii) ‘1’ is called multiplicative identity
element.

4. Inverse Law

An element ‘a’ is said to be invertible x G 
 x  a=e = a  x, here ‘a’ is called invertible,
‘x’ is inverse of a.

i.e., a–1 a = e = a  a–1

Q3. Define Commutative Law with an
example.

Ans :
Let ‘G’ be any non empty set,  be binaryy

operation on G. Hence ‘ ’ is commutative on G.

If a,b G a b b a    

Example :

1. (Z, +) is an abelian group

We know that (Z, +) is group

  a, b,   Z     a + b = b + a

 Satisfies commutative property

 (Z, +) is abelian group.
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Key Point :

1. Let R* = R – {0} set of all non zero real
number. Then (R+, .) is a group.

2. Let  R* = Q – {0} = set of all non zero
rational numbers  then (Q*, .) is a
group.

1.1.3 Elementary Properties of Groups

Q4. What are the Elementary Properties of
Groups?

Ans :
(i) Uniqueness of the Identity

It states that “in a group G, there exists only
one identity element”.

(ii) Cancellation Laws

Let a, b, c be the elements of a group G.

ba = ca   b = c (Right cancellation law)

ab = ac   b = c (Left cancellation law)

(iii) Uniqueness of Inverse

It states that “For each element a in a group
G, there is a unique element b in G such that
ab = ba = e”.

(iv) If a, b are the elements of a group G, then
(ab)–1 = b–1 a–1.

Q5. A rectangular array of the form 
 
 
 

a b
c d

is called 2 × 2 matrix. Prove that the
array is group under addition.

Ans :

Given array is 
 
 
 

a b
c d

G = 
     
   

a b
a, b, c, d  R

c d

Required to prove that (G, +) is a group.

Let us consider,

A1 = 
 
 
 

1 1

1 1

a b
c d ,  A2 = 

 
 
 

2 2

2 2

a b
c d ,

 A3 = 
 
 
 

3 3

3 3

a b
c d

Where  A1, A2, A3,   G

To prove (G, +) is group

It is enough to prove the following properties.

1. Closure Properties :

  A1, A2,   G   A1 + A2   G


 
 
 

1 1

1 1

a b
c d  + 

 
 
 

2 2

2 2

a b
c d

  = 
  

   
1 2 1 2

1 2 1 2

a a b b
c c d d    G

2. Associate Property :

  A1, A2, A3   G

 A1 + (A2 + A3) = (A1 + A2) + A3


 
 
 

1 1

1 1

a b
c d  + 

         
     

2 2 3 3

2 2 3 3

a b a b
c d c d

 =
 
 
 

1 1

1 1

a b
c d   + 

  
   

2 3 2 3

2 3 2 3

a a b b
c c d d

 =
    

     
1 2 3 1 2 3

1 2 3 1 2 3

a a a b b b
c c c d d d

Similarly

(A1 + A2) + A3

= 
    

     
1 2 3 1 2 3

1 2 3 1 2 3

a a a b b b
c c c d d d

 A1 + (A2 + A3) = (A1 + A2) + A3

3. Identity Property :

Identity element under addition is ‘0’

So, here identity of 2 × 2 matrix is 
 
 
 

0 0
0 0

   A1 + I = I + A1 = A1


 
 
 

1 1

1 1

a b
c d  + 

 
 
 

0 0
0 0  = 

 
 
 

1 1

1 1

a b
c d
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4. Inverse Property :

Inverse of element ‘a’ under addition is ‘–a’

So,  Let A1   G

 A + (–A1) = (–A1) + A1 = e


 
 
 

1 1

1 1

a b
c d  = 

  
   

1 1

1 1

a b
c d  which is an inverse of a matrix A1


 
 
 

1 1

1 1

a b
c d  + 

  
   

1 1

1 1

a b
c d =

 
 
 

0 0
0 0 = e

 2 × 2 is satisfies the all above 4 properties under addition


 
 
 

a b
c d  is group under addition

Q6. Prove that the set GL (2, R) = 
 
 
 

a b
c d

a, b, c, d   R, ad – bc   0




 is a non abelian

group with respect to matrix multiplication.

Ans : (May/June-2019)

Given  set is GL (2, R)

=  
 
 
 

a b
c d

a, b, c, d   R, ad – bc   0




Required to prove GL(2, R) is a non abelian group under multiplication :

Which is enough to prove that not a commutative property.

Let  A1 = 
 
 
 

1 1

1 1

a b
c d , A2 = 

 
 
 

2 2

2 2

a b
c d  &

A3 = 
 
 
 

3 3

3 3

a b
c d    R

1. Closure Properties :

Let A1, A2,   G   A1 . A2


 
 
 

1 1

1 1

a b
c d   

 
 
 

2 2

2 2

a b
c d  = 

  
   

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d
c a d c c b d d    R

2. Associative Property :

Clearly, Associative property satisfies

  A1, A2, A3   G   A1 (A2 A3)=(A1 A2) A3

In matrix multiplication. The associative property satisfies.
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3. Identity Property :

Identity of matrix under multiplication is

 
 
 

1 0
0 1

  A1   G   A1 I = I A1 = A1


 
 
 

1 1

1 1

a b
c d  

 
 
 

1 0
0 1  = 

 
 
 

1

1

a 0
0 d     G

4. Inverse Property :

Inverse of 
 
 
 

a b
c d  is   Let A = 

 
 
 

a b
c d

|A| = ad – bc   0

1
|A|  

 
  

d b
c a  = 

 
   

 
    

b b
ad bc ad bc

c a
ad bc ad bc

 GL (2, R) is a group

5. Commutative Property :

In general matrix multiplication need not to
be commutative.

For example : 2 × 2 matrix

Let A1 = 
1 2
3 4
 
 
 

,  A2 = 
4 2
3 1
 
 
 

A1 A2 = A2 A1


1 2
3 4
 
 
 

 
4 2
3 1
 
 
 

 = 
4 6 2 2

12 12 6 4
  

   

A1 A2 = 
10 4
24 10
 
 
 

A3 A1 = 
4 2
3 1
 
 
 

 
1 2
3 4
 
 
 

 = 
4 6 8 8
3 3 6 4
  

   

 = 
10 16
9 10

 
 
 

 A1 A2     A2 A1

 GL (2, R) is not an abelian group.

So, which is a non abelian group under matrix
multiplication.

Q7. Prove that the set of R* of non zero real
numbers is an abelian group under
ordinary multiplication.

Ans :
Given set is R*   non zero real number

i.e., R* = R – {0}

Required to prove R* is abelian group under
multiplication.

So, it is enough to prove the following
properties.

1. Closure Property :

Let a, b,  R – {0}

 a . b  R – {0}

Let a = 1, b = 2

 a. b = 1(2) = 2  R*

2. Associative Property

Let  a, b, c  R*    a(bc) = (ab) . c

Let us consider a = 1,  b = 2,  c = 3

a(b c) = 1(2 . 3)   1(6) = 6

(a . b) . c = (1 . 2) . 3   2 . 3 = 6

 a . (b . c) = (a . b) . c

3. Identity Property :

Identify element under multiplication is ‘1’

So,  let a = 2,  I = 1

  a . I  =  I . a = a  a   R*

a . I  =  2 . 1 = 2

I . a  =  1 . 2 = 2

4. Inverse Property :

Inverse element ‘a’ under multiplication is 
1
a

.

   a . 
1
a

 = 
1
a

 . a = I a   R*
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Let a = 2

2 . 
1
2

 = 
1
2

 . 2  =  1   I

 R* is forms a group

To prove R* is abelian group

It is enoug to prove commutative property.

   a, b   R*     a . b = b . a

Let a = 1,  b = 2

a . b = 1 . 2 = 2   R*

b . a = 2 . 1 = 2   R*

 R* of non zero real numbers also
satisfies the commutative property.

 R* is forms a abelian group under
multiplication.

1.1.4 Addition Modulo “  ” and
Multiplication Modulo “ ”

Q8. Define Addition Modulo.

Ans :
If  a and b are any two integers and m is a

fixed positions integer. Then a + b under addition

modulo ‘m’ is denoted by a 
m
  b and it is defined

as, a 
m
  b = a + b if a + b < m

a 
m
  b = r

where ‘r’ is the least non negative (  0)

reminder by dividing a + b by m if

a + b   m.

Example :

1. 2 
3
  7 = 0

(i) 2 + 7 = 9

(ii) a + b   m     9   3

(iii) divide 
9
3

   reminder ‘0’

2. 3 
4
  1 = 0

3. 3 
5
  3 = 1

Q9. Define multiplication modulo.

Ans :
If a and b are any two integers.

Then a into b under multiplication modulo

‘m’ is denoted by a 
m
  b and is defined as

a 
m
  b = a × b     if     a × b < m

a 
m
  b = r

where

‘r’ is a the least non negative reminder
obtained by dividing

a × b  by  m  if  a × b   m

Example :

1. 2 
4
  8 = 0

(i) 2 × 8 = 16

(ii) 16   4

(iii)
16
4

   reminder ‘0’

2. 2 
4
  4 = 2

(i) 2 × 4 = 8

(ii) 8 > 6

(iii)
8
6

 reminder is ‘2’

Q10. Define Cayley’s Table.

Ans :
Sometimes an operation * on a finite set

conveniently be specified by a table called the
composition table.

The construction of composition table is
explained below :
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Let S = {a1, a2 ... ai, aj ... an} be a finite set
with ‘n’ elements.

Let a table with n + 1 rows & n + 1 columns
be taken.

Let the squares in the first row be filled in
with a1, a2, ..., an & the squares in the first column
be filled in with a1, a2, ..., an

Let ai (1   i   n) and ai (1   j   n) be any
two elements of S.

Let the product ai * aj obtained by operating
ai with aj be placed in the square which is at the
integer section of the row headed by ai and the
column headed by aj.

Q11. Check G {0, 1, 2, 3} is a group under
multiplication modulo 4.

Ans :
G = {0, 1, 2, 3} under multiplication

modulo ‘4’.

By composition table :

4 0 1 2 3
0 0 0 0 0
1 0 1 2 3

2 0 2 0 2
3 0 3 2 1



To check G is group or not. It is enough to
satisfies the given following properties.

1. Closure Property :

This property satisfies, as the all entries in the
table are the elements of G.

2. Associative Property :

  a, b, c  G

 (a 
4
  b) 

4
  c  =  a 

4
  (b 

4
  c)

which leaves the same reminder when divided
by ‘4’.

3. Identity Property :

Since the top most row coincide with the
second row corresponding to the elements
1. We have e = 1 is the identity element.

4. Inverse Property :

From the composition table, it is clear that
the Inverse of 1 is 1,

Inverse of 3 is 3.

where the inverse of ‘0’ and ‘2’ can’t find the
it

 Here Inverse Property is does not exists
in G.

 G is not group under multiplication
modulo ‘4’.

Q12. Show that {1, 2, 3} under multiplication
modulo 4 is not a group but that {1, 2,
3, 4} under multiplication modulo 5 is
a group.

Ans :
G = {1, 2, 3}

(i) To show that ‘G’ is multiplication modulo 4 is
not group.

By composition table

4 1 2 3

1 1 2 3

2 2 0 2

3 3 2 1



1. Closure Property :

By the given table, we can observe that,
all the entries of the table except ‘0’ is
included in the set ‘G’.

So, here closure property is not satisfies
as closure property not satisfied. Then
we need not to proceed for other
property.

 G = {1, 2, 3} is not group under
multiplication modulo 4.

(ii) To prove that ‘G’ is multiplication modulo ‘5’
is group.

G = {1, 2, 3, 4}
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By composition table

5 1 2 3 4
1 1 2 3 4
2 2 4 1 3

3 3 1 4 2
4 4 3 2 1



1. Closure Property :

This property satisfies, as the all entries
in the table are the elements of G.

2. Associative Property :

  a, b,  G

 (a 
4
  b) 

4
  c = a 

4
  (b 

4
  c)

which leaves the same reminder when
divided by 5

3. Identity Property :

Since the top most row coincide with
the 1st row corresponding elements we
have e = 1 is the identity element.

4. Inverse Property :

From the composition table, It is clear
that the

Inverse of 1 is 1

Inverse of 2 is 3

Inverse of 3 is 2

Inverse of 4 is 4

 Under multiplication modulo 5, each
element has inverse.

 All 4 properties are satisfied.

Then G = {1, 2, 3, 4} is a group under
multiplication modulo ‘5’.

Q13. Show that the set {5, 15, 25, 35} is a
group under multiplication modulo 40.
What is the identity element of this
group ?

Ans :
G = {5, 15, 25, 35} under multiplication

modulo 40.

Required to prove (G,  40) is a group

By composition table

40
5 15 25 35

5 25 35 5 15
15 35 25 15 5
25 5 15 25 35
35 15 5 35 25



1. Closure Property :

This property is satifices, as all entries in
the table are the elements of ‘G’.

2. Associative Property :

  a, b, c  G

 (a 
40
  b) 

40
  c = a 

40
  (b 

40
  c)

which leaves the same reminder when
divided by ‘40’.

3. Identity Property :

Since the top most row coincide with
the 3rd row corresponding elements.
e = 25 is an identity element of the
group.

4. Inverse Property :

From the composition table, It is clear
that the inverse of 5 is 25

Inverse of 15 is 15

Inverse of 25 is 25

Inverse of 35 is 35

 G is group under multiplication modulo
‘40’. and the identity element of this
group is ‘25’.

Q14. What is Relatively prime ?

Ans :
If n is a positive integer. Then, we define

U(n) = Set of all positive integers less than n and
relatively prime ‘n’

Relatively Prime :

If two integers are said to be relatively prime
if there gcd is 1.
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Q15. Show that (U(10), 
10

) is a group.

Ans :

Here  U(10) = Set of all positive integers less
than 10 and relatively prime ‘10’

 U(10) = {1, 3, 7, 9}

By composition table

10
1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1



1. Closure Property :

Closure property is satisfied, since all the
elements are present in the U(10)

2. Associative Property :

  a, b, c  U(10)

 (a 
10
  b) 

10
  c = a 

10
  (b 

10
  c)

which leaves the same reminder when
divided by ‘10’.

3. Identity Property :

Identity element under multiplication is
‘1’. Since the top most row coincide with
first row corresponding element.

4. Inverse Property :

From the composition table, It is clear
that the

Inverse of 1 is 1

Inverse of 3 is 7

Inverse of 7 is 3

Inverse of 9 is 9

 All 4 properties are satisfied. Then U(10)
form a group under multiplication
modulo ‘10’.

Q16. Prove that {1, 2, 3, ... n – 1} is a group
under multiplication modulo ‘n’.

Ans :
Let Zn = {1, 2, 3, ... n – 1}

Required to show that (Zn, n ) is a group.

Key Points :

1. If n is prime number and if n/ab   n/a
or n/b

2. A prime number n does not divide ‘a’
where 1   a   p – 1

1. Closure Property :

  a, b  Zn   a 
n
  b = r  Zn

where  1   r   n – 1

where  r = 0 is not possible because ‘n’ does
not divide a × b

2. Associative Property :

  a, b, c  Zn

 (a 
n
  b) 

n
  c  = a 

n
  (b 

n
  c)

which leaves the reminder when divided
by ‘n’

3. Identify Property :

Let a  Zn   e  = 1  Zn   a 
n
  1

 = 1 
n
  a = a

4. Inverse Property :

Let S  Zn (1   S   n – 1)

Now,  consider the products

1 
n
  S,  2 

n
  S,  ...  (n – 1) 

n
  s

The above product are elements of Zn by
closure property.

Also, we have the above products are distinct.
Because,

If i 
n
  S = j 

n
  S where i   S
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 P / (i × S – j × S)

 P / S (i – J)

 P / i – j  or  P / S

Which is not possible because ‘n’ cannot divide
i – j and ‘n’ cannot divide ‘S’ because                          1
  i – j   n – 1, 1   S   n – 1

 The product 1
n
 S,  2

n
 S, ... (n – 1)

n
 S.

are distinct,

Since as the elements of Zn

We have S' 
n
  S = 1

Where 1   S'   n – 1

 S' is the inverse of S

 (Zn, n
 ) is group.

Q17. In a group G, there is a only one identity
element.

Ans :
Given that  (G, .) is a group.

Assume  e & e' are the identity elements

Since  e  is identity element of G

  a  G   e  G

 a . e = e . a = a ... (1)

Similarly

e'  G   a . e' = e' . a = a ... (2)

By (1)  a . e = a Put a = e'

e' . e = e' ... (3)

By (2)  e' . a = a Put a = e

e' . e = e ... (4)

From equation (3) and (4),  e' = e

 We can conclude that

There is a only one identity element in a
group G.

Q18. Define Cancellation Laws.

Ans :
If  a, b  G.

Then we define cancellation law holds.

1. Left cancellation law

a . b = a . c

b = c

2. Right cancellation law

b . a = c . a

b = c     where     a   0

Q19. In a group G the left & right cancellation
laws hold i.e.,

(i) a . b = a . c   b = c

(ii) b . a = c . a   b = c

Ans :
Given that (G, .) is a group

Left cancellation law :  Let a, b, c   G

 a . b = a . c ... (1)

Since  a   G  and  G is a group

 a–1   G

Multiply equation (1) with a–1

a–1 (a . b) = a–1 (a . c)

(a–1a) . b = (a–1.a) c  [by Associative

property

(ab) c = a(bc)]

e . b = e . a     a–1a = e = aa–1

 b = c   [By Identity property

a . e = e . a = a

 Left cancellation law proved

Right Cancellation Law :

Let a, b, c   G

 b . a = c . a ... (2)

a   G  and  G is a group

 a–1   G
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Multiply a–1 to equation (2) on right side

(b.a)a–1 = (c.a) a–1

b(aa–1) = c(aa–1) By Associative

b.e = c.e property

 b = c aa–1 = e = a–1a

a.e = e.a = a

 Right cancellation law proved.

Q20. For each element in a group G there is a
unique element b in G such that

ab = ba = e

Ans :
Let a   G

Given that  a . b = b . a = e ... (1)

 b is a inverse of a

Suppose that

c is also inverse of a   G

 a . c = c . a = e ... (2)

From (1) and (2)   a . b = a . c

By left cancellation law

b = c

Q21. For group elements a & b,

(ab)–1 = b–1 a–1

Ans :
Suppose that (G, .) is a group

a, b   G

Required to prove (ab)–1 = b–1a–1

Since a, b   G   a . b   G

(Closure property)

a   G   b–1   G

b   G   b–1   G

 b–1   G,  a–1   G   b–1 . a–1   G

(Closure property)

Let ab = c  and  b–1a–1 = d

To prove (a b)–1 = b–1 a–1

It is enough to prove  c–1 = d

  c d = e

Consider

c.d   (ab) (b–1a–1)

      =  [(ab) b–1] a–1 Associative property

      =  [a (bb–1) a–1 Associative property

      =  [ae]a–1 bb–1 = b–1b = e

      =  aa–1 a.e = e.a = G

cd  =  e

c–1  =  d

 (ab)–1 = b–1a–1

Hence proved

Q22. Prove that in a group (a–1)–1 = a   a

Ans :
By the definition of Inverse

  a   G   aa–1 = a–1 a = e

Inverse of a–1 = a

(a–1)–1 = a

1.2  FINITE GROUPS : SUBGROUPS

Q23. Define order of a group with example.

Ans :
If (G, .) is a group then the number of

elements of a group (finite or infinite) is called its
order.

It is denoted as the order of G  (or)  |G|

Example :

U(10) = {1, 3, 7, 9} is a group

Then the order of G   |G| = 4

1.2.1 Order of Element

Q24. Define order of element with example.

Ans :
The order of element ‘a’ in a group G is a

smallest positive integer n such that an = e. Then
we say that ‘a’ has infinite order. The order of an
element ‘a’ is denoted by |a|.
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Example :

U(15) = {1, 2, 4, 7, 8, 9, 11, 13, 14} under
the multiplication modulo 15. Here order 8.

The order of element 7 is

71 = 7

72 = 4

73 = 13

74 = 1

So,  |7|  = 4

1.3  SUBGROUP TESTS - EXAMPLES OF

SUBGROUPS

Q25. What is subgroup.

Ans :
Let (G, .) be a group. Let H be a nonempty

subset of G such that (H, .) be a group then H is
called subgroup of G and it is denoted by H   G.

Q26. Let G be a group and H a non empty
subset of G. If ab–1 is in H, then H is a
subgroup of G.

Ans :
Given that (G, .) is a group

and ‘H’ is nonempty subset of G

Required to prove H is a subgroup of G

 ab–1   H     a, b   H

Suppose that

H is subgroup of G, Prove that ab–1   H
  a, b   H

b   H     b–1   H

Now,  a   H,  b–1   H    ab–1   H

Conversely suppose that,

  a, b   H   ab–1   H ... (1)

Prove that H is a subgroup of G

(a) Associative Property :

  a, b, c  H     (a.b) . c = a(b.c)

(b) Identity Property :

a   H,  a–1   H   aa–1   H

        = e   H ... (2)

(c) Inverse Property :

e   H  by  (2)

e   H,  a   H   e.a–1   H  by (1)

        a–1   H

   a   H   a–1   H ... (3)

(d) Closure Property :

  a, b   H   a.b   H

b   H   b–1   H

a   H,  b   H   a(b–1)–1   H

      =  ab   H

Q27. Let G be a group and let H be a non
empty subset of G. If ab is in H
whenever a and b are in H and a–1 is in
H whenever a is in H then H is a
subgroup of G.

Ans : (June-2019)

Given that H is a non empty subset of G

Required to prove H is a subgroup of G

   a   H   a–1   H

  a, b   H   ab   H

Suppose that

H is a subgroup of G

By the definition of elements of H satisfy all
the properties of a group.

Conversely suppose that

  a   H   a–1   H

  a, b   H   ab   H

Required to prove ‘H’ is a subgroup of G.

(a) Closure Property :

  a, b   H     ab   H

(by Assumptions)
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(b) Associative Property :

  a, b, c   H     (ab) . c = a(b.c)

H is a subset of G

(c) Identify Property :

By (i)   a–1   H   a   H

Now,  a   H,  a–1   H   aa–1   H

   e   H

(d) Inverse Property :

  a–1   H,    a   H

Q28. If G is an abelian group and H, K are
subgroup of G then prove that H.K =
{h.k / h   H, k  K} is again a subgroup
of G.

Ans :
Given that HK = {h.k / h   H, k   K}

H & K are subgroups of G

i.e.,  HK   0,  e   HK

as e = e . e  where  e   H,  e   k.

By applying two step subgroup test required
to prove HK is an subgroup of G

1. Let x, y   HK

x = h1k1 where h1   H,  k1   K

y = h2k2 where h2  H,  k2  K

Consider

xy = (h1 k1) (h2 k2)

     = h1 (k1 h2) k2          Associative

     = h1 (h2 k1) k2 Commutative

     = (h1 h2) (k1 k2) Associative

  H K

2. Show that   x   HK   x–1   HK

x = h1 k1

 x–1 = (h1 k1)
–1

     = K1
–1 h1

–1 (Socks shoe property)

     = h1
–1 k1

–1 Abelian

      H K

 H K is an subgroup of G.

Q29. Let  H be a non empty finite subset of a
group G. If H is closed under the
operation of G, then H is a subgroup
of G.

Ans :
Given that

H is non empty finite subset of a group G.

Required to prove that, H is a subgroup
of G.

Also, given that,

H is a closed with respect to multiplication i.e.,
H satisfy closure property with respect to
multiplication.

Apply - two step subgroup test

1. Closure Property :

From equation (1) it is satisfied

2. Inverse Property :

i.e,  To show,  a–1   H,   a   H

Case (i) :

If a = e  then  a–1   H    a   H

   a–1  H (   a  H)

Case (ii) :

Let  a   e

Now consider the products  a, a2, a3, a4, ...
which are elements of H

H is finite

Say, ai = aj  where  i > j

 ai . a–j = aj . a–j

 ai–j = a0 = e

 ai–j = e

Consider

a . ai–j–1 = ai–j

   = e

ai–j–1     The required multiplication.

 Inverse of a   whenever ai–j–1   H

Because ai–j = e
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Since e   a

i – j   1   i – j > 1

i – j – 1   1

 ai–j–1  is  a–1

Q30. Let G be a group and let a be any element
of G. Then, <a>, is a subgroup of G

Ans :
Given that <a> = {an / n   Z}

Obviously <a> constains the elements ‘a’

Now, we shall prove that,

<a> is subgroup of G

Apply one step subgroup test.

Let am, an    <a>,  where  m, n   Z

 am (an)–1

 am a–n

 am–n   <a> [ m – n   Z]

Let  ‘T’ be a another subgroup of G

Containing the same element ‘a’

Required to prove <a> is smallest.

<a>   T

Let x   <a>

 x = ar

Since a   T

We have by closure property

ar   T

x   T

<a>   T

<a> is the smallest subgroup of G

Containing ‘a’

Q31. What is a center of group?

Ans :
The center, Z(G) of a group G is the subset

of elements in G that commute with every element
of G, In symbols,

Z(G) = {a   G / ax = xa   x in G}

Q32. The center of a group G is a subgroup
of G.

Ans :
By the definition of center of group

Z(G) = {a   G / ax = xa   x in G}

 e   Z(G)  as  ea = ae    a   G

(i) Z(G)   

Required to prove Z(G) is subgroup of G.

Apply two step subgroup test.

1. Closure Property :

Let a1, a2   Z(G)

 a1   Z(G)

 a1x = xa1  x   Z ... (1)

 a2   Z(G)

 a2x = xa2  x   Z ... (2)

We shall show that  a1, a2   Z(G)

It is enough to show (a1 a2) x = x(a1 a2)

 x   Z

Consider

(a1 a2) x = a1(a2 x) Associative

    = a1(x a2) from (2)

    = (x a1) a2 Associative

    = (a1 x) a2 from (1)

    = x(a1 a2) Associative

2. Inverse Property :

Requuired to show,

  a1   Z(G)   a1
–1   Z(G)

i.e., to show,

a1
–1 x = x a1

–1  x   Z

From (1)

a1x = xa1  x   G

a1
–1 (a1 x) = a1

–1 (x a1)

 (a1
–1 a1) x = (a1

–1x) a1          Associative
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 ex = (a1
–1 x) a1

 x = (a1
–1 x) a1

 xa1
–1 = (a1

–1 x) a1 a1
–1

 a1
–1 = (a1

–1 x) e

 xa1
–1 = a1

–1 (x . e)

 xa1
–1 = a1

–1 x

 Z(G) is a subgroup of G.

Q33. Define centralizer of ‘a’ in G.

Ans :
Let a be a fixed element of a group G

The centralizes of a in G1 c(a), is the set of all
elements in G that commute with a. In symbols,

c(a) = {x   G | xa = ax}

Q34. For each a in a group G, the centralizer
of a is a subgroup of G.

Ans :
Given that G is a group

From 1.4.2

C(a) = {x   G | a . x = ax}

Required to prove,

C(a) is a subgroup of G

C(a)   

  e   c(a) as e.a = a.e

Apply the two step subgroup test.

1. Closure Property :

  x1, x2   c(a)

 x1x2   c(a)

x1   c(a)   By the definition

 x1a = ax1 ... (1)

Similarly

x2   c(a)   x2a = ax2 ... (2)

Now, to show that

x1, x2   c(a)

Required to show,

a(x1 x2) = (x1 . x2) a

Consider

a(x1 x2)

a(x1 x2) = (a x1) x2 Associative

   = (x1 a) x2    from (2)

   = x1 (a x2)    Associative

   = x1 (x2 a)    from (2)

   = (x1 x2) a    Associative

 a(x1 x2) = (x1 x2) a

2. Inverse Property :

Here, required to show,

 x1   c(a)   x1
–1   c(a)

So, prove,

x1
–1a = ax1

–1

x1   c(a)   from (1)

x1a = ax1

 x1
–1 (x1a) = x1

–1 (ax1)

 (x1
–1 x1) a = (x1

–1a) x1

 ea = (x1
–1 a) x1

 a = (x1
–1a) x1

Apply x1
–1

 ax1
–1 = (x1

–1a) x1 x1
–1

 ax1
–1 = (x1

–1a) e

 ax1
–1 = x1

–1 (a . e)

 ax1
–1 = x1

–1 a

 c(a) is subgroup of G.

1.4  CYCLIC GROUP - PROPERTIES OF CYCLIC

GROUPS

Q35. Derive cyclic group with example.

Ans :
A group G is said to be a cyclic group if there

is an element a   G.
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Such that G = {an | n   z} such an element
‘a’ is called a generator of G.

