
- by -

WELL EXPERIENCED LECTURER

PROGRAMMING IN C
 Study Manual

 Important Questions

 Solved Model Papers

 Previous Question Papers

Rahul’s 
Topper’s Voice

B.C.A.
I Year I Sem

NEW

SYLLABUS

Price

 `. 199-00

Latest 2024 Edition

Hyderabad. Cell : 9391018098, 9505799122

All disputes are subjects to Hyderabad Jurisdiction only

TMRahul Publications

C
O
N
T
E
N
T
S

PROGRAMMING IN C

February - 2023 i - ii

July / August - 2023 iii - iv

STUDY MANUAL

Important Questions V - VIII

Unit - I 1 - 56

Unit - II 57 - 126

Unit - III 127 - 164

Unit - IV 165 - 198

Unit - V 199 - 236

SOLVED MODEL PAPERS

Model Paper - I 237 - 238

Model Paper - II 239 - 240

Model Paper - III 241 - 242

July - 2021 243 - 246

December - 2019 247 - 250

i
Rahul Publications

FACULTY OF INFORMATICS
B.C.A I - Semester (CBCS) (Main & Backlog & One Time Chance) Examination

February - 2023

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : I. Note : Answer all questions from Part-A and answer any five

questions from Part-B. Choosing one question from each unit.

II. Missing data, if any, may be suitably assumed.

PART - A (10 × 2 = 20 Marks)

1. (a) What is Computer System?

(b) What is meant by Identifier?

(c) Describe about Break Statement.

(d) What is a Function?

(e) How to create an Array?

(f) What is sorting?

(g) What is R-value?

(h) Define a String.

(i) What is a Type Definition?

(j) What is a Stream?

PART - B (5 × 10 = 50 Marks)

Unit-I

2. (a) Explain about Computing Environments in detail.

(b) Explain about Decimal Number System with an example.

(OR)

3. (a) Explain about Input and Output Statements with examples.

(b) Discuss about Arithmetic Operators in brief.

Unit-ll

4. (a) Explain about Logical Operators with an example.

(b) Discuss about for loop with an example.

(OR)

5. (a) Explain about User-defined Functions in detail.

(b) Discuss about Storage Classes in brief.

ii
Rahul Publications

Unit-III

6. (a) Explain about Array Applications in detail.

(b) Explain about Multidimensional Arrays with an example.

(OR)

7. (a) Discuss about Linear search in detail.

(b) Explain about Bubble Sort with an example.

8. (a) Explain about Pointers for Inter-Function Communication.

(b) Discuss about Memory Allocation Functions in detail.

(OR)

9. (a) Explain about Command-line Arguments.

(b) Discuss about String Input / Output functions.

Unit-V

10. (a) Explain about Initialization of structures with examples.

(b) Discuss about Self-referential Structures in brief.

(OR)

11. (a) Explain about Input and Output Streams in detail.

(b) Discuss about Standard Library Input / Output functions.

iii
Rahul Publications

FACULTY OF INFORMATICS
B.C.A. I-Semester (CBCS) Examination

July / August - 2023

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : I. Answer all questions from Part-A and answer any five questions from Part-B.

Choosing one question from each unit.

II. Missing data, if any, may be suitably assumed.

PART - A (10 × 2 = 20 Marks)

1. (a) Write about Assembler and Loader.

(b) Define Machine Language.

(c) Write about Decision Making Statements.

(d) Define break, Continue and Goto.

(e) Write about Function.

(f) Write about Acessing the Address of a Variable

(g) Discuss about Searching and Sorting.

(h) Define String handling functions.

(i) What is Nested Structure and Union?

(j) Write about Reading and Writing a File.

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Explain about Assemblers, Loaders and Linkers.

(b) Write briefly about parts of computers.

(OR)

3. (a) Discuss about Software development and Flowcharts.

(b) Describe briefly about High level Language and Machine Language.

UNIT - II

4. (a) Write about Data types in C.

(b) Write briefly about Decision making and Looping Control Structure with

an example.

(OR)

5. (a) Write short notes on While loop and For Loop .

(b) Explain about break, continue and case control Structure with example.

iv
Rahul Publications

UNIT - III

6. (a) How to access the address of a variables?

(b) Explain about Recursion Function with an example.

(OR)

7. (a) Explain about Types of Functions.

(b) Write about Declaration of Arguments and Return types in detail.

UNIT - IV

8. (a) How to declare an array and Handling an Array?

(b) Write the different types of Arrays with example.

(OR)

9. (a) Explain about Searching and Sorting.

(b) Write about String handling Functions.

UNIT - V

10. (a) Explain the differences between Strings and Unions.

(b) Discuss about Nested Structure.

(OR)

11. (a) Explain about Unions.

(b) Explain about File handling Functions.

I

Contents
Topic Page No.

UNIT - I
1.1 Introduction To Computers ...1

1.1.1 Computer Systems ..1

1.1.2 Computing Environments ...2

1.1.3 Computer Languages ..7

1.1.4 Creating And Running Programs ..10

1.1.5 Software Development ..12

1.1.6 Flow Charts ...14

1.2 Number Systems ...21

1.2.1 Binary ...22

1.2.2 Octal ..23

1.2.3 Decimal ...27

1.2.4 Hexadecimal ...28

1.3 Introduction To C Language ...32

1.3.1 Background ..32

1.3.2 C Programs ...35

1.3.3 Identifiers ..36

1.3.4 Data Types ...38

1.3.5 Variables ..40

1.3.6 Constants ..41

1.3.7 Input / Output Statements ...43

1.3.8 Arithmetic Operators ...44

1.4 Expressions ..46

1.4.1 Evaluating Expressions ..46

1.4.2 Precedence And Associativity Of Operators ...47

1.4.3 Type Conversions ..49

  Short Question and Answers ... 51 - 53

  Choose the Correct Answer .. 54 - 54

  Fill in the blanks .. 55 - 55

  One Mark Answers .. 56 - 56

II

Topic Page No.

UNIT - II

2.1 Conditional Control Statements ..57

2.1.1 Bitwise operators, Relational and Logical Operators ..57

2.2 If, If-Else, Switch Statements and Examples ..74

2.3 Looping Statements: While, Do-While and Examples ...85

2.4 Continue, Break, Go to Statements ..91

2.5 Functions ..93

2.5.1 User defines functions ...95

2.5.2 Inter function communication ...100

2.5.3 Standard Functions ...101

2.5.4 Parameters passing in C ..102

2.5.5 Recursion–Recursive functions ..104

2.6 Storage classes - Auto, Register, Static, Extern, scope rules ...106

  Short Question and Answers ... 111 - 122

  Choose the Correct Answer .. 123 - 124

  Fill in the blanks .. 125 - 125

  One Mark Answers .. 126 - 126

UNIT - III

3.1 Preprocessors – Preprocessor Commands ...127

3.2 Arrays – Concepts using arrays in C ..132

3.2.1 Inter function communication ...135

3.2.2 Array Applications ...137

3.4 Linear Search and Binary Search ..145

3.5 Selection Sort and Binary Sort ..153

  Short Question and Answers ... 157 - 161

  Choose the Correct Answer .. 162 - 162

  Fill in the blanks .. 163 - 163

  One Mark Answers .. 164 - 164

III

Topic Page No.

UNIT - IV

4.1 Pointers ..165

4.1.1 Introduction ..165

4.1.2 Pointers for Inter-Function Communication ..167

4.1.3 Pointers to pointers ..169

4.1.4 Compatibility ...170

4.1.5 L-Value and R-Value ...171

4.1.6 Arrays and Pointers ...171

4.1.7 Pointer Arithmetic and arrays ..172

4.1.8 Passing an Array to a Function ..176

4.1.9 Memory Allocation Functions ..176

4.1.10 Array of Pointers ...178

4.1.11 Programming Application ..178

4.1.12 Pointers to void ...179

4.1.13 Pointers to Functions ...181

4.1.14 Command line arguments ...182

4.2 Strings ..183

4.2.1 Concepts, C Strings ...183

4.2.3 Arrays of Strings ..185

4.2.4 String Manipulation Functions ...187

  Short Question and Answers ... 190 - 194

  Choose the Correct Answer .. 195 - 196

  Fill in the blanks .. 197 - 197

  One Mark Answers .. 198 - 198

UNIT - V

5.1 Structures - Definition, Initialization of structure, Accessing Structure199

5.1.1 Nested structures ...203

5.1.2 Array of Structures ..207

IV

Topic Page No.

5.1.3 Structures and Functions ...208

5.1.4 Pointers to Structures ..211

5.1.5 Self Referential Structures ...212

5.1.6 Unions ...214

5.1.7 Type Definition (typedef) ...217

5.1.8 Enumerated types ...218

5.2 Input and Output ...220

5.2.1 Introduction to files ...220

5.2.2 Modes of Files ...220

5.2.3 Streams, Standard Library Input/Output Functions, Character Input/223
Output Functions

  Short Question and Answers ... 227 - 233

  Choose the Correct Answer .. 234 - 234

  Fill in the blanks .. 235 - 235

  One Mark Answers .. 236 - 236

IMPORTANT QUESTIONS PROGRAMMING IN C

V
Rahul Publications

UNIT - I

1. How many types of computing Environments are there? Explain them with their advantages
and disadvantages.

Ans :
Refer Unit-I, Q.No. 2.

2. Briefly describe about various Computer Languages with examples.

Ans :
Refer Unit-I, Q.No. 3.

3. What is SDLC?

Ans :
Refer Unit-I, Q.No. 6.

4. Explain the various stages of SDLC life cycle

Ans :
Refer Unit-I, Q.No. 7.

5. Design a flowchart for finding the largest among three numbers entered by the user.

Ans :
Refer Unit-I, Q.No. 10.

6. Draw a flowchart for calculating the area of a rectangle.

Ans :
Refer Unit-I, Q.No. 14.

7. How to declare and initialize a variable?

Ans :
Refer Unit-I, Q.No. 38.

8. Explain standard I/O functions in C

Ans :
Refer Unit-I, Q.No. 40.

9. Explain the types of type conversions in C with example?

Ans :
Refer Unit-I, Q.No. 48.

Important Questions

BCA I YEAR I SEMESTER

VI
Rahul Publications

UNIT - II

1. What is Operator? List out various types of Operators supported by C?

Ans :

Refer Unit-II, Q.No. 1.

2. Explain in detail Logical operators in C.

Ans :
Refer Unit-II, Q.No. 4.

3. Explain if-else-if ladder statement in C with an example.

Ans :
Refer Unit-II, Q.No. 10.

4. Explain in detail switch statement in C.

Ans :
Refer Unit-II, Q.No. 12.

5. What are the differences between If-else and switch statements.

Ans :
Refer Unit-II, Q.No. 13.

6. How can we use while loop in c programming?

Ans :
Refer Unit-II, Q.No. 16.

7. What is mean by nested loops?

Ans :
Refer Unit-II, Q.No. 19.

8. What is Function ? What are the advantages of functions ?

Ans :
Refer Unit-II, Q.No. 24.

9. List out various C Library functions.

Ans :
Refer Unit-II, Q.No. 28.

10. List out various standard function of C.

Ans :
Refer Unit-II, Q.No. 32.

IMPORTANT QUESTIONS PROGRAMMING IN C

VII
Rahul Publications

UNIT - III

1. List out various preprocessor commands supported by C.

Ans :
Refer Unit-III, Q.No. 1.

2. What is array ? Explain its advantages.

Ans :
Refer Unit-III, Q.No. 3.

3. Explain the process of declaring and initializing an array ?

Ans :
Refer Unit-III, Q.No. 6.

4. Discuss in detail about Multi dimensional arrays in C.

Ans :
Refer Unit-III, Q.No. 11.

5. Write a C Programs to add two matrices using arrays.

Ans :
Refer Unit-III, Q.No. 12.

6. Write a C Program for multiplication of two matrices.

Ans :
Refer Unit-III, Q.No. 14.

UNIT - IV

1. Define pointer? Explain the process of declaring a pointer in c program.

Ans:

Refer Unit-IV, Q.No. 1.

2. How can we use arrays using pointers?

Ans:
Refer Unit-IV, Q.No. 9.

3. What is Dynamic Memory allocation? List and explain standard defined functions used
for dynamic memory allocation.

Ans:

Refer Unit-IV, Q.No. 12.

BCA I YEAR I SEMESTER

VIII
Rahul Publications

4. What is the use of Array of Pointers in C?

Ans:
Refer Unit-IV, Q.No. 13.

5. Explain the concept of Pointers to Functions.

Ans:
Refer Unit-IV, Q.No. 16.

6. What are string Input Output functions?

Ans:
Refer Unit-IV, Q.No. 19.

UNIT - V

1. How can we declare structures?

Ans:
Refer Unit-V, Q.No. 2.

2. Write a C Program to pass the entire Structure to Functions.

Ans:
Refer Unit-V, Q.No. 8.

3. What are self-referential structures? Write the syntax of self-referential structures.

Ans:
Refer Unit-V, Q.No. 11.

4. Define Union.

Ans:
Refer Unit-V, Q.No. 13.

5. Discuss the differences between Structures and Unions.

Ans:
Refer Unit-V, Q.No. 14.

6. What is the use of typedef in C programming?

Ans:
Refer Unit-V, Q.No. 16.

7. What is Enumerated types ? How can we declare enumerated types in C?

Ans:
Refer Unit-V, Q.No. 18.

UNIT - I PROGRAMMING IN C

1
Rahul Publications

Rahul Publications

UNIT
I

1.1 INTRODUCTION TO COMPUTERS

1.1.1 Computer Systems

Q1. Define computer? Explain about the components of a computer system.

Ans:
A computer is an electronic device that can be programmed to accept data (input), process it and

generate result (output). A computer along with additional hardware and software together is called a
computer system. A computer system primarily comprises of a central processing unit, memory, input/
output devices, and storage devices. All these components function together as a single unit to deliver the
desired output. A computer system comes in various forms and sizes. It can vary from a high-end server
to a personal desktop, laptop, tablet computer, or smartphone.

Fig.: Components of a Computer System

Introduction to Computers: Computer Systems, Computing Environments, Computer
Languages, Creating and Running Programs, Software Development, Flow charts.
Number Systems: Binary, Octal, Decimal, Hexadecimal
Introduction to C Language - Background, C Programs, Identifiers, Data Types,
Variables, Constants, Input / Output Statements
Arithmetic Operators and Expressions: Evaluating Expressions, Precedence and
As sociativity of Operators, Type Conversions.

BCA I YEAR I SEMESTER

2
Rahul Publications

Rahul Publications

Central Processing Unit (CPU) It is the
electronic circuitry of a computer that carries out
the actual processing and is usually referred to as
the brain of the computer. The CPU is given
instructions and data through programs. The CPU
then fetches the program and data from the memory
and performs arithmetic and logical operations as
per the given instructions and stores the result back
to memory.

CPU has two main components - Arithmetic
Logic Unit (ALU) and Control Unit (CU).

1. Arithmetic Logic UnitA

LU performs all the arithmetic and logic
operations that need to be done as per the
instruction in a program.

2. Control Unit

CU controls sequential instruction execution,
interprets instructions and guides data flow
through the computer’s memory, ALU and
input or output devices. CPU is also popularly
known as microprocessor.

3. Input Devices

The devices through which control signals are
sent to a computer are termed as input
devices. These devices convert the input data
into a digital form that is acceptable by the
computer system. Some examples of input
devices include keyboard, mouse, scanner,
touch screen, etc.

4. Output Devices

The device that receives data from a computer
system for display, physical production, etc.,
is called output device. It converts digital
information into human understandable
form. For example, monitor, projector,
headphone, speaker, printer, etc.

1.1.2 Computing Environments

Q2. How many types of computing Environ-
ments are there? Explain them with their
advantages and disadvantages.

Ans: (Imp.)

Computing Environment

Computing Environment is a collection of
computers , software, hardware , and networks that
support the processing and exchange of electronic
information used to support various types of
computing solutions.

There are so many different types of
computing environments today. They are

1. PersonalComputingEnvironment

2. Time-Sharing Environment

3. Client/Server Environment

4. Distributed Computing

1. Personal Computing environment

The personal computer is a small computer
with a microprocessor, designed for use by
an individual, used in the home, small
businesses, etc. It is a complete system in itself
and its convenient size, price and simple
functions make it easy for the end-user to
work on it without any intervention from
computer operators.

Applications of Personal Computing

Today personal computing environment is
used every where from home computer to
Scientific simulation Applications

There are 4 types of Personal Computers
available today:

• Desktop

• Laptop

• Tablet

• Smart Phone

Fig.: Desktop computer

UNIT - I PROGRAMMING IN C

3
Rahul Publications

Rahul Publications

Advantages

 Lots of memory space

 easy to upgrade

 fast processors

 no battery

 large screen (depending on the monitor)

 cheaper than laptops and tablets

 the monitor, keyboard, mouse, etc

Disadvantages

 large footprint

 need keyboard, mouse and monitor

 big and heavy

 requires a separate monitor

 probably without wireless connection

2. Time Sharing Environment:

The concept of time sharing computing is to share the processing of the computer by allocating
time slots to the users. In the time-sharing environment, all computing must be done by the central
computer.

In this environment many users are connected to one or more computers, which are known as
workstations. Each user is give a time slice of CPU time .Multiple jobs are executed by the CPU by
switching between them, but the switches occur so frequently. Thus, the user can receives an
immediate response. So the that each user seems to be the sole user of the computer.

In this environment the output devices, auxiliary storage devices are shared by all the users. It
needs a special operating system which is known as time sharing Operating System.

Examples of time sharing OS

•UNIX

• Windows NT etc

Applications of Time Sharing Environment

The bank’s bankcard system, which allows hundreds of people to access the same program on
the mainframe at the same time.

Advantages

 In time sharing systems many applications can run at the same time, which increases
performance.

 All the software is stored at Central Computer and shared by all user, which can avoid
duplication of software.

 Many users are connected with the single CPU at the same time, which makes the CPU busy
always.

BCA I YEAR I SEMESTER

4
Rahul Publications

Rahul Publications

Disadvantages:

 The big disadvantages of time sharing systems is that it consumes much resources so it need
special operating systems.

 Switching between tasks becomes sometimes sophisticated as there are lot of users and
applications running which may hang up the system.

 So the time sharing systems should have high specifications of hardware.

Fig.: Time sharing Environment

3. Client /Server Environment

Client /Server computing environment split the computing function between central computer and

user computers. The client/server environment is divided into client and server.

A client is a machine which sends the requests to the server for processing. A Server is a Central
machine which process the client’s requests.

A client computer provides the interface , so that the user can work comfortably.A server computer
provides high volume storage capacity and high processing capacity, so that it can process many

user’s requests at a time.

Applications

 Internet is the best example for client –server Computing, The web browser is the client, the

user sends a request to the server , the web server process the request and send it back to the

web browser (client).

UNIT - I PROGRAMMING IN C

5
Rahul Publications

Rahul Publications

Advantages

 A client-server architecture enables the roles and responsibilities of a computing system to be
distributed among several independent computers.

 Greater ease of maintenance.

 All the data is stored on the servers, generally have much security controls than most clients.
Servers can better control access and resources to guarantee that only those clients with the
appropriate permissions may access and change data.

 Updates data are much easier to administrators than what would be possible under a P2P
architecture.

 Many advanced clients server technologies are already available which were designed to ensure
security, user friendly interfaces and ease of use.

Disadvantages

 Networks traffic blocking is one of the problems related to the client-server model. Number of
simultaneous client requests to a given server increases, the server can become overloaded.

 Bandwidth decreases when more nodes are added to the network

 If one server fail, clients requests cannot be serverd.

Fig.: Client server Environment

4. Distributed Computing

A distributed system is a group of several computers which do not share a memory and computers
communicate with each other by sharing messages over the communication network.

Each computer has its own memory and runs its own operating system. The resources owned and
controlled by a computer are said to be local to it. While the resources owned and controlled by
other computers are said to be remote.

BCA I YEAR I SEMESTER

6
Rahul Publications

Rahul Publications

Applications

 Railway reservation system is the best example of distributed computing. The widely spread
computers or devices does the single task of ticket booking.

 Telephone and Cellular networks

 Internet

 Wireless Sensor networks etc

Examples of Distributed operating Systems

 IRIX operating system.

 DYNIX operating system

Advantages

 Sharing of Data: The data can be shared among different users at different sites can reduce the
redundancy of data.

 Availability : If one site fails in a distributed system, the remaining sites may be able to continue
operating. Thus a failure of a site doesn’t necessarily imply the shutdown of the System.

 Reliability :As data may exists at more than one site, the failure of a node or a communication
link does not necessarily make the data inaccessible.

Disadvantages

 Complexity : Maintain proper coordination among the systems are very complicated.

 Software Development Cost : Implementing a distributed software is more costly issue

 Security : Controlling to access the data base is difficult, which arises the security issues.

Fig.: Distributed Environment

UNIT - I PROGRAMMING IN C

7
Rahul Publications

Rahul Publications

1.1.3 Computer Languages

Q3. Breifly describe about various Computer Languages with examples.

Ans: (Imp.)

To write a program for a computer, we must use a computer language. Over the years computer
languages have evolved from machine language to natural languages.

The Computer languages are divided into 3 types

1. Machine Languages

2. Symbolic Languages

3. High Level Languages

1. Machine Languages

In the earliest days of computers, the only programming languages available were machine languages.
It is a first generation programming language. It is the language based on binary digits (0’s and
1’s). The operations written in machine language can directly execute by a particular computer. A
computer cannot understand instructions given to it in high-level languages or in English. It can
only understand and execute instructions given in the form of machine language i.e. binary. This is
the only language understood by the computer.

Advantages

 Machine language makes fast and efficient use of the computer

 The computer can understood instructions immediately

 It requires no translator to translate the code. It is directly understood by the computer

Disadvantages

 Machine dependent

 Programming is very difficult

 Difficult to understand

 Difficult to write bug free programs

 Difficult to isolate an error

Example : Addition of two numbers

 2

 3

 5



 

0010

0011

 0101





Example of Machine Language program for addition of 2 numbers

BCA I YEAR I SEMESTER

8
Rahul Publications

Rahul Publications

Location Instruction Code

Hex Binary

100 0010 0001 0000 0100

101 0001 0001 0000 0101

102 0011 0001 0000 0110

103 0111 0000 0000 0001

104 0000 0000 0101 0011

105 1111 1111 1111 1110

106 0000 0000 0000 0000

Instruction Code Hex Instruction Comments

2104 LDA 104 Load first operand into AC

1105 ADD 105 Add second operand to AC

3106 STA 106 Store sum in location 106

7001 HLT Halt computer

0053 operand 83 decimal

FFFE operand 2 decimal

0000 operand Store sum her

2. Symbolic / Assembly Languages

It is a second generation programming language. Assembly language was developed to overcome

some of the many inconveniences of machine language. This is another type of low-level language

in which operation codes and operands are given in the form of alphanumeric symbols instead of
0’s and l’s. These alphanumeric symbols are known as mnemonic codes and can combine in a

maximum of five-letter combinations e.g. ADD for addition, SUB for subtraction, START, LABEL

etc. Because of this feature, assembly language is also known as ‘Symbolic Programming Language.’

Assembly language is designed to be easily translated into machine language. Although blocks of
data may be referred to by name instead of by their machine addresses. The instructions of the

assembly language are converted to machine language by a language translator called assembler

and then they are executed by the computer.

UNIT - I PROGRAMMING IN C

9
Rahul Publications

Rahul Publications

Advantages

 Assembly language is easier to understand and use as compared to machine language.

 It is easy to locate and correct errors.

 It is easily modified.

Disadvantages

 Like machine language, it is also machine dependent/specific.

 Since it is machine dependent, the programmer also needs to understand the hardware.

Example Assembly Language instructions

Addition of two numbers.

ORG 100 / Origin of program location 100 Comment

LDAA /Load operand from location A

ADDB /Add operation form location B

STAC /Store sum in location C

HLT /Halt computer

A, DEC 83 /Decimaloperand

B, DEC -2 /Decimal operand

C, DEC 0 /Sum stored in location C

END

3. High Level Languages

These are known as third generation programming language. High-level languages allow us to
write programs using instructions resembling everyday spoken language (for example: print, if,
while) which are then translated into machine language to be executed.

Programs written in a high-level language need to be translated into machine language before they
can be executed. Some programming languages use a compiler to perform this translation and
others use an interpreter.

Advantages

 Easy to follow.

 Easy to understand

 Easy to modify and debug.

 Suitable for complex applications

Disadvantages

 It requires the translator program called Compiler or Interpreter.

 It runs programs slower with compare to low level languages

BCA I YEAR I SEMESTER

10
Rahul Publications

Rahul Publications

 Examples of high level languages

 C, C++ , JAVA, PASCAL ,COBOL , Etc.

Example C Program for addition of 2 numbers

#include <stdio.h>

int main()

{

inta,b sum;

printf(“Enter two integers: “);

scanf(“%d %d”,&a, &b);

sum = a + b;

printf(“%d + %d = %d”, a,b,sum);

return 0;

}

Q4. Write the Comparisons between Machine level, Assembly, High level Languages.

Ans:

0' s and 1's Mnemonic codes Normal English

Dependent Dependent Independent

Not Needed Needed(Assembler) Needed(Compiler)

Less Less H

Feature Machine Assembly High Level

Coding Form

Dependency

Translator

Time of Execution igh

Only one Intel 8085, X86 series... C,C ,Java etc

Difficult Moderate Easy

Less Less More

 Languages

Complexity

Memory Space

1.1.4 Creating And Running Programs

Q5. What are the steps involved in Creation and Running of a C Program? explain them.

Ans:
It is the job of programmer to write and test the program. This process is done in four steps. The

following are the steps for creating and running programs:

A. Writing and Editing the Program.

B. Compiling the Program.

C. Linking the Program with the required library modules.

D. Executing the Program

UNIT - I PROGRAMMING IN C

11
Rahul Publications

Rahul Publications

The following picture shows the four step process of creating and running the C program

(A) Writing and Editing the Program

To write and Edit the programs we need to use a particular software. The software used to write
programs is known as a text editor.A text editor helps us to enter, change and store character data.
After the program is completed the program is saved in a file to disk with an extension of .C .

This file will be input to the compiler, it is known as source file.Every compiler comes with associated
text editor.

(B) Compiling Programs

The code in a source file on the disk must be translated in to machine language. This is the job of
compiler which translates code in source file stored on disk in to machine language. This translation
process is known as compilation.

The entire high level program is converted into the executable machine code file.The Compiler
which executes C programs is called as C Compiler.

Example Turbo C, Borland C, GC etc.,

The C compiler is actually divided into two separate programs:

• the preprocessor and

• the translator.

BCA I YEAR I SEMESTER

12
Rahul Publications

Rahul Publications

The preprocessor reads the source code and
prepares it for the compiler. It scans the special
instructions known as pre-processor
commands. These commands tell the pre-
processor to take for special code from
libraries, make substitutions in the code.The
result of pre-processing is called a translation
unit.

After the preprocessor has prepared the code
for compilation, the translator does the
conversion of the program into machine
language. The translator reads the translation
unit and writes resulting object module to a
file that can be combined with other
precompiled units to form the final program.
An object module is the code in machine
language.

This module is not ready for execution
because it does not have the required C and
other functions included.

(C) Linking Programs

The Linker assembles all functions, the
program’s functions and system’s functions
into one executable program.

After the compiler has created all the object
files, another program is called to bundle
them into an executable program file. That
program is called a linker and the process of
bundling them into the executable is called
linking.

It links all the object files by replacing the
references to undefined symbols with the
correct addresses. Each of these symbols can
be defined in other object files or in libraries.
If they are defined in libraries other than the
standard library, you need to tell the linker
about them.

The linker looks at all the object files you have
told it to use.

C programs are made up of many pre-
defined functions.

Example: printf () ,scanf(), main()… etc

Their code exists in the library. They must be
attached to our program.

(D) Executing Programs

Once our program has been linked, it is ready
for execution . To execute a program, we use
operating system command, such as run to
load the program in to main memory and
execute it.

Getting program in to memory is the function
of an Operating System programs called
loader. Loader locates the executable
program and reads it in to memory.

In a typical program execution, the program
reads data for processing, either from user
or from file. After the program processes the
data, it prepares output. Data output can be
to user’s monitor or to a file. When program
has executed, Operating System removes the
program from memory.

1.1.5 Software Development

Q6. What is SDLC?

Ans: (Imp.)

Software Development Life Cycle (SDLC) is
a process used by the software industry to design,
develop and test high quality softwares. The SDLC
aims to produce a high-quality software that meets
or exceeds customer expectations, reaches
completion within times and cost estimates.

 SDLC is the acronym of Software
Development Life Cycle.

 It is also called as Software Development
Process.

 SDLC is a framework defining tasks
performed at each step in the software
development process.

 ISO/IEC 12207 is an international standard
for software life-cycle processes. It aims to be
the standard that defines all the tasks required
for developing and maintaining software.

UNIT - I PROGRAMMING IN C

13
Rahul Publications

Rahul Publications

Q7. Explain the various stages of SDLC life cycle

Ans: (Imp.)

SDLC is a process followed for a software project, within a software organization. It consists of a
detailed plan describing how to develop, maintain, replace and alter or enhance specific software. The life
cycle defines a methodology for improving the quality of software and the overall development process.

The following figure is a graphical representation of the various stages of a typical SDLC.

Planning

DefiningDeployment

Testing

Building

Designing

SDLC

Fig:. System development Life Cycle

A typical Software Development Life Cycle consists of the following stages -

Stage 1: Planning and Requirement Analysis

Requirement analysis is the most important and fundamental stage in SDLC. It is performed by the
senior members of the team with inputs from the customer, the sales department, market surveys and
domain experts in the industry. This information is then used to plan the basic project approach and to
conduct product feasibility study in the economical, operational and technical areas.

Planning for the quality assurance requirements and identification of the risks associated with the
project is also done in the planning stage. The outcome of the technical feasibility study is to define the
various technical approaches that can be followed to implement the project successfully with minimum
risks.

Stage 2: Defining Requirements

Once the requirement analysis is done the next step is to clearly define and document the product
requirements and get them approved from the customer or the market analysts. This is done through
an SRS (Software Requirement Specification) document which consists of all the product requirements
to be designed and developed during the project life cycle.

BCA I YEAR I SEMESTER

14
Rahul Publications

Rahul Publications

Stage 3: Designing the Product Architecture

SRS is the reference for product architects to
come out with the best architecture for the product
to be developed. Based on the requirements
specified in SRS, usually more than one design
approach for the product architecture is proposed
and documented in a DDS - Design Document
Specification.

This DDS is reviewed by all the important
stakeholders and based on various parameters as
risk assessment, product robustness, design
modularity, budget and time constraints, the best
design approach is selected for the product.

A design approach clearly defines all the
architectural modules of the product along with its
communication and data flow representation with
the external and third party modules (if any). The
internal design of all the modules of the proposed
architecture should be clearly defined with the
minutest of the details in DDS.

Stage 4: Building or Developing the Product

In this stage of SDLC the actual development
starts and the product is built. The programming
code is generated as per DDS during this stage. If
the design is performed in a detailed and organized
manner, code generation can be accomplished
without much hassle.

Developers must follow the coding guidelines
defined by their organization and programming
tools like compilers, interpreters, debuggers, etc. are
used to generate the code. Different high level
programming languages such as C, C++, Pascal,
Java and PHP are used for coding. The
programming language is chosen with respect to
the type of software being developed.

Stage 5: Testing the Product

This stage is usually a subset of all the stages
as in the modern SDLC models, the testing activities
are mostly involved in all the stages of SDLC.
However, this stage refers to the testing only stage
of the product where product defects are reported,
tracked, fixed and retested, until the product reaches
the quality standards defined in the SRS.

Stage 6: Deployment in the Market and
Maintenance

Once the product is tested and ready to be
deployed it is released formally in the appropriate
market. Sometimes product deployment happens
in stages as per the business strategy of that
organization. The product may first be released in a
limited segment and tested in the real business
environment (UAT- User acceptance testing).

Then based on the feedback, the product
may be released as it is or with suggested
enhancements in the targeting market segment.
After the product is released in the market, its
maintenance is done for the existing customer base.

SDLC Models

There are various software development life
cycle models defined and designed which are
followed during the software development process.
These models are also referred as Software
Development Process Models”. Each process model
follows a Series of steps unique to its type to ensure
success in the process of software development.

Following are the most important and
popular SDLC models followed in the industry “

• Waterfall Model

• Iterative Model

• Spiral Model

1.1.6 Flow Charts

Q8. What is Flowchart ?

Ans: (Imp.)

It is a symbolic diagram of operations
sequence, dataflow, control flow and processing
logic in information processing.

The symbols used are simple and easy to
learn.

It is a very helpful tool for programmers
and beginners.

Purpose of a Flowchart

 Provides Communication.

 Provides an Overview.

UNIT - I PROGRAMMING IN C

15
Rahul Publications

Rahul Publications

 Shows all elements and their relation ships.

 Quick method of showing Program flow.

 Checks Program logic.

 Facilitates Coding.

 Provides Program revision.

 Provides Program documentation.

Q9. Explain the Various Symbols in a Flowchart ?

Ans :
The different flowchart symbols have different conventional meanings.

The various symbols used in Flowchart Designs are given below.

 Terminal Symbol

In the flowchart, it is represented with the help of a circle for denoting the start and stop symbol.
The symbol given below is used to represent the terminal symbol.

 Input/output Symbol

The input symbol is used to represent the input data, and the output symbol is used to display the
output operation. The symbol given below is used for representing the Input/output symbol.

 Processing Symbol

It is represented in a flowchart with the help of a rectangle box used to represent the arithmetic and
data movement instructions. The symbol given below is used to represent the processing symbol.

 Decision Symbol

Diamond symbol is used for represents decision-making statements. The symbol given below is
used to represent the decision symbol.

BCA I YEAR I SEMESTER

16
Rahul Publications

Rahul Publications

YES NO
A>B

 Connector Symbol

The connector symbol is used if flows discontinued at some point and continued again at another
place. The following symbol is the representation of the connector symbol.

 Flow lines

It represents the exact sequence in which instructions are executed. Arrows are used to represent
the flow lines in a flowchart. The symbol given below is used for representing the flow lines:

 Hexagon symbol (Flat)

It is used to create a preparation box containing the loop setting statement. The symbol given below
is used for representing the Hexagon symbol.

UNIT - I PROGRAMMING IN C

17
Rahul Publications

Rahul Publications

 On-Page Reference Symbol

This symbol contains a letter inside that indicates the flow continues on a matching symbol containing
the same letters somewhere else on the same page. The symbol given below is used for representing
the on-page reference symbol.

 Off-Page Reference

This symbol contains a letter inside indicating that the flow continues on a matching symbol containing
the same letter somewhere else on a different page. The symbol given below is used to represent
the off-page reference symbol.

 Delay or Bottleneck

This symbol is used for identifying a delay in a flowchart. The alternative name used for the delay is
the bottleneck. The symbol given below is used to represent the delay or bottleneck symbol.

 Document Symbol

This symbol is used in a flowchart to indicate a document or report.The symbol given below is used
to represent the document symbol.

 Internal storage symbol

The symbol given below is used to represent the internal storage symbol.

BCA I YEAR I SEMESTER

18
Rahul Publications

Rahul Publications

Q10. Design a flowchart for finding the largest among three numbers entered by the user.

Ans : (Imp.)

Declare variables a,b and c

Start

Read n1 and n2

False False
is a>b?

True
is b>c?

FalseFalse True
is a>c?

print b print c print a

Stop

Q11. Draw a flowchart for calculating the profit and loss according to the value entered by
the user.

Ans:

Start

Read Income

Read Cost

Income>=Cost?
Yes

No

Calculate Loss as
Cost- Income

Print Loss

End

Calculate Profit as
Income-Cost

Print Profit

UNIT - I PROGRAMMING IN C

19
Rahul Publications

Rahul Publications

Q12. Draw a flowchart to calculate the average of two numbers.

Ans:

Average =

Start

Take num1,

num 2

(num 1 + num 2)/2

Print Average

End

Q13. Draw a flowchart for the multiplication of three numbers entered by the user.

Ans :

Start

Input value a,b,c

Mul = a*b*c

Print d

Stop

BCA I YEAR I SEMESTER

20
Rahul Publications

Rahul Publications

Q14. Draw a flowchart for calculating the area of a rectangle.

Ans: (Imp.)

Start

Input value l,b

Area = l * b

Print Area

Stop

Q15. Draw a flowchart for calculating the Simple Interest according to the value entered by
the user.

Ans:

Start

Input value p,r,t

Print SI

Stop

SI=P×R×T
100

UNIT - I PROGRAMMING IN C

21
Rahul Publications

Rahul Publications

Q16. Draw a flowchart for checking whether the number is positive or negative according to
the number entered by the user.

Ans :

Enter Any No

A>0

Positive Negative

Start

Stop

1.2 NUMBER SYSTEMS

Q17. What is number system?

Ans :

In a digital system, the system can understand only the optional number system. In these systems,
digits symbols are used to represent different values, depending on the index from which it settled in the
number system.

In simple terms, for representing the information, we use the number system in the digital system.

The digit value in the number system is calculated using:

1. The digit

2. The index, where the digit is present in the number.

3. Finally, the base numbers, the total number of digits available in the number system.

BCA I YEAR I SEMESTER

22
Rahul Publications

Rahul Publications

Q18. Explain about different types of number systems.

Ans:
Types of Number System

In the digital computer, there are various types of number systems used for representing information.

1. Binary Number System

2. Decimal Number System

3. Hexadecimal Number System

4. Octal Number System

1.2.1 Binary

Q19. What is Binary Number System?

Ans:
Generally, a binary number system is used in the digital computers. In this number system, it carries

only two digits, either 0 or 1. There are two types of electronic pulses present in a binary number system.
The first one is the absence of an electronic pulse representing ‘0’and second one is the presence of
electronic pulse representing ‘1’. Each digit is known as a bit. A four-bit collection (1101) is known as a
nibble, and a collection of eight bits (11001010) is known as a byte. The location of a digit in a binary
number represents a specific power of the base (2) of the number system.

Characteristics:

1. It holds only two values, i.e., either 0 or 1.

2. It is also known as the base 2 number system.

3. The position of a digit represents the 0 power of the base(2). Example: 20

4. The position of the last digit represents the x power of the base(2). Example: 2x, where x represents
the last position, i.e., 1

Examples

(10100)2, (11011)2, (11001)2, (000101)2, (011010)2.

Q20. Explain how to convert from binary to decimal with examples.

Ans:
Binary to other Number Systems

There are three conversions possible for binary number, i.e., binary to decimal, binary to octal, and
binary to hexadecimal. The conversion process of a binary number to decimal differs from the remaining
others. Let’s take a detailed discussion on Binary Number System conversion.

Binary to Decimal Conversion

The process of converting binary to decimal is quite simple. The process starts from multiplying the
bits of binary number with its corresponding positional weights. And lastly, we add all those products.

Let’s take an example to understand how the conversion is done from binary to decimal.

Example 1: (10110.001)2

UNIT - I PROGRAMMING IN C

23
Rahul Publications

Rahul Publications

We multiplied each bit of (10110.001)2 with its respective positional weight, and last we add the
products of all the bits with its weight.

(10110.001)2=(1×24)+(0×23)+(1×22)+(1×21)+(0×20) + (0×2-1)+(0×2-2)+(1×2-3)

(10110.001)2=(1×16)+(0×8)+(1×4)+(1×2)+(0×1)+ (0×1D 2)+(0×1D 4)+(1×1D 8)

(10110.001)2=16+0+4+2+0+0+0+0.125

(10110.001)2 = (22.125)10

1.2.2 Octal

Q21. What is octal number system?

Ans :
The octal number system has base 8(means it has only eight digits from 0 to 7). There are only eight

possible digit values to represent a number. With the help of only three bits, an octal number is represented.
Each set of bits has a distinct value between 0 and 7.

Below, we have described certain characteristics of the octal number system:

Characteristics

1. An octal number system carries eight digits starting from 0, 1, 2, 3, 4, 5, 6, and 7.

2. It is also known as the base 8 number system.

3. The position of a digit represents the 0 power of the base(8). Example: 80

4. The position of the last digit represents the x power of the base(8). Example: 8x, where x represents
the last position, i.e., 1

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Number Octal Number

Examples

(273)8, (5644)8, (0.5365)8, (1123)8, (1223)8.

BCA I YEAR I SEMESTER

24
Rahul Publications

Rahul Publications

Q22. How can we convert a binary number to octal and hexa decimal? Explain

Ans:
Binary to Octal Conversion

The base numbers of binary and octal are 2 and 8, respectively. In a binary number, the pair of
three bits is equal to one octal digit. There are only two steps to convert a binary number into an octal
number which are as follows:

1. In the first step, we have to make the pairs of three bits on both sides of the binary point. If there will
be one or two bits left in a pair of three bits pair, we add the required number of zeros on extreme
sides.

2. In the second step, we write the octal digits corresponding to each pair.

Example 1: (111110101011.0011)2

1. Firstly, we make pairs of three bits on both sides of the binary point.

111 110 101 011.001 1

On the right side of the binary point, the last pair has only one bit. To make it a complete pair
of three bits, we added two zeros on the extreme side.

111 110 101 011.001 100

2. Then, we wrote the octal digits, which correspond to each pair.

(111110101011.0011)2=(7653.14)8

Q23. Explain, how to convert a decimal number into octal and hexa decimal?

Ans:
Decimal to Octal Conversion

For converting decimal to octal, there are two steps required to perform, which are as follows:

1. In the first step, we perform the division operation on the integer and the successive quotient with
the base of octal(8).

2. Next, we perform the multiplication on the integer and the successive quotient with the base of
octal(8).

Example 1: (152.25)10

Step 1: Divide the number 152 and its successive quotients with base 8.

152 / 8 19 0

19 / 8 2 3

2 / 8 0 2

Operation Quotient Remainder

(152)10=(230)8

Step 2: Now perform the multiplication of 0.25 and successive fraction with base 8.

UNIT - I PROGRAMMING IN C

25
Rahul Publications

Rahul Publications

0.25 8 0 2

Operation Result Carry

(0.25)10=(2)8

So, the octal number of the decimal number 152.25 is 230.2

Decimal to hexadecimal conversion

For converting decimal to hexadecimal, there are two steps required to perform, which are as
follows:

1. In the first step, we perform the division operation on the integer and the successive quotient with
the base of hexadecimal (16).

2. Next, we perform the multiplication on the integer and the successive quotient with the base of
hexadecimal (16).

Example 1: (152.25)10

Step 1: Divide the number 152 and its successive quotients with base 8.

152 / 16 9 8

9 / 16 0 9

Operation Quotient Remainder

(152)10=(98)16

Step 2: Now perform the multiplication of 0.25 and successive fraction with base 16.

0.25 16 0 4

Operation Result Carry

(0.25)10=(4)16

So, the hexadecimal number of the decimal number 152.25 is 230.4.

Q24. Explain, how can we convert an octal number system to other number systems

Ans :
Octal to other Number System

Like binary and decimal, the octal number can also be converted into other number systems.
The process of converting octal to decimal differs from the remaining one. Let’s start understanding

how conversion is done.

Octal to Decimal Conversion

The process of converting octal to decimal is the same as binary to decimal. The process starts from
multiplying the digits of octal numbers with its corresponding positional weights. And lastly, we add all
those products.

Let’s take an example to understand how the conversion is done from octal to decimal.

BCA I YEAR I SEMESTER

26
Rahul Publications

Rahul Publications

Example 1: (152.25)8

Step 1: We multiply each digit of 152.25 with its respective positional weight, and last we add the
products of all the bits with its weight.

(152.25)8=(1×82)+(5×81)+(2×80)+(2×8-1)+(5×8-2)

(152.25)8=64+40+2+(2×1D 8)+(5×1D 64)

(152.25)8=64+40+2+0.25+0.078125

(152.25)8=106.328125

So, the decimal number of the octal number 152.25 is 106.328125

Octal to Binary Conversion

The process of converting octal to binary is the reverse process of binary to octal. We write the three
bits binary code of each octal number digit.

