f
Rahul’s v

Topper’s Voice

MCA

Il Year 11l Sem
(Osmania University)

Latest Edition

DISTRIBUTED
SYSTEMS

1> Study Manual
1> Important Questions
1> Solved Model Papers

price .
- by - N 2A9'00
WELL EXPERIENCED LECTURER

@i

Rahul Publications”

\ s—7 Hyderabad. Cell : 9391018098, 9505799122

J

All disputes are subjects to Hyderabad Jurisdiction only

,—_-_—-_—-_-_—-_—-_-_—-_—-_-_—-_—_-\

MCA

Il Year 11l Sem

DISTRIBUTED
SYSTEMS

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

@ No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE

Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

,-----------------------
\-_—_-_—_—-_—_—-_—_—-_—_—-_—_—-_—_—-_—_-_

e
T

DISTRIBUTED

SYSTEMS

T T T
T

LT

o
T
T

1T
I

1T

LT

T
T

N

_a

o
T

T
T

LT

o
T
T

1T
I

1T

LT

T
T

N

_a

o
T
T

T
LT

Important Questions
Model Paper - |
Model Paper - 11
Model Paper - 111
Unit - |

Unit - 11

Unit - 111

Unit- IV

1V - VIl

VI - VI

IX-1X

X-X

1-34

35-76

77 -132

133-172

N\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

' SYLLABUS'

UNIT -1

Introduction: definition of distributed system, goals, types of distributed
systems.Architectures:architectural styles, system architectures, architectures versus middleware,
self-management in distributed systems.Processes:threads, virtualization, clients, servers, code
migration.

UNIT - 11

Communication: Remote Procedure Call, Message-Oriented Communication, Stream-Oriented
Communication, Multicast Communication.Naming:names, identifiers, and addresses, flat
naming, structured naming, attribute based naming.Synchronization:clock synchronization, logical
clocks, mutual exclusion, global positioning of nodes, election algorithms.

UNIT — 11l

Consistency and Replication:introduction, data-centric consistency models, client-centric
consistency models, replica management, consistency protocols.Fault Tolerance:introduction,
process resilience, reliable clientserver communication, reliable group communication, distributed
commit, recovery.Security: introduction, secure channels, access control, security management.

UNIT - IV

Distributed Object-Based Systems: architecture, processes, communication, naming,
synchronization, consistency and replication, fault tolerance, security.Distributed File Systems:
architecture, process, communication, naming, synchronization, consistency and replication,
fault tolerance, security.Distributed Webbased Systems:architecture, process, communication,
naming, synchronization, consistency and replication, fault tolerance, security.

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\

Contents
Topic Page No
UNIT - |
I O 101 o To 11T £ o PR SR 1
1.1.1 Definition of Distributed SYStEMcoicuiiiiiiiiiie e 1
T €T - 1O RPPRR 1
1.1.3 Types Of DisStributed SYSIEIMSceeiiiiiiee i eeaee e 4
A Y ol o) C=Tot (0T PR 8
1.2.1 ArChiteCtUral STYIES ...ceciiviiee ettt et e enees 8
1.2.2 SYStEM AFCHITECIUIES ..o vviiei ettt s ettt ettt e e e e e st e e e st ae e e e e reee e e s nnees 9
1.2.3 Architectures Versus MiddIEWATEcccuuvreiiiuiiiee e e e sree e snieaea e 15
1.2.4 Self-management In Distributed SYStEMSccoovveeiiiiiiiiiiiiee e, 17
L3 PIOCESSES ...ttt 18
R Tt I o =T T [PPSR 18
G T 1 (VT 112 To] o PRSP 22
G T T 1 1= o1 (PRSPPI 24
L.314 SBIVEIS ..ttt 27
1.3.5 CO0E MIGratiONceiveiiiiiiiiitiie ettt ettt e bbb e 29
UNIT - 11
2.1 COMIMUNICALION ©uttiiiitiireeiitiiee e s ettt e e et e e e e st tee e e s ssteeeesstaeeeesnstaeeessnbaeeeesassaeeesansaeeessreneenas 35
2.1.1 Remote Procedure Callccocvveiiiiiieiiiiie et 40
2.1.2 Message-oriented COMMUNICALIONueiiiiiiiiiiiie ettt 44
2.1.3 Stream-oriented COMMUNICALIONcoiivviieiiiiieieeiiiiee e siieee e enneeee e eeaeeees 48
2.1.4 Multicast COMMUNICATIONc.vveveeiiiiiiesiiiie e e e s e e e e e rbee e e e snbaee e e s nreaeees 49
P 2 \F- Uy 11 o [T PP P TP PP OPPPTPPTP 52
2.2 1 NAIMIES e 52
A [1= 01 11 1= £ S SPPPRPPRR 52
A T Ao [0 | £~ 11T PSP TPPRPPRR 53

: Topic Page No
| 2.2.4 FIat NaMINGccoociiiiiiiiiii i 53
: 2.2.5 StruCtured NAMINGoooiuiieiiiie ettt sbee e sne e 55
| 2.2.6 Attribute Based NaMINGc.ccoviiieiiieiieeie ettt 60
: 2.3 SYNCAIONIZALION .. .uiiiii i e e st e e s et e e e s ntba e e e s enbaeesnreneenas 62
I 2.3.1 Clock SYNCArONIZALIONccciiiiirie ittt e e et e e e aee e e s nneeee s 62
: 2.3.2 LOQICAI ClOCKSeeiieieeiiiee ittt ettt 66
: 2.3.3 MULUAI EXCIUSIONvvvieiiiiiie sttt e e et e e e eteen e e s nnaaee s 68
| 2.3.4 Global Positioning Of NOUESc..ccoveerieiiirieririeieie et 73
: P22 TR ST = (= Tot T o A [o o 1 o 1 4SS 75
I UNIT - I

: 3.1 Consistency and REPIICALIONueiiiiiiiiiii it 77
: I 00 04 R Vo 14 o Yo [1 Tod T o PSPPI 77
I 3.1.2 Data-centric ConsiStency MOUEIScoicuuiiiiiiiiiie e 77
: 3.1.3 Client-centric ConsiStenCy MOUEISccuiviiiiiiiieiiiiiee e 84
: 3.1.4 Replica MaNAGEMENTuiiiiiiiiiie ettt 87
| 3.1.5 CoONSIStENCY PrOtOCOISccviiiiiiiiiiiiie e s 89
: I - LU || o] 1= - g o= PSRRI 92
| 3.2, IEFOTUCTION vttt ettt e et e e e et e e e e et e e e et eeeae et eeeaeneeeesneeeeas 92
: 3.2.2 Process RESHIENCEccciiviiieiiiiiii ettt e et e e e etaae e e s nnnae s 95
| 3.2.3 Reliable Clientserver COmMmUNICAtIONccoviveeeeriiiiieeiiiiieessiieeessnieeeeeseeeeens 98
: 3.2.4 Reliable Group COMMUNICALIONoooiiuiiiiiiiiiiiee et 101
I 3.2.5 DiStOUEd COMMILvvoeooeeeeeeeeeeeeeeeeeeeeeeeee e 104
: 3.2.6 RECOVEIY .o 106
: 3.8 SEOUMMY oeeeeeeeeesee e eeeeeeese e eeeeeee e eee e e e eeeese e ees e eesenenee 111
| 3.3.1 INtrOdUCLION ..o 111
: 3.3.2 SECUIE ChaNNEISeiieiiiiiei ittt et e e e e s nneeee s 118
| 3.3.3 ACCESS CONLIOl......uviiieiiiiie ettt ettt e et e e e eab e e eraee s 126
: 3.3.4 Security MAnNAgEMENTcciiiiiiiiiie ittt ettt 129
N e e e e e e e e e e e e e e

f———————— e — —
: Topic Page No
: UNIT - IV
| 4.1 Distributed Object - Based SYStEmMScccccuviiiiiiiiiiiniii i 133
: O R AN (ol g [(=T (1] (USSP 133
| 4.1.2 PIrOCESSES ...eouiiiiieitiiiiii ettt 135
: 0 I I @001 41U 1= €[o [RPN 136
| 0 \\F- U 11 o [[PO U PP PU PR PPPRPROTI 136
: O SIS} Y o Tod T o 2= L4 [o I PP 142
| 4.1.6 Consistency and RePlICAIONcoiuiiiiiiiiiiie it 143
: O I - TH || A o] =T = o o= PRSPPI 144
| IR TS =Tl U [) Y ST 145
: 4.2 Distributed File SYSIEIMSiiviiiieiiiiiie ettt s e e ee e e s b e e e sneee e e s snnes 147
| N R Y (v 011 (T (1 (PSP 147
: £.2.2 PIOCESSooooevvveeeeeeeeeeeeeoeeeeeeeeeeeseeeseeee e eeseee e eseee e eeesee e essee e 152
| 4.2.3 COMMUINICATION .iiiiiiieiiiiiee e ettt e s ettt e et e e e st e e e s ssbae e e e sbeeeeessntaeeesaseeeeesnnees 152
: 824 NAMING oveooeeeeeee e e e ee e ee e eee e e s ee e ees e eee e ees e eeeee e 153
| N SV o Tod T o T2 L4 [o I PR 153
2. onsistency and RepliCALIONcooiiiiiiiiiiii e
: 4.2.6 Consist d Replicat 156
I N N - U || G o] (= = Vg o= PRSP 157
: 8.2.8 SECUMTLY vrrveveeeeeeeeeeeeeeeeeeee e e et e e e e e e e eeeeeeeesees e eeseeesees s s s stesseeseeseeesesseeeed 158
I 4.3 Distributed Webbased SYStEMSccoiiiiiiiiiiiee e 160
I A.3.1 ATCRITECIUIEvoceoceeceecececeeee et s et 160
I
I 432 PIOCESS ...ceeeeteeteeeeee ettt ettt et et e et et e et rrrn bbb e e e e e e e 163
I 4.3.3 COMMUNICALIONoovoeeceeeecececie et 166
: N \\F- 1o 11 o [[PO T PP PUPROPPR PRI 169
| 4.3.5 SYNCAIONIZALIONvoeeieieieieeeeeeeeee et s sttt n s s s e eeeeaeas 170
: 4.3.6 Consistency and RePliCALIONcovueiiiiiiiiiie it 170
| 4.3.7 FAUILTOIBIANCEooveeeeeieieieeeeeeeeee et s sttt sen s e se e, 172
: N TR TS =Tl U {1 Y SRS 172
I
I
N e

© ©® N o 00 s~ 0 NP

[EEY
©

o o A~ w N E

~

10.

Important Questions

UNIT - |

SHORT QUESTIONS

What is distributed system?

What are the goals of a distributed systems?

What is architectural style?

What are called as super peers?

Write about middleware sytems.

Write a short note on Processes.

Write a note on threads.

What is virtualization ?

What is Thin- Client Network Computing?

Differentiate between (temporary) session state and permanent state.

LoNG QUESTIONS

Explain various scaling techniques.

What is architectural style? Explain different types of architectural styles.

Write about centralised anddecentralized architectures.

Write about various Hybrid Architectures.

Write about the Feed back control model for self- management in distributed systems

What are the uses of threads in distributed environment Write, how to implement the threads in
distributed environment.

What is the role of virtualization to solve the problems in distributed systems :
Write about stateless and statefull servers.
What are the reasons for code migration. write about the code migration.

Explain the migration process in heterogeneous systems.

Rahul Publications

§

IMPORTANT QUESTIONS

DISTRIBUTED SYSTEMS

© ©®© N o 00 s~ 0 NP

[EEY
©

© ©® N o 00 s~ 0 NP

[EEY
©

UNIT -1l

SHORT QUESTIONS

Write about the communication in distributed systems
What is RPC?

What is Message Oriented Communication?

Write about Overlay Networks

Write about names in distributed environment

What are identifiers in distributed environment.

Write a note on addresses in distributed systems
Write a note on Flat Naming service.

What is clock synchronization in DS.

Write about Geometric Overlay Network

LoNnG QUESTIONS

Explain about Replica Management in Distributed systems.

Explain about consistency protocols.

What is failure model? Explain different types of failures in distributed systems

Explain what is process resilience? and how fault tolerance can be achieved by using fault tolerance.

Explain point to point communication in distributed systems

Write about two phase commit protocol

Explain about three phase commit protocol

What is message logging ? When should we use message logging?

Explain various Cryptosystems.

What are secure channels? Write about them

§

Rahul Publications

M.Sc. Il YEAR IV SEMESTER

UNIT - 1l

SHORT QUESTIONS

Write about the reasons for replication
What is dependability

What is failure model?

Write about Failure Masking by Redundancy
What is process resilience?

Write about failure detection process

Write about backward recovery.

Write about forward recovery.

© ©®© N o 00 s~ 0 NP

Write about Security in distributed systems

[EEY
©

Write about the design issues when considering the security in distributed systems

LoNnG QUESTIONS

Explain about Replica Management in Distributed systems.

Explain about consistency protocols.

What is failure model? Explain different types of failures in distributed systems?

Explain what is process resilience? and how fault tolerance can be achieved by using fault tolerance.
Explain point to point communication in distributed systems.

Write about two phase commit protocol.

Explain about three phase commit protocol.

What is message logging ? When should we use message logging?

© ©® N o 00 s~ 0 NP

Explain various Cryptosystems.

[EEY
©

What are secure channels? Write about them.

§

Rahul Publications

IMPORTANT QUESTIONS DISTRIBUTED SYSTEMS

UNIT - IV

SHORT QUESTIONS

Write about processes or object Servers

Write a note on ORB

What is Synchronization in Distributed systems.
What are distributed file systems? Explain
What is the role of Processes in DFS

Write a note on Naming service in DFS

What are File Handles in DFS

What are Web Services

© ©®© N o 00 s~ 0 NP

Write a note on Web Browser

[EEY
©

Write a note on SOAP,

LoNnG QUESTIONS

Explain RMI and its Architecture.

Explain Replication Framework.

Explain about Sun Network File Systmes.

Write about , how Synchronization takes place for the file systems
How caching and replication is useful in DFS, Explain.

Explain how to handle Byzantine Failures in DFS.

Explain about distributed web based systems and its architecture.

Explain about HTTP protocol.

© ©® N o 00 s~ 0 NP

Write about synchronization in distributed web based systems.

[EEY
©

Write about Web Proxy Caching.

]

VI

:

Rahul Publications

FACULTIES OF COMPUTER SCIENCE
M.Sc IV Semester Examination
Model Paper - |
DISTRIBUTED SYSTEMS
Time : 3 Hours] [Max. Marks : 80

PART - A (8x4=32M)
Answer all the Questions

ANSWERS
1. Write about middleware sytems. (Unit-1, Q.No. 12)
2. Write a note on threads. (Unit-1, Q.No. 17)
3. Whatis RPC? (Unit-11, Q.No. 4)
4 Write about Overlay Networks (Unit-11, Q.No. 8)
5. What is dependability (Unit-111, Q.No. 6)
6 Write about forward recovery. (Unit-111, Q.No. 16)
7. What is Synchronization in Distributed systems. (Unit-1V, Q.No. 9)
8. What are Web Services (Unit-1V, Q.No. 27)
PART -B (4 x 12 =48 M)
Answer any Four of the following questions
9a) What are the uses of threads in distributed environment 19. (Unit-1, Q.No. 18 & 19)
Write, how to implement the threads in distributed environment
b) Explain the migration process in heterogeneous systems. (Unit-1, Q.No. 36)
10a) Explain about Stream oriented Communciation. (Unit-11, Q.No. 8)
b) Explain about mutual exclusion. 24. Write about Token Ring Algorithm (Unit-11, Q.No. 23, 24)
for mutual Exclusion
11a) Write about two phase commit protocol. (Unit-111, Q.No. 14)
b) Write about various methods of access control. (Unit-111, Q.No. 26)
12a) Explain how to handle Byzantine Failures in DFS. (Unit-1V, Q.No. 23)
b) Write about Web Proxy Caching. (Unit-1V, Q.No. 37)

J

Vil

:

Rahul Publications

SOLVED MODEL PAPERS

DISTRIBUTED SYSTEMS

FACULTIES OF COMPUTER SCIENCE

M.Sc IV Semester Examination
Model Paper - Il
DISTRIBUTED SYSTEMS

Time : 3 Hours]

[Max. Marks : 80

9a)
b)
10a)

b)
11a)
b)
12a)
b)

PART-A (8 x4=32M)
Answer all the Questions

What are called as super peers?
What is virtualization ?
What is Message Oriented Communication?
What is clock synchronization in DS.
What is failure model?
What is process resilience?
What is the role of Processes in DFS
Write a note on SOAPR,
PART -B (4 x 12 =48 M)
Answer any Four of the following questions

Explain various scaling techniques

Write about decentralized architectures.
Write about middleware protocols and types of communication
supports by middleware protocols

Write about physical clocks. Explain NTP algorithm in physical clocks.
What are data centric consistency models.

Explain various Cryptosystems.

Explain RMI and its Architecture

Explain about distributed web based systems and its architecture.

ANSWERS
(Unit-1, Q.No. 10)
(Unit-1, Q.No. 22)
(Unit-11, Q.No. 7)

(Unit-11, Q.No. 18)
(Unit-111, Q.No. 7)
(Unit-111, Q.No. 9)
(Unit-1V, Q.No. 17)

(Unit-1V, Q.No. 31)

(Unit-1, Q.No. 3)
(Unit-1, Q.No. 9)
(Unit-11, Q.No. 3)

(Unit-11, Q.No. 18 & 19)

(Unit-111, Q.No. 2)
(Unit-111, Q.No. 23)
(Unit-1V, Q.No. 4)
(Unit-1V, Q.No. 25)

g

Rahul Publications

M.Sc.

Il YEAR IV SEMESTER

FACULTIES OF COMPUTER SCIENCE

M.Sc IV Semester Examination
Model Paper - 11l
DISTRIBUTED SYSTEMS

Time : 3 Hours]

[Max. Marks : 80

PART-A (8 x4=32M)
Answer all the Questions

1. Write a short note on Processes.

2. What is Thin- Client Network Computing?

3. Write about the communication in distributed systems.
4, Write a note on Flat Naming service.

5. Write about Failure Masking by Redundancy.

6. Write about backward recovery.

7. Write about processes or object Servers.

9. What are File Handles in DFS.

PART -B (4 x 12 =48 M)
Answer any Four of the following questions

9a) Write about the Feed back control model for self- management
in distributed systems.

b). What is the role of virtualization to solve the problems in distributed systems.
10a) Explain ISO OSl reference Model.
b) What is RPC? Explain the working of RPC .what are the issues of RPC.
And Mention its advantages.
11a) Explain point to point communication in distributed systems.
b) Explain various Security Mechanisms.
12a) Explain Replication Framework.

b) Write about, how Synchronization takes place for the file systems.

ANSWERS

(Unit-1, Q.No. 16)
(Unit-1, Q.No. 26)
(Unit-11, Q.No. 1)
(Unit-11, Q.No. 13)
(Unit-111, Q.No. 8)
(Unit-111, Q.No. 16)
(Unit-1V, Q.No. 2)

(Unit-1V, Q.No. 20)

(Unit-1, Q.No. 15)

(Unit-1, Q.No. 23)
(Unit-11, Q.No. 2)
(Unit-11, Q.No. 4 & 5)

(Unit-111, Q.No. 12)
(Unit-111, Q.No. 22)
(Unit-1V, Q.No. 11)
(Unit-1V, Q.No. 21)

g

Rahul Publications

Introduction: Definition of distributed system, goals, types of distributed
UNIT | systems. Architectures: architectural styles, system architectures,
architectures versus middleware, self-management in distributed systems.
I Processes: threads, virtualization, clients, servers, code migration.

I B
T T
0 T A A
I A I I A
T T

T P T P T T

i e
rrrrrrrrrrrrrrrrrrrrrrrr et PP e
A A

1.1 INTRODUCTION I

1.1.1 Definition of Distributed System
Q1. What is distributed system?

AnS :

A distributed system is a network that consists of autonomous computers that are connected using
a distribution middleware. They help in sharing different resources and capabilities to provide users with
a single and integrated coherent network.

Computer 1 Computer 2 Computer 3 Computer 4
| 1 [
Appl. A Application B Appl. C
, :) S— — _—
Distributed system layer (middleware)

[iowios]| [[tomioss]| |[iowmioss]

Network

The key features of a distributed system are:

Components in the system are concurrent. A distributed system allows resource sharing, including
software by systems connected to the network at the same time.

» The components could be multiple but will generally be autonomous in nature.

» Aglobal clock is not required in a distributed system. The systems can be spread across different
geographies.

» Compared to other network models, there is greater fault tolerance in a distributed model.

» Price/performance ratio is much better.

1.1.2 Goals
Q2. What are the goals of distributed systems?
Ans :

The four important goals that should be met for an efficient distributed system are as follows:

{ 1 '
| Rahul Publications

M.Sc. IV Sem

UNIT - |

1. Connecting Users and Resources

» The main goal of a distributed system is
to make it easy for users to acces remote
resourses and to share them with others
in a controlled way.

» ltis cheaper to le a printer be shared by
several users than buying and main-
taining printers for each user.

» Collaborating and exchanging informa-
tion can be made easier by connecting
users and resource.

2. Transparency
» Itis important for a distributed system

components without affecting existing
components.

» An open distributed system must also
be extensible.

4, Scalable

» Scalability is one of the most important
goals which are measured along three
different dimensions.

» First, a system can be scalable with
respect to its size which can add more
user and resources to a system.

Rahul Publications

2 J

» Second, users and resources can be
geographically apart.

» Third, it is possible to manage even if
many administrative organizations are
spanned.

Q3. Explain various scaling techniques.
Ans :

Scaling Techniques
Three techniques for scaling:
1. Hiding communication latencies
2. Distribution

» typical case - accessing databases using
forms.

Ship the code for filling in the form, and
possibly checking the entries, to the client,
and have the client return a completed form
- approach of shipping code is now widely
supported by the Web in the form of Java
applets and Javascript.

The difference between letting (a) a server or
(b) a client check forms as they are being
filled.

DISTRIBUTED SYSTEMS

Client Server
FIRST NAME [MARRTEN |] g
LAST NAME [VaN STEEN | e
E-MAIL [GTeEN@CSVUNL | @,T"’ —»
e
@ |] @r
g
Check form Process form
(a)
Client Sarver
FIRST NAME [MAARTEN]
LAST NAME [van STEEN | L":;': EEE'N I
E-MAIL > -
|STEEH'E CS.NVU.NL J STEEN@CS. VLML
=l »
F.d X
Check form Process form
(b)

Distribution - splitting a component into smaller parts and spreading those parts across the system.
E.g.: Internet Domain Name System (DNS).

» The DNS name space is hierarchically organized into a tree of domains, which are divided into
nonoverlapping zones

» Names in each zone are handled by a single name server.
» Resolving a name means returning the network address of the associated host.
e.g. the name nl.vu.cs.flits.
» Replication
» Increases availability
» Helps balance the load between components leading to better performance.

e.g. in geographically widely-dispersed systems - a copy nearby can hide much of the communication
latency problems.

» Caching - special form of replication

» Caching results in making a copy of a resource, generally in the proximity of the client
accessing that resource.

» Caching is a decision made by the client of a resource, and not by the owner of a
resource.

» Caching happens on demand whereas replication is often planned in advance.

[ssues of caching and replication - multiple copies of a resource -> modifying one copy makes that
copy different from the others -> leads to consistency problems.

» Weak consistency — e.g. a cached Web document of which the validity has not been checked
for the last few minutes.

» Strong consistency — e.g. electronic stock exchanges and auctions.

{ 3}
= Rahul Publications

M.Sc. IV Sem

UNIT - |

1.1.3 Types of Distributed Systems

Q4. Explain about various types of
distributed systems.

Ans :

According to the performance the distributed
systems are categorised into three types:

» Distributed computing systems
» Distributed information systems
» Distributed pervasive systems

» Distributed computing systems

An important class of distributed systems is

» Each cluster consists of a collection of
compute nodes that are controlled and
accessed by means of a single master
node.

Master Node

> Handles the allocation of nodes to a particular
parallel program.

> Maintains a batch queue of submitted jobs

> Provides an interface for the users of the
system.

Rahul Publications

4 J

> The master runs the middleware needed for
the execution of programs and management
of the cluster.

> Middleware is formed by the libraries for
executing parallel programs.

many of these libraries effectively provide only
advanced message-based commu-nication
facilities, but are not capable of handling faulty
processes, security, etc.

o compute nodes - often need nothing else
but a standard operating system.

An example of a cluster computing system.

Master node Compute node ‘Compute node

Mar gen C it G Component
application of of of

paraliel parallel paraliel
Parallel libs application application application
| Locaios || [Locaios |

| I L

Remote access
network e e e s

| Local 0S |

provided to that organization.

> Resources consist of compute servers
(including supercomputers, possibly
implemented as cluster computers), storage
facilities, and databases. In addition, special
networked devices such as telescopes,
sensors, etc., can be provided as well.

Software required for grid computing evolves
around providing access to resources from different
administrative domains, and to only those users and
applications that belong to a specific virtual
organization.

DISTRIBUTED SYSTEMS

A layered architecture for grid computing

systems.

‘ Applications

‘ Callect;:'e layer ‘

h 4
Connectivity layer |—| Resource layer

‘ Fabric Iayer‘ ‘

Four layer architecture:

fabric layer - provides interfaces to local
resources at a specific site.

» Mterfaces are tailored to allow sharing
of resources within a virtual organi-
zation.

» Provide functions for querying the state
and capabilities of a resource, along with
functions for actual resource
management (e.g., locking resources).

(@) Connectivity layer - consists of
communication protocols for supporting
grid transactions that span the usage of
multiple resources.

» Contains security protocols to
authenticate users and resources.

» In many cases human users are
not authenticated - programs
acting on behalf of the users are
authenticated.

(b) Resource layer - responsible for
managing a single resource.

» Uses functions provided by the
connectivity layer and calls directly
the interfaces made available by
the fabric layer.

» Responsible for access control, and
hence will rely on the authen-
tication performed as part of the
connectivity layer.

3. Collective layer - handles access to multiple
resources

» Consists of services for resource
discovery, allocation and scheduling of
tasks onto multiple resources, data
replication, etc.

» May consist of many different protocols
for many different purposes, reflecting
the broad spectrum of services it may
offer to a virtual organization.

4. Application layer - consists of the applications
that operate within a virtual organization and
which make use of the grid computing
environment.

Grid Middleware layer - collective, connecti-
vity, and resource layers.

» Provide access to and management of
resources that are potentially dispersed
across multiple sites.

» Shift toward a service-oriented architec-
ture in which sites offer access to the
various layers through a collection of
Web services

> Led to the definition of an alternative

architecture known as the Open Grid
Services Architecture (OGSA).

» Consists of various layers and many
components, making it rather complex.

Distributed Information Systems

Many of the existing middleware solutions are
the result of working with an infrastructure in which
it was easier to integrate applications into an
enterprise-wide information system.

Several levels at which integration took place:

1. A networked application simply consisted of
a server running that application (often
including a database) and making it available
to remote programs, called clients.

Such clients could send a request to the server
for executing a specific operation, after which
a response would be sent back. Integration
at the lowest level would allow clients to wrap

{ 5 |
| Rahul Publications

M.Sc. IV Sem UNIT - |

a number of requests, possibly for different servers, into a single larger request and have it executed
as a distributed transaction.

The key idea was that all, or none of the requests would be executed.

2. As applications became more sophisticated and were gradually separated into independent
components (notably distinguishing database components from processing components), it became
clear that integration should also take place by letting applications communicate directly with each
other.

Thre are two forms of distributed information systems available
» Transaction processing systems

» Enterprise application integration (EAI)

Transaction Processing Systems

2. Consistent: The transaction does not violate system invariants.

If the system has certain invariants that must always hold, if they held before the transaction, they
will hold afterward too e.g. a banking system - a key invariant is the law of conservation of money.
After every internal transfer, the amount of money in the bank must be the same as it was before
the transfer

3. Isolated: Concurrent transactions do not interfere with each other.
» Transactions are isolated or serializable

» If two or more transactions are running at the same time, to each of them and to other
processes, the final result looks as though all transactions ran sequentially in some (system
dependent) order.

{6 }
Rahul Publications —J

DISTRIBUTED SYSTEMS

4. Durable: Once a transaction commits, the
changes are permanent.

» Once a transaction commits, no matter
what happens, the transaction goes
forward and the results become
permanent.

> No failure after the commit can undo
the results or cause them to be lost

A nested transaction is constructed from a
number of subtransactions,

The top-level transaction may fork off children
that run in parallel with one another, on
different machines, to gain performance or
simplify programming.

Each of these children may also execute one
or more subtransactions, or fork off its own
children.

Enterprise Application Integration.

The more applications became decoupled
from the databases they were built upon, the more
evident it became that facilities were needed to
integrate applications independent from their
databases.

Application components should be able to
communicate directly with each other and not
merely by means of the request/reply behavior that
was supported by transaction processing systems.

Middleware as a communication facilitator in
enterprise application integration.

Client
application

Client
application

| I

[Communication middleware]

I [|

Server-side

Server-side Server-side

application application application

= = =

Several types of communication middleware

1. Remote procedure calls (RPC)

» An application component can send a
request to another application compo-

nent by doing a local procedure call,
which results in the request being
packaged as a message and sent to the
callee.

» The result will be sent back and
returned to the application as the result
of the procedure call.

2. Remote method invocations (RMI)

An RMI is the same as an RPC, except that it
operates on objects instead of applications.

Problems with RPC and RMI

» The caller and callee both need to be
up and running at the time of
communication.

» They need to know exactly how to refer
to each other.

Solutions

» Message-oriented middleware (MOM) -
applications send messages to logical
contact points, often described by
means of a subject.

» Publish/subscribe systems - applications
can indicate their interest for a specific
type of message, after which the
communication middleware will take
care that those messages are delivered
to those applications.

Distributed Pervasive Systems

Above distributed systems characterized by
their stability:

Nodes are fixed and have a more or less
permanent and high-quality connection to a
network.

Mobile and embedded computing devices
Instability is the default behavior

Distributed pervasive system - is part of the
surroundings -> inherently distributed.

Features
> General lack of human administrative control
> Evices can be configured by their owners

> They need to automatically discover their
environment and fit in as best as possible.

(7)

Rahul Publications

M.Sc. IV Sem

UNIT - |

Three
applications:

requirements for pervasive

> Embrace contextual changes- a device must
be continuously be aware of the fact that its
environment may change all the time

> Encourage ad hoc composition-many devices
in pervasive systems will be used in very
different ways by different users — make it
easy to configure the suite of applications
running on a device

> Recognize sharing as the default.-devices
generally join the system in order to access
(and possibly provide) information

Architectural Styles refers the types of
components, which are connected in the
architecture. It refers the way that components are
connected and the data exchanged between
components, and how these elements are jointly
configured into a system.

Software component - a modular unit with
well-defined, required and provided interfaces that
is replaceable within its environment.

Connector - a mechanism that mediates
communication, coordination, or cooperation
among components.

Rahul Publications

L8 J

E.g.: a connector can be formed by the
facilities for (remote) procedure calls, message
passing, or streaming data.

Several styles have by now been identified,
of which the most important ones for distributed
systems are:

1. Layered architectures
2. Object-based architectures
3. Data-centered architectures
4. Event-based architectures
1. Layered Architectures
The basic idea for the layered style is simple:

Response
flow

Method call

(b)

DISTRIBUTED SYSTEMS

3. Data-centered architectures

Processes communicate through a common

(passive or active) repository

E.g.:

» Wealth of networked applications have
been developed that rely on a shared
distributed file system in which virtually

all communication takes place through
files.

» Web-based distributed systems are
largely data centric: processes
communicate through the use of shared
Web-based data services.

4. Event-based architectures

» Processes communicate through the
propagation of events

E.g.: publish/subscribe systems

processes publish events after which the
middleware ensures that only those processes
that subscribed to those events will receive
them.

advantage - processes are loosely coupled.
In principle, they need not explicitly refer to
each other. This is also referred to as being
decoupled in space, or referentially
decoupled.

1.2.2 System Architectures

Q6. Write about centralised architectures.

AnS :

Aim of Architectures: achieving distribution
transparency.

Centralized Architectures

Manage distributed system complexity - think
in terms of clients that request services from servers.

Basic Client-server Model
Processes are divided into two groups:

1. Aserverisa process implementing a specific
service, for example, a file system service or
a database service.

2. Aclient is a process that requests a service
from a server by sending it a request and
subsequently waiting for the server’s reply.

» General interaction between a client and
a server.

. Wait for result
Client

Request

Provide service

Communication

Implemented using a connectionless
protocol when the network is reliable.

E.g.: Local area networks.

1. Clientrequests a service — packages and sends
a message for the server, identifying the
service it wants, along with the necessary
input data.

2. The Server will always wait for an incoming
request, process it, and package the results
in a reply message that is then sent to the
client.

Connectionless Protocol

> Describes communication between two
network end points in which a message can
be sent from one end point to another
without prior arrangement.

> Device at one end of the communication
transmits data to the other, without first
ensuring that the recipient is available and
ready to receive the data.

> The device sending a message sends it
addressed to the intended recipient.

> More frequent problems with transmission
than with connection-orientated protocols
and it may be necessary to resend the data
several times.

> Making the protocol resistant to occasional
transmission failures is not trivial.

> The client cannot detect whether the original
request message was lost, or that transmission
of the reply failed.

If the reply was lost, then resending a request
may result in performing the operation twice e.qg. If
operation was “transfer $10,000 from my bank
account,” then clearly, it would have been better
that we simply reported an error instead.

2 J

Rahul Publications

M.Sc. IV Sem

UNIT - |

When an operation can be repeated multiple
times without harm, it is said to be idempotent

Often disfavored by network administrators
because it is much harder to filter malicious packets
from a connectionless protocol using a firewall.

E.g.: Connectionless protocols -The Internet
Protocol (IP) and User Datagram Protocol (UDP)
are connectionless protocols. Connection-oriented
protocol (TCP/IP - the most common use of IP)

> Not appropriate in a local-area network due
to relatively low performance

> Works fine in wide-area systems in which
communication is inherently unreliable.

1. The user-interface level - contains all that is
necessary to directly interface with the user, | »
such as display management.
> Clients typically implement the user- | 3

interface level
» Simplest user-interface program - >
character-based screen-the user’s
terminal does some local processing such
as echoing typed keystrokes, or
supporting form-like interfaces in which
a complete entry is to be edited before
sending it to the main computer
{ 10)
Rahul Publications —

2.

level
HTML page
Keyword expression containing list
HTML
generator Processing
Query Ranked list level
generator of page titles
Ranking
Database queries algorithm
Web page titles

with Web pages

» Simple GUI - pop-up or pull-down
menus are used with many screen
controls handled through a mouse
instead of the keyboard.

» Modern user interfaces offer consi-
derably more functionality by allowing
applications to share a single graphical
window, and to use that window to
exchange data through user actions.

The processing level - contains the
applications.

» Middle part of hierarchy logically placed
at the processing level

User-interface,

User interface

with meta-information

Database

} Data level

somewhere for next use.

Data level consists of a file system, but it is
more common to use a full-fledged database.

Data level is typically implemented at the
server side.

Responsible for keeping data consistent across
different applications.

» With databases - metadata such as table
descriptions, entry constraints and
application-specific metadata are also
stored at this level.

DISTRIBUTED SYSTEMS

> Relational database organize most business-oriented data.

» Data independence is crucial - data are organized independent of the applications in such a
way that changes in that organization do not affect applications, and neither do the applications
affect the data organization.

» Using relational databases in the client-server model helps separate the processing level from
the data level, as processing and data are considered independent.

Q8. Write a note on multilayerd architec-tures.

AnS :

Multitiered Architectures
Possibilities for physically distributing a client-server application across several machines.
Simplest organization - two types of machines:
A client machine containing only the programs implementing (part of) the user-interface level.

A server machine containing the rest, that is the programs implementing the processing and data
level.

» Everything is handled by the server while the client is essentially no more than a dumb terminal,
possibly with a pretty graphical interface.

Distribute the programs in the application layers across different machines.
» Two-tiered architecture: client machines and server machines.

» Alternative client-server organizations (a)—(e).

Client machine

‘User inter[qg@j ‘ Userimer‘faeei |Userinier‘!ace‘ ‘ User imerfacel |User interface‘
‘

‘ Applicatif)_n_‘l \ Application] [Application]

“——-__3“1_“‘____ ______ _t_) _",f' ’W

- . - e
- . o SR i -
o = e e T %o

Userinterface , ’;,-" b -_-__“‘3“_""'
| Application | | Application | ‘“ﬁ;pplication J L
| Database | ‘ Database] | Database 1 ‘ Database l |~” Database ‘

Server machine

(a) (b) (c) (d) (e)

Cases
A: only the terminal-dependent part of the user interface on the client machine
B: place the entire user-interface software on the client side

Divide the application into a graphical front end, which communicates with the rest of the application
(residing at the server) through an application-specific protocol.

The front end (the client software) does no processing other than necessary for presenting the
application’s interface

{ 11 ' T .
—J Rahul Publications

M.Sc. IV Sem

UNIT - |

Move part of the application to the front end

> e.g. the application makes use of a form that
needs to be filled in entirely before it can be
processed

> front end can then check the correctness and
consistency of the form, and where necessary
interact with the user

D: used where the client machine is a PC or
workstation, connected through a network to a
distributed file system or database

> Most of the application is running on the client
machine, but all operations on files or
database entries go to the server

prone to errors and more dependent on the
client’s underlying platform (i.e., operating
system and resources).

> From a system’s management perspective,
having fat clients is not optimal.

> Thin clients in A — C are much easier

Server-side solutions are becoming
increasingly more distributed as a single
server is being replaced by multiple servers
running on different machines.A server may
sometimes need to act as a client leading to a
(physically) three-tiered architecture.

Rahul Publications

|' 12 ||

> Example of a server acting as client.

User interface Wait for result
(presentation)

e v Return
operation i
Application ___________ Wait for data

server

Database

server >
Time

Programs that form part of the processing level
reside on a separate server, but may additionally
be partly distributed across the client and server
machines.

into a user-interface, processing components,
and a data level. The different tiers
correspond directly with the logical
organization of applications.

> Vertical Distribution - organizing a client-
server application as a multitieredrchitecture.

> Can help manage distributed systems by
logically and physically splitting functions
across multiple machines, where each
machine is tailored to a specific group of
functions.

DISTRIBUTED SYSTEMS

Horizontal Distribution Architecture

In Horrizontal Distribution Client or server

may be physically split up into logically equivalent
parts, but each part is operating on its own share of
the complete data set, thus balancing the load.

e.g peer-to-peer systems.

>

>

>

Processes that constitute a peer-to-peer
system are all equal.

Functions that need to be carried out are
represented by every process that constitutes
the distributed system.

Much of the interaction between processes is
symmetric:

Each process will act as a client and a server
at the same time (which is also referred to as
acting as a servent).

Peer-to-peer architectures - how to organize
the processes in an overlay network in which
the nodes are formed by the processes and
the links represent the possible communi-
cation channels (which are usually realized
as TCP connections).

A Process cannot communicate directly with
an arbitrary other process, but is required to
send messages through the available
communication channels.

Two types of overlay networks exist: those
that are structured and those that are not.

Structured Peer-to-Peer Architectures

>

>

The P2P overlay network consists of all the
participating peers as network nodes.

There are links between any two nodes that
know each other: i.e. if a participating peer
knows the location of another peer in the P2P
network, then there is a directed edge from
the former node to the latter in the overlay
network.

Based on how the nodes in the overlay
network are linked to each other, we can
classify the P2P networks as unstructured or
structured.

Some well known structured P2P networks
are Chord, Pastry, Tapestry, @ CAN,
and Tulip.

> A structured Peer-to-Peer overlay network is
constructed using a deterministic procedure.

> Most-used procedure - organize the processes
through a distributed hash table (DHT).

> In DHT-based system —

> Data items are assigned a random key from
a large identifier space, such as a 128-bit or
160-bit identifier.

> nodes are assigned a random number from
the same identifier space.

> DHT-based system implements an efficient
and deterministic scheme that uniquely maps
the key of a data item to the identifier of a
node based on some distance metric .

» When looking up a data item, the network
address of the node responsible for that data
item is returned.

> This is accomplished by routing a request for
a data item to the responsible node.

