
- by -

WELL EXPERIENCED LECTURER

Rahul’s 
Topper’s Voice

B.C.A.
II Year IV Sem

NEW

SYLLABUS

TM

Hyderabad. Cell : 9391018098, 9505799122
Rahul Publications

All disputes are subjects to Hyderabad Jurisdiction only

 Study Manual

 Important Questions

 Short Question & Answers

 Choose the Correct Answers

 Fill in the blanks

 Solved Model Papers

 Lab Programming

DATA SCIENCE
USING PYTHON

Latest 2023 Edition

`. 199/-

Sole Distributors : Cell : 9391018098, 9505799122

VASU BOOK CENTRE
Shop No. 2, Beside Gokul Chat, Koti, Hyderabad.

Maternity Hospital Opp. Lane, Narayan Naik Complex, Koti, Hyderabad.
Near Andhra Bank, Subway, Sultan Bazar, Koti, Hyderabad -195.

Inspite of many efforts taken to present this book without errors, some errors
might have crept in. Therefore we do not take any legal responsibility for
such errors and omissions. However, if they are brought to our notice, they
will be corrected in the next edition.

No part of this publications should be reporduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording and/or otherwise without the prior written
permission of the publisher

C

DATA SCIENCE
USING PYTHON

B.C.A.
II Year IV Sem

Price ` 199

C
O
N
T
E
N
T
S

STUDY MANUAL

Important Questions V - VIII

Unit - I 1 - 26

Unit - II 27 - 72

Unit - III 73 - 114

Unit - IV 115 - 140

Unit - V 141 - 186

Lab Programming 187 - 194

SOLVED MODEL PAPERS

MODEL PAPER - I 195 - 196

MODEL PAPER - II 197 - 198

MODEL PAPER - III 199 - 200

PREVIOUS QUESTION PAPER

February-2023 201 - 202

DATA SCIENCE
USING PYTHON

SYLLABUS

UNIT - I

Introduction to data science – Introduction to data science, Data Science Components, Data
Science Process, Data Science Jobs Roles, Tools for Data Science, Difference between Data Science
with BI (Business Intelligence), Applications of Data science, Challenges of Data science Technology.

Data analysis – Introduction to data analysis, Data Analysis Tools, Types of Data Analysis: Techniques
and Methods, Data Analysis Process Introduction to Python, Python features, Python Interpreter,
modes of Python Interpreter, Values and Data types, Variables, Key words, Identifiers, Statements.

UNIT - II

Expressions, Input & Output, Comments, Lines & Indentation, Quotations, Tuple assignment,
Operators, Precedence of operators. Functions: Definition and use, Types of functions, Flow of
execution, Parameters and Arguments, Modules. Conditionals: Conditional(if), Alternative(if-else),
Chained Conditionals(if-elif-else), Nested conditionals; Iteration/Control statements: while, for,
break, continue, pass; fruitful function vs void function, Parameters/Arguments, Return values,
Variables scope(local, global), Function composition.

UNIT - III

Strings: Strings, String slices, Immutability, String functions & Methods, String module; List as
array: Array, Methods of array.

Lists: List operations, List slices, List methods, List loops, Mutability, aliasing, Cloning list, List
parameters; Tuple: Benefit of Tuple, Operations on Tuple, Tuple methods, Tuple assignment,
Tuple as return value, Tuple as argument; Dictionaries: Operations on Dictionary, methods in
Dictionary, Difference between List, Tuple and Dictionary; Advanced List processing: List
comprehension, Nested List.

UNIT - IV

Introduction to Numpy – The basics of numpy array, computation on numpy arrays, aggregations,
computations on arrays, comparisons, masks and Boolean logic, fancy indexing, sorting arrays,
structured data.

UNIT - V

Data Manipulation with Pandas – Introducing pandas objects, data indexing and selection, operating
on data in pandas, handling missing data, hierarchical indexing, combining datasets, aggregation
and grouping.

I

Contents
Topic Page No.

UNIT - I

1.1 Introduction to Data Science ...1

1.1.1 Introduction To Data Science ..1

1.1.2 Data Science Components ..1

1.1.3 Data Science Process ...3

1.1.4 Data Science Jobs Roles ..4

1.1.5 Tools for Data Science ...4

1.2 Difference between Data Science with BI (Business Intelligence)5

1.3 Applications of Data Science ...6

1.4 Challenges of Data Science Technology ..7

1.5 Data Analysis .. 7

1.5.1 Introduction to Data Analysis ..7

1.5.2 Data Analysis Tools ..7

1.6 Types of Data Analysis: Techniques and Methods ..8

1.6.1 Data Analysis Process ..9

1.7 Introduction To Python ...10

1.7.1 Python Features ..10

1.7.2 Python Interpreter ...10

1.7.3 Modes of Python Interpreter ...11

1.7.4 Values and Data Types ...13

1.7.5 Variables ..16

1.7.6 Key Words ...20

1.7.7 Identifiers ..21

1.7.8 Statements ..21

 Short Question and Answers .. 23

 Choose the Correct Answers .. 25

 Fill in the Blanks ... 26

II

Topic Page No.

UNIT - II

2.1 Expressions ..27

2.1.1 Input & Output ...27

2.1.2 Comments ..30

2.1.3 Lines & Indentation ..30

2.1.4 Quotations ..31

2.1.5 Tuple Assignment ..31

2.1.6 Operators ..32

2.1.7 Precedence of Operators ...38

2.2 Functions ..39

2.2.1 Definition and Use ...39

2.2.2 Types of Functions ...40

2.2.3 Flow of Execution ...51

2.2.4 Parameters and Arguments ...52

2.2.5 Modules ..53

2.2.6 Conditionals ..54

2.2.6.1 Conditional (IF) ...54

2.2.6.2 Alternative (If-else) ..55

2.2.6.3 Chained Conditionals (If-elif-else) ..55

2.2.6.4 Nested Conditionals ...56

2.3 Iteration/Control Statements ...57

2.3.1 While ..57

2.3.2 FOR ..58

2.3.3 BREAK ..60

2.3.4 Continue ...61

2.3.5 Pass ..62

2.3.6 Fruitful Function Vs Void Function ...62

2.3.7 Parameters/Arguments ..63

2.3.8 Return Values ..64

2.3.9 Variables Scope (Local Global) ..66

2.3.10 Function Composition ..67

III

Topic Page No.

 Short Question and Answers .. 68

 Choose the Correct Answers .. 71

 Fill in the Blanks ... 72

UNIT - III

3.1 Strings ..73

3.1.1 Strings ...73

3.1.2 String Slices ...74

3.1.3 Immutability ..75

3.1.4 String Functions & Methods ..75

3.1.5 String Module ...78

3.1.6 List As Array ..80

3.1.6.1 Array ..80

3.1.7 Methods of Array ..81

3.2 Lists ..82

3.2.1 List Operations ..82

3.2.2 List Slices ...84

3.2.3 List Methods ..86

3.2.4 List Loops ..90

3.2.5 Mutability ..91

3.2.6 Aliasing ..91

3.2.7 Cloning List ...92

3.2.8 List Parameters ..95

3.3 Tuple ..96

3.3.1 Benefit Of Tuple ..96

3.3.2 Operations On Tuple ...96

3.3.3 Tuple Methods ..100

3.3.4 Tuple Assignment ..100

3.3.5 Tuple As Return Value ...101

3.3.6 Tuple As Argument ..102

3.4 Dictionaries ..102

3.4.1 Operations On Dictionary ..102

3.4.2 Methods In Dictionary ...104

3.4.3 Difference Between List Tuple And Dictionary ..105

IV

Topic Page No.