Example :

G = {1, –1, i, –i} is a cyclic group generated
by ‘i’

Because i1 = i

i2 = –1

i3 = –i

i4 = 1

 ‘i’ is a generator of G.

Q36. Find whether (U(10), 
10

) is a cyclic or

not : find its generator ?

Sol :
U(10) = {1, 3, 7, 9}

We know that U(10) is a group under 
10


31  =  3

32  =  3 
10
  3 = 9

33  =  32 
10
  3 = 9 

10
  3 = 7

34  =  33 
10
  3 = 7 

10
  3 = 1

 <3> = {3, 9, 7, 1}

i.e., (U(10), 
10
 ) is a cyclic group and ‘3’ its

a generator.

71  =  7

72  =  7 
10
  7 = 9

73  =  72 
10
  7 = 9 

10
  7 = 3

74  =  73 
10
  7 = 3 

10
  7 = 1

 <7> = {7, 9, 3, 1}

7 is also generator of (U(10), 
10
 )

91  =  9

92  =  9 
10
  9 = 1

93  =  92 
10
  9 = 1 

10
  9 = 9

94  =  93 
10
  9 = 9 

10
  9 = 1

Here 1, 9 one only the elements which
included in the U(10), but not 3 & 7.

So, 9 is not a generator of (U(10), 
10
 )

Q37. Let G be a group, and let a belong to G.

(i) if a has infinite order, then  ai = aj

if  and only  if  i = j

(ii) If a has finite order, say n, then <a>
= {e, a, a2 ... an–1} and ai = aj if and
only if n divides i – j

Ans :
Given that G is a group

and  a   G

(i) Given that a is a infinite order

By the definition,

It is not possible to find a +ve integer ‘n’ such
that an = e

So, consider

ai = aj

ai–j = 1 (= e)

ai–j = a0

i – j = 0

i = j

(ii) Given that ‘a’ has finite order say ‘n’

i.e., |a| = n

By the definition ;

an = e,

where n is lest positive integer satisfying the
condition.

To show that <a> = {e, a, a2, ... an–1}

Consider ak  where  k   z
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Apply division algorithm

k = nq + r     where     0   r < n

Consider

    ak = anq + r

= anq . ar

= (an)q . ar

= eq . ar

= e . ar

    ak = ar     where     0   r < n

<a> = {e, a, a2, ... an–1}

Given that order of a = n

i.e.,  |a| = n

By definition, an = e  where  ‘n’ is the least
positive integer.

To prove that ai = aj iff n divides i – j

Case (i)

Suppose that ai = aj to show that n divides
i – j

Consider

ai = aj

a1 – j = e

Now, we shall apply division algorithm to
i – j & n

i – j = nq + r  where   0   r < n

  ai – j = anq + r

   e = anq + r

= anq ar

= (an)q, ar

= ear

   e = ar

 ar = e

r < n is not possible because ‘n’ is the least
positive integer such that an = e

 r = 0

Substitute  r = 0 in the equation

i – j = nq + r

i – j = nq

 n divides i – j

Case (ii)

Conversely suppose that,

n  divides  i – j

Required to prove that ai = aj

Again n divides i – j   i – j = nq

Consider

ai – j = anq

      = (an)q

      = eq

ai – j = e = a0

Now, multiply both side with aj

ai – j . aj = a0 . aj

ai = aj

(1) Give an example

For any group element  a, |a| = |<a>|

G is a cyclic group

Which is generated by a

Consider  G = {1, –1, i, –i}

 (G, *) is a group

Also, cyclic group

 G = <i>  where  ‘i’ is the generator

|G| = 4  also  |i| = 4

Because ‘4’ is the least positive integer

Such that i4 = 1

 |G| = |i|

|<i>| = |i|

Q38. Let  G be a group and let a be an element
of order n in G, if ak = e then n
divides K.

Ans : (Jan.-2021)

Given that G is a group

a is an element of order n in G
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We know that,

If a has finite order,  ai = aj 

n divides (i – j)

Given that |a| = n

Also ak = e

ak = a0

 n divides k = 0

n divides k

Q39. Let ‘a’ be an element of order n in a
group and let k be a positive integer.
Then prove that

(a) <ak> = <agcd (n, k)>

(b) |ak| = 
n

gcd  (n, k)

Ans : (Jan.-21)

Given,  ‘a’ is an element of order ‘n’

 i.e., |a| = n

We know that ‘n’ is the least positive integer

Such that  an = e

(a) Let gcd (n, K) = d

 d  divides  k

 K = dr  where  r   z

Required to prove,  <ak> = <agcd (n, k>

i.e.,  <ak> = <ad>

i.e., We shall prove that

(i) <ak>   <ad>

(ii) <ad>   <ak>

(i) Consider

ak = adr

ak = (ad)r

 <ak>   <ad> ... (1)

To prove (ii) <ad>   <ak>

Since  d = gcd (n, k)

   s, t  Z   d = ns + kt

    ad = ans + kt

= ans akt

= (an)s akt

= es akt

= eakt

= akt

    ad = (ak)t

   <ad>   <ak> ... (2)

From (1) and (2)

<ad> = <ak>

 <ak> = <ad>

 = <agcd (n, k)>

 <ak> = <agcd (n, k)>

(ii) |ak| = 
n

gcd  (n, k) = 
n
d

Required to prove that result, determine |ad|

Consider,

 
n

d da  = an = e

 
n

d da  = e

 |ad|   
n
d

... (3)

Let ‘i’ be an integer  where  i < 
n
d

 (ad)i = adi   e

Because n is the least positive integer

Such that  an = e

We have  id < n

(ad)i   e

|ad| = 
n
d



UNIT - I ALGEBRA

19
Rahul Publications

Now,  consider |ak|

|ak| = |<ak>|

<ak> = |<agcd(n, k)>|

<ak> = |<ad>|

 = |ad|

 = 
n
d

<ak> = 
n

gcd  (n, k)

Q40. Prove that every cyclic group is abelian
group.

Ans :
G is a cyclic group

and say ‘a’ is its generator

 G = <a>

By definition, we know that G = {an | n  z}

Required to prove

The commutative property true

Let x, y  G

 x = ar

 y = as

Consider,

xy = ar . aS

    = ar+S

    = aS+r

    = aS . ar

xy = yx

 G is abelian group

Q41. If G is a cyclic group generator by an
element ‘a’ then prove that ‘G’ is also
generated by a–1

Ans :
Given that,  G is a cyclic group

i.e., G = <a>

Required to prove G = <a–1>

Let x  G

 x = ar  where  r  Z

 x = (a–1)r

 Every element of G is expressed as
integral part of a–1

 a–1 is the generator of G

 G = <a–1>

Q42. Find all subgroups of Z30

Ans : (Jan.-21)

   Z30  = {1, 2, 3, 5, 6, 10, 15, 30}

<1> = {0, 1, 2, ..... 29} order is 30

<2> = {0, 2, 4, ..... 38}  order 15

<3> = {0, 3, 6 ..... 27}  order 10

<5> = {0, 5, 10, 15, 20, 25}  order 5

<6> = {0, 6, 12, 18, 24}  order 5

<10> = {0, 10, 20}  order 3

<15> = {0, 15}  order 2

<30> = {0}  order 2

1.4.1 Classification of Subgroups of Cyclic
Groups

Q43. State and prove fundamental theorem of
cyclic group.

Ans : (Jan.-21)

(G, .) is a cyclic group

Let  H be a subgroup of G

Case (i)

If H = G

or H = {e}

 G is cyclic and H = G

 H is also cyclic

If  H = {e}  then  H = <e>

= {en | n  Z}

 H is cyclic
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Case (ii)

Let H   G  and  H   {e}

   a   e  H

Since  a  H and H is a subgroup of G

We have the elements of H are the form at

Now, am  H,

m is a least positive integer

Required to prove,

H = <am>

Let am = C

i.e., H = <C>

b  H is expressed as integral power of C

 b  H     b  G

b = an

Apply division algorithm to ‘n’ and ‘m’

n = mq + r  where  0   r < m

By substituting

b  = an

    = amq + r

an = amq + r

an . a–mq = ar ... (1)

an  H [   b = an  H ]

am  H     (am)q  H

        a–mq  H

an  H,  a–mq  H

  an a–mq  H

  an–mq  H

  ar  H

r < m is not possible

Because am  H, m is least positive integer

 r = 0

Substituting  r =0 in b = amq + r

b = amq

b = (am)r

b = Cr

H = <C>

H is a cyclic group.

Q44. If G is a cyclic group generated by an
element ‘a’ of order ‘n’ and if |<a>|
= n. Then prove that the order of the
subgroup of group generated by a is a
divisor of ‘n’.

Ans :
G is a cyclic group

and  G = <a>,  also,  |a| = n

 an = e  where  ‘n’ is the least positive
integer

Required to prove,

The order of the subgroup of <a> is a divisor
of ‘n’.

Means, the order of the subgroup of G is a
divisor of n = |a|

Now, by fundamentals theorem of cyclic
group.

If b  H

   b = an = amq+r

an = amq = e

n = mq

Also we have H is the subgroup of G
generated by am

 H = <am>

H = {am, (am)2 ..... (am)q = e}

H = q

n = mq     q
n

       |H|
|G|

Q45. An integer K in Zn is a generator of Zn iff
gcd (K, n) = 1

Ans :
If G is a cyclic group generated by an element

‘a’ of 0 order ‘n’
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Then  am  is generator of G

 gcd (m, n) = 1

Zn = {0, 1, 2, ... (n –1} is group with respect to 
n
  also Zn is generated by ‘1’

 Zn is cyclic group

Zn = <1>

Also,  |1| = n

Zn is a cyclic group generated by 1 of order ‘n’

Then 1k is generator of

G = Zn   gcd (K, n) = 1

 K is generator of G

= Zn   gcd (K, n) = 1

Q46. If d is a positive divisor of n. The number of elements of order ‘d’ in a cyclic group of
order ‘n’ is (d)

Ans :
Let G = <a> be a finite cyclic group of order ‘n’.

 |a| = n

a, d is positive integer

If d is divisor of n,

Then n = dm

Now,  |a| =  n   an = e

  adm = e

  (am)d = e

  |am|   d

Let |am| = S  where  S < d

Then  (am)S = e

 ams = e  where  ms < md

Since  |a| = n

Where ms < n

ams = e is abscrd

 S   d  i.e,  S = d

 am   G  where  |am| = d

Thus <am> is a cyclic subgroup of order d.
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Q47. Every group of prime order is cyclic.

Ans :
Let  ‘p’  be a prime

and  G be a group

Such that  |G| = p

Then  G contains more than one element

Let g  G

Such that  g   e

Then <g> contains more than one element

Since  <g>   G

By  Lagrange’s theorem

|<g>| divides P

Since |<g>| > 1  and  |<g>| divides a prime,

|<g>| = P = |G|

Hence   <g> = G

G is cyclic

Q48. Let G be the group of polynomial under addition with coefficients from Z10.

Find the orders of

f(x) = 7x2 + 5x + 4

g(x) = 4x2 + 8x + 6

and f(x) + g(x)

Sol :
Let  G = {(x) = a0 + a2x

1 + a2x
2 + ... + anx

n + ...  where   a0, a1, ... an ...  Z10}

be the given group under addition modulo 10.

Let  f(x) = 7x2 + 5x + 4  and

g(x) = 4x2 + 8x + 6  G

Then

f(x) + g(x) = (7 + 4) x2 + (5 + 8) x + (4 + 6)

= 1x2 + 3x + 0

= x2 + 3x

By the definition of order of an element n,

(x) = 0     |(x)| = n

 Now,  10 f(x) = 10 [7x2 + 5x + 4]

   = 0x2 + 0x + 0

   = 0
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 |f(x)| = 10

 5 g(x) = 5[4x2 + 8x + 6]

 = 0x2 + 0x + 0

 |g(x)| = 5

 10 [f(x) + g(x)] = 10 (x2 + 3x)

       = 0

|f(x) + g(x)| = 10

 The order of f(x), g(x) and f(x) + g(x) are

10, 5 and 10 respectively.

Q49. If a is an element of a group G and |a| = 7. Show that a is the cube of some elements
of G.

Sol :
Let  (G, .) is a group

and e be the identify element of G

Let a  G  and  |a| = 7

i.e.,  a7 = e

Consider a = a . e

   = a . a7

   = a8

   = a8 . e

   = a8 . a7

   = a15

   = (a5)3

Hence a is the cube of a5 of G.

Q50. Suppose that <a>, <b> and <c> are cyclic groups of order 6, 8 and 20 respectively.
Find all the generator of <a>, <b> and <c>.

Sol :
Let  <a>, <b> and <c> be cyclic group order 6, 8 and 20 respectively.

i.e,, |<a>| = 6;  |<b>| = 8 ;

|<c>| = 20

Now,  gcd (6, 1) = gcd (6, 5) = 1

 The generator of <a> are a and a5

Now, gcd (8, 1) and gcd (8, 5) = gcd (8, 7)=1

 The generator of <b> are b, b3, b5 and b7



B.Sc. II YEAR  IV SEMESTER

24
Rahul Publications

Now,

gcd (20, 1) = gcd (20, 3) = gcd (20, 7)

= gcd (20, 9) = gcd (20, 11)

= gcd (20, 13) = gcd (20, 17)

= gcd (20, 19) = 1

 The generator of <c> are

c, c3, c7, c9, c11, c13, c17, c19

Q51. How many subgroups does Z10 have? List a generator for each of these subgruops.

Sol :
Let  Z20 = {0, 1, 2, ... 19} be a group

By definition of generator of a

is <a> = {an | n  Z} = Z20

Now,

<1> = Z20

<2> = {0,2,4,6,8,10,12,14,16,18}

<4> = {0, 4, 8, 12, 16}

<5> = {0, 5, 10, 15}

      <10> = {0, 10}

      <20> = {0}

 There are six subgroups of Z20

The generator for the subgroups are

1, 2, 4, 8, 10, 20.

Q52. Consider the set {4, 8, 12, 16}. Show that this set is a group under multiplication modulo
Q20 by cons-tructing its Cayley table.

What is the identity element? Is the group cyclic ?

If  So, find all of its generator.

Sol :
Let  G = {4, 8, 12, 16}  be a set under multiplication modulo 20

20 4 8 12 16
4 16 12 8 4
8 12 4 16 8

12 8 16 4 12
16 4 8 12 16


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 (G, 20 ) is satisfies. Closure, Associative identity and inverse properties.

Here,  identities element is  e = 16

and the inverse element of 4, 8, 12, 16 are

4, 12, 8, 16 respectively.

 (G, 20 ) is a group

By  definition of cyclic group

<a> = G = {an / n  Z}

8  G  81 = 8

   82 = 8 
20
  8  = 4

      83 = 82 
20
  8 = 4 

20
  8 = 12

      84 = 83 
20
  8 = 12 

20
  8 = 16

 8 is the generator of G.

and the inverse element of 8 is 12.

Also,  generator of G.

 G = <8> = <12> is a cyclic group

 8 and 12 are generator of G.
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Short Question and Answers

1. Let  G be a group and let a be an element
of order n in G, if ak = e then n divides
K.

Ans :
Given that G is a group

a is an element of order n in G

We know that,

If a has finite order,  ai = aj 

n divides (i – j)

Given that |a| = n

Also ak = e

ak = a0

 n divides k = 0

n divides k

2. Find all subgroups of Z30

Ans :
   Z30 = {1, 2, 3, 5, 6, 10, 15, 30}

        <1> = {0, 1, 2, ..... 29} order is 30

        <2> = {0, 2, 4, ..... 38}  order 15

        <3> = {0, 3, 6 ..... 27}  order 10

        <5> = {0, 5, 10, 15, 20, 25}  order 5

        <6> = {0, 6, 12, 18, 24}  order 5

      <10> = {0, 10, 20}  order 3

      <15> = {0, 15}  order 2

      <30> = {0}  order 2

3. Let G be a group and let H be a non em-
pty subset of G. If ab is in H whenever a
and b are in H and a–1 is in H whenever
a is in H then H is a subgroup of G.

Ans :
Given that H is a non empty subset of G

Required to prove H is a subgroup of G

   a   H   a–1   H

  a, b   H   ab   H

Suppose that

H is a subgroup of G

By the definition of elements of H satisfy all
the properties of a group.

Conversly suppose that

  a   H   a–1   H

  a, b   H   ab   H

Required to prove ‘H’ is a subgroup of G.

(a) Closure Property

  a, b   H     ab   H

(by Assumptions)

(b) Associative Property

  a, b, c  H     (ab) . c = a(b.c)

H is a subset of G

(c) Identify Property

By (i)   a–1   H   a   H

Now,  a   H,  a–1   H   aa–1   H

   e   H

(d) Inverse Property

  a–1   H,    a   H

4. Prove that the set GL (2, R) =

 
 
 

a b
c d

a, b, c, d   R, ad – bc   0




 is

a non abelian group with respect to
matrix multiplication.

Ans :
Given  set is GL (2, R)

 = 
 
 
 

a b
c d

a, b, c, d   R, ad – bc   0



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Required to prove GL(2, R) is a non abelian
group under multiplication :
Which is enough to prove that not a
commutative property.

Let  A1 = 
 
 
 

1 1

1 1

a b
c d , A2 = 

 
 
 

2 2

2 2

a b
c d  &

A3 = 
 
 
 

3 3

3 3

a b
c d    R

i) Closure Properties
Let A1, A2,  G   A1 . A2


 
 
 

1 1

1 1

a b
c d   

 
 
 

2 2

2 2

a b
c d

= 
  

   
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d
c a d c c b d d    R

ii) Associative Property
Clearly, Associative property satisfices

  A1, A2, A3  G   A1 (A2 A3)=(A1 A2) A3

In matrix multiplication. The associative
property satisfices.

iii) Identity Property
Identity of matrix under multiplication is

 
 
 

1 0
0 1

  A1   G   A1 I = I A1 = A1


 
 
 

1 1

1 1

a b
c d  

 
 
 

1 0
0 1  = 

 
 
 

1

1

a 0
0 d     G

iv) Inverse Property

Inverse of 
 
 
 

a b
c d  is   Let A = 

 
 
 

a b
c d

|A| = ad – bc   0

1
|A|  

 
  

d b
c a  = 

 
   

 
    

b b
ad bc ad bc

c a
ad bc ad bc

 GL (2, R) is a group

5. Define binary operation with examples.

Ans :
A binary operation (*) on any non empty set

‘G’ is a mapping * : G × G   G is the Cartesian
product of G into itself. They are also denoted by
o, .,  , etc.

Properties

(i) A binary operation (*) is commutative on a
set ‘G’ iff

a * b = b * a   a, b   G

(ii) A binary operation (*) is associative on a set
‘G’ iff

(a * b) * c = a * (b * c)   a, b, c  G.

6. Write some examples of groups.

Ans :
Let ‘G’ be any non-empty set, * be binary

operation on G. If (G,  ) is said to be group it
satisfies four properties.

a) Closure law

b) Associative law

c) Identity law

d) Inverse law

a) Closure Law

If ‘G’ is any non-empty set and ‘*’ is binary
operation, then for aG, bG a  bG it
is called closure law.

Note: If ‘ ’ is a binary operation on G if and
only if it satisfies closure law.

Ex: (N, +) (R, –)

b) Associative Law

If ‘*’ is any binary operation on non empty
set ‘G’ If a,b,cG; (a  b) c = a  (b c) is
called associative law, otherwise ‘  ’ is not
satisfies associative law on G.

Example

i) N

=+

a = 2, b = 3, c = 5

(a+b)+c = a+(b+c)
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(2+3)+5= 2+(3+5)

  5+5= 2+8

10 = 10

‘+’ satisfies associative law on N.

   Q = Rational

    = –

    a = 
5
3

, b = 
10
3

, c = –
7
2

  (a – b) – c = a – (b – c)

5 10
3 3

  
 

–
7
2

  
 

= 
5
3

–
10
3 2

  
 

5 7 5 20 21
3 2 3 6

      
 

10 21
6


  = 
5 41
3 6


    
11
6

= 
10 41

6


11
6  –

31
6

 – does not satisfies associative law on Q.

c) Identity Law

Let ‘G’ be any non empty set and ‘*’ be any
binary operation on G. a G  e G   
e  a = a  e = a. Here ‘e’ is called identity
element.

Eg:

i) (N,  ), ‘1’ is identity element

a = 2

1 × 2 = 2 × 1 = 2

a = 3  1 × 3 = 3×1 = 3

 (N,  ) here ‘1’ is identity element

ii) (W, +) + {0, 1, 2, ....}

0 + 2 = 2 + 0 = 2

 (W, +) has an identity with

respect to addition i.e., ‘0’

Note

(i) ‘0’ is called additive identity element.

(ii) ‘1’ is called multiplicative identity
element.

d) Inverse Law

An element ‘a’ is said to be invertible x G 
 x a=e = a  x, here ‘a’ is called invertible,
‘x’ is inverse of a.

i.e., a–1 a = e = a  a–1

7. What are the Elementary Properties of
Groups?

Ans :
(i) Uniqueness of the Identity

It states that “in a group G, there exists only
one identity element”.

(ii) Cancellation Laws

Let a, b, c be the elements of a group G.

ba = ca   b = c (Right cancellation law)

ab = ac   b = c (Left cancellation law)

(iii) Uniqueness of Inverse

It states that “For each element a in a group
G, there is a unique element b in G such that
ab = ba = e”.

(iv) If a, b ar the elements of a group G, then
(ab)–1 = b–1 a–1.

8. Define Addition Modulo.

Ans :
If  a and b are any two integers and m is a

fixed positions integer. Then a + b under addition

modulo ‘m’ is denoted by a 
m
  b and it is defined

as, a 
m
  b = a + b if a + b < m

a 
m
  b = r

where ‘r’ is the least non negative (  0)

reminder by dividing a + b by m if

a + b   m.



UNIT - I ALGEBRA

29
Rahul Publications

9. Define multiplication modulo.

Ans :
If a and b are any two integers.

Then a into b under multiplication modulo

‘m’ is denoted by a 
m
  b and is defined as

a 
m
  b = a × b     if     a × b < m

a 
m
  b = r

where

‘r’ is a the least non negative reminder
obtained by dividing

a × b  by  m  if  a × b   m

Example :

1. 2 
4
  8 = 0

(i) 2 × 8 = 16

(ii) 16   4

(iii)
16
4

   reminder ‘0’

2. 2 
4
  4 = 2

(i) 2 × 4 = 8

(ii) 8 > 6

(iii)
8
6

 reminder is ‘2’

10. Define Cayley’s Table.

Ans :
Sometimes an operation * on a finite set

conveniently be specified by a table called the
composition table.

The construction of composition table is
explained below :

Let S = {a1, a2 ... ai, aj ... an} be a finite set
with ‘n’ elements.

Let a table with n + 1 rows & n + 1 columns
be taken.

Let the squares in the first row be filled in
with a1, a2, ..., an & the squares in the first column
be filled in with a1, a2, ..., an

Let ai (1   i   n) and ai (1   j   n) be any
two elements of S.

Let the product ai * aj obtained by operating
ai with aj be placed in the square which is at the
integer section of the row headed by ai and the
column headed by aj.

11. Define order of element with example.

Ans :
The order of element ‘a’ in a group G is a

smallest positive integer n such that an = e. Then
we say that ‘a’ has infinite order. The order of an
element ‘a’ is denoted by |a|.

Example :

U(15) = {1, 2, 4, 7, 8, 9, 11, 13, 14} under
the multiplication modulo 15. Here order 8.

The order of element 7 is

     71 = 7

     72 = 4

     73 = 13

     74 = 1

   So,  |7| = 4

12. Derive cyclic group with example.

Ans :
A group G is said to be a cyclic group if there

is an element a   G.

Such that G = {an | n   z} such an element
‘a’ is called a generator of G.

Example :

G = {1, –1, i, –i} is a cyclic group generated
by ‘i’

Because i1 = i

i2 = –1

i3 = –i

i4 = 1

 ‘i’ is a generator of G.
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13. Every group of prime order is cyclic.

Ans :
Let  ‘p’  be a prime

and  G be a group

Such that  |G| = p

Then  G contains more than one element

Let g  G

Such that  g   e

Then <g> contains more than one element

Since  <g>   G

By  Lagrange’s theorem

|<g>| divides P

Since |<g>| > 1  and  |<g>| divides a prime,

|<g>| = P = |G|

Hence <g> = G

G is cyclic
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Choose the Correct Answers

1. In a group (G,  ) for a, b  G   (ab)–1 = [ c ]

(a) (ba)–1 (b) a–1b–1

(c) b–1a–1 (d) ab

2. If every element of (G,  ) is its own [ c ]

(a) Identity (b) Associative

(c) Inverse (d) Group

3. Additive identity is [ a ]

(a) 0 (b) 1

(c) –1 (d) 

4. Multiplicate identity is [ b ]

(a) 0 (b) 1

(c) –1 (d) 

5. The order of a infinite group is [ c ]

(a) 1 (b) –1

(c) 0 (d) commutative

6. Every cyclic group is [ a ]

(a) commutative (b) normal

(c) cyclic (d) homomorphism

7. Every subgroup of a cyclic group is [ a ]

(a) cyclic (b) subgroup

(c) normal (d) abelian

8. Group satisfies  conditions. [ d ]

(a) 1 (b) 2

(c) 3 (d) 4

9. If H is any subgroup of group ‘G’ then H–1 = [ b ]

(a) H–1 (b) H

(c) G (d) G–1

10. H is any subgroup of group G. Then HH = [ c ]

(a) H2 (b) H–1

(c) H (d) O
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Fill in the Blanks

1. Every permutation of a finite set can be written as a cycle or .

2. Every permutation in sn, n > 1 is a .

3. The set of even permutation in sn forms a .

4. <ak> = <agcd(n, k)> and |ak| = .

5. In a finite cyclic group, the order of an element divides the .

6. In a finite group, the number of elements of order d is a .

7. If ‘x’ is a binary operation on G if and only if it satisfies .

8. Additive identity element is .

9. Multiplicative identity element is  .

10. Let (G1.) be a group for a, bG(ab)2 = a2 b2 iff .

11. The identity element of subgroup H of G is same as the  of group G.

12. If H is any subgroup of group G Then HH = .

13. Intersection of two subgroup of group G is .

14. The union of two subgroups is again a subgroup of group iff .

15. Any two left (right) cosets of subgroup either  (or) .

ANSWERS

1. Product of disjoint cycles

2. Product of two-cycles

3. Subgroup of Sn

4. n/gcd(n, k)

5.  order of the group

6. Multiple of (d)

7. Closure law

8. Zero

9. 1

10. G is an abelian group

11. Identity element

12. H

13. Again a subgroup of group G

14.   one is continent in another

15. Disjoint, Identical
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UNIT
II

Permutation Groups: Definition and Notation - Cycle Notation - Properties
of Permutations - A Check Digit Scheme Based on D5. Isomorphisms;
Motivation - Denition and Examples - Cayley’s Theorem Properties of
Isomorphisms - Automorphisms - Cosets and Lagrange’s Theorem Properties
of Cosets 138 - Lagrange’s Theorem and Consequences - An Application of
Cosets to Permutation Groups - The Rotation Group of a Cube and a Soccer
Ball.

2.1  PERMUTATION GROUPS

2.1.1 Definition and Notation

Q1. Define Permutation group.

Ans :
Let S = a1, a2, ... an be finite set then a

permutation is a mapping f : S   S which is both
one – one and onto  (or)

If S = {a1, a2, ... an} then a one-one mapping
from S onto itself is called a permutation of
degree n.

The number n of elements in S is called the
degree of permutation.

Q2. Write examples for permutation.

Ans :
A Permutation of set A is a function from A to

A is both one to one and onto. A permutation of a
set A is a set of permutation of A that forms a group
under function composition.

Example :

1. Define a permutation of set {1, 2, 3, 4} by
Specifying.

(1) = 2,     (2) = 3

(3) = 1,     (4) = 4

 = 
1 2 3 4
2 3 1 4
 
 
 

2. Define a permutation of the set {1, 2, 3, 4,
5, 6} given by

 (1) = 5,   (2) = 3,   (3) = 1,

 (4) = 6,   (5) = 2,   (6) = 4

  = 
1 2 3 4 5 6
5 3 1 6 2 4
 
 
 

Q3. Define composition of permutation with
example.

Ans :

Let  f = 
1 2 n

1 2 n

a a a
b b b
 
 
 


   and

g = 
1 2 n

1 2 n

b   b ..... b
c   c ..... c
 
 
 

 be two elements.

Here  b1, b2 ..... bn  (or)  c1, c2, ..... cn are
nothing but the elements a1, a2 ..... an of S in some
order.