Unstructured Peer-to-Peer Architectures.

An unstructured P2P network is formed
when the overlay links are established arbitrarily.

> Such networks can be easily constructed as a
new peer that wants to join the network can
copy existing links of another node and then
form its own links over time.

> In an unstructured P2P network, if a peer
wants to find a desired piece of data in the
network, the query has to be flooded through
the network in order to find as many peers
as possible that share the data.

> Main disadvantage - queries may not always
be resolved.

> Popular content is likely to be available at
several peers and any peer searching for it is
likely to find the same thing, but, if a peer is
looking for a rare or not-so-popular data
shared by only a few other peers, then it is
highly unlikely that search will be successful.

> Since there is no correlation between a peer
and the content managed by it, there is no
guarantee that flooding will find a peer that
has the desired data.

'| 13 j

Rahul Publications

M.Sc. IV Sem

UNIT - |

> Flooding also causes a high amount of
signaling traffic in the network and hence
such networks typically have very poor search
efficiency.

> Most of the popular P2P networks such as

Napster, Gnutella and KaZaA are
unstructured.
> Rely on randomized algorithms for

constructing an overlay network.

> Each node maintains a list of neighbors
constructed in a more or less random way.

> Data items are assumed to be randomly
placed on nodes.

symmetric nature of peer-to-peer systems is sensible.
Example:

Collaboration of nodes that offer resources
to each other.

> In a collaborative content delivery network
(CDN), nodes may offer storage for hosting
copies of Web pages allowing Web clients to
access pages nearby, and thus to access them
quickly.

> A node P may need to seek for resourcesin a
specific part of the network.

Rahul Publications

| 14]

> Making use of a broker that collects resource
usage for a number of nodes that are in each
other’s proximity will allow to quickly select a
node with sufficient resources.

A hierarchical organization of nodes into a
superpeer network.

Regular peer

Superpeer

Superpeer
network

Edge-Server Systems

> Deployed on the Internet where servers are
placed “at the edge” of the network.

> Purpose is to serve content, possibly after
applying filtering and transcoding functions

> A collection of edge servers can be used to
optimize content and application distribution

This edge is formed by the boundary between
enterprise networks and the actual Internet e.g, an
Internet Service Provider (ISP).

DISTRIBUTED SYSTEMS

E.g. end users at home connect to the Internet
through their ISP, the ISP can be considered as
residing at the edge of the Internet.

Viewing the Internet as consisting of a
collection of edge servers.

Content provider

Enterprise network
Basic model-one edge server acts as an origin

server from which all content originates.

Collaborative Distributed Systems

Hybrid architectures are deployed in
collaborative distributed systems.

Two step process:

1. Join system using a traditional client-
server scheme.

2. Once a node has joined the system -
use a fully decentralized scheme for
collaboration.

Example

The BitTorrent file-sharing system (Cohen,
2003).

> BitTorrent is a peer-to-peer file downloading
system.

> An end user downloads chunks of a file from
other users until the downloaded chunks can
be assembled together yielding the complete
file.

> BitTorrent combines centralized with
decentralized solutions.

> The principal working of BitTorrent

Client node

K out of N nodes
?Lookup(F)
A BitTorrent torrent file
Web page Ref. to forF

Ref. to
file tracker

Web server server File server

Node 1

List of nodes fl/o Node 2

storing F }

Tracker
Node N

> Design goal - ensure collaboration.

1.2.3 Architectures Versus Middleware

Q12. Write about middleware sytems.
Ans :

> Middleware forms a layer between
applications and distributed platforms

> Provide a degree of distribution transparency,
hiding the distribution of data, processing, and
control from applications.

> Where middleware fits in?

Middleware systems follow a specific
architectural style

> Object-based architectural style - CORBA

> Event-based architectural style - TIB/
Rendezvous

Problems

> Molding middleware molded to a specific
architectural style makes designing
applications simpler BUT the middleware
may no longer be optimal for what an
application developer had in mind.

> Middleware is meant to provide distribution
transparency, BUT specific solutions should
be adaptable to application requirements.

Solutions :
Good

Make several versions of a middleware
system, where each version is tailored to a specific
class of applications.

Better

Make middleware systems that are easy to
configure, adapt, and customize as needed by an
application.

Q13. What are Interceptors?
Ans :

Interceptors

An interceptor is a software construct that
will break the usual flow of control and allow other
(application specific) code to be executed.

Example: consider interception as supported
in many object-based distributed systems.

|' 15]

Rahul Publications

M.Sc. IV Sem UNIT - |

> An object A can call a method that belongs to an object B, while the latter resides on a different
machine than A.

> This remote-object invocation is carried out in 3 steps:

1. Object A is offered a local interface that is exactly the same as the interface offered by object B. A
simply calls the method available in that interface.

2. The call by A is transformed into a generic object invocation, made possible through a general
object-invocation interface offered by the middleware at the machine where A resides.

3. Finally, the generic object invocation is transformed into a message that is sent through the transport-
level network interface as offered by A’s local operating system.

Using interceptors to handle remote-object invocations.

Client application
Intercepted call

\ |— B.do_something(value) —|

f b Application stub i
N g
Request-level interceptor iz Nonintercepted call
£ 1 :
L v
B invoke(B, &do_something, value)
™ . .
(Object middleware
3 =

Message-level interceptor

| oo
send([B, "do_something", value])

Local OS5

v ToobjectB

1. After the first step, the call B.do_something(value) is transformed into a generic call such as
invoke(B, &do_something, value) with a reference to B’s method and the parameters that go along
with the call.

2. Assume that object B is replicated.
» Here, each replica should be invoked.

3. Interception helps here the request-level interceptor will call invoke(B, &do_something, value) for
each of the replicas.

» Object A need not be aware of the replication of B
» The object middleware need not have special components that deal with this replicated call.

{ 16 }
Rahul Publications —J

DISTRIBUTED SYSTEMS

» Only the request-level interceptor, which
may be added to the middleware needs
to know about B’s replication.

» Acall to a remote object will have to be
sent over the network.

» The messaging interface as offered by
the local operating system will need to
be invoked.

» Atthat level, a message-level interceptor
may assist in transferring the invocation
to the target object.

Q14. What is adaptive software ? what are the
basic techniques used in adaptive
software for middleware.

AnS :

Adaptive Software for Middleware

Adaptive software is specialized software
designed for physically challenged users. This
software usually runs on specialized hardware.

Three basic techniques to come to software
adaptation and open research area .

1. Separation of Concerns

» Separate the parts that implement
functionality from those that take care
of other things (known as extra
functionalities) such as reliability,
performance, security, etc

» Cannot easily separate these extra
functionalities by means of modulari-
zation

» Aspect-oriented software development
used to address separation of concerns

2. Computational Reflection

The ability of a program to inspect itself and,
if necessary, adapt its behavior.

3. Component-based Design

» Supports adaptation through composi-
tion.

» A system may either be configured
statically at design time, or dynamically
at runtime.

The latter requires support for late binding, a
technique that has been successfully applied in
programming language environments, but also for
operating systems where modules can be loaded
and unloaded at will.

1.2.4 Self-management In Distributed
Systems

Q15. Write about the Feed back control model
for self-management in distributed
sytems.

AnS :

Self management system will have the
following characteristics:

> Must organize the components of a distributed
system such that monitoring and adjustments
can be done

> Organize distributed systems as high-level
feedback-control systems to allow automatic
adaptations to changes:

» Autonomic computing

> Self-star systems - indicates the variety by
which automatic adaptations are being
captured: self-managing, self-healing, self-
configuring, self-optimizing, etc.

The Feedback Control Model

> Adaptations take place by means of one or
more feedback control loops.

> Systems that are organized by means of such
loops are referred to as feedback control
systems.

> Feedback control has since long been applied
in various engineering fields, and its
mathematical foundations are gradually also
finding their way in computing systems

> For self-managing systems, the architectural
issues are initially the most interesting.

The basic idea behind this organization is :

Initial configuration Corrections
= () I Core of distributed system

Uncontrollable parameters (disturbance / noise)

Observed output

Metric
estimation

Measured output

Adjustment II
measures

Adjustment triggers

Reference input

Analysis

(17)

Rahul Publications

M.Sc. IV Sem

UNIT - |

Three elements that form the feedback | »
control loop:

1. The system itself needs to be monitored,
which requires that various aspects of the | »
system need to be measured.

2. Another part of the feedback control loop
analyzes the measurements and compares
these to reference values. This feedback
analysis component forms the heart of the
control loop, as it will contain the algorithms
that decide on possible adaptations. >

3. The last group of components consist of
various mechanisms to directly influence the | »
behaviour of the system.

e operating system nas a process table 10
keep track of these virtual processors. >

> The process table contains entries to store
CPU register values, memory maps, open
files, accounting information, privileges, etc.

> A process is a running instance of a >
program, including all variables and other
state attributes on one of the operating
system’s virtual processors. >

> The operating system ensures that

Sharing the same CPU and other hardware
resources is made transparent with hardware
support to enforce this separation.

Each time a process is created, the operating
system must create a complete independent
address space.

E.g.: zeroing a data segment, copying the
associated program into a text segment, and
setting up a stack for temporary data.

Switching the CPU between two processes
requires:

Saving the CPU context (which consists of
register values, program counter, stack

Modern operating systems provide multiple
threads of control within a process at the
kernel level these are called Threads or
lightweight processes. (A heavyweight
process is an instance of a program).

All threads within a process share the same
address space.

A thread shares its code and data section with
other threads.

Each thread has its own program counter,
stack and register set.

independent processes cannot affect each | »
other’s behavior.

{ 18)

Rahul Publications —J

DISTRIBUTED SYSTEMS

> The program counter determines which
instruction the thread is currently executing.

> The registerset saves the thread’s state when
itis suspended and reloaded into the machine
registers upon resumption.

Thread Types
User Threads

> Threads are implemented at the user level
by a thread library

» Library provides support for thread
creation, scheduling and

» Management.

» User threads are fast to create and
manage.

Kernel Threads
> Supported and managed directly by the OS.

» Thread creation, scheduling and
management take place in kernel space.

» Slower to create and manage.

Q18. What are the uses of threads in distri-
buted environment.

AnS :

Increased Responsiveness to User

A program continues running with other
threads even if part of it is blocked or performing a
lengthy operation in one thread.

Resource Sharing

Threads share memory and resources of their
process.

Economy

Less time consuming to create and manage
threads than processes as threads share resources,

e.g., thread creating is 30 times faster than
process creating in Solaris.

Utilization of Multiprocessor Architectures
Increases concurrency because each thread
can run in parallel on a different processor.

> Many applications are easier to structure as a
collection of cooperating threads.

» e.g., word processor - separate threads
can be used for handling user input,
spelling and grammar checking,
document layout, index generation, etc.

Q19. Write, how to implement the threads in
distributed environment.

AnS :

Thread Implementation

Threads are provided in the form of a thread
package. The package contains operations to create
and destroy threads as well as operations on
synchronization variables such as mutexes and
condition variables.

Two approaches to implement a thread
package.

1. Construct a thread library that is executed
entirely in user mode.

Advantages
» Itis cheap to create and destroy threads

» All thread administration is kept in the
user’s address space, the price of creating
a thread is primarily determined by the
cost for allocating memory to set up a
thread stack

» Destroying a thread mainly involves
freeing memory for the stack, which is
no longer used.

» Switching thread context can be done
in just a few instructions

Disadvantage

» A blocking system call will immediately
block the entire process to which the
thread belongs, and thus also all the
other threads in that process

2. Have the kernel be aware of threads and
schedule them.

Advantages
» Eliminates blocking problem.
Disadvantage

» Every thread operation (creation,
deletion, synchronization, etc.), will have
to be carried out by the kernel, requiring
a system call.

|' 19 j

Rahul Publications

M.Sc. IV Sem

UNIT - |

Solution :

Hybrid of user-level and kernel-level threads,

generally referred to as lightweight processes (LWP).

>

>

An LWP runs in the context of a single
(heavyweight) process

There can be several LWPs per process.

User-level thread packages can be used as
well.

The package provides facilities for thread
synchronization, such as mutexes and
condition variable

» Mutex - mutual exclusion object.

User space
|— Thread
&S .
:’"' 1 e
L. Al

Kernel space

Thread state

I:'if Lightweight process

LWP executing a thread

Multithreading Models
Q20. Write about various multithreading

models.

» Each LWP can run its own (user-
level) thread.

» Multithreaded applications are
constructed by creating threads,
and subsequently assigning each
thread to an LWP

» Assigning a thread to an LWP is
normally implicit and hidden from
the programmer.

» Combining kernel-level lightweight
processes and user-level threads.

Rahul Publications

» Examples: Linux, family of Windows
Many-to-Many

Allows many user level threads to be mapped
to many kernel threads.

» Allows the OS to create a sufficient
number of kernel threads.

» Users can create as many as user threads
as necessary.

» No blocking and concurrency problems.
Two-level model.

A\

'l 20 ',

DISTRIBUTED SYSTEMS

Q21. Write about some general concepts in
threads.

AnS :

fork and exec :

these are two basic operations on
therads

fork system call :

Change in semantics of fork() and exec()
system calls.

Two versions of fork system call are the
following :

> One duplicates only the thread that invokes
the call.

» Another duplicates all the threads, i.e.,
duplicates an entire process.

exec system call: Program specified in the
parameters to exec Wwill replace the entire process
— including all threads. If exec is called
immediately after forking, duplicating all threads is
not required.

Cancellation

Task of terminating a thread before it has
completed.Cancelling one thread in a multithreaded
searching through a database.lt Stopsa web page
from loading.

Two ways of termination or cancellation
threads

> Asynchronous cancellation: One thread
immediately terminates the target thread.

> Deferred cancellation : The target thread
can periodically check if it should terminate,
allowing a normal exit.

Signal Handling

Signal handling is the Signal to notify a process
that a particular event has occurred. The signal can
be Default or user defined signal handler.

There are two types of signals

> Synchronous signal is related to the operation
performed by a running process.

> lllegal memory access or division by zero.

> Asynchronous signal is caused by an event
external to a running process.

> Terminating a process (<control><C=>) or
a timer expires.

Options for delivering signals in a
multithreaded process:

> Signal to the thread to which the signal applies.
> Signal to all threads.

> Signal to certain threads.

> Signal to a specific thread.

Thread Pools

Thread Pools are used to Create a number
of threads at process startup and place them into a
pool where they sit and wait for work.

» e.g. for multithreading a web server.

A thread from the pool is activated on the
request, and it returns to the pool on
completion.Thread-pool-architecture allows
dynamic adjustment of pool size.

Benefits of thread pool
> Faster service

> Limitation on the number of threads,
according to the need.

Scheduler Activations

Scheduler Activations are used for Communi-
cation between the user-thread library and the
kernel threads.It uses an intermediate data structure
- LWP

> User thread runs on a virtual processor (LWP)

> Corresponding kernel thread runs on a
physical processor

Each application gets a set of virtual processors
from OS

» Application schedules threads on these
processors

> Kernel informs an application about certain
events issuing upcalls which are handled by
thread library.

Advantages of LWPs in combination with a
user-level thread package:

1. Creating, destroying, and synchronizing
threads is relatively cheap and involves no
kernel intervention at all.

'| 21 I|

Rahul Publications

M.Sc. IV Sem

UNIT - |

2. Provided that a process has enough LWPs, a
blocking system call will not suspend the entire
process.

3. There is no need for an application to know
about the LWPs. All it sees are user-level
threads.

4. LWPs can be easily used in multiprocessing
environments, by executing different LWPs
on different CPUs.

1.3.2 Virtualization
Q22. What is virtualization?

Ans :

Program

Interface A

Implementation of
mimicking A on B
Interface B

Program

Interface A

Hardware/software system A Hardware/software system B

Platform virtualization : It involves the
simulation of virtual machines.

1.

» Platform virtualization is performed on
a given hardware platform by “host”
software (a control program), which
creates a simulated computer environ-
ment (a virtual machine) for its “guest”
software.

» The “guest” software, which is often itself
a complete operating system, runs just
as if it were installed on a stand-alone
hardware platform.

Rahul Publications

'l 22 ',

2. Resource virtualization: It involves the
simulation of combined, fragmented, or
simplified resources. Virtualization of specific
system resources, such as storage volumes,
name spaces, and network resources.

Q23. What is the role of virtualization to solve
the problems in distributed systems.

Ans :

Role of Virtualization in Distributed Systems
Problem

While hardware and low-level systems
software change reasonably fast, software at higher
levels of abstraction (e.g., middleware and

1oraries and operating system, wnicn, In turn, run

on a common platform.
Problem

Management of content delivery networks
that support replication of dynamic content
becomes easier if edge servers supported
virtualization, allowing a complete site, including its
environment to be dynamically copied.

Solution

Virtualization provides a high degree of
portability and flexibility making it an important
mechanism for distributed systems.

DISTRIBUTED SYSTEMS

Q24. Where can we use virtual machines.
Mention.

AnS :

Four distinct levels of interfaces to computers
the behavior of which that virtualization can use:

1. An interface between the hardware and
software, consisting of machine instructions
that can be invoked by any program.

2. An interface between the hardware and
software, consisting of machine instructions
that can be invoked only by privileged
programs, such as an operating system.

3. An interface consisting of system calls as
offered by an operating system.

4. An interface consisting of library calls,
generally forming what is known as an
application programming interface (API). In
many cases, the aforementioned system calls
are hidden by an API.

Virtualization can take place in two different
ways:

1. Process virtual machine

» Build a runtime system that provides an
abstract instruction set that is to be used
for executing applications.

» Instructions can be interpreted (as is the
case for the Java runtime environment),
but could also be emulated as is done
for running Windows applications on
UNIX platforms.

2. Virtual machine monitor (VMM)

» Implemented as a layer completely
shielding the original hardware, but
offering the complete instruction set of
that same (or other hardware) as an
interface.

» This interface can be offered simultane-
ously to different programs.

» Possible to have multiple, and different
operating systems run independently
and concurrently on the same platform.

» Example: VMwareand Xen.

[

[
Application

Runtime system

| 1

Operating system

L 1 | 1

Hardware

(@)

Fig:. (@) A process virtual machine, with multiple
instances of (application, runtime) combinations.

Applications

Operating system

l:L:m
m

| 1 [|

Virtual machine monitor

Hardware

(b)

Fig.: (b) A virtual machine monitor, with multiple
instances of (applications, operating system)
combinations.

VMMs will become increasingly important in
the context of reliability and security for (distributed)
systems. Since they allow for the isolation of a
complete application and its environment, a failure
caused by an error or security attack need no longer
affect a complete machine. Portability is greatly
improved as VMMs provide a further decoupling
between hardware and software, allowing a
complete environment to be moved from one
machine to another.

'| 23 I|

Rahul Publications

M.Sc. IV Sem UNIT - |

1.3.3 Clients

Q25. Write about networked user interfaces which support client-server interaction.
Ans :

Networked User Interfaces
Two ways to support client-server interaction:

1. For Each Remote Service - The client machine will have a separate counterpart that can contact the
service over the network.

Example: an agenda running on a user’s PDA that needs to synchronize with a remote, possibly
shared agenda.

In this case, an application-level protocol will handle the synchronization, as shown in Figure(a).

Provide direct access to remote services by only offering a convenient user interface.

Client machine Server machine Client machine Server machine

Application

Application

Middleware

Application-
specific
protocol

A

Mid%jleware

Appl. I:I

Middle\}vare

Application-
independent
protocol

Middleware

Local OS

Local OS

Local OS

» Used to control bit-mapped terminals, which include a monitor, keyboard, and a pointing
device such as a mouse.

YV V VY V

X kernel is heart of the system.

the keyboard and mouse.

A\

» The basic organization of the X Window System.

Rahul Publications

Viewed as that part of an operating system that controls the terminal.

This interface is made available to applications as a library called Xlib.

Contains all the terminal-specific device drivers - highly hardware dependent.

X kernel offers a low-level interface for controlling the screen and for capturing events from

|l 24 l,

DISTRIBUTED SYSTEMS

Application server Application server User's terminal

Window Application L Xiib interface

manager

Xlib & Xlib
Local OS Local OS X protocol
C .
\ . X kernel
Device drivers

Terminal éincludes display
keyboard, mouse, etc.)

» X kernel and the X applications need not necessarily reside on the same machine.

» X provides the X protocol, which is an application-level communication protocol by which an
instance of Xlib can exchange data and events with the X kernel.

Q26. What is Thin- Client Network Computing?
Ans :
Thin-Client Network Computing

> Applications manipulate a display using the specific display commands as offered by X.

> These commands are sent over the network where they are executed by the X kernel on the server.
Problem

> Applications written for X should separate application logic from user-interface commands

> This is often not the case - much of the application logic and user interaction are tightly coupled,
meaning that an application will send many requests to the X kernel for which it will expect a
response before being able to make a next step.

> Synchronous behavioradverselys affects performance when operating over a wide-area network
with long latencies.

Solutions

1. Re-engineer the implementation of the X protocol, as is done with NX.

Q27. What are different Client-Side Software for Distribution Transparency?
Ans :

Distribution Transparency
A client should not be aware that it is communicating with remote processes.
Access Transparency

> Handled through the generation of a client stub from an interface definition of what the server has
to offer.

> The stub provides the same interface as available at the server, but hides the possible differences in
machine architectures, as well as the actual communication.

{ 25 |
=2 Rahul Publications

M.Sc. IV Sem UNIT - |

Location, Migration, and Relocation transparency
> A naming system is crucial

> Cooperation with client-side software is important
Example

When a client is already bound to a server, the client can be directly informed when the server
changes location.

The client’s middleware can hide the server’s current geographical location from the user, and also
transparently rebind to the server if necessary.

Replication Transparency
Implemented as client-side solutions.

Example: A distributed system with replica-ted servers.

Client machine Server 1 Server 2 Server 3

Client Server Server Server
appl appl appl appl

|
o 2z Pl

Client side handles
request replication Replicated request

Failure Transparency
Masking communication failures with a server is typically done through client middleware.

Example: client middle-ware can be configured to repeatedly attempt to connect to a server.
Client middleware can return data it had cached during a previous session, as is sometimes done by Web
browsers that fail to connect to a server.

Concurrency Transparency

Handled through special intermediate servers, notably transaction monitors, and requires less support
from client software.

Persistence transparency

Completely handled at the server.

{ 26 }
Rahul Publications)

DISTRIBUTED SYSTEMS

1.3.4 Servers

Q28. What is server? Mention different types
of servers.

AnS :

A server is a process implementing a specific
service on behalf of a collection of clients.

Each server is organized in the same way:

» It waits for an incoming request from a
client

» Ensures that the request is fulfilled
» It waits for the next incoming request.
Several ways to organize servers:

Iterative Server

Iterative server handles request, then returns
results to the client; any new client requests must
wait for previous request to complete (also useful
to think of this type of server as sequential).

Concurrent server

Concurrent: server does not handle the
request itself; a separate thread or sub-process
handles the request and returns any results to the
client; the server is then free to immediately service
the next client.

> A multithreaded server is an example of a
concurrent server.

> An alternative implementation of a concur-
rent server is to fork a new process for each
new incoming request.

» This approach is followed in many UNIX
systems.

» The thread or process that handles the
request is responsible for returning a
response to the requesting client.

Q29. Explain, how the clients contact a server.
Auns

Clients send requests to an end point, also
called a port, at the machine where the server is
running. Each server listens to a specific end point.

How do clients know the end point of a service

Globally assign end points for well-known
services.

Examples

1. Servers that handle Internet FTP requests
always listen to TCP port 21.

2. An HTTP server for the World Wide Web will
always listen to TCP port 80.

These end points have been assigned by the
Internet Assigned Numbers Authority (IANA).With
assigned end points, the client only needs to find
the network address of the machine where the
server is running.

Many services that do not require a pre-
assigned end point

Example

A time-of-day server may use an end point
that is dynamically assigned to it by its local
operating system. A client will look need to up the
end point.

Solution

» A daemon running on each machine that
runs servers.

> The daemon keeps track of the current end
point of each service implemented by a co-
located server.

> The daemon itself listens to a well-known end
point.

> A client will first contant the daemon, request
the end point, and then contact the specific
server (Figure (a))

Server machine

Client machine

2. Request Register
Service ¥ garver end point
Client |[&f—
k]
1. Askfor ™ @-x .
end point Daemon [~ End-point
table

(a)

(&) Client-to-server binding using a daemon.

(57)

Rahul Publications

M.Sc. IV Sem

UNIT - |

Server machine

Client machine

2. Continue
service _f Actual Create
Client (& server ‘> server for
—~ requested
\h Super- || service
1. Request server
service

(b)

(b) Client-to-server binding using a superserver.

It is common to associate an end point with a
specific service. Implementing each service by
means of a separate server may be a waste of

> That process will exit after 1t is finished.

Design issue

Q30. Write about stateless and stateful
Servers.

Ans :

A stateless server is a server that treats
each request as an independent transaction that is
unrelated to any previous request. A stateless server
does not keep information on the state of its clients,
and can change its own state without having to
inform any client.

Rahul Publications

'l 28 ',

Example: A Web server is stateless.

A\

It contains the following characterisitcs:

> It merely responds to incoming HTTP
requests, which can be either for uploading
afile to the server or (most often) for fetching
afile.

> When the request has been processed, the
Web server forgets the client completely.

> The collection of files that a Web server
manages (possibly in cooperation with a file
server), can be changed without clients having
to be informed.

> Form of a stateless design - soft state.

> This table allows the server to keep track of
which client currently has the update
permissions on which file and the most recent
version of that file.

> Improves performance of read and write
operations as perceived by the client.

Advantages / Disadvantages

> Using a stateless file server, the client must
specify complete file names in each request
specify location for reading or writing re-
authenticate for each request.

DISTRIBUTED SYSTEMS

> Using a stateful file server, the client can send
less data with each request

» Astateful server is simpler

> A stateless server is more robust: lost
connections can’t leave a file in an invalid state
rebooting the server does not lose state
information rebooting the client does not
confuse a stateless server.

Q31. Differentiate between (temporary)

session state and permanent state.
Ans :

> Session state is maintained in three-tiered
client-server architectures, where the
application server needs to access a database
server through a series of queries before being
able to respond to the requesting client.

> No real harm is done if session state is lost,
provided that the client can simply reissue the
original request.

> Permanent state information is maintained in
databases, such as customer information, keys
associated with purchased software, etc.

> For most distributed systems, maintaining
session state already implies a stateful design
requiring special measures when failures do
happen and making explicit assumptions
about the durability of state stored at the
server.

Q32. What is server cluster? Write about it.
Ans :

Server Clusters

General Organization

A server cluster is a collection of machines
connected through a network, where each machine
runs one or More Servers.

A server cluster is logically organized into three
tiers

Distributed
file/database
system

mwmu%@

Logical switch ! Applicationfcompute servers

(possibly multiple)

request

=~ ||+
e i —

Third tier

Client requests

First tier Second tier

First tier - consists of a (logical) switch through
which client requests are routed.

Switches Vary

> Transport-layer switches accept incoming TCP
connection requests and pass requests on to
one of servers in the cluster,

» A Web server that accepts incoming HTTP
requests, but that partly passes requests to
application servers for further processing only
to later collect results and return an HTTP
response.

Second tier: Application Processing

Cluster computing servers run on high-
performance hardware dedicated to delivering
compute power.

Enterprise server clusters - applications may
need to run on relatively low-end machines, as the
required compute power is not the bottleneck, but
access to storage is.

Third tier

Data-processing servers - notably file and
database servers.

> These servers may be running on specialized
machines, configured for high-speed disk
access and having large server-side data
caches.

1.3.5 Code Migration
Approaches to Code Migration

Q33. What are the reasons for code migration.
Ans :

Reasons for Migrating Code

Traditional method - process migration in
which an entire process is moved from one machine
to another.

Reasons

> Overall system performance can be improved
if processes are moved from heavily-loaded
to lightly-loaded machines.

A\

Load is expressed in terms of the CPU queue
length or CPU utilization.

'| 29 I|

Rahul Publications

M.Sc. IV Sem

UNIT - |

> Many modern distributed systems - optimizing
computing capacity is less an issue than
minimizing communication.

> Platform and network heterogeneity make
decisions for performance improvement
through code migration based on qualitative
reasoning instead of mathematical models.

Examples

Client-server system where server manages
a huge database

> If a client application needs to perform many
database operations involving large quantities
of data, it may be better to ship part of the

2. With standardized interfaces the client-server
protocol and its implementation can be
changed at will.

Changes will not affect existing client
applications that rely on the server.

Disadvantages
Security

Blindly trusting that the downloaded code
implements only the advertised interface while
accessing an unprotected hard disk.

Q34. Write about the code migration.
Ans :

and communication.
Reasons

flexibility - It is possible to dynamically
configure distributed systems.

> Example - Client / Server application
Advantages

1. Clients need not have all the software
preinstalled to talk to servers.

The software can be moved as required, and
discarded when no longer needed.

Rahul Publications

'l 30 ',

> e.g., Java applets start execution from the
beginning.

> Benefit: simplicity.

> Weak mobility requires only that the target
machine can execute that code

Strong mobility - execution segment is
transferred as well.

> Feature: A running process can be stopped,
moved to another machine, and resume
execution where it left off.

DISTRIBUTED SYSTEMS

> More general than weak mobility, but more | Q35. Write about process to resource binding
difficult to implement. types.
> Can also be supported by remote cloning Aus -
> Cloning yields an exact copy of the original Types of process-to-resource bindings:
process, but running on a d'ﬁerént machine. |, Binding by identifier - strongest binding -
> The cloned process is executed in parallel to when a process refers to a resource by its
the original process. identifier.
> In UNIX systems, remote cloning takes place » The process requires precisely the
by forking off a child process and letting that referenced resource, and nothing else.
child continue on a remote machine. > Example : a process uses a URL to refer
» The benefit of cloning is that the model closely to a specific Web site or when it refers to
resembles the one that is already used in an FTP server by means of that server’s
many applications. Internet address.
> Migration by cloning is a simple way to | 2. Binding by value - weaker binding - when
improve distribution transparency. only the value of a resource is needed.
Migration Initiation » Process execution is not affected if
S another resource provided that same
Sender-initiated- migration is initiated at the value.
machine where the code currently resides or is being .
executed » Example: a program relies on standard
' libraries, such as those for programming
> Done when uploading programs to a compute in C or Java.
server » Such libraries should always be locally
> Securely uploading code to a server often available, but their exact location in the
requires that the client has previously been local file system may differ between sites.
registered and authenticated at that server. > Not the specific files, but their content is
Receiver-initiated-Initiative for code migration important for the proper execution of
is taken by the target machine. the process.
> Java applets are an example. 3. Binding by type — weakest binding - when a
L o process indicates it needs only a resource of
> Receiver-initiated migration is simpler than a specifi
A L2 pecific type.
sender-initiated migration. -
o » Exemplified by references to local
> Code migration usually occurs between a devices, such as monitors, printers, etc.
client and a server, where the client takes the
initiative for migration. Code migration requires cgnS|derat|on of the
resource-to-machine bindings
> Downloading code can often be done .
anonym ouslyg 1. Unattached resources can be easily moved
' _ _ _ between different machines
> Ieliusriger Is not interested in the client's » Typically (data) files associated only with
' the program that is to be migrated.
> Qode mlgrat!on t9 the Cl:cent is done only for 2. Moving or copying a fastened resource may
improving clientside performance. be possible, but only at relatively high costs.
> Only a limited number of resources need to > Typical examples of fastened resources
be protected, such as memory and network are local databases and complete Web
connections. sites.
{ 31}
= Rahul Publications

M.Sc. IV Sem UNIT - |

3. Fixed resources are intimately bound to a specific machine or environment and cannot be moved.
» Fixed resources are often local devices or a local communication end point.

Combining three types of process-to-resource bindings, and three types of resource-to-machine
bindings, leads to nine combinations that we need to consider when migrating code.

Actions to be taken with respect to the references to local resources when migrating code to another

machine.
Resource-to-machine binding
Unattached Fastened Fixed
Process- | By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR
binding | By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)

GR Establish a global systemwide reference
MV Move the resource

CP Copy the value of the resource

RB Rebind process to locally-available resource

> Establishing a global reference to the multimedia workstation means setting up a communication
path between the compute server and the workstation.

> Significant processing involved at both the server and the workstation to meet the bandwidth
requirements of transferring the images.

> Nt result - moving the program to the compute server is not such a good idea, only because the cost
of the global reference is too high.

Bindings by value
> A fixed resource.

» The combination of a fixed resource and binding by value occurs when a process assumes that
memory can be shared between processes.

{ 32 }
Rahul Publications =

DISTRIBUTED SYSTEMS

>

>

» Establishing a global reference would require a distributed form of shared memory.
» In many cases, this is not really a viable or efficient solution.

Fastened resources.

» Fastened resources that are referred to by their value, are typically runtime libraries.

» Normally, copies of such resources are readily available on the target machine, or should
otherwise be copied before code migration takes place.

» Establishing a global reference is a better alternative when huge amounts of data are to be
copied, as may be the case with dictionaries and thesauruses in text processing systems.

Unattached resources.

» The best solution is to copy (or move) the resource to the new destination, unless it is shared
by a number of processes.

» Inthe latter case, establishing a global reference is the only option.

Bindings by type

>

Irrespective of the resource-to-machine binding, the solution is to rebind the process to a locally
available resource of the same type.

If the resource is not available, must copy or move the original one to the new destination, or
establish a global reference.

Q36. Explain the migration process in heterogeneous systems.
Auws :

Migration in Heterogeneous Systems

>

>

Distributed systems are constructed on a heterogeneous collection of platforms, each having their
own operating system and machine architecture.

Migration requires that each platform be supported - the code segment can be executed on each
platform.

Must ensure that the execution segment can be properly represented at each platform.

Migrate Entire Computing Environments

>

Compartmentalize the overall environment to provide processes in the same part their own view
on their computing environment.

Can decouple a part from the underlying system and migrate it to another machine.

Migration would provide a form of strong mobility for processes, as they can then be moved at any
point during their execution, and continue where they left off when migration completes.

Solves bindings to local resources problem - local resources become part of the environment that is
being migrated.

{ 33 }
= Rahul Publications

M.Sc. IV Sem UNIT - |

Real-time migration of a virtualized operating system:
Three ways to handle migration (which can be combined):

1. Pushing memory pages to the new machine and resending the ones that are later modified during
the migration process.

Stopping the current virtual machine; migrate memory, and start the new virtual machine.

Letting the new virtual machine pull in new pages as needed, that is, let processes start on the new
virtual machine immediately and copy memory pages on demand.

» Option #2 may lead to unacceptable downtime if the migrating virtual machine is running a
live service.

» Option #3 extensively prolong the migration period lead to poor performance because it
takes a long time before the working set of the migrated processes has been moved to the new
machine.

approach

g

Rahul Publications

Communication: Remote Procedure Call, Message-Oriented

U N IT Communication, _Strea_nj—Oriented Communication, M_ulticast Communicat?on.

Naming:names, identifiers, and addresses, flat naming, structured naming,

I I attribute based naming. Synchronization:clock synchronization, logical clocks,
mutual exclusion, global positioning of nodes, election algorithms.

I B
T T
T P T P T T

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

2.1 COMMUNICATION I

Q1. Write about the communication in distributed systems.
Ans :

Interprocess communication is fundamental communication to all distributed systems.
Communication in distributed systems is always based on low-level message passing as offered by the
underlying network.

Expressing communication through message passing is harder than using primitives based on shared
memory. Modern distributed systems often consist of thousands or even millions of processes scattered
across a network with unreliable communication. Unless the primitive communication facilities of computer
networks are replaced by something else, development of large-scale distributed applications is extremely
difficult.

Layered protocols are used for communication in distributed system. Due to the absence of shared
memory, all communication in distributed systems is based on sending and receiving (low level) messages.

When process A wants to communicate with process B, it first builds a message in its own address
space. Then it executes a system call that causes the operating system to send the message over the
network to B.

Q2. Explain ISO OSI reference Model.
Ans :

ISO OSI Reference Model
Distributed systems use the general reference model which is known as ISO OSI reference model.

Protocols that were developed as part of the OSI model were never widely used.
Underlying model useful for understanding computer networks.

OSI model is designed to allow open systems to communicate.

YV V V V

An open system is one that is prepared to communicate with any other open system by using
standard rules that govern the format, contents, and meaning of the messages sent and received.

A\

Rules are formalized into protocols.
> Groups of computers communicate over a network by agreeing on the protocols to be used.

In OSI model Communication is divided up into seven levels or layers. Each layer deals with
one specific aspect of the communication. Each layer provides an interface to the one above it. The
interface consists of a set of operations that together define the service the layer is prepared to offer its
users.

{ 35 }
=) Rahul Publications

M.Sc. IV Sem UNIT -1l

7 Application Layer
v Message format, Human-Machine Interfaces

6 Presentation Layer
v Coding into 1s and Os; encryption, compression

5 Session Layer
¥ Authentication, permissions, session restoration

4 Transport Layer
v End-to-end error control

3 Network Layer
v Network addressing; routing or switching

2 Data Link Layer
v Error detection, flow control on physical link

1 Physical Layer
v Bit stream: physical medium, method of representing bits

<«— TRANSPORT SERVICE — | «— UPPER LAYERS —

> It establishes, manages, and terminates the connections between the local and remote application.

> It provides for either duplex or half-duplex operation and establishes checkpointing, adjournment,
termination, and restart procedures.

> The OSI model made this layer responsible for “graceful close” of sessions, which is a property of
TCP, and also for session checkpointing and recovery, which is not usually used in the Internet
protocols suite.

Layer 4: Transport Layer

> Provides transparent transfer of data between end users, thus relieving the upper layers from any
concern while providing reliable data transfer.

> Controls the reliability of a given link through flow control, segmentation/desegmentation, and
error control.

{ 36 }
Rahul Publications =

DISTRIBUTED SYSTEMS

Some protocols are state and connection
oriented. This means that the transport layer
can keep track of the packets and retransmit
those that fail.

Best known example of a layer 4 protocol is
the Transmission Control Protocol (TCP).

The transport layer is the layer that converts
messages into TCP segments or User
Datagram Protocol (UDP), Stream Control
Transmission Protocol (SCTP), etc. packets.

Layer 3: Network Layer

>

>

Provides the functional and procedural means
of transferring variable length data sequences
from a source to a destination via one or more
networks while maintaining the quality of
service requested by the Transport layer.

The Network layer performs network routing
functions.

Routers operate at this layer - sending data
throughout the extended network and
making the Internet possible (also existing at
layer 3 (or IP) are switches).

» This is a logical addressing scheme —
values are chosen by the network
engineer.

» The addressing scheme is hierarchical.

The best known example of a layer 3 protocol
is the Internet Protocol (IP).

Layer 2: Data Link Layer

>

Provides the functional and procedural means
to transfer data between network entities and
to detect and possibly correct errors that may
occur in the Physical layer.

Best known example of this is Ethernet.

On IEEE 802 local area networks, and some
non-lIEEE 802 networks such as FDDI, this
layer may be split into a Media Access Control
(MAC) layer and the IEEE 802.2 Logical Link
Control (LLC) layer. It arranges bits from
physical layer into logical chunks of data,
known as frames.

This is the layer at which the bridges and
switches operate.

>

Connectivity is provided only among locally
attached network nodes forming layer 2
domains for unicast or broadcast forwarding.

Other protocols may be imposed on the data
frames to create tunnels and logically
separated layer 2 forwarding domains.

Layer 1: Physical Layer

>

>

Defines all the electrical and physical
specifications for devices.

This includes the layout of pins, voltages, and
cable specifications. Hubs, repeaters, network
adapters and Host Bus Adapters are physical-
layer devices.

The major functions and services performed
by the physical layer are:

Establishment and termination of a
connection to a communications medium.

Participation in the process whereby the
communication resources are effectively
shared among multiple users.

Modulation or conversion between the
representation of digital data in user
equipment and the corresponding signals
transmitted over a communications channel.

Parallel SCSI buses operate in this layer.

Various physical-layer Ethernet standards are
also in this layer;

Ethernet incorporates both this layer and the
data-link layer.

The same applies to other local-area networks,
such as Token ring, FDDI, and IEEE 802.11,
as well as personal area networks such as
Bluetooth and IEEE 802.15.4.

Q3.

Write about middleware protocols and
types of communication supports by
middleware protocols.