3.5 Advanced List Processing ..106

3.5.1 List Comprehension ..106

3.5.2 Nested List ...108

 Short Question and Answers .. 110

 Choose the Correct Answers .. 113

 Fill in the Blanks ... 114

UNIT - IV

4.1 Introduction to Numpy ...115

4.1.1 The Basics of Numpy Array ...115

4.1.2 Computation on Numpy Arrays ..119

4.2 Aggregations in Numpy...123

4.3 Computations on Arrays ...124

4.4 Comparisons ..125

4.5 Masks and Boolean Logic ...130

4.6 Fancy Indexing ..134

4.7 Sorting Arrays ...134

4.8 Structured Data ...134

 Short Question and Answers .. 136

 Choose the Correct Answers .. 139

 Fill in the Blanks ... 140

UNIT - V

5.1 Data Manipulation With Pandas ..107

5.1.1 Introducing Pandas Objects ...141

5.2 Data Indexing and Selection ...154

5.3 Operating On Data In Pandas ...166

5.4 Handling Missing Data ..167

5.5 Hierarchical Indexing ... 171

5.6 Combining Datasets ..174

5.6.1 Aggregation and Grouping ..179

 Short Question and Answers .. 182

 Choose the Correct Answers .. 185

 Fill in the Blanks ... 186

IMPORTANT QUESTIONS DATA SCIENCE USING PYTHON

V
Rahul Publications

UNIT - I

1. What is Data Science? Explain the steps involved in data science processing.

Ans :
Refer Unit-I, Q.No. 1

2. What are the main components of Data science?

Ans :
Refer Unit-I, Q.No. 2

3. Explain various processes of data science, what are used to extract information.

Ans :
Refer Unit-I, Q.No. 3

4. Write the differences between data science with business intelligence.

Ans :
Refer Unit-I, Q.No. 6

5. Explain about various tools used for data analysis.

Ans :
Refer Unit-I, Q.No. 10

6. Explain about the various phases of data analysis process.

Ans :
Refer Unit-I, Q.No. 12

7. Explain various modes of Python Interpreter.

Ans :
Refer Unit-I, Q.No. 16

8. Explain about standard data types used in python with an examples.

Ans :
Refer Unit-I, Q.No. 18

9. Write about various types of variables ?

Ans :
Refer Unit-I, Q.No. 20

Important Questions

BCA II YEAR IV SEMESTER

VI
Rahul Publications

UNIT - II

1. Write about Tuple assignment feature?

Ans :
Refer Unit-II, Q.No. 7

2. What are the various types of operators used in python.

Ans :
Refer Unit-II, Q.No. 8

3. What is function? How to define and call a function?

Ans :
Refer Unit-II, Q.No. 11

4. Explain about various types of functions in Python.

Ans :
Refer Unit-II, Q.No. 12

5. What are User-Defined Functions in Python? Write about them?

Ans :
Refer Unit-II, Q.No. 13

6. Explain the Flow of Execution in Python.

Ans :
Refer Unit-II, Q.No. 14

7. Write about how to define a parameters in python.

Ans :
Refer Unit-II, Q.No. 15

8. What are Modules in Python? Explain.

Ans :
Refer Unit-II, Q.No. 16

9. Explain if-elif-else statement with syntax and example.

Ans :
Refer Unit-II, Q.No. 19

10. Explain while loop with syntax and example.

Ans :
Refer Unit-II, Q.No. 22

IMPORTANT QUESTIONS DATA SCIENCE USING PYTHON

VII
Rahul Publications

UNIT - III

1. What is string? and how do you create string?

Ans :
Refer Unit-III, Q.No. 1

2. Explain various String Manipulation Functions.

Ans :
Refer Unit-III, Q.No. 6

3. Define array? Explain about array operations

Ans :
Refer Unit-III, Q.No. 8

4. Explain various array methods in Python.

Ans :
Refer Unit-III, Q.No. 9

5. How to access elements from a list?

Ans :
Refer Unit-III, Q.No. 11

6. Write about various methods used in lists.

Ans :
Refer Unit-III, Q.No. 13

7. Explain how do you perform iterations in loops.

Ans :
Refer Unit-III, Q.No. 14

8. What is tuple in python? What are its advantages

Ans :
Refer Unit-III, Q.No. 19

UNIT - IV

1. What is NumPy? Explain how to create arrays in python using Numpy.

Ans :
Refer Unit-IV, Q.No. 1

2. Explain array creation techniques in Numpy with an example program.

Ans :
Refer Unit-IV, Q.No. 2

BCA II YEAR IV SEMESTER

VIII
Rahul Publications

3. Explain various operations that can be performed on Numpy Arrays.

Ans :
Refer Unit-IV, Q.No. 4

4. Explain the concept of aggregations in Numpy.

Ans :
Refer Unit-IV, Q.No. 5

5. Expalin various arithmetic operation that can be performed on Numpy.

Ans :
Refer Unit-IV, Q.No. 6

6. Explain briefly about masks array module in Numpy.

Ans :
Refer Unit-IV, Q.No. 8

UNIT - V

1. Explain, how to create and use series in Pandas.

Ans :
Refer Unit-V, Q.No. 2

2. Expalin , how to use frames in Pandas.

Ans :
Refer Unit-V, Q.No. 4

3. Explain about indexing in Pandas.

Ans :
Refer Unit-V, Q.No. 5

4. Explain various operations that can perform on Pandas Data Frames.

Ans :
Refer Unit-V, Q.No. 7

5. Explain, how to handle the missing data.

Ans :
Refer Unit-V, Q.No. 8

6. Explain, how to Combine the data frames in Panda Using Merge() Function.

Ans :
Refer Unit-V, Q.No. 10

UNIT - I DATA SCIENCE USING PYTHON

1
Rahul Publications

Rahul Publications

UNIT
I

Introduction to data science – Introduction to data science, Data Science Components,
Data Science Process, Data Science Jobs Roles, Tools for Data Science, Difference
between Data Science with BI (Business Intelligence), Applications of Data science,
Challenges of Data science Technology.

Data analysis – Introduction to data analysis, Data Analysis Tools, Types of Data
Analysis: Techniques and Methods, Data Analysis Process Introduction to Python,
Python features, Python Interpreter, modes of Python Interpreter, Values and Data
types, Variables, Key words, Identifiers, Statements.

1.1 INTRODUCTION TO DATA SCIENCE

1.1.1 Introduction To Data Science

Q1. What is Data Science? Explain the steps
involved in data science processing.