None, f(a1) = b1,  g(b1) = c1,

f(a2) = b2,  g(b1) = c2 .....

By definition we have

c1 = g(b1) = g(f (a1))=(gf) (a1)

i.e,. (gf) (a1) = c1

Similarly

(gf) (a2) =c2, (gf) (a3) = c3 .....

(gf) (an) = cn

 gf = 
1 2 n

1 2 n

a a a
c c c
 
 
 



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Example :

 = 
1 2 3 4 5
2 4 3 5 1
 
 
 

  and   = 
1 2 3 4 5
5 4 1 2 3
 
 
 

 find 

Sol :

 = 
1 2 3 4 5
2 4 3 5 1
 
 
 

,   = 
1 2 3 4 5
5 4 1 2 3
 
 
 

 = 
1 2 3 4 5
5 4 1 2 3
 
 
 

  
1 2 3 4 5
2 4 3 5 1
 
 
 

 = 
1 2 3 4 5
4 2 1 3 5
 
 
 

2.2  CYCLE NOTATION

Q4. Write notation for cycle.

Ans :
Let S = {a1 , a2, ... an}

   = {a1 , a2, ... ak,  ak+1, ak+2 ... an}

Consider a permutation which is of the form

f = 
1 2 3 4 k k 1 n

2 3 4 1 k 1 n

a a a a a a a
a a a a a a





 
 
 

 
 

is called as cyclic permutation whose length is K and degree ‘n’

where f(a1) = a2 ,  f(a2) = a3 ..... f(ak) =a1

f(ak+1) = ak+1 ..... f(an) = an

The above cyclic permutation is expressed as f = (a1, a2, ... ak)

2.3  PROPERTIES OF PERMUTATIONS

Q5. Every permutation of a finite set can be written as a cycle or as a product of disjoint
cycle.

Ans :
Let A be a set,

A = {1, 2, 3 ... n}

Let  be a permutation on set A

Let a1 be an element of A
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i.e., a1   A

The element a2 is obtained as,

a2 = (a1) ... (1)

Similarly,

a3 = ((a1))

    = 2 (a1) and so on.

 Then the sequence

a1, (a1), 
2(a1) ..... must be finite

 a1 = m(a1) for some m   n.

Consider

Case (i) :

If m = n  then there is no repetition

a1 = 0(a1)

    = a1

a2 = () (a1) = a1

a3 = ()2 (a1) = 2a1

  = (a1, a2 ..... an) ..... (2)

Equation (2) represents a single cycle.

Hence, a permutation of a finile set can be expressed as a cycle.

Case (ii) :

If m < n,

Then there must be repetition

i.e., If i(a1) =i(a1) for some i < j

Then a1
 = m (a1)

Where m = j – i

a1 = 0, a2 =  a,

a3 = 2 a1 .....

am = m a1

The sequence obtained is,

1 = (a1, a2 ..... am) ... (3)

Equation (3) represents a cycle

Let  b1 be an element of a which is not present in first cycle. i.e., 1

b2 = (b1)

b3 = 2(b2)



B.Sc. II YEAR  IV SEMESTER

36
Rahul Publications

The sequence obtained

b1, b2 ..... is a finite sequence.

b1 = ak (b1) for some K.

The second cycle and first cycle does not contain common elements as they are disjoint cycles.

If i(a1) =j(b1) for some i and j

i

i




a1 = b

 i – j a1 = b1

 a1 = b1 is  a contradiction

The cycle is,

2 = (b1, b2 ..... bk) ... (4)

Similarly, the third cycle will be of the for m

3 = c1, c2 ..... cs

The process is continued till the elements of A get exhausted.

Multiplying equation (3), (4) & (5)

1 , 2 ,3 = (a1, a2 ..... anm)  (b1, b2 ..... bk) (c1, c2 ..... cs)

If 1 . 2 3 =  then

 = (a1, a2, a3 ..... am)  (b1, b2, ..... bk)  (c1, c2 ..... cs)

 = (a1, a2, a3 ..... am) (b1, b2, ..... bk)  (c1, c2, ..... cs)

If can be seen for equation (6). That the permutation of A is a product of disjoint cycles. If there are
‘n’ number of disjoint cycles,

Then.

 = (a1, a2 ..... am)  (b1, b2 ..... bk)  (c1, c2 ..... cs) ..... (d1, d2 ..... dn)

Hence, every permutation of a finite set can be expressed as a product of disjoint cycles.

Q6. If the pair of cycles, = a1, a2 ....... amand   = (b1, b2 ....... bn) have no entries in
common, Then = 

Ans :
Let = a1, a2  ..... am

Let = b1, b2 ..... bn

 S = c1, c2 ..... ck

Let us say that and are permutation of the set

S = {a1, a2 .... am,  b1, b2 .... nn,  c1, c2 .... ak}

Where  C’s are the numbers of S left fixed by both  a and .



UNIT - II ALGEBRA

37
Rahul Publications

To prove, = 

i.e., to prove that () (x) = () (x) for x  S

For  x  A the following cases carries.

Case (i)

Let x  {x1, x2 ...... xk}

 f (x)  {x1, x2 ...... xk}

Since  are disjoint cycles.

{a1, a2 ... ak}   {y1, y2 ...... yt} = 

 x1, f(x)  {y1, y2 ..... yr}

 (x) = x  &  ((x = (x)

Now, () (x) =  m = (x)

  and (() (x)) = (x) = x

  and   hence,  () (x) = () (x) for x  s.

Case (ii) :

Let x  { y1, y2  ..... yt}

 x  { y1, y2  ..... yt}

Since

are disjont cycle.

{x1, x2 ... xk}   { y1, y2 ... yt } = 

 x, (x)  (x1, x2 ... xk)

Now,

() (x) =xx

and

x = xx

and, Hence (x) = (x)

Case (iii) :

Let x { x1, x2 ... xk}  and  x { y1, y2 ... yt}

 x = x  and x = x

Now,

() (x) =x =x = x

and x = x = x = x

Hence,

 (x) = (x)

 for  x   S.
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Q7. Every permutation in  Sn,  n > 1, is a product of 2 - cycles with example.

Ans :
The identity can be expressed as (1 2)  (1 2) and so it is a product of 2 - cycle.

We know that by product of disjont cycles every permutation can be written in the form

(a1, a2  .... ak) (b1, b2  .... bt) .... (c1, c2  .... cs)

A direct computation show that this is same as

(a1ak) (a1ak-1) ..... (a1a2) (b1bt) (b1bt-1) .... (b1b2) .... (c1cs) (c1cs-1) .... (c1c2)

Example :

Let   f = (2 3 4) of degree 4

Then   f = (2 3) (2 4)


1 2 3 4
1 3 2 4
 
 
 


1 2 3 4
1 4 3 2
 
 
 

 = 
1 2 3 4
1 4 3 2
 
 
 

 = (2 4 3)

Also

We have f = (2 3)  (1 2)  (2 1)  (2 4)

f = (1 3)  (3 1)  (2 3)  (2 4) etc.

This every cycle can be expressed as a produt of transposition.

Q8. If = r,  where the ’s are 2 - cycles, Then ‘r’  is even.

Ans :
Clearly r   1,

Since a 2 - cycles is not the identity

If r = 2, we are done.

We suppose that r > 2,

and  we proceed by induction.

Suppose that the right most 2 - cycle is (a b)

Then, sine (i j) = (j i)

The product rr  can be Expressed in one of the following forms.

 = (a b) (a b)

(a b) (b c) = (a c) (a b)

(a c) (c b) = (b c) (a b)

(a b)(c d) = (c d) (a b)

If the first case occurs,

We may delete rr from the original product to obtain

11 r-2
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and therefore, by the second principle of mathematical induction.

r – 2  is even.

In the other three cases, we replace the form of rr on the right by its counters part on the left
to obtain a new product of 2 - cycle.

Now, we repeat the procedure just described with  rr-1

and as before, we obtain (r – 2) 2 - cycles equal to the identity

or new product of ‘r’ 2 - cycles.

Where the right most occurrence of a is in the third 2 cycle from the right.

Continuing this process, we must obtain a product of (r – 2) 2 cycles equal to identity,

Because otherwise we have a product equal to the identity in which the only occurrence of  the
integer ‘a’ is the left most  - cycle.

and such a product does not fix ‘a’, where as the identity does.

Hence, by the second principle of mathematical induction

r – 2 is even and ‘r’ is even as well.

Q9. If a permutation can be expressed as a product of an even (odd) numbers of 2 -
cycles, Then every decomposition of  into a product of 2 - cycles must have an even
(odd) number 2-cycle. In symbols, If

 = 12 ......r  and  1 2 .... s

where we ’s and the ’s are 2- cycles

Then r and S are both even or both odd.

Ans :
Let the polynomial in x corresponding to S

Let Pn(x) = (x1– x2) (x1 – x3) ..... (x1 – xn)

       (x2 – x3) ..... (x2 – xn)

           ................
           ................

(xn-1 – xn)

= x1 – xj)  where  i < j,  1   i   n – 1  and  2   j   n.

Now,

Pn(x) can be split into the following three types of product corresponding to a transposition (r, S).

(i) L = 
i, j  r, S
 xi – xj)

(ii) M = 
i  r, S
 xi – xr)  xi – xs)

(iii)      xr – xs

 pn(x) =   LM (xr – xs)
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We considers the effect of transposition (r, s) on pn(x).

Then (r, s)  L = L

(r, s) M = (r, s) i r i j
i  r, S

(x x ) (x x )


 
   
 
  = M

(r, s) [(xr – xs)] = xs – xr = –(xr – xs)

(r, s) [pn(x)] = (r, s) [   LM (xr – xs)]

=   (r, s) L . (r, s)  M . (r, s) (xr – xs)

=   [L M {xr – xs}]

=   [L M – {xs – xr}]

= –pn(x)

 A transposition (r, s) changes pn(x) to pn(x)

Let  f be a permutation on S.

If  f can be expressed as a product of r permutation.

Say   f1, f2 .... fr  then

f(pn(x)) = f1, f2 ... fr [pn (x)]

            = f1, f2 ..... fr–1  ((–1)' pn(x)) = (–1)r pn(x)

Again if f can be expressed as a product of S transpositions,

Then  f(pn(x)) = (–1)r pn(x)

Since f is a permutation

 f(pn(x)) is Unique

   (–1)r  pn(x) = (–1)s pn(x)

For this to be true,

Both  r, s must be even (or) odd.

Q10. What is odd and even permutation?

Ans :
Even and odd permutation.

 A permutation that can be expressed as a product of an even number of 2 - cycles is called an
Even permutation.

 A permutation that can be Expressed as a product of an odd number of 2- cycles is called an
odd permutation.

Q11. Determine whether the following permutation even or odd.

(a) (1 3 5)

(b) (1 3 5 6)

(c) (1 3 5 6 7)

(d) (1 2) (1 3 4) (1 5 2)

(e) (1 2 4 3) (3 5 2 1)
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Sol :
(a) (1 3 5) = (1 3) (1 5)

   = Product of two permutation.

(b) (1 3 5 6 ) = (1 3) (1 5) (1 6)

       = Product of three permutation.

 (1 3 5 6) is odd permutation

(c) (1 3 5 6 7) = (1 3 ) (1 5) (1 6) (1 7)

Product of four permutation.

(d) (1 2) (1 3 4) (1 5 2) = (1 2) (1 3) (1 4) (1 5) (1 2)

Product of five permutation

 (1 2) (1 3 4) (1 5 2) is an odd permutation.

(e) (1 2 4 3) (3 5 2 1) = (1 2) (1 4) (1 3 ) (3 5) (3 2) (3 1)

Product of six permutation

 It is a even permutation.

Q12. Define Alternating group of degree ‘n’.

Ans : (June-19)

The group of even permutation of n symbols is denoted by An and is called the alternating group of
degree n.

Q13. Prove that for n > 1, An has order 
n!
2

 .

Ans : (May/June-19)

Let Sn = {e1, e2 .... ep, o1, o2 .... oq} be the permutation group on ‘n’.

Where   e1, e2 ..... ep are even permutataion .

and   o1, o2 .... oq are odd permutataion.

 p + q = n!

Let t  sn  and ‘t’ be a transpontion since permutataion multiplication follows closure law in Sn.

We have   te1, te2 ..... tep, to1, to2 ..... toq as elementn of Sn

Since ‘t’ is an odd permutation.

te1, te2 .... tep are all odd and

to1, to2....toq are even.

Let tei = tej  for  i   p,  j   p

Since Sn is a group by left cancellation law.  ei = ej

 tei   tej and hence the p permutation

te1, te2 ..... tep are all distinct in Sn.
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But Sn contains exactly q odd permutation

 p   q ... (1)

Similarly we can should that q even permutation to1, to2 ..... toq are all distinct even permutation
in Sn

 q   p ... (2)

 from (1) & (2)

p = q = 
n!
2

Number of even permutation in Sn = number of odd permutation in Sn = 
n!
2

2.4  A CHECK DIGIT SCHEME BASED ON D5

Q14. What is Digit Scheme based on D5.

Ans :
The international standard book Number (ISBN) method was capable of detecting all single - digit

errors and all transposition erross involving adjacent digits.

Q15. Let the Bank note   A G  3 6 8 2 7  7.

To nesify that 7 is the appropriate check digit.

Sol :
Using Verhoeff’s check -- digit scheme

 (a1) * (a2) * ..... *  (a10) * a11 =  0 ... (1)

Where a1 a2 .... a10  is a string with digits is  a11

Here

a1 = A, a2 = G, a3 = 8, a4 = 5, a3 = 3, a6 = 6, a7 = 8, a8 =2, a9 = 7, a10 = 11,  a11 = 7

Let  = (0 1 5 8 9 4 2 7) (3 6)

Then from (1)

 (A) * 2(G) * 3(8) * 4(5) * 6 (6) * 7 (8) * 8(2) * 9(7) * 10(U) * 7

 (0) * 2(2) * 3(8) * 4(5) * 5(3) * 6 * (6) * 7(8) * 8(2) * 9(7) * 10(7) * 7

 (1 * 0) * 2 * 2 * 6 * 6 * 5 * 2 * 0 * 1 * 7

 (1   2)   2   6   6  5   2   0 1 7

 (3   2)   6   6   5   2   0  1   7

 (0   6)   6   5   2 0 1   7

 (6   6)   5   2   0   1   7

 (0   5)   2   0   1   7

 (8   2)   0   1   7
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 (8   0)   1   7

 (8   1)   7

 7   7 = 0

Hence, the given banknote number is the appropriate check digit 7

2.5  ISOMORPHISM, MOTIVATION - DEFINITION & EXAMPLE - CAYLEY'S THEOREM

Q16. Define Homomorphism.

Ans :

Let (G, .) and ( G , *) be two groups then a mapping   from G   G  is said to be a homomorphism

Q17. Define Isomorphism.

Ans :

A mapping   G   G   is said to be an isomorphism

If  is homomorphism,  one - one & onto

Here the group   G & G  are said to be isomorphism to each other and  donoted as G   G
isomasphism to each other 4 donoted as  G   G

i.e., a b = (a)  (b)   a, b in G.

l a

l b

l

ab

l f(a)

l f(a)

l f(a) f(a)

G f G

‘G’ Operation ‘G ’ operation Operation Preservation

  (a . b) = (a) . (b)

 + (a . b) = (a)  + (b)

+  (a + b) = (a) (b)

+ + (a + b) = (a) + (b)

Q18.   : G   G   when  = 2x  Show that   is a isomorphism.

Sol :

= 2x

 To prove Isomorphism
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1. To prove Homomorphism

2. one - one and onto.

Suppose   2x = 2y

Apply log

log 2x = log 2y  x log 2 = y log 2 (right commutation law)

 x = y.

  is one - one

For onto, we must find for any positive real number y some real number x.

(x) = y

i.e., 2x = y   x = log2 y..

  is onto.

  is Homomorphism

Suppose (x+y) = 2x+y

            = 2x . 2y

            = (x) . (y)

 is Homomorphism    x, y  G

Q19. Prove that U(10)   Z4 and U (5)  z4

Sol :
Let Z4 = {0, 1, 2, 3}

(Z4, +) = {0, 1, 2, 3, +}

(U(5)) = {1, 2, 3, 4}

(U(5),+) = {1, 2, 3, 4, +}

U(10) = {1, 3, 7, 9 , .}

are groups

Let the mapping. : Z4   U(10)

(e) = e' and  (a-1) = [(a)]-1

Where e = o  z4

e' = 1  U(10) are identity elements and a  z4

That (0) = 1

(1) = 3

(2) = 4

(3) = 2

Here  z4   U10 is an isomorphisms

i.e., z4   U(10)
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Now,  let the mapping z4   U (5) is defined as

(e) = e'  &  (a–1) = [a]–1

Where e = 0  z4

e' =1  U (5) are identity

Elements and  a z4

Then  (0) = 1,  (1) = 7,  (2) = 9,  (3) = 3

Hence z4   U(5) is an isomorphism

i.e., z4   U(5)

Q20. Prove that  U(10)   U(12)

Sol :
Let U(10) = ({1, 3, 7, 9}, .)

and U(12) = ({1, 5, 7, 11}, .) are groups

There doesn’t exist any mapping

U (10)   U(12) is an isomorphism.

Since,

 a  U(12)   a2 =1

i.e, 1, 5, 7, 11   U(12)  12 =1

32 = 5

72 = 1

112 = 1

Now   (9) = (3 . 3) = (3)  (3) = 1

  (1) = (1 . 1) = (1) . (1) = 1

But   (9) = (1)   9   1

 U(10)   U(12)

Q21. Let  G = SL (2, R) be a group of 2 × 2 real matrices with determinant 1.

Show that the mapping  M : GG be defined by M (A) = MAM–1, AG is an isomor-
phism.

Sol :

Let  G = SL (2, R) = 
a b

ad bc 1 & a,b, c, d R
c d

       
   

Be a group under multiplication

Let M be any 2 × 2 real matrix with determinant 1.
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i.e., M = 
p q
r s
 
 
 

   det M = ps – qr =1  for  p, q, r, s  R.

Let the mapping m: G   G be defined by m (A) = MAM-1 then prove that m is an isomor-
phism.

Now consider  (MAM–1) = (det M) (det A) (det M)–1

           = 1 . 1 . 1–1

           = 1

 det (MAM–1) =1

 MAM-1  G

 m(A) = MAA-1

 m is well defined.

Let A, B  G   m(A) = MAM-1

and m(B) = MBM–1

Consider  m(A) m(B)

MAM–1 = MBM–1

 A = B [By left & light cancellation law]

 m is one - one

  B  G   B = MAM-1    A  G such that  det B = det MAM–1 = 1

 A = MAM–1  G

 m(A) = MAM–1

 M (M-1BM)M-1

 (MM-1) B(MM–1)

 

 

m is onto.

Let A, B  G    m(A) = MAM–1  and m(B) = MBM–1

Then  A B  G   m(AB) = M(AB) M–1

        = MA . I . M–1

        = MAM–1  . MBM–1

        = m(A) .  m(B)

 m (AB) = m(A) .  m(B)

m  is homomorphism.

 m is Isomorphism.
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Q22. Every group is isomorphic to a group of
permutations.

Ans :
Given that G is a finite group.

Consider fa : G   G defined by fa(x)=ax

  x  G

Required to prove fa is a permutation on G

i.e,  to prove

(i) fa is well defined

(ii) fa is one - one

(iii) fa is onto

(i)  Let x, y  G

ax, ay  G

x = y   ax = ay

   fa(x) = fa(y)

 fa is well defined

(ii) Let x, y G

We have fa(x) = fa(y)

 ax = ay

 x = y

 fa is one - one

(iii) fa is onto

x  G,   a–1 x  G

 fa (a
-1 x) = a(a–1 x)

    = (aa–1)x

    = e . x

    = x

fa : G   G is onto

 fa is G G is permutation on G

Let us define G' = {fa / a  G}

Let G' be the set of all permutation defined
on G.

Here,  we required to prove,

G' is a group w.r.to permutation
multiplications.

(a) Closure Property

Let a, b  G,   fa, fb  G'

for x  G,

Consider (fa fb) (x) = fa (fb(x))

              = fa(bx)

              = a(bx)

              = (ab) x

         (fa fb) (x) = fab(x)

fab  G'   fa fb  G'

(b) Associative Property

For a, b, c  G,  fa, fb, fc  G'

For x  G

Consider

((fa fb ) fc) (x) = fa ((fb) fc (x))

  = fa fb ((fc) (x))

  = fa fb (fc(x))

  = fa(fb fc(x))

        (fa fb) fc = fa (fb fc)

(c) Existence of Identity

Let e be the identity in G

fe  G  &  fe fa = fea = fa

fa fe = fae

      = fa

Identity in G' is exists

(d) Existence of Inverse

If a  G   a–1  G'

f 1a  G1 and f 1a fa = f 1a a

            = fe

G' is invertible

G' is a group

Next to show that G   G'

Consider  : G   G' defined by (a) : fa for
a   G

 is one one
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Consider (a) = . (b)

fa = fb

fa(x) = fb(x)

ax = bx

a = b for xG,

a, b  G

is onto

Consider   fa  G',  a  G  such that

(a) = fa

is structure preserving

Since a, b  G

ab  G

 (ab) = fab

          = fa fb

          = (a) (b)

 G   G'

G' is called permutation group.

 Every finite group G is a isomorphic to
the permutation group G'

Q23. Find the regular permutation group U(12)
for U(12)

Sol :
Let U(12) = {1, 5, 7, 11}

Which is a group under multiplication

By  Cayley`s Table.

U(12) 1 5 7 11
1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

By Caylay`s Theorem

Tf : U(12)   U(12) which is defined by

Tf(x) = f(x)   x  U (12)

If  f = 1  U(12)   T1 = 
1 5 7 11
1 5 7 11
 
 
 

If  f = 5  U(12)   T2 = 
1 5 7 11
5 1 11 7
 
 
 

If  f = 7  U(12)   T7 = 
1 5 7 11
7 11 1 5
 
 
 

If  f = 11  U(12) T11=
1 5 7 11

11 5 7 1
 
 
 

Then the permutation group is

U(12) = {T1, T5,T7, T11} under multi-
plication

Then the regular representation of U(12)

1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

T T T T
T T T T T
T T T T T
T T T T T
T T T T T



Here  U(12)   U(12)

2.6  PROPERTIES OF ISOMORPHISM

Q24. Suppose that is an isomorphism from

a group G onto a group G  then car-
ries the identity of G to the identity

of G

Ans :
Let us denote the identity in G by e and

identity in G  by e

Then,  Since,  e = ee

Then we have eee

(ee) = (e)

 (e) (e) = e  (e)

( is homomorphism
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e e G )

 (e) = e  By right can cancellation

done in G

Q25. Suppose that is an isomorphism from

group G onto a group G  than for every
integer n and for every group element a
in G, (an) = [(a)]n

Ans :

Let (G,  ) and ( G , .) be two groups.

Let G   G  is an isomaplism required
to prove

(an) = [(a)]n   a  G &   n  Z  ... (1)

Case (i) :

Let n  z+

 By using mathematical induction

for  n = 1

L. H. S = (a1) = (a)

        = [(a)]1

        = R. H. S

 equation (1) is true for  n = 1

Assume that equation (1)

is true for  n = k

i.e., (ak) = [(a)]k ... (2)

(ak+1) = (ak . a)

           = aka

[  homomorphism]

           = aa

 equation (2)

           = a

Equation (1) is true for n = k+1

 (an) = [(a)]n   n  z+

Case (ii) :

Let n  z–  Then  m = –n

 m  z+

  (am) = [am         [Case (i)]

 (a–n) = [a–n

 (an) = [(a)]n   n  z-

Case (iii)

Let n = o   z

(ao) = (e)

        = e1  = [(a)]0

 (an) = [(a)]n   n  z-

Q26. Suppose that  is an isomorphism from
a group G onto a group G  for any ele-
ments a & b in G, a and b commute if
and only if (a) and (b) commutes.

Ans :
Let ‘G’ be a group, a, b  G

 (G, .) be an abelian group

( G , .) be an isomorphic group.

G   G  be a  onto

  a, b    ab = ba ... (1)

Required to prove (a). (b) = (b) . (a)

Consider

(a) . (b) = (ab)  is homomorphic

= (b a)

=  (b) . (a)

f is homomorphic

 (a) . (b) = (b) . (a)

Conversely suppose that,

(a) . (b) = (b) . (a)

Then required to prove ab = ba.

Consider

(a) (b)= (b) (a)

 (ab) = (ba)

( is homomorphism)

 ab = ba

(is one one)
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Q27. Let be an isomorphism from group G onto group G . Then G = <a> if and only if

G  = <a

Ans :

Let (G, .)  &  ( G , .) ba a two groups

 G    G  is an isomorphism.

Suppose that : G = <a> then prove that

G  = <a = {(a))n / n  z is a cyclic group

Let G = <a> = {an / nz} be a cyclic group

 (a)  G

   a G   an  G

 (an)  G

 (an) =[(a)]n   n  z

 G  = <a is a cyclic group

Conversely suppose that

Let G  = <a is a cyclic group

Required to prove

G = <a> is a cyclic group

  a G   a G

 (a)]n G   n z [ G  is a cyclic]

 (an)  G      n  z

 an   G is onto

 G =  <a> = {an / n   z}

Which is a cyclic group.

Q28. Suppose that is an isomorphism from a group G onto a group G  then |a| =|(A)| 
a in G (isomorphism preserve orders).

Ans :

Let G, G  be a two group.

: G   G  is an isomorphism.

Let a  G of order n

i.e., |a| = n
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Then, Required to prove |a| = n

By definition an = e where e is an identity in G

 (an) = (e)

 a . a .... a e' e'  G

 (a) . (a) .... a e'

[(a)]n = e'

Order of a)   n ... (1)

Suppose that the orders of ais m

where m < n

Then [a)]m  = e'

(am) = (e) [ e) = e']

am = e [ is one one]

which is a contradiction

Since n is the least integer such that an = e

 m = n

 Hence |(a)| = m = n = |a|

 |(a)| = n

 |(a)| = |a|

Q29. Let  be an isomorphism from a group G onto a group G , then for a fixed integer K and
a fixed group elements b in G. The equation xk = b has the same number of solution in G
as does the equation xk = (b) in G .

Ans :

Let G , G  be two groups.

Let  G   G . be an isomorphism for a fixed integer K, and fixed group elements b in G.

Then the equation  xk = b has the same in  G.

But xk = (b) does not have same number of solutions in G .

Example :

Let G = C* & G  = R*

K = 4  &  b = 1 (identity)

Then x4 = 1 has four solutions in C*

i.e., x = {–1,  , i, –i}

But the equation x4 = (1) = 1

has two solutions in R*
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Q30. Suppose that  is isomorphism from a group G onto a group G . Than If G is finite, Then
G and G  have exactly the same number of elements of every order..

Ans :

Let G & G  be a two groups

G   G  is an isomorphism

Let G be a finite

The order of G be ‘n’

i.e., |G| = n

a  G,    |a| = n  an = e =1

 (G) = G  is onto

1 = (1) = (an)  = (a)]n

 G  & G  have exactly the same number of elements of every order..

Q31. Suppose that is an isomorphism from a group G onto a group G . Then -1 is an isomor-
phism from G  onto G.

Ans :

Let G, G  be a two groups.

G   G  is an isomorphism

and |G| = {(a)  G  / a  G}

 a  G   b = a G

     = G

Then -1 ( G ) = {b / b G }

 a = (b)  ( G ) = G

Consider

(b1) = (b2)

 ((b1)) =  (b2)) [one - one]

 eb1       = eb2

      b1       = b2

 is one one.

 g  G  (g)  (G) = G

 (g) = g
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  g  G   (g))

 (g-1)

 g = -1(g-1)

 is onto

  x, y  G  = (G)

 x1 = (x)  &  y1 =(y)   X , Y  G

 -1(x1) = x  & -1 (y1) = y [is one one.]

Now  x', y'  G    –1 (x' y')

                   =  –1  ((x) . (y))

                   =  –1  ((xy))  is homomorphism

                   =  e(xy)

                   =  xy

=  –1 (x' ) ( y'

 –1 (x' y') = –1(x') –1( y')

 is a homomorphism.

Hence –1 is an isomorphism.

Q32. Suppose that is an isomorphism from a group G onto a group G  then G is abelian if
and only if G is Abelian.

Ans :

Let G & G  be a two groups

G   G  is an isomorphic

Let G be an abelian group

Then required to prove G  is an abelian group.