AnS :

Middleware Protocols

Middleware is an application that logically lives

(mostly) in the application layer, but contains many
general-purpose protocols that warrant their own
layers, independent of other, more specific
applications.

(37)

Rahul Publications

M.Sc. IV Sem UNIT -1l

Middleware communication protocols support high-level communication services. It adapted
reference model for communication. Compared to the OSI model, the session and presentation layer
have been replaced by a single middleware layer that contains application-independent protocols.

Applicalion: | . [CFSTRTE e R RN RS IR Rr T 6
....... Middleware protocol ______

Middleware o

Transport protocol

Transport | [77777777777 ROC RO - 4
_______Network protocol________

Network 3
........ Data link protocol _______

Data link 2

Physical

1. With persistent communication, a message that has been submitted for transmission is stored by the
communication middleware as long as it takes to deliver it to the receiver.

2. The middleware will store the message at one or several of the storage facilities (above figure).
i) Not necessary for the sending application to continue execution after submitting the message.
i) The receiving application need not be executing when the message is submitted.

Transient Communication

A message is stored by the communication system only as long as the sending and receiving
application are executing.

1. The middleware cannot deliver a message if there is a transmission interrupt or the recipient is
currently not active it will discard the message.

2. All transport-level communication services offer only transient communication.

{ 38 }
Rahul Publications —J

DISTRIBUTED SYSTEMS

i) The communication system consists of traditional store-and-forward routers.

i) If a router cannot deliver a message to the next one or the destination host, it will drop the

message.

Asynchronous Communication

A sender continues executing immediately after it has submitted its message for transmission. This
means that the message is (temporarily) stored by the middleware immediately upon submission.

Synchronous Communication

A sender is blocked until its request is known to be accepted.

Three points where synchronization can take place:

The sender may be blocked until the middleware notifies that it will take over transmission of the

request.

The sender may synchronize until its request has been delivered to the intended recipient.
Synchronization may take place by letting the sender wait until its request has been fully processed,

that is, up the time that the recipient returns a response.

The following figures shows the distributed Communications Classifications for:

a) Persistent asynchronous communication.

b) Persistent synchronous communication.
A sends message A sends message A slo
: g pped
and continues ?u ﬁ:ﬂﬁm and waits until accepted running
Y .,#A—g_uﬁ b S e
_P R Py i
A | -
| Message is stored \
L2 atBslocatonfor | | Accepted _
.‘ Time later delivery e ,‘; Time
g e St ‘:r—? TP S C—
— _'__'_,_,_r" : —) — ‘\\
. B starts and B is not B starts and
Bis not receives running receives
running message message
(a) (b)
c) Transient asynchronous communication.
d) Receipt-based transient synchronous communication.
A sends message Sand request and wait
3_ﬂd continues uritil received \\t
& L o— e
A '| Message can be A 1 ?
sent only if B is 1‘(
unning Request {ACK
Time i5 recened Tima
I —» | —»
B —Lh B S o S GRS
B receives Rurning, but doing Process
message something else request
{©) ()
{ 39 }
=2

Rahul Publications

M.Sc. IV Sem UNIT -1l

e) Delivery-based transient synchronous communication at message delivery.

f) Response-based transient synchronous communication.

Send request and wait until Send request
accepted and wait for reply.
A T:- ------ —:‘_p_ A —:'.f ----------------- *I‘:)_
Request | / Request | | Accepted
is received | | Accepted) is received | [_
S Time ~a¥ / Time
B A = B2 e ¥
Running, but doing Process Running, but doing Process
something else request something else request
(e) M

Caller Callee
(client process) (server process)

Request messege
(cantaions remote
Call procedure and procedure’'s parameter)

1
1
'
'
'
I
|
wait for reply !

Receive request and
start procedure execution

Procedure executes

-

Send reply and wait

for next request
Reply messege

(contains result of

1

I

Resume execution I
procedure execution) |
1

1

1

"

Remote procedure call model

{ 40 }
Rahul Publications)

DISTRIBUTED SYSTEMS

The calling environment is suspended, procedure parameters are transferred across the network to
the environment where the procedure is to execute, and the procedure is executed there.

When the procedure finishes and produces its results, its results are transferred back to the calling
environment, where execution resumes as if returning from a regular procedure call.

Note :

RPC is especially well suited for client-server (e.g. query-response) interaction in which the

flow of control alternates between the caller and called. Conceptually, the client and server do not
both execute at the same time. Instead, the thread of execution jumps from the caller to the callee and
then back again.

Working of RPC

Client machine Server machine

T T T S =8 B T AT ameat | SRLACSST S8)
I Client ' 1 Server ’
I 1 I - 1
: @turn c aD : : Executive :
I

I A 1] “ 1
I 1 1 1
: Client stub : . Server stub :
I 1 | v 1
] 1 1 1
: anack : " @Pack PaCD .
I T 1 1 1
I 1]]
! ! ! RPC runtime !
I 1]]
] 1 1 . v 1
I ! 1 | Receive Send|
I 1 1 1
] 1 I 1
(. |ty N HE——

Call packet

Result packet
Implementation of RPC mechanism

The following steps take place during a RPC

1.

A client invokes a client stub procedure, passing parameters in the usual way. The client stub
resides within the client’s own address space.

The client stub marshalls(pack) the parameters into a message. Marshalling includes converting
the representation of the parameters into a standard format, and copying each parameter into the
message.

The client stub passes the message to the transport layer, which sends it to the remote server
machine.

On the server, the transport layer passes the message to a server stub, which demarshalls(unpack)
the parameters and calls the desired server routine using the regular procedure call mechanism.
When the server procedure completes, it returns to the server stub (e.g., via a normal procedure
call return), which marshalls the return values into a message. The server stub then hands the
message to the transport layer.

The transport layer sends the result message back to the client transport layer, which hands the

message back to the client stub.
The client stub demarshalls the return parameters and execution returns to the caller.

(41

41
|y Rahul Publications

M.Sc. IV Sem

UNIT -1l

Q5. Write about the issues of RPC. And
Mention its advantages.

Ans :

RPC Issues

Issues that Must be Addressed
1. RPC Runtime

RPC run-time system, is a library of routines
and a set of services that handle the network
communications that underlie the RPC
mechanism. In the course of an RPC call,
client-side and server-side run-time systems’

to call, and where the service resides?

The most flexible solution is to use dynamic
binding and find the server at run time when
the RPC is first made. The first time the client
stub is invoked, it contacts a name server to
determine the transport address at which the
server resides.

» Binding consists of two parts:
Naming

Remote procedures are named through
interfaces. An interface uniquely
identifies a particular service,

Rahul Publications

|l 42 l,

describing the types and numbers of its
arguments. It is similar in purpose to a type
definition in programming languages.
Locating

Finding the transport address at which the
server actually resides. Once we have the

transport address of the service, we can send
messages directly to the server.

A Server having a service to offer exports
an interface for it. Exporting an interface registers it
with the system so that clients can use it.

A Client must import an (exported)

RPC models and alternative methods for
client-server communication.

There are several RPC models
and distributed computing implementations. A
popular model and implementation is the Open
Software Foundation’s Distributed Computing
Environment (DCE). The specifications adopted in
Microsoft’s base system for distributed computing,
DCOM.

DCE is a true middleware system in that it is
designed to execute as a layer of abstraction between
existing (network) operating systems and distributed

DISTRIBUTED SYSTEMS

applications. It takes a collection of existing machines, add the DCE software, and then run distributed
applications, all without disturbing existing (nondistributed) applications. The main model in DCE is Client-
server model . All communication between clients and servers takes place by means of RPCs.

DCE Services

> Distributed file service -worldwide file system that provides a transparent way of accessing any
file in the system in the same way.

> Directory service - keeps track of the location of all resources in the system (e.g. machines,
printers, servers, data, etc.)

> Security service - provides access restrictions.

> Distributed time service - attempts to keep clocks on the different machines globally
synchronized.

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

Interface
definition file

IDL compiler

h A
Client code Client stub Header ‘ Server stub Server code
#include \ W
Y Y Y
[C compiler] (C compiler) (Ccompiler | [C compiler |
Y " h A Y
Client Client stub Server stub Server
object file object file object file object file
Y —_—— r
. RBuntime Runtime .
Linker library library or
Y Y
Client Server
binary binary

Interface Definition Language (IDL)

An Interface Definition Language (IDL) is a language that is used to define the interface between a
client and server process in a distributed system. Each interface definition language has a set of associated
IDL compilers, one per supported target language.

An IDL compiler compiles the interface specifications, listed in an IDL input file, into source code
(e.g., C/IC++, Java) that implements the low-level communication details required to support the defined
interfaces.

{ 43}
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

The output of the IDL compiler consists of three files:
1. A header file (e.g., interface.h, in C terms).
2. The client stub.

3. The server stub.

Binding a Client to a Server

Client-to-server binding in DCE.

Directory machine

3. Look up server @ter service
Client machine / Server machine

| " 1™ Sewer
Client

Directory
server .

4. Ask for end point DCE EB.

N
daemon ™~ End point
table

Berkeley Sockets
>

>
>
>
>

vV V V V

Developed in the early 1980s at the University of California at Berkeley.
Itis an API.

Its implementation is usually requires kernel code.

It is the de facto standard for communications programming.

Used for point-to-point communications between computers through an inter-systems pipe. Namely
can use the UNIX read, write, close, select, etc. system calls.

There are higher level tools for programs that span more than one machine. (e.g. RPC, DCOM).
Supports broadcast.

Available on every UNIX system that [know of and somewhat available in WIN32.

Built for client/server development.

Rahul Publications

| 44]

DISTRIBUTED SYSTEMS

> Supports two types of communications that sit on top of the TCP Internet datagrams.
» TCP - connection oriented, stream, reliable.
» UDP - connection less, record oriented, unreliable.

The socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication end point
Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Write Send data on the connection

Read Get data that was sent on the connection

Servers execute the first four primitives - in the order given.

Connection-oriented communication pattern using sockets.

Server
[[socket F»{ bind |- listen I'—Haccepll—g read I——H write Lbl close |

4

] [1

! \

/ Communication *,

Y ;] h |
socket #connect!—w close |
Client

The Message-Passing Interface (MPI)

Synchronization point —.

The Message Passing Interface (MPI) is a library specification for message passing. It is a standard
API that can be used to create applications for high performance multicomputers. It uses specific network
protocols (not TCP/IP). It is message-based communication.

Some of the message-passing primitives of MPI.

Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there is none
MPI_irecv Check if there is an incoming message, but do not block
(45)
) Rahul Publications

M.Sc. IV Sem UNIT -1l

Message-Oriented Persistent Communication

It is also known as: “Message-queuing systems” or “Message-Oriented Middleware (MOM)”. They
support persistent, asynchronous communications. Typically, transport can take minutes (hours?) as opposed
to seconds/milliseconds.

The basic idea is applications communicate by putting messages into and taking messages out of
“message queues”.

> Only guarantee: your message will eventually make it into the receiver’s message queue.
> This leads to “loosely-coupled” communications.
Four combinations for loosely-coupled communications using queues.

Sender Sender Sender Sender
running running passive passive

passive

Notify Install a handler to be called when a message is put into the specified queue
General Architecture of a Message-Queuing System
> Messages are “put into” a source queue.
> They are then “taken from” a destination queue.
> Queues are managed by queue managers
i) They move a message from a source queue to a destination queue.

i) Special queue managers operate as routers or relays: they forward incoming messages to
other queue managers.

> The general organization of a message-queuing system with routers.

{ 46 }
Rahul Publications =

DISTRIBUTED SYSTEMS

Sender A
Application
e Application
Cﬂeceive
ueue
i| [T] R2 E\} }
111
- \ Message m <
Send queue B /E :
Tl (11 [«—»
. Application
111
R1 \ PR a0
(—b 1] LLIHG = BIE
m = & lﬁ Receiver B
Application
Router

The Role of Message Brokers

Often, there’s a need to integrate new/existing apps into a “single, coherent Distributed Information
System (DIS)”.

Problem: different message formats exist in legacy systems. It may not be convenient to “force”

legacy systems to adhere to a single, global message format in terms of cost. It is often necessary to live
with diversity (there’s no choice).

Solution: the “Message Broker”.
Message Brokers (aka “Interface engine”)

> In message-queuing systems, conversions are handled by special nodes in a queuing network,
known as message brokers.

> A message broker acts as an application-level gateway in a message-queuing system.
> Purpose - convert incoming messages so that they can be understood by the destination application.

» Note: a message broker is just another application - not considered to be an integral part of
the queuing system.

> Message brokers can be simple (reformat messages) or complex (find associated applications, convert
data)

> The general organization of a message broker in a message-queuing system.

Rapository with
conversion rules

Source dlient Message broker and programs Destination client
\ \ . /
§ 1} / !
Broker
= @l

Rahul Publications

M.Sc. IV Sem UNIT -1l

Message-Queuing (MQ) Applications
General-purpose MQ systems support a wide range of applications, including:
» Electronic mail.
» Workflow.
» Groupware.

» Batch Processing.

2.1.3 Stream-oriented Communication
Q8. Explain about Stream oriented communication.

Ans :

i) Think of a lip synchronized movie, with sound and pictures, together with sub-titles ...
i) This leads to data synchronization problems ... which are not at all easy to deal with.
A General Architecture for Streaming Stored Multimedia Data over a Network

: ’ . Stream synchronization
Multimedia server Client /

Stream |_ / Stream

de*oder ”| decoder
QoS QoS

Compressed control control
[multimedia data [
L= -
Network
— | 48]
Rahul Publications

DISTRIBUTED SYSTEMS

Quality of Service

Definition: “Ensuring that the temporal
relationships in the stream can be preserved”.

QoS is all about three things:
a) Timeliness,

b) Volume and

c) Reliability.

Most current operating systems and networks
do not include the QoS management facilities.
Bleeding edge of the discipline

Must specifying the following:

1. Therequired bit rate at which data should be
transported.

2. The maximum delay until a session has been
set up (i.e., when an application can start
sending data).

3. The maximum end-to-end delay (i.e., how
long it will take until a data unit makesitto a
recipient).

4. The maximum delay variance, or jitter.
5. The maximum round-trip delay.

Q9. Write about Overlay Networks.
Ans :

An overlay network is a virtual network of
nodes and logical links that is built on top of an
existing network with the purpose to implement a
network service that is not available in the existing
network.

Applications of Overlays

» Routing

» Addressing
» Security

» Multicast
» Mobility

Advantages / Disadvantages

1. Do not have to deploy new equipment, or
modify existing software/protocols

i) probably have to deploy new software
on top of existing software.

ii) e.g., adding IP on top of Ethernet does
not require modifying Ethernet protocol
or driver

iii) allows bootstrapping

a) expensive to develop entirely new
networking hardware/software

b) all networks after the telephone
have begun as overlay networks

2. Do not have to deploy at every node

i) Not every node needs/wants overlay
network service all the time

e.g., QoS guarantees for best-effort
traffic

i) Overlay network may be too

heavyweight for some nodes

e.g., consumes too much memory,
cycles, or bandwidth

iii) Overlay network may have unclear
security properties

e.g., may be used for service denial
attack

iv) Overlay network may not scale (not
exactly a benefit)

e.g. may require n2 state or
communication

Two Approaches to Organization

1. Nodes may organize themselves into a tree,
meaning that there is a unique (overlay) path
between every pair of nodes.

2. Nodes organize into a mesh network in which
every node will have multiple neighbors and
there exist multiple paths between every pair
of nodes more robust

2.1.4 Multicast Communication

Q10. Explain in detail about Multicast
communication in distributed systems.

AnS :

Multicasting is the process whereby a source
host or protocol entity sends a packet to multiple
destinations simultaneously using a single, local
‘transmit’ operation.

'| 49 |

Rahul Publications

M.Sc. IV Sem UNIT -1l

There are two categories in multicast communication:
» Unicasting
» Broadcasting

Multicast communications refers to one-to-many or many-to many communications. It implements
a one-to-many send operation:

We can implement Multi cast on
» Network Layer (IP)
» Application Layer
Need for Multicast at Network Layer (IP Multicast)
The following figures describe how multicasting can be used with or without support of network

« Without support for multicast at the network layer:

Transmit
multiple copies
of the same
message on the
same link

Requires a set of mechanisms at the network layer:

(1) Routers must be able to send multiple copies of same packet
(2) Multicast routing algorithms needed to build up a dissemination tree

The above figure shows that the multicasting is used in the network layer .here the routers are able
to send multiple copies of same packet. With the help of multicast routing algorithms the network layer
built destination tree to carry the packets.

{ 50 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Multicast works at IP Level

« |P multicast addresses are allocated a certain range:

ClassD [1 | 1 | 1 | 0 | multicast group id
28 bis
Class From To
D 224 00.0 239.255.255.2565

+ Each multicast group designates a “multicast group”.

+ Hosts can “join” a multicast group.

= An IP datagram sent to a multicast address is forwarded to everyone who

has joined the multicast group.

Multicast at Application Layer

neighbours in the overlay networks. No multicast needed in overlay network.

Advantages

1.

4.

Scalability

i) Routers do not maintain per-group state

i) End systems do, but they participate in very few groups
Easier to Deploy

i) Only requires adding software to end hosts

ii) Potentially simplifies support for higher level functionality
Use hop-by-hop approach, but end hosts are routers

i) Leverage computation and storage of end systems

ii) e.g., packet buffering, transcoding of media streams
Leverage solutions for unicast congestion control and reliability

Overlay-based Approaches for Multicasting

>
>

Build an overlay mesh network and embed trees into the mesh:
Build a shared tree:

Build a graph with well-known properties

» N-dimensional torus: CAN

» Hypercube inspired: Chord

» Triangulation: Delaunay Triangulation

Properties of the Overlay Graph

1.

Number of neighbors (routing table size)

i) Many Distributed Hash Tables (DHTs), hypercubes: O(log N) (max.)
i) Triangulation graphs: O(N) (max.), 6 (avg.)

iii) Meshes, trees: no a priori bound, but bounds can be enforced

Application layer provides multicast functionality above IP layer. The data is transmitted between

l 51]

Rahul Publications

M.Sc. IV Sem UNIT -1l

2. Path lengths in the overlay
i) Many DHTs, hypercubes: O(log N) (max.)
i) Triangulation graphs: O(N) (max.), O(vN) (best case avg.)

iii) Meshes, trees: no a priori bound

2.2 NAMING
2.2.1 Names
Q11. Write about names in distributed environment.
Ans :
Names

Flat Naming

1. Identifiers are simply random bit strings referred to as unstructured or flat names.
2. Property: it does not contain any information on how to locate the access point of its associated
entity.

2.2.2 ldentifiers
Q12. What are identifiers in distributed environment.

Ans :

Identifiers

A name that has no meaning at all; it is just a random string. Pure names can be used for comparison
only.

{ 52 }
Rahul Publications =

DISTRIBUTED SYSTEMS

Identifier: A name having the following properties:
P1 Eachidenti_er refers to at most one entity

P2 Each entity is referred to by at most one
identifier

P3 An identi_er always refers to the same
entity (prohibits reusing an identifier)

An identifier need not necessarily be a pure
name, i.e., it may have content.

Identifiers use Special type of (usually,
computer readable) name with the following
properties:

» Anid refers to at most one entity

» Each entity is referred by at most one id

» An id always refers to the same entity
(never reused)

Identifier includes or can be transformed to
an address for an object

e.g. NFS file handle, Java RMI remote object
reference, etc.

Properties of a True Identifier
> An identifier refers to at most one entity.

> Each entity is referred to by at most one
identifier.

> An identifier always refers to the same entity
2.2.3 Addresses

Q13. Write a note address in distributed
system.

AnS :

Before you can send a message, you
must know the destination address. It is extremely
important to understand that each computer has
several addresses, each used by a different layer.
One address is used by the data link layer, another
by the network layer, and still another by the
application layer.

An address is a name that refers to an access
point of an entity. For eg. a server’s address consists
of an IP address and a port number. An entity may
have multiple access points and addresses. Like A
person has several phone numbers (e.g. work,
home, mobile).

An entity may change its access points for eg,

a service is moved to a different host, a person
changes its email address after changing his job.

In order for a client to send a message to a
server, it must know the server’s address. If there is
only one process running on the destination
machine, the kernel will know what to do with the
incoming message give it to the one and only process
running there.

If there are several processes running on the
destination machine, to which one gets the message.
The kernel has no way of knowing. A scheme that
uses network addresses to identify processes means
that only one process can run on each machine.
While this limitation is not fatal, it is sometimes a
serious restriction.

2.2.4 Flat Naming
Q14. Write a note on Flat Naming service.

AnS :

Identifiers are simply random bit strings
referred to as unstructured or flat names.

Property

It does not contain any information on how
to locate the access point of its associated entity.

Locating an Entity
Broadcasting

1. A message containing the identifier of the
entity is broadcast to each machine and each
machine is requested to check whether it has
that entity.

2. Only the machines that can offer an access
point for the entity send a reply message
containing the address of that access point.

e.g. used in the Internet Address Resolution
Protocol (ARP) to find the data-link address
of a machine when given only an IP address.

» A machine broadcasts a packet on the
local network asking who is the owner
of a given IP address.

» When the message arrives at a machine,
the receiver checks whether it should
listen to the requested IP address.

» If so, it sends a reply packet containing,
for example, its Ethernet address.

'| 53 I|

Rahul Publications

M.Sc. IV Sem UNIT -1l

Multicasting
> Internet supports network-level multicasting by allowing hosts to join a specific multicast group.
> These groups are identified by a multicast address.

> When a host sends a message to a multicast address, the network layer provides a best-effort service
to deliver that message to all group members. See Deering and Cheriton (1990) and Deering et al.
(1996).

Forwarding Pointers

When an entity moves from A to B, it leaves behind in A a reference to its new location at B.
Advantages
Simple

Process P2 Stub cs* refers to
Clien't stub cs* same server stub as

/ stub cs.
\} Process P3
\ | Identical client stub

Process P1 Server stub —]

=T
Client stub cs

| Process P4 Object

\D’ Local
invocation
Interprocess

communication |dentical —"]
server stub

> Migration is completely transparent to a client.
> The only thing the client sees of an object is a client stub.

> A client’s request is forwarded along the chain to the actual object.

2.2.5 Structured Naming
Q15. What are name spaces? Explain about them.

Ans :

Name Spaces

Names are commonly organized into what is called a name space. The name spaces for structured
names can be represented as a labelled, directed graph with two types of nodes.

— { 54 |
Rahul Publications =

DISTRIBUTED SYSTEMS

1. Aleaf node represents a named entity and hds the property that it has no outgoing edges.

» generally stores attribute information on the entity it is representing - for example, its address
- so that a client can access it.

» could store the state of that entity, such as in the case of file systems in which a leaf node
actually contains the complete file it is representing. We return to the contents of nodes below.

2. Directory node has a number of outgoing edges, each labeled with a name of other nodes

3. Adirectory node stores a directory table in which an outgoing edge is represented as a pair (edge
label, node identifier).

4. Directory nodes can also have attributes, besides just storing a directory table with (edge label, node
identifier) pairs.

The following is a general naming graph with a single root node.

Diala storad inni

n2: "elke"
n3: "'max”

hd: steen: :ﬁzﬁ;fsteenﬂ:eys'
Leaf noda O @ @ m
oo
Qireclory node D . O hornelstesn/mbox”

The naming graph has one node, namely nO, which has only outgoing and no incoming edges
called the root (node) of the naming graph. Each path in a naming graph can be referred to by the
sequence of labels corresponding to the edges in that path, such as

N:<label-1, label-2, ..., label-n> where N refers to the first node in the path.

Such a sequence is called a path name. If the first node in a path name is the root of the naming
graph, it is called an absolute path name ELSE, it is called a relative path name.

NOTE: path naming similar to file systems.

But path names in file systems are represented as a single string in which the labels are separated by
a special separator character, such as a slash (“/”).

This character is also used to indicate whether a path name is absolute.

» E.g, instead of using n0:<home, steen, mbox>, the actual path name common practice to
use its string representation /home/steen/mbox.

If several paths that lead to the same node, it can be represented by different path names.

» E.g, node n5 can be referred to by /home/steen/keys or /keys. The string representation of
path names can be equally well applied to naming graphs other than those used for only file
systems.

More general example of naming is Plan 9 operating system. All resources, such as processes, hosts,
I/0 devices, and network interfaces, are named in the same fashion as traditional files. Approach is analogous
to implementing a single naming graph for all resources in a distributed system.

{ 55 |
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

Q16. Write about name resolution techniques.

Ans :

Name Resolution

To resolve a name we need a directory node. It uses the mechanism called Closure mechanism,
The mechanism to select the implicit context from which to start name resolution:

> www.cs.vu.nl: start at a DNS name server

> /home/steen/mbox: start at the local NFS file server (possible recursive search)
> 0031204447784 dial a phone number

> 130.37.24.8: route to the VU’s Web server

A closure mechanism may also determine how name resolution should proceed.

Data stored in n1

n2: "elke"
n3: "max"
n4: "steen”

In the above example, Node n5 has only one nhame

Mounting :allow a node to refer to a node from a different name space. Mounting remote name spaces
(“remote symbolic link”) needs :

> A specific protocol (e.g. NES)
> At a certain mount point of a given server
> A name, containing access protocol, remote server, foreign mounting point (e.g. URL)

{ 56 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Mounting remote name spaces through a specific access protocol.

Name server Name server for foreign name space
\ Machine A Machine B

\ \

remote

VU o

nfs://fiits.cs vu.ni/home/steen”)

!

0s !

Network
Relerence to foreign name space
NOTE:
> The root directory has a number of user-defined entries, including a sub directory called /remote.
> This subdirectory includes mount points for foreign name spaces such as the user’s home directory
at the Vrije Univer site it.
» A directory node named /remote/vu is used to store the URL nfs://flits.cs.vu.nl//home/steen.

Consider the name/remote/vu/mbox.

>

>

>

This name is resolved by starting in the root directory on the client’s machine and continues until
the node /remote/vu is reached.

The process of name resolution then continues by returning the URL nfs:/flits.cs.vu.nl//home/steen,
leading the client machine to contact the file server flits.cs.vu.nl by means of the NFS protocol, and
to subsequently access directory /home/steen.

Name resolution can then be continued by reading the file named mbox in that directory, after
which the resolution process stops.

The Implementation of a Name Space

Basic issue: Distribute the name resolution process as well as name space management across

multiple machines, by distributing nodes of the naming graph.

Name Space Distribution

Consider a hierarchical naming graph and distinguish three levels:

Global Level: Consists of the high-level directory nodes. Main aspect is that these directory nodes
have to be jointly managed by different administrations

Administrational Level: Contains mid-level directory nodes that can be grouped in such a way
that each group can be assigned to a separate administration.

Managerial Level: Consists of low-level directory nodes within a single administration. Main issue
is effectively mapping directory nodes to local name servers.

{ 57 '
| Rahul Publications

M.Sc. IV Sem UNIT -1l

To make matters more concrete, Fig. 5-13 shows an example of the partitioning of part of the DNS
name space, including the names of files within an organization that can be accessed through the Internet,
for example, Web pages and transferable files. The name space is divided into non overlapping parts,
called zones in DNS (Mockapetris, 1987). A zone is a part of the name space that is implemented by a
separate name server.

An example partitioning of the DNS(Domain Name System) name space, including Internet-accessible
files, into three layers.

1. The address of the root server must be well known

A name resolver hands over the complete name to the root name server
3. The root server will resolve the path name as far as it can, and return the result to the client.

» theroot server can resolve only the label nl, for which it will return the address of the associated
name server.

4. The client passes the remaining path name (i.e., nl:<vu, cs, ftp, pub, globe, index.html =) to
that name server.

5. This server can resolve only the label vu, and returns the address of the associated name server,
along with the remaining path name vu:<cs, ftp, pub, globe, index.html >.

6. The client’s name resolver will then contact this next name server, which responds by resolving the
label cs, and also ftp, returning the address of the FTP server along with the path name ftp:<pub,
globe, index.html =.

{ 58 }
Rahul Publications)

DISTRIBUTED SYSTEMS

7. The client then contacts the FTP server, requesting it to resolve the last part of the original path
name.

8. The FTP server will resolve the labels pub, globe, and index.html, and transfer the requested file (in
this case using FTP).

» (The notation #<cs=> is used to indicate the address of the server responsible for handling the
node referred to by <cs=>.)

The principle of iterative name resolution.

1. <nl,vu,cs, ftp>

- » Root
b, s ce o> name server
Se Vo5 »| Name server
<l
|
Client's | 4. #<vus, <cs,ftp> nl node
name
resolver | 5. <cs.fip> »| Name server
< vu node
6. #<cs>, <ftp>
= A<l »| Name server
8. #<ftp> cs node

<nl,vu,cs, ftp> T l#ml,vu,cs.ﬁp; bades are /:

ftp
managed by O O

the same server

Q17. Explain about DNS.
Ans :

The Domain Name System

The DNS name space is hierarchically organized as a rooted tree.

Global
layer

Adminis- keio
trational
layer

'| 59 I|

Mana-
gerial
layer

Rahul Publications

M.Sc. IV Sem

UNIT -1l

A label is a case-insensitive string made up of
alphanumeric characters.

A label has a maximum length of 63
characters; the length of a complete path
name is restricted to 255 characters.

The string representation of a path name
consists of listing its labels, starting with the
rightmost one, and separating the labels by a
dot (“.”).

The root is represented by a dot.

e.g, the path name root:<nl, vu, cs, flits>, is
represented by the string flits.cs.vu.nl. , which

SO on.

A (address) record - contains an IP address
for the Internet host to allow communication.

If a host has several IP addresses, as is the
case with multi-homed machines, the node
will contain an A record for each address.

MX (mail exchange) record - a symbolic link
to a node representing a mail server.

SRV records - contain the name of a server
for a specific service. The service itself is
identified by means of a name along with the
name of a protocol. SRV records are defined
in Gulbrandsen (2000).

Rahul Publications

'l 60 ',

> NS (name server) records - an NS record
contains the name of a name server that
implements the zone represented by the
node.

> CNAME record - contains the canonical name
of a host . DNS distinguishes aliases from
what are called canonical names. Each host
is assumed to have a canonical, or primary
name. The name of the node storing such a
record is thus the same as a symbolic link

> PTR (pointer) record - DNS maintains an
inverse mapping of IP addresses to host
names by means of PTR (pointer) records.

particular zone.

> Nodes are identified by means of their domain
name, by which the notion of a node identifier
reduces to an (implicit) index into a file.

2.2.6 Attribute Based Naming
Q18. Explain about directory services.

Ans :

Directory Services

Directory Server provides a central repository
for storing and managing information. Almost any
kind of information can be stored, from identity

DISTRIBUTED SYSTEMS

profiles and access privileges to information about
application and network resources, printers, network
devices and manufactured parts. Information stored
in Directory Server can be used for the
authentication and authorization of users to enable
secure access to enterprise and Internet services and
applications. Directory Server is extensible, can be
integrated with existing systems, and enables the
consolidation of employee, customer, supplier, and
partner information.

In many cases, it is much more convenient to
name, and look up entities by means of their
attributes which are known as traditional
directory services .

Lookup operations can be extremely
expensive, as they are required to match requested
attribute values, against actual attribute values . So
inspect all entities (in principle).

Inorder to Implement basic directory service
as database, combine with traditional structured
naming system.

A directory service can be considered an
extension of a database, directory services generally
have the following characteristics:

1. Hierarchical Naming Model

A hierarchical naming model uses the concept
of containment to reduce ambiguity between
names and simplify administration. The name
for most objects in the directory is relative to
the name of some other object which
conceptually contains it. For example, the
name of an object representing an employee
of a particular company contains the name
of the object representing the company, and
the name of the company might contain the
name of the objects representing the country
where the company operates, e.g. cn=John
Smith, o=Example Corporation, c=US.
Together the names of all objects in the
directory service form a tree, and each
Directory Server holds a branch of that tree,
which in the Sun Java System Directory
Server documentation is also referred to as a
suffix.

2. Extended Search Capability

Directory services provide robust search
capabilities, allowing searches on individual
attributes of entries.

3. Distributed information model

A directory service enables directory data to
be distributed across multiple servers within
a network.

4. Shared Network Access

While databases are defined in terms of APlIs,
directories are defined in terms of protocols.
Directory access implies network access by
definition. Directories are designed specifically
for shared access among applications. This
is achieved through the object-oriented
schema model. By contrast, most databases
are designed for use only by particular
applications and do not encourage data
sharing.

5. Replicated Data

Directories support replication (copies of
directory data on more than one server)
which make information systems more
accessible and more resistant to failure.

6. Datastore Optimized for Reads

The storage mechanism in a directory service
is generally designed to support a high ratio
of reads to writes.

7. Extensible Schema

The schema describes the type of data stored
in the directory. Directory services generally
support the extension of schema, meaning
that new data types can be added to the
directory.

About Enterprise-Wide Directory Services

Directory Server provides enterprise-wide
directory services, meaning it provides information
to a wide variety of applications. Until recently, many
applications came bundled with their own
proprietary user databases, with information about
the users specific to that application. While a
proprietary database can be convenient if you use
only one application, multiple databases become
an administrative burden if the databases manage
the same information.

| 61 |I

Rahul Publications

M.Sc. IV Sem

UNIT -1l

For example, suppose your network supports
three different proprietary E-mail systems, each
system with its own proprietary directory service. If
users change their passwords in one directory, the
changes are not automatically replicated in the
others.

An enterprise-wide directory service solves the
n + 1 directory problem by providing a single,
centralized repository of directory information that
any application can access. However, giving a wide
variety of applications access to the directory
requires a network-based means of communicating
between the applications and the directory. Directory

protocol running over TCP/IP and uses simplified
encoding methods. It retains the X 500 standard
data model and can support millions of entries for
a comparatively modest investment in hardware and
network infrastructure.

About DSML

DSML is a markup language that enables you
to represent directory entries and commands in
XML. This means that XML-based applications using
HTTP can take advantage of directory services while
staying within the existing web infrastructure.
Directory Server implements version 2 of the DSML
standard (DSMLv2).

Rahul Publications

'l 62 ',

I 2.3 SYNCHRONIZATION

2.3.1 Clock Synchronization

Q19. What is clock synchronization in DS.
Write about physical clocks.

Ans :

In a centralized system, time is unambiguous.
When a process wants to know the time, it makes a
system call and the kernel tells it. If process A asks
for the time. and then a little later process B asks for
the time, the value that B gets will be higher than
(or possibly equal to) the value A got. It will certainly

This can be achieved by Universal Coordinated Time

(UTC):

The UTC works based on the number of
transitions per second of the cesium 133 atom .At
present, the real time is taken as the average of some
50 cesium-clocks around the world. It introduces a
leap second from time to time to compensate that
days are getting longer.

UTCis broadcast through short wave radio
and satellite.

» Satellites can give an accuracy of
about + 0.5 ms.

DISTRIBUTED SYSTEMS

Suppose we have a distributed system with a UTC-receiver somewhere in it = we still have to
distribute its time to each machine.

Basic Principle
> Every machine has a timer that generates an interrupt H times per second.

> There is a clock in machine p that ticks on each timer interrupt. Denote the value of that clock
by Cp(t), where t is UTC time.

> Ideally, we have that for each machine p, Cp(t) = t, or, in other words, dC/dt = 1.

Clock time, C c{t (Lt: =1

UTC, t

dC
l_pzaﬁl-i-p

Example

Assuming that the clocks of the satellites are accurate and synchronized:
t takes a while before a signal reaches the receiver.
The receiver’s clock is definitely out of synch with the satellite

A, is unknown deviation of the receiver’s clock.
X, v, z are unknown coordinates of the receiver.
T, is time stamp on a message from satellite i

A =(T_, — T)+ A is measured delay of the message sent by satellite i.

V V V V V VYV VY

Measured distance to satellite i:c XA, (c is speed of light)

> Real distance is d = \/(xi XY +(y, -y, +@ -z)
4 satellites = 4 equations in 4 unknowns (with A as one of them):

d + cA = cA

Q20. Write about NTP algorithm in physical clocks.

Ans :
Network Time Protocol (NTP)

Many algorithms are proposed to do clock synchronization in distributed systems. The most commonly
used algorithm is Network Time Protocol Algorithm. NTP is a protocol designed to synchronize the clocks
of computers over a network.

It works based on the following principles.

{ 63 }
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

Clock Synchronization Principles

Principle I: Every machine asks a time server the accurate time at least once every
8/(2p) seconds (Network Time Protocol). But we need an accurate measure of round trip delay,
including interrupt handling and processing incoming messages.

Principle II: Let the time server scan all machines periodically, calculate an average, and inform
each machine how it should adjust its time relative to its present time.

Getting the Current time from a Time Server

B

» When slowing down, the interrupt routine adds only 9 msec each time until the
correction has been made.

» Vice versa for advancing

» In the case of the network time protocol (NTP), this protocol is set up pair-wise between
servers. In other words, B will also probe A for its current time.

» The offset 6 is computed, along with the estimation & for the delay:

— (Tz — T1) + (T4 — Ts)
2
» Eight pairs of (0, 3) values are buffered, finally taking the minimal value found for 5 as the best

estimation for the delay between the two servers, and subsequently the associated value 6 as
the most reliable estimation of the offset.

5

{ 64 |
Rahul Publications J

DISTRIBUTED SYSTEMS

Clock Accuracy
Some cocks are more accurate than NTP. NTP divides servers into strata.

When A contacts B, it will only adjust its time if its own stratum level is higher than that of B. After
synchronization, A's stratum level will become one higher than that of B. Due to the symmetry of NTP, if
A's stratum level was lower than that of B, B will adjust itself to A.

Stratum O

Devices such as atomicclocks, GPS clocks or other radio clocks. Stratum-0 devices are not attached
to the network; instead they are locally connected to computers.

Stratum 1

Computers attached to Stratum 0 devices. Normally they act as servers for timing requests from
Stratum 2 servers via NTP. Also referred to as timeservers.

Stratum 2

Computers that send NTP requests to Stratum 1 servers. Normally a Stratum 2 computer will
reference a number of Stratum 1 servers and use the NTP algorithm to gather the best data sample,
dropping any Stratum 1 servers that seem obviously wrong.Stratum 2 computers act as servers for Stratum
3 NTP requests.

Stratum 3 and higher

These computers employ exactly the same NTP functions of peering and data sampling as Stratum
2, and can themselves act as servers for higher strata, potentially up to 16 levels. NTP (depending on what
version of NTP protocol in use) supports up to 256 strata.

Q21. Explain Berkeley Algorithm.
Ans :
The Berkeley Algorithm

Many algorithms such as NTP, the time server is passive. - Other machines periodically ask it for the
time. It is Opposite to Berkeley UNIX time server which is active, and polling every machine from time to
time to ask what time it is there.

Based on the answers, it computes an average time and tells all the other machines to advance their
clocks to the new time or slow their clocks down until some specified reduction has been achieved. This
method is suitable for a system in which no machine has a WWYV receiver. The time daemon’s time must
be set manually by the operator periodically.

() The time daemon asks all the other machines for their clock values.
(b) The machines answer.

(c) The time daemon tells everyone how to adjust their clock.

{ 65 }
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

300 /300 3:00 0

= D s

3:

)™ (e [

Ol 1918 3@

2:50 3:25 2:50 3:25

3:05 3:05
(a) (b) (c)

1. at 3:00, the time daemon tells the other machines its time and asks for theirs.

2. they respond with how far ahead or behind the time daemon they are.

Attach a timestamp

e) 1o each event e, satisfying the following properties:
P1: If a and b are two events in the same process, and a — b, then we demand that C(a) < C(b).

P2: If a corresponds to sending a message m, and b to the receipt of that message, then also C(a)
< C(b).

Lamport’s Logical Clocks
Problem:

How to attach a timestamp to an event when there’s no global clock => maintaina consistent set
of logical clocks, one per process.

Solution:

Each process P, maintains a local counter C, and adjusts this counter according to the following
rules: (Raynal and Singhal, 1996).

{ 66 |
Rahul Publications)

DISTRIBUTED SYSTEMS

Property P1 is satisfied by (1);

Property P2 by (2) and (3).

For any two successive events that take place within P,, C. is incremented by 1.
Each time a message m is sent by process P, the message receives a timestamp t(m) = C,.