Example 1: (152.25)8

We write the three-bit binary digit for 1, 5, 2, and 5.

(152.25)8=(001101010.010101)2

So, the binary number of the octal number 152.25 is (001101010.010101)2

Octal to hexadecimal conversion

For converting octal to hexadecimal, there are two steps required to perform, which are as follows:

1. In the first step, we will find the binary equivalent of number 25.

2. Next, we have to make the pairs of four bits on both sides of the binary point. If there will be one,
two, or three bits left in a pair of four bits pair, we add the required number of zeros on extreme
sides and write the hexadecimal digits corresponding to each pair.

Example 1: (152.25)8

Step 1: We write the three-bit binary digit for 1, 5, 2, and 5.

(152.25)8=(001101010.010101)2

So, the binary number of the octal number 152.25 is (001101010.010101)2

Step 2:

1. Now, we make pairs of four bits on both sides of the binary point.

0 0110 1010.0101 01

On the left side of the binary point, the first pair has only one digit, and on the right side, the
last pair has only two-digit. To make them complete pairs of four bits, add zeros on extreme
sides.

0000 0110 1010.0101 0100

2. Now, we write the hexadecimal digits, which correspond to each pair.

(0000 0110 1010.0101 0100)2=(6A.54)16

UNIT - I PROGRAMMING IN C

27
Rahul Publications

Rahul Publications

1.2.3 Decimal

Q25. What is decimal number system?

Ans:
Decimal Number System

The decimal numbers are used in our day to day life. The decimal number system contains ten
digits from 0 to 9(base 10). Here, the successive place value or position, left to the decimal point holds
units, tens, hundreds, thousands, and so on.

The position in the decimal number system specifies the power of the base (10). The 0 is the
minimum value of the digit, and 9 is the maximum value of the digit. For example, the decimal number
2541 consist of the digit 1 in the unit position, 4 in the tens position, 5 in the hundreds position, and 2 in
the thousand positions and the value will be written as:

(2×1000) + (5×100) + (4×10) + (1×1)

(2×103) + (5×102) + (4×101) + (1×100)

2000 + 500 + 40 + 1

2541

Q26. Explain how to convert decimal to other number system

Ans:
Decimal to other Number System

The decimal number can be an integer or floating-point integer. When the decimal number is a
floating-point integer, then we convert both part (integer and fractional) of the decimal number in the
isolated form(individually). There are the following steps that are used to convert the decimal number
into a similar number of any base ’r’.

1. In the first step, we perform the division operation on integer and successive part with base ’r’. We
will list down all the remainders till the quotient is zero. Then we find out the remainders in reverse
order for getting the integer part of the equivalent number of base ’r’. In this, the least and most
significant digits are denoted by the first and the last remainders.

2. In the next step, the multiplication operation is done with base ’r’ of the fractional and successive
fraction. The carries are noted until the result is zero or when the required number of the equivalent
digit is obtained. For getting the fractional part of the equivalent number of base ’r’, the normal
sequence of carrying is considered.

Decimal to Binary Conversion

For converting decimal to binary, there are two steps required to perform, which are as follows:

1. In the first step, we perform the division operation on the integer and the successive quotient
with the base of binary(2).

2. Next, we perform the multiplication on the integer and the successive quotient with the base
of binary(2).

Example 1: (152.25)10

BCA I YEAR I SEMESTER

28
Rahul Publications

Rahul Publications

Step 1: Divide the number 152 and its
successive quotients with base 2.

152 / 2 76 0(LSB)

76 / 2 38 0

38 / 2 19 0

19 / 2 9 1

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1(MSB)

Operation Quotient Remainder

(152)10=(10011000)2

Step 2: Now, perform the multiplication of
0.27 and successive fraction with base 2.

0.25 2 0.50 0

0.50 2 0 1





Operation Result Carry

(0.25)10=(.01)2

1.2.4 Hexadecimal

Q27. What is hexa decimal number system?

Ans:
It is another technique to represent the

number in the digital system called the hexadecimal
number system. The number system has a base of
16 means there are total 16 symbols(0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F) used for representing
a number. The single-bit representation of decimal
values10, 11, 12, 13, 14, and 15 are represented
by A, B, C, D, E, and F. Only 4 bits are required for
representing a number in a hexadecimal number.
Each set of bits has a distinct value between 0 and

15. There are the following characteristics of the
octal number system:

Characteristics

1. It has ten digits from 0 to 9 and 6 letters from
A to F.

2. The letters from A to F defines numbers from
10 to 15.

3. It is also known as the base 16number system.

4. In hexadecimal number, the position of a digit
represents the 0 power of the base(16).
Example: 160

5. In hexadecimal number, the position of the
last digit represents the x power of the
base(16). Example: 16x, where x represents
the last position, i.e., 1

0000 0
0001 1

0010 2

0011 3
0100 4

0101 5
0110 6

0111 7
1000 8

1001 9
1010 A

1011 B

1100 C
1101 D

1110 E
1111 F

Binary Hexadecimal
Number Number

Examples

(FAC2)16, (564)16, (0ABD5)16, (1123)16,

(11F3)16.

UNIT - I PROGRAMMING IN C

29
Rahul Publications

Rahul Publications

Q28. Explain how to convert binary into hexa decimal.

Ans:

Binary to Hexadecimal Conversion

The base numbers of binary and hexadecimal are 2 and 16, respectively. In a binary number, the

pair of four bits is equal to one hexadecimal digit. There are also only two steps to convert a binary

number into a hexadecimal number which are as follows:

1. In the first step, we have to make the pairs of four bits on both sides of the binary point. If there will

be one, two, or three bits left in a pair of four bits pair, we add the required number of zeros on

extreme sides.

2. In the second step, we write the hexadecimal digits corresponding to each pair.

Example 1: (10110101011.0011)2

1. Firstly, we make pairs of four bits on both sides of the binary point.

111 1010 1011.0011

On the left side of the binary point, the first pair has three bits. To make it a complete pair of

four bits, add one zero on the extreme side.

0111 1010 1011.0011

2. Then, we write the hexadecimal digits, which correspond to each pair.

(011110101011.0011)2=(7AB.3)16

Q29. Explain, how can we convert a hexa decimal number system to other number systems

Ans :

Hexa-decimal to other Number System

Like binary, decimal, and octal, hexadecimal numbers can also be converted into other number

systems. The process of converting hexadecimal to decimal differs from the remaining one. Let’s start

understanding how conversion is done.

Hexa-decimal to Decimal Conversion

The process of converting hexadecimal to decimal is the same as binary to decimal. The process

starts from multiplying the digits of hexadecimal numbers with its corresponding positional weights. And

lastly, we add all those products.

Let’s take an example to understand how the conversion is done from hexadecimal to decimal.

Example 1: (152A.25)16

BCA I YEAR I SEMESTER

30
Rahul Publications

Rahul Publications

Step 1: We multiply each digit of 152A.25 with its respective positional weight, and last we add
the products of all the bits with its weight.

(152A.25)16 = (1×163)+(5×162)+(2×161)+(A×160)+(2×16-1)+(5×16-2)

(152A.25)16 = (1×4096)+(5×256)+(2×16)+(10×1)+(2×16-1)+(5×16-2)

(152A.25)16 = 4096+1280+32+10+(2×1D 16)+(5×1D 256)

(152A.25)16 = 5418+0.125+0.125

(152A.25)16 = 5418.14453125

So, the decimal number of the hexadecimal number 152A.25 is 5418.14453125

Hexadecimal to Binary Conversion

The process of converting hexadecimal to binary is the reverse process of binary to hexadecimal.
We write the four bits binary code of each hexadecimal number digit.

Example 1: (152A.25)16

We write the four-bit binary digit for 1, 5, A, 2, and 5.

(152A.25)16=(0001 0101 0010 1010.0010 0101)2

So, the binary number of the hexadecimal number 152.25 is (1010100101010.00100101)2

Hexadecimal to Octal Conversion

For converting hexadecimal to octal, there are two steps required to perform, which are as follows:

1. In the first step, we will find the binary equivalent of the hexadecimal number.

2. Next, we have to make the pairs of three bits on both sides of the binary point. If there will be one
or two bits left in a pair of three bits pair, we add the required number of zeros on extreme sides and
write the octal digits corresponding to each pair.

Example 1: (152A.25)16

Step 1: We write the four-bit binary digit for 1, 5, 2, A, and 5.

(152A.25)16=(0001 0101 0010 1010.0010 0101)2

So, the binary number of hexadecimal number 152A.25 is (0011010101010.010101)2

Step 2:

3. Then, we make pairs of three bits on both sides of the binary point.

001 010 100 101 010.001 001 010

4. Then, we write the octal digit, which corresponds to each pair.

(001010100101010.001001010)2=(12452.112)8

So, the octal number of the hexadecimal number 152A.25 is 12452.112

UNIT - I PROGRAMMING IN C

31
Rahul Publications

Rahul Publications

Q30. Convert (10A4.249)16 into binary, octal and decimal forms

Ans:

Base 16 to decimal calculation

(10A4.249)16 = (1 × 163) + (0 × 162) + (10 × 161) + (4 × 160) + (2 × 16-1) + (4 × 16-2) +

(9 × 16-3) = (4260.142822265625)10

Decimal to base 2 calculation

Multiply the number with the base raised to the power of decimals in result:

4260.142822265625×25 = 136324.5703125

Divide by the base to get the digits from the remainders

= (1000010100100.001001001001)2

BCA I YEAR I SEMESTER

32
Rahul Publications

Rahul Publications

Decimal to base 8 calculation
Multiply the number with the base raised to the power of decimals in result:
4260.142822265625×85 = 139596360

Divide by the base to get the digits from the remainders

= (10244.1111)8

1.3 INTRODUCTION TO C LANGUAGE

1.3.1 Background

Q31. What Is C Language? Why C Is Called Mother Language?

Ans:
The C Language is developed by Dennis Ritchie for creating system applications that directly interact

with the hardware devices such as drivers, kernels, etc.

C programming is considered as the base for other programming languages, that is why it is known
as mother language.

It can be defined by the following ways :

1) C as a mother language

C language is considered as the mother language of all the modern programming languages
because most of the compilers, JVMs, Kernels, etc. are written in C language, and most of the
programming languages follow C syntax, for example, C++, Java, C#, etc.

It provides the core concepts like the array, strings, functions, file handling, etc. that are being
used in many languages like C++, Java, C#, etc.

UNIT - I PROGRAMMING IN C

33
Rahul Publications

Rahul Publications

2) C as a system programming language
A system programming language is used to create system software. C language is a system
programming language because it can be used to do low-level programming (for example driver
and kernel). It is generally used to create hardware devices, OS, drivers, kernels, etc. For example,
Linux kernel is written in C.
It can’t be used for internet programming like Java, .Net, PHP, etc.

3) C as a procedural language
A procedure is known as a function, method, routine, subroutine, etc. A procedural language specifies
a series of steps for the program to solve the problem.
A procedural language breaks the program into functions, data structures, etc.
C is a procedural language. In C, variables and function prototypes must be declared before being
used.

4) Cas a structured programming language
A structured programming language is a subset of the procedural language. Structure means to
break a program into parts or blocks so that it may be easy to understand.
In the C language, we break the program into parts using functions. It makes the program easier to
understand and modify.

5) C as a mid-level programming language
C is considered as a middle-level language because it supports the feature of both low-level and
high-level languages. C language program is converted into assembly code, it supports pointer
arithmetic (low-level), but it is machine independent (a feature of high-level).
A Low-level language is specific to one machine, i.e., machine dependent. It is machine dependent,
fast to run. But it is not easy to understand.
A High-Level language is not specific to one machine, i.e., machine independent. It is easy to
understand.

Q32. Explain the features of C language.

Ans :
C is the widely used language. It provides many features that are given below

C Language
Memory

Faster

Pointers Recursion

Rich library

Structured

Portable Mid-level

Management

Simple

Extensible

BCA I YEAR I SEMESTER

34
Rahul Publications

Rahul Publications

1) Simple

C is a simple language in the sense that it provides a structured approach (to break the problem

into parts), the rich set of library functions, data types, etc.

2) Machine Independent or Portable

Unlike assembly language, c programs can be executed on different machines with some machine

specific changes. Therefore, C is a machine independent language.

3) Mid-level programming language

Although, C is intended to do low-level programming. It is used to develop system applications

such as kernel, driver, etc. It also supports the features of a high-level language. That is why it is

known as mid-level language.

4) Structured programming language

C is a structured programming language in the sense that we can break the program into parts

using functions. So, it is easy to understand and modify. Functions also provide code reusability.

5) Rich Library

C provides a lot of inbuilt functions that make the development fast.

6) Memory Management

It supports the feature of dynamic memory allocation. In C language, we can free the allocated

memory at any time by calling the free() function.

7) Speed

The compilation and execution time of C language is fast since there are lesser inbuilt functions and

hence the lesser overhead.

8) Pointer

C provides the feature of pointers. We can directly interact with the memory by using the pointers.

We can use pointers for memory, structures, functions, array, etc.

9) Recursion

In C, we can call the function within the function. It provides code reusability for every function.

Recursion enables us to use the approach of backtracking.

10) Extensible

C language is extensible because it can easily adopt new features.

UNIT - I PROGRAMMING IN C

35
Rahul Publications

Rahul Publications

1.3.2 C Programs

Q33. What is the general structure of ‘C’ program and explain with example?

Ans:
Structure of C program

Documentation section

Link section

Definition section

Global declaration section

}

Sub Program Section

(User defined functions)

Declaration part

Executable part

Function 1

Function 2

Function n

.......

This section consists of a set of comment lines giving the name of the program, and other details. In
which the programmer would like to user later.

Ex: /*………………………*/

Link section: Link section provides instructions to the compiler to link functions from thesystem
library.

Ex: # include<stdio.h>

include<conio.h>

Definition section: Definition section defines all symbolic constants.

Ex: # define A 10.

Global declaration section

Some of the variables that are used in more than one functionthroughout the program are called
global variables and declared outside of all the functions. This section declares all the user-defined functions.

Every C program must have one main () function section. This contains two parts.

BCA I YEAR I SEMESTER

36
Rahul Publications

Rahul Publications

(i) Declaration part: This part declares all the variables used in the executable part.

Ex: inta,b;

(ii) Executable part: This part contains at least one statement .These two parts must appearbetween
the opening and closing braces. The program execution begins at the opening brace and ends at
the closing brace. All the statements in the declaration and executable parts end with a semicolon
(;).

Sub program section

This section contains all the user-defined functions, that are called in the main () function. User-
defined functions generally places immediately after the main() function, although they may appear in
any order.

Ex:

1.3.3 Identifiers

Q34. What are the identifiers in C language. Give the rules to create identifires

Ans:
In C language identifiers are the names given to variables, constants, functions and user-define

data. These identifier are defined against a set of rules.

Rules for an Identifier

1. An Indetifier can only have alphanumeric characters(a-z , A-Z , 0-9) and underscore(_).

2. The first character of an identifier can only contain alphabet(a-z , A-Z) or underscore (_).

3. Identifiers are also case sensitive in C. For example name and Name are two different identifier
in C.

UNIT - I PROGRAMMING IN C

37
Rahul Publications

Rahul Publications

4. Keywords are not allowed to be used as Identifiers.

5. No special characters, such as semicolon, period, whitespaces, slash or comma are permitted to be
used in or as Identifier.

Types of identifiers

 Internal identifier

 External identifier

Internal Identifier

If the identifier is not used in the external linkage, then it is known as an internal identifier. The
internal identifiers can be local variables.

External Identifier

If the identifier is used in the external linkage, then it is known as an external identifier. The external
identifiers can be function names, global variables.

Differences between Keyword and Identifier

Keyword Identifier

Keyword is a pre-defined word The identifier is a user - defined word

It must be written in a lowercase letter. It can be written in both lowercase and

uppercase letters.

Its meaning is pre-defined in and c Its meaning is not defined in the c compiler.

compiler

It is a combination of alphabetical It is a combination of alphanumeric characters.

characters.

It does not contain the underscore Itc can contain the underscore character.

character.

Let’s understand through an example.
int main()

{

 int a=10;
 int A=20;

 printf(“Value of a is : %d”,a);

 printf(“\nValue of A is :%d”,A);
 return 0;

}

Output
Value of a is : 10

Value of A is :20

The above output shows that the values of both the variables, ‘a’ and ‘A’ are different. Therefore,
we conclude that the identifiers are case sensitive.

BCA I YEAR I SEMESTER

38
Rahul Publications

Rahul Publications

1.3.4 Data Types

Q35. What are known as data types

Ans:
Data type is the type of the data that are going to access within the program. C supports different

data types. Each data type may have pre-defined memory requirement and storage representation. C
supports 4 classes of data types.

1. Primary or (fundamental) data type(int, char, float, double)

2. User-defined data type(type def)

3. Derived data type(arrays, pointers, structures, unions)

4. Empty data type(void)- void type has no value.

1 byte = 8 bits (0’s and 1’s)

Q36. Explain data types in ‘C’?

Ans:
1. Primary or (fundamental) data type

All C compilers support 4 fundamentals data types, they are

1. Integer (int)

2. Character(char)

3. Floating (float)

4. Double precision floating point(double)

1. Integer types

Integers are whole numbers with a range of values supported by a particular machine. Integers
occupy one word of storage and since the word size of the machine vary. If we use 16 bit word
length the size of an integer value is -32768 to +32767. In order to control over the range of
numbers and storage space, C has 3 classes of integer storage, namely short, long, and unsigned.

2. Character type

Single character can be defined as a character (char) type data. Characters are usually stored
in 8bits of internal storage. Two classes of char types are there.

Signed char, unsigned char.

Signed char(or) char 1 byte- -128 to +127 % c Unsigned char 1 byte 0 to 255% c

3. Floating point types

Floating point (real) numbers are stored in 32 bits, with 6 digits of precision when accuracy
provided by a float number is not sufficient

Float 4 bytes3, .4e-38 to 3.4e+38%f

4. Double precision type

Double data type number uses 64 bits giving a precision of 14 digits. These are known as
double precision no.s. Double type represents the same data type that float represents, but
with a greater precision. To extend the precision further, we may we long double which uses
80 bits.

double 8 bytes 1.7e-308 to 1.7e+308% lf

long double 10 bytes 3.4e-4932 to 1.1e+4932% lf

UNIT - I PROGRAMMING IN C

39
Rahul Publications

Rahul Publications

Variable Type Keyword Bytes Range Format

Required

Character Char 1 –128 to + 127 %c

(signed)

Integer Int 2 –32768 to + 32767 %d

(signed)

Float Float 4 –3.4e38 to +3.4e38 %f

(signed)

Double Double 8 -1.7e308 to + 1.7e308 %1f

Long integer Long 4 2,147, 483, 648 to %1d

(signed) 2,147,438,647

Character Unsigned char 1 0 to 225 %c

(unsigned)

Integer Unsigned int 2 0 to 65535 %u

(unsigned)

Unsigned long unsigned long 4 0 to 4,294, 967,295 %du

Integer

Long double Long double 10 -1.7e932 to+1.7e932 %Lf

2. User defined data types:

C –supports a feature known as “type definition” that allows users define an identifier that would
represents an existing type.

Ex: typedef data-type identifier;

Where data-type indicates the existing datatype

Identifier indicates the new name that is given to the data type.

Ex: typedefint marks;

Marks m1, m2, m3;

typedefcont create a new data type ,it can rename the existing datatype. The main advantage of
typedef is that we can create meaningful datatype names for increasing the readability of the program.

Another user-defined datatype is “enumerated data type(enum)”

Syntax : enumidentifier{value1, value2,……….valuen}

Where identifier is user-defined datatype which is used to declare variables that can have one of the
values enclosed within the braces. Value1 ,value2,.valuen all these are known as enumeration
constants.

Ex: enum identifier v1, v2,……vn

V1=value3;

V2=value1;………

Ex: enum day {Monday,Tuesday…………. sunday};

BCA I YEAR I SEMESTER

40
Rahul Publications

Rahul Publications

Enum day week-f,week-end

 Week-f = Monday

(or)

enum day{Monday…Sunday}week-f, week-end;

1.3.5 Variables

Q37. What is a variable? and write the rules for constructing variable?

Ans:
Variables

It is a data name that may be used to store a data value. It cont be changed during theexecution of
a program. A variable may taken different values at different times during execution.

Rules

Variable names may consist of letters, digits and under score(_) character.

 First char must be an alphabet or an ‘-’

 Length of the variable cont exceed upto 8 characters, some C compilers can be recognized upto 31
characters.

 No , and no white space, special symbols allowed.

 Variables name should not be a keyword.

 Both upper & lower case letters are used.

• Ex:- mark,sum1,tot-value,delhi are valid

• Prics$, group one, char are invalid

Q38. How to declare and initialize a variable?

Ans: (Imp.)

Declaration does two things

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

The syntax for declaring a variable is as follows:

Data-type v1,v2,…….,vn;

V1,v2,…vn are the names of variables. Variables are separated by commas. A declaration statement
must end with a semicolon. For example , valid declarations are:

int count;

int number, total;

double ratio;

The simplest declaration of a variable is shown in the following code fragment:

UNIT - I PROGRAMMING IN C

41
Rahul Publications

Rahul Publications

Ex:

main()/*…………….Program Name……………..*/

{

/*……………….Declaration…………………………..*/

floatx,y;

int code;

shortint count;

longint amount;

double deviation;

unsigned n;

char c;

/*…………………………Computation…………………………*/

 /*…………………………Program ends…………………..*/

Initialization of variable

Initialize a variable in c to assign it a starting value. Without this we can’t get whatever happened to
memory at that moment.

C does not initialize variables automatically. So if you do not initialize them properly, you can get
unexpected results. Fortunately, C makes it easy to initialize variables when you declare them.

For Example :

int x=45;

intmonth_lengths[] = {23,34,43,56,32,12,24};

structrole = { “Hamlet”, 7, FALSE, “Prince of Denmark “, “Kenneth Branagh”};

Note : The initialization of variable is a good process in programming.

1.3.6 Constants

Q39. Describe the different types of constants in C with example?

(OR)

What are the rules for creating C constants explain with example?

Ans :
Types of C Constants

1. Integer constants

2. Real constants

3. Character constants

4. String constants

BCA I YEAR I SEMESTER

42
Rahul Publications

Rahul Publications

1. Integer constants

An integer constant refers to a sequence of
digits. There are three types ofintegers,
namely, decimal integer, octal integer and
hexadecimal integer.

Examples of Integer Constant:

426 ,+786 , -34(decimal integers)

037, 0345, 0661(octal integers)

0X2, 0X9F, 0X (hexadecimal integers)

2. Real constants

These quantities are represented by numbers
containing fractional parts like 18.234. Such
numbers are called real (or floating point)
constants.

Examples of Real Constants:

+325.34

426.0

– 32.67 etc.

The exponential form of representation of real
constants is usually used if the value of the
constant is either too small or too large. In
exponential form of representation the Real
Constant is represented in two parts. The first
part present before ‘e’ is called Mantissa and
the part following ‘e’ is called Exponent.

For ex. .000342 can be written in Exponential
form as 3.42e-4.

3. Single Character constants

Single character constant contains a single
character enclosedwithin a pair of single quote
marks.

For ex. ‘A’,’5’,’;’,’ ‘

Note that the character constant’5’ is not same
as the number 5. The last constant is a blank
space.Character constant has integer values
known as ASCII values. For example, the
statement

Printf(“%d”,a); would print the number
97,the ASCII value of the letter a. Similarly,
thestatement printf(“%c”,97); would output
the letter ‘a’

String constants

A string constant is a sequence of character
enclosed in double quotes. thecharacters may be
letters, numbers, special characters and blank space.

Examples are:

“HELLO!”

“1979”

“welcome”

“?.......!”

“5+3”

“X”

Rules of Constructing Integer Constants

(a) an integer constant must have at least one
digit.

(b) It must not have a decimal point.

(c) It can be either positive or negative.

(d) The allowable range for constants is -32768
to 32767

In fact the range of integer constants depends
upon compiler.

For ex. 435

+786

-7000

Rules of Constructing Real Constants

(a) A real constants must have at least one digit

(b) it must have a decimal point.

(c) it could be either positive or negative.

(d) default sign is positive.

For ex. +325.34 426.0

In exponential form of representation, the
real constants is represented in two parts. The part
appearing before ‘e’ is called mantissa where as the
part following ‘e’ is called exponent.

Range of real constants expressed in
exponential form is -3.4e38 to 3.4e38.

Ex. +3.2e-5

UNIT - I PROGRAMMING IN C

43
Rahul Publications

Rahul Publications

Rules of Constructing Character Constants

(a) A character constant is a single alphabet, a
single digit or a single special symbol enclosed
within single inverted commas.

(b) The maximum length of character constant
can be one character.

Ex : ‘A’

1.3.7 Input / Output Statements

Q40. Explain standard I/O functions in C

Ans : (Imp.)

C Input output function

C programming language provides many of
the built-in functions to read given input and write
data on screen, printer or in any file.

scanf() and printf() functions

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

printf(“Enter a value”);

scanf(“%d”,&i);

printf(“\nYou entered: %d”,i);

getch();

}

When you will compile the above code, it will
ask you to enter a value. When you will enter the
value, it will display the value you have entered.

Note

printf() function returns the number of
characters printed by it, and scanf() returns the
number of characters read by it.

int i = printf(“study C “);

In this program i will get 12 as value,
because studytonight has 12 characters.

getchar() &putchar() functions

The getchar() function reads a character
from the terminal and returns it as an integer. This
function reads only single character at a time. You
can use this method in the loop in case you want to
read more than one characters. The putchar()
function prints the character passed to it on the
screen and returns the same character. This function
puts only single character at a time. In case you
want to display more than one characters, use
putchar() method in the loop.

#include <stdio.h>

#include <conio.h>

void main()

{

int c;

printf(“Enter a character”);

 c=getchar();

putchar(c);

getch();

}

When you will compile the above code,it will
ask you to enter a value. When you will enter the
value, it will display the value you have entered.

gets() & puts() functions

The gets() function reads a line from
stdin into the buffer pointed to by s until either a
terminating newline or EOF (end of fi le).
The puts() function writes the string s and a
trailing newline to stdout.

#include<stdio.h>

#include<conio.h>

void main()

{

charstr[100];

printf(“Enter a string”);

gets(str);

puts(str);

getch();

}

BCA I YEAR I SEMESTER

44
Rahul Publications

Rahul Publications

When you will compile the above code,it will
ask you to enter a string. When you will enter the
string, it will display the value you have entered.

1.3.8 Arithmetic Operators

Q41. What is an operator and List different
categories of C operators based on their
functionality? Give examples?

Ans:
Operators

An operator is a symbol performs certain
mathematical or logical manipulations. Operators
are used in programs to manipulate data variables.

C operators can be classified into a number
of categories, they are

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise Operators

8. Special operators

1. Arithmetic Operators

The arithmetic operators are

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

Here a and b are operands, assign values for
a=14 and b=4 we have the following results

a – b = 10

a+b = 18 a*b = 56

a/b = 3(coefficient) a%b = 2(remainder)

2. Relational Operators:

Relational operators are used for comparing
two quantities, and take certain decision. For
example we may compare the age of two
persons or the price of two items….these
comparisons can be done with the help of
relational operators.

An expression containing a relational operator
is termed as a relational expression. The value
of a relational expression is either one or zero.
It is one if the specified relation is true and
zero if the relation is false.

Ex:- 13<34 (true) 23>35(false)

C supports 6 relational operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than t

>= is greater than or equal to

== is equal to

!= is not equal to

Ex: 4.5<=10(true)

6.5<-10(false)

10<4+12(true)

When arithmetic expression are used on either
side of a relational operator, the arithmetic
expression will be evaluated first and then the
results compared, that means arithmetic
operators have a higher priority over
relational operators.

3. Logical Operator

C has 3 logical operators. The logical
operators are used when we want to test more
than one condition and make decisions.

Operator Meaning

&& Logical AND

|| Logical OR

Logical NOT

UNIT - I PROGRAMMING IN C

45
Rahul Publications

Rahul Publications

The logical operators && and || are used
when we test more than one condition and make
decisions.

Ex:- a>b && x==45

This expression combines two or more
relational expressions, is termed as a logical
expression or a compound relational expression.
The logical expression given above is true only if
a>b is true and x==10 is true. if both of them are
false the expression is false.

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

OP1 OP2 & &

Some examples of logical expression

1. if (age >55 && salary<1000)

2. if(number<0  number>100)

4. Assignment operator

These operators are used to assign the result
of an expression to a variable. The usual
assignment operator is ‘=’

V op = exp;

Where v is a variable, exp is an expression
and op is a C binary arithmetic operator. The
operator op=is known as the shorthand
assignment operator.

The assignment statement is V op=exp;

Ex: X= X+(Y+1);

a*=a; - - - - -a=a*a;

5. Increment and Decrement operator

++ and - - are increment and decrement
operators in C. The operator ++ adds 1 to
the operand, while - - subtracts 1.both are
unary operators.

++m; or m++; is equal to m=m+1
(m+=1;) --- m; or m- - is equal to m=m-
1(m- = 1;)

We use the increment and decrement
statements in for and while loops extensively.

Ex:- m=5;

Y=++m; the value of y=6 and m =6.
Suppose if we write the above statement as
m=5; y= m++; the value of y=5 and
m=6.
A prefix operator first adds 1 to the operand
and then the result is assigned to the variable
on left. On the other hand, a postfix operator
first assigns the value to the variable on left
and then increments the operand.

6. Conditional operator
A ternary operator pair”? :” is available in C
to construct conditional expressions of the
form
exp ?exp : exp3
Where exp1,exp2 and exp3 are expressions,
The operator?: works as follows: exp1 is
evaluated first. If it is non-zero (true), then
the
expressionexp 2 is evaluated and becomes
the value of the expression. If exp1 is false,
exp3 is
evaluated and its value becomes the value of
the expression.
Ex:- a=10; b=45;
X = (a>b) ?a:b;
o/p:- X value of b (45).

7. Bitwise Operator:
C supports a special operator knows as bitwise
operators for manipulation of data at bit
level.These operators are used for testing the
bits, or shifting them right to left. Bitwise
operators may not be applied to float or
double.

Operator Meaning

& Bitwise AND

| Bitwise OR

ˆ Bitwise exclusive OR

<< Shift left

>> Shift right

8. Special operators

C supports some special operators such as
comma operator, size of operator, pointer
operator (&and *) and member selection
operators (. and ->).

BCA I YEAR I SEMESTER

46
Rahul Publications

Rahul Publications

The comma operator: The comma operator is used to link the related expression together. Acomma
linked list of expressions is evaluated left to right and the value of right- most expression is the value
of the combined expression.
For example, the statement Value = (x=10, y=5, x+y);
In for loops: for (n=1 , m=10, n<=m; n++, m++);
The sizeof operator: The sizeof is a compile time operator and when used with an operand, itreturns
the number of bytes the operand occupies. The operand may be variable, a constant or a data type
qualifier.
m = sizeof (sum);
n = sizeof (long int);
The sizeof operator is normally used to determine the lengths of arrays and structures when their
sizes are not known to the programmer. It is also used to allocate memory space dynamically to
variables during execution of a program.

1.4 EXPRESSIONS

1.4.1 Evaluating Expressions
Q42. How to evaluate C Expresion ? Expalin with the help of an example

Ans:
Expression evaluation

In c language expression evaluation is mainly depends on priority and associativity.
Priority

This represents the evaluation of expression starts from “what” operator.
Associativity

It represents which operator should be evaluated first if an expression is containing more than one
operator with same priority.

     , , 1 Left to right

, ,! 2 Right to left

*, /,% 3 Left to right

, 4 Left to right

, , , , ,! 5 Left toright

& & 6 Left to right

7 Left to right

? : 8 Right to left

, , ,* , / ,% 9 Right

  

 

     

       



Operator Priority Associativity

 to left

UNIT - I PROGRAMMING IN C

47
Rahul Publications

Rahul Publications

Example 1

Example 2

1.4.2 Precedence And Associativity Of Operators
Q43. Define precedence and associativity? Give an example?

(OR)
Explain the hierarchy (priority) and associativity(clubbing)of operators in ‘C’ with
example?

Ans:
Operator Precedence

Various relational operators have different priorities or precedence. If an arithmetic expression
contains more operators then the execution will be performed according to their properties. The precedence
is set for different operators in C.

BCA I YEAR I SEMESTER

48
Rahul Publications

Rahul Publications Important note

 Precedence rules decide the order in which different operators are applied. Associativity rule decides
the order in which multiple occurrences of the same level operator are applied.

Hierarchy Of Operations In C

There are some operators which are given bellow with their mean. The higher the position of an
operator is, higher is its priority.

Operator Type

! Logical NOT

*/ % Arithmetic and modulus

+ - Arithmetic

<><=>= Relational

==!= Relational

&& Logical AND

 Logical OR

= Assignment

Associativity Of Operator

When an expression contains two operators of equal priority the tie between them is settled using
the associatively of the operators.

Associatively can be of two types—Left to Right or Right to Left.

Left to Right associatively means that the left operand must be unambiguous. Unambiguous in
what sense? It must not be involved in evaluation of any other sub-expression. Similarly, in case of
Right to Left associatively the right operand must be unambiguous. Let us understand this with an
example.

Consider the expression a = 3 / 2 * 5 ;

UNIT - I PROGRAMMING IN C

49
Rahul Publications

Rahul Publications

Here there is a tie between operators of same priority, that is between / and *. This tie is settled using
the associatively of / and *. But both enjoy Left to Right associatively.

While executing an arithmetic statement, which has two or more operators, we may have some
problem as to how exactly does it get executed.

Priority Operators Description

1st *, / , % multiplication,division,modular

2nd +, - addition,

subtraction

3rd = Assignment

For Example

i= 2*3/4+4/4+8-2+5/8 i=6/4+4+8-2+5/8

 i=1+4/4+8-2+5/8 i=1+1+8-2+5/8

i=1+1+8-2+0 i=2+8-2+0

i=10-2+0 i=8+0 i=8

Step 5: x = 10

1.4.3 Type Conversions

Q47. What is type conversion?

Ans :

Type conversions: converting a variable value or a constant value temporarily from one datatype to

other data type for the purpose of calculation is known as type conversion.

Q48. Explain the types of type conversions in C with example?

Ans : (Imp.)

There are two types of conversions

1. automatic type conversion (or) implicit

2. casing a value (or) explicit

1. Implicit

In this higher data type can be converted into lower data type.

 Float value can be converted into integral value by removing the fractional part.

 Double value can be converted into float value by rounding of the digits.

 Long int can be converted into int value by removing higher order bits.

BCA I YEAR I SEMESTER

50
Rahul Publications

Rahul Publications

2. Explicit

In this type of conversion, the programmer can convert one data type to other datatype explicitly.

Syntax: (datatype) (expression)

Expression can be a constant or a variable

Ex: y = (int) (a+b)

y= cos(double(x))

double a = 6.5

double b = 6.5

int result = (int) (a) + (int) (b)

result = 12 instead of 13.

int a=10

float(a)->10.00000

UNIT - I PROGRAMMING IN C

51
Rahul Publications

Rahul Publications

Short Question & Answers
1. Define computer?

Ans:
A computer is an electronic device that can

be programmed to accept data (input), process it
and generate result (output). A computer along with
additional hardware and software together is called
a computer system. A computer system primarily
comprises of a central processing unit, memory,
input/output devices, and storage devices. All these
components function together as a single unit to
deliver the desired output. A computer system
comes in various forms and sizes. It can vary from a
high-end server to a personal desktop, laptop, tablet
computer, or smartphone.

2. What is SDLC?

Ans:
Software Development Life Cycle (SDLC) is

a process used by the software industry to design,
develop and test high quality softwares. The SDLC
aims to produce a high-quality software that meets
or exceeds customer expectations, reaches
completion within times and cost estimates.

 SDLC is the acronym of Software
Development Life Cycle.

 It is also called as Software Development
Process.

 SDLC is a framework defining tasks
performed at each step in the software
development process.

 ISO/IEC 12207 is an international standard
for software life-cycle processes. It aims to be
the standard that defines all the tasks required
for developing and maintaining software.

3. What is Flowchart ?

Ans:
It is a symbolic diagram of operations

sequence, dataflow, control flow and processing
logic in information processing.

The symbols used are simple and easy to
learn.

It is a very helpful tool for programmers
and beginners.

Purpose of a Flowchart

 Provides Communication.

 Provides an Overview.

 Shows all elements and their relation ships.

 Quick method of showing Program flow.

 Checks Program logic.

 Facilitates Coding.

4. What is number system?

Ans :
In a digital system, the system can understand

only the optional number system. In these systems,
digits symbols are used to represent different values,
depending on the index from which it settled in the
number system.

In simple terms, for representing the
information, we use the number system in the digital
system.

The digit value in the number system is
calculated using:

1. The digit

2. The index, where the digit is present in the
number.

3. Finally, the base numbers, the total number
of digits available in the number system.

5. What is Binary Number System?

Ans:
Generally, a binary number system is used in

the digital computers. In this number system, it
carries only two digits, either 0 or 1. There are two
types of electronic pulses present in a binary number
system. The first one is the absence of an electronic
pulse representing ‘0’and second one is the presence
of electronic pulse representing ‘1’. Each digit is

BCA I YEAR I SEMESTER

52
Rahul Publications

Rahul Publications

known as a bit. A four-bit collection (1101) is known
as a nibble, and a collection of eight bits (11001010)
is known as a byte. The location of a digit in a binary
number represents a specific power of the base (2)
of the number system.

6. What is decimal number system?

Ans:
Decimal Number System

The decimal numbers are used in our day to
day life. The decimal number system contains ten
digits from 0 to 9(base 10). Here, the successive
place value or position, left to the decimal point
holds units, tens, hundreds, thousands, and so on.

The position in the decimal number system
specifies the power of the base (10). The 0 is the
minimum value of the digit, and 9 is the maximum
value of the digit.

7. What is hexa decimal number system?

Ans:
It is another technique to represent the

number in the digital system called the hexadecimal
number system. The number system has a base of
16 means there are total 16 symbols(0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F) used for representing
a number. The single-bit representation of decimal
values10, 11, 12, 13, 14, and 15 are represented
by A, B, C, D, E, and F. Only 4 bits are required for
representing a number in a hexadecimal number.

8. What Is C Language? Why C Is Called
Mother Language?

Ans:
The C Language is developed by Dennis

Ritchie for creating system applications that directly
interact with the hardware devices such as drivers,
kernels, etc.

C programming is considered as the base for
other programming languages, that is why it is
known as mother language.

It can be defined by the following ways :

1) C as a mother language

C language is considered as the mother
language of all the modern programming
languages because most of the compilers,
JVMs, Kernels, etc. are written in C language,
and most of the programming languages
follow C syntax, for example, C++, Java,
C#, etc.

It provides the core concepts like
the array, strings, functions, file handling,
etc. that are being used in many languages
like C++, Java, C#, etc.

2) C as a system programming language

A system programming language is used to
create system software. C language is a system
programming language because it can be
used to do low-level programming (for
example driver and kernel). It is generally
used to create hardware devices, OS, drivers,
kernels, etc. For example, Linux kernel is
written in C.

It can’t be used for internet programming like
Java, .Net, PHP, etc.

3) C as a procedural language

A procedure is known as a function, method,
routine, subroutine, etc. A procedural
language specifies a series of steps for the
program to solve the problem.

A procedural language breaks the program
into functions, data structures, etc.

C is a procedural language. In C, variables
and function prototypes must be declared
before being used.

4) Cas a structured programming language

A structured programming language is a
subset of the procedural language. Structure
means to break a program into parts or
blocks so that it may be easy to understand.

In the C language, we break the program into
parts using functions. It makes the program
easier to understand and modify.

UNIT - I PROGRAMMING IN C

53
Rahul Publications

Rahul Publications

9. What is a variable? and write the rules
for constructing variable?

Ans:
Variables

It is a data name that may be used to store a
data value. It cont be changed during theexecution
of a program. A variable may taken different values
at different times during execution.

Rules

Variable names may consist of letters, digits
and under score(_) character.

 First char must be an alphabet or an ‘-’

 Length of the variable cont exceed upto 8
characters, some C compilers can be
recognized upto 31 characters.

 No , and no white space, special symbols
allowed.

 Variables name should not be a keyword.

 Both upper & lower case letters are used.

• Ex:- mark,sum1,tot-value,delhi are valid

• Prics$, group one, char are invalid

10. Explain the types of type conversions in
C with example?

Ans :
There are two types of conversions

1. automatic type conversion (or) implicit

2. casing a value (or) explicit

1. Implicit

In this higher data type can be converted into
lower data type.

 Float value can be converted into integral
value by removing the fractional part.

 Double value can be converted into float
value by rounding of the digits.

 Long int can be converted into int value by
removing higher order bits.

2. Explicit

In this type of conversion, the programmer
can convert one data type to other datatype
explicitly.

Syntax: (datatype) (expression)

Expression can be a constant or a variable

Ex: y = (int) (a+b)

y= cos(double(x))

double a = 6.5

double b = 6.5

int result = (int) (a) + (int) (b)

result = 12 instead of 13.

int a=10

float(a)->10.00000

BCA I YEAR I SEMESTER

54
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Which of the following converts a C program’s source code into machine language: [a]

(a) compiler (b) Editor

(c) operating system (d) none of the above

2. The operating system manages [d]

(a) Memory (b) Processor

(c) Disk and I/O devices (d) All of the above

3. Which of the following is not a valid variable name declaration? [d]

(a) int __a3; (b) int __3a;

(c) int __A3; (d) None of the mentioned

4. Which of the following cannot be a variable name in C? [a]

(a) volatile (b) true

(c) friend (d) export

5. The correct order of evaluation for the expression “z = x + y * z / 4 % 2 – 1” [d]

(a) – * / % = + – (b) – / * % – + =

(c) — + = * % / (d) – * / % + – =

6. What is the size of an int data type? [d]

(a) 4 Bytes (b) 8 Bytes

(c) Depends on the system/compiler (d) Cannot be determined

7. Which of the datatypes have size that is variable? [b]

(a) int (b) struct

(c) float (d) double

8. Which of the following declaration is not supported by C? [a]

(a) String str; (b) char *str;

(c) float str = 3e2; (d) Both (a) and (c)

9. What is the value of x in this C code? [c]

#include<stdio.h>
void main()
{
int x = 5*9/3+9
}

(a) 3.75 (b) Depends on compiler
(c) 24 (d) 3

10. Relational operators cannot be used on: [a]
(a) structure (b) long
(c) strings (d) float

UNIT - I PROGRAMMING IN C

55
Rahul Publications

Rahul Publications

Fill in the blanks

1. A c program is basically a collection of

2. C language is well suited for programming.

3. A character instructs the computer to move the control to the next line.

4. C program execution begins from

5. Local variable which exists and retains its value even after the control is transferred to the calling
function is, storage class.

6. The operator “++” is know as operator..

7. The operator can be used to determine the length of array and structures.

8. The standard mathematical functions are included in the header file.

9. function can be used to read a single character..

10. Logical and is performed with operator..

ANSWERS

1. functions

2. Structure

3. newline

4. main ()

5. static

6. Increment

7. size of

8. math.n

9. getch()

10. &&

BCA I YEAR I SEMESTER

56
Rahul Publications

Rahul Publications

One Mark Answers
1. Personal Computing environment.

Ans:
The personal computer is a small computer with a microprocessor, designed for use by an individual,

used in the home, small businesses, etc.

2. Client /Server Environment.

Ans:
Client /Server computing environment split the computing function between central computer and

user computers. The client/server environment is divided into client and server.

3. High Level Languages.

Ans:
These are known as third generation programming language. High-level languages allow us to

write programs using instructions resembling everyday spoken language.

4. Binary Number System.

Ans:
Generally, a binary number system is used in the digital computers. In this number system, it carries

only two digits, either 0 or 1.

5. Octal number system.

Ans :
 There are only eight possible digit values to represent a number.