Let   a, b   G abd a', b'   G

  a' b'  G     a' =  (a)   a  G

    &    b' = (b)   b   G

Consider

a1b1 = (a) (b)

       = (ab)

       = (ba)

       = (b)(a)

       = b1 . a1
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 a1b1 = b1a1

 G  is abelian group.

Conversely suppose that

G  is an abelian group then prove that G is an abelian group.

  a, b  G   a = (a1)   d  G

     a = (b1)   b'  G

Consider

ab = (a1) (b1)
        =(a1b1 )  is homomorphism
        =(b1a1)
        (b1) (a1)
        = b . a

 ab = ba.   a, b  G

 G is an abelian group

Q33. Let   be an isomorphism from G to G . If K is a subgroup of G. Then (k) = (k) / k 
K} is a subgroup of G

Ans : (Jan.-21)

Let G and G  be the two groups.

and  G  G   is isomorphism.

Let K be a subgroup of G.

Then  (K) = {(k) / k  K} is subset of G

i.e., e = 1  G

(e) = e  = 1  (k)

(k)    and (k)  G

 (k1),(k2)  (k)     k1, k2   k.

 k1 – k2  k and k1. k2  k

 k1 – k2)  k) and k1 . k2)  (k)

Consider

k1) –k2) k1 – k2)  k)

& k1) .k2)  k1 k2)  k)

 (k) is a subgroup of G .
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Q34. Suppose that is an isomorphism from a group G onto a group G  then, If K  is a subgroup

of G  then ( K ) = {g  G / (g)  K } is a subgroup of G.

Ans :

Let G  & G  be a two groups.

Let  G   G  be an isomorphism.

Let K  be a subgroup of G

Then required to prove that

( K ) is a subgroup of G.

Let e  = 1  G    e K

              e e=1

 e  e1  K 

 K  and K  G

g1 = 1g   g1  
K 

g2 = 2g   g2   
K 

 g1 = ( 1g ) & g1 = ( 2g )   1g  2g  K

 1g  – 2g   K  &  1g . 2g   K

  1g  – 2g  ( K ) and  1g . 2g K 

Consider

g1 – g2 = – 1g ) –   2g 

– 1g  – 2g  K 

and  g1 g2 =  1g )   2g 

 1g . 2g  K 

g1 g2 
 1g . 2g 

 ( K )is a subgroup of G.

2.7  AUTOMORPHISM

Q35. Define Automorphism.

Ans :
An isomorphism from a group G onto it self is called an automorphism of G.
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Q36. The function C   C given by a +bi) = a – bi be an automorphism of the group of
complex number under addition.

Sol :
Let (C. +) be a group

C   C is define by  (a + bi)  = a – bi   a, b  R.

To prove  is automorphism required to prove one - one, onto & homomorphism (i.e., to prove
isomorphism).

  a1 + i b1, a2+ b2 i  C

Consider

(a1+ b1i) = (a2 +b2i)

 a1 – i b1 = a2 – i b2

 a1 = a2 and b1 = b2

 a1 + b1 i = a2 + b2 i

 is one - one

 a – b i  C   a + (–b) i  C

 (a + i(–b)) = a – i (–b)

           = a + ib  C

 is onto

  a1+ ib1, a2+ib2  C

 (a1 + ib1) + (a2 + ib2)

 (a1 + a2) + i(b1 + b2)

=  C

Consider

[(a1 +ib1) + (a2 + ib2)] = [(a1 + a2) + i(b1 + b2)]

 (a1+ a2) – (b2 + b2)i

 (a1 – bi) + (a2 – b2i)

 (a1 +ib1) +(a2 + ib2)

  is Homomorphism.

 is an isomorphic

 : c   c is Automorphism,

Q37. R2 = {(a, b) / a, b  R}. Then a, b = b, ais an automorphism of the group R2 under
component wise addition.

Sol :
Given, R2 = {(a, b) / a, b  R}
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: R2   R2 , defined as (a, b) = (b, a)  (a, b)  R2

(a1, b1 ) = (b1, a1)  &  (a2, b2) = (b2, a2)  (a1, b1) & (a2, b2) &  R2

Consider

(a1, b1) = (a2, b2)

 (b1, a1) = (b2, a2)

 b1 = b2,  a1 = a2

 (a1, b1) = (a2, b2)

 is one one.

 (a, b) = (b, a)  R2   (a, b)  R2

is onto

Now , Consider

[(a1, b1) + (a2, b2)] =  [(a1 + a2) + (b1 + a2)]i

=  (a1 + a2) – (b1+ b2)i

=  (a1– b1i) + (a2 – b2i)

=  (a1, b1) +(a2, b2)

  is Homomorphim

 is an automorphism of group R2

Q38. What is Inner Automorphism?

Ans :

Let G be a group, & Let a   G. The function a defined by a (x) = axa–1   x  G is called the
inner automorphism of G induced by a.

Q39. The set of Automorphism of a group and the set of inner Automorphism of  group are
both group under the operation of function  composition.

Ans : (Jan.-21)

Let a : G   G is an isomorphism.

Let a  G & the set of all inner Automorphism of G induced by a

Inn (G) = {a / a (x) = axa-1   x  G}

Closure Property :

Let  a,b   Inn (G)   a (x) = axa–1

         a (x) = bxb–1   x  G

Consider

(b  a) (x) = b [a(x)]

=b [axa–1]

= b [axa–1] b–1
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= (b a) x (a–1 b–1)

= (b a) x (b a)–1

 (bxb–1) (axa–1) = (ba)x (ba)–1  Inn (G)

Associative Property :

Let a,b ,c  Inn (G)

c(x) = cxc–1,   x  G

Consider

[(a  b)  c] (x) = (a  b) c(x)]

= a[b( c(x))]

=  a[b(cxc–1)]

= a[b(cxc–1)b–1]

= a[b(cxc–1)b–1]a–1

= [(ab) c] x [c–1(a–1b–1)]

= [(ab) c] x [c–1(ab)–1]

= [(ab) c] x [(a b) c]–1

= [(a (bc] x [a (bc)]–1

=  [a  b  c)] (x)

 Inn (G) is satisfies the Associative.

Identity Property :

 e   G     2   Inn(G)

2(x) = e x e–1

= e x e

= x

(e o a) (x)  = e [a(x)]

  = e (ax a–1)

  = e(ax a–1) e–1

  = (e a) x (a–1 e–1)

  = (e a) x (ea)–1

  = ax a–1

(e o a) (x)  = a (x)

By  (a o e) (x)  = a (x)

 e = I is an identity element of Inn(G)
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Inverse Property :

Consider  (a o  1a ) (x)  = a [a–1(x)]

   = a [a
–1 xa–1]–1

   = (a–1 xa–1)–1

   = (aa–1) x (aa–1)–1

   = ex a–1

   = e (x)

Similarly

( 1a  o a) (x) = e (x)

 Inn(G) is satifies the inverse property

 Inn(G) is group under the operation of composition of function.

Q40. Compute Aut (Z10).

Sol :
Let Z10 = {0, 1, 2, 3, ... 9} be a group

Under addition modulo 10.

By definition of Automorphism of G

Aut (G) = { /  : Z10   Z10 is isomorphism}

Consider

(K) = (1 + 1 + ... + 1 (K times)

= (1) + (1) + ... + (1)

= K . (1)

|(1)| = 10  and  (1) = 1,  (1) = 3,  (1) = 7,  (1) = 9

Aut (Z10) = {1, 3, 7, 9} is group under multiplication with identity 1

By Cayley’s table

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

   
    
    
    
    

Q41. From every positive integer n, Aut (Zn) is isomorphic to U(n).

Ans :
Let ‘n’ be a positive integer
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and  Aut (Zn) & U(n) are groups under multiplication.

T : Aut (Zn)   U(n) be defined by T() = (1) with (K) = K . (1)      K   Zn

,    Aut (Zn)

(1) = (1)

 (K) = K . (1)

K . (1) = (K)

 (K) = (K)   K  Zn

Consider

T() = T()

 (1) = (1)

  = 

 T is one - one

Let r   U(n)

Consider

 : Zn   Zn

(S) = Sr (mod n)   S   Zn

Then   is an isomorphism of Zn

 T() = () = r

T is onto from Aut (Zn) to U(n)

Let ,    Aut (Zn)

Then  T() = () (1) = ((1))

=  (1 + 1 + ... + 1)

=  (1) + (1) + ... + (1)  ((1) times))

=  (1) . (1)

=  T() . T()

 T is homomorphim

Hence  Aut (Zn)   U(n)

2.8  COSETS AND LAGRANGE’S THEOREM - PROPERTIES OF COSETS

Q42. Define right coset of H in G and left coset of H in G.

Ans :
Let G be a group and let H be a non empty subset of G. For any a  G. The set {ah / h  H} is

denoted by aH, is called left coset of H in G generated by a and the set  Ha = {ha / h  H} is called right
coset of H in G generated by a.
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Q43. Let  G = S3 and H = {(1), (1, 3)}. Then find left cosets of H in G are

Sol :
Let G = S3

    = {f1 f2 f3 f4 f5 f6}

    = {(1)  (1 2)  (1 3)  (2 3)  (1 2 3)  (1 3 2)}

is a group under permutation, multiplication and

H = {(1), (1 3)} = 
1 1 3

 
2 3 1

     
    
     

 is a subgroup of G

(1)   G   (1) H   {(1)  (1), (1) (1 3)}

   =   ((1),  (1 3)} = H

(1 2)   G   (1 2) H   {(1 2) (1),  (1 2) (1 3)}

 =  {1 2),  (1 3 2)}

 =  (1 3 2)

 = H

(1 3)   G   (1 3) H  = {1 3) (1), (1 3) (1 3)}

 = {(1 3), (1 3)}

 = H

(2 3)   G   (2 3) H  = {2 3) (1), (2 3) (1 3)}

 = {(2 3), (1 2 3)}

 = (1 2 3) H

Q44. Let  H = {0, 3, 6} is Z9 under addition. Then  find the left cosets of H is Z9.

Sol :
Let  Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

is group under addition modulo 9

and  H = {0, 3, 6} is a subgroup of Z9

0  Z9     0 + H  =  {0, 3, 6}  =  3 + H  =  6 + H

1  Z9     1 + H  =  {1, 4, 7}  =  4 + H  =  7 + H

2  Z9     2 + H  =  {2, 5, 8}  =  5 + H  =  8 + H

Q45. Let  H be a subgroup of G, and let a belong to G. Then,  a H = subgroup of G   a  H

Ans :
Let (G, .) be group

H be a subgroup of G

Let  a  G
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Then the left coset H in G is

aH = {ah / h  H} is a subset of G

i.e., e  H   a . e = a  a H

 aH     and  aH   G

Let aH be a subgroup of G

Then  required to prove  a  H

aH = eH   a  e H

aH = H is subgroup   a  H

Q46. Let  H be a subgroup of group G and a, b  G  then  (ab) H = a(bH) and  H(ab) = (Ha) b

Ans :
Let (G, .) be group

H be a subgroup of G

Let a, b  H then the left cosets of G

is  bH = {bh / h  H}

Consider

      a (bH) = {a (bh) / h  H}

= {(ab) h / h  H}

= (ab) H

   (ab) H = a(bH)

Similarly,

The right coset H of G is Ha = {ha / h  H}

Consider (Ha) b= {(ha) b / h  H}

= {h (ab) / h  H}

= H (ab)

   (Ha) b = H(ab)

Q47. Let H be a subgroup of G, and Let a & b belong to G aH = bH if and only if a  bH

Ans :
H be a subgroup of G

a, b  H

Suppose that  aH = bH

Required to prove  a  bH

 a  aH  where  a  bH (   aH = bH)
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Conversely suppose that  a  bH

Required to prove  aH = bH

a  bH     a = bH

Consider   aH =  (bh)H

=  b(hH)

=  bH

  aH =  bH

Q48. Let  H be a subgroup of G, & a, b  G

Then  aH = bH  or  aH   bH = 

Ans :
Let H be a subgroup of G

& a, b  G

Here  aH & bH are left cosets of H in G

1. If  aH & bH are dijoint

i.e., aH   bH = .  Then there is nothing to prove.

2. If  aH & bH are not adjust

i.e., aH   bH   

  c   aH   bH

c  aH     c = a.h1    where    h1  H

c  bH     c = b.h2    where    h2  H

 ah1 = bh2

Multiply with 1
1h  both sides

(ah1) 
1

1h  = (bh2) 
1

1h

a(h1
1

1h ) = b(h2
1

1h )

ae = bh2
1

1h

a = bh3

We shall prove that

aH = bH

Consider aH = (bh3)H

      = b(h3H)

      = bH

 aH = bH
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Q49. Let  H be a subgroup of G,  & a, b  G

Then aH = bH    a–1b   H

Ans :
H subgroup of G

Required to prove  aH = bH   a–1b  H

Suppose that  aH = bH

i.e., to prove a–1b  H

Consider bH & b   H

 b  aH

= b = ah    where    h  H

Multiply with a–1 on both sides

a–1b = a–1(ah)

a–1b = (a–1a) h

a–1b = eh

a–1b = h

a–1b  H

Conversely suppose that  a–1b  H

Required to prove  aH = bH

  a–1b   H    a–1bH = H

   a(a–1 bH) = aH

   (aa–1) bH = aH

   e b H = aH

   bH = aH

   aH = bH    a–1b  H

Q50. Let  H be a subgroup of G &  a, b   G

Then |aH| = |bH|

Ans :
Let  (G, .) be a group

&  Let H be a subgroup of G

Let |H| = n

Let a, b  G then the left cosets of H in G are aH & bH

aH = {ah / h  H}     |aH| = |H| = n

bH = {bh / h  H}     |bH| = |H| = n

 |aH| = |bH|

   a, b   G
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Q51. Let  H be a subgroup of G,  &  a, b   G

Then aH = Ha  if and only if H = aH a–1

Ans :
Let  (G, .) be a group

&  Let H be a subgroup of G

Let  a  G then the left and right cosets of G are aH & Ha

Consider aH = Ha    (aH) a–1

   (Ha)a–1 [   a–1  G]

   aHa–1 = H (aa–1)

   aHa–1 = He

   aHa–1 = H

 aH = Ha    H = aHa–1

Q52. Find all the left cosets of {1, 11} in U(30).

Sol :
Let  U(30) = {1, 7, 11, 13, 17, 19, 23, 29} be a group under multiplication modulo 30 of order

8.

i.e., |U(30)| = 8

Let  H = {1, 11} be a subgroup of U(30) of order 2

i.e., |H| = 2

The number of left cosets = 
|U(30)|

|H|  = 
8
2

 = 4

1H = 11H = H = {1, 11}

7H = 17H = {7, 17}

13H = 23H = {13, 23}

19H = 29H = {19, 29}

 The required left cosets are

1H, 7H, 13H, 19H.

Q53. Find the cosets of H = {1, 15} in G = U(32)

Sol :
Let G = U(32)

    = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31} is a group under multiplication

&     H = {1, 15} is a subgroup of U(32)

1   G   1.H = {1.1, 1.15} = {1, 15} = H
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3   G   3 H = {3, 13} = 13 H

5   G   5.H = {5, 11} = 11 H

7   G   7.H = {7, 9} = 9 H

17   G   17.H = {17, 31} = 31 H

19   G   19.H = {19, 29} = 29 H

21   G   21.H = {21, 27} = 27 H

23   G   23.H = {23, 25} = 25

2.9  LAGRANGE’S THEOREM AND CONSEQUENCES

Q54. The order of a subgroup of a finite group divides the order of the group

(or)

If  H is subgroup of a finite group G  then, H
G

Ans : (Jan.-21, May/June-19)

Given that H is subgroup of a finite group G

Case (i)

Let H = {e}

& |G| = n

 |H| = 1    H
G  = 

1
n

If  H = G     |H| = |G|

      = n

   H
G

Case (ii)

Let H   {e}  and  H   G

Suppose that H = {h1, h2, ... hm}

 |H| = m

also H has m distinct elements

i.e., hi   hj where i   j

Now, required to prove the right costs, so let us construct right cosets

Let e  G   H.e is the right coset

 He = H
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H e  has ‘m’ distinct elements

If hi a = hj a    for    i   j

hi = hj          for    i   j

which is a contradiction because

hi   hj    when    i   j

 If  H & H a are only two distinct right cosets  then

G = H   H a

|G| = |H| + |Ha|

     n = m + m

     n = 2m     m
n

    H
G

Q55. If  G is a finite and H is a subgroup of G

Then  |G : H| = 
G

H

Ans :
Let  G be a finite group

and H is a subgroup of G

and  H is also finite group.

By definition of index of subgroup of a finite group is G : H

Then    |G : H| =  No. of distinct cosets of H in G

=  
No. of elements in G
No. of elements in H

=  
|G|
|H|

    |G : H| =  
G

H

Q56. In a finite group, the order of each element of the group divides the order of the group.

Ans :
Let  G be a finite group

and the orders of G is n

i.e., |G| = n
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Let a  G

and the order of an element  a   e  G

|a| = m  then

|H| = <a> is a subgroup of G

and |H| = m

 |H| divides |G|

 |a| divides |G|

Q57. Prove that a group of prime order is cyclic.

Ans : (Jan.-21)

Given that G is a group of prime orders

 |G| = P

|G| = P   2

Case (i)

Let P = 2

 |G| = 2

 G = {e, a}    where    a   e

We required to prove that

G is cyclic

a  G,  a  G     a2  G

 a2 = e  (or)  a2 = a

If a2 = e

G = {e, a}

    = {a2, a}

    = {a, a2}

G = <a>

 G is a cyclic group

If a2 = a

a.a = a.e

a = e By left cancellation Law

Which is not possible because  a   e

Case (ii) :

Let |G| = P > 2

  a   e   G   |a| > 1
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Let  |a| = m   m > 1

By definition, am = e  where  ‘m’ is least positive integer,

Consider

H = {a, a2, a3 ... am = e}

H is a subgroup of G

By Lagrange’s theorem

H
G    m

p

 m = 1    or    m = p

 m = p

(m = 1 is not possible because we have m > 1)

 |H| = |G|

 G = H = <a>

G is cyclic

 Every group of prime order is cyclic

Q58. Let G be a finite group, and let  a  G. Then  a|G| = e.

Ans :
Let G be a finite group

We know that  
a

G ... (1)

Suppose that |a| = m

By definition  am = e  where  ‘m’ is the least positive integer

Substitute |a| = m in (1)

 m
|G|

|G| = K.m  where  k is the positive integer

Consider

LHS  a|H| =  amk

=  (am)k

=  ek

 a|G| =  ek

 a|G| =  e
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Q59. State and prove for every integer ‘a’ and every prime ‘p’,  ap mod p = a mod p

Ans :
Given that,  ‘a’ is integer and p is a prime number

To prove

Apply division algorithm to ‘a’ and ‘p’

  m and r which are integer

  a = pm + r  where  0   r < p

    a – r  =  pm

 p / a–r

By congruence, we have a = r (mod m)

Required to prove  rp = r (mod p) ... (1)

Case (i)

Let r = 0

Substitute  r = 0  in (1)

So, that to prove 0p   0 (mod p)

0   0 (mod p)

 p
0 0

i.e.,  p
0

Case (ii)

Let r = 1, 2, 3, ... p – 1

Also,  By definition

U(p) = Set of all positive integer less than p and relatively prime to p

U(p) = {1, 2, 3 ..... (p – 1)}

Also, we have U(p) is a group with respect to multiplication modulo p

r   U(p)  and  |U(p)| = p – 1

 a|G| = e

 r|U(p)| = e = 1

rp–1 = 1

rp–1 – 1 = 0

 p
0  we have p 1

p
r    – 1

By congruences definition

rp–1 = 1 (mod p)

rp = r (mod p)
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Q60. For two finite sub groups H and K of a group, define the set HK = {hk / h  H, k  K}

Then  |HK| = |H| |K|
|H K|

Ans :
Let  (G, .)  be a group

Let  H & K be two finite subgroup of G

The set HK = {hk / h   H, k   K} is also finite subgroup of G and   h k  = h' k'

Where h   h'  and  k = K'

The intersection of  H & K is  H   K

is also finite subgroup of G

The product of order of HK and order of H   K is the product of order of H and the order of K

i.e., |HK| . |H   K| = |H| . |K|

         |HK| = 
|H|.|K|
|H K |

Q61. A group of order 75 can have at most one subgroup of order 25

Sol :
Let  (G, .) is a finite group of order 75

i.e, |G| = 75

Let H & K be two subgroup of G

Then  |H   K| divides |H| = 25

and |H   K| divides |K| = 25

i.e., |H   K| = 1 or 5

 |HK| = 
|H||K |
|H K|  = 

25 . 25
1

 or (
(25) (25)

5

  = 625  (or)  125

Hence  |H   K| = 25

and      H = K

2.10  AN APPLICATION OF COSETS OF PERMUTATION GROUPS

Q62. Define stabilizer of a point.

Ans :
Let  G be a group of permutation of a set S, for each i in S, let StabG (i) = {   G / (i) = i}
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Q63. Define Orbit of a point.

Ans :
Let  G be a group of permutation of a set S. For each s in S, but

OrbG(S) = {   (S) /    G}  The set OrbG(S) is a subset of S called the Orbit of S

Under G, we use |OrbG(S)| to denote the number of elements in OrbG(S)

Q64. Let  G = {(1), (1 3 2) (4 6 5) (7 8), (1 2 3) (4 5 6), (1 2 3) (4 5 6) (7 8), (7 8)}

Then find stabilizer of 1, 2, 4 and 7 in G.

Sol :
Stab of (1) = StabG(1) = {(1), (7 8)}

Stab of (2) = StabG(2) = {(1), (7 8)}

Stab of (4) = StabG(4) = {(1), (7 8)}

Stab of (7) = StabG(7) = {(1), (1 3 2), (4 5 6), (1 2 3) (4 5 6)}

Q65. Let  G = {(1), (1 3 2), (4 5 6) (7 8), (1 2 3) (4 5 6), (1 2 3) (4 5 6) (7 8), (7 8)}

Then find orbit of  1, 2, 4 and 7 in G

Sol :
Orbit of 1 in G = OrbG(1) = {1, 3, 2}

Orbit of 2 in G = OrbG(2) = {2, 1, 3}

Orbit of 4 in G = OrbG(4) = {4, 6, 5}

Orbit of 7 in G = OrbG(7) = {7, 8}

Q66. Let  G be a finite group of permutation of a set. Then, for any i from S,

|G| = |OrbG(i)| |StabG(i)|

Ans :
Given that  ‘G’ is a finite group of permutation defined on S

Required to prove that

|G| = |StabG(i)|  |Orb(G)(i)|

Let H = StabG(i)

K  = OrbG(i)

 StabG(i) is a subgroup of G

H is a subgroup of G

To prove the result, it is enough to prove

|G| = |H| |K| ... (1)

By Lagrange’s theorem
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Number of left cosets = 
|G|
|H|

 |G| = |H| × No. of left cosets ... (2)

Definite a mapping

T : {H /   G}   {(i) /   G}

Defined as  T(H) = (i)

(i) T is well defined

if  H = H

Required to show that

T(H) = T(H)

Consider

H = H ,   G

 –1  H

 –1 (i) = i

  . –1 (i) = (i)

 (i) = (i)

 T(H) = T(H)

(ii) T is one - one :

If  T(H) = T(H)   H = H

Consider

T(H) = T(H)

(i) = (i)

 –1 (i) = –1 (i)

 I (i) = –1 (i)

 i = –1 (i)

 –1  StabG(i)

 –1   H

H = H

T is one - one

(iii) T is onto

Let j   K

  i   S   (i) = j

 T(H) = j

T is onto
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 The number of left cosets |K|

 |G| = |K| |H|

|G| = |StabG(i)|  |OrbG(i)|

2.11  THE ROTATION GROUP OF A CUBE AND A SOCCER BALL

Q67. Prove that the group rotation of a cube is isomorphic to S4.

Ans : (May/June-19)

Let  G be the group of rotions of a cube and Lable the six faces of the cube

1, 2, 3, 4, 5 and 6

Then  G be a group of permutation on the set

S = {1, 2, 3, 4, 5, 6}

Required to prove. G is isomorphic to a subgroup of S4.

 Cube has four diagonals and labelling the consecutive diagonals 1, 2, 3, 4

 The rotation 90o that yields the permutation  a = (1 2 3 4)

 The another 90o rotation about the axis perpendicular to first axis yields the permutaiton
on  = (1 4 2 3)

The group of permutation included by rotation contains the eight element subgroup

{, , 2, 3, 2, 2, 22, 23} of G and the order of  is 3.

i.e., ()3 = 

The order of the rotation group must be divisible by both 8 and 3

 The rotation yields all 24 permutation

i.e., |G| = 24  |S4|

Hence  G   S4
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Short Question and Answers

1. The set of Automorphism of a group and the set of inner Automorphism of  group are
both group under the operation of function  composition.

Ans :
Let a : G   G is an isomorphism.

Let a  G & the set of all inner Automorphism of G induced by a

Inn (G) = {a / a (x) = axa-1   x  G}

Closure Property

Let  a,b   Inn (G)   a (x) = axa–1

         a (x) = bxb–1   x  G

Consider

(b  a) (x) = b [a(x)]

=b [axa–1]

= b [axa–1] b–1

= (b a) x (a–1 b–1)

= (b a) x (b a)–1

 (bxb–1) (axa–1) = (ba)x (ba)–1  Inn (G)

Associative Property

Let a,b ,c   Inn (G)

c(x) = cxc–1,   x  G

Consider

[(a  b)  c] (x) = (a  b) c(x)]

= a[b( c(x))]

=  a[b(cxc–1)]

= a[b(cxc–1)b–1]

= a[b(cxc–1)b–1]a–1

= [(ab) c] x [c–1(a–1b–1)]

= [(ab) c] x [c–1(ab)–1]

= [(ab) c] x [(a b) c]–1

= [(a (bc] x [a (bc)]–1

=  [a  b  c)] (x)

 Inn (G) is satisfies the Associative.
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Identity Property

 e  G     2  Inn(G)

2(x) = e x e–1

= e x e

= x

(e o a) (x)  = e [a(x)]

  = e (ax a–1)

  = e(ax a–1) e–1

  = (e a) x (a–1 e–1)

  = (e a) x (ea)–1

  = ax a–1

(e o a) (x)  = a (x)

By  (a o e) (x)  = a (x)

 e = I is an identity element of Inn(G)

Inverse Property

Consider  (a o  1a ) (x)  = a [a–1(x)]

   = a [a
–1 xa–1]–1

   = (a–1 xa–1)–1

   = (aa–1) x (aa–1)–1

   = ex a–1

   = e (x)

Similarly

( 1a  o a) (x) = e (x)

 Inn(G) is satifies the inverse property

 Inn(G) is group under the operation of composition of function.

2. Let   be an isomorphism from G to G . If K is a subgroup of G. Then (k) = (k) / k 
K} is a subgroup of G

Ans :

Let G and G  be the two groups.

and  G  G   is isomorphism.

Let K be a subgroup of G.
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Then  (K) = {(k) / k  K} is subset of G

i.e., e = 1  G

(e) = e  = 1  (k)

(k)    and (k)  G

 (k1),(k2)  (k)     k1, k2  k.

 k1 – k2  k and k1. k2  k

 k1 – k2)  k) and k1 . k2)  (k)

Consider

k1) –k2) k1 – k2)  k)

& k1) .k2)  k1 k2)  k)

 (k) is a subgroup of G .

3. The order of a subgroup of a finite group divides the order of the group

(or)

If  H is subgroup of a finite group G  then, H
G

Ans :
Given that H is subgroup of a finite group G

Case (i)

Let H = {e}

& |G| = n

 |H| = 1    H
G  = 

1
n

If  H = G     |H| = |G|

      = n

   H
G

Case (ii)

Let H   {e}  and  H   G

Suppose that H = {h1, h2, ... hm}

 |H| = m

also H has m distinct elements

i.e., hi   hj where i   j
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Now, required to prove the right costs, so let us construct right cosets

Let e  G   H.e is the right coset

 He = H

H e  has ‘m’ distinct elements

If hi a = hj a    for    i   j

hi = hj          for    i   j

which is a controdiction because

hi   hj    when    i   j

 If  H & H a are only two distinct right cosets  then

G = H   H a

|G| = |H| + |Ha|

     n = m + m

     n = 2m     m
n

    H
G

4. Define Permutation group.

Ans :
Let S = a1, a2, ... an be finite set then a permutation is a mapping f : S   S which is both one – one

and onto  (or)

If S = {a1, a2, ... an} then a one-one mapping from S onto itself is called a permutation of degree n.

The number n of elements in S is called the degree of permutation.