Ans : (Imp.)

Meaning

Data Science involves obtaining meaningful
information or insights from structured or unstructured
data through a process of analyzing, programming and
business skills. It is a field containing many elements
like mathematics, statistics, computer science, etc.

Process

Data science is not a one-step process. Every step
has its value and it counts in your model.

 Problem Statement: No work start without
motivation, Data science is no exception though.
It’s really important to declare or formulate your
problem statement very clearly and precisely. Your
whole model and it’s working depend on your
statement. Many scientist considers this as the
main and much important step of Date Science.
So make sure what’s your problem statement
and how well can it add value to business or any
other organization.

 Data Collection: After defining the problem
statement, the next obvious step is to go in search
of data that you might require for your model.
You must do good research, find all that you need.
Data can be in any form i.e unstructured or
structured. It might be in various forms like videos,
spreadsheets, coded forms, etc. You must collect
all these kinds of sources.

 Data Cleaning: As you have formulated your
motive and also you did collect your data, the

next step to do is cleaning. Data cleaning is all
about the removal of missing, redundant,
unnecessary and duplicate data from your
collection. There are various tools to do so with
the help of programming in either R or Python.

 Data Analysis and Exploration: It’s one of
the prime things in data science to do and time
to get inner Holmes out. It’s about analyzing the
structure of data, finding hidden patterns in them,
studying behaviors, visualizing the effects of one
variable over others and then concluding. We can
explore the data with the help of various graphs
formed with the help of libraries using any
programming language.

 Data Modelling: Once you are done with your
study that you have formed from data
visualization, you must start building a hypothesis
model such that it may yield you a good prediction
in future. Here, you must choose a good
algorithm that best fit to your model. There
different kinds of algorithms from regression to
classification, SVM(Support vector machines),
Clustering, etc.

 Optimization and Deployment: You followed
each and every step and hence build a model
that you feel is the best fit. You test your data
and find how well it is performing by checking its
accuracy. In short, you check the efficiency of
the data model and thus try to optimize it for
better accurate prediction. Deployment deals with
the launch of your model and let the people outside
there to benefit from that.

1.1.2 Data Science Components

Q2. What are the main components of Data
science?

Ans : (Imp.)

The main components of Data Science are:

BCA II YEAR IV SEMESTER

2
Rahul Publications

Rahul Publications

1. Statistics: The essential component of Data
Science is Statistics. It is a method to collect and
analyze the numerical data in a large amount to
get useful and meaningful insights.

There are two main categories of Statistics:

(i) Descriptive Statistics: Descriptive
Statistics helps to organize data and only
focuses on the characteristics of data
providing parameters. For example, you
want to find the average height of students
in a classroom, in descriptive statistics, you
will record the heights of all students in the
class, and then you would find the
maximum, minimum and average height
of the class.

(ii) Inferential Statistics: Inferential statistics
generalizes a large data set and applies
probability before concluding. It also allows
you to infer parameters of the population
based on sample stats and build models on
it. For example, if we consider the same
example of finding the average height of
students in a class, then in Inferential
Statistics, you will take a sample set of the
class, basically a few people from the entire
class.

2. Visualization: Visualization means representing
the data in visuals such as maps, graphs, etc. so
that people can understand it easily. It makes it
easy to access a vast amount of data. The main
goal of data visualization is to make it easier to
identify patterns, trends, and outliers in large data
sets. The main benefits of data visualization
include:

 It can absorb information quickly, improve
insights, and make faster decisions.

 It increases understanding of the next steps
that must be taken to improve the
organization.

 It provides an improved ability to maintain
the audience’s interest with the information
they can understand.

 It gives an easy distribution of information
that increases the opportunity to share
insights with everyone involved.

 It eliminates the need for data scientists
since data is more accessible and
understandable.

 It increases the ability to act on findings
quickly and, therefore, achieve success with
higher speed and fewer mistakes.

3. Machine Learning: Machine Learning acts as
a backbone for data science. It means providing
training to a machine in such a way that it acts
as a human brain. Various algorithms are used
to solve the problems. With the help of Machine
Learning, it becomes easy to make predictions
about unforeseen/future data.

Machine Learning makes a prediction,
analysis patterns, and gives recommendations and
is frequently used in fraud detection and client
retention.

For example, a social media platform, i.e.,
Facebook, where fast algorithms are used to
collect the behavioral information of every user
available on social media and also recommend
them the relevant articles, multimedia files, and
much more based on their choice.

There are four types of Machine learning:

(i) Supervised Machine Learning: In this type of
machine learning, the machine mainly focuses
on regression and classification problems. We
already know the correct output and relationship
with input and output in this phase. It also deals
with labeled datasets and algorithms, and the
machine gets the last calculated data on the
machine, also known as target data. It includes
the data as well as a result. There are two major
processes:

 Classification: It is the process in which
the input data is labeled based on past data
experiences. The machines are also trained
with algorithms about the data format, and
the algorithms specify the format to
recognize by the machine. The examples of
classification are weather forecasting and
specifying whether tomorrow will be hot or
cold. Naive Bayes, Support Vector Machine
and Decision Tree are the most popular
supervised machine learning algorithms.

 Regression: It is the process to identify the
labeled data and calculate the results based
on prediction. The machine can learn the
data and display real-valued results. These
results are based on independent values. For
example, a human picture is given to a
common man to identify the gender of the

UNIT - I DATA SCIENCE USING PYTHON

3
Rahul Publications

Rahul Publications

person in the image. Another example is
the prediction of the temperature of
tomorrow based on past data. Linear
regression is used for regression problems.

(ii) Unsupervised Machine Learning: Here, the
results are unknown and need to be defined. It
uses unlabeled data for machine learning, and
we have no idea about the types of results. The
machine observes the algorithms and then finds
the structure of data and has less computational
complexity and uses real-time analysis of data.
The results are very reliable compared to
supervised learning. For example, we can present
images of fruits to this model, and this model
makes clusters and separates them based on a
given pattern and relationships.

There are two types:

 Clustering: In clustering, data is found in
segments and meaningful groups. It is based
in small groups. These groups have their
patterns through which data is arranged and
segmented. K-means clustering, hierarchical
clustering, and density-based spatial
clustering are more popular clustering
algorithms.

 Dimensionality Reduction: The
unnecessary data is removed to summaries
the distribution of data in groups in this
phase.

(iii) Semi-Supervised Machine Learning: Semi-
supervised machine learning, also known as hybrid
learning, and it lies between supervised and
unsupervised learning. This model has a
combination of labeled and unlabeled data. This
data has fewer shares of labeled data and more
shares of unlabeled data. The labeled-data is very
cheap in comparison to the unlabeled data. The
procedure is that the algorithm uses unsupervised
learning algorithms to cluster the labeled data
and then uses the supervised learning algorithm.

(iv) Reinforcement Learning: In this learning, there
are no training data sets. The machine has special
software that works as an agent with the
environment to get feedback. The work of an
agent is to achieve the target and get the required
feedback. An example of a reinforcement learning
problem is playing games, in which an agent has
a set of goals to get high scores and feedback in
terms of punishment and rewards while playing.