6. C Language.

Ans :
C programming is considered as the base for other programming languages, that is why it is known

as mother language.

7. Identifiers in C language.

Ans:
In C language identifiers are the names given to variables, constants, functions and user-define

data. These identifier are defined against a set of rules.

8. Data types

Ans:
Data type is the type of the data that are going to access within the program.

9. Operators

Ans:
An operator is a symbol performs certain mathematical or logical manipulations.

UNIT - II PROGRAMMING IN C

57
Rahul Publications

Rahul Publications

UNIT
II

Conditional Control Statements: Bitwise Operators, Relational and Logical
Operators, If, IfElse, Switch-Statement and Examples. Loop Control
Statements: For, While, Do-While andExamples. Continue, Break and Goto
statements
Functions: Function Basics, User-defined Functions, Inter Function
Communication, StandardFunctions, Methods of Parameter Passing.
Recursion- Recursive Functions.
Storage Classes: Auto, Register, Static, Extern, Scope Rules, and Type
Qualifiers

2.1 CONDITIONAL CONTROL STATEMENTS

2.1.1 Bitwise operators, Relational and Logical Operators

Q1. What is Operator? List out various types of Operators supported by C?

Ans : (Imp.)

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions.
C language is rich in built-in operators and provides the following types of operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Bitwise Operators

5. Ternary or Conditional Operators

6. Assignment Operator

7. Misc Operator

1. Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction, multiplication,
division etc on numerical values

The following table shows all the arithmetic operators supported by the C language. Assume
variable A holds 10 and variable B holds 20 then–

Operator Description Example

+ Adds two operands. A + B = 30

– Subtracts second operand from the first. A – B = – 10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

% Modulus Operator and remainder of after an integer division. B % A = 0

++ Increment operator increases the integer value by one. A++ = 11

– Decrement operator decreases the integer value by one. A – = 9

BCA I YEAR I SEMESTER

58
Rahul Publications

Rahul Publications

2. Relational Operators

A relational operator checks the relationship between two operands. If the relation is true, it returns
1; if the relation is false, it returns value 0.

The following table shows all the relational operators supported by C. Assume variable A hold 10
and variable B holds 20 then

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, (A == B) is not true.

then the condition becomes true.

!= Checks if the values of two operands are equal or not. If the (A != B) is true.

values are not equal, then the condition becomes true.

> Checks if the value of left operand is greater than the value of (A > B) is not true.

right operand. If yes, then the condition becomes true.

< Checks if the value of left operand is less than the value of (A < B) is true.

right operand. If yes, then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to (A >= B) is not true.

the value of right operand. If yes, then the condition becomes

true.

<= Checks if the value of left operand is less than or equal to the

value of right operand. If yes, then the condition becomes true.

3. Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression
results true or false. Logical operators are commonly used in decision making in C programming.

Following table shows all the logical operators supported by C language. Assume variable A holds
1 and variable B holds 0, then

Operator Description Example

&& Called Logical AND operator. If both the operands are (A && B) is false.

non-zero, then the condition becomes true.

|| Called Logical OR Operator. If any of the two operands (A || B) is true.

is non-zero, then the condition becomes true.

! Called Logical NOT Operator. It is used to reverse the !(A && B) is true.

logical state of its operand. If a condition is true, then

Logical NOT operator will make it false.

UNIT - II PROGRAMMING IN C

59
Rahul Publications

Rahul Publications

4. Bitwise Operators

During computation, mathematical operations like: addition, subtraction, multiplication, division,
etc are converted to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ is as
follows -

p q p & q p|q p q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1



The following table lists the bitwise operators supported by C. Assume variable ‘A’ holds 60 and
variable ‘B’ holds 13, then –

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in (A & B) = 12, i.e.,

both operands. 0000 1100

| Binary OR Operator copies a bit if it exists in either operand. (A | B) = 61, i.e.,

00111101

^ Binary XOR Operator copies the bit if it is set in one operand (A ^ B) = 49, i.e.,

but not both. 00110001

~ Binary One’s Complement Operator is unary and has the (~A) = ~(60), i.e,.

effect of ‘flipping’ bits. – 0111101

<< Binary Left Shift Operator. The left operands value is moved A << 2 = 240 i.e.,

left by the number of bits specified by the right operand. 11110000

>> Binary Right Shift Operator. The left operands value is moved A >> 2 = 15 i.e.,

right by the number of bits specified by the right operand. 00001111

5. Ternary (or) Conditional Operators

The conditional operator is also known as a ternary operator. The conditional statements are the
decision-making statements which depends upon the output of the expression. It is represented by two
symbols, i.e., ‘?’ and ‘’

As conditional operator works on three operands, so it is also known as the ternary operator.

The behavior of the conditional operator is similar to the ‘if-else’ statement as ‘if-else’ statement is
also a decision-making statement.

Syntax of a conditional operator

Expression1? expression2: expression3;

BCA I YEAR I SEMESTER

60
Rahul Publications

Rahul Publications
 In the above syntax, the expression1 is a Boolean condition that can be either true or false value.

 If the expression1 results into a true value, then the expression2 will execute.

 The expression2 is said to be true only when it returns a non-zero value.

 If the expression1 returns false value then the expression3 will execute.

 The expression3 is said to be false only when it returns zero value.

6. Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common assignment
operator is =

The following table lists the assignment operators supported by the C language –

Operator Description Example

= Simple assignment operator. Assigns values from right side C = A + B will assign the

operands to left side operand value of A + B to C

+= Add AND assignment operator. It adds the right operand to C += A is equivalent to

the left operand and assign the result to the left operand. C = C + A

– = Subtract AND assignment operator. It subtracts the right C – = A is equivalent to

operand from the left operand and assigns the result to C = C – A

the left operand.

*= Multiply AND assignment operator. It multiplies the right C *= A is equivalent to

operand with the left operand and assigns the result to C = C * A

the left operand.

/= Divide AND assignment operator. It divides the left C /= A is equivalent to

operand with the right operand and assigns the result to C = C / A

the left operand.

%= Modulus AND assignment operator. It takes modulus using C %= A is equivalent to

two operands and assigns the result to the left operand. C = C % A

UNIT - II PROGRAMMING IN C

61
Rahul Publications

Rahul Publications

<<= Left shift AND assignment operator. C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as

C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as

C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as

C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C|= 2 is same as C = C|2

7. Misc Operators sizeof& ternary

Besides the operators discussed above, there are a few other important operators
including sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.

& Returns the address of a variable. &a; returns the actual address of the variable.

* Pointer to a variable. *a;

? : Conditional Expression. If Condition is true ? then value X: otherwise valueY

Q2. Explain in detail Bitwise operators in C.

Ans :

The bitwise operators are the operators used to perform the operations on the data at the bit-level.
When we perform the bitwise operations, then it is also known as bit-level programming. It consists of two
digits, either 0 or 1. It is mainly used in numerical computations to make the calculations faster.

We have different types of bitwise operators in the C programming language. The following is the
list of the bitwise operators:

Operator Description

& Bitwise AND operator

| Bitwise OR operator

^ Bitwise exclusive OR operator

~ One’s complement operator (unary operator)

<< Left shift operator

>> Right shift operator

BCA I YEAR I SEMESTER

62
Rahul Publications

Rahul Publications

Let’s look at the truth table of the bitwise operators.

X Y X & Y X|Y X Y
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1



(i) Bitwise AND operator

Bitwise AND operator is denoted by the single ampersand sign (&). Two integer operands are
written on both sides of the (&) operator. If the corresponding bits of both the operands are 1, then the
output of the bitwise AND operation is 1; otherwise, the output would be 0.

For example,

We have two variables a and b.

a =6;

b=4;

The binary representation of the above two variables are given below:

a = 0110

b = 0100

When we apply the bi twi se AND opera t ion in the above two var iab les ,

i .e . , a&b, the output would be :

Result = 0100

As we can observe from the above result that bits of both the variables are compared one by one.
If the bit of both the variables is 1 then the output would be 1, otherwise 0.

Let’s understand the bitwise AND operator through the program.

#include <stdio.h>

int main()

{

 int a=6, b=14; // variable declarations

 printf(“The output of the Bitwise AND operator a&b is %d”,a&b);

 return 0;

}

In the above code, we have created two variables, i.e., ‘a’ and ‘b’. The values of ‘a’ and ‘b’ are 6
and 14 respectively. The binary value of ‘a’ and ’b’ are 0110 and 1110, respectively. When we
apply the AND operator between these two variables,

a AND b = 0110 && 1110 = 0110

Output

UNIT - II PROGRAMMING IN C

63
Rahul Publications

Rahul Publications
(ii) Bitwise OR operator

The bitwise OR operator is represented by a single vertical sign (|). Two integer operands are
written on both sides of the (|) symbol. If the bit value of any of the operand is 1, then the output would
be 1, otherwise 0.

For example,

We consider two variables,

a = 23;

b = 10;

The binary representation of the above two variables would be:

a = 0001 0111

b = 0000 1010

When we apply the bitwise OR operator in the above two variables, i.e., a|b , then the
output would be:

Result = 0001 1111

As we can observe from the above result that the bits of both the operands are compared one by
one; if the value of either bit is 1, then the output would be 1 otherwise 0.

Let’s understand the bitwise OR operator through a program.

#include <stdio.h>

int main()

{

int a=23,b=10; // variable declarations

printf(“The output of the Bitwise OR operator a|b is %d”,a|b);

return 0;

}

Output

BCA I YEAR I SEMESTER

64
Rahul Publications

Rahul Publications
(iii) Bitwise exclusive OR operator

Bitwise exclusive OR operator is denoted by (^) symbol. Two operands are written on both sides
of the exclusive OR operator. If the corresponding bit of any of the operand is 1 then the output would be
1, otherwise 0.

For example,

We consider two variables a and b,

a = 12;

b = 10;

The binary representation of the above two variables would be:

a = 0000 1100

b = 0000 1010

When we apply the bitwise exclusive OR operator in the above two variables (a^b),
then the result would be:

Result = 0000 1110

As we can observe from the above result that the bits of both the operands are compared one by
one; if the corresponding bit value of any of the operand is 1, then the output would be 1 otherwise 0.

Let’s understand the bitwise exclusive OR operator through a program.

#include <stdio.h>

int main()

{

int a=12,b=10; // variable declarations

 printf(“The output of the Bitwise exclusive OR operator a^b is %d”,a^b);

 return 0;

}

Output

UNIT - II PROGRAMMING IN C

65
Rahul Publications

Rahul Publications
(iv) Bitwise shift operators

Two types of bitwise shift operators exist in C programming. The bitwise shift operators will shift the
bits either on the left-side or right-side. Therefore, we can say that the bitwise shift operator is divided into
two categories:

 Left-shift operator

 Right-shift operator

(v) Left-shift operator

It is an operator that shifts the number of bits to the left-side.

Syntax of the left-shift operator is given below:

Operand << n

Where,

Operand is an integer expression on which we apply the left-shift operation.

n is the number of bits to be shifted.

In the case of Left-shift operator, ‘n’ bits will be shifted on the left-side. The ‘n’ bits on the left side will
be popped out, and ‘n’ bits on the right-side are filled with 0.

For example,

Suppose we have a statement:

int a = 5;

The binary representation of ’a’ is given below:

a = 0101

If we want to left-shift the above representation by 2, then the statement would be:

a << 2;

0101<<2 = 00010100

Let’s understand through a program.

#include <stdio.h>

int main()

{

BCA I YEAR I SEMESTER

66
Rahul Publications

Rahul Publications

int a=5; // variable initialization

 printf(“The value of a<<2 is : %d ”, a<<2);

 return 0;

}

Output

Right-shift operator

It is an operator that shifts the number of bits to the right side.

Syntax of the right-shift operator is given below:

Operand >> n;

Where,

Operand is an integer expression on which we apply the right-shift operation.

N is the number of bits to be shifted.

In the case of the right-shift operator, ‘n’ bits will be shifted on the right-side. The ‘n’ bits on the
right-side will be popped out, and ‘n’ bits on the left-side are filled with 0.

For example,

Suppose we have a statement,

int a = 7;

The binary representation of the above variable would be:

a = 0111

If we want to right-shift the above representation by 2, then the statement would be:

a>>2;

0000 0111 >> 2 = 0000 0001

Let’s understand through a program.

#include <stdio.h>

int main()

{

int a=7; // variable initialization

 printf(“The value of a>>2 is : %d ”, a>>2);

UNIT - II PROGRAMMING IN C

67
Rahul Publications

Rahul Publications

 return 0;

}

Output

Q3. List and explain all the relational operators in C.

Ans :
Relational Operators are the operators used to create a relationship and compare the values of two

operands.

For example, there are two numbers, 5 and 15, and we can get the greatest number using the
greater than operator (>) that returns 15 as the greatest or larger number to the 5.

Types of Relational Operators

Following are the various types of relational operators in C.

(i) Equal To Operator (==)

It is used to compare both operands and returns 1 if both are equal or the same, and 0 represents
the operands that are not equal.

Syntax

1. Opr1 == Opr2

Let’s create a program to use the double equal to operator (==) for comparing the operands
value in C.

#include <stdio.h>

#include <math.h>

int main ()

{

int a = 5;

int b = 10;

BCA I YEAR I SEMESTER

68
Rahul Publications

Rahul Publications

// Use Equal To Operator

printf (“a == b : %d”, (a == b));

if (a == b)

printf (“\n %d is equal to %d”, a, b);

else

printf(“\n %d is not equal to%d”,a,b);

 int x = 5;

 int y = 5;

 // Use Equal To Operator

printf (“ \n x == y : %d”, (x == y));

 if (a == b)

printf (“ \n %d is equal to %d”, x, y);

 else

printf (“\n %d is not equal to %d”, x, y);

 return 0;

}

Output

a == b : 0

5 is not equal to 10

x == y : 1

5 is not equal to 5

(ii) Not Equal To Operator (!=)

The Not Equal To Operator is the opposite of the Equal To Operator and is represented as the (!=)
operator. The Not Equal To Operator compares two operands and returns 1 if both operands are
not the same; otherwise, it returns 0.

Syntax:

Opr1 != Opr2;

Let’s create a simple program to use the Not equal to (!=) operator for comparing the values of
variable in C.

#include <stdio.h>

#include <math.h>

int main ()

{

 int a = 5;

 int b = 10;

UNIT - II PROGRAMMING IN C

69
Rahul Publications

Rahul Publications

// Use Not Equal To (!=) Operator

printf (“ a != b : %d”, (a != b));

if (a != b)

printf (“\n %d is equal to %d”, a, b);

else

printf (“ \n %d is not equal to %d”, a, b);

 int x = 5;

int y = 5;

// Use Not Equal To (!=) Operator

printf (“ \n x != y : %d”, (x != y));

if (a != b)

 printf (“ \n %d is equal to %d”, x, y);

 else

printf (“\n %d is not equal to %d”, x, y);

return 0;

}

Output

a != b : 1

5 is equal to 10

x != y : 0

5 is equal to 5

(iii) Less than Operator (<)

It is used to check whether the value of the left operand is less than the right operand, and if the
statement is true, the operator is known as the Less than Operator.

Syntax:

A < B;

Here the operand A is less than operand B.

Let’s create a program to use the less-than operator (<) to compare the operand value in C.

#include <stdio.h>

int main ()

{

int num1, num2;

printf (“ Enter the value of num1: ”);

scanf (“ %d”, &num1);

BCA I YEAR I SEMESTER

70
Rahul Publications

Rahul Publications

printf (“ \n Enter the value of num2: ”);

 scanf (“ %d”, &num2);

 // use less than operator (<)

 if (num1 < num2)

 {

 printf (“ \n The value of num1 is less than num2.”);

 }

 else

 {

 printf (“ \n The value of num2 is less than num1.”);

 }

 return 0;

}

Output:

Enter the value of num1: 45

Enter the value of num2: 89

The value of num1 is less than num2.

(iv) Greater than Operator (>)

The operator checks the value of the left operand is greater than the right operand, and if the
statement is true, the operator is said to be the Greater Than Operator.

Syntax:

A > B;

Here, operand A is greater than operand B.

Let’s create a program to use the greater than operator (>) to compare the operand value in C.

#include <stdio.h>

int main ()

{

 int num1, num2;

 printf (“ Enter the value of num1: ”);

 scanf (“ %d”, &num1);

 printf (“ \n Enter the value of num2: ”);

 scanf (“ %d”, &num2);

 // use greater than operator (>)

 if (num1 > num2)

UNIT - II PROGRAMMING IN C

71
Rahul Publications

Rahul Publications

 {

 printf (“ \n The value of num1 is greater than num2.”);

 }

 else

 {

 printf (“ \n The value of num2 is greater than num1.”);

}

 return 0;

}

Output

Enter the value of num1: 20

Enter the value of num2: 30

The value of num2 is greater than num1.

(v) Less than Equal To Operator (<=)

The operator checks whether the value of the left operand is less than or equal to the right operand,
and if the statement is true, the operator is said to be the Less than Equal To Operator.

Syntax:

A <= B;

Here, operand A is less than or equal to operand B. So, it is a Less than Equal to Operator.

Let’s create a program to use the Less than Equal to operator (<=) to compare the operand value
in C.

Program5.c

#include <stdio.h>

int main ()

{

int num1, num2;

printf (“ Enter the value of num1: ”);

scanf (“ %d”, &num1);

 printf (“ \n Enter the value of num2: ”);

 scanf (“ %d”, &num2);

 // use less than equal to operator (<=)

 if (num1 < num2)

 {

 printf (“ \n The value of num1 is less than num2.”);

 }

BCA I YEAR I SEMESTER

72
Rahul Publications

Rahul Publications

 else if (num1 <= num2)

 {

 printf (“ \n The value of num1 is equal to num2.”);

 }

 else

 {

 printf (“ \n The value of num2 is less than num1.”);

 }

 return 0;

}

Output

Enter the value of num1: 45

Enter the value of num2: 45

The value of num1 is equal to num2.

(vi) Greater than Equal To Operator (>=)

The operator checks whether the left operand’s value is greater than or equal to the right operand.
If the statement is true, the operator is said to be the Greater than Equal to Operator.

Syntax:

A >= B;

Here, operand A is greater than equal to the right operand B. So, it is the Greater than Equal To
operator.

Let’s create a program to use the Greater than Equal To operator to compare the operand value
in C.

#include <stdio.h>

int main ()

{

 int num1, num2;

 printf (“ Enter the value of num1: ”);

 scanf (“ %d”, &num1);

 printf (“ \n Enter the value of num2: ”);

 scanf (“ %d”, &num2);

 // use greater than equal to operator (>=)

 if (num1 > num2)

 {

UNIT - II PROGRAMMING IN C

73
Rahul Publications

Rahul Publications

 printf (“ \n The value of num1 is greater than num2.”);

 }

 else if (num1 >= num2) // greater than operator (>=)

 {

 printf (“ \n The value of num1 is equal to num2.”);

 }

 else

 {

 printf (“ \n The value of num2 is greater than num1.”);

 }

return 0;

}

Output

Enter the value of num1: 28

Enter the value of num2: 79

The value of num2 is greater than num1.

Q4. Explain in detail Logical operators in C.

Ans : (Imp.)

These operators are used to perform logical operations on the given expressions.

 There are 3 logical operators in C language. They are, logical AND (&&), logical OR (||) and
logical NOT (!).

Operators Example/Description

&& (logical AND) (x>5)&&(y<5)It returns true when both conditions are true

|| (logical OR) (x>=10)||(y>=10)It returns true when at-least one of the condition is true

! (logical NOT) !((x>5)&&(y<5))It reverses the state of the operand “((x>5) && (y<5))”

If “((x>5) && (y<5))” is true, logical NOT operator makes it false

Example:

#include <stdio.h>

int main()

{

int m=40,n=20;

int o=20,p=30;

if (m>n && m !=0)

{

printf(“&& Operator : Both conditions are true\n”);

BCA I YEAR I SEMESTER

74
Rahul Publications

Rahul Publications

}

if (o>p || p!=20)

{

printf(“|| Operator : Only one condition is true\n”);

}

if (!(m>n && m !=0))

{

printf(“! Operator : Both conditions are true\n”);

}

else

{

printf(“! Operator : Both conditions are true. “ \

“But, status is inverted as false\n”);

}

}

OUTPUT:

&& Operator : Both conditions are true

|| Operator : Only one condition is true

! Operator : Both conditions are true. But, status is inverted as false

2.2 IF, IF-ELSE, SWITCH STATEMENTS AND EXAMPLES

Q5. What is the use of if-else statements in C ? List out various types of if statements.

Ans :
The if-else statement in C is used to perform the operations based on some specific condition. The

operations specified in if block are executed if and only if the given condition is true.

There are the following variants of if statement in C language.

 If statement

 If-else statement

 If else-if ladder

 Nested if

Q6. Explain in detail If statement with an example.

Ans :
The if statement is used to check some given condition and perform some operations depending

upon the correctness of that condition. It is mostly used in the scenario where we need to perform the
different operations for the different conditions. The syntax of the if statement is given below.

UNIT - II PROGRAMMING IN C

75
Rahul Publications

Rahul Publications

if(expression)

{

//code to be executed

}

Flowchart of if statement in C

Condition

If code

True

False

After If

Let’s see a simple example of C language if statement.

#include<stdio.h>

int main(){

int number=0;

printf(“Enter a number:”);

scanf(“%d”,&number);

if(number%2==0){

printf(“%d is even number”,number);

BCA I YEAR I SEMESTER

76
Rahul Publications

Rahul Publications

}

return 0;

}

Output

Enter a number:4

4 is even number

enter a number:5

Q7. Write a C program to find the largest of given three numbers.

Ans :
#include <stdio.h>

int main()

{

int a, b, c;

printf(“Enter three numbers?”);

scanf(“%d %d %d”,&a,&b,&c);

if(a>b && a>c)

{

printf(“%d is largest”,a);

}

 if(b>a && b > c)

 {

printf(“%d is largest”,b);

}

if(c>a && c>b)

{

printf(“%d is largest”,c);

 }

 if(a == b && a == c)

 {

printf(“All are equal”);

}

 }

Output

Enter three numbers?

12 23 34

34 is largest

UNIT - II PROGRAMMING IN C

77
Rahul Publications

Rahul Publications

Q8. Explain if – else statement with an example.

Ans :
If-else Statement

The if-else statement is used to perform two operations for a single condition. The if-else statement
is an extension to the if statement using which, we can perform two different operations, i.e., one is for the
correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice
that if and else block cannot be executed simultaneously. Using if-else statement is always preferable since
it always invokes an otherwise case with every if condition. The syntax of the if-else statement is given
below.

if(expression)

{

//code to be executed if condition is true

}

else

{

//code to be executed if condition is false

}

Flowchart of the if-else statement in C

Condition

If code else code

True

False

After If

BCA I YEAR I SEMESTER

78
Rahul Publications

Rahul Publications

Let’s see the simple example to check whether a number is even or odd using if-else statement in C
language.

#include<stdio.h>

int main(){

int number=0;

printf(“enter a number:”);

scanf(“%d”,&number);

if(number%2==0){

printf(“%d is even number”,number);

}

else{

printf(“%d is odd number”,number);

}

return 0;

}

Output

enter a number:4

4 is even number

enter a number:5

5 is odd number

Q9. Write a C program to check whether a person is eligible to vote or not?

Ans :
#include <stdio.h>

int main()

{

 int age;

 printf(“Enter your age?”);

 scanf(“%d”,&age);

 if(age>=18)

 {

 printf(“You are eligible to vote...”);

 }

 else

 {

UNIT - II PROGRAMMING IN C

79
Rahul Publications

Rahul Publications

 printf(“Sorry ... you can’t vote”);

 }

}

Output:

Enter your age?18

You are eligible to vote...

Enter your age?13

Sorry ... you can’t vote

Q10. Explain if-else-if ladder statement in C with an example.

Ans : (Imp.)

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario where
there are multiple cases to be performed for different conditions. In if-else-if ladder statement, if a condition
is true then the statements defined in the if block will be executed, otherwise if some other condition is true
then the statements defined in the else-if block will be executed, at the last if none of the condition is true
then the statements defined in the else block will be executed. There are multiple else-if blocks possible. It
is similar to the switch case statement where the default is executed instead of else block if none of the
cases is matched.

if(condition1)

{

//code to be executed if condition1 is true

}

else if(condition2)

{

//code to be executed if condition2 is true

}

else if(condition3)

{

//code to be executed if condition3 is true

}

...

Else

{

//code to be executed if all the conditions are false

}

BCA I YEAR I SEMESTER

80
Rahul Publications

Rahul Publications

Flowchart of else-if ladder statement in C

False

False

False

Condition-1

Condition-2

Condition-n

Statement-1 Statement-2 Statement-n Statement-s

True

Next Statement

True True

Fig.: else-if ladder

The example of an if-else-if statement in C language is given below.

#include<stdio.h>

int main(){

int number=0;

printf(“enter a number:”);

scanf(“%d”,&number);

if(number==10){

printf(“number is equals to 10”);

}

else if(number==50){

printf(“number is equal to 50”);

}

else if(number==100){

UNIT - II PROGRAMMING IN C

81
Rahul Publications

Rahul Publications

printf(“number is equal to 100”);

}

else{

printf(“number is not equal to 10, 50 or 100”);

}

return 0;

}

Output

enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

Q11. Write a C program to calculate the grade of a student according to the marks.

Ans :
#include <stdio.h>

int main()

{

 int marks;

 printf(“Enter your marks?”);

 scanf(“%d”,&marks);

 if(marks > 85 && marks <= 100)

 {

 printf(“Congrats ! you scored grade A ...”);

 }

 else if (marks > 60 && marks <= 85)

 {

 printf(“You scored grade B + ...”);

 }

 else if (marks > 40 && marks <= 60)

 {

 printf(“You scored grade B ...”);

 }

 else if (marks > 30 && marks <= 40)

 {

BCA I YEAR I SEMESTER

82
Rahul Publications

Rahul Publications

 printf(“You scored grade C ...”);

 }

 else

 {

 printf(“Sorry you are fail ...”);

 }

}

Output

Enter your marks?10

Sorry you are fail ...

Enter your marks?40

You scored grade C ...

Enter your marks?90

Congrats ! you scored grade A ...

Q12. Explain in detail switch statement in C.

Ans : (Imp.)

The switch statement in C is an alternate to if-else-if ladder statement which allows us to execute
multiple operations for the different possibles values of a single variable called switch variable. Here, We
can define various statements in the multiple cases for the different values of a single variable.

The syntax of switch statement in c language is given below:

switch(expression)

{

case value1:

//code to be executed;

break; //optional

case value2:

//code to be executed;

break; //optional

......

default:

code to be executed if all cases are not matched;

}

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

UNIT - II PROGRAMMING IN C

83
Rahul Publications

Rahul Publications

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break statement found
in the case, all the cases will be executed present after the matched case. It is known as fall
through the state of C switch statement.

Flowchart of switch statement in C

Unmatched

Unmatched

Unmatched

default

case-n

case-2

expression

case-1
Matched

Matched

Matched

Statement-1 break

break

break

break

Statement-2

Statement-n

Statement-s

Functioning of switch case statement

First, the integer expression specified in the switch statement is evaluated. This value is then matched
one by one with the constant values given in the different cases. If a match is found, then all the statements
specified in that case are executed along with the all the cases present after that case including the default

BCA I YEAR I SEMESTER

84
Rahul Publications

Rahul Publications

statement. No two cases can have similar values. If the matched case contains a break statement, then all
the cases present after that will be skipped, and the control comes out of the switch. Otherwise, all the
cases following the matched case will be executed.

Let’s see a simple example of c language switch statement.

#include<stdio.h>

int main()

{

int number=0;

printf(“enter a number:”);

scanf(“%d”,&number);

switch(number){

case 10:

printf(“number is equals to 10”);

break;

case 50:

printf(“number is equal to 50”);

break;

case 100:

printf(“number is equal to 100”);

break;

default:

printf(“number is not equal to 10, 50 or 100”);

}

return 0;

}

Output

enter a number:4

number is not equal to 10, 50 or 100

enter a number:50

number is equal to 50

UNIT - II PROGRAMMING IN C

85
Rahul Publications

Rahul Publications

Q13. What are the differences between If-else and switch statements.

Ans : (Imp.)

If-else switch

Definition Depending on the condition in the 'if'
statement, 'if' and 'else' blocks are
executed.

The user will decide which statement is to be
executed.

Expression It contains either logical or equality
expression.

It contains a single expression which can be either a
character or integer variable.

Evaluation It evaluates all types of data, such as
integer, floating-point, character or
Boolean.

It evaluates either an integer, or character.

Sequence of execution First, the condition is checked. If the
condition is true then 'if' block is
executed otherwise 'else' block

It executes one case after another till the break
keyword is not found, or the default statement is
executed.

Default execution If the condition is not true, then by
default, else block will be executed.

If the value does not match with any case, then by
default, default statement is executed.

Editing Editing is not easy in the 'if-else'
statement.

Cases in a switch statement are easy to maintain and
modify. Therefore, we can say that the removal or
editing of any case will not interrupt the execution of
other cases.

Speed If there are multiple choices
implemented through 'if-else', then
the speed of the execution will be
slow.

If we have multiple choices then the switch statement
is the best option as the speed of the execution will be
much higher than 'if-else'.

2.3 LOOPING STATEMENTS: WHILE, DO-WHILE AND EXAMPLES

Q14. What is mean by loop? Discuss various types of loops supported by C Language.

Ans : (Imp.)

The looping can be defined as repeating the same process multiple times until a specific condition
satisfies. There are three types of loops used in the C language. The looping simplifies the complex
problems into the easy ones. It enables us to alter the flow of the program so that instead of writing the
same code again and again, we can repeat the same code for a finite number of times.

For example, if we need to print the first 10 natural numbers then, instead of using the printf
statement 10 times, we can print inside a loop which runs up to 10 iterations.

Advantage of loops in C

1. It provides code reusability.

2. Using loops, we do not need to write the same code again and again.

3. Using loops, we can traverse over the elements of data structures (array or linked lists).

BCA I YEAR I SEMESTER

86
Rahul Publications

Rahul Publications

There are three types of loops in C
language that is given below:

1. do while

2. while

3. for

(i) do-while loop in C

The do-while loop continues until a given
condition satisfies. It is also called post tested
loop. It is used when it is necessary to execute
the loop at least once (mostly menu driven
programs).

The syntax of do-while loop in c language is
given below:

Do

{

//code to be executed

}while(condition);

(ii) While loop in C

The while loop in c is to be used in the scenario
where we don’t know the number of iterations
in advance. The block of statements is
executed in the while loop until the condition
specified in the while loop is satisfied. It is also
called a pre-tested loop.

The syntax of while loop in c language is given
below:

while(condition)

{

//code to be executed

}

(iii) for loop in C

The for loop is used in the case where we
need to execute some part of the code until the
given condition is satisfied. The for loop is also called
as a per-tested loop. It is better to use for loop if the
number of iteration is known in advance.

The syntax of for loop in c language is given
below:

for(initialization;condition;incr/decr)

{

//code to be executed

}

Q15. Explain In detail Do-While loop in C.

Ans :
The do while loop is a post tested loop. Using

the do-while loop, we can repeat the execution of
several parts of the statements. The do-while loop
is mainly used in the case where we need to execute
the loop at least once. The do-while loop is mostly
used in menu-driven programs where the
termination condition depends upon the end user.

do while loop syntax

do

{

//code to be executed

}while(condition);

Flowchart of do while loop

do

Statement

True

False

condition

Example:

#include<stdio.h>

int main()

{

int i=1,number=0;

printf(“Enter a number: ”);

scanf(“%d”,&number);

UNIT - II PROGRAMMING IN C

87
Rahul Publications

Rahul Publications

do

{

printf(“%d \n”,(number*i));

i++;

}while(i<=10);

return 0;

}

Output

Enter a number: 5

5

10

15

20

25

30

35

40

45

50

Q16. How can we use while loop in c program-
ming?

Ans : (Imp.)

While loop is also known as a pre-tested loop.
In general, a while loop allows a part of the code to
be executed multiple times depending upon a given
boolean condition. It can be viewed as a repeating
if statement. The while loop is mostly used in the
case where the number of iterations is not known
in advance.

Syntax

while(condition)

{

//code to be executed

}

 Flowchart

True

False

Statement

condition

Properties of while loop

 A conditional expression is used to check the
condition. The statements defined inside the
while loop will repeatedly execute until the
given condition fails.

 The condition will be true if it returns 0. The
condition will be false if it returns any non-
zero number.

 In while loop, the condition expression is
compulsory.

 Running a while loop without a body is
possible.

 We can have more than one conditional
expression in while loop.

 If the loop body contains only one statement,
then the braces are optional.

Example:

#include<stdio.h>

int main(){

int i=1;

while(i<=10){

printf(“%d \n”,i);

i++;

BCA I YEAR I SEMESTER

88
Rahul Publications

Rahul Publications

}

return 0;

}

Output

1

2

3

4

5

6

7

8

9

10

Q17. Write a c programming to print a table
for the given number using while loop.

Ans :
#include<stdio.h>

int main()

{

int i=1,number=0,b=9;

printf(“Enter a number: ”);

scanf(“%d”,&number);

while(i<=10)

{

printf(“%d \n”,(number*i));

i++;

}

return 0;

}

Output

Enter a number: 50

50

100

150

200

250

300

350

400

450

500

Q18. How can we use for loop in C Programm-
ing?

Ans :
The for loop in C language is used to iterate

the statements or a part of the program several
times. It is frequently used to traverse the data
structures like the array and linked list.

Syntax

for (Expression 1; Expression 2;

 Expression 3)

{

//code to be executed

}

Flow chart

Initialization

condition

statement

Incr/decr

True

False

UNIT - II PROGRAMMING IN C

89
Rahul Publications

Rahul Publications

Properties of Expression 1

 The expression represents the initialization of
the loop variable.

 We can initialize more than one variable in
Expression 1.

 Expression 1 is optional.
 In C, we can not declare the variables in

Expression 1. However, It can be an
exception in some compilers.

Properties of Expression 2
 Expression 2 is a conditional expression. It

checks for a specific condition to be satisfied.
If it is not, the loop is terminated.

 Expression 2 can have more than one
condition. However, the loop will iterate until
the last condition becomes false. Other
conditions will be treated as statements.

 Expression 2 is optional.
 Expression 2 can perform the task of

expression 1 and expression 3. That is, we
can initialize the variable as well as update
the loop variable in expression 2 itself.

 We can pass zero or non-zero value in
expression 2. However, in C, any non-zero
value is true, and zero is false by default.

Properties of Expression 3
 Expression 3 is used to update the loop

variable.
 We can update more than one variable at

the same time.
 Expression 3 is optional.

Example:
#include <stdio.h>
int main()
{
int i;
for(i=0;i<=4;i++)
{
printf(“%d ”,i);

}

}

Output

0 1 2 3 4

Q19. What is mean by nested loops?

Ans : (Imp.)

C supports nesting of loops in C. Nesting of
loops is the feature in C that allows the looping of
statements inside another loop. Let’s observe an
example of nesting loops in C.

Any number of loops can be defined inside
another loop, i.e., there is no restriction for defining
any number of loops. The nesting level can be
defined at n times. You can define any type of loop
inside another loop; for example, you can define
‘while’ loop inside a ‘for’ loop.

Syntax of Nested loop

Outer_loop

{

Inner_loop

{

// inner loop statements.

 }

// outer loop statements.

}

Outer_loop and Inner_loop are the valid
loops that can be a ‘for’ loop, ‘while’ loop or ‘do-
while’ loop.

Example:

#include <stdio.h>

int main()

{

int n;// variable declaration

printf(“Enter the value of n :”);

// Displaying the n tables.

for(int i=1;i<=n;i++) // outer loop

{

for(int j=1;j<=10;j++) // inner loop

{

printf(“%d\t”,(i*j)); // printing the
value.

}

printf(“\n”);

}

BCA I YEAR I SEMESTER

90
Rahul Publications

Rahul Publications

Q20. What are the differences between while loop and do-while loop.

Ans :
S.No. while loop do-while loop

1. While the loop is an entry control loop The do-while loop is an exit control loop because
because firstly, the condition is checked, in this, first of all, the body of the loop is executed
then the loop’s body is executed. then the condition is checked true or false.

2. The statement of while loop may not be The statement of the do-while loop must be
executed at all. executed at least once.

3. The while loop terminates when the As long as the condition is true, the compiler keeps
condition becomes false. executing the loop in the do-while loop.

4. In a while loop, the test condition variable In a do-while loop, the variable of test condition
must be initialized first to check the test Initialized in the loop also.
condition in the loop.

5. In a while loop, at the end of the condition, In this, at the end of the condition, there is a
there is no semicolon.Syntax:while semicolon.Syntax:while (condition);
(condition)

6. While loop is not used for creating menu- It is mostly used for creating menu-driven
driven programs. programs because at least one time; the loop is

executed whether the condition is true or false.
7. In a while loop, the number of executions In a do-while loop, irrespective of the condition

depends on the condition defined in the mentioned, a minimum of 1 execution occurs.
while block.

8. Syntax of while Syntax of do-while loop:
loop:while (condition) do
{ {
Block of statements; statements;
} }
Statement-x; while (condition);

Statement-x;
9. Program of while loop: Program of do-while loop:

Program of while loop: #include
#include #include
#include Void main() Void main()
{ {
inti; inti;
clrscr(); clrscr();
i = 1;while(i<=10) i = 1;
{ do
printf(“hello”); {
i = i + 1; printf(“hello”);
} i = i + 1;
getch(); }
} while(i<=10);

getch();
}

10. Flowchart of while loop: Flowchart of do-while loop:

UNIT - II PROGRAMMING IN C

91
Rahul Publications

Rahul Publications

start

End of
while loop

while loop do while
loop start

condition
false

true

Statements of
while loop

condition
true

Statements of
do while loop

false

End of do
while loop

2.4 CONTINUE, BREAK, GO TO STATEMENTS

Q21. What is the use of break statement?

Ans :
The break is a keyword in C which is used to bring the program control out of the loop. The break

statement is used inside loops or switch statement. The break statement breaks the loop one by one, i.e.,
in the case of nested loops, it breaks the inner loop first and then proceeds to outer loops. The break
statement in C can be used in the following two scenarios:
1. With switch case
2. With loop

Syntax:
break;

Condition
within loop

true

false

break;

Fig.: Flowchart of break statement

BCA I YEAR I SEMESTER

92
Rahul Publications

Rahul Publications

Example

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 int i;

 for(i = 0; i<10; i++)

 {

 printf(“%d ”,i);

 if(i == 5)

 break;

 }

 printf(“came outside of loop i =%d”,i);

}

Output

0 1 2 3 4 5 came outside of loop i = 5

Q22. What is the use of continue statement in
C?

Ans :
The continue statement in C language is

used to bring the program control to the beginning
of the loop. The continue statement skips some lines
of code inside the loop and continues with the next
iteration. It is mainly used for a condition so that we
can skip some code for a particular condition.

Syntax:

//loop statements

continue;

// some lines of the code which is to be
skipped

Example:

#include<stdio.h>

void main ()

{

int i = 0;

while(i!=10)

{

 printf(“%d”, i);

 continue;

 i++;

 }

}

Output

infinite loop

Q23. Explain in detail go-to statement with
an example.

Ans :
The goto statement is known as jump

statement in C. As the name suggests, goto is used
to transfer the program control to a predefined label.
The gotostatment can be used to repeat some part
of the code for a particular condition. It can also be
used to break the multiple loops which can’t be
done by using a single break statement. However,
using goto is avoided these days since it makes the
program less readable and complicated.

Syntax:

label:

//some part of the code;

goto label;

Example:

#include <stdio.h>

int main()

{

 int num,i=1;

UNIT - II PROGRAMMING IN C

93
Rahul Publications

Rahul Publications

 printf(“Enter the number whose table you
want to print?”);

 scanf(“%d”,&num);

 table:

 printf(“%d x %d=%d\n”,num,i,num*i);

 i++;

 if(i<=10)

 goto table;

}

Output:

How to find Nth Highest Salary in SQL

Enter the number whose table you want to
print?10

10 x 1 = 10

10 x 2 = 20

10 x 3 = 30

10 x 4 = 40

10 x 5 = 50

10 x 6 = 60

10 x 7 = 70

10 x 8 = 80

10 x 9 = 90

10 x 10 = 100

2.5 FUNCTIONS

Q24. What is Function ? what are the
advantages of functions ?

Ans : (Imp.)

In c, we can divide a large program into the
basic building blocks known as function. The
function contains the set of programming statements
enclosed by {}. A function can be called multiple
times to provide reusability and modularity to the
C program. In other words, we can say that the
collection of functions creates a program. The

function is also known as procedure or subroutine
in other programming languages.

Advantage of functions in C

There are the following advantages of C
functions.

 By using functions, we can avoid rewriting
same logic/code again and again in a
program.

 We can call C functions any number of times
in a program and from any place in a
program.

 We can track a large C program easily when
it is divided into multiple functions.

 Reusability is the main achievement of C
functions.

 However, Function calling is always a
overhead in a C program.

Q25. What are the major aspects of functions?

Ans :
There are three aspects of a C function.

 Function declaration A function must be
declared globally in a c program to tell the
compiler about the function name, function
parameters, and return type.

 Function call Function can be called from
anywhere in the program. The parameter list
must not differ in function calling and function
declaration. We must pass the same number
of functions as it is declared in the function
declaration.

 Function definition It contains the actual
statements which are to be executed. It is the
most important aspect to which the control
comes when the function is called. Here, we
must notice that only one value can be
returned from the function.

BCA I YEAR I SEMESTER

94
Rahul Publications

Rahul Publications

S.No. C function aspects Syntax

1. Function declaration return_typefunction_name (argument list);

2. Function call function_name (argument_list)

3. Function definition return_typefunction_name (argument list) {function body;}

The syntax of creating function in c language is given below:

return_type function_name(data_type parameter...)

{

//code to be executed

}

Q26. How can we define a function in C ? Explain with an example ?

Ans :
The general form of a function definition in C programming language is as follows:

return_typefunction_name(parameter list) {

body of the function

}

A function definition in C programming consists of a function header and a function body. Here
are all the parts of a function.

 Return Type: A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword void.

 Function Name: This is the actual name of the function. The function name and the parameter list
together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to
the parameter. This value is referred to as actual parameter or argument. The parameter list refers
to the type, order, and number of the parameters of a function. Parameters are optional; that is, a
function may contain no parameters.

 Function Body: The function body contains a collection of statements that define what the function
does.

Example:

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

UNIT - II PROGRAMMING IN C

95
Rahul Publications

Rahul Publications

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The
actual body of the function can be defined separately.

A function declaration has the following parts -

return_typefunction_name(parameter list);

For the above defined function max(), the function declaration is as follows-

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so the following
is also a valid declaration.

int max(int, int);

Function declaration is required when you define a function in one source file and you call that
function in another file.

2.5.1 User defines functions

Q27. List out various types of functions supported by C ?

Ans :
There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C header files such as scanf(), printf(),
gets(), puts(), ceil(), floor() etc.

2. User-defined functions: are the functions which are created by the C programmer, so that he/she
can use it many times. It reduces the complexity of a big program and optimizes the code.

Function

Library

Function

User-defined

Function

Q28. List out various C Library functions.

Ans : (Imp.)

Library functions are the inbuilt function in C that are grouped and placed at a common place
called the library. Such functions are used to perform some specific operations. For example, printf is a
library function used to print on the console. The library functions are created by the designers of compilers.
All C standard library functions are defined inside the different header files saved with the extension .h.
We need to include these header files in our program to make use of the library functions defined in such
header files. For example, To use the library functions such as printf/scanf we need to include stdio.h in
our program which is a header file that contains all the library functions regarding standard input/output.

BCA I YEAR I SEMESTER

96
Rahul Publications

Rahul Publications

The list of mostly used header files is given in the following table.

S.No. Header file Description

1. stdio.h This is a standard input/output header file. It contains all the library functions
regarding standard input/output.