5. Write notation for cycle.

Ans :
Let         S= {a1 , a2, ... an}

= {a1 , a2, ... ak,  ak+1, ak+2 ... an}

Consider a permutation which is of the form

      f = 
1 2 3 4 k k 1 n

2 3 4 1 k 1 n

a a a a a a a
a a a a a a





 
 
 

 
 

is called as cyclic permutation whose length is K and degree ‘n’

where

 f(a1) = a2 ,  f(a2) = a3 ..... f(ak) =a1

       f(ak+1)= ak+1 ..... f(an) = an

The above cyclic permutation is expressed as f = (a1, a2, ... ak).
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6. Define Isomorphism.

Ans :

A mapping   G   G   is said to be an isomorphism

If  is homomorphism,  one - one & onto

Here the group   G & G  are said to be isomarphism to each other and  donoted as G   G
isomasphism to each other 4 donoted as  G   G

i.e., a b = (a)  (b)   a, b in G.

l a

l b

l

ab

l f(a)

l f(a)

l f(a) f(a)

G f G

‘G’ Operation ‘G ’ operation Operation Preservation

  (a . b) = (a) . (b)

 + (a . b) = (a)  + (b)

+  (a + b) = (a) (b)

+ + (a + b) = (a) + (b)

7. Compute Aut (Z10).

Sol :

Let Z10 = {0, 1, 2, 3, ... 9} be a group

Under addition modulo 10.

By definition of Automorphism of G

Aut (G) = { /  : Z10   Z10 is isomorphism}

Consider

(K) = (1 + 1 + ... + 1 (K times)

= (1) + (1) + ... + (1)

= K . (1)

|(1)| = 10  and  (1) = 1,  (1) = 3,  (1) = 7,  (1) = 9

Aut (Z10) = {1, 3, 7, 9} is group under multiplication with identity 1
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By Cayley’s table

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

   
    
    
    
    

8. Let  H = {0, 3, 6} is Z9 under addition. Then  find the left cosets of H is Z9.

Sol :
Let  Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}

is group under addition modulo 9

and  H = {0, 3, 6} is a subgroup of Z9

0  Z9     0 + H  =  {0, 3, 6}  =  3 + H  =  6 + H

1  Z9     1 + H  =  {1, 4, 7}  =  4 + H  =  7 + H

2  Z9     2 + H  =  {2, 5, 8}  =  5 + H  =  8 + H

9. A group of order 75 can have at most one subgroup of order 25.

Sol :
Let  (G, .) is a finite group of order 75

i.e, |G| = 75

Let H & K be two subgroup of G

Then  |H   K| divides |H| = 25

and |H   K| divides |K| = 25

i.e., |H   K| = 1 or 5

 |HK| = 
|H||K |
|H K|  = 

25 . 25
1

 or (
(25) (25)

5

  = 625  (or)  125

Hence  |H   K| = 25

and      H = K

10. List the applications of factor groups.

Sol :

Let G be a finte group and H be the subgroup of G and H  {e}. The factor group is denoted by

G
H

.
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(i) The structure of group G and factor group 
G
H

 is same. Hence, a less complicated approximation of

G can be obtained from the approximation of 
G
H

because
G
H

 is smaller than G.

ii) The properties of a group G can be obtained by examing the properties of factor group 
G
H

.

iii) The position of element in a factor group gives the costs of group.

iv) The order of  subgroup can be obtained by means of factor group.

11. If H and K are subgroups of a group G with |H| = 24, |K| = 20 then show that HK is
an abelian group.

Sol :

Given,

H and K are subgroups of a group G

|H| = 24

|K| = 20

Then, HK  , as identity element ‘e’ is comon to H and K.

According to Lagrange’s theorem, the order of a subgroup of a finite group divides the order of the
group.

 |HK| divides both |H| = 24 and |K| = 20

Since, |H| = 24 and |K| = 20 are relatively prime,

 |HK| = 1

i.e., the order of HK = 1

Hence, HK is as abelian group.

12. Find all idempotent elements in the ring (Z10, + 10, × 10)

Sol :

Given,

(Z10, + 10, ×10) is a ring.

Here, Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

a2 = a

Then

02 = 0 × 10 0 = 0

12 = 1 × 10 1 = 1
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22 = 2 × 10 2 = 4

32 = 3 × 10 3 = 9

42 = 4 × 10 4 = 6

52 = 5 × 10 5 = 5

62 = 6 × 10 6 = 6

72 = 7 × 10 7 = 9

82 = 8 × 10 8 = 4

92 = 9 × 10 9 = 1

 02 = 0, 12 = 1, 52 = 5, 62 = 6 are the idempotent elements.



UNIT - II ALGEBRA

83
Rahul Publications

Choose the Correct Answers

1. f(ab) = [ c ]

(a) f(ba) (b) f(b) f(a)

(c) f(a) f(b) (d) 0

2. Ker f = {x   G / f(x) = [ d ]

(a) e (b) 0

(c) 1 (d) e'

3. hH = [ a ]

(a) H (b) G

(c) S (d) None of the above

4. aH   bH = [ c ]

(a) 0 (b) 1

(c)  (d) H

5. The order of any subgroup of finite group divides order [ b ]

(a) element (b) group

(c) subgroup (d) none

6. A group of prime order is [ c ]

(a) commutative (b) normal

(c) cyclic (d) subgroup

7. |H| |K| / (H   K) [ b ]

(a) |KH| (b) |HK|

(c) |H| (d) |K|

8. If a is self conjugate element of group G is ,   x   G [ b ]

(a) a = xax (b) a = x–1ax

(c) a = xax–1 (d) a = xx–1a

9. If a is said to be a normalizer if N(a) = [ a ]

(a) xa = ax (b) x–1a = x

(c) x–1a = a (d) xa = x–1a

10. Intersection of two normal subgroups of G is [ b ]

(a) commutative (b) normal

(c) cyclic (d) zero
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Fill in the Blanks

1. Let  be a group homomorphism from G to G . Then ker is a .

2. If  is a homomorphism from a finite group G to G , then |(G)| is .

3. If H is cyclic, then (H) is .

4. If H is abelian, then (H) is .

5. (gn) =    n in Z.

6. (a) = (b) if and only if .

7. If K  is a subgroup of G , then '( K ) = .

8. If G is a group of order p2, where p is a prime, then G is .

9. For any group G,     G / Z(G) is .

10. Let G be a group and let Z(G) be the center of G. If G / Z(G) is cyclic then G is .

11. A subgroup H of G is normal in G if and only if .

12. If G is a finite group and H is a subgroup of G, then .

13. A group of prime order is .

14. For every integer ‘a’ and every prime p, ap modp = .

15. Let G be a finite group, and let a   G, then .

ANSWERS

1. Normal subgroup of G

2. Divides |G| and | G |

3. Also cyclic

4. Also abelian

5. ((g))n

6. aker = bker

7. {K   G / (K)   K }  is a subgroup of G

8. Abelian
9. Isomorphic to Inn(G)
10. Abelian

11. x H x–1   H,   x   (G)

12. |G : H| = |G| / |H|
13. Cyclic
14. a modp
15. a|G| = e
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UNIT
III

3.1  NORMAL SUBGROUPS AND FACTOR GROUPS

3.1.1 Definition

Q1. Define Normal subgroup with example.

Sol :

A subgroup ‘N’ of a group ‘G’ is said to be a normal subgroup of ‘G’   g  G,   n  N

 g n g–1  N

Eg.

Let G = {1, –1, i, –i}

 G is group w.r.to multiplication

Sol :

We have N = {1, –1} is a subgroup of G

Let g = 1,  n = –1     g n g–1 = 1 x (–1) (1) = –1  N

Let g = –1,  n = –1   g n g–1 = (–1) x (–1) x (–1) = –1  N

g = i,  n = –1   g n g–1 = (i) x (–1) (–i) = –1  N

g = –i, n = –1   g n g–1 = (–i) x (–1) x (i) = –1  N

 N is a normal subgroup of ‘G’.

Note :

If ‘N’ is a normal subgroup of ‘G’ then we write it as N   G

Q2. Prove that every subgroups of an abelian group is always normal.

Ans :
Let ‘G’ be an abelian group

Suppose that ‘N’ is a subgroup of ‘G’

To proe that ‘N’ is a normal subgroup of G

We shall show that    g  N,   n  N   g n g–1  N

Normal Subgroups and Factor Groups: Normal Subgroups - Factor
Groups - Applications of Factor Groups - Group Homomorphisms - Definition
and Examples - Properties of Homomorphisms - The First Isomorphism
Theorem.
Introduction to Rings: Motivation and Definition - Examples of Rings -
Properties of Rings - Subrings.
Integral Domains: Definition and Examples -Fields - Characteristics of a
Ring.
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Consider

g n g–1  = (gn) g–1

= (ng) g–1 [gn = ng as G is abelian]

= n(gg–1) Associative property

= ne gg–1 = e = g–1g

g n g–1 = n

g n g–1  N'

 N is a normal subgroup of G

Q3. Prove that intersection of any two normal subgroup of ‘G’ is again a normal subgroup
of ‘G’.

Ans :
Let ‘G’ be a group

and suppose that  H & K are two normal subgrop of ‘G’.

 H and K are subgroups of G

 H   K is also subgrop of G

[intersection of two subgroups of group is again a subgroup]

Required to prove  H   K is a normal subgroup of G

We shall show that

1 g G,  x H K  g x g   H K       

 x  H   K     x  H  &  x  K

 H is a normal subgroup of G

We have by definition

  g  G,    x  H    g x g–1 ... (1)

Similarly

 K is normal subgroups of G

By definition    g  G,    x  H   g x g–1  K ... (2)

(1) and (2)   g x g–1  H   K

 H   K is a normal subgroup of ‘G’’

Q4. Write a condition for normal subgroup.

Sol :
Second definition of normal subgroup of : A subgroup ‘N’ of a group ‘G’ is said to be a normal

subgroup ‘G’ if    g  G   g n g–1   N
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Q5. Prove that a subgroup N of a group G is a normal subgroup of G iff g N g–1 = N   g  G.

Ans : (May/June-19)

Given that  N is a subgroup of of ‘G’

To prove that N is normal suubgroup of G

 g N g–1 = N   g  G

Ist Part :

Suppose that g N g–1 = N   g  G

 g N g–1   N    g  G

 N is a normal subgroup of G  (by definition )

Conversely suppose that

N is a normal subgroup of G

To prove that g N g–1 = N   g  G

N is a normal subgroup of G

 By definition g N g–1   N     g  G ,,, (1)

g  G     g–1  G

 Writing the condition (1) for ‘g–1’

 g–1 N (g–1)–1   N

 g–1 N g   N [ (g–1)–1 = g]

 g (g–1 N g) g–1   g N g–1

 (gg–1) N (gg–1)   g N g–1

 e N e   g N g–1

 N e   g N g–1 [eN = N]

 N   g N g–1 [Ne = N] ... (2)

equations (1) & (2)

g N g–1 = N     g  G

Q6. Prove that a subgroup ‘N’ of a group ‘G’ is a normal subgroup of G iff product of two right
(left) cosets of N in G is again a right (left) coset of ‘N’ in ‘G’.

Ans :
Note : If ‘H’ is a subgroup of a group G w.r. to multiplication

Then   H H = H

Similarly if H is a subgroup of G under addition then H + H = H

Given that ‘N’ is a subgroup of G

To prove that N is a normal subgroup of G 

Consider product of two right cosets of N is again a right cosets of N.
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Ist Part :

Suppose that ‘N’ is a normal subgroup of G.

By definition aN = Na   a  G ... (1)

for  a, b  G

Na and Nb are the two right cosets.

Now consider the product of two right cosets = Na . Nb

  N (aN) b

  N (Na) b  by (1)

  N N a b

   Na . Nb   N a b (N N= N)

Which is again a right coset because a, b  G

Conversely suppose that

Product of two right cosets is again a right coset.

To Prove that ‘N’ is a normal subgroup of G we shall verify that ‘N’ is a normal subgroup

By 1st definition i.e.,

To prove that  g  G, n  N     g n g-1  N

Consider   g n g-1

 e . g n g-1 [eg = g]

 N g N g-1

= N g g-1 [N a . N b = N ab product of 2 left cosets is again a right coset]

= Ne

= N

 g n g-1N

 N is a normal subgroup of ‘G’.

3.2  FACTOR GROUP (OR) QUOTIENT GROUP

Q7. Define factor group.

Ans :
Let ‘G’ be a group and ‘N’ be a normal subgroup of ‘G’. Then the factor group or the Quotient

group denoted by

G
N

 = {Nx / x   G}

i.e., the set of all right cosets of N in G forms a group know as factor group

or   Quotient group w,r, to the binany operation multiplication of two right cosets.
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Q8. If G is a group and N is a normal subgroup of G. Then prove that 
G
N

 = {Nx / x  G} forms

a group w.r.to coset multiplication as the binary operation

Ans : (Imp.)

Given that

‘N’ is a normal subgroup of G

G
N

 = {Nx / x  G}

Let Nx, Ny & Nz  
G
N

,  where  x, y, z  G

1. Closure Property

  Nx, Ny  
G
N

   Nx Ny  
G
N

Because  x, y  G   xy  G

2. Associative Property

  Nx, Ny, Nz  
G
N

Consider (Nx Ny) Nz   = (Nxy)  Nz Nx (Ny Nz) = Nx (Nyz)

   = Nxyz     ... (1)     = Nxyz     ... (2)

3. Identity Property

  Nx  
G
N

   Ne  
G
N

[e  G]

  Nx Ne  =  Ne Nx = Nx

    Nx Ne  =  Nxe = Nx

Ne = N acts as the identity element of 
G
N

4. Inverse Property

  Nx  
G
N

   N x–1  
G
N

  Nx . Nx–1  =  Nx x–1 = Ne [ x  G   x–1]

Similarly

Nx–1 Nx = Nx–1 x = Ne


G
N

 forms a group
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Q9. Prove that if G is a abelian group and N is a normal subgroup of G then 
G
N

 is also an

abelian group.

Ans :
Given that

G is an abelian group and

N is a normal subgroup of G


G
N

 = {Nx / x   G} forms a group known as Quotient group (or) factory group w.r.to cosets

multiplication as a binary operation.

Commutative Property    Nx, Ny  
G
N

Consider

Nx Ny

  = Nxy

  = Nyx [xy = y, as G is abelian]

Nx Ny = Ny Nx

Q10. Prove that if G is a cyclic group then 
G
N

 is also a cyclic group.

Ans :
Given that G is a cyclic group

Let N be a subgroup of G

 G is a cyclic group   G is abelian

 N is a normal subgroup of G

[  every subgroup of an abelian group is normal]


G
N

 = {Nx / x   G}

 G is a cyclic group

  x  G   x = an  where  n  z  and

a is a generator of G

i.e., G = <a>

Let Nx  
G
N

(where  x  G)
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 Nx = Nan [ x = an]

      = Na Na ... Na [Nab = Na Nb]

Nx = (Na)n

G
N

 is also a cyclic group.

Q11. Let  H be a normal subgroup of G and K be any subgroup of G then prove that

HK = {hk / h  K,  k  K} is also subgroup of G

Ans :
Given that

H is a normal subgroup of G

K is a subgroup of G

HK = {hk / h  K,  k  K}

HK   

 e  HK

and e = e . e  where  e  H,  e  K

Now, we shall show that HK is a subgroup of G by applying “one stop subgroup test”.

Let h1, K1, h2, K2  HK  where  h1 h2  H, K1, K2  H

Consider

(h1 K1)  (h2 K2)
–1

  = h1 K1  K2
–1 h2

2 [Socks - Shoes property]

  = h1 (K1 K2
–1) h2

–1

  = h1 h2
–1 (K1 K2

–1)  HK

  HK is subgroup of G   Ha = aH i.e., h1a = ah1

3.3  GROUP HOMOMORPHISM - DEFINITION, EXAMPLES

3.3.1 Applications of Factor Groups

Q12. List the applications of factor groups.

Ans :
Let ‘G’ be a finite group and ‘H’ be the subgroup of G and H   {e}. The factor group is denoted

by 
G
H

.

(i) The structure of group G and factor group 
G
H

 is same. Hence, a less complicated approximation

of G can be obtained from the approximation of 
G
H

 because 
G
H

 is smaller than G.



B.Sc. II YEAR  IV SEMESTER

92
Rahul Publications

(ii) The properties of a group G can be obtained by examining the properties of factor group 
G
H

.

(iii) The position of element in a factor group gives the cosets of group.

(iv) The order of a subgroup can be obtained by means of factor group.

Q13. Define Homomorphism.

Sol :

A Homomorphism  from a group G to a group G  is mapping from G into G  that preserves the
group operation.

i.e., (ab) = (a) (b)   a, b in G

3.4  PROPERTIES OF HOMOMORPHISM

Q14. Let  : G   G  be a homomorphism then prove that

(i) (e) = e   where  e & e  are the identity element of G and e

(ii) (a–1) = [(a)]–1   a  G,  (gn) = ((g))n

(iii) If |g| is finite then |(g)| divides |g|

Ans :
1. Given that

Let  : G   G  be a homomorphism

To prove that  (e) = e

Let a  G

(a)  G

Consider

e  . (a) = (a) (  ea = a)

     = (e . a)

     = (e) (a)

e  . (a) = (e)  (e)

e  =(e) (By Right cancellation law)

2. To prove that (a–1) = [(a)]–1   a  G

from (i) we have  e = (e)

= (aa–1)

= (a) (a–1)

= e
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Using the definition of inverse

We get [(a)]–1 = (a–1)

3. To prove that  (gn) = [(g)]n

We shall apply the principle of mathematical induction on n.

The result is obvious for n = 1

Put n = 2   LHS = (g2) = (g . g)

= (g) (g)

= [(g)]2

 The result is true for n = 2

Let the given result be true for n = k

 We have  (gk) = [(g)]K ... (1)

To prove that  (gK+1) = [(g)]K+1

LHS = (gK+1) = (gK . g)

       = (gK) (g)

       = [(g)]K  (g)

       = [(g)]K+1

By the principle of mathematical induction

We have  (gn) = [(g)]n

4. Given that |g| is finite

Let |g| = n [finite number]

By definition gn = e,  where  n is the least the integral

Consider

[(g)]n = (gn) From equation ... (2)

  = (e) gn = e

[(g)]n = e (e) = e

By the definition of order of an element

We have | (g)| n

 | (g)| (g)   |g|

Hence Proved the Properties of Homomorphism

Q15. Define Kernel of Homomorphism

Sol :

Let f : G   G  be a homomorphism then the Kernel of f denoted by Kerf (or) Kf (or) K is defined
as Kerf = {x  G / (x) = e }
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Note :

1. i.e.,  In other words  x  Kerf   (x) = e

2. Kerf is non empty because  e  Kerf as (x) = e

Q16. If  f : G   G  is a homomorphism with Kernel K then prove that K is a normal subgroup
of G.

Ans :
Given that

f : G   G  is a homomorphism

Kerf = K = {x  G / f(x) = e }

To prove that K is a normal subgroup of G

1. K is non empty  (or)  K   

K   

 e  K [ f(fe) = e ]

2. To show that K is subgroup of G [Applying 2 step subgroup test]

(i) Closure Property

Let x, y  K  to show that xy  K

x K f(x) e
y K f(y) e
   

   
... (1)

Consider

f(xy) = f(x)  f(y)  f is homomorphism

= e  . e

f(xy) = e

xy  K

 Closure propery holds good.

(ii) Inverse Property

To show that x–1   K   x   K

Consider

f(x–1)

= [f(x)]–1 Properties of homomorphism

= ( e )–1 From (1)

= e Inverse of an identity element is itself

 Inverse property holds good.
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(iii) We shall show that

  g  G,    x  K    g x g–1  K

Now, consider

f (g x g–1)

= f(g) f(x) f(g–1)  f is homomorphism

= f(g) e  f(g–1) From (1)

= f(g) . f(g–1)   f is homomorphism  gg–1 = g–1g = e

= f(g . g–1)

= f(e)

   f(g x g–1) = e (  property of homomorphism)

g x g–1  K

K is normal subgroup of G

Q17. Let  f : G   G  be an onto homomorphism then prove that f is an isomorphism iff K = {e}

Ans : (Imp.)

Given that f : G   G  is homomorphism and onto

To prove that f is an isomorphism   Kerf = K = {e}

Ist Part

Suppose that f is an isomorphism

To proe that K = {e}

Let x  K

 f(x) = e [ e  is identity of G ]

 f(x) = f(e) [ f(e) = e ]

 x = e f is isomorphism   f is one - one

 K = {e}

Conversely suppose

K = {e}

To prove that f is an isomorphism

It is enough to prove that f is one one

 Given that f is homomorphism and onto

f is one - one

Let x, y   G

  f(x) = f(y)
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Multiply both sides  f(y–1) to the right side

f(x) f(y–1) = f(y) f(y–1)

f(xy–1) = f(yy–1) f is homomorphism

 f(xy–1) = f(e) yy–1 = y–1 y = e

 f(xy–1) = e   property of homomorphism

 xy–1  K [ K = {e}]

 xy–1 = e

Multiply ‘y’ to the right side

xy–1y = ey

xe = ey

x = y

f is one - one

Hence f is isomorphism.

Q18. Let  f : G   
G
N

  be defined as f(x) = Nx   x  G

Where  N is a normal subgroup of G then prove that

(i)  f is a homomorphism and also   (ii) Kerf = N

Ans :
Given that

f : G   
G
N

 defined as f(x) = Nx

(i) f is homomorphism

To show that f(xy) = f(x) f(y)

Consider   f(xy)

         = Nxy    Coset multiply  Na . Nb = Nab

        = Nx Ny

f(xy) = f(x) f(y)

(ii) Kerf = N

Let Kerf = K = {x  G / f(x) = N}

To prove that  K = N  which is to prove (i) K   N (ii) N   K

(a) To show that  K   N

Let  x   K
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 f(x) = N

 Nx = N f(x) = Nx

 x  N Ha = H = aH   a  H

(b) To show that K   N

Let  x  N

 Nx  N

 f(x) = N a  H   aH = H = Ha

 x  K f(x) = Nx

 N   K By definition of K

 K = N is Kerf = N

Q19. Define Automorphism Homomorphism Image and Isomorphic Image.

Sol :
(i) Automorphism

A mapping f : G   G  is said to be an automorphism if ‘f’ is an isomorphism i.e., in other words ‘f’f’
is homomorphism, 1 – 1, & onto

(ii) Homomorphic Image

If  f : G   G  is homomorphism & onto

Then  G  is called as homomorphic image of G

(iii) Isomorphic Image

If  f : G   G  is isomorphism. Then we say that G and G  are isomorphic to each other and

denotes as G   G  and G  is called is isomorphic image of G.

3.4.1 The First Isomorphism Theorem

Q20. Fundamental theorem of homomorpic in group.

(OR)

Prove that every homomorphic image of a group is isomorphic to some Quotient group
of G.

Ans : (Imp.)

Let  G  be the homomorphic image of G

By definition we have  f : G   G  such that ‘f’ is homomorphism and ‘f’ is onto

Let  ‘K’ be the Kernel of f

 K is normal subgroup of G

Where  K = {x  G / f(x) = e }
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
G
K

 = {Kx / x  G} is a Quotient group or factor group.

Now, define a mapping   : 
G
K

   G  as (Kx) = f(x)    x  G

(i)  is well defined :

Let  Kx, Ky  
G
K

   Kx = Ky

To prove that  (Kx) = (Ky)

Consider

Kx = Ky

 xy–1  K

 f(xy–1) = e

 f(x) f(y–1) = e

 f(x) f(y–1) f(y) = e  f(y)

 f(x) f(y–1y) = f(y)

 f(x) f(e) = f(y)

 f(xe) = f(y)

 f(x) = f(y)

  is well defined

(ii)  is homomorphism :

To show that  (Kx. Ky) = (Kx) (Ky)

LHS = (Kx . Ky) = (Kxy)     ( By coset multiply)    ( Ha Hb = Ha)

  = f(xy)     ( By definition ( f is homomorphism by definition 

  = f(x) f(y)

     (Kx Ky) = (Kx) (Ky)

(iii)  is one - one

Let Kx, Ky  
G
K

   (Kx) = (Ky)

 f(x) = f(y)

 f(x) . f(y–1) = f(y) . f(y–1)

 f(xy–1) = f(yy–1) ( Multiply f(y–1))

 f(xy–1) = f(e)

 f(xy–1) = e ( f(e) = e)
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 xy–1  K

 Kx = Ky ( Ha = Hb   ab–1  H)

  is 1 – 1

(iv)  is onto

Since  f : G   G  is onto

We have    y  G    x  G   y = f(x)

 y = (Kx) [ f(x) = (Kx)]

 is onto

Q21. Let   be a homomorphism from a group G to a group G .

Let  H be a subgroup of G then prove that the following

(i) (H) = {(h) / h  H} is subgroup of G

(ii) If  H is cyclic then (H) is cyclic

(iii) If ‘H’ is abelian. Then (H) is abelian

(iv) If ‘H’ is normal in G. Then (H) is also normal

Ans :
1. Given that H is subgroup of G

(H) = {(h) / h   H}

To prove that (H) is subgroup of G

(i) (H)   

 e   (H)

or e  = (e)  where  e   H

(ii) Now we shall apply “2 step subgroup test”

(a) Closure Property

Let (h1), f(h2)  (H),  where  h1, h2  H

To show that  (h1), (h2)  (H)

Consider

(h1) (h2)

 (h1 h2) (  is homomorphism)

    (H) (  h1 h2   H as H is subgroup)

(b) Existence of Inverse

To show that    (h1)   (H)   [(h1)]
–1   (H)
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Consider

 [(h1)]
–1 (  Property of homomorphism)

 (h1
–1) (   h1

–1  H,  h1  H)

  (H)

 (H) is subgroup of G

2. If H is cyclic then  (H) is cyclic

Given that  H is cyclic

By definition H = <a>  where  a is generator of H

Let a1, a2 .....  H

 (a), (a2) ..... (H)

 (a) . [(a)]2, .....  (H) (gn) = [(y)]n

 (H) = <(a)>

 (H) is cyclic group

3. If  H is abelian then (H) is abelian

Given that

H is abelian to show that (H) is abelian

H is abelian   h1 h2 = h2 h1   h1 h2  H

To prove that  (H) is abelian we shall show that (h1) (h2) = (h2) (h1)

Consider

(h1 h2) = (h1) (h2) ( is homomorphism)   ... (1)

Also

(h2 h1) = (h2) (h1)

    = (h2) (h1) ... (2)

By (1) and (2)

(h1) (h2) = (h2) (h1)

4. If ‘H’ is normal then (H) is normal

Given that  H is normal in G

 By definition   g   H,    h   H   g h g–1   H

To prove that

(H) is normal in G

We shall that

  (g)  G ,    (h)  (H)

 (g) (h) (g–1)   (H)
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Consider

(g) (h) (g)–1

(g) (h) (g–1)

= (g h g–1)

   (H)    g h g–1  H

3.5  INTRODUCTION TO RINGS - MOTIVATION AND DEFINITION

Q22. Define Ring, Commutative Ring & Ring with Unity.

Ans :
A ring R is set with two binary operations, addition (denoted by a + b) and multiplication (denoted

by ab). Such that for all a, b, c in R.

1. a + b = b + a

2. (a + b) + c = a +( b + c)

3.  o  R   a + o = a   a  R

4.   – a  R   a + (–a) = o

5. a (b c) = (ab) c

6. a (b + c) = ab +ac and (b + c) a = ba + ca.

In a Ring (R, +, .) if a . b = b . a

for  a, b  R Then we say that R is commutative ring.

A ring (R, +, .) is said to be a ring with Unity if R has Unit element

i.e.,   a  R   1  R   a . 1 = 1.a = a

3.5.1 Examples of Rings

Q23. State the examples of Rings.

Ans :
Example 1:

The set Z of integers Under ordinary addition and multiplication is a commutative ring with Unity 1.
The Unity of Z are 1 and –1

Example 2:

The set M2 (Z) of 2 × 2 matrices with integer entries is a non commutative ring with Unity
1 0
0 1
 
 
 

Example 3:

The set 2 Z of even integers under ordinary addition and multiplication is a commutative ring with
out Unity.
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Example 4:

The set Z [x] of all polynomials in the variable x with integer coefficients under Ordinary addition
and multiplication is a commutative ring with Unity f(x) = 1

3.5.2 Properties of Rings

Q24. Let a, b & c belong to a ring R.