1.1.3 Data Science Process

Q3. Explain various processes of data science,
what are used to extract information.

Ans : (Imp.)

Different processes are included to infer the
information from the source like extraction of data,
information preparation, model planning, model building
and many more.

 Discovery

To begin with, it is exceptionally imperative to get
the different determinations, prerequisites, needs
and required budget-related with the venture. You
must have the capacity to inquire the correct
questions like do you have got the desired assets.
These assets can be in terms of individuals,
innovation, time and information. In this stage,
you too got to outline the trade issue and define
starting hypotheses (IH) to test.

 Information Preparation

In this stage, you would like to investigate,
preprocess and condition data for modeling. You’ll
be able to perform information cleaning,
changing, and visualization. This will assist you
to spot the exceptions and build up a relationship
between the factors. Once you have got cleaned
and arranged the information, it’s time to do
exploratory analytics on it.

 Model Planning

Here, you may decide the strategies and methods
to draw the connections between factors. These
connections will set the base for the calculations
which you may execute within the following stage.
You may apply Exploratory Data Analytics (EDA)
utilizing different factual equations and
visualization apparatuses.

 Model Building

In this stage, you’ll create datasets for training
and testing purposes. You may analyze different
learning procedures like classification, association,
and clustering and at last, actualize the most
excellent fit technique to construct the show.

 Operationalize

In this stage, you convey the last briefings, code,
and specialized reports. In expansion, now a pilot
venture is additionally actualized in a real-time

BCA II YEAR IV SEMESTER

4
Rahul Publications

Rahul Publications

generation environment. This will give you a clear
picture of the execution and other related
limitations.

 Communicate Results

Presently, it is critical to assess the outcome of
the objective. So, within the final stage, you
recognize all the key discoveries, communicate
to the partners and decide in the event that the
outcomes about the venture are a victory or a
disappointment based on the criteria created in
Stage 1.

1.1.4 Data Science Jobs Roles

Q4. What are the important job roles in data
sceince?

Ans :
Most prominent Data Scientist job titles are:

 Data Scientist

 Data Engineer

 Data Analyst

 Statistician

 Data Architect

 Data Admin

 Business Analyst

 Data/Analytics Manager

Data Scientist

 Role: A Data Scientist is a professional
who manages enormous amounts of data
to come up with compelling business visions
by using various tools, techniques,
methodologies, algorithms, etc.

 Languages: R, SAS, Python, SQL, Hive,
Matlab, Pig, Spark

Data Engineer

 Role: The role of a data engineer is of
working with large amounts of data. He
develops, constructs, tests, and maintains
architectures like large scale processing
systems and databases.

 Languages: SQL, Hive, R, SAS, Matlab,
Python, Java, Ruby, C + +, and Perl

Data Analyst

 Role: A data analyst is responsible for
mining vast amounts of data. They will look
for relationships, patterns, trends in data.
Later he or she will deliver compelling
reporting and visualization for analyzing the
data to take the most viable business
decisions.

 Languages: R, Python, HTML, JS, C,
C++, SQL

Statistician

 Role: The statistician collects, analyses, and
understands qualitative and quantitative
data using statistical theories and methods.

 Languages: SQL, R, Matlab, Tableau,
Python, Perl, Spark, and Hive

Data Administrator

 Role: Data admin should ensure that
the database is accessible to all relevant
users. He also ensures that it is performing
correctly and keeps it safe from hacking.

 Languages: Ruby on Rails, SQL, Java,
C#, and Python

Business Analyst

 Role: This professional needs to improve
business processes. He/she is an
intermediary between the business executive
team and the IT department.

 Languages: SQL, Tableau, Power BI and,
Python

1.1.5 Tools for Data Science

Q5. Write about the tools used for data science.

Ans :
The following are the various tools for data science

1. SAS

It is one of those data science tools which are
specifically designed for statistical operations.
SAS is a closed source proprietary software that
is used by large organizations to analyze data.
SAS uses base SAS programming language which
for performing statistical modeling.

UNIT - I DATA SCIENCE USING PYTHON

5
Rahul Publications

Rahul Publications

It is widely used by professionals and
companies working on reliable commercial
software. SAS offers numerous statistical
libraries and tools that you as a Data Scientist
can use for modeling and organizing their data.

2. Apache Spark

Apache Spark or simply Spark is an all-powerful
analytics engine and it is the most used Data
Science tool. Spark is specifically designed to
handle batch processing and Stream Processing.

3. BigML

BigML, it is another widely used Data Science
Tool. It provides a fully interactable, cloud-based
GUI environment that you can use for
processing Machine Learning Algorithms. BigML
provides standardized software using cloud
computing for industry requirements.

4. MATLAB

MATLAB is a multi-paradigm numerical
computing environment for processing
mathematical information. It is a closed-source
software that facilitates matrix functions,
algorithmic implementation and statistical
modeling of data. MATLAB is most widely used
in several scientific disciplines.

In Data Science, MATLAB is used for
simulating neural networks and fuzzy logic. Using
the MATLAB graphics library, you can create
powerful visualizations. MATLAB is also used in
image and signal processing.

5. Excel

Probably the most widely used Data Analysis tool.
Microsoft developed Excel mostly for spreadsheet
calculations and today, it is widely used for data
processing, visualization, and complex
calculations.

Excel is a powerful analytical tool for Data
Science. While it has been the traditional tool for
data analysis, Excel still packs a punch.

6. Tableau

Tableau is a Data Visualization software that is
packed with powerful graphics to make interactive
visualizations. It is focused on industries working
in the field of business intelligence.

The most important aspect of Tableau is its
ability to interface with databases, spreadsheets,
OLAP (Online Analytical Processing) cubes, etc.
Along with these features, Tableau has the ability
to visualize geographical data and for plotting
longitudes and latitudes in maps.

7. Jupyter

Project Jupyter is an open-source tool based on
IPython for helping developers in making open-
source software and experiences interactive
computing. Jupyter supports multiple languages
like Julia, Python, and R.

8. Matplotlib

Matplotlib is a plotting and visualization library
developed for Python. It is the most popular tool
for generating graphs with the analyzed data. It
is mainly used for plotting complex graphs using
simple lines of code. Using this, one can generate
bar plots, histograms, scatterplots etc.

9. NLTK

Natural Language Processing has emerged as the
most popular field in Data Science. It deals with
the development of statistical models that help
computers understand human language.

10. Scikit-learn

Scikit-learn is a library-based in Python that is
used for implementing Machine Learning
Algorithms. It is simple and easy to implement a
tool that is widely used for analysis and data
science.

11. TensorFlow

TensorFlow has become a standard tool for
Machine Learning. It is widely used for advanced
machine learning algorithms like Deep Learning.
Developers named TensorFlow after Tensors which
are multidimensional arrays.

1.2 DIFFERENCE BETWEEN DATA SCIENCE WITH

BI (BUSINESS INTELLIGENCE)

Q6. Write the differences between data science
with business intelligence.

Ans : (Imp.)