Whenever a message m is received by a process PJ., P, adjusts its local counter CJ. to maX{Cj,
ts(m)}; then executes step 1 before passing m to the application.

it can still occur that two events happen at the same time. Avoid this by breaking ties through

process IDs.

Example

(@) Three processes, each with its own clock. The clocks run at different rates.

(b) Lamport’s algorithm corrects the clocks.

P‘I P2 P3
0] (0] 0]
5 m, 8 10
i3] e 20
18 241__m, |30
2 @ o
30 40 50
36 48 60
42 56/ ™5 |70
48 64 80
s, |72 90
|60, 80 100
(a)

Py P> Ps
0 0 0
Bl ms 8 10
2| i 20
18 24| _m, |30
21 2| a0
30 |P2 adjusts | 40 50
36 its clock 48 60
a2 (61) ™5 |70
48 69 80
7op e |77 9%
761 p, adjusts |85 100

its clock
(b)
57 J

Rahul Publications

M.Sc. IV Sem UNIT -1l

> The processes run on different machines, each with its own clock, running at its own speed.

> When the clock has ticked 6 times in process P1, it has ticked 8 times in process P2 and 10 times in
process P3.

> Each clock runs at a constant rate, but the rates are different due to differences in the crystals.

> At time 6, process P1 sends message ml to process P2, the clock in process P2 reads 16 when it
arrives.

> If the message carries the starting time, 6, in it, process P2 will conclude that it took 10 ticks to make
the journey.

> m3 leaves process P3 at 60 and arrives at P2 at 56.

Application layer

Appikato e mﬂ# %) s heisalesils i
and umigfé'f.fﬂiﬁigg Adjust local clock Middleware layer
Viccleware sonds message /(f N Messagoisreceived
Network layer

2.3.3 Mutual Exclusion
Q23. Write about Vector Clocks.

Ans :

Vector Clocks
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded b:

{ 63 |
Rahul Publications J

DISTRIBUTED SYSTEMS

Concurrent Message Transmission using Logical Clocks

P " i)
0 o 0
6l_m, |8 i0
[i me |z
i sie |30
24 32| my |40
3 a| 50
36 48 60
2 G |70
48 69 80,

o s |77 90

| 76 | 85 100

Observation

> Event a: ml is received at T = 16.

> Event b: m2 issentat T = 20.

> We cannot conclude that a causally precedes b.
Solution: Vector clocks

> Each process P, has an array VC[1..n], where VC[j] denotes the number of events that
process P, knows have taken place at process PJ..

> When P, sends a message m, it adds 1 to VC][i], and sends VC. along with m as vector
timestamp vt(m). Result: upon arrival, recipient knows P’stimestamp.

> When a process PJ. receives a message m from P with vector timestamp ts(m), it
(1) updates each VCj[k] to max{VCj[k], ts(m)[Kk]}
(2) increments VC[j] by 1.

Enforcing Causal Communication
Causally Ordered Multicasting

We can now ensure that a message is delivered only if all causally preceding messages have already
been delivered.

Pi increments VCJ[i] only when sending a message, and PJ. only adjusts VCJ. when receiving a
message (i.e., does not increment VC[j].

Pj postpones delivery of m until:
> ts(m)li] = VC[i] + 1.
Means that m is the next message that PJ. was expecting from process P,
> ts(m)[k] < VC[K] for k =]

Means that PJ. has seen all the messages that have been seenby P, when it sent message m.

{ 69 |
) Rahul Publications

M.Sc. IV Sem UNIT -1l

Example

>

Enforcing causal communication.
vco='(1 ,0,0) VC,= '(1 1,0

0

\ch (1,1,0)

VC,=(0,0,00 VC,=(1,0,0)

P

Three processes PO, P1, and P2.

Token-based solutions: mutual exclusion is achieved by passing a special message between the
processes, known as a token.

Only one token available and who ever has that token is allowed to access the shared resource.
When finished, the token is passed on to a next process.

Properties:

i) Ensure that every process will get a chance at accessing the resource.

i) Deadlocks are avoided.

iii) Drawback - token loss leads to a complex restart of procedure

Permission-based approach: a process wanting to access the resource first requires the permission
of other processes.

Rahul Publications

|l 70 l,

DISTRIBUTED SYSTEMS

Centralized Algorithm

>
>

Simulate how it is done in a one-processor system
One process is elected as the coordinator.

Whenever a process wants to access a shared resource, it sends a request message to the coordinator
stating which resource it wants to access and asking for permission.

If no other process is currently accessing that resource, the coordinator sends back a reply granting
permission.

When the reply arrives, the requesting process can proceed.
(&) Process 1 asks the coordinator for permission to access a shared resource. Permission is granted.
(b) Process 2 then asks permission to access the same resource. The coordinator does not reply.

(c) When process 1 releases the resource, it tells the coordinator, which then replies to 2.

:@u”ﬁ@ @@ >

p e
Requesll OK Request '\@ Li) \2)
7 /" No reply Release
(3) Mo o i g

— Queue is 3) E (3) —
& empty |~ -
Coordinator
(a) (b) (c)

The coordinator is a single point of failure, so if it crashes, the entire system may go down.

In a large system, a single coordinator can become a performance bottleneck.

Deterministic distributed Mutual Exclusion Algorithm

>

>

Requires that there be a total ordering of all events in the system. For any pair of events - it must be
unambiguous which one actually happened first.

When a process wants to access a shared resource, it builds a message containing the name of the
resource, its process number, and the current (logical) time.

It then sends the message to all other processes, conceptually including itself.

When a process receives a request message from another process, the action it takes depends on its
own state with respect to the resource named in the message.

Three different cases have to be clearly distinguished:

If the receiver is not accessing the resource and does not want to access it, it sends back an OK
message to the sender.

If the receiver already has access to the resource, it simply does not reply. Instead, it queues the
request.

If the receiver wants to access the resource as well but has not yet done so, it compares the timestamp
of the incoming message with the one contained in the message that it has sent everyone.

The lowest one wins.
a) If the incoming message has a lower timestamp, the receiver sends back an OK message.

b) Ifits own message has a lower timestamp, the receiver queues the incoming request and sends
nothing.

{ 71 ' T .
| Rahul Publications

M.Sc. IV Sem UNIT -1l

> After sending out requests asking permission, a process waits until everyone else has given permission
— then proceeds.

> When finished, it sends OK messages to all processes on its queue and deletes them all from the
queue.

> If there is no conflict, it clearly works.

> Suppose that two processes try to simultaneously access the resource:
(2) Two processes want to access a shared resource at the same moment.
(b) Process 0 has the lowest timestamp, so it wins.
(c) When process 0 is done, it sends an OK also, so 2 can now go ahead.

Accesses
resource

> The number of messages required per entry is now 2(n - 1), where the total number of processes
in the system is n.

> No single point of failure exists.

Q25. Write about Token Ring Algorithm for mutual Exclusion.
Ans :

Mutual Exclusion: Token Ring Algorithm
Organize processes in a logical ring, and let a token be passed between them.

1. The one that holds the token is allowed to enter the critical region (if it wants to)
a) An unordered group of processes on a network.

b) Alogical ring constructed in software.

{ 72}
Rahul Publications =

DISTRIBUTED SYSTEMS

POPPQPOP

(a) (b)
2. When the ring is initialized, process O is given a token.
3. The token circulates around the ring.
4. It is passed from process k to process k+1 (modulo the ring size) in point-to-point messages.
5. When a process acquires the token from its neighbor, it checks to see if it needs to access the shared
resource.
a) If so, the process goes ahead, does all the work it needs to, and releases the resources.
b) After it has finished, it passes the token along the ring.
c) Itis not permitted to immediately enter the resource again using the same token.
6. If a process is handed the token by its neighbor and is not interested in the resource, it just passes
the token along.
As a consequence, when no processes need the resource, the token just circulates at high speed
around the ring.
Advantages

1. Only one process has the token at any instant, so only one process can actually get to the resource.
2. Since the token circulates among the processes in a well-defined order, starvation cannot occur.

3. Once a process decides it wants to have access to the resource, at worst it will have to wait for every
other process to use the resource.

Disadvantages
1. If the token is ever lost, it must be regenerated
2. Dead processes:

a) If a process receiving the token must acknowledge receipt, a dead process will be detected
when its neighbor tries to give it the token and fails.

b) At that point the dead process can be removed from the group, and the token holder can
throw the token over the head of the dead process to the next member down the line, or the
one after that, if necessary.

2.3.4 Global Positioning of Nodes
Q26. Write about Geometric Overlay Network

AnS :

Geometric Overlay Networks

Each node is given a position in an m-dimensional geometric space, such that the distance between
two nodes in that space reflects a real-world performance metric.

Example: Distance corresponds to internode latency.

{ 73 }
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

Given twonodes P and Q, then the distance d(PQ) reflects how long it would take for a message
to travel from P to Q.and vice versa. construct a geometric overlay network, in which the
distance d(PQ) reflects the actual latency between P and Q.

A node P needs k + 1 landmarks to compute its own position in a d-dimensional space.
Consider two-dimensional Case

Computing a node’s position in a two-dimensional space.

SRR, A

[\]
[
=1 o T s

Solution :
Let the L landmarks measure their pair wise latencies d(b, bj) and let each node P minimize

[db.P)-de.P |
=1 d(b,,P)

where a(bi,b ;) denotes the distance to landmark b, given a computed coordinate for P

With well-chosen landmarks, m can be as small as 6 or 7, with a(P,Q) being no more than a factor
2 different from the actual latency d(P, Q) for arbitrary nodes P and Q.

— { 74 |
Rahul Publications J

DISTRIBUTED SYSTEMS

2.3.5 Election Algorithms

Q27. Explain election algorithms.

AnS :

An algorithm requires that some process acts as a coordinator. In many systems the coordinator is

chosen by hand (e.qg. file servers). This leads to centralized solutions = single point of failure.

Election by Bullying

Each process has an associated priority (weight). The process with the highest priority should always

be elected as the coordinator.

To find the heaviest process

>

Any process can just start an election by sending an election message to all other processes (assuming
you don't know the weights of the others).

If a process Pheavy receives an election message from a lighter process Plight, it sends a take-over

message to P”ght. PIight is out of the race.

If a process doesn’t get a take-over message back, it wins, and sends a victory message to all other
processes.

The Bully Election Algorithm

>
>

The group consists of eight processes, numbered from 0 to 7.
Previously process 7 was the coordinator, but it has just crashed.

(&) Process 4 is the first one to notice this, so it sends ELECTION messages to all the processes
higher than it, namely 5, 6, and 7,

(b) Processes 5 and 6 respond, telling 4 to stop.
(c) Now 5 and 6 each hold an election.
(d) Process 6 tells 5 to stop.

(e) Process 6 wins and tells everyone.

e —
R) (\ﬁ _
P e L D Y o oo, R €O S 7N
%), D, 2/ A8 NE)
e il i
~—" Elecion L/ & oK A N
O, (o) (= ® ®

- '6} il _
N TN P i F e i
"-._ il ‘r-?—:/\ ".._E._/' '\E_'/I — '\.E," I'_E‘__.r'
X) ()

Prm'lnus a:uc-rdlnamr
has crashed
(a) (b) (c)

{ 75 '
2 Rahul Publications

M.Sc. IV Sem UNIT -1l

(d) (e)
> If a process that was previously down comes back up, it holds an election.

> If it happens to be the highest-numbered process currently running, it will win the election and take

Election message

l‘r-']//

Previous coordinator
has crashed

Rahul Publications

I B
T T T T T T T
NN

Consistency and Replication:introduction, data-centric consistency models,
client-centric consistency models, replica management, consistency protocols.
Fault Tolerance: Introduction, process resilience, reliable clientserver
communication, reliable group communication, distributed commit, recovery.
Security: introduction, secure channels, access control, security management.

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

3.1 CONSISTENCY AND REPLICATION I

3.1.1

Q1. Write about the reasons for replication
Ans :

Reasons for Replication

Introduction

Performance and Scalability

To keep replicas consistent, we generally need
toensurethatall conflicting operations are done
in the same order everywhere. From the world of
transactions:

» Read-write conflict: aread operation
and a write operation act concurrently

» Write-write conflict; two concurrent
write operations

Guaranteeing global ordering on conflicting
operations may be a costly operation, downgrading
scalability.

» weaken consistency requirements so that
hopefully global synchronization can be
avoided

3.1.2 Data-centric Consistency Models

Q2. What are data centric consistency
models

AnS :

A contract between a (distributed) data store
and processes, in which the data store specifies
precisely what the results of read and write
operations are in the presence of concurrency.

A data store is a distributed collection of
storages accessible to clients:

The general organization of a logical data
store, physically distributed and replicated across
multiple processes.

Process Process Process

Local copy

=
3

Distributed data store

Continuous Consistency

We can actually talk a about a degree of
consistency:

> replicas may differ in their numerical value
> replicas may differ in their relative staleness

> there may differences with respect to (number
and order) of performed update operations
conistency unit specifies the data unit over
which consistency is to be measured.

> e.g. stock record, weather report, etc.

Example: numerical and ordering

deviations
Replica A Replica B
Cont .. Com
x=6y=3 P x=2y=5
Operation Result Operation Result

txe2) (xe2)
ty=s1
4, As| x=y 2 | [x=6]

Vector clock A =(15,5) Vector clock B =(0, 11)

Order deviation =3 Order deviation =2

Numerical deviation = (1, 5) Numerical deviation = (3, 8)

(77)

Rahul Publications

M.Sc. IV Sem UNIT - 1l

It contains the variables x and y:
> Each replica maintains a vector clock
> B sends A operation [h5, Bi: x := x + 2];
A has made this operation permanent (cannot be rolled back)
> A has three pending operations) order deviation = 3
> A has missed one operation from B, yielding a max diff of 5 units) (1,5)
Strict Consistency

Any read on a data item ‘x’ returns a value corresponding to the result of the most recent write on
‘X’ (regardless of where the write occurred).

With Strict Consistency, all writes are instantaneously visible to all processes and absolute global
time order is maintained throughout the distributed system. This is the consistency model “Holy Grail” —
not at all easy in the real world, and all but impossible within a DS.

Example
Begin with:

Wi(x)a —write by process Pi to data item x with the value a

Ri(x)b - read by process Pi from data item x returning the value b
Assume
> Time axis is drawn horizontally, with time increasing from left to right
> Each data item is initially NIL.

P1 does a write to a data item x, modifying its value to a.

> Operation W1(x)a is first performed on a copy of the data store that is local to P1, and is then
propagated to the other local copies.

P2 later reads the value NIL, and some time after that reads a

It took some time to propagate the update of x to P2, which is perfectly acceptable.
P1: Wix)a P1. W(x)a
p2: R{x)a P2: Rix)NIL R(x)a

(a) (b)

Behavior of two processes, operating on the same data item:

(a) A strictly consistent data-store.

(b) A data-store that is not strictly consistent.

Sequential Consistency

It is a weaker consistency model, which represents a relaxation of the rules. It is also must easier
(possible) to implement.

Sequential Consistency

The result of any execution is the same as if the (read and write) operations by all proceses on the
data-store were executed in the same sequential order and the operations of each individual process
appear in this sequence in the order specified by its program.

{ 78 }
Rahul Publications ——

DISTRIBUTED SYSTEMS

Example
Time independent process

Four processes operating on the same data item x.

Figure (a) Figure(b)
e Process P1 first performs W(x)a to x. . Violates sequential consistency - not
e Later (in absolute time), all processes see the same
process P2 performs a write operation, interleaving of write operations.
by setting the value of x to b. . To process P3, it appears as if the data
e Both P3 and P4 firstread value b, and item has first been changed to b, and
later value a. later to a.
o Write operation of process P2 appears ° BUT, P4 will conclude that the final
to have taken place before that of P1. value is b.
(a) A sequentially consistent data store. (b) A data store that is not sequentially consistent.
P1: W(x)a P1: W(x)a
P2: W(x)b P2: W(x)b
P3: R(x)b R(x)a P3: R(x)b R(x)a
P4: R(x)b R(x)a P4: R(x)a R(x)b
(a) (b)
Example

> Three concurrently-executing processes P1, P2, and P3 (Dubois et al., 1988).

> Three integer variables x, y, and z, which stored in a (possibly distributed) shared sequentially

consistent data store.

> Assume that each variable is initialized to 0.

> An assignment corresponds to a write operation, whereas a print statement corresponds to a

simultaneous read operation of its two arguments.

> All statements are assumed to be indivisible.

Process P1 Process P2 Process P3
X£—1; y&—1: zE—1:
print(y, z); print(x, z); print(x, y);

> Various interleaved execution sequences are possible.

> With six independent statements, there are potentially 720 (6!) possible execution sequences
0 Consider the 120 (5!) sequences that begin with x « 1.
0 Half of these have print (x, z) before y «— 1 and thus violate program order.

0 Half have print (x, y) before z « 1 and also violate program order.

(79

Rahul Publications

M.Sc. IV Sem UNIT - 11l
o Only 1/4 of the 120 sequences, or 30, are valid.
0 Another 30 valid sequences are possible starting with v « 1
0 Another 30 can begin with z « 1, for a total of 90 valid execution sequences.

Four valid execution sequences for the processes. The vertical axis is time.

Xe=1;
print(y, z),
y &= 1;
print(x, 2);
Ze1;
print(x, y);

Prints: 001011
Signature: 001011

(a)

X 1;
ye1;
print(x, z);
print(y, z);
zZ—1;
print(x, v);

Prints: 101011
Signature: 101011

(b)

ye—1,
r £
print(x, y);
print(x, z);
X 1;
print(y, 2);

Prints: 010111
Signature: 110101

(c)

Figure (a) - The three processes are in order - P1, P2, P3.

(0]

(0]

(0]

Each of the three processes prints two variables.

ye—1,
X1
ze1;
print(x, z);
print(y, 2);
print(x, y);

Prints: 111111
Signature: 111111

(d)

Since the only values each variable can take on are the initial value (0), or the assigned
value (1), each process produces a 2-bit string.

The numbers after Prints are the actual outputs that appear on the output device.

> Output concatenation of P1, P2, and P3 in sequence produces a 6-bit string that characterizes a
particular interleaving of statements.

(0]

This is the string listed as the Signature.

Examples of possible output

> 000000 is not permitted - implies that the Print statements ran before the assignment statements,
violating the requirement that statements are executed in program order.

> 001001 - is not permitted
First two bits 00 - v and z were both O when P1 did its printing.

(0]

(0]

(0]

. This situation occurs only when P1 executes both statements before P2 or P3 start.
Second two bits 10 - P2 must run after P1 has started but before P3 has started.
Third two bits, 01- P3 must complete before P1 starts, but P1 execute first.

Causal Consistency
> Writes that are potentially causally related must be seen by all processes in the same order.

> Concurrent writes (i.e. writes that are NOT causally related) may be seen in a different order by
different processes.

Example

> Interaction through a distributed shared database.

> Process P1 writes data item x.

Rahul Publications

‘l 80 ||

DISTRIBUTED SYSTEMS

> Then P2 reads x and writes y.

> Reading of x andwritingof y are potentially causally related because the computation of y may
have depended on the value of x asread by P2 (i.e., the value written by P1).

> Conversly, if two processes spontaneously and simultaneously write two different data items, these
are not causally related.

> Operations that are not causally related are said to be concurrent.

> For a data store to be considered causally consistent, it is necessary that the store obeys the following
condition:

0 Writes that are potentially causally related must be seen by all processes in the same order.
o Concurrent writes may be seen in a different order on different machines.
Example 1: Causal Consistency

This sequence is allowed with a causally-consistent store, but not with a sequentially consistent
store.

P1: W(x)a W(x)c

P2 R(x)a W(x)b

P3: R(x)a R(x)c R(x)b
P4: R(x)a R(x)b R(x)c

The writes W2(x)b and W1(x)c are concurrent, so it is not required that all processes see them in
the same order.

Example 2: Causal Consistency

o W2(x)b potentially depending ¢ Read has been removed,
onW1(x)a because b may result from a so W1(x)a and W2(x)b are now
computation involving the value read concurrent writes.
by R2(x)a. ¢ A causally-consistent store does not

e The two writes are causally related, so all require concurrent writes to be globally

processes must see them in the same ordered,
order. e |tis correct.

e |tis incorrect. ¢ Note: situation that would not be
acceptable for a sequentially consistent
store.

(a) A violation of a causally-consistent (b) A correct sequence of events in a causally-
store. consistent store.

P1: W(x)a P1: W(x)a

P2: R(x)a W(x)b P2: W(x)b
P3: R(x)b R(x)a P3: R(x)b_ R(x)a
P4: R(x)a R(x)b P4: R(x)a R(x)o

(a) (b)
FIFO Consistency

Writes done by a single process are seen by all other processes in the order in which they were
issued, but writes from different processes may be seen in a different order by different processes.

{ 81 }
|kl Rahul Publications

M.Sc. IV Sem UNIT - 1l

» Also called “PRAM Consistency” — Pipelined RAM.

> Easy to implement -There are no guarantees about the order in which different processes see writes
— except that two or more writes from a single process must be seen in order.

Example
P1: W(x)a
P2: RixX)a Wb W(X)c
P3: Rx)b R(x)a R(x)c
P4: Rix)a R(xb Rx)c

» Avalid sequence of FIFO consistency events.

> Note that none of the consistency models given so far would allow this sequence of events.
Weak Consistency

> Not all applications need to see all writes, let alone seeing them in the same order.

> Leads to Weak Consistency .

> This model introduces the notion of a synchronization variable”, which is used update all copies of
the data-store.

Properties
1. Accesses to synchronization variables associated with a data-store are sequentially consistent.
2. No operation on a synchronization variable is allowed to be performed until all previous writes

have been completed everywhere.

3. No read or write operation on data items are allowed to be performed until all previous operations
to synchronization variables have been performed.

By doing a sync
> a process can force the just written value out to all the other replicas.
> a process can be sure it’s getting the most recently written value before it reads.

The weak consistency models enforce consistency ona group of operations, as opposed to individual
reads and writes.

Grouping Operations
» Accessesto synchronization variables are sequentially consistent.

> No access to a synchronization variable is allowed to be performed until all previous writes have
completed everywhere.

> No data access is allowed to be performed until all previous accesses to synchronization variables
have been performed.

When a process enters its critical section it should acquire the relevant synchronization variables,
and likewise when it leaves the critical section, it releases these variables.

Release Consistency

> It is possible to implement efficiencies if the data-store is able to determine whether the sync is a
read or write.

{ 82 }
Rahul Publications —J

DISTRIBUTED SYSTEMS

> Two sync variables can be used, acquire and release, and their use leads to the Release
Consistency model.
> When a process does an acquire, the data-store will ensure that all the local copies of the protected
data are brought up to date to be consistent with the remote ones if needs be.
> When a release is done, protected data that have been changed are propagated out to the local
copies of the data-store.
Example
P1: Acq(L) W(x)a W(x)b Rel(l)
P2 . i Acq(l) Rx)b Rel(l)
P3; ' R(x)a
A valid event sequence for release consistency.
> Process P3 has not performed an acquire, so there are no guarantees that the read of ‘x’ is consistent.
> The data-store is simply not obligated to provide the correct answer.
> P2 does perform an acquire, so its read of ‘x’ is consistent.

Release Consistency Rules

3.

A distributed data-store is “Release Consistent” if it obeys the following rules:

Before a read or write operation on shared data is performed, all previous acquires done by the
process must have completed successfully.

Before a release is allowed to be performed, all previous reads and writes by the process must
have completed.

Accesses to synchronization variables are FIFO consistent (sequential consistency is not required).

Entry consistency

>
>

So:

Acquire and release are still used, and the data-store meets the following conditions:

An acquire access of a synchronization variable is not allowed to perform with respect to a process
until all updates to the guarded shared data have been performed with respect to that process.

Before an exclusive mode access to a synchronization variable by a process is allowed to perform
with respect to that process, no other process may hold the synchronization variable, not even in
nonexclusive mode.

After an exclusive mode access to a synchronization variable has been performed, any other process’s
next nonexclusive mode access to that synchronization variable may not be performed until it has
performed with respect to that variable’s owner.

At an acquire, all remote changes to guarded data must be brought up to date.

Before a write to a data item, a process must ensure that no other process is trying to write at the
same time.

Locks are associates with individual data items, as opposed to the entire data-store.

a lock isasynchronization mechanism for enforcing limits on access to a resource in an environment
where there are many threads of execution.

{ 83 }
=2 Rahul Publications

M.Sc. IV Sem

UNIT - 1l

Example:

> P1 does an acquire for x, changes x once,
after which it also does an acquire for y.

> Process P2 doesan acquire for x but not
for y, sothatitwill read value a for x,but
may read NIL for y.

> Because process P3 first does an acquire for
y, it will read the value b when y is
released by P1.

Note: P2’s read on ‘v’ returns NIL as no
locks have been requested.

A valid event sequence for entry consistency.

P1: Acg(Lx) W(x)a Acg(Ly) W(y)b Rel(Lx) Rel(Ly)
P2: Acq(Lx) R(x)a R(y) NIL
P3: Acq(Ly) R(y)b

3.1.3 Client-centric Consistency Models

Q3. Write about Client-Centric Consistency
Models?

AnS :

Client-Centric Consistency Models

> Above consistency models - maintaining a
consistent (globally accessible) data-store in
the presence of concurrent read/write
operations.

> Another class of distributed datastore -
characterized by the lack of simultaneous
updates.

Here, the emphasis is more on maintaining a
consistent view of things for the individual client
process that is currently operating on the data-store.

Eventual Consistency
Special class of distributed data stores:
> Lack of simultaneous updates

> When updates occur they can easily be
resolved.

> Most operations involve reading data.

These data stores offer a very weak
consistency model, called eventual consistency.

Rahul Publications

84 J

The eventual consistency model states that,
when no updates occur for a long period of time,
eventually all updates will propagate through the
system and all the replicas will be consistent.

Example: Consistency for Mobile Users

> Consider a distributed database to which you
have access through your notebook.

> Assume your notebook acts as a front end to
the database.

0 Atlocation A you access the database
doing reads and updates.

0 Atlocation B you continue your work,
but unless you access the same server
as the one atlocation A, you may detect
inconsistencies:

> your updates at A may not have yet been
propagated to B

> you may be reading newer entries than the
ones available at A

> your updates at B may eventually conflict
with those at A

Client-centric consistency models originate
from the work on Bayou. Bayou is a database
system developed for mobile computing, where it
is assumed that network connectivity is unreliable
and subject to various performance problems.
Wireless networks and networks that span large
areas, such as the Internet, fall into this category.

0o Bayou distinguishes four different
consistency models:

1. monotonic reads

2. monotonic writes

3. read your writes

4. writes follow reads
Notation

> x[t] denotes the version of data item x at
local copy L. at time t.

> WS x[t] is the set of write operations
at L that lead to version x. of x (at
time t);

DISTRIBUTED SYSTEMS

> If operations in WS x[tl] have also been performed at local copy LJ. at a later time t2, we
write WS (x[t1] , x[t2]).

> If the ordering of operations or the timing is clear from the context, the time index will be omitted.
Monotonic Reads

If a process reads the value of a data item X, any successive read operation on x by that process will
always return that same or a more recent value.

> Monotonic-read consistency guarantees that if a process has seen a value of x at time t, it will never
see an older version of x at a later time.

Example: Automatically reading your personal calendar updates from different servers.

> Monotonic Reads guarantees that the user sees all updates, no matter from which server the automatic
reading takes place.

Example: Reading (not modifying) incoming mail while you are on the move.

> Each time you connect to a different e-mail server, that server fetches (at least) all the updates from
the server you previously visited.

Example

> The read operations performed by a single process P at two different local copies of the same data
store.

> Vertical axis - two different local copies of the data store are shown - L1 and L2

A\

Time is shown along the horizontal axis

> Operations carried out by a single process P in boldface are connected by a dashed line representing
the order in which they are carried out.

(a) A monotonic-read consistent data store. (b) A data store that does not provide monotonic reads.

| By = WS(X1} H(x-[)-\‘ L1: WS(x,) R(XA])*\.
L2: WS(x 1:X5) - R(X,) L2: WS(x) - R(x)
(a) (b)
(a) (b)
= Process P first performs a read operationon xat | = Situation in which monotonic-read
L1, returning the value of x1 (at that time). consistency is not guaranteed.
o] This value results from the write - After process P has read x1 at L1, it later
operations in WS (x1) performed at L1. performs the operation R (x2) at L2 .
= Later, P performs a read operation on x at L2, - But, only the write operations in WS (x2)
shown as R (x2). have been performed at L2 .
= To guarantee monotonic-read consistency, all - No guarantees are given that this set also
operations in WS (x1) should have been contains all operations contained in WS
propagated to L2 before the second read (x2).
operation takes place.

Monotonic Writes

In a monotonic-write consistent store, the following condition holds:

{ 85 }
= Rahul Publications

M.Sc. IV Sem UNIT - 1l

A write operation by a process on a data item x is completed before any successive write operation
on x by the same process.

Hence: A write operation on a copy of item x is performed only if that copy has been brought up
to date by means of any preceding write operation, which may have taken place on other copies of x. If
need be, the new write must wait for old ones to finish.

Example: Updating a program at server S2, and ensuring that all components on which compilation
and linking depends, are also placed at S2.

Example

The write operations performed by a single process P at two different local copies of the same data
store.

(a) A monotonic-write consistent (b) A data store that does not provide monotonic-
data store. write consistency.
L1: W(Xq)-mmmmne- L1: W(Xq)-mmmmmeen \
L2: WS(Xy) “semsee- W(x,) L2: Neeeeees W(x2)
(@) ®)
(@) (b)
o} Process P performs a write operation on x at o} Situation in which monotonic-write
local copy L1, presented as the operation consistency is not guaranteed.
W(x1). o} Missing is the propagation of W(x1) to copy
o] Later, P performs another write operation on L2.
X, but this time at L2, shown as W (x2). o} No guarantees can be given that the copy of
o} To ensure monotonic-write consistency, the x on which the second write is being
previous write operation at L1 must have performed has the same or more recent
been propagated to L2. value at the time W(x1) completed at L1.
o] This explains operation W (x1) at L2, and
why it takes place before W (x2).

Read Your Writes

A client-centric consistency model that is closely related to monotonic reads is as follows. A data
store is said to provide read-your-writes consistency, if the following condition holds:

The effect of a write operation by a process on data item x will always be seen by a successive read
operation on x by the same process.

Hence : A write operation is always completed before a successive read operation by the same
process, no matter where that read operation takes place.

Example

(a) A data store that provides read-your- (b) A data store that does not.

writes consistency.
L1: W(xq)-------- L1: W(Xq)-------- -
L2: WS(XqiXg) n------ R(x») L2: WS(Xp) veeeee- R(X,)
(a) (b)
{ 86 |

Rahul Publications)

DISTRIBUTED SYSTEMS

(@)
different local copy.
0 Read-your-writes consistency

operation can be seen by the
succeeding read operation.

states that W (x1) is part of WS (x2).

0 Process P performed a write operation
W(x1) and later a read operation at a

guarantees that the effects of the write

0 This is expressed by WS (x1;x2), which

(b)

0 W (x1) has been left out of WS
(x2), meaning that the effects of the
previous write operation by process
P have not been propagated to L2.

Writes Follow Reads

A data store is said to provide writes-follow-reads consistency, if the following holds:

A write operation by a process on a data item x following a previous read operation on x by the
same process is guaranteed to take place on the same or a more recent value of x that was read.

Hence: any successive write operation by a process on a data item x will be performed on a copy
of x that is up to date with the value most recently read by that process.

Example

(a) A writes-follow-reads consistent data store.

L1: WS(x,) R(Xq)-

L2: WS(x 4;x2)

- W(xz)

(a)

(b) A data store that does not provide writes-
follow-reads consistency.

L1: WS(x4) R(xq)-.

L2: WS(x,) - W(x,)

(b)

@)

0 A process reads x at local copy L1.

o] The write operations that led to the
value just read, also appear in the
write set at L2, where the same
process later performs a write
operation.

0 (Note that other processes at L2 see
those write operations as well.)

(b)
(0]

No guarantees are given that the
operation performed at L2,

They are performed on a copy that
is consistent with the one just read
atLl.

3.1.4 Replica Management

The issue in replica management is to decide where, when, and by whom replicas should be placedand
Which mechanisms to use for keeping the replicas consistent.

Q4. Explain about Replica Management in Distributed Systems.

And replica servers find the placement issues inorder to place the content.

&)

Rahul Publications

M.Sc. IV Sem UNIT - 1l

Placement Problem
> Placing replica servers

0 Replica-server placement is concerned with finding the best locations to place a server that can
host (part of) a data store.

> Placing content.
o Content placement deals with finding the best servers for placing content.
Replica-Server Placement

We need to figure out which is the best K places are out of N possible locations.In order to find
the place for replica server. It follows the following:

1. Select best location out of N - k for which the average distance to clients is minimal. Then choose
the next best server.

2. Select the k-th largest autonomous system and place a server at the best-connected host.

0 An autonomous system (AS) can best be viewed as a network in which the nodes all run the
same routing protocol and which is managed by a single organization.

3. Position nodes in a d-dimensional geometric space, where distance reflects latency. Identify
the K regions with highest density and place a server in every one.

Content Replication and Placement
For Content Replication and placement, We considerobjects and Distinguish different processes.
A process is capable of hosting a replica of an object or data:
» Permanent replicas: Process/machine always having a replica

» Server-initiated replica: Process that can dynamically host a replica on request of another
server in the data store

» Client-initiated replica: Process that can dynamically host a replica on request of a client
(client cache)

The logical organization of different kinds of copies of a data store into three concentric rings.

—» Server-initiated replication
---p Client-initiated replication

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Permanent Replicas

Examples:

> The initial set of replicas that constitute a distributed data store.
> The number of permanent replicas is small.

> The files that constitute a site are replicated across a limited number of servers at a single location.

{ 88 }
Rahul Publications —

DISTRIBUTED SYSTEMS

0o Whenever a request comes in, it is
forwarded to one of the servers, for
instance, using a round-robin strategy.

> Alternatively, a database is distributed and
possibly replicated across a number of
geographically dispersed sites.

o0 This architecture is generally deployed
in federated databases..

Server-lnitiated Replicas

Copies of a data store are created to enhance
performance

Example

> Placement of content with replica servers in
place

> Algorithm is designed to support Web pages
for which reason it assumes that updates are
relatively rare compared to read requests.

o Algorithm considers:

. Replication take used to reduce
the load on a server.

. Specific files on a server can be
migrated or replicated to servers
placed in the proximity of clients
that issue many requests for those
files.

Each server keeps track of:
o access counts per file
o where access requests originate

Given a client C, each server can determine
which of the servers in the Web hosting service is
closest to C. If client C1 and client C2 share the
same “closest” server P, all access requests for file F
atserver Q from C1 and C2 are jointly registered at
Q as a single access count cntQ(RF).

Removed from S - when the number of
requests for a file F at server S drops below a deletion
threshold del (S,F)

» Replicate F— when replication threshold
rep (S,F) is surpassed

» Migrate F — when the number of
requests lies between the deletion and
replication thresholds

Counting access requests from different
clients.

copy of file F

()™
Server without ;

!rr

f

Client o S i T Server with
; sarh R Q _ copyof F
cb.. M & ier

Server Q counts access from C, and
Cz as if they would come from P

Client-Initiated Replicas
> Client-initiated replicas aka (client) caches.

> Cache is a local storage facility that is used by
a client to temporarily store a copy of the
data it has just requested.

> Managing cache is left to the client.
> Used to improve access times to data.
Approaches to Cache Placement

> Traditional file systems: data files are
rarely shared at allrendering a shared cache
useless.

> LAN caches: Machine shared by clients on
the same local-area network.

> WAN caches: Place (cache) servers at
specific points in a wide-area network and let
a client locate the nearest server.

o When the server is located, it can be
requested to hold copies of the data the
client was previously fetching from
somewhere else.

3.1.5 Consistency Protocols

Q5. Explain about consistency protocols.
Ans :

A consistency protocol describes an
implementation of a specific consistency model.

The most widely implemented models are:
1. Sequential Consistency

Those in which operations can be grouped
through locking or transactions

2. Weak Consistency (with sync variables).

Atomic Transactions

3
'| 89 I|

Rahul Publications

M.Sc. IV Sem

UNIT - 1l

Sequential Consistency
Primary-Based Protocols
> Use for sequential consistency

> Each data item is associated with a “primary”
replica.

> The primary is responsible for coordinating
writes to the data item.

There are two types of Primary-Based
Protocol:

1. Remote-Write.
2. Local-Write.
Remote-Write Protocols

> AKA primary backup protocols (Budhiraja et
al., 1993)

> All writes are performed at a single (remote)
server.

> Read operations can be carried out locally.

> This model is typically associated with
traditional client/server systems.

Example:

1. A process wanting to perform a write
operation on data item x, forwards that
operation to the primary server for x.

2. The primary performs the update on its local
copy of x, and forwards the update to the
backup servers.

3. Each backup server performs the update as
well, and sends an acknowledgment back to
the primary.

4. When all backups have updated their local
copy, the primary sends an acknowledgment
back to the initial process.

Client Client

Backup server
wi| |ws \ R1| |R2 /
e I

-« »
\‘Ws/x _"ii_ / Data store
wz i w3

R1. Read request
A2. Response to read

Primary server
for item x

W1, Write request

W2. Forward request to primary
W3. Tell backups to update

W4. Acknowledge update

W5, Acknowledge write completed

Rahul Publications

'l 90 '|

The Bad and Good of Primary-Backup
> Bad: Performance!

o All of those writes can take a long time
(especially when a “blocking write
protocol” is used).

o Using a non-blocking write protocol to
handle the updates can lead to fault
tolerant problems (which is our next
topic).

> Good: asthe primary is in control, all writes
can be sent to each backup replica IN THE
SAME ORDER, making it easy to
implement sequential consistency.

Local-Write Protocols
> AKA fully migrating approach

> A single copy of the data item is still
maintained.

> Upon a write, the data item gets transferred
to the replica that is writing.

0 the status of primary for a data item
is transferrable.

Process: Whenever a process wants to
update data item x, it locates the primary copy of X,
and moves it to its own location.

Example:

Primary-based local-write protocol in which
asingle copy is migrated between processes (prior
to the read/write).

Cleent
Current senver MNew server
for item x A fof item x
1 4
4 =
— [| 2 I___’. []
) el

Data store

1. Read or writeé request

2. Forward reguest to current server fior x

3 Move tem x to clienf's server

4 Return resull of operation on clent's server

Local-Write Issues

Processes can spend more time actually
locating a data item than using it!

DISTRIBUTED SYSTEMS

Primary-backup protocol in which the
primary migrates to the process wanting to perform
an update.

Cent

| Old primary
T for iterm x

Client

New primary]

for item x Backup server

FH| R2 \ wi| [wa

-
ol S]]

Wi1. Write request

W2. Move item x to new primary
W3. Acknowledge write completed
W4. Tell backups to update

W5. Acknowledge update

Data store

R1. Read request
R2. Response to read

Advantage

> Multiple, successive write operations can be
carried out locally, while reading processes
can still access their local copy.

> Can be achieved only if a nonblocking
protocol is followed by which updates are
propagated to the replicas after the primary
has finished with locally performing the
updates.

Replicated-Write Protocols
> AKA Distributed-Write Protocols
> Writes can be carried out at any replica.
> There are two types:
1. Active Replication.
2. Majority Voting (Quorums).
Active Replication

> A special process carries out the update
operations at each replica.

> Lamport’stimsestamps can be used to achieve
total ordering, but this does not scale well
within Distributed Systems.

> An alternative/variation istouse a sequencer,
which is a process that assigns a unique ID#
to each update, which is then propagated to
all replicas.

Issue: replicated invocations

Object receives

Client replicates
the same invocation
three times

invocation request i
; u il\\ ol
- B S
— 4I—D _;;lj C
4 : .

11
/ /./
All replicas see ;

the same invocation

Replicated object

The problem of replicated invocations —
> ‘B’ is a replicated object (which itself calls ‘C’).

> When ‘A’ calls ‘B’, how do we ensure ‘C’ isn’t
invoked three times?

Coordinator
of object C

Coordinator
of object B

Client replicates
invocation request

(@) (b)

(@) Using a coordinator for ‘B’, which is
responsible for forwarding an invocation
request from the replicated object to ‘C’.