Then  a.o = o.a =o

Ans :
Ginen that a, b, c  R

Consider a . o = a .(o + o)

= a . o + o . a  (by identity)

a . o = o

 a .(o + o)  = a.o +a.o [a . o  R  a . o  R]

a.o + o = o + a.o =a.o

 By Applying the left canellection law in (R, +)

We get a.o = o

Similarly o.a = o.

Q25. Let a, b, c,  R Then a(–b) = (–a)b =–(ab)

Ans :
Given that  a, b, c  R

Required to prove  a(–b)  = –(ab)

Consider

a(–b) + ab = a[–b + b]

a(–b) + (ab) =a(o)

= o

a(–b) + ab =o

  a(–b) = –(ab)

Similarly (–a)b = –(ab)

Q26. Let a, b, c  R Then (–1)(–a) = –a

Ans :
Ginen that a, b, c  R.
Required to prove (–1)(–a) = –a
Consider
(–1) a + a = (–1) a + 1 . a

= [–1+1]a
= o . a
= o

(–1)a+a = o   (–1) a = –a



UNIT - III ALGEBRA

103
Rahul Publications

Q27. Let a, b, & c  R  Then

(–a)(–b) = ab  a , b  R

Ans :
Given that a, b, C  R

Consider

L H S   (–a)(–b)

   –[(–a)b]

   – [–(ab)]   [a(–b) = –(ab)]

  ab

(–a)(–b) = ab

Q28. Let a, b & c  R Then a (b – c) = ab – ac & (b – c) a = ba – ca

Ans :
Given that a, b ,C  R

Required to prove a(b – c) = ab – ac

Consider

a(b – c)  = a [b + (–c)]

= ab + a (–c)

a(b – c) = ab – ac   a(–b) = –ab

Similarly we can also prove (b – c) a = ba – ca

3.6  SUBRINGS

Q29. What is subring?

Ans :
A subset S of ring R. is a subring of R if S is itself a ring with the operation of R.

Q30. A nonempty subset S of a ring R. is a subring if  S is closed subtraction and multiplication

i.e., (i) a – b   S

(ii) ab   S   when  a, b S

Ans : (Imp.)

Suppose S be a subring of R.

Required to prove

(i) a – b  S

(ii) a b   S When a, b   S
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(i) Let a, b  S

b  S   –b   S   S is subring

a  S, –b  S  a + (–b)  S

a – b  S

(ii) a, b  S  a, b  S  S is subring

(S, .) is semi group

Conversely suppose that  a – b  S & ab  S

Required to prove S is a subring of R.

(i) (S, +) is an Abelian group

(a) Associative property

    a, b, c  S

(a+b)+c=a+ (b+c)  S C R

(b) Existence of Identity :

a  S, – a  S  a – a   S

  o  S  (i)

(c) Existence of Inverse :

o  S,

o  S, a  S  o –  a  S

 o +(–a)  S

  –a  S

(d) Closure Property :

 a, b  S   a+ b  S

b  S  – b  S

a  S,  – b  S  a – (– b)  S

 a + b  S

(e) Commutative Property :

 a, b  S   a+ b = b + a   S C R

 (S, +) is a abelian group.

(ii) (S, .) is a semi group

(a) Closure property  :

  a, b  S   a . b,  S

(b) Associatine property

 a, b c S

 (a . b).c = a (b . c)
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(c) Distributive property

L D L  : a (b + c)  = ab + ac

 a, b c S

R D L  : (b + c) . a   = b . a + c . a

 a, b  c S

Q31. Show that the set of matrices 
a b
o c
 
 
 

 is a subring of the ring of 2 × 2 matrices whose

elements are integers and S =
a b

o,ab,c Z
o c

     
   

Sol :
Then S   and S C R 

Let A, B  S so that A = 
1 1

1

a b
o c

 
 
 

 B = 
2 2

2

a b
o c

 
 
 

 where

o, a1, b1, c1, a2, b2, c2, Z

 A – B = 
1 2 1 2

1 2

a a b b
o c c

  
  

 and    AB = 
1 2 1 2 1 2

1 2

a a a b b c
o c c

 
 
 

Sine a1 – a2, b1 – b2, c1 – c2   Z

a1b1 + b1 c2, c1 c2   Z

we have A, B  S  A – B  S and AB  S

Hence S is a Subring of R.

Q32. Let a  R. Let S = {x  R | ax = o} show that S is a Subring of R.

Sol :
Given, a R

S = {x  R| ax = o}

Required to show, S is a Subring of R.

If o  R is the Zero element of R.

and a  R

we have a o = o  o  S

 S  and S C R

Let x, y  S Then x, y R and ax = o, ay = o

Now a(x – y) = ax – ay

= o – o

= o



B.Sc. II YEAR  IV SEMESTER

106
Rahul Publications

x – y  S

Also a (xy) = (ax) y

= oy

= o

= xy  S

 S is a subring of R.

Q33. If R is a ring and C (R) = {x R / xa = ax   aR} Than Prove that C (R) is a Subring
of R.

Sol :
For O  R

The Zero element of the ring

we have oa  = ao  a  R

By the definition of C(R), O C (R)

 C(R)   & C(R)   R

Let x, y  C(R)

Then x, y  R   and   xa = ax

ya = ay  aR

 a R, a(x – y) = ax – ay

 = xa – ya

= (x – y) a

  aR, a (xy)   = (ax) y

= (xa)y

=x (ay)

= x(ya)

= (xy)a

 x, y  C (R) is a subring of R.

Q34. Let M2 (Z) be the ring of all 2 × 2 matrices over the integers and Let R=
a a

a,b Z
b b

     
   

prove or disprove that R is a Subring of M2 (Z)

Sol :

Let M2 (Z) = 
p q

p,q,r,s z
r s

     
   

 be a ring.
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Hence R = 
a a

a,b Z
b b

     
   

 is a subset of M2 (Z)

if a = b = o Z


o o
o o
 
 
 

 =o  R

R  

Let  A = 
1 1

1 1

a a
b b
 
 
 

 & B =
2 2

2 2

a a
b b
 
 
 

  R,

a1, b1, a2, b2  Z

Then A – B = 
2 2 1 2

1 2 1 2

a a a a
b b b b

  
   

   R.

[a1 – a2  Z and b1 – b2  Z]

and   A.B =
1 2 1 2 1 2 1 2

2 1 1 2 2 1 1 2

a a a b a a a b
a b b b a b b b

  
   

  R

[a1a2 + a1b2  Z  &  a2 b1 +b1b2 Z]

Thus   A . B  R  A – B  R

 A . B  R

 R is a Subring of M2 (Z)

3.7  INTEGRAL DOMAINS

3.7.1 Definition and Examples

Q35. Define zero divisors with example

Ans :
A Zero divisor is a non Zero element ‘a’ of a commutative ring R. Such that there is a non zeco

element b  R with ab = o

Example :

In the ring, (z6,  6, 6) where

z6 = {0,1, 2, 3, 4, 5,} with Zero divisors

2  0, 3  0   2   3 = 0

3   0, 4  0  3   4 = 0
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Q36. Define integral domain with example.

Ans :
An Integral domain is a commutative ring with Unity and no Zero divisors.

Example 1:

(Z, +, .) is an Integral domain

Example 2:

(Z5, 5, 5) is an example of finite integral domain

Example 3:

The ring Z(x) of polynomials with integer coefficients is an integral domain.

Example 4:

Z  Z is not an integral domain.

Q37. Define Cancellation Law.

Ans :
If (R, +,  ) is a ring, then (R, +) is an abelian group. So cancellation law with respect to addition all

true in R.
Left cancellation Law :

a . b = a . c   b = c

Where a, b, c  R,  a   0
Right cancellation law

b . a = c . a   b = c

where  a, b, c  R,  a   0
Q38. A ring R has no zero divisors if and only if the cancellation laws hold in R.

Ans :
Suppose that R has no zero divisors required to prove the cancellation laws hold in

i.e., To prove

(i) Left cancellation law

(a.b = a.c   b = c)

(ii) Right cancellation law

(b.a = c.a   b = c)

(i) Let a, b, c  R  where  a   0

Consider

a.b = a.c

a.b = a.c = 0

a(b – c) = 0

 a   0
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and R is without zero divisors

b – c = 0

b = 0    a.b = 0   a = 0  or  b = 0

(ii) We can also prove right cancellation laws as (i)

 If R has a no zero divisors then the cancellation laws hold in R.

Conversely suppose that

If cancellation laws hold in R

Then Ring R has no zero divisors

Suppose that R is with zero divisors

By definition

  a   0   R,  b   0   R  but  a.b = 0

 a.b = a.0

b = 0 LCL as a   0

Which is a contradiction because  b   0

 Our assumption is wrong

 R is without zero divisors.

3.7.2 Fields

Q39. What is field? Write some examples.

Ans :
A field is commutative ring with unity in which every non zero element is a unit.

Example 1 :

(Z, +, .)  where  Z = the set of all integers is not a field, because all non-zero elements of Z are not
units.

Example 2 :

(Z7, +, .)  where  Z7 = the set of integers under modulo 7 is a filed.

Q40. A finite integral domain is a field

Ans :
Let us consider a finite integral domain

i.e, D = {0, 1, a1, a2 ... an} be all elements of the integral domain D.

and it containing n + 2 distinct elements

i.e., ai   aj  for  i   j

Required to prove D is a field

i.e., To prove every non-zero element of ‘D’ has multiplicative inverse in D.
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Let a   0   D

a.D = {a, a.1, a.a1, a.a2 ... a.an}

a   D, ai   D     a.ai   D

Also the elements of a.D are distinct because

If a.ai = a.aj  for  i   j

   ai = ai     for  i   j

[  D is without zero divisors applying LCL as a   0]

Which is a contradiction as the elements of D are distinct

 The elements of a.D are same as elements of D

We have 1   a . D

 a.1 = 1 or   a . ai = 1

a = 1 or   a . ai = 1

a–1 = 1 or ai is the required

Multiplication of inverse of a   D

 A finite integral domain is a field.

Q41. Every field is an integral domain.

Ans :
Suppose that (F, +, .) is a field

Required prove F is a integral domain i.e., to prove F is without zero divisors

Case (i) :

Consider  a, b   F,  where  a   0  and  a.b =0

 a   0   F

We have  a–1   F

Consider

a.b = 0

 a–1(a . b) = a–1 . 1

 (a–1 a) b = 0

 1 b = 0

 b = 0

Case (ii) :

Consider  a, b  F,  where  b   0 and a.b = 0

 b   0  F

We have

b–1   F
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Consider

a . b = 0

(a b)b–1 = 0 . b–1

a(ab–1) = 0

a(1) = 0

a = 0

 By case (i) and case (ii)

a.b = 0   a = 0  or  b = 0

Q42. For every prime p, Zp the ring of integers modulo p is a field.

Ans :
(ZP, +, .) is a ring.

Sine  Zp = (0, 1, 2, .... p – 1) has p distinct elements, Zp is a finite ring.

Required to prove  Zp is an integral domain

Clearly,

1  Zp  is the unity element

for a, b  Zp

ab (mod p)   ba (mod p)

ab = ba

Hence Zp is commutative

for a, b  Zp

and ab = 0   ab = 0 (mod p)

   p | ab   p | a  or  p | b

 a   0 (mod p)  or  b   0 (mod p)

 a = 0  or  b = 0

 Zp  has no zero divisors

Thus,  (ZP, +, .) is a finite integral domain

 Zp  is a field.

Q43. Prove that Q  
 2  = {a + b 2  / a, b  Q] is a field with respect to ordinary addition

and multiplication of numbers.

Sol : (Imp.)

Let x, y, z   Q 2 
 
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So that

x = a1 + b1 2 ,  y = a2 + b2 2 ,  z = a3 + b3 2

where  a1, b1,  a2, b2,  a3, b3   Q

x + y = (a1 + b1 2 ) + (a2 + b2 2 )

 = (a1 + a2) + (b1 + b2) 2

where  a1 + a2 = a,  b1 + b2 = b   Q

x . y = (a1 + b1 2 ) . (a2 + b2 2 )

= (a1 a2) + a1 b2 2  + a2b1 2  + b1 b2

= (a1 a2 + 2b1 b2) + 2  (a1 b2 + a2 b1)

x . y = c + d 2

where   c = a1a2 + 2b1b2   Q

and      d = a2b2 + a2 b1   Q

 Addition and multiplication of numbers are binary operations in Q 2

x + y = (a1 + a2) + (b1 + b2) 2  = (a2 + a1) + (b2 + b1) 2

  = (a2 + b2 2 ) + (a1 + b1 2 )

  = y + x

  = addition is commutative

(x + y) + z = (a1 + a2 + a3) + (b1 + b2 + b3) 2

and x + (y + z) = (a1 + a2 + a3) + (b1 + b2 + b3) 2

 (x + y) + z = x + (y + z)

Addition is associative

for 0   Q

We have  0 + 0 2  = 0   Q 2

So that

x + 0 = x  for  x   Q 2      0   Q 2  is the zero element

for x = a1 + b1 2    Q 2

We have

–x = (–a1) + (–b1) 2   Q 2
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So that

x + (–x) = 0

 Additive inverse exists

 (Q 2 , +) is commutative group

x . y = (a1 + b1 2 ) . (a2 + b2 2 ) = (a1a2 + 2b1b2) + (a1b2 + a2b1) 2

= (a2a1 + 2b2b1) + (a2b1 + b2a1) 2

= y . x

Commutative under multiplication

(x . y) z = ( 1 2 1 2a a 2b b  + 1 2 2 1a b a b 2 ) . (a3 + b3 2 )

     = (a1 a2 a3+2b1 b2 a3 + 2a1 b2 b3 + 2a3 b1 b3)+(a1 a2 b3+2b1 b2 b3+a1 a3 b2+a2 a3 b1) 2

and

x.(y . z) = (a1 + b1 2 ) ( 2 3 2 3a a 2b b  + 2 3 3 2a b a b 2 )

     = (a1 a2 a3+2a1 b2 b3 + 2a2 b1 b3 + 2a3 b1 b2)+(a1 a2 b3+a1 a3 b2+a2 a3 b1+2b1 b2 b3) 2

 x , (y . z) = x . (y . z)  multiplication is associative

x . (y + z) = (a1 + b2 2 )  ( 2 3a a  + 
2 3b b 2 )

       = (a1 a2 + a1 a3 + 2b1 b2 + 2b1 b3) + (a1 b2 + a1 b3 + a2 b1 + a3 b1) 2

and

x . y + x . z = (
1 2 1 2a a 2b b + 

1 2 2 1a b a b 2 ) + (
1 3 1 3a a 2b b  + 1 3 3 1a b a b 2

  = (a1a2 + 2b1b2 + a1a3 + 2b1b3) + (a1b2 + a2b1 + a1b3 + a3b1) 2

 x . (y + z) = x . y + x . z

Distributivity is true

Hence (Q 2 , +, .) is a ring.

1 = 1 + 0 2    Q 2

So that

x . 1  = (a1 + b1 2 ) (1 + 0 2 )

= x        x   Q 2

 Q 2  is a commutative ring with unity element to show that Q 2   is a filed we have to prove

further every non-zero element in Q 2   has multiplicative inverse
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Let a + b 2    Q 2   and  a   0  &  b   0

Then

1

a b 2
 = 2 2

a b 2
a 2b



 = 2 2

a
a 2b

 
  

 + 2 2

b
a 2b

 
  

2

Since  a2 – 2b2   0  for   a   0  and  b   0

a, b   Q   2 2

a
a 2b

 . 2 2

b
a 2b




   Q

for a + b 2    0   Q 2  there exists 2 2

a
a 2b

 
  

 + 2 2

b
a 2b

 
  

2   Q 2

Such that

(a + b 2 ) 2 2 2 2

a b
2

a 2b a 2b
             

 =  1 = 1 + 0 2

 Every non zero element of Q 2  is invertible

Hence Q 2  is a field

Q44. For every prime p, Zp the ring of integers modulo p is a field.

Ans :
We know that

(Zp, +, .) is a ring

Since  Zp = {0, 1, 2, ... p – 1) has p distinct elements.

  Zp is a finite ring

We prove now

  Zp is an integral domain

Clearly,  1   Zp is the unity element

for a, b   Zp

a b (mod p)   b a (mod p)

 a b  =  b a

and  hence Zp is commutative

For  a, b  Zp  and  ab = 0   ab = 0 (mod p)

     p / ab

     p / a  or  p/b

 a   0 (mod p)  or  b   0 (mod p)
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 a = 0  or  b = 0

 Zp has zero divisors

Thus  (Zp, +, .) is a finite integral domain

 Zp is a field

3.8  CHARACTERISTIC OF A RING

Q45. State the characteristic of a ring with example.

Ans :

The characteristic of ring R is the least positive integer n such that nx = 0   x in R.

If no such integer exists, we say that R has characteristic 0. The characteristic of R denoted by
char R

Example 1:

For any element  x  Z3 [ i ] ring

We have

3x = 0   x  Z3 [ i ]   Characteristic of Z3 [ i ] = 3

Example 2:

The Set R = {0, 2, 4, 6, 8} is field under addition and multiplication modulo 10.

Q46. The characteristic of an integral domain is the 0 or prime.

Ans : (Jan-21, May/June-19)

Let (R, +, .) be an integral domain

Let the characteristic of R = P(  0)

If possible.  Suppose that P is not a prime

Then  P = m n  where  1 < m, n < p

a   0  R   a.a = a2  R  and  a2   0

    R is integral domain

Pa2 = 0   (mn) a2 = 0     (ma) (na) = 0

  ma = 0  or  na = 0

Let ma = 0 for any x  R

(ma) x = 0    a(mx) = 0     mx = 0

This is absard

1 < m < p  and  characteristic of R = P

 ma   0
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Similarly, we can prove that  na   0

This is contradictional

Hence P is a prime.

Q47. If R is a commutative ring with unity of characteristic = 3. Then prove that (a + b)3 =
a3 + b3   a, b  R.

Sol :
R is a ring with characteristic = 3

3x = 0  ,  zero element of R     x  R

Since R is a commutative ring.

By  Binomial theorem

(a + b)3 = a3 + 3a2b + 3ab2 + b3

a, b  R   a2b,  ab2  R   3a2b = 0

   3ab2 = 0

 (a + b)3 = a3 + b3

Q48. If D is an integral domain, Then prove that D[x] is an integral domain.

Sol : (May/June-19)

Suppose that,

D is an integral domain

i.e., commutative ring with Unity and has zero divisors.

Since D [x] is ring

If D is commutative rivg with Unit element

f (x) = 1

required to prove D [x] has no zero divisors.

Let f (x), g (x) be non zero polynomials in D [x] where

f(x) = an x
n + an–1 x

n–1 + ....+ a0, an  0

g(x) = bm xm + bm–1 x
m–1 + .... + b0, bn   0

Since D is an integral domain

an, bm   0

f (x)  0, g (x)  0

f(x)  g(x)  0

Thus, D [x] has zero divisors.

 If D is an integral domain,

Then D [x]  is an integral domain.
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Q49. Let G be the group and let Z (G) be the Centre of G. If 
G

Z(G)  is cyclic. Then G is abelian.

Sol : (May/June-19)

Given that,

G is a group

and Z (G) is a Centre of G.

If 
G

Z(G)  is cyclic required to prove G is abelian.

i.e., ab = ba,

  < g Z (g ) > = 
G

Z(G)

a, b are arbitrary elements of G

Then,   integers i and j Such that

a Z (G) = (g Z (G))i = gi Z (G) for some ‘i’

b Z (G) = (g Z (G))j = gi Z (G) for some ‘j’

a Z (G) = gi Z (G)

a = gi Z1 for some Z1  Z(G)

Similarly

b = gj Z2 for some Z2   Z(G)

Consider ab = (gi Z1) (g
j Z2)

= gi gj (Z1 Z2)

ab = gi+j (Z1 Z2)

= gi+j (Z1 Z2)

= gj gi (Z1 Z2)

= gj Z2 g
i Z1

= ba

 ab = ba.

 G is Commutative

i. e., G is abelian

 G is abelian when 
G

Z(G)  is cyclic
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Q50. Prove that Z3 [i] = {a + ib / a,b Z3 } is a field of order 9?

Sol : (May/June-19)

Z3 [i] ={ a + ib / a,b  Z3}, & the elements of Z3 are 0, 1, 2

ie., Z3 = 0, 1, 2

for a=0, b = 0   0 + i 0 = 0

a=0, b = 1   0 + 1 (i) = i

a=0, b = 2   0 +2 i  = 2 i

a=1, b = 0   0 + 0 i  = 1

a=1, b = 2   1 + 2 i  = 1 + 2 i

a=1, b = 1   1 +  i (1)  = 1 + i

a=2, b = 0   2 + 0 i   = 2

a=2, b = 1   2 +  i (1)  = 2 + i

a=2, b = 2   2 + 2 i   = 2 + 2 i

 Z3 [i] = {0, i, 2i, 1, 1 + 2i,1 + i, 2, 2 + i, 2 + 2i}

  Z3 [i] is a field As Z3 [i] has q elements

  It order is 9

 Z3 [i] is a field of order 9.

Q51. Prove that the ring of Gaussian integers z[i] = {a + ib / a, b   z} is an integral domain.

Ans : (Jan.-21)

Given that

z[i] = {a + ib / a, b   z}

c is a ring of complex numbers

z[i] =   

and z[i]   c

Let a + ib,  c + id  z[i]

z[i] is said to be the subring of c,

It is satisfies the following conditions

i.e., a, b  z[i]     a – b   z[i]

a, b   z[i]     a b   z[i]

Let a, b, c, d  z[i]
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Consider

(a + bi) – (–(c + di)) = (a + bi) + (–c – di)

  = (a + ( –c)) + (b + (–d))i

  = (a – c) + (b – d) i ... (1)

Since  a, b, c, d  z

 (a – c)  z and (b – d)  z

(a – c) + (b – d)i  z[i]

a – c + bi – di  z[i]

(a + bi) – (c + di)  z[i]

Consider

(a + bi) (c + di) = ac + adi + bci + bdi2

= ac + (ad + bc)i + bd (–1)

= (ac – bd) + (ad + bc)i  z[i]

 (a + bi) (c + di)  z[i] ... (2)

 from equation (1) and (2) are satisfied

Hence  z[i] is a subring of complex number c

Q52. Let G be a group and let Z(G) be the centre of G. If 
G

Z(G) cyclic then G is abelian.

Ans :
Given,

G is a group

Z(G) is the centre of G

G is said to be abelian if it satisfies the following condition

ab = ba

Let 
G

Z(G)  is cyclic, then three exists some generator gZ(G) such that,

<gZ(g)>= 
G

Z(G)

Let a, b are arbitrary elements of G

Then, there exists integers i and j such that,

aZ(G) = (gZ(G))i = giZ(G) for some ‘i’

bZ(G) = (gZ(G)i = giZ(G) for some ‘j’

aZ(G) = giZ(G)
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 a = giZ1 for some Z1
Z(G)

Similarly,

bZ(G)=giZ(G)

 b = giZ2 for some Z21
Z(G)

Consider,

ab = (g’ZJ (gZ2)

 ab = gigiZ1Z2

As the elements of centre Z(G) commute with all elements of G

 ab = gigiZ1Z2 = gi+jZ1Z2

    = gj+i Z2Z1 = gigiZ2Z1

    = giZ2g
iZ]=ba

 ab = ba

 G is commutative i.e., abelian

Hence, G is abelian when 
G

Z(G) is cyclic
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Short Question and Answers

1. The characteristic of an integral domain is the 0 or prime.

Ans :

Let (R, +, .) be an integral domain

Let the characteristic of R = P(  0)

If possible.  Suppose that P is not a prime

Then  P = m n  where  1 < m, n < p

a   0  R   a.a = a2  R  and  a2   0

    R is integral domain

Pa2 = 0   (mn) a2 = 0     (ma) (na) = 0

  ma = 0  or  na = 0

Let ma = 0 for any x  R

(ma) x = 0    a(mx) = 0     mx = 0

This is absard

1 < m < p  and  characteristic of R = P

 ma   0

Similarly, we can prove that  na   0

This is contradictional

Hence P is a prime.

2. If D is an integral domain, Then prove that D[x] is an integral domain.

Sol :
Suppose that,

D is an integral domain

i.e., commutative ring with Unity and has zero divisors.

Since D [x] is ring

If D is commutative rivg with Unit element

f (x) = 1

required to prove D [x] has no zero divisors.

Let f (x), g (x) be non zero polynomials in D [x] where

f(x) = an x
n + an–1 x

n–1 + ....+ a0, an  0
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g(x) = bm xm + bm–1 x
m–1 + .... + b0, bn   0

Since D is an integral domain

an, bm   0

f (x)  0, g (x)  0

f(x)  g(x)  0

Thus, D [x] has zero divisors.

 If D is an integral domain,

Then D [x]  is an integral domain.

3. Define Normal subgroup with example.

Sol :

A subgroup ‘N’ of a group ‘G’ is said to be a normal subgroup of ‘G’   g  G,   n  N

 g n g–1  N

Eg.

Let G = {1, –1, i, –i}

 G is group w.r.to multiplication

Sol :

We have N = {1, –1} is a subgroup of G

Let g = 1,  n = –1     g n g–1 = 1 x (–1) (1) = –1  N

Let g = –1,  n = –1   g n g–1 = (–1) x (–1) x (–1) = –1   N

g = i,  n = –1   g n g–1 = (i) x (–1) (–i) = –1  N

g = –i, n = –1   g n g–1 = (–i) x (–1) x (i) = –1  N

 N is a normal subgroup of ‘G’.

4. Define factor group.

Ans :

Let ‘G’ be a group and ‘N’ be a normal subgroup of ‘G’. Then the factor group or the Quotient
group denoted by

G
N

 = {Nx / x  G}

i.e., the set of all right cosets of N in G forms a group know as factor group

or   Quotient group w,r, to the binany operation multiplication of two right cosets.
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5. List the applications of factor groups.

Ans :
Let ‘G’ be a finite group and ‘H’ be the subgroup of G and H   {e}. The factor group is denoted

by 
G
H

.

(i) The structure of group G and factor group 
G
H

 is same. Hence, a less complicated approximation

of G can be obtained from the approximation of 
G
H

 because 
G
H

 is smaller than G.

(ii) The properties of a group G can be obtained by examining the properties of factor group 
G
H

.

(iii) The position of element in a factor group gives the cosets of group.

(iv) The order of a subgroup can be obtained by means of factor group.

6. Define Automorphism Homomorphism Image and Isomorphic Image.

Sol :
(i) Automorphism

A mapping f : G   G  is said to be an automorphism if ‘f’ is an isomorphism i.e., in other words ‘f’f’
is homomorphism, 1 – 1, & onto

(ii) Homomorphic Image

If  f : G   G  is homomorphism & onto

Then  G  is called as homomorphic image of G

(iii) Isomorphic Image

If  f : G   G  is isomorphism. Then we say that G and G  are isomorphic to each other and

denotes as G   G  and G  is called is isomorphic image of G.

7. State the examples of Rings.

Ans :
Example 1:

The set Z of integers Under ordinary addition and multiplication is a commutative ring with Unity 1.
The Unity of Z are 1 and –1

Example 2:

The set M2 (Z) of 2 × 2 matrices with integer entries is a non commutative ring with Unity
1 0
0 1
 
 
 
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Example 3:

The set 2 Z of even integers under ordinary addition and multiplication is a commutative ring with
out Unity.

Example 4:

The set Z [x] of all polynomials in the variable x with integer coefficients under Ordinary addition
and multiplication is a commutative ring with Unity f(x) = 1

8. Define integral domain with example.

Ans :
An Integral domain is a commutative ring with Unity and no Zero divisors.

Example 1:

(Z, +, .) is an Integral domain

Example 2:

(Z5, 5, 5) is an example of finite integral domain

Example 3:

The ring Z(x) of polynomials with integer coefficients is an integral domain.

Example 4:

Z  Z is not an integral domain.

9. Define Cancellation Law.

Ans :
If (R, +,  ) is a ring, then (R, +) is an abelian group. So cancellation law with respect to addition all

true in R.
Left cancellation Law :

a . b = a . c   b = c

Where a, b, c  R,  a   0
Right cancellation law

b . a = c . a   b = c

where  a, b, c  R,  a   0
10. What is field? Write some examples.

Ans :
A field is commutative ring with unity in which every non zero element is a unit.

Example 1 :

(Z, +, .)  where  Z = the set of all integers is not a field, because all non-zero elements of Z are not
units.

Example 2 :

(Z7, +, .)  where  Z7 = the set of integers under modulo 7 is a filed.