Below is a table of differences between Data
Science and Business Intelligence:

BCA II YEAR IV SEMESTER

6
Rahul Publications

Rahul Publications

The sufficient tools and technologies are not
available for handling large data sets.

The technologies such as Hadoop are available
and others are evolving for handling
understanding Its large data sets.

Business Intelligence has lesser business value as
the extraction process of business value carries
out statically by plotting charts and KPIs (Key
Performance Indicator).

Greater business value is achieved with data
science in comparison to business intelligence as it
anticipates future events.

Business Intelligence helps in performing root
cause analysis on a failure or to understand the
current status.

Companies can harness their potential by
anticipating the future scenario using data science
in order to reduce risk and increase income.

It’s tools are InsightSquared Sales Analytics,
Klipfolio, ThoughtSpot, Cyfe, TIBCO Spotfire,
etc.It’s tools are SAS, BigML, MATLAB, Excel, etc.

The ETL (Extract-Transform-Load) process is
generally used for the integration of data for
business intelligence applications.

The ELT (Extract-Load-Transform) process is
generally used for the integration of data for data
science applications.

Data warehouse is utilized to hold data.
The data to be used is disseminated in real-time
clusters.

It deals with the question of what happened.
It deals with the questions of what will happen and
what if.

It’s expertise is the business user.It’s expertise is data scientist.

It is much simpler when compared to data
science.

It has a higher complexity in comparison to
business intelligence.

It makes use of the analytic method.It makes use of the scientific method.

It is less flexible as in case of business intelligence
data sources need to be pre-planned.

Data science is much more flexible as data sources
can be added as per requirement.

It mainly deals only with structured data.
It deals with both structured as well as
unstructured data.

It focuses on the past and present.It focuses on the future.

It is basically a set of technologies, applications
and processes that are used by the enterprises for
business data analysis.

It is a field that uses mathematics, statistics and
various other tools to discover the hidden patterns
in the data.

Business IntelligenceData Science

The sufficient tools and technologies are not
available for handling large data sets.

The technologies such as Hadoop are available
and others are evolving for handling
understanding Its large data sets.

Business Intelligence has lesser business value as
the extraction process of business value carries
out statically by plotting charts and KPIs (Key
Performance Indicator).

Greater business value is achieved with data
science in comparison to business intelligence as it
anticipates future events.

Business Intelligence helps in performing root
cause analysis on a failure or to understand the
current status.

Companies can harness their potential by
anticipating the future scenario using data science
in order to reduce risk and increase income.

It’s tools are InsightSquared Sales Analytics,
Klipfolio, ThoughtSpot, Cyfe, TIBCO Spotfire,
etc.It’s tools are SAS, BigML, MATLAB, Excel, etc.

The ETL (Extract-Transform-Load) process is
generally used for the integration of data for
business intelligence applications.

The ELT (Extract-Load-Transform) process is
generally used for the integration of data for data
science applications.

Data warehouse is utilized to hold data.
The data to be used is disseminated in real-time
clusters.

It deals with the question of what happened.
It deals with the questions of what will happen and
what if.

It’s expertise is the business user.It’s expertise is data scientist.

It is much simpler when compared to data
science.

It has a higher complexity in comparison to
business intelligence.

It makes use of the analytic method.It makes use of the scientific method.

It is less flexible as in case of business intelligence
data sources need to be pre-planned.

Data science is much more flexible as data sources
can be added as per requirement.

It mainly deals only with structured data.
It deals with both structured as well as
unstructured data.

It focuses on the past and present.It focuses on the future.

It is basically a set of technologies, applications
and processes that are used by the enterprises for
business data analysis.

It is a field that uses mathematics, statistics and
various other tools to discover the hidden patterns
in the data.

Business IntelligenceData Science

1.3 APPLICATIONS OF DATA SCIENCE

Q7. What are the application sof data science? Explain.

Ans :
The following are the Applications of Data Science

 Internet Search: Google search uses Data science technology to search for a specific result within a
fraction of a second

UNIT - I DATA SCIENCE USING PYTHON

7
Rahul Publications

Rahul Publications

 Recommendation Systems: To create a
recommendation system. For example,
“suggested friends” on Facebook or suggested
videos” on YouTube, everything is done with the
help of Data Science.

 Image & Speech Recognition: Speech
recognizes systems like Siri, Google Assistant, and
Alexa run on the Data science technique.
Moreover, Facebook recognizes your friend when
you upload a photo with them, with the help of
Data Science.

 Gaming world: EA Sports, Sony, Nintendo are
using Data science technology. This enhances your
gaming experience. Games are now developed
using Machine Learning techniques, and they can
update themselves when you move to higher
levels.

 Online Price Comparison: PriceRunner,
Junglee, Shopzilla work on the Data science
mechanism. Here, data is fetched from the
relevant websites using APIs.

1.4 CHALLENGES OF DATA SCIENCE

TECHNOLOGY

Q8. What are the challenges of data science
technology?

Ans :
 A high variety of information & data is required

for accurate analysis

 Not adequate data science talent pool available

 Management does not provide financial support
for a data science team

 Unavailability of/difficult access to data

 Business decision-makers do not effectively use
data Science results

 Explaining data science to others is difficult

 Privacy issues

 Lack of significant domain expert

 If an organization is very small, it can’t have a
Data Science team

1.5 DATA ANALYSIS

1.5.1 Introduction to Data Analysis

Q9. What is data analysis?

Ans :
Meaning

Data analysis is defined as a process of cleaning,
transforming, and modeling data to discover useful
information for business decision-making. The purpose
of Data Analysis is to extract useful information from
data and taking the decision based upon the data analysis.

Example

A simple example of Data analysis is whenever
we take any decision in our day-to-day life is by thinking
about what happened last time or what will happen by
choosing that particular decision. This is nothing but
analyzing our past or future and making decisions based
on it.

1.5.2 Data Analysis Tools
Q10. Explain about various tools used for data

analysis.

Ans : (Imp.)

With the increasing demand for Data Analytics
in the market, many tools have emerged with various
functionalities for this purpose. Either open-source or
user-friendly, the top tools in the data analytics market
are as follows.

 R programming: This tool is the leading
analytics tool used for statistics and data modeling.
R compiles and runs on various platforms such
as UNIX, Windows, and Mac OS. It also provides
tools to automatically install all packages as per
user-requirement.

 Python: Python is an open-source, object-
oriented programming language that is easy to
read, write, and maintain. It provides various
machine learning and visualization libraries such
as Scikit-learn, TensorFlow, Matplotlib, Pandas,
Keras, etc. It also can be assembled on any
platform like SQL server, a MongoDB database
or JSON.

 Tableau Public: This is a free software that
connects to any data source such as Excel,
corporate Data Warehouse, etc. It then creates
visualizations, maps, dashboards etc with real-
time updates on the web.

BCA II YEAR IV SEMESTER

8
Rahul Publications

Rahul Publications

 QlikView: This tool offers in-memory data
processing with the results delivered to the end-
users quickly. It also offers data association and
data visualization with data being compressed to
almost 10% of its original size.