(b) Returning results from ‘C’ using the same
idea: a coordinator is responsible for returning
the result to all ‘B’s. Note the single result
returned to ‘A’

Quorum-Based Protocols

Clients must request and acquire permissions
from multiple replicas before either reading/writing
a replicated data item.

Example:
» Afile is replicated within a distributed file
system.

> To update a file, a process must get approval
from a majority of the replicas to perform a
write.

0 The replicas need to agree to also
perform the write.

| 91 ||

Rahul Publications

M.Sc. IV Sem

UNIT - 1l

» After the update, the file has a new version #
associated with it (and it is set at all the updated
replicas).

> To read, a process contacts a majority of the
replicas and asks for the version # of the
files.

o If the version # is the same, then the
file must be the most recent version, and
the read can proceed.

Gifford’s Method

> To read a file of which N replicas exist a client
needs to assemble a read quorum, an
arbitrary collection of any NR servers, or
more.

> To modify a file, a write quorum of at least
NW servers is required.

> The values of NR and NW are subject to the
following two constraints:

NR + NW > N
NW > N/2

o First constraint prevents read-write
conflicts

0 Second constraint prevents write-write
conflicts.

Only after the appropriate number of servers
has agreed to participate can a file be read or written.

Example
> NR = 3 and NW = 10

> Most recent write quorum consisted of the
10 servers C through L.

> All get the new version and the new version
number.

> Any subsequent read quorum of three servers
will have to contain at least one member of
this set.

> When the client looks at the version numbers,
it will know which is most recent and take
that one.

Three examples of the voting algorithm:

(&) A correct choice of read and write set.

Rahul Publications

'l 92 ',

(b) A choice that may lead to write-write
conflicts.

(c) Acorrectchoice, known as ROWA (read
one, write all).

Read quorum

E ® 6 H
J KL
a1 Ny =12

(b) a write-write conflict may occur because
NW? N/2.

o If one client chooses {A,B,C,E,FG} as
its write set and another client chooses
{D,H,l,J,K,L} as its write set, then the
two updates will both be accepted
without detecting that they actually
conflict.

(c) NR = 1, making it possible to read a
replicated file by finding any copy and using
it.

o poor performance, becausewrite
updates need to acquire all copies. (aka
Read-One, Write-All (ROWA)). T

Cache-Coherence Protocols

These are a special case, as the cache is
typically controlled by the client not the server.

Coherence Detection Strategy:
o] When are inconsistencies actually detected?

o] Statically at compile time: extra instructions

inserted.

o] Dynamically at runtime: code to check with
the server.

I 3.2 FAULT TOLERANCE

3.2.1 Introduction

Q6. What is dependability?

Ans :

To understand the role of fault tolerance in
distributed systems we first need to take a closer

DISTRIBUTED SYSTEMS

look at what it actually means for a distributed system to tolerate faults. Being fault tolerant is strongly
related to what are called dependable systems. Dependability is a term that covers a number of useful
requirements for distributed systems including the following :

1. Availability
2. Reliability
3. Safety

4. Maintainability
1. Availability

Availability is defined as the property that a system is ready to be used immediately. In general, it
refers to the probability that the system is operating correctly at any given moment and is available
to perform its functions on behalf of its users. In other words, a highly available system is one that
will most likely be working at a given instant in time.

2. Reliability

Reliability refers to the property that a system can run continuously without failure. In contrast to
availability, reliability is defined in terms of a time interval instead of an instant in time. A highly-
reliable system is one that will most likely continue to work without interruption during a relatively
long period of time.

3. Safety

Safety refers to the situation that when a system temporarily fails to operate correctly, nothing
catastrophic happens. For example, many process control systems, such as those used for controlling
nuclear power plants or sending people into space, are required to provide a high degree of safety.
If such control systems temporarily fail for only a very brief moment, the effects could be disastrous.

4. Maintainability

Finally, maintainability refers to how easy a failed system can be repaired. A highly maintainable
system may also show a high degree of availability, especially if failures can be detected and repaired
automatically. However, as we shall see later in this chapter, automatically recovering from failures
is easier said than done.

A system is said to fail when it cannot meet its promises. In particular, if a distributed system is
designed to provide its users with a number of services, the system has failed when one or more of those
services cannot be (completely) provided. An error is a part of a system’s state that may lead to a failure.

For example, when transmitting packets across a network, it is to be expected that some packets
have been damaged when they arrive at the receiver. Damaged in this context means that the receiver
may incorrectly sense a bit value (e.g., reading a 1 instead of a 0), or may even be unable to detect that
something has arrived.

Q7. What is failure model? Explain different types of failures in distributed systems
Ans :
Failure Models

A system that fails is not adequately providing the services it was designed for. A distributed system
as a collection of servers that communicate with one another and with their clients. If the server fails by
any means it cannot communicate with the cleints.

{ 93 }
=2 Rahul Publications

M.Sc. IV Sem UNIT - 1l

The failures of server can be different types which are discussed below:

Type of failure Description

Crash failure A server halts, but is working correctly until it halts
Omission failure A server fails to respond to incoming requests
Receive omission : — :

Send omission A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval
Response failure A server's response is incorrect

Value failure :

State transition failure The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Fig.: Different types of failures
Crash Failure

A crash failure occurs when a server prematurely halts, but was working correctly until it stopped. A
typical example of a crash failure is an operating system that comes to a grinding halt, and for which there
is only one solution: reboot it..

Omission Failure

> An omission failure occurs when a server fails to respond to a request. In the case of a receive
omission failure, possibly the server never got the request in the first place..

0 Also, a receive omission failure will generally not affect the current state of the server, as the
server is unaware of any message sent to it.

o0 A send omission failure happens when the server has done its work, but somehow fails in
sending a response.

Timing Failures

Timing failures occur when the response lies outside a specified real-time interval..Ifa server responds
too late, in which case a performance failure is said to occur.

Response Failure

> A serious type of failure is a response failure, by which the server’s response is simply incorrect. Two
kinds of response failures may happen.

o Avalue failure, a server simply provides the wrong reply to a request. For example, a search
engine that systematically returns Web pages not related to any of the search terms used, has
failed.

0 A state transition failure. This kind of failure happens when the server reacts unexpectedly to
an incoming request. For example, if a server receives a message it cannot recognize, a state
transition failure

{ 94 }
Rahul Publications —J

DISTRIBUTED SYSTEMS

Arbitrary Failure

Arbitrary failures are closely related to crash failures. They are also referred to as fail-stop failures. In
effect, a fail-stop server will simply stop producing output in such a way that its halting can be detected by
other processes.

Q8. Write about Failure Masking by Redundancy
Ans :

If a system is to be fault tolerant, the best it can do is to try to hide the occurrence of failures from
other processes.

The key technique for masking faults is to use redundancy.
Three kinds are possible:

> information redundancy — It refers to too much of information is stored in the servers. Error
correction and error code techniques are used

> time redundancy — With time redundancy, an action is performed, and then, if need be, it is
performed again. Transactions use this approach. If a transaction aborts, it can be redone with no
harm.

> physical redundancy — With physical redundancy, extra equipment or processes are added to
make it possible for the system as a whole to tolerate the loss or malfunctioning of some components.
Physical redundancy can thus be done either in hardware or in software.

3.2.2 Process Resilience

Q9. Explain what is process resilience?and how fault tolerance can be achieved by using
fault tolerance.

Ans :
The protection against process failures, can be achieved by replicating processes into groups
Design Issues

The key approach to tolerating a faulty process is to organize several identical processes into a
group. The key property that all groups have is that when a message is sent to the group itself, all members
of the group receive it.

Process groups may be dynamic. New groups can be created and old groups can be destroyed. A
process can join a group or leave one during system operation. A process can be a member of several
groups at the same time. Consequently, mechanisms are needed for managing groups and group
membership.

Flat Groups versus Hierarchical Groups
In flat groups all the processes are equal and all decisions are made collectively.

In hierarchical groups, some kind of hierarchy exists. For example, one process is the coordinator
and all the others are workers.

{ 95 }
= Rahul Publications

M.Sc. IV Sem UNIT - 1l

Fig.: (a) Communication in a flat group. (b) Communication in a simple hierarchical group.
Fiat group Hierarchical group Coordinater

Worker

(a) (b)

Advantages and Disadvantages

>

>

>

The flat group is symmetrical and has no single point of failure. If one of the processes crashes, the
group simply becomes smaller, but can otherwise continue.

disadvantage is that decision making is more complicated. For example, to decide anything, a vote
often has to be taken, incurring some delay and overhead.

The hierarchical group has the opposite properties. Loss of the coordinator brings the entire group
to a grinding halt, but as long as it is running, it can make decisions without bothering everyone
else.

Group Membership

>

>

>
>

When group communication is present, some method is needed for creating and deleting groups,
as well as for allowing processes to join and leave groups.

One possible approach is to have a group server to which all these requests can be sent. The group
server can then maintain a complete data base of all the groups and their exact membership.

The opposite approach is to manage group membership in a distributed way. For example, if
(reliable) multicasting is available, an outsider can send a message to all group members announcing
its wish to join the group .

To leave a group, a member just sends a goodbye message to everyone. The other members have
to discover this experimentally by noticing that the crashed member no longer responds to anything.

Another issue is that leaving and joining have to be synchronous with data messages being sent

final issue relating to group membership is what to do if so many machines go down that the group
can no longer function at all. Some protocol is needed to rebuild the group.

Q10. What are the Agreements in Faulty Systems?
Ans :

Organizing replicated processes into a group helps to increase fault tolerance.

The general goal of distributed agreement algorithms is to have all thenonfaulty processes reach

consensus on some issue, and to establish that consensus within a finite number of steps.

These are some cases to distinguish:

Synchronous versus asynchronous systems. A system is synchronous if and only if the processes are
known to operate in a lock-step mode. Formally, this means that there should be some constant
c 1, such that if any processor has taken ¢ + 1 steps, every other process has taken at least 1 step.
A system that is not synchronous is said to be asynchronous.

Rahul Publications

'l 96 '|

DISTRIBUTED SYSTEMS

2. Communication delay is bounded or not. Delay is bounded if and only if we know that every
message is delivered with a globally and predetermined maximum time.

3. Message delivery is ordered or not. In other words, we distinguish the situation where messages
from the same sender are delivered in the order that they were sent, from the situation in which we
do not have such guarantees.

4. Message transmission is done through unicasting or multicasting.
The following figure shows Circumstances under which distributed agreement can be reached.

Message ordering

Unordered Ordered

. O
2 =]
z X Bounded 3
£ Synchronous 3
g X Unbounded §
@ o
@ X X X X Bounded =
8 Asynchronous S
a X X Unbounded £

Unicast ~ Multicast Unicast Multicast 2

Message transmission

The problem is also known as the Byzantine agreement problem, referring to the numerous wars in
which several armies needed to reach agreement on,

In this case, we assume that processes are synchronous, messages are unicast while preserving
ordering, and communication delay is bounded.

We assume that there are N processes, where each process i will provide a value vi to the others.
The goal is let each process construct a vector V of length N, such that if process i is nonfaulty, V [i] = vi.
Otherwise, V [i] is undefined. We assume that there are at most k faulty processes.

The working of the algorithm for the case of N = 4 and k = 1.
For these parameters, the algorithm operates in four steps.

> In step 1, every nonfaulty process i sends vi to every other process using reliable unicasting. Faulty
processes may send anything. Moreover, because we are using multicasting, they may send different
values to different processes. Let vi =i.

0 In following figure we see that process 1 reports 1, process 2 reports 2, process 3 lies to
everyone, giving x, y, and z, respectively, and process 4 reports a value of 4.

> In step 2, the results of the announcements of step 1 are collected together in the form of the
vectors of Fig. 8-5(b).

O The following figure shows , the Byzantine agreement problem for three nonfaulty and one
faulty process. (a) Each process sends their value to the others. (b) The vectors that each
process assembles based on (a). (c) The vectors that each process receives in step 3.

1 Got(1,2,x, 4) 1 Got 2 Got 4 Got
2 Got(1,2,y, 4) (1,2, v,4) (1,2, x,4) (1,2, x,4)
3 Got(1,2,3,4) (a,b, c,d) (ef, gh) (1,2 y4)
[4 Got(1,2,z,4) (1.2, z,4) (1,2, z4) (i,], k1)
Faulty process @ (b) [C)
f?
= Rahul Publications

M.Sc. IV Sem

UNIT - 1l

> Step 3 consists of every process passing its

vector from Fig. (b) to every other process.
In this way, every process gets three vectors,
one from every other process.

O Here, too, process 3 lies, inventing 12
new values, a through I.

> In step 4, each process examines the ith
element of each of the newly received
vectors. If any value has a majority, that value
is put into the result vector. If no value has a
majority, the corresponding element of the
result vector is marked UNKNOWN.

Q11. Write about failure detection process.

AnS :

Failure Detection

Failure detection is one of the cornerstones
of fault tolerance in distributed systems. What it all
boils down to is that for a group of processes,
nonfaulty members should be able to decide who
is still a member, and who is not. In other words,
we need to be able to detect when a member has
failed.

When it comes to detecting process failures,
there are essentially only two mechanisms. Either
processes actively send “are you alive?” messages
to each other and only when it can be guaranteed
that there is enough communication between
processes.

Due to unreliable networks, simply stating
that a process has failed because it does not return
an answer to a ping message may be wrong. In
other words, it is quite easy to generate false
positives. If a false positive has the effect that a
perfectly healthy process is removed from a
membership list, then clearly we are doing
something wrong.

Another serious problem is that timeouts are
just plain crude.

There are various issues that need to be taken
into account when designing a failure detection
subsystem. For example, failure detection can take
place through gossiping in which each node
regularly announces to its neighbors that it is still
up and running.

Rahul Publications

'l 98 ',

Failure detection can also be done as a side-
effect of regularly exchanging information with
neighbors,

Another important issue is that a failure
detection subsystem should ideally be able to
distinguish network failures from node failures.

3.2.3 Reliable Clientserver Communication

Q12. Explain point to point communication in
distributed systems.

AnS :

Point-to-Point Communication

In many distributed systems, reliable point-
to-point communication is established by making
use of a reliable transport protocol, such as TCP.
TCP masks omission failures, which occur in the
form of lost messages, by using acknowledgments
and retransmissions. Such failures are completely
hidden from a TCP client.

A crash failure may occur when a TCP
connection is abruptly broken so that no more
messages can be transmitted through the channel.

RPC Semantics in the Presence of Failures

The goal of RPC is to hide communication
by making remote procedure calls look just like
local ones.

To structure our discussion, let us distinguish
between five different classes of failures that can
occur in RPC systems, as follows:

1. The client is unable to locate the server.

2. The request message from the client to the
server is lost.

The server crashes after receiving a request.

The reply message from the server to the
client is lost.

5. The client crashes after sending a request.

Each of these categories poses different
problems and requires different solutions.

1. Client Cannot Locate the Server

» It can happen that the client cannot
locate a suitable server. All servers might
be down, When the client is eventually

DISTRIBUTED SYSTEMS

2.

run, the binder will be unable to match it up with a server and will report failure. While this
mechanism is used to protect the client from accidentally trying to talk to a server that may not
agree with it in terms of what parameters are required or what it is supposed to do, the
problem remains of how should this failure be dealt with.

» One possible solution is to have the error raise an exception. In some languages, programmers
can write special procedures that are invoked upon specific errors, such as division by zero.

» This approach, too, has drawbacks. not every language has exceptions or signals. Another
point is that having to write an exception or signal handler destroys the transparency we have
been trying to achieve.

Lost Request Messages

The second item on the list is dealing with lost request messages. This is the easiest one to deal with:
just have the operating system or client stub start a timer when sending the request. If the timer
expires before a reply or acknowledgment comes back, the message is sent again. If the message
was truly lost, the server will not be able to tell the difference between the retransmission and the
original, and everything will work fine.

Server Crashes

The next failure on the list is a server crash.. A request arrives, is carried out, and a reply is sent.
Now consider , A request arrives and is carried out, just as before, but the server crashes before it
can send the reply. Finally, Again a request arrives, but this time the server crashes before it can
even be carried out. And, of course, no reply is sent back.

REQ Server REQ Server REQ Server
»| Receive »| Receive — | Receive
Execute Execute

< 7| Reply NeREP | [Crash RofEr |

(a) (b) ©

Figure: A server in client-server communication
(a) The normal case. (b) Crash after execution. (c) Crash before execution

Assume that the server crashes and subsequently recovers. It announces to all clients that it has just

crashed but is now up and running again. The problem is that the client does not know whether its
request to print some text will actually be carried out.

>
>

There are four strategies the client can follow.
First, the client can decide to never reissue a request, at the risk that the text will not be printed.
Second, it can decide to always reissue a request, but this may lead to its text being printed twice.

Third, it can decide to reissue a request only if it did not yet receive an acknowledgment that its
print request had been delivered to the server. In that case, the client is counting on the fact that
the server crashed before the print request could be delivered.

The fourth and last strategy is to reissue a request only if it has received an acknowledgment for the
print request.

{ 99 }
= Rahul Publications

M.Sc. IV Sem

UNIT - 1l

With two strategies for the server, and four for the client, there are a total of eight combinations to
consider.

Note that there are three events that can happen at the server: send the completion message (M),
print the text (P), and crash (C). These events can occur in six different orderings:

(i) MPC: A crash occurs after sending the completion message and printing the text.

(if) MC (P): A crash happens after sending the completion message, but before the text could be
printed.

(i) PMC: A crash occurs after sending the completion message and printing the text.
(iv)

PC(M): The text printed, after which a crash occurs before the completion message could be
sent.

(v) C (PM): A crash happens before the server could do anything.
(vi) C (MP): A crash happens before the server could do anything.

The parentheses indicate an event that can no longer happen because the server already crashed.

Client Server
Strategy M — P Strategy P - M
Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)
Always DUP | OK OK DUP | DUP | oK
' Never | OK | ZERO | ZERO . OK OK ' ZERO
OnlywhenACKed | | DUP | OK | ZERO | | DUP | OK | ZERO
. Only when not ACKed OK ZERO OK OK DUP ‘ OK
OK = Textis printed once
DUP = Textis printed twice
ZERO = Textis not printed at all

Fig.: Different combinations of client and server strategies in the presence of server crashes.

The possibility of server crashes radically changes the nature of RPC and clearly distinguishes
single-processor systems from distributed systems.

Lost Reply Messages

Lost replies can also be difficult to deal with. The obvious solution is just to rely on a timer again
that has been set by the client’s operating system. If no reply is forthcoming within a reasonable
period, just send the request once more.

In particular, some operations can safely be repeated as often as necessary with no damage
being done. A request such as asking for the first 1024 bytes of a file has no side effects and can be
executed as often as necessary without any harm being done.

Client Crashes

The final item on the list of failures is the client crash. At this point a computation is active and no
parent is waiting for the result. Such an unwanted computation is called an orphan.

Orphans can cause a variety of problems that can interfere with normal operation of the
system. As a bare minimum, they waste CPU cycles. They can also lock files or otherwise tie up
valuable resources. Finally, if the client reboots and does the RPC again, but the reply from the
orphan comes back immediately afterward, confusion can result.

The disadvantage of this scheme is the horrendous expense of writing a disk record for every RPC.

Rahul Publications

'l 100 :

DISTRIBUTED SYSTEMS

3.2.4 Reliable Group Communication

Q13. Explain basic reliable multicasting schemes.
Ans :

Most transport layers offer reliable point-to-point channels, they rarely offer reliable communication
to a collection of processes. The best they can offer is to let each process set up a point-to-point connection
to each other process it wants to communicate with.

Reliable multicasting is that a message that is sent to a process group should be delivered to each
member of that group.

To cover such situations, a distinction should be made between reliable communication in the
presence of faulty processes, and reliable communication when processes are assumed to operate correctly.

In the first case, multicasting is considered to be reliable when it can be guaranteed that all nonfaulty
group members receive the message.

The situation becomes simpler if we assume agreement exists on who is a member of the group
and who is not.

A simple solution is shown in following Fig. The sending process assigns a sequence number to
each message it multicasts. We assume that messages are received in the order they are sent. In this way,
it is easy for a receiver to detect it is missing a message. Each multicast message is stored locally in a
history buffer at the sender. Assuming the receivers are known to the sender, the sender simply keeps the
message in its history buffer until each receiver has returned an acknowledgment. If a receiver detects it
is missing a message, it may return a negative acknowledgment, requesting the sender for a retransmission.
Alternatively, the sender may automatically retransmit the message when it has not received all
acknowledgments within a certain time.

Receiver missad

message #24
Sendar Receiver Receiver Raceiver Receivar
Hislory
buffer Last =24 Last =24 Lasl =23 Last =24
[m25] [mz25] [mzs5] [m25]
[U | | [[
Nelwork
(a)
Sender Receiver Recelver Receiver Receiver
Last = 25 Last = 24 Lasl = 23 Last =24
E M25 M25 M25 M25
ACK
CK 25 "‘J ACK 25 J Missed 24 J ACK 25 _J
MNetwork
(b}

Fig.: L A simple solution to reliable multicasting when all receivers are known and
are assumed not to fail. (a) Message transmission. (b) Reporting feedback.

Scalability in Reliable Multicasting

The main problem with the reliable multicast scheme just described is that it cannot support large
numbers of receivers. If there are N receivers, the sender must be prepared to accept at least N
acknowledgments. With many receivers, the sender may be swamped with such feedback messages,
which is also referred to as a feedback implosion. In addition, we may also need to take into account that
the receivers are spread across a wide-area network.

{ 101 '
- Rahul Publications

M.Sc. IV Sem

UNIT - 1l

One solution to this problem is not to have
receivers acknowledge the receipt of a message.
Instead, a receiver returns a feedback message only
to inform the sender it is missing a message.

Another problem with returning only
negative acknowledgments is that the sender will,
in theory, be forced to keep a message in its history
buffer forever.

Several proposals for scalable reliable
multicasting exist.

Non-hierarchical Feedback Control

The key issue to scalable solutions for reliable
multicasting is to reduce the number of feedback
messages that are returned to the sender. A popular
model that has been applied to several wide-area
applications is feedback suppression. This scheme
underlies the Scalable Reliable Multicasting (SRM)
protocol.

First, in SRM, receivers never acknowledge
the successful delivery of a multicast message, but
instead, report only when they are missing a
message. How message loss is detected is left to the
application. Only negative acknowledgments are
returned as feedback. Whenever a receiver notices
that it missed a message, it multicasts its feedback
to the rest of the group.

Multicasting feedback allows another group
member to suppress its own feed-back. Suppose
several receivers missed message m. Each of them
will need to return a negative acknowledgment to
the sender, S, so that m can be retransmitted.
However, if we assume that retransmissions are
always multicast to the entire group, it is sufficient
that only a single request for retransmission
reaches S.

For this reason, a receiver R that did not
receive message m schedules a feed-back message
with some random delay. That is, the request for
retransmission is not sent until some random time
has elapsed. If, in the meantime, another request
for retransmission for m reaches R, R will suppress
its own feedback, knowing that m will be
retransmitted shortly. In this way, ideally, only a
single feedback message will reach S, whichin turn
subsequently retransmits m.

Rahul Publications

'l 102 ;

Feedback suppression has shown to scale
reasonably well, and has been used as the
underlying mechanism for a number of
collaborative Internet applications, such as a shared
whiteboard. However, the approach also introduces
a number of serious problems.

Another problem is that multicasting feedback
also interrupts those processes to which the message
has been successfully delivered. In other words,
other receivers are forced to receive and process
messages that are useless to them. The only solution
to this problem is to let receivers that have not
received message m join a separate multicast group
for m,

To enhance the scalability of SRM, it is useful
to let receivers assist in local recovery. In particular,
if a receiver to which message m has been
successfully delivered, receives a request for
retransmission, it can decide to multicast m even
before the retransmission request reaches the
original sender.

Hierarchical Feedback Control

Feedback suppression as just described is
basically a nonhierarchical solution. However,
achieving scalability for very large groups of
receivers requires that hierarchical approaches are
adopted.

In Figure, The essence of hierarchical reliable
multicasting. Each local coordinator forwards the
message to its children and later handles
retransmission requests.

Sender

I [] [\ Local-area network

(Long-haul) connection

Coordinator

The group of receivers is partitioned into a
number of subgroups, which are subsequently
organized into a tree. The subgroup containing the
sender forms the root of the tree. Within each
subgroup, any reliable multicasting scheme that
works for small groups can be used.

DISTRIBUTED SYSTEMS

Each subgroup appoints a local coordinator,
which is responsible for handling retransmission
requests of receivers contained in its subgroup. The
local coordinator will thus have its own history
buffer. If the coordinator itself has missed a message
m, it asks the coordinator of the parent subgroup
to retransmit m. In a scheme based on
acknowledgments, a local coordinator sends an
acknowledgment to its parent if it has received the
message. If a coordinator has received
acknowledgments for message m from all members
in its subgroup, as well as from its children, it can
remove m from its history buffer.

The main problem with hierarchical solutions
is the construction of the tree. In many cases, a
tree needs to be constructed dynamically. One
approach is to make use of the multicast tree in the
underlying network, if there is one.

Atomic Multicast

Let us now return to the situation in which
we need to achieve reliable multicasting in the
presence of process failures.

To see why atomicity is so important, consider
areplicated database constructed as an application
on top of a distributed system. The distributed
system offers reliable multicasting facilities. It allows
the construction of process groups to which
messages can be reliably sent. The replicated
database is therefore constructed as a group of
processes, one process for each replica. Update
operations are always multicast to all replicas and
subsequently performed locally. In other words, we
assume that an active-replication protocol is used.

Suppose that now that a series of updates is
to be performed, but that during the execution of
one of the updates, a replica crashes. Consequently,
that update is lost for that replica but on the other
hand, it is correctly performed at the other replicas.

When the replica that just crashed recovers,
at best it can recover to the same state it had before
the crash.

Consequently, atomic multicasting ensures
that nonfaulty processes maintain a consistent view
of the database, and forces reconciliation when a
replica recovers and rejoins the group.

Virtual Synchrony

Reliable multicast in the presence of process
failures can be accurately defined in terms of process
groups and changes to group membership.. Within
this communication layer, messages are sent and
received. A received message is locally buffered in
the communication layer until it can be delivered
to the application that is logically placed at a higher
layer.

Figure shows the logical organization of a
distributed system to distinguish between message
receipt and message delivery.

A Application

Message is delivered to application

L]
A

A Comm. layer

l;j Local OS
|
Network

The whole idea of atomic multicasting is that
a multicast message m is uniquely associated with a
list of processes to which it should be delivered.
This delivery list corresponds to a group view,
namely, the view on the set of processes contained
in the group, which the sender had at the time
message m was multicast.

Message is received by communication layer

Message comes in from the network

Now suppose that the message m is multicast
at the time its sender has group view G.
Furthermore, assume that while the multicast is
taking place, another process joins or leaves the
group. This change in group membership is
naturally announced to all processes in G. Stated
somewhat differently, a view change takes place
by multicasting a message vc announcing the joining
or leaving of a process. We now have two multicast
messages simultaneously in transit: m and vc. What
we need to guarantee is that m is either delivered
to all processes in G before each one of them is
delivered message vc, or m is not delivered at all.

Message Ordering

Virtual synchrony allows an application
developer to think about multicasts as taking place
in epochs that are separated by group membership
changes. In general, four different orderings are
distinguished:

'| 103 I|

Rahul Publications

M.Sc. IV Sem UNIT - 1l

1. Unordered multicasts

2. FIFO-ordered multicasts

3. Causally-ordered multicasts
4. Totally-ordered multicasts

A reliable, unordered multicast is a virtually synchronous multicast in which no guarantees are
given concerning the order in which received messages are delivered by different processes. To explain,
assume that reliable multicasting is supported by a library providing a send and a receive primitive. The
receive operation blocks the calling process until a message is delivered to it.

Now suppose a sender P1 multicasts two messages to a group while two other processes in that
group are waiting for messages to arrive, as shown in Fig. Assuming that processes do not crash or leave
the group during these multicasts, it is possible that the communication layer at P2 first receives message
m1 and then m 2. Because there are no message-ordering constraints, the messages may be delivered to
P2 in the order that they are received. In contrast, the communication layer at P3 may first receive
message m 2 followed by m 1, and delivers these two in this same order to P3.

Figure : Three communicating processes in the same group. The ordering of events per process is
shown along the vertical axis.

Process P1 Process P2 Process P3
sends m1 receives mi receives m2
sends m2 receives m2 receives m1

Figure: Four processes in the same group with two different senders, and a possible delivery order
of messages under FIFO-ordered multicasting.

Process P1 Process P2 Process P3 Process P4
sends m1 receives mi receives m3 sends m3
sends m2 receives m3 receives m1 sends m4
receives m2 receives m2
receives m4 receives m4

If process P2 receives m 1 before m 3, it may deliver the two messages in that order. Meanwhile,
process P3 may have received m 3 before receiving m 1. FIFO ordering states that P3 may deliver m 3
before m 1, although this delivery order is different from that of P2.

3.2.5 Distributed Commit

Q14. Write about two phase commit protocol.
Ans :

Two-Phase Commit

The two-phase commit protocol (2PC) is consider a distributed transaction involving the participation
of a number of processes each running on a different machine. Assuming that no failures occur, the
protocol consists of the following two phases, each consisting of two steps

1. The coordinator sends a VOTE_REQUEST message to all participants.

2. When a participant receives a VOTE_REQUEST message, it returns either a VOTE_COMMIT
message to the coordinator telling the coordinator that it is prepared to locally commit its part of
the transaction, or otherwise a VOTE_ABORT message.

{ 104 |
Rahul Publications)

DISTRIBUTED SYSTEMS

3. The coordinator collects all votes from the
participants. If all participants have voted to
commit the transaction, then so will the
coordinator. In that case, it sends a
GLOBAL_COMMIT message to all
participants. However, if one participant had
voted to abort the transaction, the
coordinator will also decide to abort the
transaction and multicasts a
GLOBAL_ABORT message.

4. Each participant that voted for a commit waits
for the final reaction by the coordinator. If a
participant receives a GLOBAL_COMMIT
message, it locally commits the transaction.
Otherwise, when receiving a
GLOBAL_ABORT message, the transaction
is locally aborted as well.

The first phase is the voting phase, and
consists of steps 1 and 2. The second phase is the
decision phase, and consists of steps 3 and 4.

Site A

Data are
commilted

Can’t roll back
sites Aand B

Rollback at
sile (

el i) |

The protocol is implemented in two phases:
Phase 1: Preparation

1. The coordinator sends a PREPARE TO
COMMIT message to all subordinates.

2. The subordinates receive the message; write
the transaction log, using the write-ahead
protocol; and send an acknowledgment
(YES/PREPARED TO COMMIT or NO/NOT
PREPARED) message to the coordinator.

3. The coordinator makes sure that all nodes
are ready to commit, or it aborts the action.

If all nodes are PREPARED TO COMMIT, the
transaction goes to Phase 2. If one or more nodes
reply NO or NOT PREPARED, the coordinator
broadcasts an ABORT message to all subordinates.

Phase 2: The Final COMMIT

1. The coordinator broadcasts a COMMIT
message to all subordinates and waits for the
replies.

2. Each subordinate receives the COMMIT
message, and then updates the database
using the DO protocol.

3. The subordinates reply witha COMMITTED
or NOT COMMITTED message to the
coordinator.

If one or more subordinates did not commit,
the coordinator sends an ABORT message, thereby
forcing them to UNDO all changes.

The objective of the two-phase commit is to
ensure that each node commits its part of the
transaction; otherwise, the transaction is aborted.
If one of the nodes fails to commit, the information
necessary to recover the database is in the
transaction log, and the database can be recovered
with the DO-UNDO-REDO protocol.

Q15. Explain about three phase commit
protocol.

AnS :

Three-Phase Commit

The 3PC protocol is designed as a non-
blocking protocol. In this context, it is necessary to
mention that 2PC protocol is not a non-blocking
protocol, as in certain circumstances it is possible
for sites to become blocked. The coordinator can
be blocked in the wait state, whereas the
participants can be blocked in the ready state. The
requirements for the 3PC protocol are as follows:

'| 105 j

Rahul Publications

M.Sc. IV Sem

UNIT - 1l

(i) Network partition should not occur.

(i) All sites should not fail simultaneously, that
is, at least one site must be available always.

(iii) At the most k sites can fail simultaneously,
where k is less than total number of sites in
the distributed system.

In 3PC, a new phase is introduced, known
as pre-commit phase, in between the voting phase
and the global decision phase, for eliminating the
uncertainly period for participants that voted
commit and are waiting for the global decision from
the coordinator. In 3PC, if all participants vote for
commit, the coordinator sends a “global pre-
commit” message to all participants. A participant
who has received a “pre-commit” message to the
coordinator will definitely commit by itself, if it has
not failed. Each participant’s acknowledgements the
coordinator sends a “global commit” message to
all participants.

Termination protocols for 3PC

Like in 2PC, the termination protocol is used
in 3PC to handle timeouts.

Coordinator In 3PC, the coordinator may
timeout in four different states: wait, precommit,
abort and commit. Timeouts during the abort and
the commit states are handled in the same manner
as in 2PC, therefore, only three cases are
considered here.

(i) Timeout in the wait state - The action taken
here is identical to that in the coordinator
timeout in the wait state for the 2PC protocol.
In this state, the coordinator can decide to
globally abort the transaction. Therefore, the
coordinator writes an “abort” record in the
log and sends a “global_abort” message to
all participants.

(i) Timeoutin the precommit state - In this case,
the coordinator does not know whether the
non-responding participants have already
moved to the precommit state or not, but
the coordinator can decide to commit the
transaction globally as all participants have
voted to commit. Hence, the coordinator
sends a “prepare-to-commit” message to all
participants to move them into the commit
state, and then globally commits the

Rahul Publications

'l 106 ',

transaction by writing a commit record in the
log and sending “global_commit” message
to all participants.

(iii) Timeout in the commit or abort state - In
this state, the coordinator is waiting for all
par-ticipants to acknowledge whether they
have successfully committed or aborted and
timeout occurs. Hence, the participants are
atleastin the precommit state and can invoke
the termina-tion protocol as listed in case (ii)
and case (iii) in the following section.
Therefore, the coordina-tor is not required
to take any special action in this case.

Participant

A participant may timeout in three different
states; initial, ready and precommit.

(i) Timeout in the initial state- In this case, the
action taken is identical to that in the
termination protocol of 2PC.

(i) Timeout in the ready state- in this state, the
participant has voted to commit and is waiting
for the global decision from the coordinator.
As the communication with the coordinator
is lost, the termination protocol continues by
electing a new coordinator.

3.2.6 Recovery

Q16. Write about backward and forward
recovery.

AnS :

Backward and Forward Error Recovery

There are two approaches for restoring an
erroneous state to an error free state.

1. Forward Error Recovery: If the nature of
the errors and damages caused by the fault
can be completely and accurately accessed,
then it is possible to remove those errors in
the process’s state or system’s state and
enable the process or system to move
forward. This technigue is known as forward
error recovery.

2. Backward Error Recovery: If the nature
of the errors and damages caused by the fault
cannot be completely and accurately
accessed, then it is not possible to remove

DISTRIBUTED SYSTEMS

those errors in the process’s state or system’s
state. To remove the errors or fault, the
system state can be restored to the previous
error-free stable state of the system. This
technique is known as backward error
recovery.

Backward Error Recovery Vs Forward Error
Recovery

Advantages

1. Backward error recovery is simpler than
forward error recovery.

2. Backward error recovery is independent of
an arbitrary fault.

Disadvantages

1. Performance Penalty: The overhead to restore
a process or system state to a prior state can
be quite high.

2. Thereis no guarantee that faults will not occur
again when processing begins.

3. Some component of the process or system
may not be recoverable.

Backward Error Recovery - System Model

The system is assumed to consist of a single
machine, connected to aecondary storage system
and a stable storage system. A stable storage does
not lose information in the event of system failure
and used to keep logs & recovery points.

cPU stg)rgge
!

Memory
DB cache
stable stable
log buffer > \st@ storage

There are two ways to implement backward
error recovery:

1. The operation based approach

2. The State based approach

The Operation based Approach:

In this approach, the sufficient details of all
the modifications made in the transaction are
recorded so that the previous stable state of the
system can be restored by reversing all the changes
made in that state. The information in the logs
contains the name of object, the old state of the
object and the new state of the object.

This can be done in two ways:

1. Updating-in-place: In Update-in-Place,
every update or write operation to anobject
updates the object and create a log in the
stable storage. The recoverableupdate
operation can be implemented as a collection
of operations as follows

() A ‘do operation, which does the action
or update and write a log record.

(b) An ‘undo’ operation, which undoes the
action performed by ‘do’ operation.

(c) A ‘redo’ operation, which redoes the
action specified by ‘do’ operation.

(d) An optional ‘display’ operation, which
displays the log record.

The major problem with update-in-place that
a ‘do’ operation cannot be undoneif the
system crashes after the update operation but
before a log record is stored.

2. The Write-Ahead-Log Protocol: In Write-
Ahead-Log Protocol, The Recoverableupdate
operation can be implemented as a collection
of operations as follows

(2) Update an object only after the ‘undo’
log is recorded.

(b) Before committing the update, ‘redo’
and ‘undo’ logs are recorded.

State Based Recovery

> Establish a recovery point where the process
state is saved.

> Recovery done by restoring the process state
at the recovery, called a checkpoint. This
process is called rollback.

{ 107 I|

Rahul Publications

M.Sc. IV Sem UNIT - 1l

> Process of saving called checkpointing or taking a check point.

> Rollback normally done to the most recent checkpoint, hence many checkpoints are done over
the execution of a process.

> Shadow pages technique can be used for checkpointing. Page containing the object to be updated
is duplicated and maintained as a checkpoint in stable storage.

= Actual update done on page in secondary storage. Copy in stable storage used for rollback.

Q17. Explain about checkpoints Recovery.
Ans :

A process takes a checkpoint from time to time by saving its state in stable storage need consistent
global state. The state of channels corresponding to a global state is the set of messages sent but not yet
received. A check pointis saved as a local state of a process. A set of check points one per process in the
system, is consistent if the saved state form a consistent global state.

T
A S

S

2)
B S, DS
Sg . D @
L831‘ . L832 . .L833

Two approaches to create check points

1. State based or operation based: processes take checkpoints independently and save all
checkpoints in stable storage (asynchronous)

2. Global checkpointing: processes coordinate their checkpointing actions such that each process
saves only its most recent checkpoints, and the set of checkpoints in the system is guaranteed to be
consistent

Independent Checkpointing

Each process independently takes checkpoints, with the risk of a cascaded rollback to system
startup:

1. Let CP[i](m) denote m™ checkpoint of process P, and INT[i](m) the interval between CP[i](m-1)
and CP[i](m)

2. When process P, sends a message in interval INT[i](m), it piggybacks (i,m)

3. When process PJ. receives a message in interval INT[jl(n), it records the dependency INT[i](m) ™!
INT[j](n)

4, The dependency INT[i](m)’! INT[j](n) is saved to stable storage when taking checkpoint CP[j](n)

Observation

If process P, rolls back to CP[i](m1), PJ. must roll back to CP[j](n1).

{ 108 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Orphan messages and Domino effect

May lead to unacceptable delays.

x1 x2 x3
x— [[
m
1 y2
- [[FAll URF
ZF1 z|_2
i [

> After failure, Y has to roll back to y,.
> If X only rolls back to x,, an extra message m will be recorded.
> So it must roll back to x..

Lost messages

v FAILURE

It

> If the system is restored to state {x,, y,}, message m is lost as X has past the point where it
sends m as X has past the point where it sends m.

Livelock

A situation in which a single failure can cause an infinite number of rollbacks, preventing the
system from making progress.

x1

[
X
n
m1
¥1
v [EAIl URE
x1
r
X—
n
n1
m2
y
v—r|
FAILURE
{ 109 } .
|Gt Rahul Publications

M.Sc. IV Sem UNIT - 1l

Y fails before receiving message n, (upper figure).
When Y rolls back to y,, there’s no record of sending m,. So X has to roll back to x,.
When Y recovers, it sends out m, and receives n, (lower figure).
X sends out n, and receives m,.
But X has no record of sending out n, so Y has to roll back,
which forces X to roll back also
So, state-based or operation-based are not adequate in many cases.
Coordinated Checkpointing

> Each process takes a checkpoint after a globally coordinated action. Overcoming domino effect
and livelocks: checkpoints should not have messages in transit.