UNIT - III ALGEBRA

125
Rahul Publications

Choose the Correct Answers

1. Characterstic of a ring of the farm . [a]

(a) na = 0 (b) na 0

(c) a = 0 (d) n = 0

2. The intersection of subgroup of a ring is . [b]

(a) ring (b) subring

(c) closed (d) commutative

3. (a+U)+(b+U) = . [a]

(a) a+b+U (b) a – b + U

(c) –a+b+U (d) a+b – U

4. Ring satisfies  conditions. [d]

(a) commutative ring (b) field

(c) ideal (d)  group

5. a · a–1 = . [b]

(a)  0 (b) 1

(c)  a (d) none

6. a + a–1 = . [a]

(a) 0 (b) 1

(c) a (d) none

7. Multipliative identity is . [b]

(a) 0 (b) 1

(c) a (d) e

8. Additive identity is . [d]

(a) 1 (b) e

(c) a (d) 0

9. Set of all integers satisfies . [a]

(a) prime ideal ring (b) group

(c) maximal (d) ring

10. R = (Z6, +, ·) is a [d]

(a) ring (b) group

(c) maximal ideal ring (d) principle ideal ring
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Fill in the Blanks

1. a · e = .
2. If (R1+, ·) is said to be boalean ring if .
3. Commutative property is  with respect to multiplication
4. Distributive laws .
5. The intersection of the subgroups of a ring is .
6. A commutative ring with unity is containing no zero divisors is called .
7. If every non-zero elements of R has a .
8. Characteristic of a ring of the farm .

9.
R
U

 is commutative, if R is .

10. (a+U)+(b+U) =  a,b R  .

11. (a+U)(b+U) =  a,b R  .

12. If 
R
U

 has a unity element, If R is .

13. The ideals is generated by a prime number is  .

14. Let ‘U’ be an ideal of commutative ring R. U is a  . Iff 
R
U

 is an  .

15. Let R be a commutative ring & U R  is a prime ideal. If .

ANSWERS

1.  As – a

2. a2 = a,a2 = a, a R 

3. a.b=b.a, a,b R 

4. a(b+c) = ab+ac
5. agian a sub ring
6. Integral domain
7. multiplicative inverse

8. na = 0, a R 

9. commutative
10. (a+b)+U
11. ab+U
12. unity element
13. a maximal ideal
14. prime ideal, integral domain

15. a,b R   & ab U  a U   (or) b U
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UNIT
IV

Groups: Definition and Examples of Groups - Elementary Properties of

Groups - Finite Groups - Subgroups - Terminology and Notation -Subgroup
Tests - Examples of Subgroups.

Cyclic Groups: Properties of Cyclic Groups -Classication of Subgroups Cyclic
Groups.

4.1  IDEALS AND FACTORS RINGS

Q1. Define ideals.

Ans :
A non empty subset ‘S’ of a ring ‘R’ (R, +, .) is said to be an ideal of R.

If 1.  S is a group of R, w.r.to addition

2.    r  R,    s  S      r.s  &  s r  S

Q2. Define improper ideals.

Ans :
The ideals S ={0} and S = R are Known as improper ideals of R. The ideals other Than S ={0}

and S = R are known are proper ideals of R.

Q3. If R is a Unity and ‘U’ is an idel of R. Where 1  U. Then prove that U = R.

Ans :
Given  that

‘R’ is a ring with Unity

U is an ideal of R

1  U

 U is an ideal of R

By definition U   R ..... (1)

Required to prove R   U

 U is an ideal of R

We have by definition

  r  R,  1  U    r . 1  &  1 . r  U

     r  U

     R   U ..... (2)

From equation (1) and (2)

We can conclude that U = R
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Q4. If R is a commutative ring and a  R  then  Ra = {ra / r  R } is an ideal of R.

Ans :
For 0  R,  0a = 0  R a

 Ra    &  R a   R

Let x, y  R a

Then  x = r1 a

  y = r2 a      where r1, r2  R

    x – y = r1a – r2 a

     = (r1 – r2) a when  r1, r2  R

x, y  R a   x – y  R a .... (1)

Let x  R a  and  r  R

x . r = (r1 a) r (x = r1 a   whene  r1  R )

= r1(a r)

= r1 (r a)

= (r1 r) a

= r' a where  r' = r1 r  R ..... (2)

Sinec R is commutative ring,

 x, r = r . x

 x  R a, r  R

 x r = r x  R a

Hence from (1) & (2)

Ra is an ideal of R

4.1.1 Factor Rings

Q5. Define factor Ring.

Ans :

Let  (R, +, .) be a ring and ‘U’ be an ideal of  R Then 
R
U

 = {u + x / x  R} form a ring known as

a factor ring with respect to the operations defined as follows

(i) (u + x) + (u + y) = u + (x + y)

(ii) (u + x) . (u + y)= u + xy

Q6. (R, +, .) be a ring, ‘U’ be an idea of R. Then 
R
U

 is factor ring.

Ans :
(R, +, .) be a ring.

U be an ideal of R.
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Required to prove 
R
U

 forms a factor ring

1.
R

, +
U

 
 
 

 is an abelian group

2.
R

,  
U

 
 
 

  is an semi group

1.
R

, +
U

 
 
 

 is an abelian group

Let U + x,  U + y,  U + Z  
R
U

  where  x, y, z  R

(a) Closure Property :

  U + x,  U + y,  
R
U

  (U + x) + (U + y)

  U + (x + y)  
R
U

(b) Associative Property :

[(U + x) + (U + y)] + U + Z = (U + x) [(U + y) + (U + z)]

Consider

[(U + x) + (U + y)] + (U + z) = [U + (x + y)] + (U + z)

    = U +(x + y) + z

    = U + (x + (y + z))

    = (U + x) + (U +(y + z))

    = (U + x) + [(U +y) + (U +z)]

L H S = R H S

(c) Identity Property :

 a + x  
R
U

   U + 0  
R
U

  U + x + (U + 0) = U + (x + 0)

              = U + x

Similarly (U + 0) + (U + x) = U + x

(d) Inverse Property :

  U + x   
R
U

   U + (–x)   
R
U
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  (U + x)+ U + (–x) = U + (x +(–x))

        = U + 0

Similarly  (U + (–x)) + (U + x) = U + 0

(e) Commutative Proparty :

  U + x, U + y 
R
U

(U + x) + (U + y) = U + (x + y)

   = U + (y + x)

   = (U +y) + (U + x)

R
, +

U
 
 
 

is abelian group

2.
 
 
 

R
,  

U  is a semi group

(a) Closure Property

  U + x , U + y  
R
U

 (U + x) + (U + y) = U + x y  
R
U

(b) Associative Property

  U + x , U + y  &  U + Z   
R
U

Consider

[(U + x) + (U + y)] (U + z) =( U + xy) (U + z)

= U + (xy) z

= U + x (yz)

= (U + x) + (U + yz)

= (U + x) (U + y) (U + z)

R
,  

U
 
 
 

  is a semi group

Distributive Law

LDL :  U + x,  U + y,  U + z 
R
U

(U + x) [(U + y) (U + z)] = (U + x) (U + y) + (U + x) (U + z)
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L H S  = (U + x) [(U + y) + (U+ z)]

  = (U + x) [(U + (y + z)]

  = U + x (y + z)

  = U +xy + xz

  = (U + xy) + (U + xz)

  = (U + x) (U + y) + (U + x) (U + z)

R H S

Similarly  R D L is also holds good

4.2  PRIME IDEAL AND MAXIMAL IDEAL

Q7. Define Principal Ideal.

Ans :
If R is a commutative ring with Unity, we observe for a given a  R  the set {ra / r  R} is an ideal

in R that contains the element ‘a’ here ‘a’ is called principal ideal generated by ‘a’. is denoted by (a)

or a .

Q8. Let R be a commutative ring with Unity and let A be an ideal of R. Then 
R
A

 is an

integral domain if and only if A is Prime

Ans : (May/June-19)

Given that

‘R’ is a commutative ring with Unity and ‘S’ is ideal of ‘R.’

To prove that 
R
S

is an Integral domain   S is prime ideal of R.

Suppose that 
R
S

is an Integral domain


R
S

 is without zero divisors.

By definiton

We have if S + a,  S + b    
R
S

 such that

(S + a) . (S + b)  = S = S + o

 S + a = S or  S + b = S ..... (1)

Now we shall prove that

S is a prime ideal of R
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Let S  S when S = a. b when a, b  R

To show that   a  s  or  b  s

SS   S + S = S

  S + ab = S

  (S + a) . (S + b)  = S

  S + a = S  or  S + b = S by ..... (1)

  a  S = S  or  b  S

S is a prime ideal of R

Conversely suppose That

‘S’ is a prime ideal of ‘R’

Required to show 
R
S

 is an Integral domain

It is required to show that

R
S

 is with out zero divisors.

Let S + a , S + b +
R
S

 (S + a)  (S + b)  = S

 S + (ab) = S

ab  S

a  s  or  b  s

 S + a   S  or  S + b   S

R
S

 is without zero divisors.

Q9. Define maximal ideal.

Ans :
A maximal ideal M of a ring R is an ideal different from R such that there is no proper ideal U of R

properly containing M.

Q10. Let  R be a commutative ring with Unity and Let A be an ideal of R.

Then 
R
A

 is a field if and only if A is maximal.

Ans : (Nov.-20)

Given that

R is a commutative ring with unity and ‘S’ is an ideal of R.
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Required to prove 
R
S

 is field

If and only if S is a maximal ideal of R

Suppose that 
R
S

 is a field.

Let  S' be an ideal of R when S   S' and S   S'   R

i.e., to prove S is maximal ideal of R

Consider

S   R     a  R   a  s

    S + a   S

    S + a is non zero element  of  
R
S

Similalry

S   S'     b  S`

            b  S

         S + b   S

 S + b  is an non zero element of  
R
S


R
S

 is a field.

R
S

 is an integral domain


R
S

 is without zero divisors

We can find S + C  
R
S

   S + a = (S + b) (S + c)

 S + a = S + bc

a – bc  S'

 S   S' ..... (1)

we have S` is an edeal of R

we have b  s`  & c  R

bc  S` .... (2)
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Apply closure property to the element

a – bc & bc

 a – bc + bc  S'

a  S'

   a R we have a  S'

R   S'

S' = R

Hence ‘S’ is maximal ideal of R

Connversely suppose that

S is maximal ideal of R

Required to prove 
R
S

 is a field.

 R is a commutative ring  with Unity

We have 
R
S

 is also commutative ring with Unity .

Required to prove

R
S

 is field it is enough the show, every non zero element of 
R
S

 has multiplication inverse of 
R
S

Let S + a be a non zero element of 
R
S

Consider the principle ideal generated by ‘a’

i.e., <a> = {ax / x  R}

 The sum of two ideals is again an ideal.

We have S + <a> is also an ideal.

S   S + <a>   R

 S is maximal ideal of R

We have

S + <a> =R

R   S + <a>

1  R   1 + S + <a>

1 = d + ax

d  S   S + d  = S

S + (1 – ax) = S
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S + 1 = S + ax

  = S + (1 – ax) = S

S + 1 = S + ax

S + 1 =(S + a) (S +x)

S + x is required multiplication inverse


R
S

 is a field

4.3  RING HOMOMORPHISM

4.3.1 Definition and Examples

Q11. Define Ring homomorphism.

Ans :
A ring homomorphism from a ring R to ring S is a mapping from R to S that preserves the two ring

operations.

i.e,    a, b  R

a + b= (a) + (b)

(a b) = (a) . (b)

Let R & S be two rings w.r. to the binary operations ‘+’ & ‘  ’ defined on them, then  is said to be
an isomorphism if is homomorphism, is one one &  is onto.

Q12. Let n be an integer with decimal representation ak ak–1 + ...... a1 a0 is divisible by 9 if and
only if ak + ak–1 + ...... a1 a0 is divisible by 9.

Sol :
Let n = ak ak–1 + ...... a1 a0

   = ak 10k + 1 ak–1 10k–1 + ..... + a1 . 10 + a0

Let the natural mapping

 : z   z9 be defined by

(x) = (mod 9)    x  z

(10) = 1  is a homomorphism

 n is divisible by 9

(n) = 0

 [ak 10k + ak–1 10k–1 + ..... + a110 + a0] = 0

 (ak) [(10)]k + (ak–1) [(10)]k–1 + ..... + (a0) = 0

 (ak) + (ak–1) 1 + ..... + (a0) = 0

 (ak + ak–1 + ..... + a1 + a0) = 0

 ak + ak–1 + ..... + a1 + a0 is divisible by 9
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4.4  PROPERTIES OF RING HOMOMORPHISM

Q13. Let  be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let
B be an ideal of S. Then for any r  R and any position integer n, (nr) = n(r) and (rn)
= ((n))n.

Ans :

Let R and S are two rings

 : R   S be a ring homomorphism for any  r  R

and any positive integer  n   n . r  z

Consider

(n . r)  =  (r + r ..... + r) n times

    = (r) + (r) + ..... + (r)

  (nr)  =  n . (r)

  (rn)   =  (r . r ..... r) (n times)

    = (r) (r) .....  (r)

   (rn)  =  [(rn

Q14. Let   be a ring homomorphism from a ring R to a ring S. Let A be a subring of R then
(A) = {(x) / x  A} is a subring of S.

Ans :

Let R and S are two rings

Let A a subring of R.

(A) is a non empty

0   (A) as 0  = (0)

Let (a1),  (a2)  (A)

where  a1, a2  A

(i) Required to show that

(a1) – (a2)  (A)

     = (a1) + (–a2)

     = (a1 + (–a2))

     = (a1 – a2)  (A)

(ii) Required to show  (a1),  (a2)  (A)

Consider  (a1) . (a2) = [a1 a2]  (A)  a1, a2  A
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Q15. Let   be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let
B be an ideal of S. If A is an ideal and  is onto S, then (A) is an ideals.

Ans :
Let S & R be two rings

 : R   S be a ring onto homomorphism

Let A be an ideal of R.

Then the range set  (A) = {(x) / x  A} is Subset of S

i.e., The identity element

0  R   0  A   (0) = 0' (A)

and 0'  S  where  0' is an identity element in S

 (A)     and  (A)   S

  (x),  (y)  (A)     x, y  A

  x – y  A

  (x – y)  (A)

Consider

(x – y) = (x + (–y))

    = (x) + (y)

    = (x) – (y)  (A)

Let r  R  and  x  A   rx  and  xr  A

r'  R  and  x'  (A)   r' = (r)   r  R  and  x' = (x)   x  A

Consider

r' . x' = (r) . (x)

= (rx)  (A)

x' . r' = (x) . (r)

= (xr)  (A)

Hence  (A) is an ideal of R

4.4.1 Kernel of Homomorphism

Let   be a ring homomorphism from a ring R to a ring S. Then Ker  = {r  R / (r) = 0} is an
ideal of R.

Q16. Let   be a ring homomarphism from a ring R to a ring S. Let A be a subring of R and Let
B be an ideal of S If  is an isomurphism If and only if is onto and Ker {r  R /
(r) = 0}  ={0}

Ans : (May/June-19)

Let  be an into isomarphism i.e., f is one one homomorphism
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We prove that Ker 

a  R, a) = d  a=  

  a = 0

0  R is the only element in R

So that 

y definition Ker = {0}

Conversely Suppore

Let Ker = {0}

Required to prove  is one – one

a, b  R  and (a) = (b)

(a) – (b) = 0    (a – b) = 0

 a – b  Ker  = {0}

a – b = 0

a = b

 is one – one

Q17. Let  be an isomorphism from a ring R onto a ring S, Then is an isomorphism from
S onto R.

Ans :
Let  R and S are two rings

Let : R   S is an isomorphism then the range set (R) = {(x) /x  R} = S

S   R is an inverse function of 

 (s) = {(x1) / x1  s} is also subring of R

Now,   x', y'  S    (x') = x   & (y') = y   x + y  R

 x + y  R & xy  R

 (x + y) = (x) + (y)

     = x' + y'

  (xy)    = (x) . (y)

     = x' y'

Consider

(x'+ y') = x + y

        = (x) +(y)

&  (x' y') = xy =(x) (y)

  : S   R is a homomorphism



UNIT - IV ALGEBRA

139
Rahul Publications

Let  : R   S is 1 –1

and onto then : S  R is also one one and onto

  : S   R is an isomorphism.

Q18. Let R be a ring with Unity 1. The mapping  : Z   R given by n   n.1 is a ring
homomorphism.

Ans :
Let  R be a ring with Unity 1

Then mapping  : Z   R be defined by

nn .1  n  z

  m, n  z     (m) = m . 1  &(n) = n . 1

Now, m + n  z    (m + n) = (m + n) . 1

 =  m . 1 + n . 1

 = (m) + (n)

and m, n  z    (m . n)

      = (m . n) . 1

      = (m . 1) (m . 1)

(m . n) = (m) + (n)

: Z   R is a homomorphim

Q19. For any positive integer n. The mapping : Z   Zn defined as (x) = r  where x = r
(mod n) is a ring homomorphism.

Ans :
Given that

: Z   Zn

defined (x) + r   where   x = r(mod n)

Required to show,

(x + y) = (x) +(y)

Let (y) = s

where y = s (mod n)

x + y = r + s(mod n)

Similarly

x . y = r . s (mod n)

r s  = r s

rs  = r s.
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L H S ( x + y)  = r s

        = r s

= (x) + (y)

(xy) = rs

= r s

(xy) =  (x) + (y)

  is homomorphism

Q20. If A is an ideal of a ring R . Then show that the Quotient ring 
R
A

 is a homomorphic image

of R.

Ans :
Let  R be a ring

A be an ideal of R.

R
A

 = {r +A / r  R} is ring with respect to addition and multiplication of cosets

(a + A) + (b + A) = (a + b) + A and (a + A) (b + A)

           = ab + A for a + A, b + A 
R
A

Let  ‘f’ be a mapping from a ring R to the ring 
R
A

.

i.e., f : R   
R
A

R
A

 is said to be homomorphic image of R.

If it satisfices the following conditions

(i) f is well defined

f : R   
R
A

 defined by

f(a) = a + A   a  R

  a, b  R, a = b   a + A = b+ A

       f(a) = f(b)

f is well defined
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(ii) f is homomorphism

  a, b  R

f(a+b) = (a + b) + A

   = (a + A) + (b + A)

   = f(a) + f(b)

 f(a + b) = f(a) + f(b)

Consider

f(ab) = ab +A

= (a + A) (b + A)

= f(a) f(b)

f(ab) = f(a) f(b)

 f is ring homomorphism.

(iii) f is an onto mapping

of  x + A  
R
A
then x  R

x   A    f(x) = x + A

  x + A   
R
A
   x  R for which f(x) = x + A

f is an onto

f : R   
R
A
is an onto homomorphim

f is well defined and homomorphism and onto mapping

 
R
A
is homomorphic image of R.

Hence, the Quotient ring 
R
A

 is an homomorphic image

Q21. Prove that every homomorphic image of a ring R is isomorphic to some Quotient Ring
of R.

Ans :

Let R  be the homomorphic image of ring R.

f : R   R  such that f is homomorphism and f is onto

Let  S be the Kernel of f

S = {x  R / f (x) = 0 }
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S is one ideal of R

R
S

 = {S + x / x  R}

R
S

  R

Define a mapping :  
R
S   R as (s + x) = f(x)

(i)  is well defined,

Let  S + x,  S + y  
R
S

Such that  S + x,  S + y required show,  (S + x) = (x + y)

Consider

S + x = x + y

x – y  S

f(x – y) = 0

f(x) – f (y) = 0

f(x) – f(y) + f(y)= 0  + f(y)

f(x) = f(y)

(S + x) = (S + y)

is well defined mapping.

(ii) is homomorphism.

Required to show

[(S + x) + (S + y)] = (S + x) (S + y)

Consider

[(S + x) + (S + y)]  =  [S + (x + y)]

  = f(x + y)

  = f(x) + f(y)

  =(S + x) +(S + y)

L H S  = R H S

(iii) is one – one

Let (S + x) . (S + y)  
R
S
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 (S + x) = (S + y)

f(x) = f(y)

f(x) – f(y) = 0

f( x – y )  = 0

x – y  S

S + x . S + y

(iv)  is onto

 f is onto, we have   y  R

  x  R    y = f(x)

 (S + x)

y = (S + x)

is onto


R
S

   R

Q22. Let R be a commutative Ring of characteristics 2,

Then prove that the mapping a   a2 is a ring homomorphism from R to R.

Ans : (Nov.-20)

Given that

R is commutative ring and char is 2

 : R   R and (a) = a2    a  R ... (1)

Let a, b   R     2a = 0  and  2b = 0 ... (2)

a + b     2ab = 0 ... (3)

f(b) = b2    b   R

  (a + b) = (a + b)2

= a2 + b2 + 2ab

= a2 + b2 + 0 by (2)

= a2 + b2

  (a + b) = (a) + (b) by (1)

Also,        (ab) = (ab)2

= a2 b2

= (a) (b)

Hence  is a ring homomorphism.
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Q23. Is the ring 2z is isomorphic to ring 3z.

Ans :
Given,

2z  and  3z are rings

Let z = {n / n  z} then

2z = {2n / n  z}

3z = {3n / n  z}

 is a mapping from 2z to 3z

i.e.,  : 2z   3z   (2.h) = 3h    h  z

  2a, 2b  2z

Then the ring 2z is isomorphic to ring 3z, if  is isomorphism,  is one one

 is well defined and  is onto

(2a + 2b) = (2(a + b))

  = 3(a + b)

  = 3a + 3b

  = (2a) + (2b)

 (2a + 2b) = (2a) + (2b)

(2a . 2b) = (2 (2ab))

= 3(2ab)

  (2a) (2b)

 The ring 2z is not isomorphic to the ring 3z.

Q24. Prove that the subset S of all matrices of the form 
a 0
0 b
 
 
 

 with a and b integers forms a

subring of the M2 of all 2 × 2 matrices with integers as entries. Is it and ideal.

Ans :

Let, A = 
a 0

0 b
 
 
 

,

B = 
c 0
0 d
 
 
 

 are any two elements of S

Where,

a, b, c, dZ

A – B = 
a 0
0 b
 
 
 

 – 
c 0
0 d
 
 
 
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 A – B = 
a c   0

S
  0 b d

 
  

   AB = 
a 0
0 b
 
 
 

c 0
0 d
 
 
 

= 
a c 0 0 a 0 0 d
0 c b 0 0 0 b d
      

       

= 
ac 0 0 0
0 0 0 bd

  
   

    AB = 
ac 0

S
0 bd
 

 
 

 S is a subring of M2

Let,
1 0

0 1
 
 
 

 S, 
3 4
2 1
 
 
 

  R,

1 0

0 1
 
 
 

3 4
2 1
 
 
 

 = 
1 3 0 2 1 4 0 1

0 3 1 2 0 4 1 1

      
       

  = 3 0 4 0

0 2 0 1

  
   

  = 
3 4

2 1
 
 
 

 S

 S is not an ideal of M2

Q25. If a map  : R   R' is a homomorphism with Ker . Then prove that Ker  is an ideal
of R.

Ans :
Given that   : R   R'  is a homomorphism with Ker .

S is a nonempty subset of R

Then if is satisfies the following conditions.

(i) Subset S is a subgroup of R with respect to addition

(ii) r s  S  and  sr  S    r  S  and  s  S

Required to show that S is an ideal of R

Let O, O'  R and R' respectively..
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Let S be a Kernel of f.

 S = {x  R : f(x) = O'}

O  S

f(O) = O'

 S is non empty

If  a, b  S

Then

f(a) = O' = f(b) ... (1)

f(a – b) = f(a + [–b])

    = f(a) + f(–b)

    = f(a) – f(b)

    = O' – O'

a –b  S

If  r is any element of R

Then f(ar) = f(a) . f(r)

= 0' f(r)

f(ar) = 0' ... (2)

and, f(ra) = f(r) f(a)

= f(r) . 0'

f(ra) = 0' ... (3)

From (2) and (3) ar   S,  r a   S

Hence  a, b  S,  r  S    (a – b)  S, ar  S,  ra  S

 S is a ideal of R.

Q26. Let   be a ring homomorphism from Ring R to ring S. If R is commutative ring prove that
(R) is commutative.

Ans : (Jan.-21)

Let R and S be a two rings

 : R   S

and R is a commutative ring

Let  the homomorphic image of R be (R)

Let x, y  (R)

 x, y   (R)     a, b   R

(a) = x, (b) = y

 xy  =  (a) (b)
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      =  (ab)

      =  (ba)   R is commutative ring

      =  (b) (a)

      =  yx

 xy  = yx

Let  : R   S is a ring homomorphism

Let ‘1’ be the unity element of R

 (1)  S

Let a, be an element of R.

a  R

a'  R

 a' = (a)  for some a  R

Consider

      (1) a'  = (1) (a)

 = (1a)

 = (a)

 = a'

      (1) a'  = a' ... (1)

Consider

a' (1) = (a) (1)

  = (a1)

  = (a)

  = a'

 a' (1) = a' ... (2)

From (1) and (2)

(1) a' = a' (1) = a'

 (1) is a unity element of S

Q27. Prove that ring with unity contains zn or z.

(OR)

If R is a ring with unity and the characteristics of R is n > 0 then prove that R contains a
subring is isomorphic to Zn. If the characteristics of R is 0 then R contains a subring
isomorphic to Z.

Ans : (Jan.-21, May/June.-19)

Given that,  R is a ring with unity
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S be a subring of R

S = {K.1 / K  z}

From the definition of Ring homomorphism

 : z   S given by (K) = K.1 is a homomorphism

By the first isomorphism of ring

z
Ker 

   S But  Ker  = <n>

where  n – additive order of 1 from the property of characteristic of a ring with unity.

Let R be a ring with unity 1.

Let 1 has order n under addition

Then R has characteristic n

If  R has characteristic ‘n’

Then  S   
z

Ker 
   

 
Z
n

   zn

R contains, a subring isomorphic to zn

When the characteristic of R is n.

If R has characteristic

Then  S   
z

Ker 
   

Z
0 

       Z

Zn contains a ring with unity.

Q28. Let  be a ring homomorphism from a ring R to a ring S. Then Ker  = {r  R / (r) = 0}
is an ideal of R.

Ans : (May/June-19)

Given that

 is a ring homomorphism

i.e.,  : R   S

Required to show that Ker  is an ideal of R

Let 0  R  and  0'  S

Let  be a Kernel of f

  = {r   R : (r) = 0}

0  ,  Since f(0) = 0'

 is non empty
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If  a, b    then

f(a) = 0' = f(b)

f(a – b) = f(a + (–b))

   = f(a) + f(–b)

   = f(a) – f(b)

   = 0' – 0'    f(a) = 0' = f(b)

a – b  

If  r is any element of R.

 f(ra) = f(r) f(a)

= f(r) 0

= 0

f(ra) = 0

f(ar) = f(a) f(b)

= 0 f(r)

= 0

 f(ra) = 0  and  f(ar) = 0     ar     and  ra   

Hence  a, b   ,    r   ,    r   R

 (a – b)   ,  ar   ,  ra   

  is ideal of R

i.e., Ker  is an ideal of R.

Q29. If F is a field of characteristic zero then prove that F contains a subfield isomorphic to
the rational numbers.

Ans : (Jan.-21)

Given that,  F is a field of characteristic zero

S is isomorphic to Z

Let g be the ring isomorphic to S to Z

Let T : a a, b  s,  b 0
b

   
 

 be the subfield

f : T   Q be defined by = f
a
b

 
 
 

 = 
g(a)
g(b) ... (A)

By the definition of ring homomorphism

 is a ring homomorphism, it should satisfied the given two conditions.

1. (a + b) = (a) + (b)

2. (a b) = (a) + (b)
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Let S, t  T   a, b, c, d  S  where  b = d   0

Such that S = 
a
b

 and t = 
c
d

f(S) + f(t) = f
a
b

 
 
 

 + f
c
d

 
 
 

= 
g(a)
g(b)  + 

g(c)
g(d)   from (A)

= 
g(a) g(d) + g(c) g(b)

g(b) g(d)

= 
g(ad bc)

g(bd)


= f
ad bc

bd
 

 
 

= f
ad bc
bd bd

  
 

= f
a c
b d

  
 

  f(S) + f(t) = f(S + t)

Consider

f(S) f(t) = f
a
b

 
 
 

 f
c
d

 
 
 

   = 
g(a)
g(b)  . 

g(c)
g(d)

   = 
g(ac)
g(bd)

   = f
ac
bd

 
 
 

   = f
a c

 
b d

    
    
    

   = f(S t)
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 f(S) f(t) = f(St)

 f is ring homomorphism

Now to prove f is Ring Isomorphism, it is enough to prove f is one - one and f is onto

1. ‘f’ is one - one

Let f(S) = f(t)

 f
a
b

 
 
 

 = f
c
d

 
 
 


g(a)
g(b) = 

g(c)
g(d)

 g(a) g(d) = g(c) g(b)

 g(ad) = g(cb)

 ad  =  bc


a
b

 = 
c
d

 f  is one - one

2. ‘f’ is onto

Let  p   Q.  Then there exist  m, n   z,  n   0 such that p = 
m
n

Since g is a ring homomorphism from S to z

  a, b  S,  b   0     g(a) = m,  g(b) = n

 f
a
b

 
 
 

 = 
g(a)
g(b)  = 

s
t

 ‘f’ is onto

 ‘f’ is ring homomorphism

Then ‘f’ contains a subfield isomorphic to the rational number.