2. conio.h This is a console input/output header file.

3. string.h It contains all string related library functions like gets(), puts(),etc.

4. stdlib.h This header file contains all the general library functions like malloc(), calloc(),
exit(), etc.

5. math.h This header file contains all the math operations related functions like sqrt(),
pow(), etc.

6. time.h This header file contains all the time-related functions.

7. ctype.h This header file contains all character handling functions.

8. stdarg.h Variable argument functions are defined in this header file.

9. signal.h All the signal handling functions are defined in this header file.

10. setjmp.h This file contains all the jump functions.

11. locale.h This file contains locale functions.

12. errno.h This file contains error handling functions.

13. assert.h This file contains diagnostics functions.

Q29. How can we declare user defined functions in C? what are the advantages of user defined
functions ?

Ans :
we can also create functions as per our need. Such functions created by the user are known as user-

defined functions.
Example:

#include <stdio.h>
void functionName()
{
...
...
}
int main()
{
...
...
functionName();
...
...
}

UNIT - II PROGRAMMING IN C

97
Rahul Publications

Rahul Publications

The execution of a C program begins from the main() function.

When the compiler encounters functionName();, control of the program jumps to

void functionName()

And, the compiler starts executing the codes inside functionName().

The control of the program jumps back to the main() function once code inside the function
definition is executed.

Advantages of user-defined function

1. The program will be easier to understand, maintain and debug.

2. Reusable codes that can be used in other programs

3. A large program can be divided into smaller modules. Hence, a large project can be divided among
many programmers.

Q30. Explain various types of user defined functions with an example program ? (or) what are
the aspects function calling?

Ans :
A function may or may not accept any argument. It may or may not return any value. Based on

these facts, There are four different aspects of function calls.

1. function without arguments and without return value

2. function without arguments and with return value

3. function with arguments and without return value

4. function with arguments and with return value

Function with no argument and no return value : When a function has no arguments, it does not
receive any data from the calling function. Similarly when it does not return a value, the calling function
does not receive any data from the called function.

BCA I YEAR I SEMESTER

98
Rahul Publications

Rahul Publications

Syntax :

Function declaration : void function();

Function call : function();

Function definition :

void function()

{

statements;

}

Example:

#include<stdio.h>

void printName();

void main ()

{

printf(“Hello ”);

printName();

}

void printName()

{

printf(“Rakesh”);

}

Output

Hello Rakesh

Function with arguments but no return value
: When a function has arguments, it receive any
data from the calling function but it returns no
values.

Syntax :

Function declaration : void function (int);

Function call : function(x);

Function definition:

void function(int x)

{

statements;

}

Example:

#include<stdio.h>

void sum(int, int);

void main()

{

 int a,b,result;

 printf(“\nGoing to calculate the sum
of two numbers:”);

 printf(“\nEnter two numbers:”);

 scanf(“%d %d”,&a,&b);

sum(a,b);

}

void sum(int a, int b)

{

printf(“\nThe sum is %d”, a+b);

}

Output

Going to calculate the sum of two numbers:

Enter two numbers 10

24

The sum is 34

Function with no arguments but returns a
value : There could be occasions where we may
need to design functions that may not take any
arguments but returns a value to the calling function.
A example for this is getchar function it has no
parameters but it returns an integer an integer type
data that represents a character.

Syntax :

Function declaration : int function();

Function call : function();

Function definition :

int function()

{

statements;

return x;

}

UNIT - II PROGRAMMING IN C

99
Rahul Publications

Rahul Publications

Example:

#include<stdio.h>

int sum();

void main()

{
printf(“Going to calculate the area of the
square\n”);

float area = square();

printf(“The area of the square: %f\n”,
area);

}

int square()

{

float side;

 printf(“Enter the length of the side
in meters: ”);

 scanf(“%f”,&side);

return side * side;

}

Output

Going to calculate the area of the square

Enter the length of the side in meters: 10

The area of the square: 100.000000

Function with arguments and return value

When a function is capable to accept
arguments and returns a value then it is said to be
functions with arguments and return value.

Syntax :

Function declaration :int function (int);

Function call : function(x);

Function definition:

int function(int x)

{

statements;

return x;

}

Example:

Program to check whether a number is even
or odd

#include<stdio.h>

int even_odd(int);

void main()

{

int n,flag=0;

printf(“\nGoing to check whether a
number is even or odd”);

printf(“\nEnter the number: ”);

scanf(“%d”,&n);

flag = even_odd(n);

if(flag == 0)

{

printf(“\nThe number is odd”);

}

else

{

printf(“\nThe number is even”);

 }

}

int even_odd(int n)

{

if(n%2 == 0)

 {

 return 1;

 }

else

{

return 0;

}

}

Output

Going to check whether a number is even or
odd

Enter the number: 100

The number is even

BCA I YEAR I SEMESTER

100
Rahul Publications

Rahul Publications

2.5.2 Inter function communication

Q31. What is inter function communication?
Explain in detail.

Ans : (Imp.)

When a function gets executed in the
program, the execution control is transferred from
calling a function to called function and executes
function definition, and finally comes back to the
calling function. In this process, both calling and
called functions have to communicate with each
other to exchange information. The process of
exchanging information between calling and called
functions is called inter-function communication.

In C, the inter function communication is
classified as follows...

 Downward Communication

 Upward Communication

 Bi-directional Communication

Downward Communication

In this type of inter function communication,
the data is transferred from calling function to called
function but not from called function to calling
function. The functions with parameters and without
return value are considered under downward
communication. In the case of downward
communication, the execution control jumps from
calling function to called function along with
parameters and executes the function definition,and
finally comes back to the calling function without
any return value. For example consider the following
program...

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf(“\nBefore swap: num1 = %d, num2
= %d”, num1, num2) ;

addition(num1, num2) ; // calling function

getch() ;

}

void addition(int a, int b) // called function

{

printf(“SUM = %d”, a+b) ;

}

Output:

Before swap: num1 = 10, num2 = 20

SUM = 30

Process returned 0(0×0) ececution time:
0.047 s

Press any key to continue

–

Upward Communication

In this type of inter-function communication,
the data is transferred from called function to calling-
function but not from calling-function to called-
function. The functions without parameters and with
return value are considered under upward
communication. In the case of upward
communication, the execution control jumps from
calling-function to called-function without
parameters and executes the function definition, and
finally comes back to the calling function along with
a return value. For example, consider the following
program...

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int result ;

int addition() ; // function declaration

clrscr() ;

result = addition() ; // calling function

printf(“SUM = %d”, result) ;

UNIT - II PROGRAMMING IN C

101
Rahul Publications

Rahul Publications

getch() ;

}

int addition() // called function

{

int num1, num2 ;

num1 = 10;

num2 = 20;

return (num1+num2) ;

}

Output:

SUM = 30

Process returned 0 (0x0) execution time :
0.047 s

Press any key to continue.

Bi - Directional Communication

In this type of inter-function communication,
the data is transferred from calling-function to called
function and also from called function to calling-
function. The functions with parameters and with
return value are considered under bi-directional
communication. In the case of bi-directional
communication, the execution control jumps from
calling-function to called function along with
parameters and executes the function definition and
finally comes back to the calling function along with
a return value. For example, consider the following
program...

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2, result ;

int addition(int, int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

result = addition(num1, num2) ; // calling
function

printf(“SUM = %d”, result) ;

getch() ;

}

int addition(int a, int b) // called function

{

return (a+b) ;

}

Output:

SUM = 30

Process returned 0 (0x0) execution time :
0.047 s

Press any key to continue.

2.5.3 Standard Functions

Q32. List out various standard function of C.

Ans : (Imp.)

The standard functions are built-in functions.
In C programming language, the standard functions
are declared in header files and defined in .dll files.
In simple words, the standard functions can be
defined as “the ready made functions defined by
the system to make coding more easy”. The standard
functions are also called as library functions or pre-
defined functions.

In C when we use standard functions, we
must include the respective header file
using #include statement. For example, the
function printf() is defined in header
file stdio.h (Standard Input Output header file).
When we use printf() in our program, we must
include stdio.h header file using # include
<stdio.h> statement.

C Programming Language provides the
following header files with standard functions.

BCA I YEAR I SEMESTER

102
Rahul Publications

Rahul Publications

Header File Purpose Example Functions

stdio.h Provides functions to perform standard I/O operations printf(), scanf()

conio.h Provides functions to perform console I/O operations clrscr(), getch()

math.h Provides functions to perform mathematical operations sqrt(), pow()

string.h Provides functions to handle string data values strlen(), strcpy()

stdlib.h Provides functions to perform general functions/td> calloc(), malloc()

time.h Provides functions to perform operations on time and date time(), localtime()

ctype.h Provides functions to perform - testing and mapping of isalpha(), islower()

character data values

setjmp.h Provides functions that are used in function calls setjump(), longjump()

signal.h Provides functions to handle signals during program execution signal(), raise()

assert.h Provides Macro that is used to verify assumptions made by the assert()

program

locale.h Defines the location specific settings such as date formats and setlocale()

currency symbols

stdarg.h Used to get the arguments in a function if the arguments are va_start(), va_end(),

not specified by the function va_arg()

errno.h Provides macros to handle the system calls Error, errno

graphics.h Provides functions to draw graphics. circle(), rectangle()

float.h Provides constants related to floating point data values

stddef.h Defines various variable types

limits.h Defines the maximum and minimum values of various

variable types like char, int and long

2.5.4 Parameters passing in C

Q33. What is mean by parameters ? How can we pass parameters in functions?

Ans :
When a function gets executed in the program, the execution control is transferred from calling-

function to called function and executes function definition, and finally comes back to the calling function.
When the execution control is transferred from calling-function to called-function it may carry one or
number of data values. These data values are called as parameters.

In C, there are two types of parameters and they are as follows...

 Actual Parameters

 Formal Parameters

The actual parameters are the parameters that are speficified in calling function. The formal
parameters are the parameters that are declared at called function. When a function gets executed, the
copy of actual parameter values are copied into formal parameters.

UNIT - II PROGRAMMING IN C

103
Rahul Publications

Rahul Publications

In C Programming Language, there are two
methods to pass parameters from calling function
to called function and they are as follows -

 Call by Value

 Call by Reference

Call by Value

In call by value parameter passing method,
the copy of actual parameter values are copied to
formal parameters and these formal parameters are
used in called function. The changes made on the
formal parameters does not effect the values of
actual parameters. That means, after the execution
control comes back to the calling function, the actual
parameter values remains same. For example
consider the following program...

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void swap(int,int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf(“\nBefore swap: num1 = %d, num2
= %d”, num1, num2) ;

swap(num1, num2) ; // calling function

printf(“\nAfter swap: num1 = %d\nnum2 =
%d”, num1, num2);

getch() ;

}

void swap(int a, int b) // called function

{

int temp ;

temp = a ;

a = b ;

b = temp ;

}

Output:

Before swap: numl = 10, num2 = 20

After swap: numl = 10

num2 = 20

Process returned 0 (0x0) execution time :
0.047 s

Press any key to continue.

In the above example program, the
variables num1 and num2 are called actual
parameters and the variables a and b are called
formal parameters. The value of num1 is copied
into a and the value of num2 is copied into b.
The changes made on variables a and b does not
effect the values of num1 and num2.

Call by Reference

In Call by Reference parameter passing
method, the memory location address of the actual
parameters is copied to formal parameters. This
address is used to access the memory locations of
the actual parameters in called function. In this
method of parameter passing, the formal
parameters must be pointer variables.

That means in call by reference parameter
passing method, the address of the actual
parameters is passed to the called function and is
recieved by the formal parameters (pointers).
Whenever we use these formal parameters in called
function, they directly access the memory locations
of actual parameters. So the changes made on the
formal parameters effects the values of actual
parameters. For example consider the following
program...

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void swap(int *,int *) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

BCA I YEAR I SEMESTER

104
Rahul Publications

Rahul Publications

printf(“\nBefore swap: num1 = %d, num2 = %d”, num1, num2) ;

swap(&num1, &num2) ; // calling function

printf(“\nAfter swap: num1 = %d, num2 = %d”, num1, num2);

getch() ;

}

void swap(int *a, int *b) // called function

{

int temp ;

temp = *a ;

*a = *b ;

*b = temp ;

}

Output:

Before swap: numl = 10, num2 = 20

After swap: numl = 20, num2 = 10

Process returned 0 (0x0) execution time : 0.047 s

Press any key to continue.

Q34. What are the differences between call by value and call by reference.

Ans :
S.No. Call by value Call by reference

1. A copy of the value is passed into the function An address of value is passed into the function

2. Changes made inside the function is limited to Changes made inside the function validate outside
the function only. The values of the actual of the function also. The values of the actual
parameters do not change by changing the parameters do change by changing the formal
formal parameters. parameters.

3. Actual and formal arguments are created at the Actual and formal arguments are created at the
different memory location. same memory location

2.5.5 Recursion–Recursive functions

Q35. What is recursion?

Ans :
Recursion is the process which comes into existence when a function calls a copy of itself to work on

a smaller problem. Any function which calls itself is called recursive function, and such function calls are
called recursive calls. Recursion involves several numbers of recursive calls. However, it is important to
impose a termination condition of recursion. Recursion code is shorter than iterative code however it is
difficult to understand.

Recursion cannot be applied to all the problem, but it is more useful for the tasks that can be
defined in terms of similar subtasks. For Example, recursion may be applied to sorting, searching, and
traversal problems.

UNIT - II PROGRAMMING IN C

105
Rahul Publications

Rahul Publications

Generally, iterative solutions are more efficient
than recursion since function call is always overhead.
Any problem that can be solved recursively, can
also be solved iteratively.

In the following example, recursion is used
to calculate the factorial of a number.

#include <stdio.h>

int fact (int);

int main()

{

 int n,f;

 printf(“Enter the number whose
factorial you want to calculate?”);

 scanf(“%d”,&n);

 f = fact(n);

 printf(“factorial = %d”,f);

}

int fact(int n)

{

 if (n==0)

{

return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

return n*fact(n-1);

}

}

Output

Enter the number whose factorial you want
to calculate?5

factorial = 120

We can understand the above program of
the recursive method call by the figure given below:

Fig.: Recursion

Q36. What is recursion function?

Ans :
A recursive function performs the tasks by

dividing it into the subtasks. There is a termination
condition defined in the function which is satisfied
by some specific subtask. After this, the recursion
stops and the final result is returned from the
function.

The case at which the function doesn’t recur
is called the base case whereas the instances where
the function keeps calling itself to perform a subtask,
is called the recursive case. All the recursive functions
can be written using this format.

Pseudocode for writing any recursive function
is given below.

if (test_for_base)

{

 return some_value;

}

else if (test_for_another_base)

{

 return some_another_value;

}

else

{

// Statements;

 recursive call;

}

BCA I YEAR I SEMESTER

106
Rahul Publications

Rahul Publications

Let’s see an example to find the nth term of
the Fibonacci series.

#include<stdio.h>

int fibonacci(int);

void main ()

{

 int n,f;

 printf(“Enter the value of n?”);

 scanf(“%d”,&n);

 f = fibonacci(n);

 printf(“%d”,f);

}

int fibonacci (int n)

{

 if (n==0)

 {

 return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

 return fibonacci(n-1)+fibonacci
(n-2);

 }

}

Output

Enter the value of n?12

144

2.6 STORAGE CLASSES - AUTO, REGISTER,
STATIC, EXTERN, SCOPE RULES

Q37. List out various types of storage classes
in C.

Ans : (Imp.)

In C programming language, storage classes
are used to define things like storage
location (whether RAM or REGISTER), scope,
lifetime and the default value of a variable.

In the C programming language, the memory
of variables is allocated either in computer memory
(RAM) or CPU Registers. The allocation of memory
depends on storage classes.

In C programming language, there are FOUR
storage classes and they are as follows

1. auto storage class

2. extern storage class

3. static storage class

4. register storage class

1. auto storage class

The default storage class of all local variables
(variables declared inside block or function) is auto
storage class. Variable of auto storage class has the
following properties...

Property Description

Keyword auto

Storage Computer Memory (RAM)

Default Value Garbage Value

Scope Local to the block in which the
variable is defined

Life time Till the control remains within the
block in which variable is defined

Example:

#include<stdio.h>

#include<conio.h>

int main()

{

inti;

UNIT - II PROGRAMMING IN C

107
Rahul Publications

Rahul Publications

auto char c;

float f;

printf(“i = %d\tc = %c\tf = %f”,i,c,f);

return 0;

}

2. External storage class

The default storage class of all global varibles (variables declared outside function) is external storage
class. Variable of external storage class has the following properties...

Property Description

Property Description

Keyword extern

Storage Computer Memory (RAM)

Default Value Zero

Scope Global to the program (i.e., Throughout the program)

Life time As long as the program’s execution does not comes to end

Example

#include<stdio.h>

#include<conio.h>

inti; //By default it is extern variable

int main(){

printf(“%d”,i);

return 0;

}

3. Static storage class

The static storage class is used to create variables that hold value beyond its scope until the end of
the program. The static variable allows to initialize only once and can be modified any number of times.
Variable of static storage class has the following properties...

Property Description

Keyword static

Storage Computer Memory (RAM)

Default Value Zero

Scope Local to the block in which the variable is defined

Life time The value of the persists between different function calls (i.e., Initialization is
done only once)

BCA I YEAR I SEMESTER

108
Rahul Publications

Rahul Publications

Example

#include<stdio.h>

#include<conio.h>

static int a;

int main(){

 printf(“%d”,a);

 return 0;

}

4. Register storage class

The register storage class is used to specify the memory of the variable that has to be allocated in

CPU Registers. The memory of the register variable is allocated in CPU Register but not in Computer

memory (RAM). The register variables enable faster accessibility compared to other storage class variables.
As the number of registers inside the CPU is very less we can use very less number of register variables.

Variable of register storage class has the following properties.

Property Description

Keyword register

Storage CPU Register

Default Value Garbage Value

Scope Local to the block in which the variable is defined

Life time Till the control remains within the block in which variable is defined

Example

#include<stdio.h>

#include<conio.h>

int main(){

 register inta,b;

 scanf(“%d%d”,&a,&b);

 printf(“%d %d”,a,b);

}

UNIT - II PROGRAMMING IN C

109
Rahul Publications

Rahul Publications

Q38. Discuss all the properties of storage classes in C.

Ans :
The following table provides detailed properties of all storage classes...

Storage Class Keyword Memory Location Default Value Scope Life Time

Automatic auto Computer Memory (RAM) Garbage Value Local to the block in
which the variable has
defined

Till the control remains
within the block in which
variable is defined

External extern Computer Memory (RAM) Zero Global to the program
(i.e., Throughout the
program)

As long as the program’s
execution does not come
to end

Static static Computer Memory (RAM) Zero Local to the block in
which the variable has
defined

The value of the persists
between different function
calls (i.e., Initialization is
done only once)

Register register CPU Register Garbage Value Local to the block in
which the variable has
defined

Till the control remains
within the block in which
variable is defined

Q39. What are the use of type Qualifiers in C.

Ans :
In C programming language, type qualifiers are the keywords used to modify the properties of

variables. Using type qualifiers, we can change the properties of variables. The c programming language
provides two type qualifiers and they are as follows.

 const

 volatile

const type qualifier in C

The const type qualifier is used to create constant variables. When a variable is created
with const keyword, the value of that variable can’t be changed once it is defined. That means once a
value is assigned to a constant variable, that value is fixed and cannot be changed throughout the program.

The keyword const is used at the time of variable declaration. We use the following syntax to
create constant variable using const keyword.

When a variable is created with const keyword it becomes a constant variable. The value of the
constant variable can’t be changed once it is defined. The following program generates error message
because we try to change the value of constant variable x.

Example Program

#include<stdio.h>

#include<conio.h>

void main(){

BCA I YEAR I SEMESTER

110
Rahul Publications

Rahul Publications

inti = 9 ;

constint x = 10 ;

clrscr() ;

i = 15 ;

x = 100 ; // creates an error

printf(“i = %d\nx = %d”, i, x) ;

}

volatile type qualifier in C

The volatile type qualifier is used to create variables whose values can’t be changed in the program
explicitly but can be changed by any external device or hardware.

For example, the variable which is used to store system clock is defined as a volatile variable. The
value of this variable is not changed explicitly in the program but is changed by the clock routine of the
operating system.

UNIT - II PROGRAMMING IN C

111
Rahul Publications

Rahul Publications

Short Question & Answers

1. Explain Ternary Operator.

Ans :

The conditional operator is also known as a ternary operator. The conditional statements are the

decision-making statements which depends upon the output of the expression. It is represented by two
symbols, i.e., ‘?’ and ‘’

As conditional operator works on three operands, so it is also known as the ternary operator.

The behavior of the conditional operator is similar to the ‘if-else’ statement as ‘if-else’ statement is

also a decision-making statement.

Syntax of a conditional operator

Expression1? expression2: expression3;

 In the above syntax, the expression1 is a Boolean condition that can be either true or false value.

 If the expression1 results into a true value, then the expression2 will execute.

 The expression2 is said to be true only when it returns a non-zero value.

 If the expression1 returns false value then the expression3 will execute.

 The expression3 is said to be false only when it returns zero value.

2. What is the use of if-else statements in C ? List out various types of if statements.

Ans :
The if-else statement in C is used to perform the operations based on some specific condition. The

operations specified in if block are executed if and only if the given condition is true.

BCA I YEAR I SEMESTER

112
Rahul Publications

Rahul Publications

There are the following variants of if statement in C language.

 If statement

 If-else statement

 If else-if ladder

 Nested if

3. Draw the flow chart of if-else-if-ladder statement in C ?

Ans :
The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario

where there are multiple cases to be performed for different conditions. In if-else-if ladder statement, if a
condition is true then the statements defined in the if block will be executed, otherwise if some other

condition is true then the statements defined in the else-if block will be executed, at the last if none of the

condition is true then the statements defined in the else block will be executed. There are multiple else-if
blocks possible. It is similar to the switch case statement where the default is executed instead of else block

if none of the cases is matched.

if(condition1)

{

//code to be executed if condition1 is true

}

else if(condition2)

{

//code to be executed if condition2 is true

}

else if(condition3)

{

//code to be executed if condition3 is true

}

...

Else

{

//code to be executed if all the conditions are false

}

Flowchart of else-if ladder statement in C

UNIT - II PROGRAMMING IN C

113
Rahul Publications

Rahul Publications

False

False

False

Condition-1

Condition-2

Condition-n

Statement-1 Statement-2 Statement-n Statement-s

True

Next Statement

True True

Fig.: else-if ladder

4. Explain in detail switch statement in C.

Ans :
The switch statement in C is an alternate to if-else-if ladder statement which allows us to execute

multiple operations for the different possibles values of a single variable called switch variable. Here, We
can define various statements in the multiple cases for the different values of a single variable.

The syntax of switch statement in c language is given below:

switch(expression)

{

case value1:

//code to be executed;

break; //optional

case value2:

//code to be executed;

break; //optional

......

default:

code to be executed if all cases are not matched;

}

BCA I YEAR I SEMESTER

114
Rahul Publications

Rahul Publications

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break statement found
in the case, all the cases will be executed present after the matched case. It is known as fall
through the state of C switch statement.

5. What are the differences between If-else and switch statements.

Ans :

If-else switch

Definition Depending on the condition in the 'if'
statement, 'if' and 'else' blocks are
executed.

The user will decide which statement is to be
executed.

Expression It contains either logical or equality
expression.

It contains a single expression which can be either a
character or integer variable.

Evaluation It evaluates all types of data, such as
integer, floating-point, character or
Boolean.

It evaluates either an integer, or character.

Sequence of execution First, the condition is checked. If the
condition is true then 'if' block is
executed otherwise 'else' block

It executes one case after another till the break
keyword is not found, or the default statement is
executed.

Default execution If the condition is not true, then by
default, else block will be executed.

If the value does not match with any case, then by
default, default statement is executed.

Editing Editing is not easy in the 'if-else'
statement.

Cases in a switch statement are easy to maintain and
modify. Therefore, we can say that the removal or
editing of any case will not interrupt the execution of
other cases.

Speed If there are multiple choices
implemented through 'if-else', then
the speed of the execution will be
slow.

If we have multiple choices then the switch statement
is the best option as the speed of the execution will be
much higher than 'if-else'.

6. What is a Loop ? What are the advantages of a Loop.

Ans :
The looping can be defined as repeating the same process multiple times until a specific condition

satisfies. There are three types of loops used in the C language. The looping simplifies the complex
problems into the easy ones. It enables us to alter the flow of the program so that instead of writing the
same code again and again, we can repeat the same code for a finite number of times.

For example, if we need to print the first 10 natural numbers then, instead of using the printf
statement 10 times, we can print inside a loop which runs up to 10 iterations.

UNIT - II PROGRAMMING IN C

115
Rahul Publications

Rahul Publications

Advantage of loops in C

1. It provides code reusability.

2. Using loops, we do not need to write the same code again and again.

3. Using loops, we can traverse over the elements of data structures (array or linked lists).

7. What is mean by nested loops?

Ans :
C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of

statements inside another loop. Let’s observe an example of nesting loops in C.

Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any
number of loops. The nesting level can be defined at n times. You can define any type of loop inside
another loop; for example, you can define ‘while’ loop inside a ‘for’ loop.

Syntax of Nested loop

Outer_loop

{

Inner_loop

{

// inner loop statements.

 }

// outer loop statements.

}

Outer_loop and Inner_loop are the valid loops that can be a ‘for’ loop, ‘while’ loop or ‘do-while’
loop.

8. What are the differences between while loop and do-while loop.

Ans :
S.No. while loop do-while loop

1. While the loop is an entry control loop The do-while loop is an exit control loop because
because firstly, the condition is checked, in this, first of all, the body of the loop is executed
then the loop’s body is executed. then the condition is checked true or false.

2. The statement of while loop may not be The statement of the do-while loop must be
executed at all. executed at least once.

3. The while loop terminates when the As long as the condition is true, the compiler keeps
condition becomes false. executing the loop in the do-while loop.

4. In a while loop, the test condition variable In a do-while loop, the variable of test condition
must be initialized first to check the test Initialized in the loop also.
condition in the loop.

5. In a while loop, at the end of the condition, In this, at the end of the condition, there is a
there is no semicolon.Syntax:while semicolon.Syntax:while (condition);
(condition)

BCA I YEAR I SEMESTER

116
Rahul Publications

Rahul Publications

6. While loop is not used for creating menu- It is mostly used for creating menu-driven
driven programs. programs because at least one time; the loop is

executed whether the condition is true or false.

7. In a while loop, the number of executions In a do-while loop, irrespective of the condition

depends on the condition defined in the mentioned, a minimum of 1 execution occurs.

while block.

8. Syntax of while Syntax of do-while loop:

loop:while (condition) do

{ {

Block of statements; statements;

} }

Statement-x; while (condition);

Statement-x;

9. Program of while loop: Program of do-while loop:

Program of while loop: #include

#include #include

#include Void main() Void main()

{ {

inti; inti;

clrscr(); clrscr();

i = 1;while(i<=10) i = 1;

{ do

printf(“hello”); {

i = i + 1; printf(“hello”);

} i = i + 1;

getch(); }

} while(i<=10);

getch();

}

10. Flowchart of while loop: Flowchart of do-while loop:

9. What is the use of break statement?

Ans :
The break is a keyword in C which is used to bring the program control out of the loop. The break

statement is used inside loops or switch statement. The break statement breaks the loop one by one, i.e.,
in the case of nested loops, it breaks the inner loop first and then proceeds to outer loops. The break
statement in C can be used in the following two scenarios:

UNIT - II PROGRAMMING IN C

117
Rahul Publications

Rahul Publications

1. With switch case
2. With loop

Syntax:
break;

Condition
within loop

true

false

break;

Fig.: Flowchart of break statement

Example

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 int i;

 for(i = 0; i<10; i++)

 {

 printf(“%d ”,i);

 if(i == 5)

 break;

 }

 printf(“came outside of loop i =%d”,i);

}

Output

0 1 2 3 4 5 came outside of loop i = 5

BCA I YEAR I SEMESTER

118
Rahul Publications

Rahul Publications

10. What is Function ? what are the advantages of functions ?

Ans :
In c, we can divide a large program into the basic building blocks known as function. The function

contains the set of programming statements enclosed by {}. A function can be called multiple times to
provide reusability and modularity to the C program. In other words, we can say that the collection of
functions creates a program. The function is also known as procedure or subroutine in other programming
languages.

Advantage of functions in C

There are the following advantages of C functions.

 By using functions, we can avoid rewriting same logic/code again and again in a program.

 We can call C functions any number of times in a program and from any place in a program.

 We can track a large C program easily when it is divided into multiple functions.

 Reusability is the main achievement of C functions.

 However, Function calling is always a overhead in a C program.

11. How can we define a function in C ? Explain with an example ?

Ans :
The general form of a function definition in C programming language is as follows:

return_typefunction_name(parameter list) {

body of the function

}

A function definition in C programming consists of a function header and a function body. Here
are all the parts of a function.

 Return Type : A function may return a value. The return_type is the data type of the value the
function returns. Some functions perform the desired operations without returning a value. In this
case, the return_type is the keyword void.

 Function Name: This is the actual name of the function. The function name and the parameter list
together constitute the function signature.

 Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to
the parameter. This value is referred to as actual parameter or argument. The parameter list refers
to the type, order, and number of the parameters of a function. Parameters are optional; that is, a
function may contain no parameters.

 Function Body: The function body contains a collection of statements that define what the function
does.

Example:

/* function returning the max between two numbers */

int max(int num1, int num2) {

/* local variable declaration */

UNIT - II PROGRAMMING IN C

119
Rahul Publications

Rahul Publications

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

12. List out various C Library functions.

Ans :
Library functions are the inbuilt function in C that are grouped and placed at a common place

called the library. Such functions are used to perform some specific operations. For example, printf is a
library function used to print on the console. The library functions are created by the designers of compilers.
All C standard library functions are defined inside the different header files saved with the extension .h.
We need to include these header files in our program to make use of the library functions defined in such
header files. For example, To use the library functions such as printf/scanf we need to include stdio.h in
our program which is a header file that contains all the library functions regarding standard input/output.

The list of mostly used header files is given in the following table.

S.No. Header file Description

1. stdio.h This is a standard input/output header file. It contains all the library functions
regarding standard input/output.

2. conio.h This is a console input/output header file.

3. string.h It contains all string related library functions like gets(), puts(),etc.

4. stdlib.h This header file contains all the general library functions like malloc(), calloc(),
exit(), etc.

5. math.h This header file contains all the math operations related functions like sqrt(),
pow(), etc.

6. time.h This header file contains all the time-related functions.

7. ctype.h This header file contains all character handling functions.

8. stdarg.h Variable argument functions are defined in this header file.

9. signal.h All the signal handling functions are defined in this header file.

10. setjmp.h This file contains all the jump functions.

11. locale.h This file contains locale functions.

12. errno.h This file contains error handling functions.

13. assert.h This file contains diagnostics functions.

BCA I YEAR I SEMESTER

120
Rahul Publications

Rahul Publications

13. What are the differences between call by value and call by reference.

Ans :
S.No. Call by value Call by reference

1. A copy of the value is passed into the function An address of value is passed into the function

2. Changes made inside the function is limited to Changes made inside the function validate outside
the function only. The values of the actual of the function also. The values of the actual
parameters do not change by changing the parameters do change by changing the formal
formal parameters. parameters.

3. Actual and formal arguments are created at the Actual and formal arguments are created at the
different memory location. same memory location

14. What is recursion?

Ans :
Recursion is the process which comes into existence when a function calls a copy of itself to work on

a smaller problem. Any function which calls itself is called recursive function, and such function calls are
called recursive calls. Recursion involves several numbers of recursive calls. However, it is important to
impose a termination condition of recursion. Recursion code is shorter than iterative code however it is
difficult to understand.

Recursion cannot be applied to all the problem, but it is more useful for the tasks that can be
defined in terms of similar subtasks. For Example, recursion may be applied to sorting, searching, and
traversal problems.

Generally, iterative solutions are more efficient than recursion since function call is always overhead.
Any problem that can be solved recursively, can also be solved iteratively.

In the following example, recursion is used to calculate the factorial of a number.

#include <stdio.h>

int fact (int);

int main()

{

 int n,f;

 printf(“Enter the number whose factorial you want to calculate?”);

 scanf(“%d”,&n);

 f = fact(n);

 printf(“factorial = %d”,f);

}

int fact(int n)

{

 if (n==0)

{

UNIT - II PROGRAMMING IN C

121
Rahul Publications

Rahul Publications

return 0;

 }

 else if (n == 1)

 {

 return 1;

 }

 else

 {

return n*fact(n-1);

}

}

Output

Enter the number whose factorial you want
to calculate?5

factorial = 120

We can understand the above program of
the recursive method call by the figure given below:

Fig.: Recursion

15. What is recursion function?

Ans :
A recursive function performs the tasks by

dividing it into the subtasks. There is a termination
condition defined in the function which is satisfied
by some specific subtask. After this, the recursion
stops and the final result is returned from the
function.

The case at which the function doesn’t recur
is called the base case whereas the instances where
the function keeps calling itself to perform a subtask,
is called the recursive case. All the recursive functions
can be written using this format.

Pseudocode for writing any recursive function
is given below.

if (test_for_base)

{

 return some_value;

}

else if (test_for_another_base)

{

 return some_another_value;

}

else

{

// Statements;

 recursive call;

}

Let’s see an example to find the nth term of
the Fibonacci series.

#include<stdio.h>

int fibonacci(int);

void main ()

{

 int n,f;

 printf(“Enter the value of n?”);

 scanf(“%d”,&n);

 f = fibonacci(n);

 printf(“%d”,f);

}

int fibonacci (int n)

{

 if (n==0)

 {

 return 0;

 }

BCA I YEAR I SEMESTER

122
Rahul Publications

Rahul Publications

 else if (n == 1)

 {

 return 1;

 }

 else

 {

 return fibonacci(n-1)+fibonacci (n-2);

 }

}

Output

Enter the value of n?12

144

16. Discuss all the properties of storage classes in C.

Ans :
The following table provides detailed properties of all storage classes...

Storage Class Keyword Memory Location Default Value Scope Life Time

Automatic auto Computer Memory (RAM) Garbage Value Local to the block in
which the variable has
defined

Till the control remains
within the block in which
variable is defined

External extern Computer Memory (RAM) Zero Global to the program
(i.e., Throughout the
program)

As long as the program’s
execution does not come
to end

Static static Computer Memory (RAM) Zero Local to the block in
which the variable has
defined

The value of the persists
between different function
calls (i.e., Initialization is
done only once)

Register register CPU Register Garbage Value Local to the block in
which the variable has
defined

Till the control remains
within the block in which
variable is defined

UNIT - II PROGRAMMING IN C

123
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. ++ operator is called as . [a]

(a) Increment (b) Addition

(c) Increase (d) Adding

2. operator.. [a]

(a) Bitwise (b) Logical

(c) Ternary (d) Conditional

3. Conditional operator is also called as . [b]

(a) Bitwise (b) Ternary

(c) Logical (d) Relational

4. statement is used to perform two operations for a single condition. [a]

(a) if - else (b) Nested - if

(c) else - if (d) for loop

5. statement in switch case is not must. [d]

(a) switch (b) default

(c) case (d) break

6. contains a single expression which can be either a character (or) integer variable. [b]

(a) if - else (b) switch

(c) for loop (d) None

7. provides code reusability.. [d]

(a) Operators (b) Keywords

(c) Statements (d) Loop

8. A loop with in athor loop is called as . [d]

(a) while - loop (b) do - while

(c) for - loop (d) nested loop

BCA I YEAR I SEMESTER

124
Rahul Publications

Rahul Publications

9. A large program divided into basic build blocks is known as . [c]

(a) Operator (b) Functions

(c) Loop (d) Statements

10. Functions are divided into categories. [a]

(a) 2 (b) 3

(c) 4 (d) 5

UNIT - II PROGRAMMING IN C

125
Rahul Publications

Rahul Publications

Fill in the Blanks

1. Built in functions are also called as .

2. Functions are divided into library functions and .

3. In C, the inter function communication is classified into types.

4. provides functions to perform standard I/o operations.

5. and are two types of parameters.

6. function performs the tasks by dividing into the sub-tasks.

7. A copy of the value is passed into the function.

8. The default storage class of all local variables is storage class.

9. storage class is used to specify the memory of the variable that has to be alloted in CPUU
register.

10. A function can call it self is called .

ANSWERS

1. Standard functions

2. User - defined - functions

3. 3

4. <stdio.n?

5. Actual, Formal

6. Recursive

7. Call-by-value

8. Auto

9. Register

10. Nested function

BCA I YEAR I SEMESTER

126
Rahul Publications

Rahul Publications

One Mark Answers

1. Define Operator

Ans :
An operator is a symbol that tells the compiler to perform specific mathematical or logical functions.

2. While loop?

Ans :
While the loop is an entry control loop because firstly, the condition is checked, then the loop’s

body is executed.
3. List any four advantages of functions.

Ans :
Advantage of functions in C

There are the following advantages of C functions.
 By using functions, we can avoid rewriting same logic/code again and again in a program.
 We can call C functions any number of times in a program and from any place in a program.
 We can track a large C program easily when it is divided into multiple functions.
 Reusability is the main achievement of C functions.
 However, Function calling is always a overhead in a C program.

4. What are the differences between call by value and call by reference.

Ans :
S.No. Call by value Call by reference

1. A copy of the value is passed into the function An address of value is passed into the function

2. Changes made inside the function is limited to Changes made inside the function validate outside
the function only. The values of the actual of the function also. The values of the actual
parameters do not change by changing the parameters do change by changing the formal
formal parameters. parameters.

3. Actual and formal arguments are created at the Actual and formal arguments are created at the
different memory location. same memory location

5. Explain Ternary Operator.

Ans :
The conditional operator is also known as a ternary operator. The conditional statements are the

decision-making statements which depends upon the output of the expression. It is represented by two
symbols, i.e., ‘?’ and ‘’

As conditional operator works on three operands, so it is also known as the ternary operator.
The behavior of the conditional operator is similar to the ‘if-else’ statement as ‘if-else’ statement is

also a decision-making statement.
Syntax of a conditional operator
Expression1? expression2: expression3;

UNIT - III PROGRAMMING IN C

127
Rahul Publications

Rahul Publications

UNIT
III

Preprocessors: Preprocessor Commands.

Arrays - Concepts, Using Arrays in C, Inter - Function Communication, Array
Applications, Two - Dimensional Arrays, Multidimensional Arrays, Linear and
Binary Search, Selection and Bubble Sort

3.1 PREPROCESSORS – PREPROCESSOR COMMANDS

Q1. What is the purpose of using preprocessors in C Programming?

(OR)

List out various preprocessor commands supported by C.

Ans : (Imp.)

In C programming language, preprocessor directive is a step performed before the actual source
code compilation. It is not part of the compilation. Preprocessor directives in C programming language
are used to define and replace tokens in the text and also used to insert the contents of other files into the
source file.

When we try to compile a program, preprocessor commands are executed first and then the program
gets compiled.

Every preprocessor command begins with # symbol. We can also create preprocessor commands
with parameters.

Following are the preprocessor commands in C programming language.

#define

#define is used to create symbolic constants (known as macros) in C programming language. This
preprocessor command can also be used with parameterized macros.

Example

#include<stdio.h>

#include<conio.h>

#define PI 3.14

#define SQR(x) x*x //Parameterized Macro

void main(){

double radius, area ;
clrscr() ;

printf(“Enter the radius: “);
scanf(“%ld”,&radius);

BCA I YEAR I SEMESTER

128
Rahul Publications

Rahul Publications

area = PI * SQR(radius) ;

printf(“area = %ld”,area);

getch();

}

Output

#undef

#undef is used to destroy a macro that was already created using #define.

#ifdef

#ifdef returns TRUE if the macro is defined and returns FALSE if the macro is not defined.

#ifndef

#ifndef returns TRUE if the specified macro is not defined otherwise returns FALSE.

#if

#if uses the value of specified macro for conditional compilation.

#else

#else is an alternative for #if.

#elif

#elif is a #else followed by #if in one statement.

#endif

#endif is used terminate preprocessor conditional macro.

#include

#include is used to insert specific header file into C program.

#error

#error is used to print error message on stderr.

#pragma

#pragma is used to issue a special command to the compiler.

In C programming language, there are some pre-defined macros and they are as follows...

1. __ DATE __ : The current date as characters in “MMM DD YYYY” format.

2. __ TIME __ : The current time as characters in “HH : MM : SS” format.

3. __ FILE __ : This contains the current file name.

4. __ LINE __ : This contains the current line number.

5. __ STDC __ : Defines 1 when compiler compiles with ANSI Standards.

UNIT - III PROGRAMMING IN C

129
Rahul Publications

Rahul Publications

Q2. Explain various types of preprocessor
directives.

Ans :
The #define Preprocessor Directive as

Function

The #define preprocessor directive can be
used as inline function which is replaced at compile
time. The definition of macro accepts an argument
and that argument is replaced by the actual
argument found in program.

Example of #define preprocessor as function

 #include<stdio.h>

 #define SQUARE(x) x*x

 void main()

 {

 int num;

 printf(“Enter any number : “);

 scanf(“%d”,&num);

printf(“\nThe square is :

%d”,SQUARE(num));

 }

Output

Enter any number : 5

The square is : 25

The #include Preprocessor Directive

The #include preprocessor directive is used
to include another source file in our source code.
This is commonly used to include header files in
our program.

Syntax of #include preprocessor directive

 #include “filename.h”

 or

 #include <filename.h>

The source file to be added must be enclosed
within double quotes (“ “) or angle brackets (<>) .
If the file is enclosed in double quotes the search
will be done in current directory. If the file is enclosed
in angle brackets the search will be done in standard
directories (include directory) where the libraries are
stored.

The #if-#else-#endif Preprocessor Directive

The #if preprocessor directive takes condition
in parenthesis, if condition is true, then the
statements given between #if and #else will get
execute. If condition is false, then statements given
between #else and #endif will get execute.

Syntax of #if-#else-#endif Preprocessor
Directive

 #if(condition)

 - - - - - - - - - -

 - - - - - - - - - -

 #else

 - - - - - - - - - -

 - - - - - - - - - -

 #endif

Example of #if-#else-#endif Preprocessor
Directive

 #include<stdio.h>

 #define MAX 45

 void main()

 {

#if MAX > 40

 printf(“Yes, MAX is greater then 40.”);

#else

 printf(“No, MAX is not greater then 40.”);

#endif

 }

Output

Yes, MAX is Greater then 40.

The #elif Preprocessor Directive

The #elif preprocessor directive is similar to
if-else ladder statement. It is used for checking
multiple conditions, if the first condition will not
satisfy, compiler will jump to #else block and check
other condition is true or not and so on.

Syntax of #if-#elif-#else-#endif Preproces-
sor Directive

BCA I YEAR I SEMESTER

130
Rahul Publications

Rahul Publications

#if(condition)

 - - - - - - - - - -

 - - - - - - - - - -

 #elif(condition)

 - - - - - - - - - -

 - - - - - - - - - -

 #elif(condition)

 - - - - - - - - - -

 - - - - - - - - - -

 #else

 - - - - - - - - - -

 - - - - - - - - - -

 #endif

Example of #if-#elif-#else-#endif Preproces
-sor Directive

 #include<stdio.h>

 #define MKS 65

 void main()

 {

 #if MKS>=78

 printf(“\nGrade A”);

 #elif MKS>=50

 printf(“\nGrade B”);

 #elif MKS>=25

 printf(“\nGrade C”);

 #else

 printf(“\nGrade D”);

 #endif

 }

Output

 Grade B

The #ifdef Preprocessor Directive

The #ifdef preprocessor directive is used to
check whether the macro-name is previously defined
or not, if defined then the statements given between
#ifdef and #else will get execute.