 SAS: A programming language and environment
for data manipulation and analytics, this tool is
easily accessible and can analyze data from
different sources.

 Microsoft Excel: This tool is one of the most
widely used tools for data analytics. Mostly used
for clients’ internal data, this tool analyzes the
tasks that summarize the data with a preview of
pivot tables.

 RapidMiner: A powerful, integrated platform
that can integrate with any data source types such
as Access, Excel, Microsoft SQL, Tera data,
Oracle, Sybase etc. This tool is mostly used for
predictive analytics, such as data mining, text
analytics, machine learning.

 KNIME: Konstanz Information Miner (KNIME)
is an open-source data analytics platform, which
allows you to analyze and model data. With the
benefit of visual programming, KNIME provides
a platform for reporting and integration through
its modular data pipeline concept.

 OpenRefine: Also known as GoogleRefine, this
data cleaning software will help you clean up data
for analysis. It is used for cleaning messy data,
the transformation of data and parsing data from
websites.

 Apache Spark: One of the largest large-scale
data processing engine, this tool executes
applications in Hadoop clusters 100 times faster
in memory and 10 times faster on disk. This tool
is also popular for data pipelines and machine
learning model development.

1.6 TYPES OF DATA ANALYSIS: TECHNIQUES

AND METHODS

Q11. Explain about various types of data analysis
techniques and methods.

Ans :
There are several types of Data Analysis

techniques that exist based on business and technology.
However, the major Data Analysis methods are:

 Text Analysis

Text Analysis is also referred to as Data Mining.
It is one of the methods of data analysis to
discover a pattern in large data sets using
databases or data mining tools. It used to
transform raw data into business information.
Business Intelligence tools are present in the
market which is used to take strategic business
decisions. Overall it offers a way to extract and
examine data and deriving patterns and finally
interpretation of the data.

 Statistical Analysis

Statistical Analysis shows “What happen?” by
using past data in the form of dashboards.
Statistical Analysis includes collection, Analysis,
interpretation, presentation, and modeling of
data. It analyses a set of data or a sample of
data. There are two categories of this type of
Analysis – Descriptive Analysis and Inferential
Analysis.

 Descriptive Analysis

Descriptive analyses complete data or a sample
of summarized numerical data. It shows mean
and deviation for continuous data whereas
percentage and frequency for categorical data.

 Inferential Analysis

analyses sample from complete data. In this type
of Analysis, you can find different conclusions
from the same data by selecting different samples.

 Diagnostic Analysis

Diagnostic Analysis shows “Why did it happen?”
by finding the cause from the insight found in
Statistical Analysis. This Analysis is useful to
identify behavior patterns of data. If a new
problem arrives in your business process, then
you can look into this Analysis to find similar
patterns of that problem. And it may have
chances to use similar prescriptions for the new
problems.

 Predictive Analysis

Predictive Analysis shows “what is likely to
happen” by using previous data. The simplest
data analysis example is like if last year I bought

UNIT - I DATA SCIENCE USING PYTHON

9
Rahul Publications

Rahul Publications

two dresses based on my savings and if this year
my salary is increasing double then I can buy
four dresses. So here, this Analysis makes
predictions about future outcomes based on
current or past data. Forecasting is just an
estimate. Its accuracy is based on how much
detailed information you have and how much
you dig in it.

 Prescriptive Analysis

Prescriptive Analysis combines the insight from
all previous Analysis to determine which action
to take in a current problem or decision. Most
data-driven companies are utilizing Prescriptive
Analysis because predictive and descriptive
Analysis are not enough to improve data
performance. Based on current situations and
problems, they analyze the data and make
decisions.

1.6.1 Data Analysis Process

Q12. Explain about the various phases of data
analysis process.

Ans : (Imp.)

The Data Analysis Process is nothing but gathering
information by using a proper application or tool which
allows you to explore the data and find a pattern in it.
Based on that information and data, you can make
decisions, or you can get ultimate conclusions.

Data Analysis consists of the following phases:

1. Data Requirement Gathering

2. Data Collection

3. Data Cleaning

4. Data Analysis

5. Data Interpretation

6. Data Visualization

1. Data Requirement Gathering

First of all, you have to think about why do you
want to do this data analysis? All you need to
find out the purpose or aim of doing the Analysis
of data. You have to decide which type of data
analysis you wanted to do! In this phase, you
have to decide what to analyze and how to
measure it, you have to understand why you are
investigating and what measures you have to use
to do this Analysis.

2. Data Collection

After requirement gathering, you will get a clear
idea about what things you have to measure and
what should be your findings. Now it’s time to
collect your data based on requirements. Once
you collect your data, remember that the collected
data must be processed or organized for Analysis.
As you collected data from various sources, you
must have to keep a log with a collection date
and source of the data.

3. Data Cleaning

Now whatever data is collected may not be useful
or irrelevant to your aim of Analysis, hence it
should be cleaned. The data which is collected
may contain duplicate records, white spaces or
errors. The data should be cleaned and error free.
This phase must be done before Analysis because
based on data cleaning, your output of Analysis
will be closer to your expected outcome.

4. Data Analysis

Once the data is collected, cleaned, and
processed, it is ready for Analysis. As you
manipulate data, you may find you have the exact
information you need, or you might need to collect
more data. During this phase, you can use data
analysis tools and software which will help you
to understand, interpret, and derive conclusions
based on the requirements.

5. Data Interpretation

After analyzing your data, it’s finally time to
interpret your results. You can choose the way to
express or communicate your data analysis either
you can use simply in words or maybe a table or
chart. Then use the results of your data analysis
process to decide your best course of action.

6. Data Visualization

Data visualization is very common in your day to
day life; they often appear in the form of charts
and graphs. In other words, data shown
graphically so that it will be easier for the human
brain to understand and process it. Data
visualization often used to discover unknown facts
and trends. By observing relationships and
comparing datasets, you can find a way to find
out meaningful information.

BCA II YEAR IV SEMESTER

10
Rahul Publications

Rahul Publications

1.7 INTRODUCTION TO PYTHON

Q13. What is python? What are the applications
of python?

Ans :
Python is a high-level object-oriented progra-

mming language that was created by Guido van Rossum.
It is also called general-purpose programming language
as it is used in almost every domain we can think of as
mentioned below:

 Web Development

 Software Development

 Game Development

 AI & ML

 Data Analytics

 Python works on different platforms
(Windows, Mac, Linux, Raspberry Pi, etc).

 Python has a simple syntax similar to the
English language.

 Python has syntax that allows developers
to write programs with fewer lines than some
other programming languages.

 Python runs on an interpreter system,
meaning that code can be executed as soon
as it is written. This means that prototyping
can be very quick.

 Python can be treated in a procedural way,
an object-oriented way or a functional way.

1.7.1 Python Features

Q14. What are the features of python?

Ans :
 Easy-to-learn: Python has few keywords, simple

structure, and a clearly defined syntax. This allows
the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly
defined and visible to the eyes.

 Easy-to-maintain: Python’s source code is fairly
easy-to-maintain.

 A broad standard library: Python’s bulk of the
library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

 Interactive Mode: Python has support for an
interactive mode which allows interactive testing
and debugging of snippets of code.