> Consistent checkpoints: no message exchange between any pair of processes in the set as well as
outside the set during the interval spanned by checkpoints. {x1,y1,z1} is a strongly consistent
checkpoint.

Strongly Consistent Set of Checkpoints

YV V V V VYV V

x?‘l i x{2
[F i
T S :
o -
i y1 i y2
y . [
4 L] L
i zi1 z2
p : [[
i E 2

Q18. What is message logging ? When should we use message logging?
Ans :
Message logging and consistency
Message logging is used to avoid orphans.
> Process Q has just received and subsequently delivered messages m, and m,
» Assume that m, is never logged.
> After delivering m, and m,, Q sends message m, to process R
> Process R receives and subsequently delivers m,.

Q crashes and recovers
P f :
mi mi m2 is never replayed,
so neither will m3
Dl —— i e I o
o]\ el s)
R }\ “

—» Unlogged message Time —»
®—» Logged message

Fig.: Incorrect replay of messages after recovery, leading to an orphan process.

{ 110 |
Rahul Publications =

DISTRIBUTED SYSTEMS

Message-logging schemes
Notations

> HDR[m]: The header of message m
containing its source, destination, sequence
number, and delivery number

The header contains all information for
resending a message and delivering it in the
correct order (assume data is reproduced by
the application)

A message m is stable if HDR[m] cannot be
lost (e.g., because it has been written to stable
storage)

> DEP[m]: The set of processes to which
message m has been delivered, as well as any
message that causally depends on delivery
of m

> COPY[m]: The set of processes that have a
copy of HDR[m] in their volatile memory

Characterization

If C is a collection of crashed processes, then
Q ¢ C is an orphan if there is a message m such
that Q € DEP[m] and COPY[m] < C (i.e. All
processes that have a copy of m are crashed and Q
depends on m!)

Note: We want v m v C:: COPY[m] <
C == DEP[m] < C. This is the same as saying
that v m:: DEP[m] < COPY[m].

Goal: No orphans means that for each
message m,

DEP[m] < COPY[m]
Pessimistic protocol

For each nonstable message m, there is at

most one process dependent on m, that is
|DEP[m]] < 1.

Consequence
An unstable message in a pessimistic protocol

must be made stable before sending a next
message.

Optimistic protocol

For each unstable message m, we ensure that
if COPY[m] < C, then eventually also DEP[m] <
C, where C denotes a set of processes that have
been marked as faulty

Consequence

To guarantee that DEP[m] < C, we generally
rollback each orphan process Q until Q ¢ DEP[m]

3.3 SEecuriTY I

3.3.1 Introduction

Q19. Write about Security in distributed
systems.

Ans :
Strategies for securing Distributed Systems

Generally very similar to techniques used in
a non-distributed system, only much more difficult
to implement ...

1. Providing a secure communications
channel - authentication, confidentiality
and integrity.

2. Handling authorization — who is entitled to
use what in the system?

Providing effective Security Management.

4. Example systems: SESAME and e-
payment systems.

Types of Threats

> Interception -unauthorized access to data.
> Interruption - a service becomes
unavailable.

> Modification - unauthorized changes to,
and tampering of, data.

> Fabrication - non-normal, additional
activity.

Security Mechanisms

> Encryption -fundamental technique: used
to implement confidentiality and integrity.

> Authentication -verifying identities.

> Authorization - verifying allowable
operations.

» Auditing —who did what to what and when/
how did they do it?

Matching security mechanisms to threats is
only possible whena Policy on security and security
issues exists.

'| 111 I|

Rahul Publications

M.Sc. IV Sem UNIT - 1l

20. Write about the Globus Security Policy and architecture.
Ans :

Globus is a system supporting largescale distributed computations in which many hosts, files, and
other resources are simultaneously used for doing a computation.Also referred to as computational
grids.Resources in these grids are often located in different administrative domains that may be located in
different parts of the world.

Globus Security Policy
1. The environment consists of multiple administrative domains.
2. Local operations are subject to a local domain security policy only.

3. Global operations require the initiator to be known in each domain where the operation is carried
out.

Operations between entities in different domains require mutual authentication.
Global authentication replaces local authentication.
Controlling access to resources is subject to local security only.

Users can delegate rights to processes.

© N o g bk

A group of processes in the same domain can share credentials.

The Globus security architecture:

It consists of entities such as: users, user proxies, resource proxies, and general processes.
Entities are located in domains and interact with each other.

Security architecture defines four different protocols

The Globus security architecture. (See diagram)

Protocol 3:

Allocation of a resource Proxy creates

by a process in remote domain process
Domain Domain

™ ~

Biccess --| Hesour‘cle proxy Bapaas r -{ Resourc\e proxy |‘
i r ! 4
' Local security i Local security
1 policy and \] policy and
mechanisms mechanisms
Global-to-local Global-to-local
mapping of IDs mapping of IDs
X A A .

fmcess Protocol 4: User must be

spawns ; known in domain
child process Making user known

in remote domain

Protocol 2:
Allocation of a fesource
by the user in a remote
Protocol 1: dotialty
Creation of
Domain user proxy
User
{ 112 |
R R 1 J
Rahul Publications

DISTRIBUTED SYSTEMS

Q21. Write about the design issues when considering the security in distributed systems.

AnS :

Design Issues

Three design issues when considering security:

1.
2.
3.

Focus of Control.
Layering of Security Mechanisms.

Simplicity.

Focus of Control

Three approaches for protection against security threats.

Data is protected against Data is protected against

wrong or invalid operations unauthorized invocations)’\ %
~J
State % i % \

— Object %
Data is protected by

checking the role of invoker

Invocation Method (c)

(a) (b)

(a) Protection against invalid operations

(b) Protection against unauthorized invocations.

(c) Protection against unauthorized users.

Layering of Security Mechanisms

Decision required as to where the security mechanism is to be placed.

Application Application
Middleware High-level protocols Middleware
OS Services OS Services

“ Transport | Transport .

OS kernel Network Network OS kernel

Low-level protocols

Datalink Datalink
Hardware Physical Physical Hardware
Network

Trust and Security

>
>
>

A system is either secure or it is not.
Whether a client considers a system to be secure is a matter of trust.

Layer in which security mechanisms are placed depends on the trust a client has in how
secure the services are in any particular layer.

{ 113 '
|kl Rahul Publications

M.Sc. IV Sem UNIT - 1l

Example

Several sites connected through a wide-area backbone service.

_ Encryption device

LS

Switched Multi-megabit Data Service (SMDS)

» If the encryption mechanisms cannot be trusted, additional mechanisms can be employed by
clients to provide the level of trust required (e.g., using SSL (Secure Sockets Layer).

» Secure Sockets Layer and can be used to securely send messages across a TCP connection.

Q22. Explain various Security Mechanisms

Ans :

Security Mechanisms
Fundamental technique within any distributed systems security environment: Cryptography.
» Asender S wanting to transmit message m to a receiver R.
» The sender encrypts its message into an unintelligible message m’, and sends m’ to R.
» R must decrypt the received message into its original form m.

Three kinds of Intruders and eavesdroppers in communication.

Passive intruder Active intruder Active intruder
only listens to C can alter messages can insert messages
A ;
Y
: Encryption || | Ciphertext Decryption ;
Plaintext, P —» method C = Eq(P) rrathod —» Plaintext
Encryption Decryption
Sender key, Ex key, Dy Receiver

» Original form of the message that is sent is called the plaintext, P

» Encrypted form is referred to as the ciphertext, illustrated as C.

Notation to relate plaintext, ciphertext, and keys.

C = E_(P) denotesthatthe ciphertext C is obtained by encrypting the plaintext P usingkey K.

P = D,(C) is used to express the decryption of the ciphertext C using key K, resulting in the
plaintext P,

— ‘l 114 ',
Rahul Publications

DISTRIBUTED SYSTEMS

Q23. Explainvarious Cryptosystems.
Ans :
Types of Cryptosystems

Symmetric: often referred to as conven-
tional cryptography, defined as:

P=D,(E (P)

Symmetric cryptosystems => referred to
as secret-key or shared-key systems

1. because the sender and receiver are required
to share the same key,

2. this shared key must be kept secret; no one
else is allowed to see the key.

3. Use the notation K, , to denote a key
shared by A and B.

Asymmetric: often referred to as public-
key cryptography, defined as:

> The keys for encryption and decryption are
different, but together form a unique pair.

P=D, (E, (P))

> There is a separate key K_ for encryption and
one for decryption, K_, such that One of the
keys in an asymmetric cryptosystem is kept
private; the other is made public.

> Notation K, to denote a public key belonging

to A, and K as its corresponding private
key.

Notation used in cryptography

Notation Description

Ka Secret key shared by A and B
Ky Public key of A

Ka Private key of A

Hash (One-Way) Functions

A hash function H takes a message m of
arbitrary length as input and produces a bit
string h having a fixed length as output:

h=H(m)

> Given H and m, h is easy to compute.

> However, given H and h, it is computationally
infeasible to compute m.

> That is, the function only works One-Way.

Weak Collision Resistence: given mand
h = H(m), it is hard to find another m, say, m2,
such that m and m2 produce the same h.

Strong Collision Resistence: Given H,
it is infeasible to find an m and an m2 such
that H(m) and H(m2) produce the same
value.

Similarly:

> For any encryption function E, it should be
computationally infeasible to find the
key K when given the plaintext P and
associated ciphertext C = E,(P)

» Analogous to collision resistance, when given
a plaintext P and a key K, it should be
effectively impossible to find another
key K such that E (P) = E,. (P).

Symmetric Cryptosystems: DES

Example of a cryptographic algorithm:
Data Encryption Standard (DES)Used for
symmetric cryptosystems.

> DES is designed to operate on 64-bit blocks
of data.

> A block is transformed into an encrypted (64
bit) block of output in 16 rounds, where each
round uses a different 48-bit key for
encryption.

> Each of these 16 keys is derived from a 56-
bit master key (see figure).

> Before an input block starts its 16 rounds of
encryption, it is first subject to an initial
permutation, of which the inverse is later
applied to the encrypted output leading to
the final output block.

(a) The principle of DES.

(b) Outline of one encryption round.

'| 115 |

Rahul Publications

M.Sc. IV Sem

UNIT - 1l

Initial permutation

56-bit key

Generate 16 keys

Round 16

I |
(a)
I Llf I FI|1
A4
|‘i—1€3 fR H'Kz)
I L I A

Each encryption round i takes the 64-bit
block produced by the previous round i - 1 as its
input.
> The 64 bits are split into a left part Li-1 and a

right part Ri-1, each containing 32 bits.

> The right part is used for the left part in the
next round, that is, Li = Ri-1.

Work is done in the mangler function f.

> This function takes a 32-bit block Ri-1 as
input, together with a 48-bit key Ki, and
produces a 32-bit block that is XORed with
Li-1 to produce Ri.

0 (XOR is an abbreviation for the
exclusive or operation.)

> The mangler function first expands Ri-1 to
a 48-bit block and XORs it with Ki.

> The result is partitioned into eight chunks of
six bits each.

Rahul Publications

Il 116 |

> Each chunk is then fed into a different S-
box, which is an operation that substitutes
each of the 64 possible 6-bit inputs into one
of 16 possible 4-bit outputs.

> The eight output chunks of four bits each are
then combined into a 32-bit value and
permuted again.

The 48-bit key Ki for round i is derived
from the 56-bit master key as follows

> First, the master key is permuted and divided
into two 28-bit halves.

> For each round, each half is first rotated one
or two bits to the left, after which 24 bits are
extracted.

> Together with 24 bits from the other rotated
half, a 48-bit key is constructed.

Details of per-round key generation in DES.

[56-bit key |

Initial permutation

I 28 bit string I

Used for

[Extracl 24 bits |

28-bit strlng I

| Extract 24 bns

I I |

48-bit key

Principle of DES is quite simple:

» Algorithmis difficult to break using analytical
methods.

> Brute-force attack by simply searching for a
key that will do the job has become easy as
has been demonstrated a number of times.

> DES three times in a special encrypt-decrypt-
encrypt mode with different keys, also known
as Triple DES is much more safe and is still
often used.

Public-Key Cryptosystems: RSA

> Public-key systems: RSA : named after its
inventors: Rivest, Shamir, and Adleman
1978).

DISTRIBUTED SYSTEMS

Security of RSA - no methods are known to
efficiently find the prime factors of large
numbers.

It can be shown that each integer can be
written as the product of prime numbers.

For example, 2100 can be written as
2100=2x2x3x5x5x7

making 2, 3, 5, and 7 the prime factors in
2100.

Private and public keys are constructed from
very large prime numbers (consisting of
hundreds of decimal digits).

Breaking RSA is equivalent to finding those
two prime numbers.

So far, this has shown to be computationally
infeasible despite mathematicians working on
the problem for centuries.

Generating the private and public key
requires four steps:

1.

Choose two very large prime numbers, p
and g.

Compute n=p xqand z = (p-1) x
@-1).

Choose a number d that is relatively prime
to z.

Compute the number e suchthat e x d=
1 mod z.

» One of the numbers, say d, can
subsequently be used for decryption,
whereas e is used for encryption.

» Only one of these two is made public,
depending on what the algorithm is
being used for.

Example 3: Bob and Alice

>

>

Alice wants to keep the messages she sends
to Bob confidential.

She wants to ensure that no one but Bob
can intercept and read her messages to him.

RSA considers each message m to be just a
string of bits.

> Each message is first divided into fixed-length
blocks, where each block m,, interpreted as
a binary number that should lie in the
interval 0 << mi < n.

> To encrypt message m, the sender calculates
for each block m. the
value ¢; =mj (mod n), which is then
sent to the receiver.

> Decryption at the receiver’s side takes place
by computing m; = ¢¥ (mod n)-

> Note for the encryption, both e and n are
needed, whereas decryption requires
knowing the values d and n.

> RSA has the drawback of being
computationally more complex.

> encrypting messages using RSA is
approximately 100-1000 times slower than
DES, depending on the implementation
technique used.

> Many cryptographic systems use RSA to
exchange only shared keys in a secure way,
but much less for actually encrypting
“normal” data.

Hash Functions: MD5

> MD?5 is a hash function for computing a 128-
bit, fixed length message digest from an
arbitrary length binary input string.

> The input string is first padded to a total length
of 448 bits (modulo 512), after which the
length of the original bit string is added as a
64-bit integer.

> In effect, the input is converted to a series of
512-hit blocks.

The structure of MD5 algorithm.

| 128-bit constant | | Padded message (multiple of 512 bits

512 bits

512 bits

Message digest

g

Rahul Publications

M.Sc. IV Sem UNIT - 1l

> Starting with some constant 128-bit value, the algorithm proceeds in k phases, where k is the
number of 512-bit blocks comprising the padded message.

> During each phase, a 128-bit digest is computed out of a 512-bit block of data coming from the
padded message, and the 128-bit digest computed in the preceding phase.

A phase in MD5 consists of four rounds of computations, where each round uses one of the
following four functions:

F (X,y,z) = (X AND y) OR ((NOT x) AND z)
G (x,¥,2) = (X AND z) OR (y AND (NOT 2))
H (X,y,z) = x XOR Yy XOR z

I (X,y,2) =y XOR (x OR (NOT 2))

> Each of these functions operates on 32-bit variables x, y, and z.

> Consider a 512-bit block b from the padded message that is being processed during phase k.

> Block b is divided into 16 32-bit subblocks b0,bl,...,b15.

> During the first round, function F is used to change four variables (denoted as p, g, r, and s,
respectively) in 16 iterations

> These variables are carried to each next round, and after a phase has finished, passed on to the

next phase.
> There are a total of 64 predefined constants Ci.

> The notation x <<< n is used to denote a left rotate: the bits in x are shifted n positions to the left,
where the bit shifted off the left is placed in the rightmost position.

The 16 iterations during the first round in a phase in MD5.

Iterations 1-8 Iterations 9-16
P« b+F Qrs)+by+C,) = pe P+Fgrs) +bg +C5)7
s« B+F pgr)+b; +C,)«:12 S« B+F fpgr)t+tby +Cp) =12
r« +F Ep,g)+by+C3)« 17| re C+F p,g)+big+Cqq) = 17
g« @+F frsp)+b; +C,)«22 g« Q+F (r,s,p)+bn+Clz)«22
p« P+ F @Qrs)+b, +C;) = P Pp+F grs) +b,+Cyy) =
)
)
)

) =
s« B+F p,gr)+bs+C, «:12 s« 8+ F @,q,r)+b13+C14)«12
r« @+F Bpa)+bs+C,;) e« 17| re €+ F Epg)+bis+ Crs) e 17
g« @+F @ksp)+b,+Cy)= 22| ge @+F @sp) +bys+Cg) =22

The second round uses the function G in a similar fashion, whereas H and | are used in the third
and fourth round, respectively.

Each step thus consists of 64 iterations, after which the next phase is started, but now with the
values that p, g, r, and s have at that point.

3.3.2 Secure Channels

Q24. What are secure channels? Write about them.
Ans :

Secure Channels

Secure communications between parties. They are.Authorized

{ 118 |
Rahul Publications =

DISTRIBUTED SYSTEMS

Secure channels protect against (protected
by):

» Interception (confidentiality).

» Modification (auth. and integrity).

» Fabrication (auth. and integrity).
Applications of Cryptography

1. Authentication.

2. Message Integrity.

3. Confidentiality.

> Common practice to use secret-key
cryptography by means of session keys.

> A session key is a shared (secret) key that is
used to encrypt messages for integrity and
possibly also confidentiality.

> This key is used only for as long as the channel
exists.

> When the channel is closed, its associated
session key is securely destroyed.

Authentication Based on a Shared Secret Key

> Ensure data message integrity exchanged
after authentication use secret-key
cryptography with session keys.

> Session key - is a shared (secret) key that is
used to encrypt messages for integrity

> Generally used only for as long as the channel
exists.

Example : Bob and Alice Again

> Alice and Bob are abbreviatedby A and B,
respectively, and their shared key is denoted
as K AR

> One party challenges the other to a response
that can be correct only if the other knows
the shared secret key.

> also known as challenge-response protocols

1. Alice sends her identity to Bob (message 1),
indicating that she wants to set up a
communication channel between the two.

2. Bob sends a challenge R_ to Alice, shown
as message 2.

» Such a challenge could take the form
of a random number.

» Alice must encrypt the challenge with
the secretkey K, .. thatshe shares with
Bob, and return the encrypted challenge
to Bob. This response is shown as
message 3 containing K, ..(Ry).

Authentication based on a shared secret key,
using a ‘challenge response’ protocol.

Note: R is a random number.

] A]

A
n
o)

Alice
=
b3
)
5)
my
Bob

B

> Kaa(Ra)

3. When Bob receives the response K, ,.(Ry)
to his challenge R, he can decrypt the
message using the shared key again to see if
it contains R,.

» If so, he then knows that Alice is on
the other side, for who else could have
encrypted R, with Kug In the first
place?

4. Alice has not yet verified that it is Bob is on
the other side of the channel.

> Shesendsachallenge R, (message4),
which Bob responds to by returning
K, g (R,), shown as message 5.

5. When Alice decrypts it with KA,B and sees
her RA, she knows she is talking to Bob.

Example: Bob and Alice - Taking Shortcuts
Optimization of the Authentication based

on a shared secret key, but using three instead of
five messages.

AR,

3

Alice
Bob

KA‘B(HB)

'| 119 j

Rahul Publications

M.Sc. IV Sem UNIT - 1l

Idea:

> If Alice eventually wants to challenge Bob anyway, she might as well send a challenge along with
her identity when setting up the channel.

> Bob returns his response to that challenge, along with his own challenge in a single message
This protocol can easily be defeated by a reflection attack.

A reflection attack is a potential way of attacking a challenge-response authentication system
which uses the same protocol in both directions.

The basic idea is to trick the target into providing the answer to its own challenge.

The general attack outline is as follows:

The attacker initiates a connection to a target.

The target attempts to authenticate the attacker by sending it a challenge.

The attacker opens another connection to the target, and sends the target this challenge as its own.

The target responds to that challenge.

I

The attacker sends that response back to the target (“reflects” it) on the first connection.

The reflection attack.

|;
4

} First session

} Second session

Chuck
Bob

L : KA,B(HB) _} First session

5. Bob not recognizing that he, himself, had used R, before as a challenge, responds with K, ,(R;)

and another challenge R_,, shown as message 4.

6. At that point, Chuck has K, ,(R,) and finishes setting up the first session by returning message
S containing the response K, ,(R;), which was originally requested from the challenge sent in
message 2.

Mistake 1: the two parties in the new version of the protocol were using the same challenge in
two different runs of the protocol.

Better Design: always use different challenges for the initiator and for the responder.

» Ingeneral, letting the two parties setting up a secure channel do a number of things identically
is not a good idea.

Mistake 2: Bob gave away valuable information in the form of the response K, ,(R.) without
knowing for sure to whom he was giving it.

» Not violated in the original protocol, in which Alice first needed to prove her identity, after
which Bob was willing to pass her encrypted information.

{120 }
Rahul Publications =

DISTRIBUTED SYSTEMS

Authentication Using a Key Distribution Center

YV V V V

Problem with a shared secret key for authentication: scalability.

Given N hosts - each host is required to share a secret key with each of the other N-1 hosts
System as a whole must manage N (N - 1)/2 keyes

Each host has to manage N - 1 keys.

Alternative: use a centralized approach by means of a Key Distribution Center (KDC).

This KDC shares a secret key with each of the hosts

No pair of hosts is required to have a shared secret key as well.

Using a KDC requires that we manage N keys instead of N (N - 1)/2

If Alice wants to set up a secure channel with Bob, she can do so with the help of a (trusted) KDC.

The KDC hands out a key to both Alice and Bob that they can use for communication,

Principle of using a KDC

|

[a1]
1 <
:
w0
® 2
o © o)
=)
< 2 m
@
2 o 2
< KA,KDC(KA,B) d KB.KDC(KA.B)
[m]
X

1. Alice sends a message to the KDC, telling it that she wants to talk to Bob.

2. The KDC returns a message containing a shared secret key K, , that she can use.
> The message is encrypted with the secret key K, . that Alice shares with the KDC.

3. The KDC sends K, , to Bob, but now encrypted with the secret key K. it shares with Bob.

Drawbacks :

> Alice may want to set up a secure channel with Bob even before Bob had received the shared key
from the KDC.

> The KDC is required to pass Bob the key.

Solution: ticket

>
>

KDC passes K back to Alice and lets her connect to Bob.

B,KDC(KA,B)
The message Kj (K,) is also known as a ticket.
It is Alice’s job to pass this ticket to Bob.

Note that Bob is still the only one that can make sensible use of the ticket, as he is the only one
besides the KDC who knows how to decrypt the information it contains.

{ 121 ' T .
|l Rahul Publications

M.Sc. IV Sem UNIT - 1l

Using a ticket and letting Alice set up a connection to Bob.

1 -
AB »
2
HKA.KDC(KA,B)‘ Kekoc(Kas) }—
8

KDC

Alice
Bob

> Protocol is a variant of a well-known example of an authentication protocol using a KDC, known as
the Needham-Schroeder authentication protocol, named after its inventors (Needham and
Schroeder, 1978).

The Needham-Schroeder protocol is a multiway challenge-response protocol and works

as follows.
'R, A B
At T
O
2 e
<_|KA,KDC(F‘A1= B.Kag: KB,KDC(A'KA,B))I_
8 p .
< { Kap(Raz):Kekoc (AKag) } > @
4
< {KA,B(RA2_1'RB) }
ety
Kag(Rg—1) »|
1. When Alice wants to setup asecure channel with Bob, she sends a request to the KDC containing

a challenge R,, along with her identity A and that of Bob.

2. The KDC responds by giving her the ticket K

(K, g), along with the secret key K, . that she

B,KDC

can subsequently share with Bob.

>

>

A\

>
>

The challenge R, that Alice sends to the KDC along with her request to set up a channel
to Bob is also known as a nonce.

A nonce is a random number that is used only once, such as one chosen from a very large
set.

Purpose of a nonce is to uniquely relate two messages to each other
e.g. message 1 and message 2.

by including R,, again in message 2, Alice will know for sure that message 2 is sent as a
response to message 1, and that it is not a replay of an older message.

Message 2 also contains B, the identity of Bob.
By including B, the KDC protects Alice against the following attack.

3. After the KDC has passed the ticket to Alice, the secure channel between Alice and Bob can be set

up.

>

Alice sends message 3, which contains the ticket to Bob, and a challenge R,, encrypted
with the shared key K, . that the KDC had just generated.

Rahul Publications

‘l 122 l,

DISTRIBUTED SYSTEMS

4. Bob then decrypts the ticket to find the shared key, and returns a response R,, - 1 along with a
challenge R for Alice.

> This ties message 4 to message 3 in the same way that the nonce R, tied message 2 to
message 1.

Weak Point
> If Chuck got an old key K, ,
> Bob will then believe he is talking to Alice, while, in fact, Chuck is at the other end.

he could replay message 3 and get Bob to set up a channel.

> Need to relate message 3 to message 1 - make the key dependent on the initial request
from Alice to set up a channel with Bob.

Protection against malicious reuse of a previously generated session key in the Needham-
Schroeder protocol.

. e .
[A] >

g e
KexocFer) |

3
IRM, A, BKg e (Ra1) }_>
4
‘—|KA.KDC (Rar B.Ka g Kgkoc(A Ky g:Raq))li
5
| Ka 8(Raz).Ka koc (A Ky g:Rgy) f———>

6
<€ lKA a(Rao—1.Rgy) I
7
[ol o1 |
| Kag(Rea—1) >

A

KDC

Alice
Bob

Solution: incorporate a nonce in the request sent by Alice to the KDC.

» The nonce has to come from Bob: this assures Bob that whoever wants to set up a secure
channel with him, will have gotten the appropriate information from the KDC.

» Alice first requests Bob to send her a nonce R, encrypted with the key shared between

Bob and the KDC.

B1’

» Alice incorporates this nonce in her request to the KDC, which will then decrypt it and put
the result in the generated ticket.

» Bob will know for sure that the session key is tied to the original request from Alice to talk to
Bob.

Authentication Using Public-Key Cryptography

Mutual authentication in a public-key cryptosystem.

» Note that the KDC is missing ...

» But, this assumes that some mechanism exists to verify everyone’s public key.
Example: Bob and Alice

» Alice wants to set up a secure channel to Bob

» Both are in the possession of each other’s public key.

{123}
|kl Rahul Publications

M.Sc. IV Sem

UNIT - 1l

Mutual authentication in a public-key
cryptosystem.

2

Alice
Bob

3

KA,B (RB)

For example:

> Alice needs to be sure that Bob cannot
change a received message and claim it came
from her.

> Bob needs to be sure that he can prove the
message was sent by/from Alice, just in case
she decides to deny ever having sent it in
the first place.

Solution : Digital Signing

> Alice sends a challenge R, to Bob encrypted
with his public key K, .

> Bob’s must decrypt the message and return
the challenge to Alice.

> Because Bob is the only person that can
decrypt the message (using the private key
that is associated with the public
key Alice used), Alice will know that she is
talking to Bob.

> When Bob receives Alice’s request to set up
a channel, he returns the decrypted
challenge, along with his own challenge RB
to authenticate Alice.

> He also generates a session key K, ; that
can be used for further communication.

> Bob’s response to Alice’s challenge, his own
challenge, and the session key are putinto a

message encrypted with the public key K7
belonging to Alice, shown as message 2.

> Only Alice will be capable of decrypting this
message using the private key K’ associated

with K,

» Alice, finally, returns her response to Bob’s
challenge using the session key K, .
generated by Bob.

More on Secure Channels

In addition to authentication, a secure
channel also requires that messages
are confidential, and that they maintain
their integrity.

Rahul Publications

'l 124 ',

Q25. Write about Digital Signatures
Ans :
Digital Signatures

Digital signing a message using public-key
cryptography. This is implemented in the RSA
technology. Here the entire document is
encrypted/signed - this can sometimes be a costly
overkill.

Example

> Bob hassold Alice a collector’s item of some
phonograph record for $500.

> The whole deal was done through e-mail.

> Alice sends Bob a message confirming that
she will buy the record for $500.

Issues

> Alice needs to be assured that Bob will not
maliciously change the $500 mentioned in
her message into something higher, and claim
she promised more than $500.

> Bob needs to be assured that Alice cannot
deny ever having sent the message because
she had second thoughts.

Solution

> Alice digitally signs the message in such a way
that her signature is uniquely tied to its
content.

> Association between a message and its
signature prevents that modifications to the
message will go unnoticed.

» Alice’s signature can be verified to be
genuine; she cannot later repudiate the fact
that she signed the message.

DISTRIBUTED SYSTEMS

Ways to Place Digital Signatures

1.

>

Use a public-key cryptosystem such as RSA

> When Alice sendsamessage m to Bob, she encrypts it with her private key K, , and sends
it off to Bob.

> If she wants to keep the message content a secret, she can use Bob’s public key and sen K}
(m, K, (m)), which combines m and the version signed by Alice.

Digital signing a message using public-key cryptography.

Alice's computer Bob's computer
o »m
Alice's Bob's { i Bob's Alice's
m private key, public key, | | private key, | public key, 3 m
Ka Kg 1 Kg Ka
I
Ka(m) Kg(m, Ky (M) K4 (m)

Message arrives at Bob => he can decrypt it using Alice’s public key.

If the public key is owned by Alice, then decrypting the signed version of m and successfully
comparing it to m can mean only that it came from Alice.

Alice is protected against any malicious modifications to m by Bob, because Bob will always have
to prove that the modified version of m was also signed by Alice.

Problems with Scheme

1.
2.

Validity of Alice’s signature holds only as long as Alice’s private key remains a secret.
Alice decides to change her private key.

» Once Alice has changed her key, her statement sent to Bob becomes worthless.
Alice encrypts the entire message with her private key.

» Such an encryption may be costly in terms of processing requirements

» A cheaper more elegant scheme is to use a message digest.

Message digest => is a fixed-length bit string h that has been computed from an arbitrary-length
message m by means of a cryptographic hash function H.

» If mis changed to m’, its hash H (m’) will be different from h = H (m) so that it can easily be
detected that a modification has taken place.

To Digitally Sign a Message

1.
2.

Alice first computes a message digest and encrypts the digest with her private key.
The encrypted digest is sent along with the message to Bob.
Note that the message itself is sent as plaintext: everyone is allowed to read it.

» If confidentiality is required, then the message should also be encrypted with Bob’s public
key.

Digitally signing a message using a message digest.

{ 125 ' T
=) Rahul Publications

M.Sc. IV Sem UNIT - 1l

Alice's computer m Bob's computer

Hash

function,
l H

Hash Alice's Alice's
function, - private key, public key, T Compare OK

Y

Y

H | K Ka

I
H(m) Ky (H(m)) H(m)

When Bob receives the message and its encrypted digest, he decrypts the digest with Alice’s public
key, and separately calculates the message digest.

» If the digest calculated from the received message and the decrypted digest match, Bob
knows the message has been signed by Alice.

3.3.3 Access Control

Q26. Write about various methods of access control.

AnS :

1.

Access Rights

Access rights is referred to as access control, whereas authorization is about granting access rights
Authorization versus Authentication

Authentication: Verify the claim that a subject says it is S: verifying the identity of a subject
Authorization: Determining whether a subject is permitted certain services from an object
Note: Authorization makes sense only if the requesting subject has been authenticated

Access Control works mainly on Subjects and objects

Subjects issue a request to access an object.

» Processes acting on behalf of users, but can also be objects that need the services of other
objects in order to carry out their work.

An object encapsulates its own state and implements the operations on that state.

» Operations of an object that subjects can request to be carried out are made available through
interfaces.

General model of controlling access to objects.

Subject p| Reference » Object
monitor
Request for Authorized
operation request

Reference Monitor records which subject may do what, and decides whether a subject is allowed
to have a specific operation carried out.

» This monitor is called (e.g., by the underlying trusted operating system) each time an object
is invoked.

Rahul Publications

‘l 126 ||

DISTRIBUTED SYSTEMS

2. Access Control Matrix

Maintain an access control matrix ACM in which entry ACM[S,0] contains the permissible
operations that subject S can perform on object O

System may need to support thousands of users and millions of objects that require protection.
Many entries in the matrix will be empty: a single subject will generally have access to relatively few
objects.

Implementation (a): Each object O maintains an access control list (ACL): ACM[* O]
describing the permissible operations per subject (or group of subjects)

Implementation (b): Each subject S has a capability: ACM[S,*] describing the permissible
operations per object (or category of objects)

Comparison between ACLs and capabilities for protecting objects.

(@) Using an ACL. (b) Using capaubilities.

Client Server
Create access request r ACL Object
as subject s

(s.n)

if (s appears in ACL)
if (r appears in ACL[s])
grant access;

(a)
Client Server
Create access request r Object
for object 0. Pass
capability C (0.0
| if (r appears in C)
grant access,
(b}

3. Firewalls

Sometimes it’s better to select service requests at the lowest level: network packets. Packets that
do not fit certain requirements are simply removed from the channel

Protect your company by a firewall: it implements access control
A common implementation of a firewall
Packet Application ~ Packet

filte Fil"lg gateway ﬁltering
router router

: 1 T = _
Connections \— i Connections

tointernal — 1] to outside

networks | o | I~ networks

Rahul Publications

M.Sc. IV Sem

UNIT - 1l

Two Types of Firewalls:

Packet-filtering gateway - operates as a
router and makes decisions as to whether or not to
pass a network packet based on the source and
destination address as contained in the packet’s
header.

> Typically, the packet-filtering gateway shown
on the outside LAN above would protect
against incoming packets, whereas the one
on the inside LAN would filter outgoing
packets.

Application-level gateway - this type of
firewall inspects the content of an incoming
or outgoing message.

> e.g. mail gateway that discards incoming or
outgoing mail exceeding a certain size.

> e.g. filtering spam e-mail.

> e.g. proxy gateway - works as a front end
to a specific kind of application, and ensures
that only those messages are passed that meet
certain criteria.

4. Secure Mobile Code

Mobile code is great for balancing
communication and computation, but is hard to
implement a general-purpose mechanism that
allows different security policies for local-resource
access.Also, we may need to protect the mobile
code (e.g., agents) against malicious hosts.

Protecting an Agent

Etect that an agent has been tampered with
while it was on the move.

Most important: append-only logs:

> Data can only be appended to the log; there
is no way that data can be removed or
modified without the owner being able to

detect this
> There is always an associated checksum.
Initially,
» Cinit = K*owner(N), with N a
nonce.

> Adding data X by server S:
» Cnew = K'owner(Cold, sig(S,X),S)

Rahul Publications

'l 128 '|

> Removing data from the log:

> K-owner(C) -> Cprev, sig(S,X),S
allowing the owner to check integrity of X

Protecting a Host

Enforce a (very strict) single policy, and
implement that by means of a few simple
mechanisms

Sandbox model: Policy: Remote code is
allowed access to only a pre-defined collection of
resources and services.

. Check instructions for illegal memory access
and service access

Playground model: Same policy, but
mechanism is to run code on separate unprotected
machine.

» We need to be able to distinguish local from
remote code before being able to do
anything

> We need to be able to assign a set of
permissions to mobile code before its
execution and check operations against those
permissions at all times

> We need to be able to assign different sets of
permissions to different units of mobile code
== authenticate mobile code (e.g. through
signatures)

(@) A sandbox. (b) A playground.

Untrusted code

Trusted code Untrusted code Only trusted code Fal

| / N S T

1 7 7 0

| e / L

| } L1 |

i I |
A I I £ '
s
Sandbo:
Local network . E < Local network
Playground
(a) (b)

5. Denial of Service (DoS)

Maliciously preventing authorized processes
from accessing resources.

> Huge collection of processes jointly attempt
to bring down a networked service.

> Attackers succeed in hijacking a large group
of machines which unknowingly participate
in the attack.

DISTRIBUTED SYSTEMS

> It is distinguish two types of attacks:
1. those aimed at bandwidth depletion
2. those aimed at resource depletion.
Solutions:
No single method to protect against DDoS attacks. BUT...
Continuously monitor network traffic
> Starting at the egress routers where packets leave an organization’s network.

o Experience shows that by dropping packets whose source address does not belong to the
organization’s network we can prevent a lot of havoc.

o In general, the more packets can be filtered close to the sources, the better.
> Concentrate on ingress routers, that is, where traffic flows into an organization’s network.

0 detecting an attack at an ingress router is too late as the network will probably already be
unreachable for regular traffic.

o Better to have routers further in the Internet, such as in the networks of ISPs, start dropping
packets when they suspect that an attack is going on.

3.3.4 Security Management

Q27. Explain about security management in distributed systems.
Ans :

Security Management has 3 main categories:
» Key establishment and distribution
» Secure group management
» Authorization management
Key Establishment : Diffie-Hellman

We can construct secret keys in a safe way without having to trust a third party (i.e. a key distribution
center (KDC)):

> Alice and Bob have to agree on two large numbers, n and g. Both numbers may be public.
> Alice chooses large number x, and keeps it to herself. Bob does the same, say v.

1: Alice sends (n, g, g mod n) to Bob

2: Bob sends (g mod n) to Alice

3: Alice computes K, , = (g mod n)* = g¥ mod n

4

Bob computes K,, = (g mod n)’ = g¥ mod n

{ 129 }
=) Rahul Publications

M.Sc. IV Sem UNIT - 1l

The principle of Diffie-Hellman key exchange

Alice Bob
picks x picks y

@ o

=y [+)

= 2 s
Alice computes | < ‘—-Q"r mod n —] Bob computes
(g* mod n)* (g* mod n)¥
=g¥ modn =g¥ modn

Key Distribution

If authentication is based on cryptographic protocols, and we need session keys to establish secure
channels, who's responsible for handing out keys?

Secret Keys
Alice and Bob will have to get a shared key.
> They can invent their own and use it for data exchange.
> Alternatively, they can trust a key distribution center (KDC) and ask it for a key.
Public Keys

> Alice will need Bob’s public key to decrypt (signed) messages from Bob, or to send private messages
to Bob.

> But she’ll have to be sure about actually having Bob’s public key, or she may be in big trouble.

Use a trusted certification authority (CA) to hand out public keys.

A\

> A public key is put in a certificate, signed by a CA.
(&) Secret-key distribution.
(b) Public-key distribution.

: Encryption Decryption :
Plaintext, P —» Hicthod et —» Plaintext
A
Encryption Ciphertext Decryption
key, K key, K

Symmetric
key generator F
Secure channels with
confidentiality and authentication

(a)
Public-key cryptosystem (b), need to distribute the public key in such a way that the receivers can

be sure that the key is paired to a claimed private key.
> although the public key itself may be sent as plaintext, it is necessary that the channel through

which it is sent can provide authentication.

> The private key, needs to be sent across a secure channel providing authentication as well as
confidentiality.

{130 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Secure Group Management

Group uses a key pair (K*, K) for communication with nongroup members.
> There is a separate shared secret key CK_ for internal communication.
> Assume process P wants to join the group and contacts Q.

1: P generates a one-time reply pad RP and a secret key K. It sends a join request to Q,
signed by itself (notation: [JR],), along with a certificate containing its public key K*, .

Securely admitting a new group member.

1
‘{[G, P, T, K&(RP, Ko o)lp, [P, Kilca |—>
2
P [——[P, N, CK;@RP, CK; (Kg)lo— Q

3

| .
y

Kpa(N)

2: Q authenticates P, checks whether it can be allowed as member.

It returns the group key CK_, encrypted with the one-time pad, as well as the group’s private key,
encrypted as CK_ (K).

3: Q authenticates P and sends back K ,.(N) letting Q know that it has all the necessary keys.
Authorization Management

To avoid that each machine needs to know about all users, use capabilities and attribute certificates
to express the access rights that the holder has.

In Amoeba, restricted access rights are encoded in a capability, along with data for an integrity
check to protect against tampering:

> A capability is a 128-bit identifier, internally organized as shown below.

> First 48 bits are initialized by the object’s server when the object is created and effectively form a
machine-independent identifier of the object’s server, referred to as the server port.

o Amoeba uses broadcasting to locate the machine where the server is currently located.

A capability in Amoeba.