Syntax of #ifdef preprocessor directive

 #ifdef macro-name

 - - - - - - - - - -

 - - - - - - - - - -

 #else

 - - - - - - - - - -

 - - - - - - - - - -

 #endif

Example of #ifdef preprocessor directive

#include<stdio.h>

#define MKS 65

void main()

{

#ifdef MONTH

printf(“\nMONTH is defined.”);

#else

printf(“\nMONTH is not defined.”);

 #endif

 }

Output

MONTH is not defined.

The #ifndef Preprocessor Directive

The #ifndef preprocessor directive is used to
check whether the macro-name is previously defined
or not, if not defined then the statements given
between #ifndef and #else will get execute.

Syntax of #ifndef preprocessor directive

 #ifndef macro-name

 - - - - - - - - - -

 - - - - - - - - - -

 #else

 - - - - - - - - - -

 - - - - - - - - - -

 #endif

Example of #ifndef preprocessor directive

 #include<stdio.h>

 #define MKS 65

UNIT - III PROGRAMMING IN C

131
Rahul Publications

Rahul Publications

 void main()

 {

 #ifndef MAX

 printf(“\nMAX is not defined.”);

 #else

 printf(“\nMAX is defined.”);

 #endif

 }

Output

 MAX is not defined.

Note

The #ifdef and #ifndef can not use the #elif
preprocessor directive.

The #line Preprocessor Directive

The #line preprocessor directive is used to
overwrite the default value of pre-defined macro-
names _LINE_ and _FILE_. By defalut
_LINE_displays the current line number and _FILE_
displays the current filename.

Example of #line preprocessor directive 1:

#include<stdio.h>

void main()

{

printf(“\nLine number %d”,__LINE__);

printf(“\nFile name %s”,__FILE__);

}

Output

 Line number : 4

 File name : LineDemo.c

Note :

We have saved the above code in LineDemo.c
file.

Example of #line preprocessor directive 2:

#include<stdio.h>

#line 25 Demo.c

void main()

{

printf(“\nLine number %d”,__LINE__);

printf(“\nFile name %s”,__FILE__);

}

Output

Line number : 25

File name : Demo.c

The above code is still in LineDemo.c file but
we have overwritten the line number and the file
name using #line directive.

The #error Preprocessor Directive

The #error preprocessor directive is used to
force the compile to stop compiling the source code.
In other words we can manually force the compiler
to stop compiling and give fatal error.

Example of #error preprocessor directive 1:

 #include<stdio.h>

 void main()

 {

 #ifndef MAX

printf(“\nMAX is not defined.”);

//Statement 1

 #else

 printf(“\nMAX is defined.”);

//Statement 2

 #endif

 printf(“\nEnd of program.”);

//Statement 3

}

Output

 MAX is not defined.

 End of program.

Example of #error preprocessor directive 2:

 #include<stdio.h>

 void main()

 {

BCA I YEAR I SEMESTER

132
Rahul Publications

Rahul Publications

 #ifndef MAX

 #error MAX is not defined.

//Statement 1

 #else

 printf(“\nMAX is defined.”);

//Statement 2

 #endif

 printf(“\nEnd of program.”);

//Statement 3

 }

3.2 ARRAYS – CONCEPTS USING ARRAYS IN C

Q3. What is array ? Explain its advantages.

Ans : (Imp.)

An array is defined as the collection of similar
type of data items stored at contiguous memory
locations. Arrays are the derived data type in C
programming language which can store the primitive
type of data such as int, char, double, float, etc. It
also has the capability to store the collection of
derived data types, such as pointers, structure, etc.
The array is the simplest data structure where each
data element can be randomly accessed by using
its index number.

C array is beneficial if you have to store similar
elements. For example, if we want to store the marks
of a student in 6 subjects, then we don’t need to
define different variables for the marks in the
different subject. Instead of that, we can define an
array which can store the marks in each subject at
the contiguous memory locations.

By using the array, we can access the elements
easily. Only a few lines of code are required to access
the elements of the array.

Properties of Array

The array contains the following properties.

 Each element of an array is of same data type
and carries the same size, i.e., int = 4 bytes.

 Elements of the array are stored at contiguous
memory locations where the first element is
stored at the smallest memory location.

 Elements of the array can be randomly
accessed since we can calculate the address
of each element of the array with the given
base address and the size of the data element.

Advantages of Arrays

1. Code Optimization: Less code to the access
the data.

2. Ease of traversing: By using the for loop,
we can retrieve the elements of an array easily.

3. Ease of sorting: To sort the elements of the
array, we need a few lines of code only.

4. Random Access: We can access any element
randomly using the array.

Disadvantage of C Array

Fixed Size

Whatever size, we define at the time of
declaration of the array, we can’t exceed the limit.
So, it doesn’t grow the size dynamically.

Q4. What is the need of array ?

Ans :
In computer programming, the most of the

cases requires to store the large number of data of
similar type. To store such amount of data, we need
to define a large number of variables. It would be
very difficult to remember names of all the variables
while writing the programs. Instead of naming all
the variables with a different name, it is better to
define an array and store all the elements into it.

Following example illustrates, how array can
be useful in writing code for a particular problem.

In order to illustrate the importance of array,
we have created two programs, one is without using
array and other involves the use of array to store
marks.

Program without array

#include <stdio.h>

void main ()

{

 int marks_1 = 56, marks_2 = 78,
marks_3 = 88, marks_4 = 76, marks_5 = 56,
marks_6 = 89;

UNIT - III PROGRAMMING IN C

133
Rahul Publications

Rahul Publications

 float avg = (marks_1 + marks_2 +
marks_3 + marks_4 + marks_5 +marks_6) /
6;

 printf(avg);

}

Program by using array

#include <stdio.h>

void main ()

{

 int marks[6] = {56,78,88,76,56,89);

 int i;

 float avg;

 for (i=0; i<6; i++)

 {

 avg = avg + marks[i];

 }

 printf(avg);

}

Q5. How memory allocation is done in
arrays ?

Ans :
Memory Allocation of the array

All the data elements of an array are stored
at contiguous locations in the main memory. The
name of the array represents the base address or
the address of first element in the main memory.
Each element of the array is represented by a proper
indexing.

The indexing of the array can be defined in
three ways.

1. 0 (zero - based indexing): The first element
of the array will be arr[0].

2. 1 (one - based indexing): The first element
of the array will be arr[1].

3. n (n - based indexing): The first element
of the array can reside at any random index
number.

In the following image, we have shown the
memory allocation of an array arr of size 5. The
array follows 0-based indexing approach. The base
address of the array is 100th byte. This will be the
address of arr[0]. Here, the size of int is 4 bytes
therefore each element will take 4 bytes in the
memory.

In 0 based indexing, If the size of an array is
n then the maximum index number, an element
can have is n-1. However, it will be n if we
use 1 based indexing.

Q6. Explain the process of declaring and
initializing an array ?

Ans : (Imp.)

Declaration of C Array

We can declare an array in the c language in
the following way.

data_type array_name[array_size];

Now, let us see the example to declare the
array.

int marks[5];

Here, int is the data_type, marks are the
array_name, and 5 is the array_size.

Initialization of C Array

The simplest way to initialize an array is by
using the index of each element. We can initialize
each element of the array by using the index.
Consider the following example.

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

BCA I YEAR I SEMESTER

134
Rahul Publications

Rahul Publications

example

#include<stdio.h>

int main(){

int i=0;

int marks[5];//declaration of array

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

//traversal of array

for(i=0;i<5;i++){

printf(“%d \n”,marks[i]);

}//end of for loop

return 0;

}

Output

80

60

70

85

75

We can also define an initialize an array by
using following method also.

Declaration with Initialization

We can initialize the c array at the time of
declaration. Let’s see the code.

int marks[5]={20,30,40,50,60}

In such case, there is no requirement to
define the size. So it may also be written as the
following code.

int marks[]={20,30,40,50,60};

Let’s see the C program to declare and initialize
the array in C.

#include<stdio.h>

int main(){

int i=0;

i n t mar ks [5]={20 ,30 ,40,50,60}; / /
declaration and initialization of array

 //traversal of array

for(i=0;i<5;i++){

printf(“%d \n”,marks[i]);

}

return 0;

}

Output

20

30

40

50

60

Q7. Write a C program for sorting of an
elements using array .

Ans:
#include<stdio.h>

void main ()

{

 int i, j,temp;

 int a[10] = { 10, 9, 7, 101, 23, 44, 12,
78, 34, 23};

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] > a[i])

 {

 temp = a[i];

UNIT - III PROGRAMMING IN C

135
Rahul Publications

Rahul Publications

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 printf(“Printing Sorted Element List ...\n”);

 for(i = 0; i<10; i++)

 {

 printf(“%d\n”,a[i]);

 }

}

Output

Printing sorted elements lis…

7

9

10

12

23

23

34

44

78

101

3.2.1 Inter function communication

Q8. Explain the process of passing an array
to function.

Ans :
In C, there are various general problems

which requires passing more than one variable of
the same type to a function. For example, consider
a function which sorts the 10 elements in ascending
order. Such a function requires 10 numbers to be
passed as the actual parameters from the main
function. Here, instead of declaring 10 different
numbers and then passing into the function, we can
declare and initialize an array and pass that into the
function. This will resolve all the complexity since
the function will now work for any number of
values.

As we know that the array_name contains the
address of the first element. Here, we must notice
that we need to pass only the name of the array in
the function which is intended to accept an array.
The array defined as the formal parameter will
automatically refer to the array specified by the array
name defined as an actual parameter.

Consider the following syntax to pass an array
to the function.

functionname(arrayname);//passing array

There are 3 ways to declare the function
which is intended to receive an array as an argument.

First way

return_type function(type arrayname[])

Declaring blank subscript notation [] is the
widely used technique.

Second way

return_type function (type arrayname
[SIZE])

Optionally, we can define size in subscript
notation [].

Third way

return_type function(type *arrayname)

Example

#include<stdio.h>

int minarray(int arr[],int size){

int min=arr[0];

int i=0;

for(i=1;i<size;i++){

if(min>arr[i]){

min=arr[i];

}

}//end of for

return min;

}//end of function

int main(){

int i=0,min=0;

int numbers[]={4,5,7,3,8,9};//declaration of
array

BCA I YEAR I SEMESTER

136
Rahul Publications

Rahul Publications

min=minarray(numbers,6);//passing array
with size

printf(“minimum number is %d \n”,min);

return 0;

}

Output

minimum number is 3

Returning array from the function

As we know that, a function can not return
more than one value. However, if we try to write
the return statement as return a, b, c; to return three
values (a,b,c), the function will return the last
mentioned value which is c in our case. In some
problems, we may need to return multiple values
from a function. In such cases, an array is returned
from the function.

Returning an array is similar to passing the
array into the function. The name of the array is
returned from the function. To make a function
returning an array, the following syntax is used.

int * Function_name()
{

//some statements;

return array_type;
}

To store the array returned from the function,
we can define a pointer which points to that array.
We can traverse the array by increasing that pointer
since pointer initially points to the base address of
the array. Consider the following example that
contains a function returning the sorted array.
#include<stdio.h>

int* Bubble_Sort(int[]);

void main ()
{

 int arr[10] = { 10, 9, 7, 101, 23, 44, 12,
78, 34, 23};

 int *p = Bubble_Sort(arr), i;

 printf(“printing sorted elements ...\n”);

 for(i=0;i<10;i++)

 {

 printf(“%d\n”,*(p+i));

 }

}

int* Bubble_Sort(int a[])

//array a[] points to arr.

{

int i, j,temp;

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] < a[i])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 return a;

}

Output

Printing Sorted Element List ...

7

9

10

12

23

23

34

44

78

101

UNIT - III PROGRAMMING IN C

137
Rahul Publications

Rahul Publications

3.2.2 Array Applications

Q9. List out the applications of Arrays.

Ans :
In c programming language, arrays are used

in wide range of applications. Few of them are as
follows...

 Arrays are used to Store List of values

In c programming language, single dimen-
sional arrays are used to store list of values of same
datatype. In other words, single dimensional arrays
are used to store a row of values. In single
dimensional array data is stored in linear form.

 Arrays are used to Perform Matrix
Operations

We use two dimensional arrays to create
matrix. We can perform various operations on
matrices using two dimensional arrays.

 Arrays are used to implement Search
Algorithms

We use single dimensional arrays to
implement search algorihtms like ...

1. Linear Search

2. Binary Search

 Arrays are used to implement Sorting
Algorithms

We use single dimensional arrays to
implement sorting algorihtms like ...

1. Insertion Sort

2. Bubble Sort

3. Selection Sort

4. Quick Sort

5. Merge Sort, etc.,

 Arrays are used to implement Datastruc-
tures

We use single dimensional arrays to
implement datastructures like...

1. Stack Using Arrays

2. Queue Using Arrays

 Arrays are also used to implement CPU
Scheduling Algorithms

Two dimensional Array, Multi-dimensional
Array

In c programming language, arrays are
classified into two types. They are as follows...

1. Single Dimensional Array / One
Dimensional Array

2. Two Dimensional Array

3. Multi Dimensional Array

1. Single Dimensional Array

In c programming language, single dimensio-
nal arrays are used to store list of values of same
datatype. In other words, single dimensional arrays
are used to store a row of values. In single dimensio-
nal array, data is stored in linear form. Single
dimensional arrays are also called as one-
dimensional arrays, Linear Arrays or simply 1-D
Arrays.

We can declare an single dimensional array
in the c language in the following way.

data_type array_name[array_size];

Now, let us see the example to declare the
array.

int marks[5];

2. Two dimensional arrays

 At times we need to store the data in
form of tables or matrices. For this, we
can use the two dimensional arrays.

 This array is specified by using two
subscripts where one subscript is
denoted as the row and the other as the
column.

 It is also viewed as an array of arrays.

Syntax

Data type arratname[][];

Example

Int A[][];

BCA I YEAR I SEMESTER

138
Rahul Publications

Rahul Publications

3. Multi Dimensional Array in C

An array which is declared as more than one
size is called as multi dimensional array. The two-
dimensional array can be defined as an array of
arrays. The 2D array is organized as matrices which
can be represented as the collection of rows and
columns. However, 2D arrays are created to
implement a relational database lookalike data
structure. It provides ease of holding the bulk of
data at once which can be passed to any number
of functions wherever required.

Q10. How can we declare two dimensional
arrays in C?

Ans :
Two dimensional arrays

 At times we need to store the data in form of
tables or matrices. For this, we can use the
two dimensional arrays.

 This array is specified by using two subscripts
where one subscript is denoted as the row
and the other as the column.

 It is also viewed as an array of arrays.

Above figure shows how the rows and
columns are addressed in a two- dimensional array.
The first subscript denotes the row and the second
subscript denotes the column.

i) Declaration of a two-dimensional array

The declaration of the array will tell the
compiler as to which array is being used for the
program.

Syntax

data_type array_name [row_size] [column_
size] ;

 The declaration of the rows and columns is
compulsory for a two-dimensional array.

 We cannot replace the row size with the
column size and the column size to row size.
The proper sequence has to be maintained.

ii) Initialization of two-dimensional array

A two-dimensional array is initialized in the
same way as the one-dimensional array.

Example: Initialization of 2D array

int score [3] [2] ={50, 60, 70, 95, 3, 36};

The initialization of the array is done row-by-
row.

The above can also be written in the
following manner:

int score [3] [2] ={{50, 60} , {70,95}
,{3,36}};

The elements will be seen in the
following format once they are initialized.

score[0][0] = 50 score [0][1] = 60

score[1][0] = 70 score [1][1] = 95

score[2][0] = 3 score [2][1] = 36

The above example has been divided into
three rows and two columns.

iii) Accessing the elements

 The elements of this array are stored in a
continuous memory location.

 The last subscript varies rapidly as compared
to the first one.

 Two for loops required for scanning the
elements of the two-dimensional array. The
first for will loop for each row and second for
will loop for each column for every row.

Example: Simple program for printing the
elements of 2D array.

#include <stdio.h>

void main()
{

 int score[3][2]= {10,20,30,40,50,60};

 int i,j;

 for(i=0;i<3;i++)

 {

UNIT - III PROGRAMMING IN C

139
Rahul Publications

Rahul Publications

 printf(“\n”);

 for(j=0;j<2;j++)

 printf(“%d\t”,score[i][j]);

 }

}

Output:

10 20

30 40

50 60

iv) Passing 2D array as parameters to
functions

There are three ways of passing the
parameters to the functions.

a) Passing individual elements: They
are done in the same manner as that of
the one-dimensional array.

b) Passing a row

 A row can be passed by indexing
the array name with the number
of the row.

 When a single row is sent to the
called function, it is received as a
one-dimensional array.

Example: Passing a row

void main() // Calling function

{

int score [2][3] = {{10,20,30},

{40, 50, 60}};

 func (score [10]);

}

void func (int score[]) // Called function

{

 int i;

 for (i=0;i<5;i++)

printf (“%d”, score [i] * 10);

}

c) Passing the entire 2D array

We use the array name as the actual
parameter for passing a 2D array to a function.

But the parameter in the called function
should denote that the array has two dimensions.

Q11. Discuss in detail about Multi dimens-
ional arrays in C.

Ans : (Imp.)

Multidimensional array

 In simple terms it is called an array of arrays.

 We have ‘n’ number of indexes in this array.

 It is specified by using ‘n’ number of indices.

 The requirement of the memory increases
with the number of indices that it uses.

 But, if we talk practically we would not use
more than three indices.

 These arrays are declared and initialized in
the same manner as that of one and two-
dimensional arrays.

Fig.: Multidimensional Array

Example: Write a program to read and display
a 2*2*2 array.

#include <stdio.h>

void main()

{

 int arr[3][3][3],i,j,k;

 printf(“\n Enter the elements for the array:”);

 for(i=0;i<2;i++)

BCA I YEAR I SEMESTER

140
Rahul Publications

Rahul Publications

 {

 for(j=0;j<2;j++)

 {

 for(k=0;k<2;k++)

 {

 printf(“\n array [%d][%d][%d] = “,i,j,k);

 scanf(“%d”,&arr[i][j][k]);

 }

 }

 }

 printf(“\n The matrix is:”);

 for(i=0;i<2;i++)

 {

 printf(“\n\n”);

 for(j=0;j<2;j++)

 {

 printf(“\n”);

 for(k=0;k<2;k++)

 printf(“\t array[%d][%d][%d]=%d”,i,j,k, arr[i][j][k]);

 }

 }

}

Output

Enter the elements for the array: 10,20,30,40,50,60,70,80

array [0][0][0] = 10

array [0][0][1] = 20

array [0][1][0] = 30

array [0][1][1] = 40

array [1][0][0] = 50

array [1][0][1] = 60

array [1][1][0] = 70

array [1][1][1] = 80

The matrix is:

array[0][0][0]=10 array[0][0][1]=20

array[0][1][0]=30 array[0][1][1]=40

array[1][0][0]=50 array[1][0][1]=60

array[1][1][0]=70 array[1][1][1]=80

UNIT - III PROGRAMMING IN C

141
Rahul Publications

Rahul Publications

Q12. Write a C Programs to add two matrices using arrays.

Ans : (Imp.)

#include<stdio.h>
#include<conio.h>
void main()
{

int a[2][3],b[2][3],c[2][3],i,j;
clrscr();
printf(“\nENTER VALUES FOR MATRIX A:\n”);
for(i=0;i<2;i++)

for(j=0;j<3;j++)
scanf(“%d”,&a[i][j]);

printf(“\nENTER VALUES FOR MATRIX B:\n”);
for(i=0;i<2;i++)

for(j=0;j<3;j++)
scanf(“%d”,&b[i][j]);

for(i=0;i<2;i++)
for(j=0;j<3;j++)

c[i][j]=a[i][j]+b[i][j];
printf(“\nTHE VALUES OF MATRIX C ARE:\n”);
for(i=0;i<2;i++)

{
for(j=0;j<3;j++)

printf(“%5d”,c[i][j]);
printf(“\n”);

}
getch();

}
Output

BCA I YEAR I SEMESTER

142
Rahul Publications

Rahul Publications

Q13. Write a C Program for subtraction of two matrices.

Ans :
#include <stdio.h>
int main()
{

int m, n, c, d, first[10][10], second[10][10], difference [10] [10];
printf(“Enter the number of rows and columns of matrix\n”);
scanf(“%d%d”, &m, &n);
printf(“Enter the elements of first matrix\n”);

for (c = 0; c < m; c++)
for (d = 0 ; d < n; d++)
scanf(“%d”, &first[c][d]);

printf(“Enter the elements of second matrix\n”);
for (c = 0; c < m; c++)
for (d = 0; d < n; d++)
scanf(“%d”, &second[c][d]);

printf(“Difference of entered matrices:-\n”);
for (c = 0; c < m; c++) {
for (d = 0; d < n; d++) {
difference[c][d] = first[c][d] - second[c][d];
printf(“%d\t”,difference[c][d]);
}
printf(“\n”);

 }
return 0;

}
Output

UNIT - III PROGRAMMING IN C

143
Rahul Publications

Rahul Publications

Q14. Write a C Program for multiplication of two matrices.

Ans : (Imp.)

#include<stdio.h>

#include<stdlib.h>

int main(){

int a[10][10],b[10][10],mul[10][10],r,c,i,j,k;

system(“cls”); printf(“enter the number of row=”);

scanf(“%d”,&r); printf(“enter the number of column=”);

scanf(“%d”,&c);

printf(“enter the first matrix element=\n”);

for(i=0;i<r;i++)

{

for(j=0;j<c;j++)

{

scanf(“%d”,&a[i][j]);

}

}

printf(“enter the second matrix element=\n”);

for(i=0;i<r;i++)

{

for(j=0;j<c;j++)

{

scanf(“%d”,&b[i][j]);

}

}

printf(“multiply of the matrix=\n”);

for(i=0;i<r;i++)

{

for(j=0;j<c;j++)

{

mul[i][j]=0;

for(k=0;k<c;k++)

{

mul[i][j]+=a[i][k]*b[k][j];

}

}

BCA I YEAR I SEMESTER

144
Rahul Publications

Rahul Publications

}

//for printing result

for(i=0;i<r;i++)

{

for(j=0;j<c;j++)

{

printf(“%d\t”,mul[i][j]);

}

printf(“\n”);

}

return 0;

}

Output

enter the number of row=3

enter the number of column=3

enter the first matrix element=

1 1 1

2 2 2

3 3 3

enter the second matrix element=

1 1 1

2 2 2

3 3 3

multiply of the matrix=

6 6 6

12 12 12

18 18 18

1 1 1 1 1 1
Matrix 1 2 2 2 Matrix 2 2 2 2

3 3 3 3 3 3

   
   
   
   
   

Matrix 1 1*1 1* 2 1* 3 1*1 1* 2 1* 3 1*1 1* 2 1* 3
* 2*1 2* 2 2* 3 2 *1 2* 2 2* 3 2 *1 2 * 2 2* 3

Matrix 2 3 *1 3 * 2 3 * 3 3 *1 3 * 2 3 * 3 3 *1 3 * 2 3 * 3

      
       
       

Matrix 1 6 6 6
* 12 12 12

Matrix 2 18 18 18

 
 
 
 
 

UNIT - III PROGRAMMING IN C

145
Rahul Publications

Rahul Publications

3.4 LINEAR SEARCH AND BINARY SEARCH

Q15. What is searching ? Explain various searching methods.

Ans :
Searching is the process of finding some particular element in the list. If the element is present in the

list, then the process is called successful and the process returns the location of that element, otherwise the
search is called unsuccessful.

There are two popular search methods that are widely used in order to search some item into the
list. However, choice of the algorithm depends upon the arrangement of the list.

 Linear Search

 Binary Search

Q16. What is linear search? Write a linear search algorithm.

Ans : (Imp.)

Linear search is the simplest search algorithm and often called sequential search. In this type of
searching, we simply traverse the list completely and match each element of the list with the item whose
location is to be found. If the match found then location of the item is returned otherwise the algorithm
return NULL.

A simple approach is to do a linear search, i.e

 Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

 If x matches with an element, return the index.

 If x doesn’t match with any of elements, return -1.

Linear search is mostly used to search an unordered list in which the items are not sorted. The
algorithm of linear search is given as follows.

Algorithm

 LINEAR_SEARCH(A, N, VAL)

 Step 1: [INITIALIZE] SET POS = -1

 Step 2: [INITIALIZE] SET I = 1

 Step 3: Repeat Step 4 while I<=N

 Step 4: IF A[I] = VAL

BCA I YEAR I SEMESTER

146
Rahul Publications

Rahul Publications

SET POS = I

PRINT POS

Go to Step 6

[END OF IF]

SET I = I + 1

[END OF LOOP]

 Step 5: IF POS = -1

PRINT “ VALUE IS NOT PRESENTIN THE ARRAY “

[END OF IF]

 Step 6: EXIT

Q17. Write a c program to implement linear search mechanism.

Ans :
#include<stdio.h>
void main ()
{

 int a[10] = {10, 23, 40, 1, 2, 0, 14, 13, 50, 9};
 int item, i,flag;
 printf(“\nEnter Item which is to be searched\n”);
 scanf(“%d”,&item);
 for (i = 0; i< 10; i++)

{
 if(a[i] == item)
 {
 flag = i+1;
 break;
 }
 else
 flag = 0;
 }
 if(flag != 0)
 {
 printf(“\nItem found at location %d\n”,flag);
 }
 else
 {
 printf(“\nItem not found\n”);
 }
}

UNIT - III PROGRAMMING IN C

147
Rahul Publications

Rahul Publications

Output

Enter Item which is to be searched

20

Item not found

Enter Item which is to be searched

23

Item found at location 2

Q18. Write a Binary search algorithm.

Ans :
Binary search is the search technique which works efficiently on the sorted lists. Hence, in order to

search an element into some list by using binary search technique, we must ensure that the list is sorted.

Binary search follows divide and conquer approach in which, the list is divided into two halves and
the item is compared with the middle element of the list. If the match is found then, the location of middle
element is returned otherwise, we search into either of the halves depending upon the result produced
through the match.

Binary search algorithm is given below.

BINARY_SEARCH(A, lower_bound, upper_bound, VAL)

Step 1: [INITIALIZE] SET BEG = lower_bound

END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <=END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = VAL

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

ELSE

SET BEG = MID + 1

[END OF IF]

[END OF LOOP]

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

Step 6: EXIT

BCA I YEAR I SEMESTER

148
Rahul Publications

Rahul Publications

Example
Let us consider an array arr = {1, 5, 7, 8, 13, 19, 20, 23, 29}. Find the location of the item 23 in

the array.
In 1st step
1. BEG = 0
2. END = 8ron
3. MID = 4
4. a[mid] = a[4] = 13 < 23, therefore
In Second step
1. Beg = mid +1 = 5
2. End = 8
3. mid = 13/2 = 6
4. a[mid] = a[6] = 20 < 23, therefore;
in third step
1. beg = mid + 1 = 7
2. End = 8
3. mid = 15/2 = 7
4. a[mid] = a[7]
5. a[7] = 23 = item;
6. therefore, set location = mid;
7. The location of the item will be 7.

UNIT - III PROGRAMMING IN C

149
Rahul Publications

Rahul Publications

Q19. Explain Binary search using an example.

Ans : (Imp.)

A binary search is a search in which the middle element is calculated to check whether it is smaller
or larger than the element which is to be searched. The main advantage of using binary search is that it
does not scan each element in the list. Instead of scanning each element, it performs the searching to the
half of the list. So, the binary search takes less time to search an element as compared to a linear search.

The one pre-requisite of binary search is that an array should be in sorted order, whereas the
linear search works on both sorted and unsorted array. The binary search algorithm is based on the divide
and conquer technique, which means that it will divide the array recursively.

There are three cases used in the binary search:

Case 1: data<a[mid] then left = mid+1.

Case 2: data>a[mid] then right=mid-1

Case 3: data = a[mid] // element is found

In the above case, ‘a’ is the name of the array, mid is the index of the element calculated
recursively, data is the element that is to be searched, left denotes the left element of the array
and right denotes the element that occur on the right side of the array.

Let’s understand the working of binary search through an example.

Suppose we have an array of 10 size which is indexed from 0 to 9 as shown in the below figure:

We want to search for 70 element from the above array.

Step 1

First, we calculate the middle element of an array. We consider two variables, i.e., left and right.
Initially, left =0 and right=9 as shown in the below figure:

The middle element value can be calculated as:

mid =
left right

2


Therefore, mid = 4 and a[mid] = 50. The element to be searched is 70, so a[mid] is not equal to
data. The case 2 is satisfied, i.e., data>a[mid].

BCA I YEAR I SEMESTER

150
Rahul Publications

Rahul Publications

Step 2

As data>a[mid], so the value of left is incremented by mid+1, i.e., left=mid+1. The value of mid
is 4, so the value of left becomes 5. Now, we have got a subarray as shown in the below figure:

Now again, the mid-value is calculated by using the above formula, and the value of mid becomes
7. Now, the mid can be represented as:

In the above figure, we can observe that a[mid]>data, so again, the value of mid will be calculated
in the next step.

Step 3

As a[mid]>data, the value of right is decremented by mid-1. The value of mid is 7, so the value of
right becomes 6. The array can be represented as:

The value of mid will be calculated again. The values of left and right are 5 and 6, respectively.
Therefore, the value of mid is 5. Now the mid can be represented in an array as shown below:

In the above figure, we can observe that a[mid]<data.

Step 4

As a[mid]<data, the left value is incremented by mid+1. The value of mid is 5, so the value of left
becomes 6.

Now the value of mid is calculated again by using the formula which we have already discussed.
The values of left and right are 6 and 6 respectively, so the value of mid becomes 6 as shown in the below
figure:

UNIT - III PROGRAMMING IN C

151
Rahul Publications

Rahul Publications

We can observe in the above figure that a[mid]=data. Therefore, the search is completed, and the
element is found successfully.

Q20. Write a C program to search an element using binary search.

Ans :
#include<stdio.h>
int binarySearch(int[], int, int, int);
void main ()
{

int arr[10] = {16, 19, 20, 23, 45, 56, 78, 90, 96, 100};
int item, location=-1;
printf(“Enter the item which you want to search ”);
scanf(“%d”,&item);
location = binarySearch(arr, 0, 9, item);
if(location != -1)
{

printf(“Item found at location %d”,location);
}
else
{

printf(“Item not found”);
}

}
int binarySearch(int a[], int beg, int end, int item)
{

int mid;
if(end >= beg)
{

mid = (beg + end)/2;

if(a[mid] == item)

 {
 return mid+1;
 }
 else if(a[mid] < item)
 {

BCA I YEAR I SEMESTER

152
Rahul Publications

Rahul Publications

 return binarySearch (a,mid+1, end, item);
 }
 else
 {

 return binarySearch(a,beg,mid-1,item);
 }

 }
 return -1;
}
Output
Enter the item which you want to search
19
Item found at location 2
Q21. What are the differences between linear search and binary serach.

Ans : (Imp.)

It can be implemented only on a
multidimensional array.

It can be implemented on both a single
and multidimensional array.

Dimensional array

In a binary search, the best-case
scenario for finding the first
element in the list is O(1).

In a linear search, the best-case scenario
for finding the first element in the list is
O(1).

Best-case scenario

In a binary search, the worst-
case scenario for finding the
element is O(log2n).

In a linear search, the worst- case
scenario for finding the element is O(n).

Worst-case scenario

It is more efficient in the case of
large-size data sets.

It is less efficient in the case of large-size
data sets.

Efficiency

It is preferrable for the large-size
data sets.

It is preferrable for the small-sized data
sets.

Size

It is based on the divide and
conquer approach.

It is based on the sequential approach.Approach

The implementation of binary
search is limited as it can be
implemented only on those data
structures that have two-way
traversal.

The linear search can be implemented on
any linear data structure such as an
array, linked list, etc.

Implementation

The pre-condition for the binary
search is that the elements must
be arranged in a sorted order.

In a linear search, the elements don't
need to be arranged in sorted order.

Sorted data

It finds the position of the
searched element by finding the
middle element of the array.

The linear search starts searching from
the first element and compares each
element with a searched element till the
element is not found.

Definition

Binary searchLinear searchBasis of comparison

It can be implemented only on a
multidimensional array.

It can be implemented on both a single
and multidimensional array.

Dimensional array

In a binary search, the best-case
scenario for finding the first
element in the list is O(1).

In a linear search, the best-case scenario
for finding the first element in the list is
O(1).

Best-case scenario

In a binary search, the worst-
case scenario for finding the
element is O(log2n).

In a linear search, the worst- case
scenario for finding the element is O(n).

Worst-case scenario

It is more efficient in the case of
large-size data sets.

It is less efficient in the case of large-size
data sets.

Efficiency

It is preferrable for the large-size
data sets.

It is preferrable for the small-sized data
sets.

Size

It is based on the divide and
conquer approach.

It is based on the sequential approach.Approach

The implementation of binary
search is limited as it can be
implemented only on those data
structures that have two-way
traversal.

The linear search can be implemented on
any linear data structure such as an
array, linked list, etc.

Implementation

The pre-condition for the binary
search is that the elements must
be arranged in a sorted order.

In a linear search, the elements don't
need to be arranged in sorted order.

Sorted data

It finds the position of the
searched element by finding the
middle element of the array.

The linear search starts searching from
the first element and compares each
element with a searched element till the
element is not found.

Definition

Binary searchLinear searchBasis of comparison

UNIT - III PROGRAMMING IN C

153
Rahul Publications

Rahul Publications

3.5 SELECTION SORT AND BINARY SORT

Q22. What is sorting ? List out basic sorting
methods available in C.

Ans :
Arranging the data in ascending or descending

order is known as sorting.

Sorting is very important from the point of
view of our practical life.

The best example of sorting can be phone
numbers in our phones. If, they are not maintained
in an alphabetical order we would not be able to
search any number effectively.

Sorting is the process of arranging the
elements of an array so that they can be placed
either in ascending or descending order. For
example, consider an array A = {A1, A2, A3, A4,
?? An }, the array is called to be in ascending order
if element of A are arranged like A1 > A2 > A3 >
A4 > A5 > ? > An.

Consider an array;

int A[10] = { 5, 4, 10, 2, 30, 45, 34, 14, 18,
9)

The Array sorted in ascending order will
be given as;

A[] = { 2, 4, 5, 9, 10, 14, 18, 30, 34, 45 }

Many methods are used for sorting, such
as:

1. Bubble sort

2. Selection sort

3. Insertion sort

4. Quick sort

5. Merge sort

6. Heap sort

7. Radix sort

8. Shell sort

Generally a sort is classified as internal only
if the data which is being sorted is in main memory.

It can be external, if the data is being sorted
in the auxiliary storage.

The user will decide which sorting method
can be used depending on the following conditions:

a) Time required by a programmer for coding
a particular sorting program.

b) The machine time required for running the
program.

c) Space required by the program.

Q23. Write an algorithm to implement
Selection sorting.

Ans : (Imp.)

Selection Sorting

In selection sort, the smallest value among
the unsorted elements of the array is selected in
every pass and inserted to its appropriate position
into the array.

First, find the smallest element of the array
and place it on the first position. Then, find the
second smallest element of the array and place it
on the second position. The process continues until
we get the sorted array.

The array with n elements is sorted by using
n-1 pass of selection sort algorithm.

 In 1st pass, smallest element of the array is to
be found along with its index pos. then, swap
A[0] and A[pos]. Thus A[0] is sorted, we now
have n -1 elements which are to be sorted.

 In 2nd pas, position pos of the smallest
element present in the sub-array A[n-1] is
found. Then, swap, A[1] and A[pos]. Thus
A[0] and A[1] are sorted, we now left with
n-2 unsorted elements.

 In n-1th pass, position pos of the smaller
element between A[n-1] and A[n-2] is to be
found. Then, swap, A[pos] and A[n-1].

Therefore, by following the above explained
process, the elements A[0], A[1], A[2],...., A[n-1]
are sorted.

Example

Consider the following array with 6 elements.
Sort the elements of the array by using selection
sort.

BCA I YEAR I SEMESTER

154
Rahul Publications

Rahul Publications

A = {10, 2, 3, 90, 43, 56}.

Pass Pos A[0] A[1] A[2] A[3] A[4] A[5]

1 1 2 10 3 90 43 56

2 2 2 3 10 90 43 56

3 2 2 3 10 90 43 56

4 4 2 3 10 43 90 56

5 5 2 3 10 43 56 90

Sorted A = {2, 3, 10, 43, 56, 90}

Algorithm

SELECTION SORT(ARR, N)

 Step 1: Repeat Steps 2 and 3 for K = 1 to N-1

 Step 2: CALL SMALLEST(ARR, K, N, POS)

 Step 3: SWAP A[K] with ARR[POS]

[END OF LOOP]

 Step 4: EXIT

SMALLEST (ARR, K, N, POS)

 Step 1: [INITIALIZE] SET SMALL = ARR[K]

 Step 2: [INITIALIZE] SET POS = K

 Step 3: Repeat for J = K+1 to N -1

IF SMALL > ARR[J]

SET SMALL = ARR[J]

SET POS = J

[END OF IF]

[END OF LOOP]

 Step 4: RETURN POS

Q24. Write a C Program to implement selection sorting.

Ans :
#include<stdio.h>

int smallest(int[],int,int);

void main ()

{

 int a[10] = {10, 9, 7, 101, 23, 44, 12, 78, 34, 23};

 int i,j,k,pos,temp;

 for(i=0;i<10;i++)

UNIT - III PROGRAMMING IN C

155
Rahul Publications

Rahul Publications

 {
 pos = smallest(a,10,i);

 temp = a[i];

 a[i]=a[pos];
 a[pos] = temp;

 }

 printf(“\nprinting sorted elements...\n”);
 for(i=0;i<10;i++)

 {

 printf(“%d\n”,a[i]);
 }

}

int smallest(int a[], int n, int i)
{

 int small,pos,j;

 small = a[i];
 pos = i;

 for(j=i+1;j<10;j++)

 {
 if(a[j]<small)

 {

 small = a[j];
 pos=j;

 }

 }
 return pos;

}

Output:
printing sorted elements...

7

9
10

12

23
23

34

44
78

101

Q25. Write an algorithm to implement bubble
sorting.

Ans : (Imp.)

Bubble Sorting

In Bubble sort, Each element of the array is
compared with its adjacent element. The algorithm
processes the list in passes. A list with n elements
requires n-1 passes for sorting. Consider an array A
of n elements whose elements are to be sorted by
using Bubble sort. The algorithm processes like
following.

1. In Pass 1, A[0] is compared with A[1], A[1] is
compared with A[2], A[2] is compared with
A[3] and so on. At the end of pass 1, the
largest element of the list is placed at the
highest index of the list.

2. In Pass 2, A[0] is compared with A[1], A[1] is
compared with A[2] and so on. At the end
of Pass 2 the second largest element of the
list is placed at the second highest index of
the list.

3. In pass n-1, A[0] is compared with A[1], A[1]
is compared with A[2] and so on. At the end
of this pass. The smallest element of the list is
placed at the first index of the list.

Algorithm

 Step 1: Repeat Step 2 For i = 0 to N-1

 Step 2: Repeat For J = i + 1 to N - I

 Step 3: IF A[J] > A[i]

SWAP A[J] and A[i]

[END OF INNER LOOP]

[END OF OUTER LOOP

 Step 4: EXIT

C Program

#include<stdio.h>

void main ()

{

 int i, j,temp;

 int a[10] = { 10, 9, 7, 101, 23, 44,
12, 78, 34, 23};

BCA I YEAR I SEMESTER

156
Rahul Publications

Rahul Publications

 for(i = 0; i<10; i++)

 {

 for(j = i+1; j<10; j++)

 {

 if(a[j] > a[i])

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 }

 }

 printf(“Printing Sorted Element List ...\n”);

 for(i = 0; i<10; i++)

 {

 printf(“%d\n”,a[i]);

 }

}

Output

Printing Sorted Element List . . .

7

9

10

12

23

34

34

44

78

101

UNIT - III PROGRAMMING IN C

157
Rahul Publications

Rahul Publications

Short Question and Answers

1. Discuss #ifdef preprocessor directive.

Ans :
The #ifdef preprocessor directive is used to

check whether the macro-name is previously defined
or not, if defined then the statements given between
#ifdef and #else will get execute.

Syntax of #ifdef preprocessor directive

 #ifdef macro-name

 - - - - - - - - - -

 - - - - - - - - - -

 #else

 - - - - - - - - - -

 - - - - - - - - - -

 #endif

Example of #ifdef preprocessor directive

#include<stdio.h>

#define MKS 65

void main()

{

#ifdef MONTH

printf(“\nMONTH is defined.”);

#else

printf(“\nMONTH is not defined.”);

 #endif

 }

Output

MONTH is not defined.

2. What is #ifndef preprocessor directive?

Ans :
The #ifndef preprocessor directive is used to

check whether the macro-name is previously defined
or not, if not defined then the statements given
between #ifndef and #else will get execute.

Syntax of #ifndef preprocessor directive
 #ifndef macro-name

 - - - - - - - - - -
 - - - - - - - - - -
 #else
 - - - - - - - - - -
 - - - - - - - - - -
 #endif
Example of #ifndef preprocessor directive
 #include<stdio.h>
 #define MKS 65
 void main()
 {
 #ifndef MAX
 printf(“\nMAX is not defined.”);
 #else
 printf(“\nMAX is defined.”);

 #endif
 }
Output
 MAX is not defined.
3. List any four advantages of an Array.

Ans :
Advantages of Arrays
i) Code Optimization: Less code to the access

the data.

ii) Ease of traversing: By using the for loop,
we can retrieve the elements of an array easily.

iii) Ease of sorting: To sort the elements of the
array, we need a few lines of code only.

iv) Random Access: We can access any element
randomly using the array.

4. How memory allocation is done in
arrays ?

Ans :
Memory Allocation of the array

All the data elements of an array are stored
at contiguous locations in the main memory. The

BCA I YEAR I SEMESTER

158
Rahul Publications

Rahul Publications

name of the array represents the base address or
the address of first element in the main memory.
Each element of the array is represented by a proper
indexing.

The indexing of the array can be defined in
three ways.

i) 0 (zero - based indexing): The first element
of the array will be arr[0].

ii) 1 (one - based indexing): The first element
of the array will be arr[1].

iii) n (n - based indexing): The first element
of the array can reside at any random index
number.

In the following image, we have shown the
memory allocation of an array arr of size 5. The
array follows 0-based indexing approach. The base
address of the array is 100th byte. This will be the
address of arr[0]. Here, the size of int is 4 bytes
therefore each element will take 4 bytes in the
memory.

In 0 based indexing, If the size of an array is
n then the maximum index number, an element
can have is n-1. However, it will be n if we
use 1 based indexing.

5. Write a C program for sorting of an
elements using array .

Ans:
#include<stdio.h>

void main ()

{

 int i, j,temp;

 int a[10] = { 10, 9, 7, 101, 23, 44, 12,
 78, 34, 23};

 for(i = 0; i<10; i++)
 {
 for(j = i+1; j<10; j++)
 {
 if(a[j] > a[i])
 {
 temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 }
 }
 printf(“Printing Sorted Element List ...\n”);
 for(i = 0; i<10; i++)
 {
 printf(“%d\n”,a[i]);
 }
}
Output
Printing sorted elements lis…
7
9
10
12
23
23
34
44
78
101
6. What is multi Dimensional Array.

Ans :
An array which is declared as more than one

size is called as multi dimensional array. The two-
dimensional array can be defined as an array of
arrays. The 2D array is organized as matrices which
can be represented as the collection of rows and
columns. However, 2D arrays are created to
implement a relational database lookalike data
structure. It provides ease of holding the bulk of
data at once which can be passed to any number
of functions wherever required.

UNIT - III PROGRAMMING IN C

159
Rahul Publications

Rahul Publications

7. What is linear search.

Ans :
Linear search is the simplest search algorithm and often called sequential search. In this type of

searching, we simply traverse the list completely and match each element of the list with the item whose
location is to be found. If the match found then location of the item is returned otherwise the algorithm
return NULL.

A simple approach is to do a linear search, i.e

 Start from the leftmost element of arr[] and one by one compare x with each element of arr[]

 If x matches with an element, return the index.