 Portable: Python can run on a wide variety of
hardware platforms and has the same interface
on all platforms.

 Extendable: You can add low-level modules to
the Python interpreter. These modules enable
programmers to add to or customize their tools
to be more efficient.

 Databases: Python provides interfaces to all
major commercial databases.

 GUI Programming: Python supports GUI
applications that can be created and ported to
many system calls, libraries and windows systems,
such as Windows MFC, Macintosh, and the X
Window system of Unix.

 Scalable: Python provides a better structure and
support for large programs than shell scripting.

Apart from the above-mentioned features, Python
has a big list of good features, few are listed below:

 It supports functional and structured
programming methods as well as OOP.

 It can be used as a scripting language or can be
compiled to byte-code for building large
applications.

 It provides very high-level dynamic data types and
supports dynamic type checking.

 IT supports automatic garbage collection.

 It can be easily integrated with C, C++, COM,
ActiveX, CORBA, and Java.

1.7.2 Python Interpreter

Q15. Explain about Python Interpreter.

Ans :
An interpreter is a kind of program that executes

other programs. When you write Python programs, it
converts source code written by the developer into
intermediate language which is again translated into the
native language / machine language that is executed.

1. The interpreter reads a Python expression or
statement, also called the source code, and verifies
that it is well formed. In this step, the interpreter
behaves like a strict English teacher who rejects
any sentence that does not adhere to the grammar

UNIT - I DATA SCIENCE USING PYTHON

11
Rahul Publications

Rahul Publications

rules, or syntax, of the language. As soon as the interpreter encounters such an error, it halts translation with
an error message.

2. If a Python expression is well formed, the interpreter then translates it to an equivalent form in a low-level
language called byte code. When the interpreter runs a script, it completely translates it to byte code.

3. This byte code is next sent to another software component, called the Python virtual machine (PVM), where
it is executed. If another error occurs during this step, execution also halts with an error message.

1.7.3 Modes of Python Interpreter

Q16. Explain various modes of Python Interpreter.

Ans : (Imp.)

Python Interpreter is a program that reads and executes Python code. It uses 2 modes of Execution.

1. Interactive mode

2. Script mode

1. Interactive Mode

 Interactive Mode, as the name suggests, allows us to interact with OS.

 When we type Python statement, interpreter displays the result(s) immediately.

Advantages

 Python, in interactive mode, is good enough to learn, experiment or explore.

 Working in interactive mode is convenient for beginners and for testing small pieces of code.

Drawback

 We cannot save the statements and have to retype all the statements once again to re-run them.

 In interactive mode, you type Python programs and the interpreter displays the result:

>>> 1 + 1

2

The chevron, >>>, is the prompt the interpreter uses to indicate that it is ready for you to enter code. If
you type 1 + 1, the interpreter replies 2.

>>> print (‘Hello, World!’)

Hello, World!

This is an example of a print statement. It displays a result on the screen. In this case, the result is the words.

BCA II YEAR IV SEMESTER

12
Rahul Publications

Rahul Publications2. Script Mode

 In script mode, we type python program in a file and then use interpreter to execute the content of the
file.

 Scripts can be saved to disk for future use. Python scripts have the extension .py, meaning that the
filename ends with .py

Example 1 :
print (1)
x = 2
print (x)

Output:
>>>1

2

Q17. State the differences between Interactive Mode and Script Mode.

Ans :
S.No. Interactive Mode Script Mode

1. A way of using the Python interpreter by A way of using the Python interpreer to read
typing commands and expressions at the and execute statements in a script.
prompt.

2. Cant save and edit the code. Can save and edit the code.

3. If we want to experiment with the code, we If we are very clear about the code, we can
can use interactive mode. use script mode.

4. We cannot save the statements for further We can save the statements for further use and
use and we have to retype all the statements we no need to retype all the statements to re-run
to re-run them. them.

5. We can see the resuls immediately. We cant see the code immediately.

UNIT - I DATA SCIENCE USING PYTHON

13
Rahul Publications

Rahul Publications

1.7.4 Values and Data Types

Q18. Explain about standard data types used in python with an examples.

Ans : (Imp.)

Standard Data Types

The data stored in memory can be of many types. For example, a person’s age is stored as a numeric value
and his or her address is stored as alphanumeric characters. Python has various standard data types that are used
to define the operations possible on them and the storage method for each of them.

Python has five standard data types -

1. Python Numbers

Number data types store numeric values. Number objects are created when you assign a value to them. For
example -

var1 =1

var2 =10

You can also delete the reference to a number object by using the del statement. The syntax of the del
statement is -

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example -

delvar

del var_a, var_b

Python supports four different numerical types -

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers -

4.53e-7j70.2-E12-4721885298529L0x69

3e+26J-32.54e100-052318172735L-0x260

-.6545+0J-90.535633629843L-0490

.876j32.3+e180xDEFABCECBDAECBFBAEl080

9.322e-36j-21.90122L-786

45.j15.20-0x19323L100

3.14j0.051924361L10

complexFloatLongint

4.53e-7j70.2-E12-4721885298529L0x69

3e+26J-32.54e100-052318172735L-0x260

-.6545+0J-90.535633629843L-0490

.876j32.3+e180xDEFABCECBDAECBFBAEl080

9.322e-36j-21.90122L-786

45.j15.20-0x19323L100

3.14j0.051924361L10

complexFloatLongint

BCA II YEAR IV SEMESTER

14
Rahul Publications

Rahul Publications

 Python allows you to use a lowercase l with long, but it is recommended that you use only an uppercase
L to avoid confusion with the number 1. Python displays long integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers denoted by x + yj, where
x and y are the real numbers and j is the imaginary unit.

2. Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation marks. Python
allows for either pairs of single or double quotes. Subsets of strings can be taken using the slice operator ([] and [:])
with indexes starting at 0 in the beginning of the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition operator. For
example -

#!/usr/bin/python

str =’Hello World!’

print str # Prints complete string

print str[0]# Prints first character of the string

print str[2:5]# Prints characters starting from 3rd to 5th

print str[2:]# Prints string starting from 3rd character

print str *2# Prints string two times

print str +”TEST”# Prints concatenated string

This will produce the following result “

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

3. Python Lists

Lists are the most versatile of Python’s compound data types. A list contains items separated by commas
and enclosed within square brackets ([]). To some extent, lists are similar to arrays in C. One difference between
them is that all the items belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes starting at 0 in
the beginning of the list and working their way to end -1. The plus (+) sign is the list concatenation operator, and
the asterisk (*) is the repetition operator. For example “

#!/usr/bin/python

list =[‘abcd’,786,2.23,’john’,70.2]

tinylist =[123,’john’]

UNIT - I DATA SCIENCE USING PYTHON

15
Rahul Publications

Rahul Publications

print list # Prints complete list

print list[0]# Prints first element of the list

print list[1:3]# Prints elements starting from 2nd till 3rd

print list[2:]# Prints elements starting from 3rd element

print tinylist *2# Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result -

[‘abcd’, 786, 2.23, ‘john’, 70.200000000000003]

abcd

[786, 2.23]