48 bits _ 24bits 8bits 48 bits
‘ Server port | Object | Rights | Check

> Next 24 bits are used to identify the object at the given server.

> Note that the server port, along with the object identifier, form a 72-bit system wide unique
identifier for every object in Amoeba.

> Next 8 bits are used to specify the access rights of the holder of the capability.

> 48-bits check field is used to make a capability unforgeable, as we explain in the following pages.

{ 131 '
|kl Rahul Publications

M.Sc. IV Sem UNIT - 1l

> When an object is created, its server picks a random check field and stores it both in the capability
as well as internally in its own tables.

» All the right bits in a new capability are initially on, and it is this owner capability that is returned to
the client.

> When the capability is sent back to the server in a request to perform an operation, the check field
is verified.

> To create a restricted capability, a client can pass a capability back to the server, along with a bit
mask for the new rights.

O The server takes the original check field from its tables, XORs it with the new rights (which
must be a subset of the rights in the capability), and then runs the result through a one-way
function.

0 The server then creates a new capability, with the same value in the object field, but with the
new rights bits in the rights field and the output of the one-way function in the check field.
The new capability is then returned to the caller.

0 The client may send this new capability to another process, if it wishes.

Generation of a restricted capability from an owner capability

Proposed
Capability new rights
| Port | Object [11111111] c | 00000001

= R |
\b Exclusive or !1'/

[t One-way function

Restricted capability

Port Object [00000001] f(C @ 00000001) |

g

Rahul Publications

Distributed Object - Based Systems: architecture, processes,
communication, naming, synchronization, consistency and replication, fault
UN |T tolerance, security. Distributed File Systems: architecture, process,
communication, naming, synchronization, consistency and replication, fault
|V tolerance, security. Distributed Webbased Systems:architecture, process,
communication, naming, synchronization, consistency and replication, fault
tolerance, security.

I B
T T
T P T P T T

0 T A A
T
| EEEEEEENEEEEENEEEEEEEEEE}

e
rrerrrrrrrrrrrerrrrrrrrerrrrrrrrrrrrrrrrrrr e rrrrrr e rrrr e et e e e e P e P P PP T
S A A

4.1 DistriBUTED OBJECT - BASED SYSTEMS I

4.1.1 Architecture
Q1. Explain about distributed objects.

Ans :
Remote Distributed Objects

The key feature of an object is that it encapsulates data, called the state, and the operations on
those data, called the methods. Methods are made available through an interface..

This separation between interfaces and the objects implementing these interfaces is crucial for
distributed systems.

When a client binds to a distributed object, an implementation of the object’s interface, called a
proxy, is then loaded into the client’s address space.

The actual object resides at a server machine, where it offers the same interface as it does on the
client machine.

The server-side stub is often referred to as a skeleton as it provides the bare means for letting the
server middleware access the user-defined objects.

The server stub is also responsible for marshaling replies and forwarding reply messages to the
client-side proxy.

Client machine Server machine
| Object
Chent
Slate
Same
. inlarfacea Method
Client inle .
invokes |t as objecl
method
: Y Skelelon T Interace
B invekes — 1 |
O same method
! at object
ClentQs | Server QS
C \)
Nelwork X,

Marshalled invocation
is passed across network

Fig.: Common Organization of a Remote Object with Client-side Proxy

{ 133 }
2 Rahul Publications

M.Sc. IV Sem

UNIT - IV

Types of Objects |

> Compile-time objects: Language-level
objects, from which proxy and skeletons are
automatically generated.

> Runtime objects: Can be implemented in
any language, but require use of an object
adapter that makes the implementation
appear as an object.

Types of objects Il

> Transient objects: live only by virtue of a server:
if the server exits, so will the object.

> Persistent objects: live independently from a
server: if a server exits, the object’s state and
code remain (passively) on disk.

Example: Enterprise Java Beans (EJB)

EJB is a Java object hosted by special server
that allows for different means of calling the object
by remote clients.The following is the architecture
of EJB.

Container
N

rver
Server__ |

o C_ [(=)
Services —— Z|| Z[| ©|| =
G| Sf 8| =

Server kernel

Local OS

Network I

Fig.: General architecture of an EJB server

Types of EJBs
Four Different Types

> Stateless Session Bean: Transient object,
called once, does its work and is done.

Example: execute an SQL query and return
result to caller.

> Stateful session bean: Transient object, but
maintains client-related state untilthe end of
a session. Example: shopping cart.

> Entity bean: Persistent, statefulobject, can be
invoked during different sessions.

Rahul Publications

'l 134 :

Example: object maintaining client info on
last number of sessions.

> Message-driven bean: Reactive objects,
often triggered by message types. Usedto
implement publish/subscribe forms of
communication.

Globe distributed objects

Most distributed objects are not distributed
at all: state is kept at a single node.Globe objects,
which are physically distributed across multiple
machines.

Distributed shared object

Local object
- ™
| Network |
1 1
& Q Q
[~ Interface

Fig.: The organization of a Globe distributed
shared object

To make DSOs generic, we need to separate
function from distribution support.

Globe local objects come in two flavors.

> A primitive local object is a local object that
does not contain any other local object.

> A composite local object is an object that is
composed of multiple local objects.
Composition is used to construct a local
object that is needed for implementing
distributed shared objects.

Same interface as implemented
by semantics subobject

Control
subobject
Replication Semantics
subobject subobject

Communication
subobject
A

\J
Communication

with other local
objects
Fig.: The general organization of alocal object for
distributed shared objects in Globe

DISTRIBUTED SYSTEMS

This local object is shown in Figure and
consists of at least four subobjects.

> The semantics subobject implements the
functionality provided by a distributed shared
object. In essence, it corresponds to ordinary
remote objects, similar in flavor to EJBs.

> The communication subobject is used to
provide a standard interface to the underlying
network. This subobject offers a number of
message-passing primitives for connection-
oriented as well as connectionless
communication.

> Crucial to virtually all distributed shared
objects is the replication subobject. This
subobject implements the actual distribution
strategy for an object.. The replication
subobiject is responsible for deciding exactly
when a method as provided by the semantics
subobject is to be carried out.

> The control subobject is used as an
intermediate between the user-defined
interfaces of the semantics subobject and the
standardized interfaces of the replication
subobject.

4.1.2 Processes

Q2. Write about processes or object Servers.
Ans :

> An object server is a server tailored to support
distributed objects.

> An object server thus acts as a place where
objects live.

An object consists of two parts: data
representing its state and the code for executing its
methods.

Whether or not these parts are separated, or
whether method implementations are shared by

multiple objects, depends on the object server.
Alternatives for Invoking Objects

For an object to be invoked, the object server
needs to know which code to execute, on which
data it should operate, whether it should start a
separate thread to take care of the invocation, and
S0 on.

A simple approach is to assume that all objects
look alike and that there is only one way to invoke
an object.

A transient object is an object that exists only
as long as its server exists, but possibly for a shorter
period of time.

The advantage of this approach is that a
transient object will need a server’s resources only
as long as the object is really needed.

The drawback is that an invocation may take
some time to complete, because the object needs
to be created first.

Object Adapter

An object adapter has one or more objects
under its control. Because a server should be capable
of simultaneously supporting objects that require
different activation policies, several object adapters
may reside in the same server at the same time.
When an invocation request is delivered to the
server, that request is first dispatched to the
appropriate object adapter, as shown in Fig.

Server with three objects .
N Server machine

A

Object's stub
(skeleton)

Object adapter | | Object adapter

L3 A

Request
demultiplexer

Local OS T
|

Fig.: Organization of an Object Server Supporting
Different Activation Policies

The object adapters are unaware of the specific
interfaces of the objects they control. Otherwise, they
could never be generic.

'| 135 j

Rahul Publications

M.Sc. IV Sem

UNIT - IV

The object adapter is that it can extract an
object reference from an invocation request, and
subsequently dispatch the request to the referenced
object, but now following a specific activation policy.

An object adapter can support different
activation policies by simply configuring it at
runtime.

For example: CORBA-compliant systems

4.1.3 Communication

Q3. Explain, how to bind a client to an
object.

AnS :

Binding a Client to an Object

When a process holds an object reference, it
must first bind to the referenced object before
invoking any of its methods.

Binding results in a proxy being placed in the
process’s address space, implementing an interface
containing the methods the process can invoke. In
many cases, binding is done automatically.

Two ways of binding:

> Implicit: Invoke methods directly on the
referenced object.

> Explicit: Client must first explicitly bind to
object before invoking it.

For example, C++ allows overloading the
unary member selection operator (“— "

Implementation of Object References

A simple object reference would include the
network address of the machine where the actual
object resides, along with an end point identifying
the server that manages the object, plus an indication
of which object.

First, if the server’s machine crashes and the
server is assigned a different end point after recovery,
all object references have become invalid.

Static versus Dynamic Remote Method
Invocations

After a client is bound to an object, it can
invoke the object’s methods through the proxy.
Such a remote method invocation, or simply RMI,
is very similar to an RPC when it comes to issues
such as marshaling and parameter passing.

Rahul Publications

'l 136 ',

This approach of using predefined interface
definitions is generally referred to as static invocation.
Static invocations require that the interfaces of an
object are known when the client application is being
developed.

Dynamic invocation isable to compose a
method invocation at runtime, also referred to as a
dynamic invocation. The essential difference with
static invocation is that an application selects at
runtime which method it will invoke at a remote
object. Dynamic invocation generally takes a form
such as

invoke(object, method, input_parameters,
output_parameters);

Parameter Passing

When invoking a method with an object
reference as parameter, that reference is copied and
passed as a value parameter only when it refers to
a remote object. In this case, the object is literally
passed by reference.

These two situations are illustrated in Fig.
which shows a client program running on machine
A, and a server program on machine C. The client
has a reference to a local object O 1 that it uses as a
parameter when calling the server program on
machine C. In addition, it holds a reference to a
remote object O 2 residing at machine B, which is
also used as a parameter. When calling the server, a
copy of O 1 is passed to the server on machine C,
along with only a copy of the reference to O 2.

Machine A Machine B

Local Loca‘laﬁmect ‘ B " Remote object
emote 2
reference L1 \: E 0z

reference R1
. .. |

Client code with
RMI to server at C
(proxy)

New local :
reference Copy of O1 !
Remote ™~ T, - \

S -
invocation with N of
L1 and R1 as

Copy of R1to 02

L
Server code

Machine C (method implementation)

Fig.: The situation when passing an object by
reference or by value

4.1.4 Naming
Q4. Explain RMI and its Architecture.

AnS :

Remote Method Invocation (RMI)

> The Java Remote Method Invocation (RMI)
system allows an object running in one Java
Virtual Machine (VM) to invoke methods on
an object running in another Java VM.

DISTRIBUTED SYSTEMS

> Java RMI provides applications with
transparent and lightweight access to remote
objects. RMI defines a high-level protocol and
API.

> Programming distributed applications in Java
RMI is simple.

It is a single-language system.

The programmer of a remote object must
consider its behavior in a concurrent environment.

RMI Architecture

In RMI, the client and server do not com-
municate directly; instead communicates through
stub and skeleton (a special concept of RMI and
this is how designers achieved distributed computing
in Java). They are nothing but special programs
generated by RMI compiler. They can be treated
as proxies for the client and server. Stub program
resides on client side and skeleton program resides
on server. That is, the client sends a method call
with appropriate parameters to stub. The stub in
turn calls the skeleton on the server. The skeleton
passes the stub request to the server to execute the
remote method. The return value of the method is
sent to the skeleton by the server. The skeleton, as
you expect, sends back to the stub. Finally the return
value reaches client through stub.

As the figure illustrates, there comes three
layers in the RMI Architecture — Application layer,
Proxy layer and Remote reference layer (Transport
layer is part of Remote reference layer).

Server
Program

Client
Program

+4—— Application Layer

«mHAv —omn —z=

Stub Skeleton 4—— Proxy Layer

4—=—=Remote Reference Layer

Transport Layer

1. Application Layer

This layer is nothing but the actual systems
(client and server) involved in communication. A
client Java program communicates with the other

Java program on the server side. RMI is nothing
but a communication between two JVMs placed on
different systems.

2. Proxy Layer

The proxy layer consists of proxies (named
as stub and skeleton by designers) for client and
server. Stub is client side proxy and Skeleton is
server side proxy. Stub and skeleton, as many
people confuse, are not separate systems but they
are after all programs placed on client and server.
The stub and skeleton are not hard coded by the
Programmer but they are generated by RMI
compiler (this is shown in execution part later). Stub
is placed on client side and skeleton is placed on
server side. The client server communication goes
through these proxies. Client sends its request of
method invocation (to be executed on remote
server) to stub. Stub inturn sends the request to
skeleton. Skeleton passes the request to the server
program. Server executes the method and sends
the return value to the skeleton (to route to client).
Skeleton sends to stub and stub to client program.

Marshaling and Unmarshaling

One more job of proxies is marshaling and
unmarshaling. Marshaling is nothing but
converting data into a special format suitable to pass
through the distributed environment without
loosing object persistence. For this reason, the RMI
mechanism implicitly serializethe objects involved
in communication. The stub marshals the data of
client and then sends to the skeleton. As the format
is not understood by the server program, it is
unmarshaled by the skeleton into the original format
and passed to server. Similarly from server to client
also.

A marshal stream includes a stream of objects
that are used to transport parameters, exceptions,
and errors needed for these streams for
communicating with each other. Marshaling and
unmarshaling are done by the RMI runtime
mechanism implicitly without any programmers
extra coding.

3. Remote Reference Layer

Proxies are implicitly connected to RMI
mechanism through Remote reference layer, the
layer responsible for object communication and
transfer of objects between client and server. It is

| 137 I|

Rahul Publications

M.Sc. IV Sem

UNIT - IV

responsible for dealing with semantics of remote
invocations and implementation — specific tasks with
remote objects. In this layer, actual implementation
of communication protocols is handled.

Transport layer does not exist separately but
is a part of Remote reference layer. Transport layer
is responsible for actually setting up connections and
handling the transport of data from one machine
to another. It can be modified to handle encrypted
streams, compression algorithms and a number of
other security/performance related enhancements.

The marshaled stream is passed to RRL
(Remote Reference Layer). Task of RRL is to identify
the host, that is, remote machine. The marshaled
stream is passed to Transport layer which performs
routing.

Java RMI Applications

A Java RMI application needs to do the
following:

> Locate remote objects: Applications can use
one of two mechanisms to obtainreferences
to remote objects:

» Anapplication can register its remote objects
with RMI’s simple namingfacility, the
rmiregistry, orthe application can pass and
return remote object references as part of
itsnormal operation.

> Communicate with remote objects: Details of
communication between remoteobjects are
handled by RMI; to the programmer, remote
communication lookslike a standard Java
method invocation.

> Load class bytecodes for objects that are
passed around: Because RMI allows acaller
to pass objects to remote objects, RMI
provides the necessary mechanismsfor
loading an object’s code, as well as for
transmitting its data.

> RMI is supported by two java packages,
java.rmi and java.rmi.server. An application
that uses RMI has 3 components:

> An interface that declares headers for
remote methods;

» A server class that implements the
interface; and one or more clients that
call the remote methods.

Rahul Publications

'l 138 :

RMI: Parameter passing
Object Reference
Much easier than in the case of RPC:

> Server can simply bind to referenced object,
and invoke methods

> Unbind when referenced object is no longer
neededObject-by-value

> A client may also pass a complete object as
parameter value:

> An object has to be marshaled:
» Marshall its state

> Marshall its methods, or give a reference to
where an implementation canbe found

> Server unmarshals object. Note that we have
now created a copy of the originalobject.

> Object-by-value passing tends to introduce
nasty problems.

Machine A

Machine B
Local ol Z

- ey

reference L1 '\

New local n

reference | | Copyof O1 A
Remote 4 _.“” \
T

Remote
reference R1

Client code with
RMI to server at C
(proxy}

L1andR1 as CopyofR1 002

parameters

I~ Server code
(method implementation)

Machine C

Systemwide object reference generally
contains server address, port to which adapter listens,
and local object ID. Extra: Information on protocol
between client and server (TCP, UDP, SOAP, etc.).

Machine B

Remote chject
02

Machine A
Remote

Local object
Lacal o1
reference L1 ~3 reference R1 ’
|]

\
Mew local
reference Copy of 01]
Remote ~ .."\-u,,__ =4 s \
invocation with B =
L1and R1as
parameters " Server code
{method implementation)

Client code with
RMI to server at C
{proxy)

Copy of R1 to 02

Machine C

RMI: Programming Applications
RMI Registry

> The RMI registry is a simple server-side
bootstrap naming facility that allowsremote
clients to get a reference to a remote object

DISTRIBUTED SYSTEMS

> Servers name and register their objects to be accessed remotely with the RMIRegistry.

> Clients use the name to find server objects and obtain a remote reference to thoseobjects from the
RMI Registry.

» Aregistry service is a background program that maintains a list of registeredserver names on a host.
It is invoked by: rmiregistry port &

> The registry service is provided by a Naming object that provides two key methods:
» Bind to register a name and server

» Lookup to retrieve the server bound to a name

Q5. Explain about CORBA.
Ans :

> CORBA, or Common Object Request Broker Architecture, is a standard architecture for distributed
object systems. It allows a distributed, heterogeneous collection of objects to interoperate.

> CORBA is a standard defined by the OMG (Object Management Group). It describes an architecture,
interfaces, and protocols that distributed objects can use to interact with each other.

> Part of the CORBA standard is the Interface Definition Language (IDL), which is an implementation-
independent language for describing the interfaces of remote objects.

The OMG comprises over 700 companies and organizations, including almost all the major vendors
and developers of distributed object technology, including platform, database, and application vendors as
well as software tool and corporate developers.

> Java IDL is an implementation of the standard IDL-to-Java mapping and is provided by Sun in
version 1.3 of Java 2 and is compliant with CORBA 2.x specification. Java IDL provides an Object
Request Broker, or ORB.

The ORB is a class library that enables low-level communication between Java-IDL applications and
other CORBA-compliant applications.

Like RMI, Java IDL gives you a way to access remote objects over the network. It also provides tools
you need to make your objects accessible to other CORBA clients. If you export a Java class using Java
IDL, you can create an object from that class and publish it through a naming/directory service.

A remote object can: find this object, call methods on it, and receive data from it, just as if it were
running on the client’s local machine.

> Unlike RMI, objects that are exported using CORBA can be accessed by clients implemented in any
language with an IDL binding (C, C++, Ada etc.).

> The CORBA standard is extensive and provides a rich set of services.

{ 139 }
) Rahul Publications

M.Sc. IV Sem UNIT - IV

A few of the services are:

Service Description
Object life cycle Defines how CORBA objects are created, removed, moved,
and copied
Naming Service The CORBA naming service provides a naming structure for

remote objects.

Event Service Another COS that provides a supplier-consumer
communication model that creates asynchronous
communication between the objects via an Event Channel.

Persistent object service
Transactions Coordinates atomic access to CORBA objects

Concurrency Control Provides a locking service for CORBA objects in order to
ensure concurrent access.

CORBA Products

> Several vendors provide CORBA products for various programming languages. The CORBA products
that support the Java programming language include:

ORB Description

The Java 2 ORB The Java 2 ORB comes with Sun’s Java 2. It is missing several features.
The main feature it has is the ability to look up an object by name.

Visi Broker for Java | A popular Java ORB from Inprise Corporation. VisiBroker is also embedded
in other products. For example, it is the ORB that embedded in the
Netscape Communicator browser.

Orbix A popular Java ORB from lona Technologies.

CORBA Architecture
The major components that make up the CORBA architecture include the:
Interface Definition Language (IDL), which is how CORBA interfaces are defined,

Object Request Broker (ORB), which is responsible for all interactions between remote objects and
the applications that use them,

> The Portable Object Adaptor (POA), which is responsible for object activation/deactivation, mapping
object ids to actual object implementations.

> Naming Service, a standard service in CORBA that lets remote clients find remote objects on the
networks, and

> Inter-ORB Protocol (IIOP).

This figure shows how a one-method distributed object is shared between a CORBA client and
server to implement the classic “Hello World” application.

{ 140 |
Rahul Publications —J

DISTRIBUTED SYSTEMS

Hello Client
Object Reference

Hello Server

Hello Servant

sapHe11e Hello word! sapHelo
t }

| |

nop

Internet

A one-method distributed object shared
between a CORBA client and server

Any relationship between distributed objects
has two sides: the client and the server. The server
provides a remote interface, and the client calls a
remote interface. These relationships are common
to most distributed object standards, including RMI
and CORBA.

The terms client and server define object-level
rather than application-level interaction—any
application could be a server for some objects and
a client of others.

Q6. Explain about Interface Definition
Language.

Ans :
Interface Definition Language (IDL)

> The services that an object provides are given
by its interface. Interfaces are defined in
OMG’s Interface Definition Language (IDL).
IDL is independent of any programming
language.

> Mappings from IDL to specific programming
languages are defined as part of the CORBA
specification. Mappings for C, C++,
Smalltalk, Ada, COBOL, and Java have been
approved by OMG.

> The syntax of both Java and IDL were
modeled to some extent on C+++, so there
are a lot of similarities between the two in
terms of syntax. However, there are
differences between IDL and Java.

In IDL, you declare only the names and types
for interfaces, data members, methods, method
arguments etc. You do not include the method
implementations.

The method implementations are created in
implementation language you choose after you’ve
used an IDL compiler (idlj is the IDL compiler for
Java) to convert your IDL interface to your target
language. When you run the idlj compiler over your
interface definition file, it generates the Java version
of the interface, as well as the class code files for the
stubs and skeletons that enable your applications
to hook into the ORB.

IDL includes, like C++, non-class data
structure definitions like structs, unions etc. (these
are not part of Java).

Method parameters in IDL include modifiers
that specify whether they are input, output, or input/
output variables. In Java, all primitive data types
are passed by value, and all objects are passed by
reference.

An IDL file can include multiple public
interfaces. Java allows multiple inner classes within
a single public class definition and multiple nonpublic
classes per file, but only a single public class can be
defined in a given Java file.

Modules, which are similar to Java packages,
can be nested within other modules in the same
IDL file. In Java, you can define a class only within
asingle package in a single Java file.

Q7. Write a note on ORB.
Ans :

Object Request Broker (ORB)

The core of the CORBA architecture is the
ORB. Each machine involved in a CORBA
application must have an ORB running in order for
processes on that machine to interact with CORBA
objects running in remote processes.

> Obiject clients and servers make requests
through their ORBs and the remote ORB
locates the appropriate object and passes back
the object reference to the requestor.

> The ORB provides the communication
infrastructure needed to identify and locate
objects, handles connection management,
etc. The ORBs communicate with each other
via the IIOP,

'| 141 I|

Rahul Publications

M.Sc. IV Sem

UNIT - IV

Q8. Explain CORBA Naming Services.
Ans :

Naming Service

Defines how CORBA obijects can be looked
up by a name. It is a Common Object Service
(COS) andallows an object to be published using a
symbolic name and allows clients to obtain
references to the object using a standard API.

The CORBA naming service provides a
naming structure for remote objects.

1HOP

> The CORBA standard includes specifications
for inter-ORB communication protocols that
transmit object requests between various
ORBs running on the network.

The protocols are independent of the
particular ORB implementations running at
either end. An ORB implemented in Java can
talk to an ORB implemented in C, as long as
they are both compliant with the CORBA
standard. The inter-ORB protocol delivers
messages between two ORBs. These
messages might be method requests, return
values, error messages etc. The inter-ORB
protocol (IIOP) also deals with differences
between two ORB implementations, like
machine-level byte ordering etc. Asa CORBA
developer, you don’t have to be concerned
with the low-level communication protocol
between ORB:s. If you want two ORBs to talk,
just make sure they both speak the same
inter-ORB protocol (IIOP).

> The Inter-ORB Protocol (IIOP) is an inter-
ORB protocol based on TCP/IP and so is
extensively used on the Internet.

POA

CORBA Server Object
POA
ORB

The POA connects the server object
implementation to the ORB. It extends the
functionality of the ORB and some its services
include: activation and deactivation of the object

Rahul Publications

'l 142 ',

implementations, generation and management of
object references, mapping of object references to
their implementations, and dispatching of client
requests to server objects through a skeleton.

4.1.5 Synchronization

Q9. What is Synchronization in Distributed
systems.

AnS :

When a process invokes a (remote) object, it
has no knowledge whether that invocation will lead
to invoking other objects. As a consequence, if an
object is protected against concurrent accesses, we
may have a cascading set of locks that the invoking
process is unaware of, as shown in Figure (a).

Object

Object

Lock
Process s D

Process

Unlock C]

(a) (b)
Fig.: Differences in control flow for locking objects

When dealing with data resources such as
files or database tables that are protected by locks,
the pattern for the control flow is actually visible to
the process using those resources, as shown in
Figure.

As a consequence, the process can also exert
more control at runtime when things go wrong, such
as giving up locks when it believes a deadlock has
occurred. Note that transaction processing systems
generally follow the pattern shown in Figure.

In object-based distributed systems it is
therefore important to know where and when
synchroni-zation takes place. An obvious location
for synchronization is at the object server.

The object server maintain locks complicates
matters in the case that invoking clients crash. For
this reason, locking can also be done at the client
side, an approach that has been adopted in Java.
Unfortunately, this scheme has its own drawbacks.

DISTRIBUTED SYSTEMS

4.1.6 Consistency and Replication

Q10. Write about Entry Consistency in
distributed systems.

AnS :

Entry Consistency

Data-centric consistency for distributed objects
comes naturally in the form of entry consistency. As
objects naturally combine data and the operations
on that data, locking objects during an invocation
serializes access and keeps them consistent.

There are two issues that need to be solved
for implementing entry consistency.

> The first one is that we need a means to
prevent concurrent execution of multiple
invocations on the same object. Simply using
local locking mechanisms will ensure this
serialization.

> The second issue is that in the case of a
replicated object, we need to ensure that all
changes to the replicated state of the object
are the same.

No two independent method invocations take
place on different replicas at the same time. This
requirement implies that we need to order
invocations such that each replica sees all invocations
in the same order.

This requirement can generally be metin one
of two ways: (1) using a primary-based approach
or (2) using totally-ordered multicast to the replicas.

Designing replicated objects is done by first
designing a single object, possibly protecting it against
concurrent access through local locking, and
subsequently replicating it.

If we were to use a primary-based scheme,
then additional effort from the application developer
is needed to serialize object invocations.

Its implementation may use a primary-based
scheme, but it could equally well be based on
Lamport clocks.

The problem is one of granularity: although
all replicas of an object server may receive invocation
requests in the same order, we need to ensure that
all threads in those servers process those requests
in the correct order as well. The problem is shown
in Fig.

Computer 1 Computer 2

Object

Deterministic
thread scheduling

| S~

| Totally ordered ___| |

requests ‘
Middieware L[] =—

Local 0OS

1
T

Thread
scheduler

A
e
Middleware]—DE*—

Local 0S

T
| Unordered requests Unordered requests

Fig.: Deterministic thread scheduling for replicated
object servers

Multithreaded (object) servers simply pick up
an incoming request, pass it on to an available
thread, and wait for the next request to come in.

The server’s thread scheduler subsequently
allocates the CPU to runnable threads.

If threads and from Figure handle the same
incoming (replicated) invocation request, they
should both be scheduled before and |,
respectively.

One drawback of this scheme is that it
operates at the level of the underlying operating
system, meaning that every lock needs to be
managed. By providing application-level
information, a huge improvement in performance
can be made by identifying only those locks that
are needed for serializing access to replicated objects.

Q11. Explain Replication Framework.
Ans :

In most distributed object-based systems the
object technology it is often possible to make a clean
separation between devising functionality and
handling extra-functional issues such as replication.
A powerful mechanism to accomplish this
separation is formed by interceptors.

Invocations to objects are intercepted at three
different points, as also shown in figure.

> At the client side just before the invocation is
passed to the stub.

> Inside the client’s stub, where the interception
forms part of the replication algorithm.

> At the server side, just before the object is
about to be invoked.

'| 143 |

Rahul Publications

M.Sc. IV Sem UNIT - IV

Client

Query/update object,
attach additional components

Object resolution

() Activate replication
components

Synchronize with
other callers

Replicate
invocation

Fig.: A general framework for separating replication algorithms from
objects in an EJB environment

The first interception is needed when it turns out that the caller is replicated. In that case,

synchronization with the other callers may be needed as we may be dealing with a replicated invocation.

Invocation can be carried out, the interceptor in the client-side stub can take decisions on where to

be forward the request to, or possibly implement a fail-over mechanism when a replica cannot be reached.

Finally, the server-side interceptor handles the invocation. This interceptor is split into two.

Just after the request has come in and before it is handed over to an adapter, the replication
algorithm gets control. It can then analyze for whom the request is intended allowing it .

Just before the invocation, allowing the replication algorithm to, for example, get and set attribute
values of the replicated object.

The interesting aspect is that the framework can be set up independent of any replication algorithm,

thus leading to a complete separation of object functionality and replication of objects.

4.1.7 Fault Tolerance
Q12. Write about Fault Tolerant in CORBA.

AnS :

>

The basic approach for dealing with failures in CORBA is to replicate objects into object groups.
Such a group consists of one or more identical copies of the same object.

To provide replication and failure transparency as much as possible, object groups should not be
distinguishable from normal CORBA objects.

Whenever a client passes an IOGR to its runtime system (RTS), that RTS attempts to bind to one of
the referenced replicas. In the case of IIOP, the RTS may possibly use additional information it finds
in one of the IIOP profiles of the IOGR.

Interoperable Object Group Reference (IOGR)

: Repository | | Profile Sy |Profile S
identifier D Profile-1 D Profile-N
0P ' Object oe | Object '
D Host-1 | Port-1 Key-1 Components ver Host-N |Port-N key-N Components
TAG Other group- TAG Other group-
PRIMARY |specific information BACKUP |specific information

Fig.: Apossible organization of an IOGR for an object group having a primary and backups

Rahul Publications

‘l 144 l,

DISTRIBUTED SYSTEMS

If binding to one of the replicas fails, the client
RTS may continue by attempting to bind to another
replica, thereby following any policy for next
selecting a replica that it suits to best. To the client,
the binding procedure is completely transparent; it
appears as if the client is binding to a regular CORBA
object.

An Example Architecture

To support object groups and to handle
additional failure management, it is necessary to add
components to CORBA. One possible architecture
of a fault-tolerant version of CORBA is shown in
Figure.

Object group
manager Object
Replication Client or
manager object server
Property
manager
ORB
Interceptor
Eogglng &l Replication
ecovery
To other replicas
|| Reliable multicasting —

Fig.: An example architecture of a fault-tolerant
CORBA system.

> There are several components that play an
important role in this architecture. Tthe most
important one is the replication manager,
which is responsible for creating and
managing a group of replicated objects.

> The number of replicas that are created when
starting a new object group is normally
determined by the system-dependent default
value. The replica manager is also responsible
for replacing a replica in the case of a failure,
thereby ensuring that the number of replicas
does not drop below a specified minimum.

> The architecture also shows the use of
message-level interceptors. In the case of the
Eternal system, each invocation is intercepted
and passed to a separate replication
component that maintains the required
consistency for an object group and which
ensures that messages are logged to enable
recovery.

> This architecture is based on using intercep-
tors. Alternative solutions exist as well,
including those in which fault tolerance has
been incorporated in the runtime system.

4.1.8 Security

Q13. Explain the security mechanism in
Globe.

AnS :

Globe is one of the few distributed object-
based systems in which an object’s state can be
physically distributed and replicated across multiple
machines. This approach also introduces specific
security problems .

Generally When invoking a method on a
remote object, there are at least two issues that are
important from a security perspective: (1) is the caller
invoking the correct object and (2) is the caller
allowed to invoke that method.

For Globe and other systems that support
either replication or moving objects around, we have
an additional problem, namely that of platform
security. This kind of security comprises two issues.
First, how can the platform to which a (local) object
is copied be protected against any malicious code
contained in the object, and secondly, how can the
object be protected against a malicious replica
server.

There are several mechanisms deployed in
Globe to establish security.

First, every Globe object has an associated
public/private key pair, referred to as the object key.
The basic idea is that anyone who has knowledge
about an object’s private key can set the access
policies for users and servers.

Every replica has an associated replica key,
which is also constructed as a public/private key pair.
This key pair is generated by the object server
currently hosting the specific replica.. Finally, each
user is also assumed to have a unigue public/private
key pair, known as the user key.

These keys are used to set the various access
rights in the form of certificates. Certificates are
handed out per object. There are three types, as
shown in Fig. .The certificate contains a bit string U
with the same length as the number of methods

'| 145 |

Rahul Publications

M.Sc. IV Sem UNIT - IV

available for the object. U [i] = 1 if and only if the user is allowed to invoke method Mi. Likewise, there is
also a replica certificate that specifies, for a given replica server, which methods it is allowed to execute. It
also has an associated bit string R, where R [i] = i if and only if the server is allowed to execute method Mi.

User certificate Replica certificate Administrative certificate
K;Hce KJIEIepl K;dm
U:0010011100 R:1100011100 R:1101111100
sig(O, {U, Kpjce D) sig(0, {R, Kfiep) U:0110011111

D:1
sig(0, {R,U,D, Kagm})
(a) (b) ()

Fig.: Certificates in Globe: (a) a user certificate, (b) a replica certificate, (c) an administrative certificate
Secure Method Invocation

Let us now look into the details of securely invoking a method of a Globe object. The complete
path from requesting an invocation to actually executing the operation at a replica is sketched in Figure.

Request invocation | Client-side stub Server-side replica
1
Check user Execute
perrmss-onsb Semant. opc:rallon Control
2 . object object
Find suitable
Marshall . replica
3 Security
equest A 1 A 12 Unmarshall
| ® m object J Authorize
channel 5 request
Repl. Repl.
o ot Sy [
T |fe
Pass request 7 Establr:ash I_is.‘;aicure Dec .
to channel Encryptsign chan rypt Pa st
it authenticate |0 Fass reque
packet request
Comm.
G Jo—— —o—{ G
~

Fig.: Secure method invocationin Globe

1. First, an application issues a invocation request by locally calling the associated method, just like
calling a procedure in an RPC.

2. The control subobject checks the user permissions with the information stored in the local security
object. In this case, the security object should have a valid user certificate.

The request is marshaled and passed on.
4. The replication subobject requests the middleware to set up a secure channel to a suitable replica.

The security object first initiates a replica lookup. To achieve this goal, it could use any naming
service that can look up replicas that have been specified to be able to execute certain methods.
The Globe location service has been modified to handle such lookups (Ballintijn, 2003).

6. Once a suitable replica has been found, the security subobject can set up a secure channel with its
peer, after which control is returned to the replication subobject. Note that part of this establishment
requires that the replica proves it is allowed to carry out the requested invocation.

{ 146 |
Rahul Publications =)

DISTRIBUTED SYSTEMS

7. Therequestis now passed on to the communi-
cation subobject.

8. The subobject encrypts and signs the request
so that it can pass through the channel.

9. After its receipt, the request is decrypted and
authenticated.

10. The request is then simply passed on to the
server-side replication subobject.

11. Authorization takes place: in this case the user
certificate from the client-side stub has been
passed to the replica so that we can verify
that the request can indeed be carried out.

12. The request is then unmarshaled.

13. Finally, the operation can be executed.

4.2 DistrIBUTED FILE SYSTEMS I

4.2.1 Architecture

Q14. What are distributed file systems?
Explain.

AnS :

A Distributed File System (DFS)is simply a
classical model of a file system distributed across
multiple machines. The purpose is to promote
sharing of dispersed files. There sources on a
particular machine are local to itself. Resources on
other machines are remote.

A file system provides a service for clients.
These interface is the normal setoff the operations:
create, read, etc. on files.

Clients, servers, and storage are dispersed
across machines. Configuration and implementation
may vary —

a) Servers may run on dedicated machines, OR

b) Servers and clients can be on the same
machines.

c) The OS itself can be distributed.

d) Adistribution layer can be interposed between
a conventional OS and the file system.

Clients should view a DFS the same way they
would a centralized FS; the distribution is hidden at
a lower level.

Performance is concerned with through put
and response time.

Distributed file system support
> Remote Information Sharing

Allows a file to be transparently accessed by
processes of any node of the system
irrespective of the file’s location.

> User Mobility - User have flexibility to work
on different node at different time

> Availability - better fault tolerance
> Diskless Workstations

Distributed File System provide following type
of services:

> Storage Service
> True File Service
> Name Service

Desirable features of a good distributed file
system

Transparency

Structure transparency
Access Transparency
Naming Transparency
Replication Transparency
User Mobility

Performance

vV V V V V V V VY

Simplicity and ease of use
Scalability

High Availability

High Reliability

Data Integrity

Security

vV V V VYV V

Heterogeneity
File Models

Criteria: Structure and Modifiability
Structured and Unstructured Files

Structured Files: A file appear to the file
server as an ordered sequence of records.

'| 147 I|

Rahul Publications

M.Sc. IV Sem

UNIT - IV

> Files with Indexed Records
> Files With non-indexed records

> Unstructured files: No substructure known to
the file server

Mutable and Immutable Files
Mutable

» Anupdate performed on a file overwrites on
its old contents

> Afileis represented as a single stored sequence
that is altered by each update operation.

Immutable Files

> A file cannot be modified once it has been
created

> File versioning approach used to implement
file updates

> It support consistent sharing therefore it is
easier to support file caching and replication

File Accessing Models

File Accessing Models of DFS mainly depends
on: Method used for accessing remote files and the
unit of data access

Accessing Remote Files
> Remote Service Model

» Client’s request processed at server’s
node

» Inthis case Packing and communication
overhead can be significant

> Data Caching Model

» Client’s request processed on the client’s
node itself by using the cached data.

» This model greatly reduces network
traffic

» Cache consistency problem may occur

LOCUS and NFS use the remote service
model but add caching for better perfor-
mance

Sprite use data caching model but employs
the remote service model under certain
circumstances.

Rahul Publications

'l 148 |

Unit of Data Transfer
File Level Transfer Model(Ex. Amoeba, AFS)

» The whole file is moved when an
operation requires file data

» Itissimple, It has better scalability

» Disk access routines on the servers can
be better optimized

» But it requires sufficient storage space
on client’s node

Block Level Transfer Model(Ex. LOCUS,
Sprite)

> Data transferred in units of file blocks

» It does not require client node to have
large storage space

» It can be used in diskless workstations
» Network traffic may be significant

Byte Level Transfer Model(Cambridge file
server)

» Data transfers in units of bytes

» Low Storage requires but difficulty in
cache management

Record Level Transfer Model(Research
Storage System)

» Suitable for Structured model
Naming and Transparency

Naming is the mapping between logical and
physical objects.

> Example: A use rfile name maps to
<cylinder, sector=>.

» In a conventional file system, it's
understood where the file actually
resides; the system and disk are known.

» In a transparent DFS, the location of a
file, some where in the network, is
hidden.

» Filereplication means multiple copies of
a file; mapping returns a SET of
locations for the replicas.

DISTRIBUTED SYSTEMS

Location transparency

a) The name of a file does no treveal any hint of the file’s physicals to ragelocation.
b) File name still denotes as pecific, although hidden, set of physical disk blocks.

c) This is a convenient way to share data.

d) Can expose correspondence between component units and machines.
Location Independence

> The name of a file does n’t need to be changed when the file’s physical storage location changes.
Dynamic, one-to-many mapping.

> Better file abstraction.

> Promotes sharing the storage space itself.

> Separates the naming hierarchy from the storage devices hierarchy.
Most DFS stoday

> Support location transparent systems.

> Do NOT support migration

> Files are permanently associated with specific disk blocks.

The ANDREWDFSASAN EXAMPLE

> Islocation independent.

> Supports file mobility.

> Separation of FS and OS allows fordisk-less systems. These have lower cost and conve-nient system
up grades. The performance is not as good.

NAMING SCHEMES
There are three main approaches to naming files:
1. Files are named with a combination of host and local name.
» This guarantees a unique name. NEITHER location transparent NOR location independent.

» Same naming works on local and remotefiles. The DFS is a loose collection of independent file
systems.

2. Remote directories are mounted to local directories.
» Soalocal system seems to have a coherent directory structure.
» There mote directories must be explicitly mounted. The files are location independent.
» SUNNFS is a good example of this technique.
3. Asingle global name structures pansall the files in the system.
» The DFS is built the same wayas alocal file system. Location independent.