 If x doesn’t match with any of elements, return -1.

8. Write a Binary search algorithm.

Ans :
Binary search is the search technique which works efficiently on the sorted lists. Hence, in order to

search an element into some list by using binary search technique, we must ensure that the list is sorted.

Binary search follows divide and conquer approach in which, the list is divided into two halves and
the item is compared with the middle element of the list. If the match is found then, the location of middle
element is returned otherwise, we search into either of the halves depending upon the result produced
through the match.

Binary search algorithm is given below.

BINARY_SEARCH(A, lower_bound, upper_bound, VAL)

Step 1: [INITIALIZE] SET BEG = lower_bound

END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <=END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = VAL

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

ELSE

SET BEG = MID + 1

[END OF IF]

[END OF LOOP]

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

Step 6: EXIT

BCA I YEAR I SEMESTER

160
Rahul Publications

Rahul Publications

9. What are the differences between linear search and binary serach.

Ans :

It can be implemented only on a
multidimensional array.

It can be implemented on both a single
and multidimensional array.

Dimensional array

In a binary search, the best-case
scenario for finding the first
element in the list is O(1).

In a linear search, the best-case scenario
for finding the first element in the list is
O(1).

Best-case scenario

In a binary search, the worst-
case scenario for finding the
element is O(log2n).

In a linear search, the worst- case
scenario for finding the element is O(n).

Worst-case scenario

It is more efficient in the case of
large-size data sets.

It is less efficient in the case of large-size
data sets.

Efficiency

It is preferrable for the large-size
data sets.

It is preferrable for the small-sized data
sets.

Size

It is based on the divide and
conquer approach.

It is based on the sequential approach.Approach

The implementation of binary
search is limited as it can be
implemented only on those data
structures that have two-way
traversal.

The linear search can be implemented on
any linear data structure such as an
array, linked list, etc.

Implementation

The pre-condition for the binary
search is that the elements must
be arranged in a sorted order.

In a linear search, the elements don't
need to be arranged in sorted order.

Sorted data

It finds the position of the
searched element by finding the
middle element of the array.

The linear search starts searching from
the first element and compares each
element with a searched element till the
element is not found.

Definition

Binary searchLinear searchBasis of comparison

It can be implemented only on a
multidimensional array.

It can be implemented on both a single
and multidimensional array.

Dimensional array

In a binary search, the best-case
scenario for finding the first
element in the list is O(1).

In a linear search, the best-case scenario
for finding the first element in the list is
O(1).

Best-case scenario

In a binary search, the worst-
case scenario for finding the
element is O(log2n).

In a linear search, the worst- case
scenario for finding the element is O(n).

Worst-case scenario

It is more efficient in the case of
large-size data sets.

It is less efficient in the case of large-size
data sets.

Efficiency

It is preferrable for the large-size
data sets.

It is preferrable for the small-sized data
sets.

Size

It is based on the divide and
conquer approach.

It is based on the sequential approach.Approach

The implementation of binary
search is limited as it can be
implemented only on those data
structures that have two-way
traversal.

The linear search can be implemented on
any linear data structure such as an
array, linked list, etc.

Implementation

The pre-condition for the binary
search is that the elements must
be arranged in a sorted order.

In a linear search, the elements don't
need to be arranged in sorted order.

Sorted data

It finds the position of the
searched element by finding the
middle element of the array.

The linear search starts searching from
the first element and compares each
element with a searched element till the
element is not found.

Definition

Binary searchLinear searchBasis of comparison

10. What is selection sorting ?

Ans :
Selection Sorting

In selection sort, the smallest value among the unsorted elements of the array is selected in every
pass and inserted to its appropriate position into the array.

First, find the smallest element of the array and place it on the first position. Then, find the second
smallest element of the array and place it on the second position. The process continues until we get the
sorted array.

The array with n elements is sorted by using n-1 pass of selection sort algorithm.

 In 1st pass, smallest element of the array is to be found along with its index pos. then, swap A[0]
and A[pos]. Thus A[0] is sorted, we now have n -1 elements which are to be sorted.

 In 2nd pas, position pos of the smallest element present in the sub-array A[n-1] is found. Then,
swap, A[1] and A[pos]. Thus A[0] and A[1] are sorted, we now left with n-2 unsorted elements.

UNIT - III PROGRAMMING IN C

161
Rahul Publications

Rahul Publications

 In n-1th pass, position pos of the smaller element between A[n-1] and A[n-2] is to be found. Then,
swap, A[pos] and A[n-1].

Therefore, by following the above explained process, the elements A[0], A[1], A[2],...., A[n-1] are
sorted.

11. What is bubble sorting.

Ans :
Bubble Sorting

In Bubble sort, Each element of the array is compared with its adjacent element. The algorithm
processes the list in passes. A list with n elements requires n-1 passes for sorting. Consider an array A of n
elements whose elements are to be sorted by using Bubble sort. The algorithm processes like following.

1. In Pass 1, A[0] is compared with A[1], A[1] is compared with A[2], A[2] is compared with A[3] and
so on. At the end of pass 1, the largest element of the list is placed at the highest index of the list.

2. In Pass 2, A[0] is compared with A[1], A[1] is compared with A[2] and so on. At the end of Pass 2
the second largest element of the list is placed at the second highest index of the list.

3. In pass n-1, A[0] is compared with A[1], A[1] is compared with A[2] and so on. At the end of this
pass. The smallest element of the list is placed at the first index of the list.

Algorithm

 Step 1: Repeat Step 2 For i = 0 to N-1

 Step 2: Repeat For J = i + 1 to N - I

 Step 3: IF A[J] > A[i]

SWAP A[J] and A[i]

[END OF INNER LOOP]

[END OF OUTER LOOP

 Step 4: EXIT

BCA I YEAR I SEMESTER

162
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. is used to create symbolic constants in c. [a]

(a) # define (b) Constant

(c) Keyword (d) Variable

2. is used to insert a specific header file into c program. [c]

(a) # undef (b) # if

(c) # include (d) # elif

3. Pre processor is used to check whether the macro name is previously defined (or) not[b]

(a) # undef (b) # ifndef

(c) # include (d) None

4. is the collection of similar data type elements. [b]

(a) Loop (b) Array

(c) Pointer (d) Storage

5. Arrays are used for [d]

(a) Matrix (b) Operations

(c) Sorting Algorithms (d) All of the above

6. Array of Arrays are known as [c]

(a) Structured array (b) 2D Array

(c) Multi dimensional Array (d) None

7. is the process of finding some particular element in the list [a]

(a) Searching (b) Sorting

(c) Merging (d) None

8. Binary search follows approach. [b]

(a) Merging (b) Divide and conquer

(c) Both (d) None

9. Search is less efficient in the case of large size data sets. [a]

(a) Linear (b) Binary

(c) Simple (d) None

10. Uses the value of specified macro for conditional compilation. [c]

(a) # else (b) # error

(c) # if (d) # undef

UNIT - III PROGRAMMING IN C

163
Rahul Publications

Rahul Publications

Fill in the blanks

1. search is a sequential search.

2. is the process of finding some particular element.

3. search is preferrable for the large-size data sets.

4. In sorting, the smallest value among the unsorted elements.

5. In sorting, each element of the array is compared with it’s adjacent element.

6. is used terminate processor conditional macro..

7. Each element of an array carries size.

8. Single dimensional arrays used to represent and search algorithms.

9. is the major disadvantages of array..

10. Array with in other array is known as .

ANSWERS

1. Linear

2. Searching

3. Binary search

4. Selection sort

5. Bubble sort

6. # endif

7. Same

8. Linear, Binary

9. Fixed size

10. Nested Array

BCA I YEAR I SEMESTER

164
Rahul Publications

Rahul Publications

One Mark Answers

1. # define

Ans :
define is used to create symbolic constants in c.

2. Array

Ans :
Array is the collection of similar datatype elements. Which are stored in contiguous format.

3. What is searching?

Ans :
Searching is the process of finding some particular element in the list.

4. What is sorting?

Ans :
Arranging the data is ascending (or) descending order is known as sorting.

5. Binary Search

Ans :
It finds the position of the search element by finding the middle element of the array.

UNIT - IV PROGRAMMING IN C

165
Rahul Publications

Rahul Publications

UNIT
IV

4.1 POINTERS

4.1.1 Introduction

Q1. Define pointer? Explain the process of declaring a pointer in c program.

Ans : (Imp.)

 The pointer in C language is a variable which stores the address of another variable. This variable can be
of type int, char, array, function, or any other pointer. The size of the pointer depends on the architecture.
However, in 32-bit architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an integer.

int n = 10;

int* p = &n; // Variable p of type pointer is pointing to the address of the variable
n of type integer.

Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also known as indirection
pointer used to dereference a pointer.

int *a;//pointer to int

char *c;//pointer to char

Example

An example of using pointers to print the address and value is given below.

aaa3

fff4

p
(pointer)

fff4

50

number
(normal variable)

Pointers - Introduction, Pointers for Inter-Function Communication, Pointers
to Pointers, Compatibility, L-value and R-value, Arrays and Pointers, Pointer
Arithmetic and Arrays, Passing an Array to a Function, Memory Allocation
Functions, Array of Pointers, Programming Applications, Pointers to void,
Pointers to Functions, Command-line Arguments.

Strings - Concepts, C Strings, String Input/Output Functions, Arrays of Strings,
String Manipulation Functions.

BCA I YEAR I SEMESTER

166
Rahul Publications

Rahul Publications

As you can see in the above figure, pointer
variable stores the address of number variable, i.e.,
fff4. The value of number variable is 50. But the
address of pointer variable p is aaa3.

By the help of * (indirection operator), we
can print the value of pointer variable p.

Let’s see the pointer example as explained
for the above figure.

#include<stdio.h>

int main(){

int number=50;

int *p;

p=&number;//stores the address of
number variable
 printf(“Address of p variable is %x \n”,p);

// p contains the address of the number
therefore printing p gives the address of
number.

 printf(“Value of p variable is %d \n”,*p);

/ / A s we kn ow t ha t * i s u s e d to
dereference a pointer therefore if we print *p, we
will get the value stored at the address
contained by p.

return 0;

}

Output

Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Q2. What are the advantages and usages of
pointers ?

Ans:
Advantages of pointer

1) Pointer reduces the code and improves the
performance, it is used to retrieving strings,
trees, etc. and used with arrays, structures,
and functions.

2) We can return multiple values from a
function using the pointer.

3) It makes you able to access any memory
location in the computer’s memory.

Usage of pointer

There are many applications of pointers in c
language.

1) Dynamic memory allocation

In c language, we can dynamically allocate
memory using malloc() and calloc() functions
where the pointer is used.

2) Arrays, Functions, and Structures

Pointers in c language are widely used in
arrays, functions, and structures. It reduces
the code and improves the performance.

Q3. Write a c program for swapping of two
numbers using pointers ?

Ans:
#include<stdio.h>

int main(){

int a=10,b=20,*p1=&a,*p2=&b;

printf(“Before swap: *p1=%d *p2

 =%d”,*p1,*p2);

*p1=*p1+*p2;

*p2=*p1-*p2;

*p1=*p1-*p2;

 printf(“\nAfter swap: *p1=%d *p2

=%d”,*p1,*p2);

return 0;

}

Output

Before swap: *p1=10 *p2=20

After swap: *p1=20 *p2=10

Q4. What are the uses of

1. Address of operator

2. Null pointer

Ans:
Address of (&) Operator

UNIT - IV PROGRAMMING IN C

167
Rahul Publications

Rahul Publications

The address of operator ‘&’ returns the address of a variable. But, we need to use %u to display the
address of a variable.

#include<stdio.h>

int main(){

int number=50;

printf(“value of number is %d, address

of number is %u”,number,&number);

return 0;

}

Output

value of number is 50, address of number is fff4

NULL Pointer

A pointer that is not assigned any value but NULL is known as the NULL pointer. If you don’t have
any address to be specified in the pointer at the time of declaration, you can assign NULL value. It will
provide a better approach.

int *p=NULL;

4.1.2 Pointers for Inter-Function Communication

Q5. Explain the pointer for inter function communication in C.

Ans :
We know that functions can be called by value and called by reference.

 If the actual parameter should not change in called function, pass the parameter-by value.

 If the value of actual parameter should get changed in called function, then use pass-by reference.

 If the function has to return more than one value, return these values indirectly by using call-by-
reference.

 reference

Original
value

no yesmodified

call by value
call by

BCA I YEAR I SEMESTER

168
Rahul Publications

Rahul Publications

(i) Call by value in C

 In call by value method, the value of the actual parameters is copied into the formal parameters. In
other words, we can say that the value of the variable is used in the function call in the call by value
method.

 In call by value method, we can not modify the value of the actual parameter by the formal
parameter.

 In call by value, different memory is allocated for actual and formal parameters since the value of
the actual parameter is copied into the formal parameter.

 The actual parameter is the argument which is used in the function call whereas formal parameter
is the argument which is used in the function definition.

Example:

#include<stdio.h>

void change(int num) {

 printf(“Before adding value inside function num=%d \n”,num);

 num=num+100;

 printf(“After adding value inside function num=%d \n”, num);

}

int main() {

 int x=100;

 printf(“Before function call x=%d \n”, x);

 change(x);//passing value in function

 printf(“After function call x=%d \n”, x);

return 0;

}

Output

Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=100

(ii) Call by reference in C

 In call by reference, the address of the variable is passed into the function call as the actual parameter.

 The value of the actual parameters can be modified by changing the formal parameters since the
address of the actual parameters is passed.

 In call by reference, the memory allocation is similar for both formal parameters and actual
parameters. All the operations in the function are performed on the value stored at the address of
the actual parameters, and the modified value gets stored at the same address.

UNIT - IV PROGRAMMING IN C

169
Rahul Publications

Rahul Publications

Example

#include<stdio.h>

void change(int *num) {

 printf(“Before adding value inside function num=%d \n”,*num);

 (*num) += 100;

 printf(“After adding value inside function num=%d \n”, *num);

}

int main() {

 int x=100;

 printf(“Before function call x=%d \n”, x);

 change(&x);//passing reference in function

 printf(“After function call x=%d \n”, x);

return 0;

}

Output

Before function call x=100

Before adding value inside function num=100

After adding value inside function num=200

After function call x=200

No Call by value Call by reference

1 A copy of the value is passed An address of value is passed into

into the function the function the function.

2. Changes made inside the function is Changes made inside the function validate

limited to the function only. The values outside of the function also. The values of the

of the actual parameters do not change actual parameters do change by changing

by changing the formal parameters. the formal parameters.

3. Actual and formal arguments are created Actual and formal arguments are created

at the different memory location at the same memory location

4.1.3 Pointers to pointers

Q6. What is double pointer ? Explain with an example program ?

Ans :
C Double Pointer (Pointer to Pointer)

A pointer is used to store the address of a variable in C. Pointer reduces the access time of a
variable. However, In C, we can also define a pointer to store the address of another pointer. Such
pointer is known as a double pointer (pointer to pointer). The first pointer is used to store the address of

BCA I YEAR I SEMESTER

170
Rahul Publications

Rahul Publications

a variable whereas the second pointer is used to store the address of the first pointer. Let’s understand it
by the diagram given below.

address address

variable

value

pointer pointer

The syntax of declaring a double pointer is given below.

int **p;

Example.

#include<stdio.h>

void main ()

{

 int a = 10;

 int *p;

 int **pp;

 p = &a; // pointer p is pointing to the address of a

 pp = &p; // pointer pp is a double pointer pointing to the address of pointer p

 printf(“address of a: %x\n”,p); // Address of a will be printed

 printf(“address of p: %x\n”,pp); // Address of p will be printed

 printf(“value stored at p: %d\n”,*p); // value stoted at the address contained
by p i.e. 10 will be printed

 printf(“value stored at pp: %d\n”,**pp); // value stored at the address contained
by the pointer stoyred at pp

}

Output

address of a: d26a8734

address of p: d26a8738

value stored at p: 10

value stored at pp: 10

4.1.4 Compatibility

Q7. What is compatibility of pointers?

Ans:
Two pointer types with the same type qualifiers are compatible if they point to objects of compatible

types. The composite type for two compatible pointer types is the similarly qualified pointer to the composite
type.

The following example shows compatible declarations for the assignment operation:

UNIT - IV PROGRAMMING IN C

171
Rahul Publications

Rahul Publications

float subtotal;

float * sub_ptr;

 /* ... */

sub_ptr = &subtotal;

printf(“The subtotal is %f\n”, *sub_ptr);

The next example shows incompatible
declarations for the assignment operation:

double league;

int * minor;

/* ... */

minor = &league;

 /* error */

4.1.5 L-Value and R-Value

Q8. How are L-Values and R-Values defined
in C?

Ans :
L-value: ”l-value” refers to memory location

which identifies an object. l-value may appear as
either left hand or right hand side of an assignment
operator(=). l-value often represents as identifier.

Expressions referring to modifiable locations
are called “modifiable l-values”. A modifiable l-value
cannot have an array type, an incomplete type, or
a type with the const attribute. For structures and
unions to be modifiable lvalues, they must not
have any members with the const attribute. The
name of the identifier denotes a storage location,
while the value of the variable is the value stored at
that location.

An identifier is a modifiable lvalue if it refers
to a memory location and if its type is arithmetic,
structure, union, or pointer. For example, if ptr is a
pointer to a storage region, then *ptr is a
modifiable l-value that designates the storage region
to which ptr points.

In C, the concept was renamed as ”locator
value”, and referred to expressions that locate
(designate) objects. The l-value is one of the
following:

1. The name of the variable of any type i.e, an
identifier of integral, floating, pointer,
structure, or union type.

2. A subscript ([]) expression that does not
evaluate to an array.

3. A unary-indirection (*) expression that does
not refer to an array

4. An l-value expression in parentheses.

5. A const object (a nonmodifiable l-value).

6. The result of indirection through a pointer,
provided that it isn’t a function pointer.

7. The result of member access through pointer
(-> or .)

Example:

inti = 10;

But this is not:

inti;

10 = i;

R-value: r-value” refers to data value that is
stored at some address in memory. A r-value is an
expression that can’t have a value assigned to it which
means r-value can appear on right but not on left
hand side of an assignment operator(=).

4.1.6 Arrays and Pointers

Q9. How can we use arrays using pointers?

Ans : (Imp.)

In the c programming language, when we
declare an array the compiler allocate the required
amount of memory and also creates a constant
pointer with array name and stores the base address
of that pointer in it. The address of the first element
of an array is called as base address of that array.

The array name itself acts as a pointer to the
first element of that array. Consider the following
example of array declaration...

Example

int marks[6] ;

For the above declaration, the compiler
allocates 12 bytes of memory and the address of
first memory location (i.e., marks[0]) is stored in a
constant pointer called marks. That means in the
above example, marks is a pointer to marks[0].

BCA I YEAR I SEMESTER

172
Rahul Publications

Rahul Publications

Example Program

#include<stdio.h>

#include<conio.h>

int main()

{

int marks[6] = {89, 45, 58, 72, 90, 93} ;

int *ptr ;

clrscr() ;

ptr = marks ;

printf(“Base Address of ‘marks’ array = %u\n”, ptr) ;

return 0;

}

Output:

Pointers to Multi Dimensional Array

In case of multi dimensional array also the array name acts as a constant pointer to the base address
of that array. For example, we declare an array as follows...

Example Code

int marks[3][3] ;

In the above example declaration, the array name marks acts as constant pointer to the base
address (address of marks[0][0]) of that array.

In the above example of two dimensional array, the element marks[1][2] is accessed as *(*(marks
+ 1) + 2).

4.1.7 Pointer Athematic and arrays

Q10. How can we perform arithmetic operations using pointers ?

Ans:
We can perform arithmetic operations on the pointers like addition, subtraction, etc. However, as

we know that pointer contains the address, the result of an arithmetic operation performed on the pointer
will also be a pointer if the other operand is of type integer. In pointer-from-pointer subtraction, the result
will be an integer value. Following arithmetic operations are possible on the pointer in C language:

UNIT - IV PROGRAMMING IN C

173
Rahul Publications

Rahul Publications

(i) Increment

(ii) Decrement

(iii) Addition

(iv) Subtraction

(i) Incrementing Pointer in C

If we increment a pointer by 1, the pointer will start pointing to the immediate next location. This is
somewhat different from the general arithmetic since the value of the pointer will get increased by
the size of the data type to which the pointer is pointing.

We can traverse an array by using the increment operation on a pointer which will keep pointing to
every element of the array, perform some operation on that, and update itself in a loop.

The Rule to increment the pointer is given below:

 n e w _ a d d r e s s = c u r r e n t _ a d d r e s s + i * s i z e _ o f (d a t a t y p e)

Where i is the number by which the pointer get increased.

32-bit

For 32-bit int variable, it will be incremented by 2 bytes.

64-bit

For 64-bit int variable, it will be incremented by 4 bytes.

Let’s see the example of incrementing pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(“Address of p variable is %u \n”,p);

p=p+1;

p r i n t f (“A f t e r i n c r e m e n t : A d d r e s s o f p v a r i a b l e i s % u \ n” , p) ; / /
in our case, p will get incremented by 4 bytes.

return 0;

}

Output

Address of p variable is 3214864300

After increment: Address of p variable is 3214864304

(ii) Decrementing Pointer in C

Like increment, we can decrement a pointer variable. If we decrement a pointer, it will start pointing
to the previous location. The formula of decrementing the pointer is given below:

new_address= current_address - i * size_of(data type)

BCA I YEAR I SEMESTER

174
Rahul Publications

Rahul Publications

32-bit

For 32-bit int variable, it will be decremented by 2 bytes.

64-bit

For 64-bit int variable, it will be decremented by 4 bytes.

Let’s see the example of decrementing pointer variable on 64-bit OS.

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(“Address of p variable is %u \n”,p);

p=p-1;

printf(“After decrement: Address of p variable is %u \n”,p); //P will now point
to the immidiate previous location.

}

Output

Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296

(iii) C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given below:

new_address= current_address + (number * size_of(data type))

32-bit

For 32-bit int variable, it will add 2 * number.

64-bit

For 64-bit int variable, it will add 4 * number.

Let’s see the example of adding value to pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(“Address of p variable is %u \n”,p);

p=p+3; //adding 3 to pointer variable

printf(“After adding 3: Address of p variable is %u \n”,p);

return 0;

UNIT - IV PROGRAMMING IN C

175
Rahul Publications

Rahul Publications

}

Output

Address of p variable is 3214864300

After adding 3: Address of p variable is 3214864312

As you can see, the address of p is 3214864300. But after adding 3 with p variable, it is 3214864312,
i.e., 4*3=12 increment. Since we are using 64-bit architecture, it increments 12. But if we were
using 32-bit architecture, it was incrementing to 6 only, i.e., 2*3=6. As integer value occupies 2-
byte memory in 32-bit OS.

(iv) C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any number
from a pointer will give an address. The formula of subtracting value from the pointer variable is
given below:

new_address= current_address - (number * size_of(data type))

32-bit

For 32-bit int variable, it will subtract 2 * number.

64-bit

For 64-bit int variable, it will subtract 4 * number.

Let’s see the example of subtracting value from the pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf(“Address of p variable is %u \n”,p);

p=p-3; //subtracting 3 from pointer variable

printf(“After subtracting 3: Address of p variable is %u \n”,p);

return 0;

}

Output

Address of p variable is 3214864300

After subtracting 3: Address of p variable is 3214864288

You can see after subtracting 3 from the pointer variable, it is 12 (4*3) less than the previous
address value.

BCA I YEAR I SEMESTER

176
Rahul Publications

Rahul Publications

4.1.8 Passing an Array to a Function

Q11. How can we pass an array to a function

Ans:
Pointer to Array of functions in C

To understand the concept of an array of
functions, we must understand the array of function.
Basically, an array of the function is an array which
contains the addresses of functions. In other words,
the pointer to an array of functions is a pointer
pointing to an array which contains the pointers to
the functions. Consider the following example.

#include<stdio.h>

int show();

int showadd(int);

int (*arr[3])();

int (*(*ptr)[3])();

int main ()

{

 int result1;

 arr[0] = show;

 arr[1] = showadd;

 ptr = &arr;

 result1 = (**ptr)();

printf(“printing the value returned by

show : %d”,result1);

 (*(*ptr+1))(result1);

}

int show()

{

 int a = 65;

 return a++;

}

int showadd(int b)

{

 printf(“\nAdding 90 to the value returned

by show: %d”,b+90);

}

Output

Printing the value returned by show : 65

Adding 90 to the value returned by show:
155

4.1.9 Memory Allocation Functions

Q12. What is Dynamic Memory allocation?
List and explain standard defined
functions used for dynamic memory
allocation.

Ans : (Imp.)

In C programming language, when we
declare variables memory is allocated in space called
stack. The memory allocated in the stack is fixed at
the time of compilation and remains until the end
of the program execution. When we create an array,
we must specify the size at the time of the declaration
itself and it can not be changed during the program
execution. This is a major problem when we do not
know the number of values to be stored in an array.
To solve this we use the concept of Dynamic
Memory Allocation. The dynamic memory
allocation allocates memory from heap storage.
Dynamic memory allocation is defined as follow...

Allocation of memory during the program
execution is called dynamic memory allocation. (or)
Dynamic memory allocation is the process of
allocating the memory manually at the time of
program execution.

We use pre-defined or standard library
functions to allocate memory dynamically. There
are FOUR standard library functions that are
defined in the header file known as ”stdlib.h”. They
are as follows...

1. malloc()

2. calloc()

3. realloc()

4. free()

1. malloc()

malloc() is the standard library function used
to allocate a memory block of specified
number of bytes and returns void pointer.
The void pointer can be casted to any
datatype. If malloc() function unable to
allocate memory due to any reason it returns
NULL pointer.

UNIT - IV PROGRAMMING IN C

177
Rahul Publications

Rahul Publications

Syntax

void* malloc(size_in_bytes)

Example

#include<stdio.h>

#include<conio.h>

int main () {

char *title;

title = (char *) malloc(15);

strcpy(title, “c programming”);

printf(“String = %s, Address = %u\n”, title,
title);

return(0);

}

2. calloc()

calloc() is the standard library function used
to allocate multiple memory blocks of the
specified number of bytes and initializes them
to ZERO. calloc() function returns void
pointer. If calloc() function unable to allocate
memory due to any reason it returns a NULL
pointer. Generally, calloc() is used to allocate
memory for array and structure. calloc()
function takes two arguments and they are
1. The number of blocks to be allocated, 2.
Size of each block in bytes

Syntax

void*calloc(number_of_blocks,

size_of_each_block_in_bytes)

Example

#include<stdio.h>

#include<conio.h>

int main () {

inti, n;

int *ptr;

printf(“Number of blocks to be created:”);

scanf(“%d”,&n);

ptr = (int*)calloc(n, sizeof(int));

printf(“Enter %d numbers:\n”,n);

for(i=0 ; i< n ; i++) {

scanf(“%d”,&ptr[i]);

 }

printf(“The numbers entered are: “);

for(i=0 ; i< n ; i++) {

printf(“%d “,ptr[i]);

}

return(0);

}

3. realloc()

realloc() is the standard library function used
to modify the size of memory blocks that were
previously allocated using malloc() or calloc().
realloc() function returns void pointer. If
calloc() function unable to allocate memory
due to any reason it returns NULL pointer.

Syntax

void*realloc(*pointer,

new_size_of_each_block_in_bytes)

Example

#include<stdio.h>

#include<conio.h>

int main () {

char *title;

title = (char *) malloc(15);

strcpy(title, “c programming”);

printf(“Before modification : String

= %s, Address = %u\n”, title, title);

title = (char*) realloc(title, 30);

strcpy(title,”C Programming Language”);

printf(“After modification : String = %s,

Address = %u\n”, title, title);

return(0);

}

BCA I YEAR I SEMESTER

178
Rahul Publications

Rahul Publications

4. free()

free() is the standard library function used to
deallocate memory block that was previously
allocated using malloc() or calloc(). free() function
returns void pointer. When free() function is used
with memory allocated that was created using
calloc(), all the blocks are get deallocated.

Syntax

void free(*pointer)

Example

#include<stdio.h>

#include<conio.h>

int main () {

char *title;

title = (char *) malloc(15);

strcpy(title, “c programming”);

printf(“Before modification : String

= %s, Address = %u\n”, title, title);

title = (char*) realloc(title, 30);

strcpy(title,”C Programming Language”);

printf(“After modification : String = %s,

Address = %u\n”, title, title);

free(title);

return(0);

}

4.1.10 Array of Pointers

Q13. What is the use of Array of Pointers in
C?

Ans: (Imp.)

In computer programming, an array of
pointers is an indexed set of variables, where the
variables are pointers (referencing a location
in memory).

Pointers are an important tool in computer
science for creating, using, and destroying all types
of data structures. An array of pointers is useful for
the same reason that all arrays are useful: it allows
you to numerically index a large set of variables.

Below is an array of pointers in C that points
each pointer in one array to an integer in another
array. The value of each integer is printed by
dereferencing the pointers. In other words, this code
prints the value in memory of where the pointers
point.

#include <stdio.h>

constint ARRAY_SIZE = 5;

int main ()

{

intarray_of_integers[] = {5, 10, 20, 40, 80};

inti, *array_of_pointers[ARRAY_SIZE];

for (i = 0; i< ARRAY_SIZE; i++)

{

array_of_pointers[i] = &array_of_integers[i];

 }

for (i = 0; i< ARRAY_SIZE; i++)

{

printf(“array_of_integers[%d]

= %d\n”, i, *array_of_pointers[i]);

}

return 0;

}

The output of the above program is:

array_of_integers[0] = 5

array_of_integers[1] = 10

array_of_integers[2] = 20

array_of_integers[3] = 40

array_of_integers[4] = 80

4.1.11 Programming Application

Q14. What are the applications and uses of
pointers.

Ans:
Pointers are considered to be useful tools in

programming because of the following reasons:

UNIT - IV PROGRAMMING IN C

179
Rahul Publications

Rahul Publications

(i) Pointers make the programs simple and
reduce their length.

(ii) Pointers are helpful in allocation and de-
allocation of memory during the execution
of the program. Thus, pointers are the
instruments of dynamic memory manage-
ment.

(iii) Pointers enhance the execution speed of a
program.

(iv) Pointers are helpful in traversing through
arrays and character strings. The strings are
also arrays of characters terminated by the
null character (‘\O’).

(v) Pointers also act as references to different types
of objects such as variables, arrays, functions,
structures, etc. However, C language does not
have the concept of references as in C++.
Therefore, in C we use pointer as a reference.

(vi) Storage of strings through pointers saves
memory space.

(vii) Pointers may be used to pass on arrays, strings,
functions, and variables as arguments of a
function.

(viii) Passing on arrays by pointers saves lot of
memory because we are passing on only the
address of array instead of all the elements
of an array, which would mean passing on
copies of all the elements and thus taking lot
of memory space.

(ix) Pointers are used to construct different data
structures such as linked lists, queues, stacks,
etc.

4.1.12 Pointers to void

Q15. What is the use of void pointer in C.

Ans :
The void pointer in C is a pointer which is

not associated with any data types. It points to some
data location in the storage means points to the
address of variables. It is also called general purpose
pointer. In C, malloc() and calloc() functions return
void * or generic pointers.

Till now, we have studied that the address
assigned to a pointer should be of the same type as
specified in the pointer declaration.

For example, if we declare the int pointer,
then this int pointer cannot point to the float variable
or some other type of variable, i.e., it can point to
only int type variable. To overcome this problem,
we use a pointer to void. A pointer to void means a
generic pointer that can point to any data type. We
can assign the address of any data type to the void
pointer, and a void pointer can be assigned to any
type of the pointer without performing any explicit
typecasting.

Syntax of void pointer

void *pointer name;

It has some limitations “

1) Pointer arithmetic is not possible with void
pointer due to its concrete size.

2) It can’t be used as dereferenced.

Example:

#include<stdlib.h>

int main(){

 int a =7;

 float b =7.6;

 void*p;

 p =&a;

 printf(“Integer variable is = %d”,*((int*) p));

 p =&b;

 printf(“\nFloat variable is = %f”,*((float*) p));

 return0;

}

Output

Integer variable is = 7

Float variable is = 7.600000

Size of the void pointer in C

The size of the void pointer in C is the same
as the size of the pointer of character type. According
to C perception, the representation of a pointer to
void is the same as the pointer of character type.
The size of the pointer will vary depending on the
platform that you are using.

BCA I YEAR I SEMESTER

180
Rahul Publications

Rahul Publications

Example:

#include <stdio.h>

int main()

{

 void *ptr = NULL; //void pointer

 int *p = NULL;// integer pointer

 char *cp = NULL;//character pointer

 float *fp = NULL;//float pointer

 //size of void pointer

 printf(“size of void pointer = %d\n\n”,sizeof(ptr));

 //size of integer pointer

 printf(“size of integer pointer = %d\n\n”,sizeof(p));

 //size of character pointer

 printf(“size of character pointer = %d\n\n”,sizeof(cp));

 //size of float pointer

 printf(“size of float pointer = %d\n\n”,sizeof(fp));

 return 0;

}

Output

UNIT - IV PROGRAMMING IN C

181
Rahul Publications

Rahul Publications

4.1.13 Pointers to Functions

Q16. Explain the concept of Pointers to
Functions.

Ans : (Imp.)

Pointer as a function parameter is used to
hold addresses of arguments passed during function
call. This is also known as call by reference. When
a function is called by reference any change made
to the reference variable will effect the original
variable.

Example:

Swapping two numbers using Pointer

#include <stdio.h>

void swap(int *a, int *b);

int main()

{

int m = 10, n = 20;

printf(“m = %d\n”, m);

printf(“n = %d\n\n”, n);

swap(&m, &n); //passing address of m and
n to the swap function

printf(“After Swapping:\n\n”);

printf(“m = %d\n”, m);

printf(“n = %d”, n);

return 0;

}

/*

pointer ‘a’ and ‘b’ holds and

points to the address of ‘m’ and ‘n’

*/

void swap(int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

Output :

m = 10

n = 20

After Swapping:

m = 20

n = 10

Functions returning Pointer variables

A function can also return a pointer to the
calling function. In this case you must be careful,
because local variables of function doesn’t live
outside the function. They have scope only inside
the function. Hence if you return a pointer connected
to a local variable, that pointer will be pointing to
nothing when the function ends.

#include <stdio.h>

int* larger(int*, int*);

voidmain()

{

int a = 15;

int b = 92;

int *p;

p = larger(&a, &b);

printf(“%d is larger”,*p);

}

int* larger(int *x, int *y)

{

if(*x > *y)

return x;

else

return y;

Copy

92 is larger

BCA I YEAR I SEMESTER

182
Rahul Publications

Rahul Publications

Pointer to functions
It is possible to declare a pointer pointing to a

function which can then be used as an argument in
another function. A pointer to a function is declared
as follows,

type(*pointer-name)(parameter);
Copy

Here is an example :
int(*sum)();//legal declaration of pointer to
function
int*sum();// This is not a declaration of
pointer to function

Copy
A function pointer can point to a specific

function when it is assigned the name of that
function.

intsum(int,int);
int(*s)(int,int);
s = sum;
Copy
Here s is a pointer to a function sum.

Now sum can be called using function
pointer s along with providing the required
argument values.

s(10,20);
Copy

Example of Pointer to Function
#include <stdio.h>
intsum(int x,int y)
{
returnx+y;
}
intmain()
{
int(*fp)(int,int);
fp= sum;
int s =fp(10,15);
printf(“Sum is %d”, s);
return0;
}
Copy
25

4.1.14 Command line arguments

Q17. Why do we use command line arguments
in C?

Ans: (Imp.)

Command line argument is a parameter
supplied to the program when it is invoked.
Command line argument is an important concept
in C programming. It is mostly used when you need
to control your program from outside. Command
line arguments are passed to the main() method.

Syntax

int main(intargc, char *argv[])

Here argc counts the number of arguments
on the command line and argv[] is a pointer array
which holds pointers of type char which points to
the arguments passed to the program.

Example:

#include <stdio.h>

#include <conio.h>

int main(intargc, char *argv[])

{

inti;

if(argc>= 2)

{

printf(“The arguments supplied are:\n”);

for(i = 1; i<argc; i++)

{

printf(“%s\t”, argv[i]);

}

}

else

{

printf(“argument list is empty.\n”);

}

return 0;

}

UNIT - IV PROGRAMMING IN C

183
Rahul Publications

Rahul Publications

Remember that argv[0] holds the name of
the program and argv[1] points to the first
command line argument and argv[n] gives the
last argument. If no argument is supplied, argc will
be 1.

4.2 STRINGS

4.2.1 Concepts, C Strings

Q18. Define a String.

Ans :
The string can be defined as the one-

dimensional array of characters terminated by a null
(‘\0’). The character array or the string is used to
manipulate text such as word or sentences. Each
character in the array occupies one byte of memory,
and the last character must always be 0. The
termination character (‘\0’) is important in a string
since it is the only way to identify where the string
ends. When we define a string as char s[10], the
character s[10] is implicitly initialized with the null
in the memory.

There are two ways to declare a string in c
language.

1. By char array

2. By string literal

Example

char ch[10]={‘r’,’a’,’m’,u’, ’\0'};

We can also define the string by the string
literal in C language. For example:

char ch[]=”ramu”;

There are two main differences between char
array and literal.

 We need to add the null character ‘\0’ at the
end of the array by ourself whereas, it is
appended internally by the compiler in the
case of the character array.

 The string literal cannot be reassigned to
another set of characters whereas, we can
reassign the characters of the array.

Q. Write a sample code for String imple-
mentation.

Ans :
#include<stdio.h>

#include <string.h>

int main()

{

 char ch[11]={‘r’,’a’,’m’,’u’, ’\0'};

 char ch2[11]=”ramu”;

 printf(“Char Array Value is: %s\n”, ch);

 printf(“String Literal Value is: %s\n”, ch2);

return 0;

}

Output

Char Array Value is: ramu

String Literal Value is: ramu

4.2.2 String Input/Output Functions

Q19. What are string Input Output functions?

Ans : (Imp.)

Input means to provide the program with
some data to be used in the program
and Output means to display data on the screen
or write the data to a printer or a file.

The C programming language provides
standard library functions to read any given input
and to display data on the console.

The following are the input and output
functions of strings in c

 Input functions: scanf(), gets()

Output functions: printf(), puts()

The scanf() and printf() are generic
i/o functions that they support all built-in data types
such as int, float, long, double, strings,..etc.
But gets() and puts() are specialized to scan and
print only string data.

BCA I YEAR I SEMESTER

184
Rahul Publications

Rahul Publications

There is a little difference between scanf() and gets(), while reading string from keyboard,
the scanf() accepts character by character from keyboard until either a new line (‘\n’) or blank space is
found, which ever comes earlier.

Whereas “gets()” accepts until a newline is found. That is it accepts white spaces & tab also, these
input functions append a null character at end of string, the formatted string %s is used
in printf() and scanf().for example :

The scanf() function consider the jack and Jill as 3 strings, whereas gets() considers as single
string. In case to scan total string using scanf(), then it should be scanf(“%s%s%s”, a,b,c); here a,b,c are
three arrays.

The printf() and puts() is work in similar way. All I/O functions take first byte address (base address
of array) as argument and prints the given string using pointer.

 Program : The following program is an example of string I/O functions.

#include<stdio.h>

#include<string.h>

intmain()

{

char name[30];

printf(“Enter name: “);

gets(name);//Function to read string from user.

printf(“Name: “);

puts(name);//Function to display string.

return0;

}

Output :

Enter name: ramu

Name: ramu

UNIT - IV PROGRAMMING IN C

185
Rahul Publications

Rahul Publications

4.2.3 Arrays of Strings

Q20. What is Array of String ?

Ans : (Imp.)

The string is a collection of characters, an array of a string is an array of arrays of characters. Each
string is terminated with a null character. An array of a string is one of the most common applications of
two-dimensional arrays.

scanf() is the input function with %s format specifier to read a string as input from the terminal. But
the drawback is it terminates as soon as it encounters the space. To avoid this gets() function which can
read any number of strings including white spaces.

Sting is an array of characters terminated with the special character known as the null character
(“\0”).

Syntax

datatypename_of_the_array[size_of_elements_in_array]; char str_name[size];

Example

datatypename_of_the_array [] = { Elements of array };

char str_name[8] = “Strings”;

Str_name is the string name and the size defines the length of the string (number of characters).

A String can be defined as a one-dimensional array of characters, so an array of strings is two –
dimensional array of characters.

Example:

#include <stdio.h>

int main()

{

char name[10];

printf(“Enter the name: “);

fgets(name, sizeof(name), stdin);

printf(“Name is : “);

puts(name);

return 0;

}

Output:

Enter the name:Ramu

Name is : Ramu

Now for two-dimensional arrays, we have the following syntax and memory allocation. For this, we
can take it as row and column representation (table format).

charstr_name[size][max];

BCA I YEAR I SEMESTER

186
Rahul Publications

Rahul Publications

In this table representation, each row (first subscript) defines as the number of strings to be stored
and column (second subscript) defines the maximum length of the strings.

charstr_arr[2][6] = { {‘g’,’o’,’u’,’r’,’i’,’\0’}, {‘r’,’ a’,’ m’,’\0’}};

Alternatively, we can even declare it as

Syntax:

charstr_arr[2][8] ={“gouri”, “ram”};

From the above example as we know that the name of the array points to the 0th string. Therefore,
str_name + 0 points to 0th string “gouri”
str_name + 1 points to 1st string “ram”
As the above example is for two-dimensional arrays so the pointer points to each string of the array.

Example:
#include <stdio.h>
int main()
{
inti;
char name[2][8] = {
“gouri”,
“ram”
};
for (i = 0; i< 2; i++)
{
printf(“String = %s \n”, name + i, name + i);
}
return 0;
}
Output
String= gowri
String= ram

UNIT - IV PROGRAMMING IN C

187
Rahul Publications

Rahul Publications

4.2.4 String Manipulation Functions

Q21. List out various string manipulation functions in C.

Ans :
No. Function Description

1) strlen(string_name) returns the length of string name.

2) strcpy(destination, source) copies the contents of source string to destination

string.

3) strcat(first_string, second concats or joins first string with second string. The

_ string) result of the string is stored in first string.

4) strcmp(first_string, compares the first string with second string. If both

second_string) strings are same, it returns 0.

5) strrev(string) returns reverse string.

6) strlwr(string) returns string characters in lowercase.

7) strupr(string) returns string characters in uppercase.

Q22. Explain the following functions in detail.

(a) strle() (b) strcpy() (c) strcat() (d) strcmp()

Ans : (Imp.)

(a) strlen()

The strlen() function returns the length of the given string. It doesn’t count null character ‘\0’.

#include<stdio.h>

#include <string.h>

int main(){

char ch[20]={‘j’, ’a’, ’v’, ’a’, ’t’, ’p’, ’o’, ’i’, ’n’, ’t’, ’\0'};

 printf(“Length of string is: %d”,strlen(ch));

return 0;

}

Output

Length of string is: 10

(b) strcpy()

The strcpy(destination, source) function copies the source string in destination.

#include<stdio.h>

#include <string.h>

BCA I YEAR I SEMESTER

188
Rahul Publications

Rahul Publications

int main(){

char ch[20]={‘j’, ’a’, ’v’, ’a’, ’t’, ’p’,

’o’, ’i’, ’n’, ’t’, ’\0'};

 char ch2[20];

 strcpy(ch2,ch);

 printf(“Value of second string is: %s”,ch2);

return 0;

}

Output

Value of second string is: C Language

(c) strcat()

The strcat(first_string, second_string) function
concatenates two strings and result is returned
to first_string.

#include<stdio.h>

#include <string.h>

int main(){

 char ch[10]={‘h’, ’e’, ’l’, ’l’, ’o’, ’\0'};

 char ch2[10]={‘c’, ’\0'};

 strcat(ch,ch2);

 printf(“Value of first string is: %s”,ch);

return 0;

}

Output:

Value of first string is: helloc

(d) strcmp()

The strcmp(first_string, second_string)
function compares two string and returns 0 if
both strings are equal.