Q30. Find all the maximal ideals in Z12.

Sol :
Given that,  Z12 is a ring

Let I be the ideal of Z12

The divisors of 12 are 1, 2, 3, 4, 6 and 12

 The ideals in Z12 are
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<1> = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0} = Z12

<2> = {0, 2, 4, 6, 8, 10}

<3> = {0, 3, 6, 9}

<4> = {0, 4, 8}

<6> = {0, 6}

<12> = {0}

<1> and <12> are not maximals.

 Maximal ideals = <2>, <3>

Q31. Let  R, S be any two rings and  : R   S is a homomorphism. If R is commutative. Then
show that (R) is commutative.

Ans :
Given that,  R, S are two rings

 : R   S is a homomorphism

Suppose that, R is commutative ring

Required to prove (R) is commutative ring

Let (r1),  (r2)   (R),  where  r1, r2   R

Consider

(r1)  (r2) = (r1 r2)

= (r2 r1)

= (r2) (r1)

 (r1) (r2) = (r2) (r1)

 (R) is commutative ring

Q32. Show that the set M2(z) of 2 × 2 matrices with integer entries is a non commutative ring
with unity.

Ans : (Jan.-21)

Given that

M2(z) is a set of 2 × 2 matrices with integer

Let A = 
1 1

1 1

a b
c d
 
 
 

  B = 
2 2

2 2

a b
c d
 
 
 

   A, B  M2(z)

 A + B = 
1 2 1 2

1 2 1 2

a a b b
c c d d
  

   
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and

A . B = 
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

a a b c a b b d
c a d c c b d d

  
   

From the above we can conclude that closed binary operations M2(z) is a ring.

Let 0 = 
0 0
0 0
 
 
 

 be the additive identity

I = 
1 0
0 1
 
 
 

 be the multiplicative identity

Let A = 
1 1
0 1
 
 
 

  M2(z)

B = 
1 0
1 0
 
 
 

  M2(z)

Consider  AB = 
1 1
0 1
 
 
 

 
1 0
1 0
 
 
 

 = 
1 1 0 0
0 1 0 0
  

   

     = 
2 0
1 0
 
 
 

Consider  BA = 
1 0
1 0
 
 
 

 
1 1
0 1
 
 
 

     = 
1 0 1 0
1 0 1 0
  

   

     = 
1 1

1 1
 
 
 

 AB   BA

So, multiplication is not commutative

 M2(z) is a non commutative ring with unity 
1 0

0 1
 
 
 
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Q33. Define ring homomorphism show that   : C   M2 [R] given by

  (a + ib) = 
a b

b a
 
  

   a, bR, is an isomorphism of C into M2 [R].

(OR)

Let S = 
a b

 a,  b  R
b a

        
 then show that

  : C   S given by, ,   : (a + ib) = 
a b

b a
 
  

 is a ring isomorphism.

Sol : (May/June-19)

Given that

  : C   S given by, ,   : (a + ib) = 
a b

b a
 
  

   a, b  R.

Let h1, h2  C

h1 = a1 + ib1, h2 = a2 +ib2

where a1, a2, b1, b2  R

Consider

h1 + h2 = (a1 + ib1) + (a2 + ib2)

 h1 + h2 = (a1 + a2) + i (b1 + b2)

Consider

h1 h2 = (a1 + ib1) (a2 + ib2)

   = a1 a2 + i a1 a2 + i b1 a2 – b1 b2

 h1 h2 = (a1  a2 – b1  b2) + i (a1 b2 + b1 a2)

  (h1) =   (a1 + ib1)

= 
1 1

1 1

a b
b a

 
  

 (h2) =   (a2 + ib2) = 
2 2

2 2

a b
b a

 
  

 (h1) +  (h2) = 
1 1

1 1

a b
b a

 
  

 + 
2 2

2 2

a b
b a

 
  

 = 
1 2 1 2

1 2 1 2

a a b b
b b a a
  

    
... (1)

 (h1 + h2) =  [(a1 + a2) + i( b1 + b2)] = 
1 2 1 2

1 2 1 2

a a b b

(b b ) a a

  
    

... (2)
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From (1) + (2)

 (h1) +  (h2) =   (h1 + h2)

Similarly

  (h1  h2)  =  (h1)  (h2)

  is ring homomorphism from C to S

  (h1) =  (h2)


1 1

1 1

a b
b a

 
  

 = 
2 2

2 2

a b
b a

 
  

Compare the matrices

  a1 = a2 b1 = b2

  a1 + ib1  = a2 + ib2

h1 = h2

  is one - one and homomorphism.

   is not an onto homomorphism

   is an into isomorphism

Q34. Prove that Z7, the ring of integers modulo 7 is a field.

Ans : (Jan.-21)

Given,  Z7 = {0, 1, 2, 3, 4, 5, 6}

with integer modulo 7. Under addition and multiplication.

Z7 Under addition modulo, By composition table

7 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5



Z7 Under multiplication modulo By composition table.
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7 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



1. here Associative property is satisfied Under  7 and  7

2. Distributive property also holds good.

3. Commutative property also holds good.

i. e., 0  Z  be the additive identity element

1  Z  be the multiplicative identity element.

4. The additive inverse of 0,1, 2, 3, 4, 5, 6 are 0, 6, 5, 4, 3, 2, 1 respectively.

5. The multiplicative inverse of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6 respectively.

 Z is commutative

 Z7 is the ring of integer modulo 7 is a field.
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1. Prove that Z7, the ring of integers modulo 7 is a field.

Ans :
Given,  Z7 = {0, 1, 2, 3, 4, 5, 6}

with integer modulo 7. Under addition and multiplication.

Z7 Under addition modulo, By composition table

7 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5



Z7 Under multiplication modulo By composition table.

7 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



1. here Associative property is satisfied Under  7 and  7

2. Distributive property also holds good.

3. Commutative property also holds good.

i. e., 0  Z  be the additive identity element

1   Z  be the multiplicative identity element.

4. The additive inverse of 0,1, 2, 3, 4, 5, 6 are 0, 6, 5, 4, 3, 2, 1 respectively.

5. The multiplicative inverse of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6 respectively.

 Z is commutative

 Z7 is the ring of integer modulo 7 is a field.

Short Question and Answers
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2. Let  be a ring homomorphism from a ring R to a ring S. Then Ker  = {r  R / (r) = 0}
is an ideal of R.

Ans :
Given that

 is a ring homomorphism

i.e.,  : R   S

Required to show that Ker  is an ideal of R

Let 0  R  and  0'  S

Let  be a Kernel of f

  = {r  R : (r) = 0}

0  ,  Since f(0) = 0'

 is non empty

If  a, b    then

f(a) = 0' = f(b)

f(a – b) = f(a + (–b))

   = f(a) + f(–b)

   = f(a) – f(b)

   = 0' – 0'    f(a) = 0' = f(b)

a – b  

If  r is any element of R.

 f(ra) = f(r) f(a)

= f(r) 0

= 0

f(ra) = 0

f(ar) = f(a) f(b)

= 0 f(r)

= 0

 f(ra) = 0  and  f(ar) = 0     ar     and  ra   

Hence  a, b   ,    r   ,    r   R

 (a – b)   ,  ar   ,  ra   

  is ideal of R

i.e., Ker  is an ideal of R.
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3. Let   be a ring homomorphism from Ring R to ring S. If R is commutative ring prove that
(R) is commutative.

Ans :
Let R and S be a two rings

 : R   S

and R is a commutative ring

Let  the homomorphic image of R be (R)

Let x, y  (R)

 x, y  (R)     a, b  R

(a) = x, (b) = y

 xy  =  (a) (b)

      =  (ab)

      =  (ba)   R is commutative ring

      =  (b) (a)

      =  yx

 xy  = yx

Let  : R   S is a ring homomorphism

Let ‘1’ be the unity element of R

 (1)  S

Let a, be an element of R.

a   R

a'  R

 a' = (a)  for some a   R

Consider

      (1) a'  = (1) (a)

 = (1a)

 = (a)

 = a'

      (1) a'  = a' ... (1)

Consider

a' (1) = (a) (1)

  = (a1)

  = (a)

  = a'
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 a' (1) = a' ... (2)

From (1) and (2)

(1) a' = a' (1) = a'

 (1) is a unity element of S

4. Define Ring homomorphism.

Ans :
A ring homomorphism from a ring R to ring S is a mapping from R to S that preserves the two ring

operations.

i.e,    a, b  R

a + b= (a) + (b)

(a b) = (a) . (b)

Let R & S be two rings w.r. to the binary operations ‘+’ & ‘  ’ defined on them, then  is said to be
an isomorphism if is homomorphism, is one one &  is onto.

5. Let R be a ring with Unity 1. The mapping  : Z   R given by n   n.1 is a ring
homomorphism.

Ans :
Let  R be a ring with Unity 1

Then mapping  : Z   R be defined by

nn .1  n  z

  m, n  z     (m) = m . 1  &(n) = n . 1

Now, m + n  z    (m + n) = (m + n) . 1

 =  m . 1 + n . 1

 = (m) + (n)

and m, n  z    (m . n)

      = (m . n) . 1

      = (m . 1) (m . 1)

(m . n) = (m) + (n)

: Z   R is a homomorphim

6. Is the ring 2z is isomorphic to ring 3z.

Ans :
Given,

2z  and  3z are rings

Let z = {n / n  z} then
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2z = {2n / n  z}

3z = {3n / n  z}

 is a mapping from 2z to 3z

i.e.,  : 2z   3z   (2.h) = 3h    h  z

  2a, 2b  2z

Then the ring 2z is isomorphic to ring 3z, if  is isomorphism,  is one one

 is well defined and  is onto

(2a + 2b) = (2(a + b))

  = 3(a + b)

  = 3a + 3b

  = (2a) + (2b)

 (2a + 2b) = (2a) + (2b)

(2a . 2b) = (2 (2ab))

= 3(2ab)

  (2a) (2b)

 The ring 2z is not isomorphic to the ring 3z.

7. Find all the maximal ideals in Z12.

Ans :

Given that,  Z12 is a ring

Let I be the ideal of Z12

The divisors of 12 are 1, 2, 3, 4, 6 and 12

 The ideals in Z12 are

<1> = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0} = Z12

<2> = {0, 2, 4, 6, 8, 10}

<3> = {0, 3, 6, 9}

<4> = {0, 4, 8}

<6> = {0, 6}

<12> = {0}

<1> and <12> are not maximals.

 Maximal ideals = <2>, <3>
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8. If R is a Unity and ‘U’ is an idel of R. Where 1  U. Then prove that U = R.

Ans :

Given  that

‘R’ is a ring with Unity

U is an ideal of R

1  U

 U is an ideal of R

By definition U   R ..... (1)

Required to prove R   U

 U is an ideal of R

We have by definition

  r  R,  1  U    r . 1  &  1 . r  U

     r  U

     R   U ..... (2)

From equation (1) and (2)

We can conclude that U = R

9. Let  be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let
B be an ideal of S. Then for any r   R and any position integer n, (nr) = n(r) and (rn)
= ((n))n.

Ans :

Let R and S are two rings

 : R   S be a ring homomorphism for any  r   R

and any positive integer  n   n . r  z

Consider

(n . r)  =  (r + r ..... + r) n times

    = (r) + (r) + ..... + (r)

  (nr)  =  n . (r)

  (rn)   =  (r . r ..... r) (n times)

    = (r) (r) .....  (r)

   (rn)  =  [(rn
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10. Let  R, S be any two rings and  : R   S is a homomorphism. If R is commutative. Then
show that (R) is commutative.

Ans :

Given that,  R, S are two rings

 : R   S is a homomorphism

Suppose that, R is commutative ring

Required to prove (R) is commutative ring

Let (r1),  (r2)   (R),  where  r1, r2   R

Consider

(r1)  (r2) = (r1 r2)

= (r2 r1)

= (r2) (r1)

 (r1) (r2) = (r2) (r1)

 (R) is commutative ring
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Choose the Correct Answers

1. f(a + b) = . [ b ]

(a) f(a) – f (b) (b) f(a) + f(b)

(c)
f(a)
f(b) (d) none

2. f(–a) = . [ b ]

(a) f(–a) (b) –f(a)

(c) f(a) (d)
1

f(a)

3. Kernel f = [ c ]

(a) f(x) = 0 (b) f(x) = x

(c) f(x) = 0' (d) f(x) = –x

4. Every homomorphic image of a commutative ring is . [ d ]

(a) Closed (b) Open

(c) Bounded (d) Commutative

5. (A) = . [ a ]

(a) (a) (b) (–a)

(c) –(a) (d) 0

6. If A is an ideal and  is onto ‘S’. Then (A) = . [ c ]

(a) field (b) ring

(c) ideal (d) 0

7. T = ab–1,  a, b   S, is . [ c ]

(a) b = 0 (b) b = –1

(c) b   0 (d) b = 1

8. If  is homomorphism (x) = x,  where  a2 = . [ c ]

(a) 0 (b) 1

(c) a (d) –a
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9. 176, 825, is divisible by . [ a ]

(a) 9 (b) 2

(c) 11 (d) 5

10. Ring isomorphism z2 to a subring z2n iff n is . [ b ]

(a) prime (b) odd

(c) even (d) (a) and (b)
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Fill in the Blanks

1. Degree f1(x) < p degree f(x) = .

2. f(a + b) = .

3. f(ab) = .

4. If f is homomorphism it satisfies .

5. f is automorphism if f is .

6. f(m + n) = .

7. f(–a) = .

8. f(0) = .

9. The homomorphic image of a ring R is .

10. Every homomorphic image of a ring is .

11. z7 = .

ANSWERS

1. f1(x) = 0

2. f(a) + f(b)

3.  f(a) . f(b)

4. (i) f(a + b) = f(a) + f(b)

(ii) f(ab) = f(a) . f(b)

5. One – one and onto

6. f(m) + f(n)

7. –f(a)

8. 0'

9. Subring of R

10.  Ring R

11. {0, 1, 2, 3, 4, 5, 6}
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FACULTY OF SCIENCE
B.Sc. IV-Semester(CBCS) Examination

January - 2021
Subject: Mathematics

Paper - IV : ALGEBRA
Time : 2 Hours]          [Max. Marks : 80

SECTION - A  (4 × 5 = 20 Marks)

[Short Answer Type]

Note : Answer any FOUR questions.

ANSWERS

1. Let G be a group and let “a” be an element of order n in G. If ak = e then prove

that n divides K. (Unit-I, SQA-1)

2. Find all subgroups of Z30. (Unit-I, SQA-2)

3. Suppose  : G   G  is an isomorphism from a group G onto group G . If K is

a subgroup of G then prove that (K) = ((R) | R   K) is a subgroup of G . (Unit-II, SQA-2)

4. Prove that the set of all inner automorphisms of a group G is a group under

composition of functions. (Unit-II, SQA-1)

5. Prove that Z7, the ring of integers modulo 7 is a field. (Unit-IV, SQA-1)

6. Show that the characteristic of an integral domain is zero or a prime. (Unit-III, SQA-2)

7. Let  be a ring homomorphism from a ring R to a ring S. If R is commutative

ring, prove that (R) is commutative. (Unit-IV, SQA-3)

8. In the ring Z5, find the quotient and remainder upon dividing

f(x) = 3x4 + x3 + 2x2 + 1 by g(x) = x2 + 4x + 2 where f(x), g(x)   Z5[x]. (Out of Syllabus)

SECTION - B  (3 × 20 = 60 Marks)

[Essay Answer Type]

Note : Answer any THREE questions.

9. State and prove fundamental theorem of cyclic groups. (Unit-I, Q.No.43)

10. Let G be a group and aeG such that |a| = n. If K is a positive integer then

prove that <ak> = <agcd(n,k) and |ak| = 
n

gcd(n,k)
. (Unit-I, Q.No.39)

11. State and prove Lagrange’s theorem for groups. (Unit-II, Q.No.54)

12. Prove that a group up of prime order is cyclic. (Unit-II, Q.No.57)
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13. Show that the set M2(Z) of 2 × 2 matrices with integer entries is a non-commutative

ring with unity. (Unit-IV, Q.No.32)

14. Show that the set of Gaussian integers Z[i]={a+ib|a, bZ} is a sub ring of

the ring of complex numbers. (Unit-III, Q.No.51)

15. Prove that ring with unity contains Zn or Z. (Unit-IV, Q.No.27)

16. If F is a field of characteristic zero then prove that F contains a subfield isomorphic

to the rational numbers. (Unit-IV, Q.No.29)
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FACULTY OF SCIENCE
B.Sc. IV-Semester(CBCS) Examination

May / June - 2019
Subject: Mathematics

Paper - IV : ALGEBRA
Time : 3 Hours]          [Max. Marks : 80

SECTION - A  (5 × 4 = 20 Marks)

[Short Answer Type]

Note : Answer any FIVE of the following questions.

ANSWERS

1. Prove that the set

GL(2, R) =
a b

a,b,c,d R,ad bc 0
c d

       
   

 is a non abelian group with

respect to matrix multiplication. (Unit-I, SQA-4)

2. Let G be a group and H be a nonempty subset of G. If ab   H  a,b   H and

a-1 H a  H then prove that H is a subgroup of G. (Unit-I, SQA-3)

3. State and prove Lagrange’s theorem. (Unit-II, SQA-3)

4. Define Automorphism Homomorphism Image and Isomorphic Image. (Unit-III, SQA-6)

5. Prove that the characteristic of an integral domain in either zero or prime. (Unit-III, SQA-1)

6. Let R[x] denotes the set of all polynomials with real coefficients and let A denotes

the subset of the all polynomials with constant term 0 then prove that A is an

ideal of R[x] and A = < x >. (Out of Syllabus)

7. Let  be a ring homomorphism from a ring R to a ring S then Ker

= {r   R ] (r) = 0} is an ideal of R. (Unit-IV, SQA-2)

8. If D is an integral domain then prove that D[x] is an integral domain. (Unit-III, SQA-2)

SECTION - B  (4 × 15 = 60 Marks)

[Essay Answer Type]

Note : Answer ALL from the questions.

9. (a) Every subgroup of a cyclic group is cyclic more over if |< a >| = n then

the order of any subgroup of < a > is a divisor of n and for each positive

divisor k of n, the group < a > has exactly one subgroup of order k namely

< a >. (Unit-I, Q.No.43)
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OR

(b) Define Alternating group of degree n. Also prove that An has order 
n!
2

 if

n > 1. (Unit-II, Q.No.13)

10. (a) Prove that the group of rotations of a cube is isomorphic to S4. (Unit-III, Q.No.67)

OR

(b) Let G be a group and let Z(G) be the centre of G. If G
Z(G)

 is cyclic then G

is abelian. (Unit-III, Q.No.49)

11. (a) Prove that Z3[i] = {a + ib | a,b   Z3} is a field of order 9. (Unit-III, Q.No.50)

OR

(b) Let R be a commutative ring with unity and let A be an ideal of R 
R
A

 then

is an integral domain if and only if A is prime ideal. (Unit-III, Q.No.52)

12. (a) If R is a ring with unity and the characteristic of R is n > 0 then prove that

R contains a subring isomorphic to Zn. If the characteristic of R is 0 then R

contains a subring isomorphic to Z. (Unit-IV, Q.No.27)

OR

(b)  Let S =  
a b

a,b R
b a

        
 then show that  : C  S given by

 (a + i(b)) =  is a ring isomorphism. (Unit-IV, Q.No.33)
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FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - I
Paper - IV : ALGEBRA

Subject: Mathematics

Time : 3 Hours] [Max. Marks : 80

PART - A  (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. Let  G be a group and let a be an element of order n in G, if ak = e then (Unit-I, SQA-1)
n divides K.

2. Let G be a group and let H be a non empty subset of G. If ab is in H (Unit-I, SQA-3)
  whenever a and b are in H and a–1 is in H whenever a is in H then H is

a subgroup of G.

3. Define binary operation with examples. (Unit-I, SQA-5)

4. A group of order 75 can have at most one subgroup of order 25. (Unit-II, SQA-9)

5. Compute Aut (Z10). (Unit-II, SQA-7)

6. Write notation for cycle. (Unit-II, SQA-5)

7. Define Cancellation Law (Unit-III, SQA-9)

8. State the examples of Rings. (Unit-III, SQA-7)

9. List the applications of factor groups. (Unit-III, SQA-5)

10. Prove that Z7, the ring of integers modulo 7 is a field. (Unit-IV, SQA-1)

11. Let   be a ring homomorphism from Ring R to ring S. If R is commu- (Unit-IV, SQA-3)
tative ring prove that (R) is commutative.

12. Let R be a ring with Unity 1. The mapping : Z   R given by n   n.1 (Unit-IV, SQA-5)
is a ring homomorphism.

SECTION - B  (4 × 12 = 48 M)

[Essay Answer Type]
Note : Answer all the following questions

13. (a) Prove that the set of R* of non zero real numbers is an abelian group (Unit-I, Q.No. 7)
under ordinary multiplication.

(OR)

(b) State and prove fundamental theorem of cyclic group. (Unit-I, Q.No. 43)

14. (a) Prove that for n > 1, An has order 
n!
2

 . (Unit-II, Q.No. 13)

(OR)
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(b) State and prove for every integer ‘a’ and every prime ‘p’,  ap mod (Unit-II, Q.No. 59)
p = a mod p.

15. (a) Prove that a subgroup N of a group G is a normal subgroup of (Unit-III, Q.No. 5)
G iff g N g–1 = N   g  G.

(OR)

(b) Fundamental theorem of homomorpic in group. (Unit-III, Q.No. 20)

16. (a) Let R be a commutative ring with Unity and let A be an ideal (Unit-IV, Q.No. 8)

of R. Then 
R
A

 is an integral domain if and only if A is Prime

(OR)

(b) Let R be a commutative Ring of characteristics 2, Then prove that (Unit-IV, Q.No. 22)
the mapping a   a2 is a ring homomorphism from R to R.
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FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - II
Paper - IV : ALGEBRA

Subject: Mathematics

Time : 3 Hours] [Max. Marks : 80

PART- A  (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. Define Cayley’s Table (Unit-I, SQA-10)

2. Find all subgroups of Z30 (Unit-I, SQA-2)

3. Write some examples of groups. (Unit-I, SQA-6)

4. The set of Automorphism of a group and the set of inner Automorphism (Unit-II, SQA-1)

of  group are both group under the operation of function  composition.

5. The order of a subgroup of a finite group divides the order of the group. (Unit-II, SQA-3)

6. Define Permutation group. (Unit-II, SQA-4)

7. The characteristic of an integral domain is the 0 or prime. (Unit-III, SQA-1)

8. Define Normal subgroup with example. (Unit-III, SQA-3)

9. Define factor group. (Unit-III, SQA-4)

10. Let  R, S be any two rings and  : R   S is a homomorphism. If R is (Unit-IV, SQA-10)

commutative. Then show that (R) is commutative.

11. Let  be a ring homomorphism from a ring R to a ring S. Then Ker (Unit-IV, SQA-2)

 = {r  R / (r) = 0} is an ideal of R.

12. Is the ring 2z is isomorphic to ring 3z. (Unit-IV, SQA-6)

SECTION - B  (4 × 12 = 48 M)

[Essay Answer Type]
Note : Answer all the following questions

13. (a) If G is a cyclic group generated by an element ‘a’ of order ‘n’ and if (Unit-I, Q.No. 44)
|<a>| = n. Then prove that the order of the subgroup of group
generated by a is a divisor of ‘n’.

(OR)

(b) Show that {1, 2, 3} under multiplication modulo 4 is not a group (Unit-I, Q.No. 12)
but that {1, 2, 3, 4} under multiplication modulo 5 is a group.

14. (a) Let  H be a subgroup of G &  a, b  G (Unit-II, Q.No. 50)

 Then |aH| = |bH|

(OR)
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(b) Suppose that is an isomorphism from a group G onto a group G . (Unit-II, Q.No. 31)

Then -1 is an isomorphism from G  onto G.

15. (a) If G is a group and N is a normal subgroup of G. Then prove (Unit-III, Q.No. 8)

that 
G
N

 = {Nx / x  G} forms a group w.r.to coset multiplication

as the binary operation

(OR)

(b) A nonempty subset S of a ring R. is a subring if  S is closed subtraction          (Unit-III, Q.No. 30)
and multiplication

i.e., (i) a – b  S

(ii) ab   S   when  a, b S

16. (a) Let   be a ring homomarphism from a ring R to a ring S. Let A (Unit-IV, Q.No. 16)

be a subring of R and Let B be an ideal of S If  is an isomurphism

If and only if is onto and Ker {r  R /(r) = 0}  ={0}

(OR)

(b) Let   be a ring homomorphism from Ring R to ring S. If R is (Unit-IV, Q.No. 26)
commutative ring prove that (R) is commutative.
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FACULTY OF SCIENCE
B.Sc. IV-Semester (CBCS) Examination

Model Paper - III
Paper - IV : ALGEBRA

Subject: Mathematics

Time : 3 Hours] [Max. Marks : 80

PART- A  (8 × 4 = 32 M)

[Short Answer Type]

Note : Answer any Eight of the following questions

1. Prove that the set GL (2, R) = 
a b
c d

 
 
 

a, b, c, d   R, ad – bc   0




(Unit-I, SQA-4)

is a non abelian group with respect to matrix multiplication.

2. What are the Elementary Properties of Groups? (Unit-I, SQA-7)

3. Define multiplication modulo. (Unit-I, SQA-9)

4. Let   be an isomorphism from G to G . If K is a subgroup of G. Then (Unit-II, SQA-2)

(k) = (k) / k  K} is a subgroup of G .

5. Let  H = {0, 3, 6} is Z9 under addition. Then  find the left cosets of H is Z9. (Unit-II, SQA-8)

6. Define Isomorphism. (Unit-II, SQA-6)

7. If D is an integral domain, Then prove that D[x] is an integral domain. (Unit-III, SQA-2)

8. Define integral domain with example. (Unit-III, SQA-8)

9. Define Automorphism Homomorphism Image and Isomorphic Image. (Unit-III, SQA-6)

10. Define Ring homomorphism. (Unit-IV, SQA-4)

11. Find all the maximal ideals in Z12. (Unit-IV, SQA-7)

12. Let  be a ring homomorphism from a ring R to a ring S. Let A be a (Unit-IV, SQA-9)
subring of R and let B be an ideal of S. Then for any r   R and any
position integer n, (nr) = n(r) and (rn) = ((n))n.

SECTION - B  (4 × 12 = 48 M)

[Essay Answer Type]
Note : Answer all the following questions

13. (a) Let G be a group, and let a belong to G.

(i) if a has infinite order, then  ai = aj  if  and only  if  i = j (Unit-I, Q.No. 37)

(ii) If a has finite order, say n, then <a> = {e, a, a2 ... an–1} and
ai = aj if and only if n divides i – j

(OR)
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(b) Let G be the group of polynomial under addition with coefficients (Unit-I, Q.No. 48)
from Z10.

Find the orders of

f(x) = 7x2 + 5x + 4

g(x) = 4x2 + 8x + 6

and f(x) + g(x)

14. (a) The set of Automorphism of a group and the set of inner (Unit-II, Q.No. 39)
Automorphism of  group are both group under the operation
of function  composition.

(OR)

(b) Prove that a group of prime order is cyclic. (Unit-II, Q.No. 57)

15. (a) The characteristic of an integral domain is the 0 or prime. (Unit-III, Q.No. 46)

(OR)

(b) Prove that Z3 [i] = {a + ib / a,b Z3 } is a field of order 9? (Unit-III, Q.No. 50)

16. (a) Prove that ring with unity contains zn or z. (Unit-IV, Q.No. 27)

(OR)

(b) Define ring homomorphism show that   : C   M2 [R] given by (Unit-IV, Q.No. 33)

  (a + ib) = 
a b

b a
 
  

   a, bR, is an isomorphism of C into

M2 [R].