Q15. Explain about Sun Network File Systmes.

Ans :
The Sun Network File System (NSF)

Developed by Sun Microsystems to provide a distributed file system independent of the hardware
and operating system

{ 149 I
) Rahul Publications

M.Sc. IV Sem UNIT - IV

Architecture

Virtual File System (VFS): File system interface that allows NSF to support different file systems.
Requests for operation on remote files are routed by VFS to NFS. Requests are sent to the VFS on the
remote using the remote procedure call (RPC), and the external data representation (XDR). VFS on the
remote server initiates files system operation locally

Vnode (Virtual Node): There is a network-wide vnode for every object in the file system (file or
directory)- equivalent of UNIX inode, vhode has a mount table, allowing any node to be a mount node.

Client

Kemel

!

Operating system
interface Server

t

2 Server .
VFS interface ey) VFS interface

Y)]

Other types of Unix NFS
file systems file system

{ 1

Disk RPC/XDR RPC/XDR

o Network |

> Naming and location:
» Workstations are designated as clients or file servers

» A client defines its own private file system by mounting a subdirectory of a remote file system
on its local file system

» Each client maintains a table which maps the remote file directories to servers
» Mapping a filename to an object is done the first time a client references the field. Example:
Filename: /A/B/C
» Assume ‘A’ corresponds to ‘vnodel’

» Look up on ‘vnodel/B’ returns ‘vnode2’ for ‘B’ where‘vnode2’ indicates that object is
on server ‘X’

» Client asks server ‘X’ to lookup ‘vnode2/C’
» ‘file handle’ returned to client by server storing that file

{ 150 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Client uses ‘file handle’ for all subsequent
operation on that fileNaming and location:

» Workstations are designated as clients or
file servers

» Aclient defines its own private file system
by mounting a subdirectory of a remote
file system on its local file system

» Each client maintains a table which maps
the remote file directories to servers

» Mapping a filename to an object is done
the first time a client references the field.
Example:

Filename: /A/B/C
Assume ‘A’ corresponds to ‘vhodel’

Look up on ‘vnodel/B’ returns ‘vnode2’ for
‘B’ where‘vnode2’ indicates that object is on
server ‘X’

Client asks server ‘X’ to lookup ‘vnode2/C’

‘file handle’ returned to client by server
storing that file

Client uses ‘file handle’ for all subsequent

operation on that file

>

1)

2)

Caching:

» Caching done in main memory of
clients

» Caching done for: file blocks, translation
of filenames to vnodes, and attributes
of files and directories

Caching of file blocks

» Cached on demand with time stamp of
the file (when last modified on the server)

» Entire file cached, if under certain size,
with timestamp when last modified

» After certain age, blocks have to be
validated with server

» Delayed writing policy: Modified blocks
flushed to the server after certain delay

Caching of filenames to vnodes for
remote directory names

» Speeds up the lookup procedure

3) Caching of file and directory attributes

» Updated when new attributes received
from the server, discarded after certain
time

» Stateless Server

A\

Servers are stateless

» File access requests from clients contain
all needed information (pointer position,
etc)

» Servers have no record of past requests
» Simple recovery from crashes.
Q16. Write about Cluster Based File systems.

AnS :

Cluster-based or Clustered File System

> A distributed file system that consists of several
servers that share the responsibilities of the
system, as opposed to a single server (possibly
replicated).

The design decisions for a cluster-based
systems are mostly related to how the data is
distributed across the cluster and how it is
managed.

> Some cluster-based systems organize the
clusters in an application specific manner

> For file systems used primarily for parallel
applications, the data in a file might be striped
across several servers so it can be read in
parallel.

> Or, it might make more sense to partition the
file system itself — some portion of the total
number of files are stored on each server.

> For systems that process huge numbers of
requests; e.g., large data centers, reliability
and management issues take precedence.

e.g., Google File System
Google File System (GFS)

> GFS wuses a cluster-based approach
implemented on ordinary commodity Linux
boxes (not high-end servers).

> Servers fail on a regular basis, just because
there are so many of them, so the system is
designed to be fault tolerant.

1 151]

Rahul Publications

M.Sc. IV Sem

UNIT - IV

> There are a number of replicated clusters that
map to www.google.com

DNS servers map requests to the clustersin a
round-robin fashion, as a load-balancing
mechanism; locality is also considered.

> GFS stores a huge number of files, totaling
many terabytes of data

> Individual file characteristics
> Very large, multiple gigabytes per file

> Files are updated by appending new entries
to the end (faster than overwriting existing
data)

> Files are virtually never modified (other than
by appends) and virtually never deleted.

> Files are mostly read-only

4.2.2 Process
Q17. What is the role of Processes in DFS.

AnS :

When it comes to processes, distributed file
systems have no unusual properties

> Typical types of cooperating processes:
» Servers, file managers, client software
» Should servers be stateless

» e.g., as in NFSv2 and v3 - but not
NFSv4

> Advantage: Simplicity

Server crashes are easy to process since there
is no state to recover

Disadvantages of Statelessness

> The server cannot inform the client whether
or not a request has been processed.

> Consider implications for lost request/lost
replies when operations are not idempotent

> File locking (to guarantee one writer at a time)
is not possible

NFS got around this problem by supporting
a separate lock manager.

Rahul Publications

'l 152 :

NFSv4

> Maintains some minimal state about its clients;
e.g., enough to execute authentication
protocols Stateful servers are better equipped
to run over wide area networks, because they
are better able to manage consistency issues
that arise when clients are allowed to cache
portions of files locally

4.2.3 Communication

Q18. Write about communication in DFS.
Ans :

There is nothing particularly special or unusual
about communication in distributed file systems.
Many of them are based on remote procedure calls
(RPCs). The main reason for choosing an RPC
mechanism is to make the system independent from
underlying operating systems, networks, and
transport protocols.

RPCs in NFS

> Client-server communication in NFS is based
on Open Network Computing RPC (ONC
RPC) protocols.

> Each file system operation is represented as
an RPC. Pre-version 4 NFS required one
RPC at a time, so server didn't have to
remember any state.

> NFSv4 supports compound procedures
(several RPCs grouped together)

Client Server

LOOKUP

i Lookup name

"___,_._._——-———'(
_._______‘_________»_‘

. ™\ Read file data
Time d

Ve T

DISTRIBUTED SYSTEMS

Client Server

LOOKUP

OPEN

READ
Tl

' Lookup name

i Open file

-

"\ Read file data

%
Time

v
(b)

Fig.: (@) Reading datafrom afilein NFS version 3.
(b) Reading data using acompound
procedurein version 4.

4.2.4 Naming

Q19. Write a note on Naming service in DFS.

Ans :
Naming

> NFS is used as a typical example of naming
in a DFS.

» Virtually all support a hierarchical namespace
organization.

> NFS naming model strives to provide
transparent client access to remote file systems.

Goal
> Network (Access)Transparency

> Users should be able to access files over a
network as easily as if the files were stored
locally.

> Users should not have to know the location
of a file to access it. Transparency can be
addressed through naming and file mounting
mechanisms

Mounting

> Servers export file systems; i.e, make them
available to clients

> Client machines can attach a remote FS
(directory or subdirectory) to the local FS at
any point in its directory hierarchy.

> When a FS is mounted, the client can
reference files by the local path name — no
reference to remote host location, although
files remain physically located at the remote
site.

> Mount tables keep track of the actual physical
location of the files.

client X

A ? -
pa— % h i

/ a\

d e‘ \f Mount points /\

SN

Files from Server Y j Kk

Files d, e, and fare on server Y files j and k are on
server Z, but from the perspective of server X all are
part of the file system at that location

Files from Server Z

Q20. What are File Handles in DFS.

Ans :
File Handles

A file handle is a reference to a file that is
created by the server when the file is created.

» ltisindependent of the actual file name

» Itis not known to the client (although
the client must know the size)

It is used by the file system for all internal
references to the file.

Benefits of File Handles

There is a uniform format for the file identifier
inside the file system.

Clients can store the handle locally after an
initial reference and avoid the lookup process on

subsequent file operations.

4.2.5 Synchronization

Q21. Write about, how Synchronization takes
place for the file systems.

AnS :

Synchronization for file systems would not be
an issue if files were not shared.

'| 153 |

Rahul Publications

M.Sc. IV Sem UNIT - IV

Semantics of File Sharing

When two or more users share the same file at the same time, it is necessary to define the semantics
of reading and writing precisely to avoid problems.

Example
> Single — processor systems
> Distributed system

> In single-processor systems that permit processes to share files, such as UNIX, the semantics normally
state that when a read operation follows a write operation, the read returns the value just written, as
shown in Figure (a).

> In a distributed system, if a client locally modifies a cached file and shortly thereafter another client
reads the file from the server, the second client will get an obsolete file.

Client machine #1

g [a]b]
Original file — 7\‘-'\
; : A
Single machine / /
2 Write "¢ 1. Read "ab"
Process File server

A

lajblc

3. Read gets "ab"
Process 8

B Client machine #2
7 \ [a[o]«”]
Process
1. Write "c" 2. Read gets "abc" B
(a) ®)

Fig.: (@) On a single processor, when aread follows a write, the value returned by the read is the value just
written. (b) In a distributed system with caching, obsolete values may be returned.

In a distributed system, UNIX semantics can be achieved easily as long as there is only one file server
and clients do not cache files. All reads and writes go directly to the file server, which processes them
strictly sequentially.

Four approaches to deal with shared files in a distributed system.

Method Comment
UNIX semantics Every operation on a file is instantly visible to all processes
Session semantics | No changes are visible to other processes until the file is closed
Immutable files No updates are possible; simplifies sharing and replication
Transactions | All changes occur atomically
Rahul Publications @

DISTRIBUTED SYSTEMS

UNIX Semantics

> UNIX semantics can be achieved easily as long
as there is only one file server and client do
not cache files.

> All reads and writes go directly to the file
server, which processes them strictly
sequentially.

Session Semantics

> Instead of requiring a read to see the effects
of all previous writes, one can have a new
rule:

» Changes to an open file are initially
visible only to the process that modified
the file.

» Only when the file is closed are the
changes made visible to other processes.

> Most distributed file systems implement
session semantics.

Immutable Files

> To create an entirely new file and enter it into
the directory system under the name of a
previous existing file, which now becomes
inaccessible.

> Files cannot be updated, but directories can
be.

> The only operations on files are create and
read, no way to open and write

Transactions

> To access a file or a group of files, a process
first executes some type of BEGIN_
TRANSACTION primitive to signal that what
follows must be executed indivisibly.

» When the requested work has been comp-
leted, an END_TRANSACTION primitive is
executed.

> The system guarantees that all the calls
contained within the transaction will be
carried out in order.

File Locking

> A central lock manager is generally deployed
for synchronizing access to shared files.

> The complexity in locking comes from the
need to allow concurrent access to the same
file.

» A great number of different locks exist, and
moreover, the granularity of locks may also
differ.

NFSv4 operations related to file locking

Operation Description
Lock Create a lock for a range of bytes
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes
Renew Renew the lease on a specified lock
Lock

> Operation lock is used to request a read or
write lock on a consecutive range of bytes in
afile.

» Aclient will get back an error message if the
operation is conflicted with another lock.

> A FIFO - ordered list will grant the next lock
to the client at the top of the list once the
conflicting lock has been removed.

Lockt

> The lockt operation is used to test whether a
conflicting lock exists.

> In the case of a conflict, the requesting client
is informed exactly who is causing the conflict
and on which range of bytes.

> It can be implemented more efficiently than
lock, because there is no need to attempt to
open a file.

Locku
> Locku operation removes a lock from a file.
Renew

» Aclientrequests the server to renew the lease
on its lock. Otherwise, the server will
automatically remove the lock after a granted
specific time. Locku operation removes a lock
from a file.

Share Reservation
» Animplicit way to lock a file.

> Is independent from locking, can be used to
implement NFS for Windows - based
systems.

'| 155 |

Rahul Publications

M.Sc. IV Sem UNIT - IV

> When a client opens a file, it specifies the type of access it requires (READ, WRITE or BOTH), and
which type of access the server should deny other clients. (NONE, READ, WRITE or BOTH).

Requested file denial state

| NONE | READ | WRITE | BOTH
Current READ Succeed | Fail | Succeed | Fail
access WRITE | Succeed | Succeed | Fail Fail
state BOTH Succeed | Falil Fail Fail

Show the result of opening a file that is currently being accessed by anther client, but now requesting
certain access types to be disallowed.

4.2.6 Consistency and Replication

Q22. How caching and replication is useful in DFS, Explain.

AnS :

Caching and replication play an important role in distributed file systems.
Client-Side Caching
Caching in NFS

Caching in NFSv3 hasled to the implementation of different caching policies, most of which never
guaranteed consistency.

NFSv4 solves some consistency problems, but essentially still leaves cache consistency to be handled
in an implementation-dependent way.

Memory 0 Client NFS server
cache application
Disk
cache

i J

Network

Fig.: Client-side caching in NFS

Typically, clients cache file data, attributes, file handles, and directories. Different strategies exist to
handle consistency of the cached data, cached attributes, and so on.

NFSv4 supports two different approaches for caching file data.

» When aclient opens afile and caches the data it obtains from the server as the result of various read
operations.

> NFS requires that whenever a client opens a previously closed file that has been (partly) cached, the
client must immediately revalidate the cached data.

{156 |
Rahul Publications)

DISTRIBUTED SYSTEMS

In NFSv4 a server may delegate some of its rights to a client when a file is opened. Open delegation
takes place when the client machine is allowed to locally handle open and close operations from other
clients on the same machine.

An important consequence of delegating a file to a client is that the server needs to be able to recall
the delegation Recalling a delegation requires that the server can do a callback to the client, as illustrated
in Figure.

1. Client asks for file

Client \‘ Server

2. Server delegates file £y
. — 1 Oldfile
Local copy 3. Server recalls delegation
T Iy[Updated file
4. Client sends returns file

Fig.: Using the NFSv4 callback mechanism to recall file delegation

A similar approach is followed for caching file handles and directories.

4.2.7 Fault Tolerance

Q23. Explain how to handle Byzantine Failures in DFS.
Ans :

Handling Byzantine Failures

One of the problems that is often ignored when dealing with fault tolerance is that servers may
exhibit arbitrary failures.

The basic idea is to deploy active replication by constructing a collection of finite state machines and
to have the nonfaulty processes in this collection execute operations in the same order. Assuming that at
most k processes fail at once, a client sends an operation to the entire group and accepts an answer that
is returned by at least k + 1 different processes.

To achieve protection against Byzantine failures, the server group must consist of at least 3k + 1
processes. The difficult part in achieving this protection is to ensure that nonfaulty processes execute all
operations in the same order.

A simple means to achieve this goal is to assign a coordinator that simply serializes all operations by
attaching a sequence number to each request.

An important part of the protocol relies on the fact that requests can be correctly ordered.
The whole protocol consists of five phases, shown in Fig.

Request = Pre-prepare , Prepare . Commit , Reply

Client |

W NN | | 177]
o NN [/ N
WA ANERNNERRHTAN N A\VA 2
I N B N ZA NN RN

Time —

Fig.: The different Phasesin Byzantine Fault Tolerance

{ 157 ' T .
== Rahul Publications

M.Sc. IV Sem

UNIT - IV

Request Phase

During the first phase, a client sends a request
to the entire server group. Once the master has
received the request, it multicasts a sequence
number in a pre-prepare phase so that the
associated operation will be properly ordered.

Pre-Prepare phase

Here the slave replicas need to ensure that
the master’s sequence number is accepted by a
qguorum, provided that each of them accepts the
master’s proposal.

Prepare Pahse

The slave accepts the proposed sequence
number, it multicasts this acceptance to the others.

Commit Phase

During the commit phase, agreement has
been reached and all processes inform each other
and execute the operation, after which the client
can finally see the result.

Reply Phase

The final result has been seen

4.2.8 Security
Q24. Write about the security in NFS.
Ans :

Security in distributed file systems organized
along a client-server architecture is to have the
servers handle authentication and access control.

Security in NFS

The basic idea behind NFS is that a remote
file system should be presented to clients as if it were
a local file system.

In addition to secure RPCs, it is necessary to
control file accesses. which are handled by means
of access control file attributes in NFS. A file server
is in charge of verifying the access rights of its clients,
as we will explain below. Combined with secure
RPCs, the NFS security architecture is shown in Fig:

Rahul Publications

'l 158 |

Client Server

Virtual file system layer Virtual file system layer

Access Access
control control

v v

Local file
system interface | ‘ NFS server

v 4
RPC client RPC server
stub | stub

Fig.: The NFS security architecture
Secure RPCs

Because NFS is layered on top of an RPC
system, setting up a secure channel in NFS is
necessary.

Local file
system interface

NFS client

Secure channel

There are three authentication methods used
for secure RPCs:

> The first authentication method is In this
UNIX-based method, a client simply passes
its effective user ID and group ID to the server,
along with a list of groups it claims to be a
member of. This information is sent to the
server as unsigned plaintext.

> The second authentication method in older
NFS versions uses Diffie-Hellman key
exchange to establish a session key, leading
to what is called secure NFS.

> The third authentication protocol is Kerberos,.

NFS security is enhanced by the support for
RPCSEC_GSS. RPCSEC_GSS is a general security
framework that can support a myriad of security
mechanism for setting up secure channels .

Client machine Server machine

NFS client
[[
RPC client stub

NFS server

RPC server stub

|
RPCSEC_GSS

|
RPCSEC_GSS

2] 7]
5 g
2 Q
o= e
a @
x x

Network

Fig.: Secure RPCin NFSv4

DISTRIBUTED SYSTEMS

The important aspect of secure RPC in NFS is that the designers have chosen not to provide their
own security mechanisms, but only to provide a standard way for handling security.

Access Control

Authorization in NFS provides the mechanisms but does not specify any particular policy. Access
control is supported by means of the ACL file attribute.

This attribute is a list of access control entries, where each entry specifies the access rights for a
specific user or group.

Type of user Description

Owner The owner of a file

Group The group of users associated with a file

Everyone Any user or process

Interactive Any process accessing the file from an interactive terminal
Network Any process accessing the file via the network

Dialup Any process accessing the file through a dialup connection to the server
Batch Any process accessing the file as part of batch job
Anonymous Anyone accessing the file without authentication
Authenticated Any authenticated user or process

Service Any system-defined service process

Fig.: The various kinds of users and processes distinguished by NFS with respect to access control.

Decentralized Authentication

One of the main problems with systems such as NFS is that in order to properly handle authentication,
it is necessary that users are registered through a central system administration. A solution to this problem
is provided by using the Secure File Systems (SFS) in combination with decentralized authentication
servers.

Client machine Server machine

User User ':g:;:;?]
program agent ot
A A A
Y A A
NFS | g 4| SFS SFS | g | NFS
client RPC client server RPC server

X x
b J

Fig.: The organization of SFS

The SFS client is responsible for setting up a secure channel with an SFS server. It is also responsible for
communicating with a locally-available SFS user agent, which is a program that automatically handles
user authentication.

The NFS server is again used for portability reasons. This server communicates with the SFS server
which operates as an NFS client to the NFS server. The SFS server forms the core process of SFS. This
process is responsible for handling file requests from SFS clients. Analogous to the SFS agent, an SFS
server communicates with a separate authentication server to handle user authentication.

{ 159 }
=2 Rahul Publications

M.Sc. IV Sem UNIT - IV

4.3 DisTrRIBUTED WEBBASED SYSTEMS

4.3.1 Architecture

Q25. Explain about distributed web based systems and its architecture

AnS :

1.

The World Wide Web (WWW) can be viewed as a huge distributed system with millions of clients
and servers for accessing linked documents.

Servers maintain collections of documents while clients provide users an easy-to-use interface for
presenting and accessing those documents.

A document is fetched from a server, transferred to a client, and presented on the screen. To a user
there is conceptually no difference between a document stored locally or in another part of the
world.

Now, Web has become more than just a simple document based system.

With the emergence of Web services, it is becoming a system of distributed services rather than just
documents offered to any user or machine.

Traditional Web-based Systems

Many Web-based systems are still organized as simple client-server architectures.
Relatively simple client-server architecture
Access to local file system
Simplest way to refer a document is by Uniform Resource Locator (URL)
URL specifies the application-level protocol for transfers across the network

Several different protocols

2. Server fetches

Client machine Server machine document from
local file
Browser Web server / @
A
0S
3. Response))

/\

1. Get document request (HTTP)

The core of a Web site: a process that has access to a local file system storing documents.

Uniform Resource Locator

>

A reference called Uniform Resource Locator (URL)is used to refer a document.
The DNS name of its associated server along with a file name is specified.
The URL also specifies the protocol for transferring the document across the network.

Example: http://www.cse.unl.edu/~ylu/csce855/notes/web-system.ppt

Rahul Publications

'l 160 ',

DISTRIBUTED SYSTEMS

Web Documents

A Web document does not only contain text, but it can include all kinds of dynamic features such as
audio, video, animations, etc. In many cases special helper applications (interpreters) are needed, and
they are integrated into the browser.

E.g., Windows Media Playerand QuickTime Playerfor playing streaming content

The variety of document types forces browser to be extensible. As a result, plug-ins are required to
follow a standard interfaces so that they can be easily integrated with the browsers.

Type Subtype Description

Text Plain Unformatted text
HTML Text including HTML markup commands
XML Text including XML markup commands

Image GIF Still image in GIF format
JPEG Still image in JPEG format

Audio Basic Audio, 8-bit PCM sampled at 8000 Hz
Tone A specific audible tone

Video MPEG Movie in MPEG format
Pointer Representation of a pointer device for presentations

Application | Octet-stream | An uninterpreted byte sequence
Postscript A printable document in Postscript
PDF A printable document in PDF

Multipart Mixed Independent parts in the specified order
Parallel Parts must be viewed simultaneously

Fig.: Six top-level MIME types and some common subtypes

Q26. Explain multi tier architecture.

AnS :

Multitiered Architectures
Web documents can be built in two ways:
Static Web Pages
> Locates and returns the object identified in the request.
> Includes predefined HTML pages and JPEG ad GIF files
> Web servers do not require communication with any server side application
Dynamic Web Pages

> The request is forwarded to an application system where the response is generated dynamically on
the server by server side program execution.

> The combination of HTML or XML with scripting provides powerful means of expressing documents.

Although Web started as simple two-tiered client-server architecture for static Web documents, this
architecture has been extended to support advanced type of documents.

{ 161 '
=) Rahul Publications

M.Sc. IV Sem UNIT - IV
WWW Browser Server Application
o clignd]
"‘1‘.'1_.4_"4.1-__|-“ 1 +o+liltlﬂll"l—l“.:. 'h tal
R T 0 Submit completed form . :
T im
User \“ s - r__..-fﬁ
" Programs - T Prigram s T
TESEINSE TEAIHEE

Server side CGI programs

Because of the server-side processing, many Web sites are now organized as three-
consisting of a Web server, an application server, and a database server.

User data comes from an HTML form, specifying the program and parameters.
Server-side scripting technologies are used to generate dynamic content:

tiered architectures

» Microsoft: Active Server Pages (ASPNET)
» Sun: Java Server Pages (JSP)
» Netscape: JavaScript
» Free Software Foundation: PHP
3. Start process to fetch docurment
"
ll"-.
b il M BT 00 \ || cen || * Dstsbsseintermction
: reguest | : program
6. Return result | | Pandler = -
5. HTML document B
cresated
—— | —
Web sarvar CGI process Database server

The following figure shows the example of N-tier model.

L]]
] 1]
Client Tier i Presentation Tier i Service Tier ! Data Tier
s Thin clients i = Handle clients’ E « Offer different i « Data producer
« Support ' requests : functions ' tier
standard i s Form the view i exposed as ! » Implementation
browsers /1_._f\ of responses /‘—I—N services depends on the
« Request HTTP }e* Actsassingle SOAP)= Mapping of Data Access service tier
Services \—I—/ point of \[_T_V services and s Controller
s PCs, Laptops, : entrance i physical servers networks
Cellphones, : + Enterprise ! » Component » Databases
PDAs and etc i web portal E
a i
| H

]
i
]
design used !
|
I
]
i
1
|

N-tier model for distributed automation.

{162 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Q27. Explain about Web Services.
Ans :

Web Service
Principle of providing and using a Web service(similar to remote procedure call).

> Directory service storing service descriptions, it is adhere to Universal Description, Discovery and
Integration standard (UDDI)

> UDDI prescribes the layout of a database containing service descriptions that will allow Web service
clients to browse for relevant services.

Client machine Server machine
Look up
a service Client Server Publish service
application appiication
Stub Stub
Communication SOAP Communication
subsystem subsystem
Generate stub Generate stub
from WSDL from WS.DL
description description
i—]‘[Service description (WSDL) |

Directory service (UDDI)
Language
> Services are described by means of the Web Services Definition Language (WSDL)

> A WSDL description contains the precise definitions of the interfaces provided by a service, that is,
procedure specification, data types, the (logical) location of services

> An important issue of a WSDL description is that can be automatically translated to client +side and
server-side stubs.

Communication
> The Simple Object Access Protocol (SOAP) is used to determine how communication take place.

> SOAP is essentially a framework in which much of the communication between two processes can
be standardized

4.3.2 Process

Q28. Write a note on Web Browser.
Ans :

Clients (Web Browsers)

The most important Web client is a piece of software called a Web browser, which enables a user to
navigate through Web pages by fetching those pages from servers and subsequently displaying them on
the user’s screen.

{ 163 }
2 Rahul Publications

M.Sc. IV Sem UNIT - IV

Web browsers used to be simple programs, but that was long ago. Logically, they consist of several
components, shown in figures [see also Grosskurth and Godfrey (2005)].

User interface

Browser engine

Rendering engine

|

Client-side
Network script HTML/XML
comm. interpreter parser
|

Fig.: Web browser

pua yoeq Aeidsiq

An important aspect of Web browsers is that they should (ideally) be platform independent. This
goal is often achieved by making use of standard graphical libraries, shown as the display back end, along
with standard networking libraries.

Originally, Web browsers were designed to support HTTP only. A Web proxy process was introduced
to allow the browser to access FTP content:

HTTP request FTP request
Browser Web proxy FTP server
——————— <
HTTP response FTP response

Nowadays, Web browsers support a large range of document formats due to the availability of code
migration methods. But proxies remain popular due to additional functions that they can perform:

authentication, caching.

Q29. Explain about Apache Webserver.
Ans :

An HTTP web server is a web server that delivers content over HTTP, or the Hypertext Transfer
Protocol, versus others like FTP. For example, when you go to Lifewire.comin your web browser, you're
ultimately contacting the web server that hosts this website so that you can communicate with it to request
web pages

Apache Web Server is designed to create web servers that have the ability to host one or more
HTTP-based websites. Notable features include the ability to support multiple programming languages,
server-side scripting, an authentication mechanism and database support. Apache Web Server can be
enhanced by manipulating the code base or adding multiple extensions/add-ons.

It is also widely used by web hosting companies for the purpose of providing shared/virtual hosting,
as by default, Apache Web Server supports and distinguishes between different hosts that reside on the

same machine.

'l 164 :

Rahul Publications

DISTRIBUTED SYSTEMS

Module Module Function

ILE TS

Link between
function and hook

X ey S e S oy S o

R T

7 Apache core [*
Functions called per hook

Request W l Response

Fig.: The general organization of the Apache Web server

Web Server Clusters

An important problem related to the client-server nature of the Web is that a Web server can easily
become overloaded.

To improve performance and availability, WWW servers are often clustered in a way that is
transparent to clients.

Web Web Web Web
server server server server

1 8 7 ‘
Yyvy N

Front end handles
Front all incoming requests
end and outgoing responses

Request T ¢ Response

Fig.: The principle of using a server cluster in combination with a front end to implement a Web service.

Whenever a client issues an HTTP request, it sets up a TCP connection to the server. A transport-
layer switch simply passes the data sent along the TCP connection to one of the servers, depending on
some measurement of the server’s load. The response from that server is returned to the switch, which
will then forward it to the requesting client. As an optimization, the switch and servers can collaborate in
implementing a TCP handoff The main drawback of a transport-layer switch is that the switch cannot take
into account the content of the HTTP request that is sent along the TCP connection.

{165 |
2 Rahul Publications

M.Sc. IV Sem UNIT - IV

4.3.3 Communication

Q30. Explain about HTTP protocol.
Ans :

Hypertext Transfer Protocol

> All communication in the Web between clients and servers is based on the Hypertext Transfer
Protocol (HTTP).

> HTTP is a relatively simple client-server protocol

> A client sends a request message to a server and waits for a response message.
> HTTP is that it is stateless.

HTTP Connections

HTTP is based on TCP. Whenever a client issues a request to a server, it first sets up a TCP connection
to the server and then sends its request message on that connection. The same connection is used for
receiving the response.

Client Server Client Server
References E References E
N A A 4 e A A
YYY t b W
0Ss 0s oS oS
pa——y 9 y

/

/

TCP connection TCP connection

(a) Using nonpersistent connections (b) Using persistent connections

Figure

HTTP does not preclude that a client sets up several connections simultaneously to the same server.
Another approach that is followed in HTTP version 1.1 is to make use of a persistent connection, which
can be used to issue several requests without the need for a separate connection for each (request,
response)-pair.

HTTP Methods

HTTP has been designed as a general-purpose client-server protocol oriented toward the transfer
of documents in both directions. A client can request each of these operations to be carried out at the
server by sending a request message containing the operation desired to the server. A list of the most
commonly-used request messages is given in Figure.

{166 |
Rahul Publications)

DISTRIBUTED SYSTEMS

Operation Description

Head Request to return the header of a document

Get Request to return a document to the client

Put Request to store a document

Post Provide data that are to be added to a document (collection
Delete Request to delete a document

Fig.: Operations supported by HTTP.
Head

The head operation is submitted to the server when a client does not want the actual document,
but rather only its associated metadata..

GET

The most important operation is get. This operation is used to actually fetch a document from the
server and return it to the requesting client. It is also possible to specify that a document should be
returned only if it has been modified after a specific time.

PUT

The put operation is the opposite of the get operation. A client can request a server to store a
document under a given name .

POST

The operation post is somewhat similar to storing a document, except that a client will request data
to be added to a document or collection of documents.

DELETE

Finally, the delete operation is used to request a server to remove the document that is named in
the message sent to the server.

HTTP Messages

All communication between a client and server takes place through messages. HTTP recognizes
only request and response messages.

A request message consists of three parts, as shown in Figure (a).

Delimiter

"4

Operation H Reference ﬂ Version ﬂ Request line

Message header name Value _\".I
MESSHQE header name | | Value] |

4 >— Request message headers

L] |II
Message header name[| Value |

Message body
(a)
|' 167 |I .
Rahul Publications

M.Sc. IV Sem UNIT - IV

_Version || Statuscode [| Phrase [| Statusine
Message header name Value 3
|Message header name|§ value H \
s > Response message headers
- |
Message header nameﬂ Value ﬂ J

i
‘ Message body

(b)
Fig.: (@) HTTP request message. (b) HTTP response message.

A response message starts with a status line containing a version number and also a three-digit
status code, as shown in Figure (b).

A request or response message may contain additional headers.

Figure “ Some HTTP message headers.

Header Source Contents

Accept Client The type of documents the client can handle

Accept-Charset Client The character sets are acceptable for the client

Accept-Encoding Client The document encodings the client can handle

Accept-Language Client The natural language the client can handle

Authorization Client A list of the client's credentials

WWW-Authenticate Server Security challenge the client should respond to

Date Both Date and time the message was sent

ETag Server The tags associated with the returned document

Expires Server The time for how long the response remains valid

From Client The client's e-mail address

Host Client The DNS name of the document's server

If-Match Client The tags the document should have

If-None-Match Client The tags the document should not have

If-Modified-Since Client Tells the server to return a document only if it has been modified since the
specified time

If-Unmodified-Since Client Tells the server to return a document only if it has not been modified since
the specified time

Last-Modified Server The time the returned document was last modified

Location Server A document reference to which the client should redirect its request

Referer Client Refers to client's most recently requested document

Upgrade Both The application protocol the sender wants to switch to

Warning Both Information about the status of the data in the message

There are various message headers that the client can send to the server explaining what it is able to
accept as response.

{ 168 }
Rahul Publications)

DISTRIBUTED SYSTEMS

Q31. Write a note on SOAP.
Ans :

Simple Object Access Protocol

Where HTTP is the standard communication protocol for traditional Webbased distributed systems,
the Simple Object Access Protocol (SOAP) forms the standard for communication with Web services .

SOAP has made HTTP even more important than it already was: most SOAP communications are
implemented through HTTP.

A SOAP message generally consists of two parts, header and body

» The header is optional,

» The body contains the actual message,

Everything in the envelope is expressed in XML, that is, the header and the body.

SOAP envelope does not contain the address of the recipient. Instead, SOAP explicitly assumes that
the recipient is specified by the protocol that is used to transfer messages. To this end, SOAP specifies
bindings to underlying transfer protocols.

4.3.4 Naming

Q32. What are URIs and write about them.
Ans :

The Web uses a single naming system to refer to documents. The names used are called Uniform
Resource Identifiers or simply URIs.

URIs come in two forms.

» A Uniform Resource Locator (URL) is a URI that identifies a document by including information on
how and where to access the document.

> Uniform Resource Name (URN) acts as true identifier. A URN is used as a globally unique, location-
independent, and persistent reference to a document.

The actual syntax of a URI is determined by its associated scheme.

|Scherne| Host name | Pathname |

http :// www.cs.vu.nl /home/steen/mbox

(@)
fScherne | Host name | Port | Pathname
hitp :// www.cs.vu.nl : 80 /home/steen/mbox
(b)
| Scheme | Host name | Port| Pathname

http :/ 130.37.24.11 : 80 /home/steen/mbox
(c)

Fig.: Often-used structures for URLs. (a) Using only a DNS name. (b) Combining a DNS name with a port
number. (¢) Combining an IP address with a port number.

{ 169 }
2 Rahul Publications

M.Sc. IV Sem

UNIT - IV

Although URLSs are still commonplace in the Web, various separate URI name spaces have been
proposed for other kinds of Web resources. Fig. shows a number of examples of URIs.

Name Used for Example

http HTTP http://www.cs.vu.nl:80/globe

mailto E-mail mailto:steen@cs.vu.nl

ftp FTP ftp://ftp.cs.vu.nl/pub/minix’README

File Local file file:/edu/book/work/chp/11/11

Data Inline data data:text/plain;charset=is0-8859-7,%e1%e2%e3
telnet Remote login | telnet:/flits.cs.vu.nl

Tel Telephone tel: +31201234567

Modem Modem modem:+31201234567;type=v32

Fig.: Examples of URIs

URIs are often used as well for purposes other than referring to a document. For example, a telnet
URI is used for setting up a telnet session to a server.

4.3.5 Synchronization

Q33. Write about synchronization in distributed web based systems.

AnS :

Synchronization has not been much of an issue for most traditional Webbased systems for two

reasons.

> First, the strict client-server organization of the Web, in which servers never exchange information
with other servers (or clients with other clients) means that there is nothing much to synchronize.

> Second, the Web can be considered as being a read-mostly system. Updates are generally done by
a single person or entity, and hardly ever introduce write-write conflicts.

Distributed authoring of Web documents is handled through a separate protocol, namely WebDAV.
WebDAV stands for Web Distributed Authoring and Versioning and provides a simple means to lock a
shared document, and to create, delete, copy, and move documents from remote Web servers.

To synchronize concurrent access to a shared document, WebDAV supports a simple locking
mechanism. There are two types of write locks. An exclusive write lock can be assigned to a single client,
and will prevent any other client from modifying the shared document while it is locked.

4.3.6 Consistency and Replication
Q34. Write about Web Proxy Caching.

Ans:
Web Proxy Caching

Client-side caching generally occurs at two places.

{ 170 |
Rahul Publications =

DISTRIBUTED SYSTEMS

> In the first place, most browsers are equipped with a simple caching facility. Whenever a document
is fetched it is stored in the browser’s cache from where it is loaded the next time.

> In the second place, a client’s site often runs a Web proxy.

In addition to caching at browsers and proxies, it is also possible to place caches that cover a region,
or even a country, thus leading to hierarchical caches. Such schemes are mainly used to reduce network
traffic

As an alternative to building hierarchical caches, one can also organize caches for cooperative
deployment as shown in Figure.

In cooperative caching or distributed caching, whenever a cache miss occurs at a Web proxy, the
proxy first checks a number of neighboring proxies to see if one of them contains the requested document.
If such a check fails, the proxy forwards the request to the Web server responsible for the document.

Web
server

3. Forward request
to Web server

1. Look in
local cache

Web 2. Ask neighboring proxy caches Web

A— proxy [l"‘l proxy — Gache
| \ |
/|(T|ienl| (Client| (Client] Client| [Client| [Client|
Web
HTTP Get request Rty [Cache]

ﬁi-eﬂ Efant Jaient|

Fig.: The principle of cooperative caching

Different cache-consistency protocols have been deployed in the Web.

Note that documents that have not been modified for a long time will not be checked for modifications
as soon as recently modified documents.

Q35. Write about Content Delivery Networks.

AnS :

A content delivery network (CDN) is a system of distributed servers (network) that deliver pages
and other Web content to a user, based on the geographic locations of the user, the origin of the webpage
and the content delivery server.

This service is effective in speeding the delivery of content of websites with high traffic and websites
that have global reach. The closer the CDN server is to the user geographically, the faster the content will
be delivered to the user. CDNs also provide protection from large surges in traffic.

How CDNs Work

Servers nearest to the website visitor respond to the request. The content delivery network copies
the pages of a website to a network of servers that are dispersed at geographically different locations,

{ 171 ' T .
|l Rahul Publications

M.Sc. IV Sem

UNIT - IV

caching the contents of the page. When a user
requests a webpage that is part of a content delivery
network, the CDN will redirect the request from the
originating site’s server to a server in the CDN that
is closest to the user and deliver the cached content.
CDNs will also communicate with the originating
server to deliver any content that has not been
previously cached.

The process of bouncing through CDNs is
nearly transparent to the user. The only way a user
would know if a CDN has been accessed is if the
delivered URL is different than the URL that has
been requested.

4.3.7 Fault Tolerance

Q36. Write about the fault tolerance in web
based distributed systems.

AnS :

> Fault tolerance in the Web-based distributed
systems is mainly achieved through client-side
caching and server replication.

> No special methods are used .
> HTTP to assist fault tolerance or recovery.
> High availability in the Web is achieved

through such as DNS.

In the case of Web services we may easily be
dealing with complex calling graphs.

Many Web-based systems computing follows
a simple two-tiered client-server calling convention.
This means that a client calls a server, which then
computes a response without the need of additional
external services.

This situation no longer holds for Web
services.
Byzantine fault-tolerant (BFT) serviceface
three issues that need to be handled.
> First, clients of a BFT service should see that
service as just another Web service.
> Second, a BFT service should guarantee
internal consistency when acting as a client.
> Finally, external services should also treat a
BFT service acting as a client, as a single entity.
These three situations lead to three different
pieces of software that need to be integrated into
toolkits for developing Web services.

Rahul Publications

'l 172 :

4.3.8 Security

Q37. Explain about Security in web based
distributed systems.

AnS :

> Most of the security issues in the Web deal
with setting up a secure channel between a
client and server.

> For setting up a secure channel in the Web is
to use the Secure Socket Layer (SSL),

» An update of SSL now referred to as the
Transport Layer Security (TLS) protocol

TLS is shown in Fig.

H'TTP‘ FTP ‘Teinet

TLS

Transport layer

Network layer

Data link layer

Physical layer

Fig.: The position of TLSin the Internet
protocol stack

TLS itself is organized into two layers. The
core of the protocol is formed by the TLS record
protocol layer, which implements a secure channel
between a client and server.

Setting up a secure channel proceeds in two
phases.

First, the client informs the server of the
cryptographic algorithms it can handle, as well as
any compression methods it supports. The actual
choice is always made by the server, which reports
its choice back to the client. These first two messages
shown in Figure.

" {Possmites | ——>{ |
3
:
5
| K&IRIc) il
Fig.: TLS with mutual authentication

In the second phase, authentication takes
place. The server is always required to authenticate
itself, for which reason it passes the client a certificate
containing its public key signed by a certification
authority CA.

Client
Server