Here, we are using gets() function which
reads string from the console.

#include<stdio.h>

#include <string.h>

int main()

{

 char str1[20],str2[20];

 printf(“Enter 1st string: ”);

 gets(str1);//reads string from console

 printf(“Enter 2nd string: ”);

 gets(str2);

 if(strcmp(str1,str2)==0)

 printf(“Strings are equal”);

 else

 printf(“Strings are not equal”);

 return 0;

}

Output

Enter 1st string: hello

Enter 2nd string: hello

Strings are equal

Q23. Explain the following string functions
with an example.

(a) strrev() (b) strlwr() (c) strupr()

Ans :
(a) strrev()

The strrev(string) function returns reverse of
the given string. Let’s see a simple example
of strrev() function.

#include<stdio.h>

#include <string.h>

int main()

{

 char str[20];

 printf(“Enter string: ”);

 gets(str);//reads string from console

 printf(“String is: %s”,str);

printf(“\nReverse String is: %s”,strrev(str));

 return 0;

}

UNIT - IV PROGRAMMING IN C

189
Rahul Publications

Rahul Publications

Output

Enter string: RAM

String is: RAM

Reverse String is: MAR

(b) strlwr()

The strlwr(string) function returns string
characters in lowercase. Let’s see a simple
example of strlwr() function.

#include<stdio.h>

#include <string.h>

int main(){

 char str[20];

 printf(“Enter string: ”);

 gets(str);//reads string from console

 printf(“String is: %s”,str);

 printf(“\nLower String is: %s”,strlwr(str));
return 0;

}

Output

Enter string: RAKesh

String is: RAKesh

Lower String is: rakesh

(c) strupr()

The strupr(string) function returns string
characters in uppercase. Let’s see a simple
example of strupr() function.

#include<stdio.h>

#include <string.h>

int main()

{

 char str[20];

 printf(“Enter string: ”);

 gets(str);//reads string from console

 printf(“String is: %s”,str);

 printf(“\nUpper String is: %s”,strupr(str));

 return 0;

}

Output

Enter string: rakesh

String is: rakesh

Upper String is: RAKESH

BCA I YEAR I SEMESTER

190
Rahul Publications

Rahul Publications

Short Question & Answers

1. Define pointer

Ans :
 The pointer in C language is a variable which stores the address of another variable. This variable can be
of type int, char, array, function, or any other pointer. The size of the pointer depends on the architecture.
However, in 32-bit architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an integer.

int n = 10;

int* p = &n; // Variable p of type pointer is pointing to the address of the variable
n of type integer.

Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also known as indirection
pointer used to dereference a pointer.

int *a;//pointer to int

char *c;//pointer to char

Example

An example of using pointers to print the address and value is given below.

2. What are the advantages and usages of pointers ?

Ans:
Advantages of pointer

1) Pointer reduces the code and improves the performance, it is used to retrieving strings, trees, etc.
and used with arrays, structures, and functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the computer’s memory.

Usage of pointer

There are many applications of pointers in c language.

UNIT - IV PROGRAMMING IN C

191
Rahul Publications

Rahul Publications

1) Dynamic memory allocation

In c language, we can dynamically allocate memory using malloc() and calloc() functions where the
pointer is used.

2) Arrays, Functions, and Structures

Pointers in c language are widely used in arrays, functions, and structures. It reduces the code and
improves the performance.

3. What is Null Pointer.

Ans:
A pointer that is not assigned any value but NULL is known as the NULL pointer. If you don’t have

any address to be specified in the pointer at the time of declaration, you can assign NULL value. It will
provide a better approach.

int *p=NULL;

4. What are the differences between call-by-value and call-by- reference.

Ans:
No Call by value Call by reference

1 A copy of the value is passed An address of value is passed into

into the function the function the function.

2. Changes made inside the function is Changes made inside the function validate

limited to the function only. The values outside of the function also. The values of the

of the actual parameters do not change actual parameters do change by changing

by changing the formal parameters. the formal parameters.

3. Actual and formal arguments are created Actual and formal arguments are created

at the different memory location at the same memory location

5. What is Double pointer.

Ans:
C Double Pointer (Pointer to Pointer)

A pointer is used to store the address of a variable in C. Pointer reduces the access time of a
variable. However, In C, we can also define a pointer to store the address of another pointer. Such
pointer is known as a double pointer (pointer to pointer). The first pointer is used to store the address of
a variable whereas the second pointer is used to store the address of the first pointer. Let’s understand it
by the diagram given below.

address address

variable

value

pointer pointer

The syntax of declaring a double pointer is given below.

int **p;

BCA I YEAR I SEMESTER

192
Rahul Publications

Rahul Publications

6. What is Compatibility of pointers.

Ans:
Two pointer types with the same type

qualifiers are compatible if they point to objects of
compatible types. The composite type for two
compatible pointer types is the similarly qualified
pointer to the composite type.

The following example shows compatible
declarations for the assignment operation:

float subtotal;

float * sub_ptr;

 /* ... */

sub_ptr = &subtotal;

printf(“The subtotal is %f\n”, *sub_ptr);

The next example shows incompatible
declarations for the assignment operation:

double league;

int * minor;

/* ... */

minor = &league;

 /* error */

7. What is Dynamic Memory allocation?

Ans:
In C programming language, when we

declare variables memory is allocated in space called
stack. The memory allocated in the stack is fixed at
the time of compilation and remains until the end
of the program execution. When we create an array,
we must specify the size at the time of the declaration
itself and it can not be changed during the program
execution. This is a major problem when we do not
know the number of values to be stored in an array.
To solve this we use the concept of Dynamic
Memory Allocation. The dynamic memory
allocation allocates memory from heap storage.
Dynamic memory allocation is defined as follow...

Allocation of memory during the program
execution is called dynamic memory allocation. (or)
Dynamic memory allocation is the process of
allocating the memory manually at the time of
program execution.

We use pre-defined or standard library
functions to allocate memory dynamically. There
are FOUR standard library functions that are
defined in the header file known as ”stdlib.h”. They
are as follows...

1. malloc()

2. calloc()

3. realloc()

4. free()

8. What is the use of realloc() function?

Ans:
realloc() is the standard library function used

to modify the size of memory blocks that were
previously allocated using malloc() or calloc().
realloc() function returns void pointer. If calloc()
function unable to allocate memory due to any
reason it returns NULL pointer.

Syntax

void*realloc(*pointer,

new_size_of_each_block_in_bytes)

9. What are the applications and uses of
pointers.

Ans:
Pointers are considered to be useful tools in

programming because of the following reasons:

(i) Pointers make the programs simple and
reduce their length.

(ii) Pointers are helpful in allocation and de-
allocation of memory during the execution
of the program. Thus, pointers are the
instruments of dynamic memory manage-
ment.

(iii) Pointers enhance the execution speed of a
program.

(iv) Pointers are helpful in traversing through
arrays and character strings. The strings are
also arrays of characters terminated by the
null character (‘\O’).

(v) Pointers also act as references to different types
of objects such as variables, arrays, functions,
structures, etc. However, C language does not

UNIT - IV PROGRAMMING IN C

193
Rahul Publications

Rahul Publications

have the concept of references as in C++.
Therefore, in C we use pointer as a reference.

(vi) Storage of strings through pointers saves
memory space.

(vii) Pointers may be used to pass on arrays, strings,
functions, and variables as arguments of a
function.

(viii) Passing on arrays by pointers saves lot of
memory because we are passing on only the
address of array instead of all the elements
of an array, which would mean passing on
copies of all the elements and thus taking lot
of memory space.

(ix) Pointers are used to construct different data
structures such as linked lists, queues, stacks,
etc.

10. Why do we use command line arguments
in C?

Ans:
Command line argument is a parameter

supplied to the program when it is invoked.
Command line argument is an important concept
in C programming. It is mostly used when you need
to control your program from outside. Command
line arguments are passed to the main() method.

Syntax

int main(intargc, char *argv[])

Here argc counts the number of arguments
on the command line and argv[] is a pointer array
which holds pointers of type char which points to
the arguments passed to the program.

Example:

#include <stdio.h>

#include <conio.h>

int main(intargc, char *argv[])

{

inti;

if(argc>= 2)

{

printf(“The arguments supplied are:\n”);

for(i = 1; i<argc; i++)

{

printf(“%s\t”, argv[i]);

}

}

else

{

printf(“argument list is empty.\n”);

}

return 0;

}

Remember that argv[0] holds the name of
the program and argv[1] points to the first
command line argument and argv[n] gives the
last argument. If no argument is supplied, argc will
be 1.

11. Define a String.

Ans :
The string can be defined as the one-

dimensional array of characters terminated by a null
(‘\0’). The character array or the string is used to
manipulate text such as word or sentences. Each
character in the array occupies one byte of memory,
and the last character must always be 0. The
termination character (‘\0’) is important in a string
since it is the only way to identify where the string
ends. When we define a string as char s[10], the
character s[10] is implicitly initialized with the null
in the memory.

There are two ways to declare a string in c
language.

1. By char array

2. By string literal

Example

char ch[10]={‘r’,’a’,’m’,u’, ’\0'};

We can also define the string by the string
literal in C language. For example:

char ch[]=”ramu”;

BCA I YEAR I SEMESTER

194
Rahul Publications

Rahul Publications

12. List out various string manipulation functions in C.

Ans :
No. Function Description

1) strlen(string_name) returns the length of string name.

2) strcpy(destination, source) copies the contents of source string to destination

string.

3) strcat(first_string, second concats or joins first string with second string. The

_ string) result of the string is stored in first string.

4) strcmp(first_string, compares the first string with second string. If both

second_string) strings are same, it returns 0.

5) strrev(string) returns reverse string.

6) strlwr(string) returns string characters in lowercase.

7) strupr(string) returns string characters in uppercase.

UNIT - IV PROGRAMMING IN C

195
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. is used to create symbolic constants. [a]

(a) # define (b) Constant

(c) Keyword (d) Variable

2. is used to insert a specific header file into C program. [c]

(a) # undef (b) # if

(c) # include (d) # elif

3. pre processor is used to check to check wether the macro name is previously defined
(or) not? [c]

(a) # undef (b) # ifndef
(c) # include (d) # elif

4. is the collection of similar data type elements. [b]

(a) Loop (b) Array

(c) Pointer (d) Storage

5. Arrays are used for . [d]

(a) Matrix operations (b) Searching algorithms

(c) Sorting algorithms (d) All of the above

6. Array of Arrays are known as . [c]

(a) Structured array (b) 2D Array

(c) Multi dimensional array (d) None

7. is the process of finding some perticular element in the list. [a]

(a) Searching (b) Sorting

(c) Merging (d) None

8. Binary search follows approach. [b]

(a) Merging (b) Divide and conquer

(c) Both (d) None

BCA I YEAR I SEMESTER

196
Rahul Publications

Rahul Publications

9. search is less efficient in the case of large size data sets. [a]

(a) Linear (b) Binary

(c) Simple (d) None

10. uses the value of specified macro for conditional compilation [c]

(a) # else (b) # error

(c) # is (d) # undef

UNIT - IV PROGRAMMING IN C

197
Rahul Publications

Rahul Publications

Fill in the blanks

1. search is a sequential search.

2. is the process of finding some perticular element.

3. search is preferable for the large size data sets.

4. In sorting, the smallest value among the unsorted elements.

5. In sorting, each element of the array us compared with its adjacent element.

6. is used terminate processor conditional macro..

7. Each element of an array carries size.

8. Single dimensional arrays used to represent and search algorithms.

9. is the major disadvantage of array..

10. Array with in other array is known as .

ANSWERS

1. Linear

2. Searching

3. Binary search

4. Selection sort

5. Bubble sort

6. # endif

7. Same

8. Linear, Binary

9. Fixed size

10. Nested array

BCA I YEAR I SEMESTER

198
Rahul Publications

Rahul Publications

One Mark Answers

1. # define.

Ans :
define is used to create symbolic constants in c.

2. Array

Ans :
Array is the collection of similar data type elements. Which are stored in contigious format.

3. What is searching?

Ans :
Searching is the process of finding some particular element in the list.

4. What is sorting?

Ans :
Arranging the data in ascending (or) descending order is known ascending order is known as

sorting.

5. Binary search.

Ans :
It finds the position of the search element by finding the middle element of the array.

UNIT - V PROGRAMMING IN C

199
Rahul Publications

Rahul Publications

UNIT
V

Structures: Definition and Initialization of Structures, Accessing Structures,
Nested Structures, Arrays of Structures, Structures and Functions, Pointers to
Structures, Self Referential Structures, Unions, Type Definition (typedef),
Enumerated Types.

Input and Output: Introduction to Files, Modes of Files, Streams, Standard
Library Input/Output Functions, Character Input/Output Functions.

5.1 STRUCTURES - DEFINITION, INITIALIZATION OF STRUCTURE, ACCESSING STRUCTURE

Q1. Why we use structures?

Ans :
In C, there are cases where we need to store multiple attributes of an entity. It is not necessary that

an entity has all the information of one type only. It can have different attributes of different data types.
For example, an entity Student may have its name (string), roll number (int), marks (float). To store
such type of information regarding an entity student, we have the following approaches:

 Construct individual arrays for storing names, roll numbers, and marks.

 Use a special data structure to store the collection of different data types.

Let’s look at the first approach in detail.

#include<stdio.h>

void main ()

{

char names[2][10],dummy; // 2-dimensioanal character array names is used to store the names of
the students

int roll_numbers[2],i;

float marks[2];

for (i=0;i<3;i++)

{

printf(“Enter the name, roll number, and marks of the student %d”,i+1);

scanf(“%s %d %f”,&names[i],&roll_numbers[i],&marks[i]);

scanf(“%c”,&dummy); // enter will be stored into dummy character at each iteration

}

 printf(“Printing the Student details ...\n”);

 for (i=0;i<3;i++)

 {

printf(“%s %d %f\n”,names[i],roll_numbers[i],marks[i]);

 }

}

BCA I YEAR I SEMESTER

200
Rahul Publications

Rahul Publications

Output

Enter the name, roll number, and marks of the student 1Arun 90 91

Enter the name, roll number, and marks of the student 2Varun 91 56

Enter the name, roll number, and marks of the student 3Sham 89 69

Printing the Student details...

Arun 90 91.000000

Varun 91 56.000000

Sham 89 69.000000

The above program may fulfill our requirement of storing the information of an entity student.
However, the program is very complex, and the complexity increase with the amount of the input. The
elements of each of the array are stored contiguously, but all the arrays may not be stored contiguously in
the memory. C provides you with an additional and simpler approach where you can use a special data
structure, i.e., structure, in which, you can group all the information of different data type regarding an
entity.

Q2. Define Structure ?

(OR)

What is structure ?

(OR)

How can we declare structures?

Ans : (Imp.)

Structure in c is a user-defined data type that enables us to store the collection of different data
types. Each element of a structure is called a member. Structures simulate the use of classes and templates
as it can store various information

The strut keyword is used to define the structure. Let’s see the syntax to define the structure in c.

struct structure_name

{

data_type member1;

data_type member2;

.

.

data_type memeberN;

};

Let’s see the example to define a structure for an entity employee in c.

struct employee

{

int id;

char name[20];

float salary;

};

UNIT - V PROGRAMMING IN C

201
Rahul Publications

Rahul Publications

The following image shows the memory allocation of the structure employee that is defined in the
above example.

Here, struct is the keyword; employee is the name of the structure; id, name, and salary are
the members or fields of the structure. Let’s understand it by the diagram given below:

Declaring structure variable

We can declare a variable for the structure so that we can access the member of the structure easily.
There are two ways to declare structure variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining the structure.

1st way

Let’s see the example to declare the structure variable by struct keyword. It should be declared
within the main function.

struct employee

{

int id;

 char name[50];

 float salary;

};

BCA I YEAR I SEMESTER

202
Rahul Publications

Rahul Publications

Now write given code inside the main() function.
struct employee e1, e2;

The variables e1 and e2 can be used to access
the values stored in the structure. Here, e1 and e2
can be treated in the same way as the objects
in C++ and Java.

2nd way

Let’s see another way to declare variable at
the time of defining the structure.

struct employee

{

int id;

 char name[50];

 float salary;

}e1,e2;

Q3. Explain the process of defining a
structure and accessing members of
structures with a c program ?

Ans :
Defining a Structure

To define a structure, you must use the struct
statement. The struct statement defines a new data
type, with more than one member. The format of
the struct statement is as follows:

struct[structure tag]

{

member definition;

member definition;

...

member definition;

}[one or more structure variables];

The structure tag is optional and each
member definition is a normal variable definition,
such as inti; or float f; or any other valid variable
definition. At the end of the structure’s definition,
before the final semicolon, you can specify one or
more structure variables but it is optional. Here is
the way you would declare the Book structure:

structBooks

{

char title[50];

char author[50];

char subject[100];

intbook_id;

} book;

Accessing Structure Members

To access any member of a structure, we use
the member access operator (.). The member
access operator is coded as a period between the
structure variable name and the structure member
that we wish to access. You would use the
keyword struct to define variables of structure
type. The following example shows how to use a
structure in a program:

#include<stdio.h>

#include<string.h>

structBooks

{

char title[50];

char author[50];

char subject[100];

intbook_id;

};

int main()

{

structBooksBook1;

/* Declare Book1 of type Book */

structBooksBook2;

/* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title,”C Programming”);

strcpy(Book1.author,”Nuha Ali”);

strcpy(Book1.subject,”C Programming
Tutorial”);

Book1.book_id =6495407;

UNIT - V PROGRAMMING IN C

203
Rahul Publications

Rahul Publications

/* book 2 specification */

strcpy(Book2.title,”Telecom Billing”);

strcpy(Book2.author,”Zara Ali”);

strcpy(Book2.subject,”Telecom Billing Tutorial”);

Book2.book_id =6495700; /* print Book1 info */

printf(“Book 1 title : %s\n”,Book1.title);

printf(“Book 1 author : %s\n”,Book1.author);

printf(“Book 1 subject : %s\n”,Book1.subject);

printf(“Book 1 book_id : %d\n”,Book1.book_id); /* print Book2 info */

printf(“Book 2 title : %s\n”,Book2.title);

printf(“Book 2 author : %s\n”,Book2.author);

printf(“Book 2 subject : %s\n”,Book2.subject);

printf(“Book 2 book_id : %d\n”,Book2.book_id);

return0;

}

Output

Book 1 title : C Programming

Book 1 author :Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

5.1.1 Nested structures

Q4. How can we define a structure with in other structure ?

(OR)

What are nested structures explain in detail ?

Ans : (Imp.)

When a structure contains another structure, it is called nested structure. For example, we have two
structures named Address and Employee. To make Address nested to Employee, we have to define
Address structure before and outside Employee structure and create an object of Address structure inside
Employee structure.

BCA I YEAR I SEMESTER

204
Rahul Publications

Rahul Publications

Syntax for structure within structure or nested
structure

struct structure1

 {

 - - - - - - - - - -

 - - - - - - - - - -

 };

struct structure2

 {

 - - - - - - - - - -

 - - - - - - - - - -

struct structure1 obj;

 };

Example for structure within structure or
nested structure

 #include<stdio.h>

struct Address

 {

charHouseNo[25];

char City[25];

charPinCode[25];

 };

struct Employee

 {

int Id;

char Name[25];

float Salary;

struct Address Add;

 };

void main()

{

inti;

struct Employee E;

printf(“\n\tEnter Employee Id : “);

scanf(“%d”,&E.Id);

printf(“\n\tEnter Employee Name : “);

scanf(“%s”,&E.Name);

printf(“\n\tEnter Employee Salary : “);

scanf(“%f”,&E.Salary);

printf(“\n\tEnter Employee House No : “);

scanf(“%s”,&E.Add.HouseNo);

printf(“\n\tEnter Employee City : “);

scanf(“%s”,&E.Add.City);

printf(“\n\tEnter Employee House No : “);

scanf(“%s”,&E.Add.PinCode);

printf(“\nDetails of Employees”);

printf(“\n\tEmployee Id : %d”,E.Id);

printf(“\n\tEmployee Name : %s”,E.Name);

printf(“\n\tEmployee Salary : %f”,E.Salary);

printf(“\n\tEmployee House No : %s”,E.Add.
HouseNo);

printf(“\n\tEmployee City : %s”,E.Add.City);

printf(“\n\tEmployee House No : %s”,E.Add.
PinCode);

 }

Output

Enter Employee Id : 101

Enter Employee Name : Suresh

Enter Employee Salary : 45000

Enter Employee House No : 4598/D

Enter Employee City : Delhi

Enter Employee Pin Code : 110056

Details of Employees

Employee Id : 101

Employee Name : Suresh

Employee Salary : 45000

Employee House No : 4598/D

Employee City : Delhi

Employee Pin Code : 110056

UNIT - V PROGRAMMING IN C

205
Rahul Publications

Rahul Publications

Q5. Explain structure with In the structure with the context of normal variables and pointer
variables.

Ans :
 Nested structure in C is nothing but structure within structure. One structure can be declared inside

other structure as we declare structure members inside a structure.

 The structure variables can be a normal structure variable or a pointer variable to access the data.
You can learn below concepts in this section.

1. Structure within structure in C using normal variable

2. Structure within structure in C using pointer variable

1. STRUCTURE WITHIN STRUCTURE IN C USING NORMAL VARIABLE:

 This program explains how to use structure within structure in C using normal variable.
“student_college_detail’ structure is declared inside “student_detail” structure in this program.
Both structure variables are normal structure variables.

 Please note that members of “student_college_detail” structure are accessed by 2 dot(.) operator
and members of “student_detail” structure are accessed by single dot(.) operator.

#include <stdio.h>

#include <string.h>

structstudent_college_detail

{

intcollege_id;

charcollege_name[50];

};

structstudent_detail

{

intid;

charname[20];

floatpercentage;

// structure within structure

structstudent_college_detailclg_data;

}stu_data;

intmain()

{

structstudent_detailstu_data={1,"Raju",90.5,71145, "Anna University"};

printf(" Id is: %d \n",stu_data.id);

printf(" Name is: %s \n",stu_data.name);

printf(" Percentage is: %f \n\n",stu_data.percentage);

BCA I YEAR I SEMESTER

206
Rahul Publications

Rahul Publications

printf(" College Id is: %d \n",

stu_data.clg_data.college_id);

printf(" College Name is: %s \n",

stu_data.clg_data.college_name);

return0;

}

OUTPUT

Id is: 1

Name is: Raju

Percentage is: 90.500000

College Id is: 71145

College Name is: Anna University

STRUCTURE WITHIN STRUCTURE (NESTED STRUCTURE IN C) USING POINTER
VARIABLE

 This program explains how to use structure within structure in C using pointer variable.
“student_college_detail’ structure is declared inside “student_detail” structure in this program. one
normal structure variable and one pointer structure variable is used in this program.

 Please note that combination of .(dot) and ->(arrow) operators are used to access the structure
member which is declared inside the structure.

#include <stdio.h>

#include <string.h>

structstudent_college_detail

{

intcollege_id;

charcollege_name[50];

};

structstudent_detail

{

intid;

charname[20];

floatpercentage;

// structure within structure

structstudent_college_detailclg_data;

}

stu_data,*stu_data_ptr;

intmain()

UNIT - V PROGRAMMING IN C

207
Rahul Publications

Rahul Publications

{

structstudent_detailstu_data={1,"Raju",90.5,71145, "Anna University"};

stu_data_ptr=&stu_data;

printf(" Id is: %d \n",stu_data_ptr->id);

printf(" Name is: %s \n",stu_data_ptr->name);

printf(" Percentage is: %f \n\n", stu_data_ptr->percentage);

printf(" College Id is: %d \n", stu_data_ptr->clg_data.college_id);

printf(" College Name is: %s \n", stu_data_ptr->clg_data.college_name);

return0;

}

OUTPUT

Id is: 1

Name is: Raju

Percentage is: 90.500000

College Id is: 71145

College Name is: Anna University

5.1.2 Array of Structures

Q6. Explain the concept of array of structures.

Ans : (Imp.)

An array of structures in C can be defined as the collection of multiple structures variables where
each variable contains information about different entities. The array of structures in C are used to store
information about multiple entities of different data types. The array of structures is also known as the
collection of structures.

BCA I YEAR I SEMESTER

208
Rahul Publications

Rahul Publications

Let’s see an example of an array of structures
that stores information of 5 students and prints it.

#include<stdio.h>

#include <string.h>

struct student{

int rollno;

char name[10];

};

int main(){

int i;

struct student st[5];

printf(“Enter Records of 5 students”);

for(i=0;i<5;i++){

printf(“\nEnter Rollno:”);

scanf(“%d”,&st[i].rollno);

printf(“\nEnter Name:”);

scanf(“%s”,&st[i].name);

}

printf(“\nStudent Information List:”);

for(i=0;i<5;i++){

printf(“\nRollno:%d, Name: %s”, st[i].
rollno,st[i]. name);

}

 return 0;

}

Output:

Enter Records of 5 students

Enter Rollno:1

Enter Name:Sonoo

Enter Rollno:2

Enter Name:Ratan

Enter Rollno:3

Enter Name:Vimal

Enter Rollno:4

Enter Name:James

Enter Rollno:5

Enter Name:Sarfraz

Student Information List:

Rollno:1, Name:Sonoo

Rollno:2, Name:Ratan

Rollno:3, Name:Vimal

Rollno:4, Name:James

Rollno:5, Name:Sarfraz

5.1.3 Structures and Functions

Q7. How can we pass structure members to
Functions?

Ans :
C allows programmers to pass a single or

entire structure information to or from a function.
A structure information can be passed as a function
arguments. The structure variable may be passed
as a value or reference. The function will return the
value by using the return statement.

Example

#include <stdio.h>

int add(int, int) ; //function declaration

int main()

{

//structures declartion

struct addition{

int a, b;

int c;

}sum;

printf(“Enter the value of a : “);

scanf(“%d”,&sum.a);

printf(“\nEnter the value of b : “);

scanf(“%d”,&sum.b);

sum.c = add(sum. a, sum.b); //passing structure
members as arguments to function

printf(“\nThe sum of two value are : “);

printf(“%d “, sum.c);

UNIT - V PROGRAMMING IN C

209
Rahul Publications

Rahul Publications

return 0;

}

//Function definition

int add(int x, int y)

{

int sum1;

sum1 = x + y;

return(sum1);

}

Output

Enter the value of a 10

Enter the value of b 20

The sum of two values 30

Q8. Write a C Program to pass the entire
Structure to Functions.

Ans : (Imp.)

#include <stdio.h>

//structures declaration

typedefstruct {

int a, b;

int c;

}sum;

void add(sum) ;

 //function declaration with struct type sum

int main()

{

sum s1;

printf(“Enter the value of a : “);

scanf(“%d”,&s1.a);

printf(“\nEnter the value of b : “);

scanf(“%d”,&s1.b);

add(s1);

//passing entire structure as an argument to
 function

return 0;

}

//Function Definition

void add(sum s)

{

int sum1;

sum1 = s.a + s.b;

printf(“\nThe sum of two values are :%d
 “, sum1);

}

Output

Enter the value of a 10

Enter the value of b 20

The sum of two values 30

Q9. Discuss possible ways to passing a
structure to a function ?

Ans :
 A structure can be passed to any function from

main function or from any sub function.

 Structure definition will be available within the
function only.

 It won’t be available to other functions unless
it is passed to those functions by value or by
address (reference).

 Else, we have to declare structure variable as
global variable. That means, structure variable
should be declared outside the main function.
So, this structure will be visible to all the
functions in a C program.

It can be done in below 3 ways.

1. Passing structure to a function by value

2. Passing structure to a function by address
(reference)

3. No need to pass a structure – Declare
structure variable as global.

Passing Structure to Function in C by Value

In this program, the whole structure is passed
to another function by value. It means the whole
structure is passed to another function with all
members and their values. So, this structure can be
accessed from called function. This concept is very
useful while writing very big programs in C.

BCA I YEAR I SEMESTER

210
Rahul Publications

Rahul Publications

#include <stdio.h>

#include <string.h>

struct student

{

int id;

char name[20];

float percentage;

};

voidfunc(struct student record);

int main()

{

struct student record;

record.id=1;

strcpy(record.name, “Raju”);

record.percentage = 86.5;

func(record);

return 0;

}

voidfunc(struct student record)

{

printf(“ Id is: %d \n”, record.id);

printf(“ Name is: %s \n”, record.name);

printf(“ Percentage is: %f \n”, record.
percentage);

}

Output

Id is: 1

Name is: Raju

Percentage is: 86.500000

Passing Structure to Function in C by Address

In this program, the whole structure is passed
to another function by address. It means only the
address of the structure is passed to another
function. The whole structure is not passed to
another function with all members and their values.
So, this structure can be accessed from called
function by its address.

#include <stdio.h>

#include <string.h>

structstudent

{

 intid;

 charname[20];

 floatpercentage;

};

voidfunc(structstudent*record);

intmain()

{

 structstudent record;

 record.id=1;

 strcpy(record.name,"Raju");

 record.percentage=86.5;

 func(&record);

 return0;

}

voidfunc(structstudent*record)

{

 printf(" Id is: %d \n",record->id);

 printf(" Name is: %s \n",record->name);

printf(" Percentage is: %f \n",record-
>percentage);

}

Output

Id is: 1

Name is: Raju

Percentage is: 86.500000

A Structure Variable as Global in C

Structure variables also can be declared as
global variables as we declare other variables in C.
So, When a structure variable is declared as global,
then it is visible to all the functions in a program. In
this scenario, we don’t need to pass the structure to
any function separately.

UNIT - V PROGRAMMING IN C

211
Rahul Publications

Rahul Publications

#include <stdio.h>

#include <string.h>

structstudent

{

intid;

charname[20];

floatpercentage;

};

structstudent record;// Global declaration of structure

voidstructure_demo();

intmain()

{

record.id=1;

strcpy(record.name,"Raju");

record.percentage=86.5;

structure_demo();

return0;

}

voidstructure_demo()

{

printf(" Id is: %d \n",record.id);

printf(" Name is: %s \n",record.name);

printf(" Percentage is: %f \n",record.
percentage);

}

Output

Id is: 1

Name is: Raju

Percentage is: 86.500000

5.1.4 Pointers to Structures

Q10. How can we define pointers to struc-
tures ?

Ans :
We can define pointers to structures in the

same way as you define pointer to any other
variable:

struct Books *struct_pointer;

Now, you can store the address of a structure
variable in the above defined pointer variable. To
find the address of a structure variable, place the
‘&’; operator before the structure’s name as follows“

struct_pointer=&Book1;

To access the members of a structure using a
pointer to that structure, you must use the ’!
operator as follows:

struct_pointer->title;

Let us re-write the above example using
structure pointer.

#include<stdio.h>

#include<string.h>

structBooks{

char title[50];

char author[50];

char subject[100];

intbook_id;

};

/* function declaration */

voidprintBook(structBooks*book);

int main(){

structBooksBook1;

/* Declare Book1 of type Book */

structBooksBook2;

/* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title,”C Programming”);

strcpy(Book1.author,”Nuha Ali”);

strcpy(Book1.subject,”C Programming
Tutorial”);

Book1.book_id =6495407;

/* book 2 specification */

strcpy(Book2.title,”Telecom Billing”);

strcpy(Book2.author,”Zara Ali”);

strcpy(Book2.subject,”Telecom Billing
 Tutorial”);

Book2.book_id =6495700;

BCA I YEAR I SEMESTER

212
Rahul Publications

Rahul Publications

/* print Book1 info by passing address of
Book1 */

printBook(&Book1);

/* print Book2 info by passing address of Book2 */

printBook(&Book2);

return0;

}

voidprintBook(structBooks*book){

printf(“Book title : %s\n”, book->title);

printf(“Book author : %s\n”, book->author);

printf(“Book subject : %s\n”, book->subject);

printf(“Book book_id : %d\n”, book-
>book_id);

}

Output

Book title : C Programming

Book author :Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

5.1.5 Self Referential Structures

Q11. What are self-referential structures?
Write the syntax of self-referential
structures.

Ans : (Imp.)

A self-referential structure is a structure that
can have members which point to a structure variable
of the same type. They can have one or more
pointers pointing to the same type of structure as
their member. The self-referential structure is widely
used in dynamic data structures such as trees, linked
lists, and so on. The next node of a node will be
pointed in linked lists, which consists of the same
struct type. It is a unique type of structure containing
a member of its type. The member of its type is a

pointer variable of the same structure in which it
has been declared. In the context of blockchain,
each block is linked to a previous node or a next
node, similar to a linked list.

Syntax

structstructure_name

{

datatypedatatype_name;

structure_name * pointer_name;

}

Example

struct node

{

int data;

struct node *next;

};

Where ‘next’ is a pointer to a struct node
variable, it should be remembered that the pointer
to the structure is similar to the pointer to any other
variable. Hence, a self-referential data structure is
generally a structure definition that includes at least
one member that is a pointer to the structure of its
kind.

The self-referential structures are beneficial in
many applications that involves linked data
members, such as trees and lists. Unlike a static data
structure such as an array where the size of the array
limits the number of elements that can be inserted
into the array, the self- referential structure can
dynamically be contracted or expanded. Operations
such as insertion or deletion of nodes in a self-
referential structure involve simple alteration of the
pointers present within them.

Example

typedefstruct list
{

void *data;
struct list *next;

} linked_list;
Here, in the above example, the list is self-

referential structure as the *next is the type struct
list.

UNIT - V PROGRAMMING IN C

213
Rahul Publications

Rahul Publications

struct node

 {

int data;

char value;

struct node * link;

};

int main()

{

struct node object;

return 0;

}

In this particular example, ‘link’ is a pointer
to f type ‘node’ structure. Hence, the structure
‘node’ is a self-referential structure with ‘link’ as a
referencing pointer. The pointer should be
appropriately initialized before accessing, as by
default, it contains a garbage value.

Types of self-referential structures

1. Self-referential structure with a single link:
these structures are allowed to have only one
self-pointer as their member.

Example

#include <stdio.h>

#include <conio.h>

struct ref

{

int data;

charval;

struct ref* link;

}

int main()

{

struct ref object1; //link1

object1.link = NULL;

object1.data = 10;

object1.val = 20;

struct ref object2; //

object2.link = NULL;

object2.data = 30;

object2.val = 40;

object1.link = &object2;

printf (“%d \n”, object1.link -> data);

printf (“%d \n”, object1.link ->val);

return 0;

}

Output:

30 40

2. Self-referential structure with multiple
links: these types of structures can have
more than one self-pointers. Many
complicated data structures can be
easily constructed using these struc-
tures. Such structures can easily
connect to more than one node at a time.

Example

#include <stdio.h>

#include <conio.h>

struct ref

{

int data;

struct ref* previous;

struct ref* next;

};

int main()

{

struct node object1;

object1.previous = NULL;

object1.next = NULL;

object1.data = 10;

structprev object2;

object2.previous = NULL;

object2.next = NULL;

object2.data = 20;

structprev object3;

BCA I YEAR I SEMESTER

214
Rahul Publications

Rahul Publications

object3.previous = NULL;

object3.next = NULL;

object3.data = 30;

object1.next = &object2;//forward links

object2.next = &object3;

object2.next = &object1;

//backward links

object3.next = &object2;

printf (“%d \t”, object1.data);

printf (“%d \t”, object1.next -> data);

printf (“%d \n”, object1.next -> next ->
 data);

printf (“%d \t”, object2.prev -> data);

printf (“%d \t”, object2.data);

printf (“%d \n”, object2.next -> data);

printf (“%d \t”, object3.prev ->prev -> data);

printf (“%d \t”, object3.prev -> data);

printf (“%d \n”, object3.data);

return 0;

}

Output

10 20 30

10 20 30

10 20 30

Q12. List out the advantages and disadvan-
tages of structures

Ans :
Advantages of Structure

 Structure stores more than one data type of
the same object together.

 It is helpful when you want to store data of
different or similar data types such as name,
address, phone, etc., of the same object.

 It makes it very easy to maintain the entire
record as we represent complete records
using a single name.

 The structure allows passing a whole set of
records to any function with the help of a
single parameter.

 An array of structures can also be created to
store multiple data of similar data types.

Disadvantages of Structure

 If the complexity of the project goes increases,
it becomes hard to manage all your data
members.

 Making changes to one data structure in a
program makes it necessary to change at
several other places. So it becomes difficult
to track all changes.

 The structure requires more storage space as
it allocates memory to all the data members,
and even it is slower.

 The structure takes more storage space as it
gives memory to all the different data
members, whereas union takes only the
memory size required by the largest data size
parameters, and the same memory is shared
with other data members.

5.1.6 Unions

Q13. Define Union

Ans : (Imp.)

Union in c language is a user-defined data
type that is used to store the different type of
elements.

At once, only one member of the union can
occupy the memory. In other words, we can say
that the size of the union in any instance is equal to
the size of its largest element.

Structure Union

struct Employee{ Union Employee{

char x:// size 1 byte char x; //size 1 byte

int y; //size 2 byte int y; //size 2 byte

float z; // size 4 byte float z; // size 4 byte

}e1;//size of e1 = 7 byte }e1;//size of e1=4byte

size of e1 = 1 + 2 + 4 = 8 Size of e1 = 4 (maximum
size of 1 element)

JavaTpoint.com

UNIT - V PROGRAMMING IN C

215
Rahul Publications

Rahul Publications

Advantage of union over structure

It occupies less memory because it occupies the size of the largest member only.
Disadvantage of union over structure

Only the last entered data can be stored in the union. It overwrites the data previously stored in the
union.

The union keyword is used to define the union. Let’s see the syntax to define union in c.
union union_name
{

data_type member1;
data_type member2;
.
.
data_type memeberN;

};
Let’s see the example to define union for an employee in c.

union employee
{ int id;

 char name[50];
 float salary;

};
Example

#include <stdio.h>
#include <string.h>
union employee

{ int id;
 char name[50];

}e1;
//declaring e1 variable for union

int main()
{

 //store first employee information
 e1.id=101;
 strcpy(e1.name, ”Sonoo Jaiswal”);

//copying string into char array
//printing first employee information
printf(“employee 1 id: %d\n”, e1.id);
printf(“employee 1 name: %s\n”, e1.name);

 return 0;
}
Output
employee 1 id : 1869508435
employee 1 name : SonooJaiswal

BCA I YEAR I SEMESTER

216
Rahul Publications

Rahul Publications

Q14. Discuss the differences between Structures and Unions.

Ans : (Imp.)

Parameter Structure Union

Keyword A user can deploy the keyword struct A user can deploy the keyword union
to define a Structure. to define a Union.

Internal The implementation of Structure in In the case of a Union, the memory
Implementation C occurs internally - because it allocation occurs for only one member

contains separate memory locations with the largest size among all the input
allotted to every input member. variables. It shares the same location

among all these members/objects.

Accessing A user can access individual members A user can access only one member at
Members at a given time. a given time.

Syntax The Syntax of declaring a The Syntax of declaring a Union in
Structure in C is: C is:

struct [structure name] union [union name]
{ {
type element_1; type element_1;

type element_2; type element_2;

. .

. .

} variable_1, variable_2, …; } variable_1,variable_2, …;

Size A Structure does not have a shared A Union does not have a separate
location for all of its members. It location for every member in it. It
makes the size of a Structure to be makes its size equal to the size of the
greater than or equal to the sum of largest member among all the data
the size of its data members. members.

Value Altering Altering the values of a single When you alter the values of a single
member does not affect the other member, it affects the values of other
members of a Structure. members.

Storage of Value In the case of a Structure, there is a In the case of a Union, there is
specific memory location for every an allocation of only one shared
input data member. Thus, it can store memory for all the input data members.
multiple values of the various Thus, it stores one value at a time for
members. all of its members.

Initialization In the case of a Structure, a user can In the case of a Union, a user can only
initialize multiple members at the same initiate the first member at a time.
time.

UNIT - V PROGRAMMING IN C

217
Rahul Publications

Rahul Publications

Q15. List out the advantages and disadvan-
tages of Unions.

Ans :
Advantages of Union
 Union takes less memory space as compared

to the structure.

 Only the largest size data member can be
directly accessed while using a union.

 It is used when you want to use less (same)
memory for different data members.

 It allocates memory size to all its data
members to the size of its largest data
member.

Disadvantages of Union
 It allows access to only one data member at a

time.

 Union allocates one single common memory
space to all its data members, which are
shared between all of them.

 Not all the union data members are initialized,
and they are used by interchanging values at
a time.

5.1.7 Type Definition (typedef)

Q16. What is the use of typedef in C program-
ming?

Ans : (Imp.)

The typedef is a keyword used in C progra-
mming to provide some meaningful names to the
already existing variable in the C program. It
behaves similarly as we define the alias for the
commands. In short, we can say that this keyword
is used to redefine the name of an already existing
variable.

Syntax
typedef<existing_name> <alias_name>

In the above syntax, ‘existing_name’ is the
name of an already existing variable while ‘alias
name’ is another name given to the existing
variable.

For example, suppose we want to create a
variable of type unsigned int, then it becomes a
tedious task if we want to declare multiple variables
of this type. To overcome the problem, we use a
typedef keyword.

typedef unsigned int unit;

In the above statements, we have declared
the unit variable of type unsigned int by using a
typedef keyword.

Example

#include <stdio.h>

int main()

{

typedef unsigned int unit;

unit i,j;

i=10;

j=20;

printf(“Value of i is :%d”,i);

printf(“\nValue of j is :%d”,j);

return 0;

}

Output:

Value of iis :10

Value of j is :20

Using typedef with pointers

We can also provide another name or alias
name to the pointer variables with the help of the
typedef.

For example, we normally declare a pointer,
as shown below:

int* ptr;

We can rename the above pointer variable
as given below:

typedef int* ptr;

In the above statement, we have declared the
variable of type int*. Now, we can create the
variable of type int* by simply using the
‘ptr’ variable as shown in the below statement:

ptr p1, p2 ;

In the above statement, p1 and p2 are the
variables of type ‘ptr’.

BCA I YEAR I SEMESTER

218
Rahul Publications

Rahul Publications

Q17. Write a C program for implementing
typedef with structures.

Ans :
#include <stdio.h>

typedef struct student

{

char name[20];

int age;

}stud;

int main()

{

stud s1; printf(“Enter the details of student
s1: ”);

printf(“\nEnter the name of the student:”);

scanf(“%s”,&s1.name);

printf(“\nEnter the age of student:”);

scanf(“%d”,&s1.age);

printf(“\n Name of the student is : %s”,
 s1.name);

printf(“\n Age of the student is : %d”,
 s1.age);

 return 0;

}

Output

Enter the details of student s1:

Enter the name of the student: Peter

Enter the age of student: 28

Name of the student is : Peter

Age of the student is : 28

5.1.8 Enumerated types

Q18. What is Enumerated types ? How can we
declare enumerated types in C?

Ans : (Imp.)

The enum in C is also known as the
enumerated type. It is a user-defined data type that
consists of integer values, and it provides meaningful

names to these values. The use of enum in C makes
the program easy to understand and maintain. The
enum is defined by using the enum keyword.

The following is the way to define the enum
in C:

enum flag{integer_const1, integer_const2,
..... integter_constN};

In the above declaration, we define the enum
named as flag containing ‘N’ integer constants. The
default value of integer_const1 is 0, integer_const2
is 1, and so on. We can also change the default
value of the integer constants at the time of the
declaration.

For example

enum fruits{mango, apple, strawberry,
papaya};

The default value of mango is 0, apple is 1,
strawberry is 2, and papaya is 3. If we want to
change these default values, then we can do as given
below:

enum fruits

{

mango=2,

apple=1,

strawberry=5,

papaya=7,

};

Enumerated type declaration

As we know that in C language, we need to
declare the variable of a pre-defined type such as
int, float, char, etc. Similarly, we can declare the
variable of a user-defined data type, such as enum.
Let’s see how we can declare the variable of an
enum type.

Suppose we create the enum of type status
as shown below:

enum status{false,true};

Now, we create the variable of status type:

enum status s; // creating a variable of the
status type.

In the above statement, we have declared the
‘s’ variable of type status.

UNIT - V PROGRAMMING IN C

219
Rahul Publications

Rahul Publications

To create a variable, the above two statements can be written as:

enum status{false,true} s;

In this case, the default value of false will be equal to 0, and the value of true will be equal to 1.

Example:

#include <stdio.h>

enum weekdays{Sunday=1, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

int main()

{

 enum weekdays w; // variable declaration of weekdays type

 w=Monday; // assigning value of Monday to w.

 printf(“The value of w is %d”,w);

 return 0;

}

In the above code, we create an enum type named as weekdays, and it contains the name of all the
seven days. We have assigned 1 value to the Sunday, and all other names will be given a value as the
previous value plus one.

Output

The value of w is 2

The enum is used when we want our variable to have only a set of values. For example, we create
a direction variable. As we know that four directions exist (North, South, East, West), so this direction
variable will have four possible values. But the variable can hold only one value at a time. If we try to
provide some different value to this variable, then it will throw the compilation error.

The enum is also used in a switch case statement in which we pass the enum variable in a switch
parenthesis. It ensures that the value of the case block should be defined in an enum.

#include <stdio.h>

enum days{sunday=1, monday, tuesday, wednesday, thursday, friday, saturday};

int main()

{

 enum days d;

 d=monday;

 switch(d)

 {

 case sunday:

 printf(“Today is sunday”);

 break;

 case monday:

 printf(“Today is monday”);

 break;

BCA I YEAR I SEMESTER

220
Rahul Publications

Rahul Publications

 case tuesday:

 printf(“Today is tuesday”);

 break;

 case wednesday:

 printf(“Today is wednesday”);

 break;

 case thursday:

 printf(“Today is thursday”);

 break;

 case friday:

 printf(“Today is friday”);

 break;

 case saturday:

 printf(“Today is saturday”);

 break;

 }

 return 0;

}

Output

Today is Monday

5.2 INPUT AND OUTPUT

5.2.1 Introduction to files

Q19. List out the basic operations of files ?

Ans :
In programming, we may require some

specific input data to be generated several numbers
of times. Sometimes, it is not enough to only display
the data on the console. The data to be displayed
may be very large, and only a limited amount of
data can be displayed on the console, and since the
memory is volatile, it is impossible to recover the
programmatically generated data again and again.
However, if we need to do so, we may store it onto
the local file system which is volatile and can be
accessed every time. Here, comes the need of file
handling in C.

File handling in C enables us to create, update,
read, and delete the files stored on the local file
system through our C program. The following
operations can be performed on a file.

 Creation of the new file

 Opening an existing file

 Reading from the file

 Writing to the file

 Deleting the file

Q20. List out the built in functions to perform
basic file operations in C.

Ans :
There are many functions in the C library to

open, read, write, search and close the file. A list of
file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given
position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the
beginning of the file

5.2.2 Modes of Files

Q21. Explain fopen() function in detail.
(OR)

List out various modes of flies
associated with fopen() function.

Ans : (Imp.)

We must open a file before it can be read,
write, or update. The fopen() function is used to
open a file. The syntax of the fopen() is given below.

UNIT - V PROGRAMMING IN C

221
Rahul Publications

Rahul Publications

1. FILE *fopen(const char * filename, const char * mode);

The fopen() function accepts two parameters:

 The file name (string). If the file is stored at some specific location, then we must mention the
path at which the file is stored. For example, a file name can be like ”c://some_folder/
some_file.ext”.

 The mode in which the file is to be opened. It is a string.

We can use one of the following modes in the fopen() function.

Mode Description

R opens a text file in read mode

W opens a text file in write mode

A opens a text file in append mode

r+ opens a text file in read and write mode

w+ opens a text file in read and write mode

a+ opens a text file in read and write mode

Rb opens a binary file in read mode

Wb opens a binary file in write mode

Ab opens a binary file in append mode

rb+ opens a binary file in read and write mode

wb+ opens a binary file in read and write mode

ab+ opens a binary file in read and write mode

The f open function works in the following way.

 Firstly, It searches the file to be opened.

 Then, it loads the file from the disk and place it into the buffer. The buffer is used to provide
efficiency for the read operations.

 It sets up a character pointer which points to the first character of the file.

Consider the following example which opens a file in write mode.

#include<stdio.h>

void main()

{

FILE *fp ;

char ch ;

fp = fopen(“file_handle.c”,”r”) ;

while (1)

{

ch = fgetc (fp) ;

if (ch == EOF)

BCA I YEAR I SEMESTER

222
Rahul Publications

Rahul Publications

break ;

printf(“%c”,ch) ;

}

fclose (fp) ;

}

Q22. How can we close a file ?

Ans :
The fclose() function is used to close a file.

The file must be closed after performing all the
operations on it. The syntax of fclose() function is
given below:

int fclose(FILE *fp);

The fclose(-) function returns zero on
success, or EOF if there is an error in closing the
file. This function actually flushes any data still
pending in the buffer to the file, closes the file, and
releases any memory used for the file. The EOF is a
constant defined in the header file stdio.h.

Q23. Discuss the following file operations.

(a) Writing to the file

(b) Reading from the file

Ans :
Writing a File

Following is the simplest function to write
individual characters to a stream:

intfputc(int c, FILE *fp);

The function fputc() writes the character
value of the argument c to the output stream
referenced by fp. It returns the written character
written on success otherwise EOF if there is an
error. We can also use the following functions to
write a null-terminated string to a stream “

intfputs(const char *s, FILE *fp);

The function fputs() writes the string s to
the output stream referenced by fp. It returns a non-
negative value on success, otherwise EOF is
returned in case of any error. You can
use intfprintf(FILE *fp,const char *format,
...) function as well to write a string into a file.

Example

#include<stdio.h>

main(){

FILE *fp;

fp=fopen(“/tmp/test.txt”,”w+”);

fprintf(fp,”This is testing for fprintf...\n”);

fputs(“This is testing for fputs...\n”,fp);

fclose(fp);

}

Reading a File

Given below is the simplest function to read
a single character from a file Š

intfgetc(FILE * fp);

The fgetc() function reads a character from
the input file referenced by fp. The return value is
the character read, or in case of any error, it
returns EOF. The following function allows to read
a string from a stream Š

char *fgets(char *buf, int n, FILE *fp);

The functions fgets() reads up to n-1
characters from the input stream referenced by fp.
It copies the read string into the buffer buf,
appending a null character to terminate the string.

If this function encounters a newline
character ‘\n’ or the end of the file EOF before they
have read the maximum number of characters, then
it returns only the characters read up to that point
including the new line character. You can also use
intfscanf(FILE *fp, const char *format, ...)
function to read strings from a file, but it stops
reading after encountering the first space character.

Example

#include<stdio.h>

main()

{

FILE *fp;

char buff[255];

fp=fopen(“/tmp/test.txt”,”r”);

fscanf(fp,”%s”, buff);

UNIT - V PROGRAMMING IN C

223
Rahul Publications

Rahul Publications

printf(“1 : %s\n”, buff);

fgets(buff,255,(FILE*)fp);

printf(“2: %s\n”, buff);

fgets(buff,255,(FILE*)fp);

printf(“3: %s\n”, buff);

fclose(fp);

}

When the above code is compiled and
executed, it reads the file created in the previous
section and produces the following result Š

1 : This

2: is testing for fprintf...

3: This is testing for fputs...

5.2.3 Streams, Standard Library Input/
Output Functions, Character Input/
Output Functions

Q24. What is a Stream ?

Ans : (Imp.)

A stream is a popular concept for how to do
input/output. Basically, a stream is a sequence of
characters with functions to take characters out of
one end, and put characters into the other end. In
the case of input/output streams, one end of the
stream is connected to a physical I/O device such as
a keyboard or display. If it is a console output stream,
your program puts characters into one end of the
stream, and the display system takes characters out
of the other and puts them on the screen. If it is a
console input stream, the keyboard puts characters
into one end of the stream, and your program takes
characters out of the other and stores the results in
variables in the program. If no characters are waiting
in the input stream, your program must wait until
you supply some by typing on the keyboard. File
streams follow the same principle, except that the
file system is attached to the other end of the stream.

Two streams exist to allow you to
communicate with your “console” - the screen and
keyboard setup that makes up the traditional
computer user interface. These are the input stream
stdin(console input), which is connected to the
keyboard, and the output stream stdout (console

output), which is connected to your display. These
two streams are created when the system starts your
program. To use stdin and stdout and the input and
output functions for them, you have to tell the
compiler about them by including the relevant
declarations in the library header file.

Q25. Discuss in detail Standard library input
and output functions in C.

Ans : (Imp.)

C programming language libraries that allow
input and output in a program. the Stdio.h or
Standard input-output library in C that has a
method for input and output.

Input

When we talking about the input, so it means
to feed some data into a program. an input can be
given in the form the command line. C program-
ming has a set of built-in functions to read the given
input and feed it to the program as per requirement.
scanf() is a function which is used to take input.

Output

When we talking about the output, so it
means to display something in the screen. The data
we want to print in the screen that is print as it is. C
programming has a set of built-in function to output
the data on the computer screen. printf() is a
function which is used for output.

C Output

As we see the printf() is an output function in
C. this function sends formatted output to the
screen.

To use the printf() in our program, we need
to include stdio.h header fil using #include
<stdio.h> statement.

The return 0; statement inside main()
function is the Exit status of the program.

Example:

#include<stdio.h>

int main()

{

 printf(“Hello”);

 return 0;

}

BCA I YEAR I SEMESTER

224
Rahul Publications

Rahul Publications

Output

Hello

C Input:

As we see the scanf() is an input function in C this function used to take input from the user.
thescanf() function reads formatted input from the standard input such as keyboards.

Example

#include <stdio.h>

int main()

{

inttestInteger;

float testFloat;

double testDouble;

char testChar=’9';

printf(“enter a character value “);

scanf(“%c”,&testChar);

printf(“\nyour entered char value = %c”, testChar);

printf(“\nenter an Integer value “);

scanf(“%d”,&testInteger);

printf(“\nyour entered integer value = %d “, testInteger);

printf(“\nenter a float value “);

scanf(“%f”,&testFloat);

printf(“\nyour entered float value = %f”, testFloat);

printf(“\nenter a double value “);

scanf(“%lf”,&testDouble);

printf(“\nyour entered ndouble value = %lf”, testDouble);

return 0;

}

Output

enter a character value g

your entered char value = g

enter an Integer value 45

your entered integer value = 45

enter a float value 4.4

your entered float value = 4.400000

enter a double value 45.89
your entered ndouble value = 45.890000

UNIT - V PROGRAMMING IN C

225
Rahul Publications

Rahul Publications

here we have used %d,%f,%lf and %c formate inside the scanf() function to take int,float, double and
character input respectively from user. when user input integer value, it stored in the testInterger variable.

Here’s the list of commonly used data type and their formatespecifier. which is used in printf() and scanf()
function for take input and print the value of any variable of data type.

Data type Formate Specifier

int %d

char %c

double %lf

float %f

short int %hd

unsigned int %u

long int %li

long longint %lli

unsigned long int %lu

unsigned long longint %llu

signed char %c

unsigned charc %c

long double %Lf

Q26. Discuss in detail various character Input and Output functions in C.

Ans :
Character input functions read one character at a time from a text stream, while character output

functions write one character at a time to a text stream.

The getchar() function reads the next character from stdin and returns its value. The putchar()
function writes one character to standard output.

The getchar() and putchar() Functions

The intgetchar(void) function reads the next available character from the screen and returns it
as an integer. This function reads only single character at a time. You can use this method in the loop in
case you want to read more than one character from the screen.

The intputchar(int c) function puts the passed character on the screen and returns the same
character. This function puts only single character at a time. You can use this method in the loop in case
you want to display more than one character on the screen.

Example

#include<stdio.h>

int main(){

int c;

printf(“Enter a value :”);

c =getchar();

BCA I YEAR I SEMESTER

226
Rahul Publications

Rahul Publications

printf(“\nYou entered: “);

putchar(c);

return0;

}

When the above code is compiled and executed, it waits for you to input some text. When you
enter a text and press enter, then the program proceeds and reads only a single character and displays it
as follows

Enter a value : this is test

You entered: t

The gets() and puts() Functions

The char *gets(char *s) function reads a line from stdin into the buffer pointed to by s until
either a terminating newline or EOF (End of File).

The intputs(const char *s) function writes the string ‘s’ and ‘a’ trailing newline to stdout.

#include<stdio.h>

int main(){

charstr[100];

printf(“Enter a value :”);

gets(str);

printf(“\nYou entered: “);

puts(str);

return0;

}

When the above code is compiled and executed, it waits for you to input some text. When you
enter a text and press enter, then the program proceeds and reads the complete line till end, and displays
it as follows:

Enter a value : this is test

You entered: this is test

UNIT - V PROGRAMMING IN C

227
Rahul Publications

Rahul Publications

Short Question and Answers

1. Define Structure ?

Ans :
Structure in c is a user-defined data type that

enables us to store the collection of different data
types. Each element of a structure is called a
member. Structures simulate the use of classes and
templates as it can store various information

The strut keyword is used to define the
structure. Let’s see the syntax to define the structure
in c.

struct structure_name

{

data_type member1;

data_type member2;

.

.

data_type memeberN;

};

Let’s see the example to define a structure
for an entity employee in c.

struct employee

{

int id;

char name[20];

float salary;

};

2. How can we declare structures?

Ans :
We can declare a variable for the structure so

that we can access the member of the structure
easily. There are two ways to declare structure
variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining
the structure.

1st way

Let’s see the example to declare the structure
variable by struct keyword. It should be declared
within the main function.

struct employee

{

int id;

 char name[50];

 float salary;

};

Now write given code inside the main() function.

struct employee e1, e2;

The variables e1 and e2 can be used to access
the values stored in the structure. Here, e1 and e2
can be treated in the same way as the objects
in C++ and Java.

2nd way

Let’s see another way to declare variable at
the time of defining the structure.

struct employee

{

int id;

 char name[50];

 float salary;

}e1,e2;

3. What are nested structures explain in
detail ?

Ans :
When a structure contains another structure,

it is called nested structure. For example,we have
two structures named Address and Employee. To
make Address nested to Employee, we have to
define Address structure before and outside
Employee structure and create an object of Address
structure inside Employee structure.

BCA I YEAR I SEMESTER

228
Rahul Publications

Rahul Publications

Syntax for structure within structure or nested structure

struct structure1

 {

 - - - - - - - - - -

 - - - - - - - - - -

 };

struct structure2

 {

 - - - - - - - - - -

 - - - - - - - - - -

struct structure1 obj;

 };

4. Explain the concept of array of structures

Ans :
An array of structres in C can be defined as the collection of multiple structures variables where

each variable contains information about different entities. The array of structures in C are used to store
information about multiple entities of different data types. The array of structures is also known as the
collection of structures.

5. Discuss possible ways to passing a structure to a function ?

Ans :
 A structure can be passed to any function from main function or from any sub function.

 Structure definition will be available within the function only.

 It won’t be available to other functions unless it is passed to those functions by value or by
address(reference).

UNIT - V PROGRAMMING IN C

229
Rahul Publications

Rahul Publications

 Else, we have to declare structure variable as global variable. That means, structure variable should
be declared outside the main function. So, this structure will be visible to all the functions in a C
program.

It can be done in below 3 ways.

1. Passing structure to a function by value

2. Passing structure to a function by address (reference)

3. No need to pass a structure – Declare structure variable as global.

6. What are self-referential structures?

Ans : (Imp.)

A self-referential structure is a structure that can have members which point to a structure variable
of the same type. They can have one or more pointers pointing to the same type of structure as their
member. The self-referential structure is widely used in dynamic data structures such as trees, linked lists,
and so on. The next node of a node will be pointed in linked lists, which consists of the same struct type.
It is a unique type of structure containing a member of its type. The member of its type is a pointer
variable of the same structure in which it has been declared. In the context of blockchain, each block is
linked to a previous node or a next node, similar to a linked list.

Syntax

structstructure_name

{

datatypedatatype_name;

structure_name * pointer_name;

}

Example

struct node

{

int data;

struct node *next;

};

7. List out the advantages and disadvantages of structures

Ans :
Advantages of Structure

 Structure stores more than one data type of the same object together.

 It is helpful when you want to store data of different or similar data types such as name, address,
phone, etc., of the same object.

 It makes it very easy to maintain the entire record as we represent complete records using a single
name.

 The structure allows passing a whole set of records to any function with the help of a single parameter.

 An array of structures can also be created to store multiple data of similar data types.

BCA I YEAR I SEMESTER

230
Rahul Publications

Rahul Publications

Disadvantages of Structure

 If the complexity of the project goes increases,
it becomes hard to manage all your data
members.

 Making changes to one data structure in a
program makes it necessary to change at
several other places. So it becomes difficult
to track all changes.

 The structure requires more storage space as
it allocates memory to all the data members,
and even it is slower.

 The structure takes more storage space as it
gives memory to all the different data
members, whereas union takes only the
memory size required by the largest data size
parameters, and the same memory is shared
with other data members.

8. Define Union

Ans :
Union in c language is a user-defined data

type that is used to store the different type of
elements.

At once, only one member of the union can
occupy the memory. In other words, we can say
that the size of the union in any instance is equal to
the size of its largest element.

Structure Union

struct Employee{ Union Employee{

char x:// size 1 byte char x; //size 1 byte

int y; //size 2 byte int y; //size 2 byte

float z; // size 4 byte float z; // size 4 byte

}e1;//size of e1 = 7 byte }e1;//size of e1=4byte

size of e1 = 1 + 2 + 4 = 8 Size of e1 = 4 (maximum
size of 1 element)

JavaTpoint.com

Advantage of union over structure

It occupies less memory because it occupies
the size of the largest member only.
Disadvantage of union over structure

Only the last entered data can be stored in
the union. It overwrites the data previously stored
in the union.

9. List out the advantages and disadvan-
tages of Unions.

Ans :
Advantages of Union

 Union takes less memory space as compared
to the structure.

 Only the largest size data member can be
directly accessed while using a union.

 It is used when you want to use less (same)
memory for different data members.

 It allocates memory size to all its data
members to the size of its largest data
member.

Disadvantages of Union

 It allows access to only one data member at a
time.

 Union allocates one single common memory
space to all its data members, which are
shared between all of them.

 Not all the union data members are initialized,
and they are used by interchanging values at
a time.

10. What is Enumerated types ? How can we
declare enumerated types in C?

Ans :
The enum in C is also known as the

enumerated type. It is a user-defined data type that
consists of integer values, and it provides meaningful
names to these values. The use of enum in C makes
the program easy to understand and maintain. The
enum is defined by using the enum keyword.

The following is the way to define the enum
in C:

enum flag{integer_const1, integer_const2,
..... integter_constN};

In the above declaration, we define the enum
named as flag containing ‘N’ integer constants. The
default value of integer_const1 is 0, integer_const2
is 1, and so on. We can also change the default
value of the integer constants at the time of the
declaration.

UNIT - V PROGRAMMING IN C

231
Rahul Publications

Rahul Publications

For example

enum fruits{mango, apple, strawberry,
papaya};

The default value of mango is 0, apple is 1,
strawberry is 2, and papaya is 3. If we want to
change these default values, then we can do as given
below:

enum fruits

{

mango=2,

apple=1,

strawberry=5,

papaya=7,

};

11. What is Enumerated types?

Ans :

The enum in C is also known as the
enumerated type. It is a user-defined data type that
consists of integer values, and it provides meaningful
names to these values. The use of enum in C makes
the program easy to understand and maintain. The
enum is defined by using the enum keyword.

The following is the way to define the enum
in C:

enum flag{integer_const1, integer_const2,
..... integter_constN};

In the above declaration, we define the enum
named as flag containing ‘N’ integer constants. The
default value of integer_const1 is 0, integer_const2
is 1, and so on. We can also change the default
value of the integer constants at the time of the
declaration.

For example

enum fruits{mango, apple, strawberry,
papaya};

The default value of mango is 0, apple is 1,
strawberry is 2, and papaya is 3. If we want to

change these default values, then we can do as given
below:

enum fruits

{

mango=2,

apple=1,

strawberry=5,

papaya=7,

};

12. List out the basic operations of files ?

Ans :
In programming, we may require some

specific input data to be generated several numbers
of times. Sometimes, it is not enough to only display
the data on the console. The data to be displayed
may be very large, and only a limited amount of
data can be displayed on the console, and since the
memory is volatile, it is impossible to recover the
programmatically generated data again and again.
However, if we need to do so, we may store it onto
the local file system which is volatile and can be
accessed every time. Here, comes the need of file
handling in C.

File handling in C enables us to create, update,
read, and delete the files stored on the local file
system through our C program. The following
operations can be performed on a file.

 Creation of the new file

 Opening an existing file

 Reading from the file

 Writing to the file

 Deleting the file

13. List out the built in functions to perform
basic file operations in C.

Ans :
There are many functions in the C library to

open, read, write, search and close the file. A list of
file functions are given below:

BCA I YEAR I SEMESTER

232
Rahul Publications

Rahul Publications

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given
position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the
beginning of the file

14. How can we close a file ?

Ans :
The fclose() function is used to close a file. The file must be closed after performing all the operations

on it. The syntax of fclose() function is given below:

int fclose(FILE *fp);

The fclose(-) function returns zero on success, or EOF if there is an error in closing the file. This
function actually flushes any data still pending in the buffer to the file, closes the file, and releases any
memory used for the file. The EOF is a constant defined in the header file stdio.h.

15. What is a Stream ?

Ans :
A stream is a popular concept for how to do input/output. Basically, a stream is a sequence of

characters with functions to take characters out of one end, and put characters into the other end. In the
case of input/output streams, one end of the stream is connected to a physical I/O device such as a
keyboard or display. If it is a console output stream, your program puts characters into one end of the
stream, and the display system takes characters out of the other and puts them on the screen. If it is a
console input stream, the keyboard puts characters into one end of the stream, and your program takes
characters out of the other and stores the results in variables in the program. If no characters are waiting
in the input stream, your program must wait until you supply some by typing on the keyboard. File
streams follow the same principle, except that the file system is attached to the other end of the stream.

Two streams exist to allow you to communicate with your “console” - the screen and keyboard
setup that makes up the traditional computer user interface. These are the input stream stdin(console
input), which is connected to the keyboard, and the output stream stdout (console output), which is
connected to your display. These two streams are created when the system starts your program. To use
stdin and stdout and the input and output functions for them, you have to tell the compiler about them
by including the relevant declarations in the library header file.

UNIT - V PROGRAMMING IN C

233
Rahul Publications

Rahul Publications

16. Discuss the differences between Structures and Unions.

Ans : (Imp.)

Parameter Structure Union

Keyword A user can deploy the keyword struct A user can deploy the keyword union
to define a Structure. to define a Union.

Internal The implementation of Structure in In the case of a Union, the memory
Implementation C occurs internally - because it allocation occurs for only one member

contains separate memory locations with the largest size among all the input
allotted to every input member. variables. It shares the same location

among all these members/objects.

Accessing A user can access individual members A user can access only one member at
Members at a given time. a given time.

Syntax The Syntax of declaring a The Syntax of declaring a Union in
Structure in C is: C is:

struct [structure name] union [union name]
{ {
type element_1; type element_1;

type element_2; type element_2;

. .

. .

} variable_1, variable_2, …; } variable_1,variable_2, …;

Size A Structure does not have a shared A Union does not have a separate
location for all of its members. It location for every member in it. It
makes the size of a Structure to be makes its size equal to the size of the
greater than or equal to the sum of largest member among all the data
the size of its data members. members.

Value Altering Altering the values of a single When you alter the values of a single
member does not affect the other member, it affects the values of other
members of a Structure. members.

BCA I YEAR I SEMESTER

234
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Structure is a data type [b]

(a) System defined (b) User defined

(c) Pre defined (d) None

2. keyword useful to define structures. [c]

(a) int (b) char

(c) struct (d) Enum

3. To access any member of a structure, we use operator.. [a]

(a) . (b) ;

(c) < (d) >

4. Structure with in the structure is called as [c]

(a) System defined structure (b) User defined structure

(c) Nested structure (d) All of the above

5. are used to store information about multiple entities of different data types. [b]

(a) Nested structures (b) Array of structures

(c) Structure members (d) Structure variables

6. Structure variable may be passed as [c]

(a) a value (b) a reference

(c) a and b (d) None

7. In the case of a user can only initiate the first member at a time [b]

(a) Structure (b) Union

(c) typed ef (d) Enum

8. mode open a text file in read mode. [a]

(a) R (b) W

(c) Wt (d) Ab

9. function is useful to writes a character into the file. [b]

(a) fopen() (b) fget w()

(c) ftell() (d) fopen()

10. returns current position. [c]

(a) fput w() (b) f get w()

(c) ftell () (d) fopen()

UNIT - V PROGRAMMING IN C

235
Rahul Publications

Rahul Publications

Fill in the blanks

1. Enum in C is also known as .

2. Enum is a defined data type.

3. is a sequence of characters with functions to take characters out of one end, and put
characters at other end.

4. is a output statement.

5. function is useful to close the file.

6. function reads data from the file.

7. The enum is defined by keyword.

8. is used to store the different type of elements.

9. opens a binary file in read mode.

10. opens a binary file in read and write mode.

ANSWERS

1. Enumerated data type

2. User

3. Streams

4. Printf ()

5. fclose()

6. fscan()

7. Enum

8. Union

9. Rb

10. abt

BCA I YEAR I SEMESTER

236
Rahul Publications

Rahul Publications

One Mark Answers

1. Define structure

Ans :
Structure is a user defined data type that enables us to store the collectiono f different data types.

2. Nested Structure?

Ans :
A structure with in the other structure is called nested structures.

3. Union?

Ans :
Union is a user defined data type that is used to store the different type of elements.

4. Enumaration?

Ans :
It is a user defined data type that consist of integer values, and it provides meaningful names to

these values.

5. Typedef ?

Ans :
The typedef is a keyword. Used to provide some meaningful names to the already existing variable

in the C-program.

SOLVED MODEL PAPERS PROGRAMMING IN C

237
Rahul Publications

FACULTY OF INFORMATICS
BCA I-Year, I-Semester (CBCS) (Main) (New) Examination

Model Paper - I

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) Define computer? (Unit-I, SQA-1)
(b) What is number system? (Unit-I, SQA-4)
(c) What is Function ? What are the advantages of functions ? (Unit-II, SQA-10)
(d) What are the differences between If-else and switch statements. (Unit-II, SQA-5)
(e) Discuss #ifdef preprocessor directive. (Unit-III, SQA-1)
(f) Write a Binary search algorithm. (Unit-III, SQA-8)
(g) What are the differences between call-by-value and call-by-reference. (Unit-IV, SQA-4)
(h) What are the advantages and usages of pointers ? (Unit-IV, SQA-2)
(i) How can we close a file ? (Unit-V, SQA-14)
(j) List out the built in functions to perform basic file operations in C. (Unit-V, SQA-13)

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Briefly describe about various Computer Languages with examples. (Unit-I, Q.No. 3)

(b) How to evaluate C Expression ? Explain with the help of an example (Unit-I, Q.No. 42)

OR

3. (a) What is SDLC? (Unit-I, Q.No. 6)

(b) Explain, how can we convert an octal number system to other number (Unit-I, Q.No. 24)

systems

UNIT - II

4. (a) List out various C Library functions. (Unit-II, Q.No. 28)

(b) List out various standard function of C. (Unit-II, Q.No. 32)

OR

5. (a) List out various types of storage classes in C. (Unit-II, Q.No. 37)

(b) List and explain all the relational operators in C. (Unit-II, Q.No. 3)

BCA I YEAR I SEMESTER

238
Rahul Publications

UNIT - III

6. (a) What are the differences between linear search and binary search. (Unit-III, Q.No. 21)
(b) Write an algorithm to implement bubble sorting. (Unit-III, Q.No. 25)

OR

7. (a) Write a C Program for multiplication of two matrices. (Unit-III, Q.No. 14)
(b) Discuss in detail about Multi dimensional arrays in C. (Unit-III, Q.No. 11)

UNIT - IV

8. (a) Explain the following functions in detail. (Unit-IV, Q.No. 22)
(i) strle()

(ii) strcpy()

(iii) strcat()

(iv) strcmp()

(b) Explain the following string functions with an example. (Unit-IV, Q.No. 23)

(a) strrev()

(b) strlwr()

(c) strupr()

OR

9. (a) How can we pass an array to a function (Unit-IV, Q.No. 11)
(b) What is Dynamic Memory allocation? List and explain standard (Unit-IV, Q.No. 12)

defined functions used for dynamic memory allocation.

UNIT - V

10. (a) How can we define a structure with in other structure ? (Unit-V, Q.No. 4)
(b) Explain the concept of array of structures. (Unit-V, Q.No. 6)

OR

11. (a) How can we define pointers to structures ? (Unit-V, Q.No. 10)
(b) List out the built in functions to perform basic file operations in C. (Unit-V, Q.No. 20)

SOLVED MODEL PAPERS PROGRAMMING IN C

239
Rahul Publications

FACULTY OF INFORMATICS
BCA I-Year, I-Semester (CBCS) (Main) (New) Examination

Model Paper - II

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) What is SDLC? (Unit-I, SQA-2)

(b) What is decimal number system? (Unit-I, SQA-6)

(c) How can we define a function in C ? Explain with an example ? (Unit-II, SQA-11)

(d) Explain Ternary Operator. (Unit-II, SQA-1)

(e) What are the differences between linear search and binary search. (Unit-III, SQA-8)
(f) How memory allocation is done in arrays ? (Unit-III, SQA-4)
(g) What is Null Pointer. (Unit-IV, SQA-3)
(h) What is Dynamic Memory allocation? (Unit-IV, SQA-7)
(i) What is Enumerated types ? How can we declare enumerated types in C? (Unit-V, SQA-10)
(j) List out the advantages and disadvantages of structures (Unit-V, SQA-7)

PART - B (5 × 10 = 50 Marks)
UNIT - I

2. (a) How many types of computing Environments are there? Explain (Unit-I, Q.No. 2)

them with their advantages and disadvantages.

(b) Draw a flowchart for calculating the area of a rectangle. (Unit-I, Q.No. 14)

OR

3. (a) What is Flowchart ? (Unit-I, Q.No. 8)

(b) Explain standard I/O functions in C (Unit-I, Q.No. 40)

UNIT - II

4. (a) How can we use while loop in c programming? (Unit-II, Q.No. 16)

(b) What is mean by nested loops? (Unit-II, Q.No. 19)

OR

5. (a) What is Function? What are the advantages of functions ? (Unit-II, Q.No. 24)

(b) Write a C program to find the largest of given three numbers. (Unit-II, Q.No. 7)

BCA I YEAR I SEMESTER

240
Rahul Publications

UNIT - III

6. (a) How memory allocation is done in arrays ? (Unit-III, Q.No. 5)
(b) What is array ? Explain its advantages. (Unit-III, Q.No. 3)

OR

7. (a) Discuss in detail about Multi dimensional arrays in C. (Unit-III, Q.No. 11)
(b) What is linear search? Write a linear search algorithm. (Unit-III, Q.No. 16)

UNIT - IV

8. (a) Explain the concept of Pointers to Functions. (Unit-IV, Q.No. 16)
(b) Why do we use command line arguments in C? (Unit-IV, Q.No. 17)

OR

9. (a) What is Array of String ? (Unit-IV, Q.No. 20)

(b) What are string Input Output functions? (Unit-IV, Q.No. 19)

UNIT - V

10. (a) Discuss the differences between Structures and Unions. (Unit-V, Q.No. 14)
(b) What is Enumerated types ? How can we declare enumerated types in C? (Unit-V, Q.No. 18)

OR

11. (a) Explain fopen() function in detail. (Unit-V, Q.No. 21)
(b) What is a Stream ? (Unit-V, Q.No. 24)

SOLVED MODEL PAPERS PROGRAMMING IN C

241
Rahul Publications

FACULTY OF INFORMATICS
BCA I-Year, I-Semester (CBCS) (Main) (New) Examination

Model Paper - III

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) What is Flowchart ? (Unit-I, SQA-3)

(b) Explain the types of type conversions in C with example? (Unit-I, SQA-10)

(c) What is Function ? What are the advantages of functions ? (Unit-II, SQA-10)
(d) What are the differences between call by value and call by reference. (Unit-II, SQA-13)
(e) What is linear search. (Unit-III, SQA-7)
(f) Write a C program for sorting of an elements using array . (Unit-III, SQA-5)
(g) List out various string manipulation functions in C. (Unit-IV, SQA-12)
(h) What is the use of realloc() function? (Unit-IV, SQA-8)
(i) Define Union. (Unit-V, SQA-8)
(j) Define Structure ? (Unit-V, SQA-1)

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Explain the various stages of SDLC life cycle. (Unit-I, Q.No. 7)

(b) Explain the types of type conversions in C with example? (Unit-I, Q.No. 48)

OR

3. (a) Design a flowchart for finding the largest among three numbers entered (Unit-I, Q.No. 10)
by the user.

(b) How to declare and initialize a variable? (Unit-I, Q.No. 38)
UNIT - II

4. (a) What is Operator? List out various types of Operators supported by C? (Unit-II, Q.No. 1)
(b) Explain in detail If statement with an example. (Unit-II, Q.No. 6)

OR

5. (a) Explain in detail switch statement in C. (Unit-II, Q.No. 12)
(b) What are the differences between If-else and switch statements. (Unit-II, Q.No. 13)

BCA I YEAR I SEMESTER

242
Rahul Publications

UNIT - III

6. (a) List out various preprocessor commands supported by C. (Unit-III, Q.No. 1)
(b) Explain the process of declaring and initializing an array ? (Unit-III, Q.No. 6)

OR

7. (a) Write a Binary search algorithm. (Unit-III, Q.No. 18)
(b) What are the differences between linear search and binary search. (Unit-III, Q.No. 21)

UNIT - IV

8. (a) Define pointer? Explain the process of declaring a pointer in c program. (Unit-IV, Q.No. 1)

(b) How can we use arrays using pointers? (Unit-IV, Q.No. 9)
OR

9. (a) What is Dynamic Memory allocation? List and explain standard (Unit-IV, Q.No. 12)
defined functions used for dynamic memory allocation.

(b) What is the use of Array of Pointers in C? (Unit-IV, Q.No. 13)
UNIT - V

10. (a) How can we declare structures? (Unit-V, Q.No. 2)
(b) Explain the concept of array of structures. (Unit-V, Q.No. 6)

OR

11. (a) How can we define a structure with in other structure ? (Unit-V, Q.No. 4)
(b) What are self-referential structures? Write the syntax of self-referential (Unit-V, Q.No. 11)

structures.

PREVIOUS QUESTION PAPERS PROGRAMMING IN C

243
Rahul Publications

FACULTY OF INFORMATICS
BCA I - Semester (CBCS) (Main & Backlog) (New) Examination

July - 2021

PROGRAMMING IN C
Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B

Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. What are generations of computer languages ? (Unit-I, Q.No.3)

2. What are the rules to construct a variable name ? (Unit-I, Q.No.37)

3. List out bitwise operators of C. (Unit-II, Q.No.2)

4. Define the array and pointers, write their syntax. (Unit-III, Q.No.3, Unit-IV, SQA-1)

5. What is recursion ? Write its syntax. (Unit-II, SQA-14)

6. Define the structure and write its syntax. (Unit-V, SQA-1)

7. List out memory management functions of ‘C’ with their syntax. (Unit-IV, SAQ.7)

8. What is L-value and R-value ? (Unit-IV, Q.No.8)

9. Write the file operating modes. (Unit-V, Q.No.21)

10. List out the file predefined pointers.

Ans :

File pointer is a pointer which is used to handle and keep track on the files being accessed. A

new data type called “FILE” is used to declare file pointer. This data type is defined in stdio.h file. File

pointer is declared as FILE *fp. Where, ‘fp’ is a file pointer.

fopen() function is used to open a file that returns a FILE pointer. Once file is opened, file pointer

can be used to perform I/O operations on the file. fclose() function is used to close the file.

PART - B (5 × 10 = 50 Marks)

UNIT - I

11. (a) Draw a flow chart for given number is palindrome or not ?

BCA I YEAR I SEMESTER

244
Rahul Publications

Ans :

(b) Convert the (144.128)10 to Octal & Hexadecimal?

Ans :
o avoid the decimal separator, multiply the decimal number with the base raised to the power of

decimals in result:

144.128×168 = 619025046438
Divide by the base 16 to get the digits from the remainders:

PREVIOUS QUESTION PAPERS PROGRAMMING IN C

245
Rahul Publications

= (9020C49BA5)16 / 168

= (90.20C49BA5)16

OR

12. (a) Describe C-programming language data types with their syntax. (Unit-I, Q.No.36)

(b) Explain the operators of C-programming language. (Unit-I, Q.No.41)

13. Explain storage classes of C with example program. (Unit-II, Q.No.37)

OR

14. Discuss the all conditional control statements with example program. (Unit-II, Q.No.5,6,7,8,9,12)

15. Describe the demonstrate inter function communication with arrays. (Unit-III, Q.No.8)

OR

16. Write a C-program for Binary search ? (Unit-III, Q.No.20)

17. (a) Write a C-program to demonstrate command line arguments ? (Unit-IV, Q.No.17)

(b) Write a C-program to demonstrate pointer for inter function communication ?

(Unit-IV, Q.No.5)

OR

18. What is string and write a program to represent at least 10-pre defined string functions ?

(Unit-IV, Q.No.18, 22, 23)

19. Write a C-program to demonstrate array of structure variable with suitable example.

(Unit-V, Q.No.6)

OR

20. Write a program to copy contents from one file to another.

Ans :

#include<iostream>

#include<stdlib.h>

usingnamespacestd;

int main(){

 charch;// source_file[20], target_file[20];

 FILE *source,*target;

 charsource_file[]=”x1.txt”;

 chartarget_file[]=”x2.txt”;

 source=fopen(source_file,”r”);

BCA I YEAR I SEMESTER

246
Rahul Publications

 if(source == NULL){

 printf(“Press any key to exit...\n”);

 exit(EXIT_FAILURE);

 }

 target=fopen(target_file,”w”);

 if(target == NULL){

 fclose(source);

 printf(“Press any key to exit...\n”);

 exit(EXIT_FAILURE);

 }

 while((ch=fgetc(source))!= EOF)

 fputc(ch, target);

 printf(“File copied successfully.\n”);

 fclose(source);

 fclose(target);

 return0;

}

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN C

247
Rahul Publications

FACULTY OF SCIENCE
B.C.A. I Year I-Semester(CBCS) Examination

December - 2019
PROGRAMMING IN C

Time : 3 Hours] [Max. Marks : 80

PART - A (5 × 4 = 20 Marks)

Note : Answer all questions from Part-A & any Five questions from Part-B choosing one question from
each unit.

ANSWERS

1. (a) What are assemblers’?

Ans :
The Assembler is a Software that converts an assembly language code to machine code. It takes

basic Computer commands and converts them into Binary Code that Computer’s Processor can use to
perform its Basic Operations. These instructions are assembler language or assembly language.

(b) What are types of computing environments? (Unit-I, Q.No.2)

(c) Whai is call by value vvnte the syntax? (Unit-II, Q.No.33)

(d) What is Recursion? Write the syntax. (Unit-II, SQA-14)

(e) List the pre processors (Unit-III, Q.No.1)

(f) Write the Array Applications. (Unit-III, Q.No.9)

(g) What is L-value and R-value. (Unit-IV, Q.No.8)

(h) List string function. (Unit-IV, SQA-12)

(i) Wnte the standard library Input output functions. (Unit-V, Q.No.25)

(j) What is array of structures? (Unit-V, SQA-4)

PART - B (4 × 15 = 50 Marks)

UNIT - I

2. (a) Convert the numbers Decimal to Hexa Decimal.

(i) 512 (ii) 1536 (iii) 1024

Ans :
(i) 512

(512)10 = (200)16

Step by step solution

Step 1: Divide (512)10 successively by 16 until the quotient is 0:

512/16 = 32, remainder is 0

B.C.A. I YEAR I SEMESTER

248
Rahul Publications

32/16 = 2, remainder is 0

2/16 = 0, remainder is 2

Step 2: Read from the bottom (MSB) to top (LSB) as 200. This is the hexadecimal equivalent of
decimal number 512

(ii) 1536

(1536)10 = (600)16

Step by step solution

Step 1: Divide (1536)10 successively by 16 until the quotient is 0:

1536/16 = 96, remainder is 0

96/16 = 6, remainder is 0

6/16 = 0, remainder is 6

Step 2: Read from the bottom (MSB) to top (LSB) as 600.

(iii) 1024

(1024)10 = (400)16

Step by step solution

Step 1: Divide (1024)10 successively by 16 until the quotient is 0:

1024/16 = 64, remainder is 0

64/16 = 4, remainder is 0

4/16 = 0, remainder is 4

Step 2: Read from the bottom (MSB) to top (LSB) as 400.

(b) Explain about type conversion. (Unit-I, Q.No.47, 48)

OR

3. (a) Explain about precedence and Associativety of operators. (Unit-I, Q.No.43)

(b) Explain about identifiers and variables (Unit-I, Q.No.34, 37)

UNIT - II

4. (a) Explain about storage classes. (Unit-II, Q.No.37)

(b) Write a program for Armstrong number.

Ans :
#include<stdio.h>

 int main()

{

int n,r,sum=0,temp;

printf(“enter the number=”);

scanf(“%d”,&n);

temp=n;

while(n>0)

{

SOLVED PREVIOUS QUESTION PAPERS PROGRAMMING IN C

249
Rahul Publications

r=n%10;

sum=sum+(r*r*r);

n=n/10;

}

if(temp==sum)

printf(“armstrong number ”);

else

printf(“not armstrong number”);

return 0;

}

Output:

enter the number=153

armstrong number

enter the number=5

notarmstrong number

OR

5. (a) What is call by reference? Write a program for call by value. (Unit-II, Q.No.33)

(b) Explain about the methods of parameter passing. (Unit-II, Q.No.33)

UNIT - III

6. (a) Explain about types of Arrays with examples. (Unit-III, Q.No.9,10,11)

(b) Write a program for Matrix Multiplication. (Unit-III, Q.No.14)

OR

7. (a) What is the the difference between Selection sort and Bubble sort. (Unit-III, Q.No.23, 25)

(b) Write a pfograiii for linear search. (Unit-III, Q.No.17)

UNIT - IV

8. Explain about pointers to pointers. (Unit-IV, Q.No.6)

OR

9. (a) Write a program to print the reverse of the given array. (Unit-IV, Q.No.23(a))

(b) Write a program for string concat and string copy functions. (Unit-IV, Q.No.23 b,c)

UNIT - V

10. (a) What aref nested structures explain. (Unit-V, Q.No.4)

(b) Difference between structures and unions. (Unit-V, Q.No.14)

OR

11. (a) Explain about type definition. Explain about modes of a file. (Unit-V, Q.No.16,21)

B.C.A. I YEAR I SEMESTER

250
Rahul Publications

(b) Write a program to find no. of line, characters, no.of spaces present in a file.

Ans :
#include <stdio.h>

intmain()

{

charin_name[80];

 FILE *in_file;

intch, character = 0, line = 0, space = 0, tab = 0; printf(“Enter file name:\n”);

scanf(“%s”, in_name);

in_file = fopen(in_name, “r”);

if (in_file == NULL)

printf(“Can’t open %s for reading.\n”, in_name);

else

{

while ((ch = fgetc(in_file)) != EOF)

{

character++; if (ch == ‘ ‘) space++; if (ch == ‘\n’) line++; if (ch == ‘\t’) tab++;

}

fclose(in_file);

printf(“\nNumber of characters = %d”, character); printf(“\nNumber of spaces = %d”, space);

printf(“\nNumber of tabs = %d”, tab);

printf(“\nNumber of lines = %d”, line);

}

return0;

}

Output:

Enter file name:

count.txt

Number of characters = 82

Number of spaces = 12

Number of tabs = 1

Number of lines = 8