[2.23, ‘john’, 70.200000000000003]

[123, ‘john’, 123, ‘john’]

[‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’]

4. Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of values
separated by commas. Unlike lists, however, tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and their elements and
size can be changed, while tuples are enclosed in parentheses (()) and cannot be updated. Tuples can be thought
of as read-only lists. For example -

#!/usr/bin/python

tuple =(‘abcd’,786,2.23,’john’,70.2)

tinytuple =(123,’john’)

print tuple # Prints complete list

print tuple[0]# Prints first element of the list

print tuple[1:3]# Prints elements starting from 2nd till 3rd

print tuple[2:]# Prints elements starting from 3rd element

print tinytuple *2# Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result -

(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003)

abcd

(786, 2.23)

(2.23, ‘john’, 70.200000000000003)

(123, ‘john’, 123, ‘john’)

(‘abcd’, 786, 2.23, ‘john’, 70.200000000000003, 123, ‘john’)

BCA II YEAR IV SEMESTER

16
Rahul Publications

Rahul Publications

The following code is invalid with tuple, because we attempted to update a tuple, which is not allowed.
Similar case is possible with lists -

#!/usr/bin/python

tuple =(‘abcd’,786,2.23,’john’,70.2)

list =[‘abcd’,786,2.23,’john’,70.2]

tuple[2]=1000# Invalid syntax with tuple

list[2]=1000# Valid syntax with list

5. Python Dictionary

Python’s dictionaries are kind of hash table type. They work like associative arrays or hashes found in Perl
and consist of key-value pairs. A dictionary key can be almost any Python type, but are usually numbers or strings.
Values, on the other hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using square braces
([]). For example -

#!/usr/bin/python

dict ={}

dict[‘one’]=”This is one”

dict[2]=”This is two”

tinydict ={‘name’:’john’,’code’:6734,’dept’:’sales’}

print dict[‘one’]# Prints value for ‘one’ key

print dict[2]# Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys()# Prints all the keys

print tinydict.values()# Prints all the values

This produce the following result -

This is one

This is two

{‘dept’: ‘sales’, ‘code’: 6734, ‘name’: ‘john’}

[‘dept’, ‘code’, ‘name’]

[‘sales’, 6734, ‘john’]

Dictionaries have no concept of order among elements. It is incorrect to say that the elements are “out of
order”; they are simply unordered.

1.7.5 Variables

Q19. Explain about Python variables.

Ans :
 Variable is a name that is used to refer to memory location. Python variable is also known as an identifier

and used to hold value.

 In Python, we don’t need to specify the type of variable because Python is a infer language and smart
enough to get variable type.

UNIT - I DATA SCIENCE USING PYTHON

17
Rahul Publications

Rahul Publications

 Variable names can be a group of both the letters
and digits, but they have to begin with a letter or
an underscore.

 It is recommended to use lowercase letters for
the variable name. Rahul and rahul both are two
different variables.

Identifier Naming

Variables are the example of identifiers. An
Identifier is used to identify the literals used in the program.
The rules to name an identifier are given below.

 The first character of the variable must be an
alphabet or underscore (_).

 All the characters except the first character may
be an alphabet of lower-case(a-z), upper-case (A-
Z), underscore, or digit (0-9).

 Identifier name must not contain any white-space,
or special character (!, @, #, %, ^, &, *).

 Identifier name must not be similar to any
keyword defined in the language.

 Identifier names are case sensitive; for example,
my name, and MyName is not the same.

 Examples of valid identifiers: a123, _n, n_9, etc.

 Examples of invalid identifiers: 1a, n%4, n 9, etc.

Declaring Variable and Assigning Values

Python does not bind us to declare a variable
before using it in the application. It allows us to create a
variable at the required time.

We don’t need to declare explicitly variable in
Python. When we assign any value to the variable, that
variable is declared automatically.

The equal (=) operator is used to assign value to
a variable.

Object References

It is necessary to understand how the Python
interpreter works when we declare a variable. The process
of treating variables is somewhat different from many
other programming languages.

Python is the highly object-oriented programming
language; that’s why every data item belongs to a specific
type of class. Consider the following example.

print(“John”)

Output

John

The Python object creates an integer object and
displays it to the console. In the above print statement,
we have created a string object. Let’s check the type of
it using the Python built-in type() function.

type(“John”)

Output:

<class ‘str’>

In Python, variables are a symbolic name that is
a reference or pointer to an object. The variables are
used to denote objects by that name.

Let’s understand the following example

a = 50

a 50a 50

In the above image, the variable a refers to an
integer object.

Suppose we assign the integer value 50 to a new
variable b.

a = 50

b = a

a 50 ba 50 b

The variable b refers to the same object that a
points to because Python does not create another object.

Let’s assign the new value to b. Now both
variables will refer to the different objects.

a = 50

b =100

a 50a 50

b 100b 100

Python manages memory efficiently if we assign
the same variable to two different values.

Variable Names

Variable names can be any length can have
uppercase, lowercase (A to Z, a to z), the digit (0-9),
and underscore character(_). Consider the following
example of valid variables names.

BCA II YEAR IV SEMESTER

18
Rahul Publications

Rahul Publications

name = ”Devansh”
age = 20
marks = 80.50
 print(name)
print(age)
print(marks)

Output:

Devansh
20
80.5

Consider the following valid variables name.

name = ”A”
Name = ”B”
naMe = ”C”
NAME = ”D”
n_a_m_e = ”E”
_name = ”F”
name_ = ”G”
name = ”H”
na56me = ”I”

print(name,Name,naMe,NAME,n_a_m_e,
NAME, n_a_m_e, _name, name_,_name, na56me)

Output:

A B C D E D E F G F I

In the above example, we have declared a few
valid variable names such as name, _name_ , etc. But
it is not recommended because when we try to read
code, it may create confusion. The variable name should
be descriptive to make code more readable.

The multi-word keywords can be created by the
following method.

 Camel Case: In the camel case, each word
or abbreviation in the middle of begins with
a capital letter. There is no intervention of
whitespace. For example - nameOfStudent,
valueOfVaraible, etc.

 Pascal Case: It is the same as the Camel
Case, but here the first word is also capital.
For example - NameOfStudent, etc.

 Snake Case: In the snake case, Words are
separated by the underscore. For example -
name_of_student, etc.

Multiple Assignment

Python allows us to assign a value to multiple
variables in a single statement, which is also known as
multiple assignments.

We can apply multiple assignments in two ways,
either by assigning a single value to multiple variables or
assigning multiple values to multiple variables. Consider
the following example.

1. Assigning single value to multiple variables

Eg:

x=y=z=50

print(x)

print(y)

print(z)

Output:

50

50

50

2. Assigning multiple values to multiple
variables:

Eg:

a,b,c=5,10,15

print a

print b

print c

Output:

5

10

15

The values will be assigned in the order in which
variables appear.

Delete a variable

We can delete the variable using the del keyword.
The syntax is given below.

Syntax -

del <variable_name>

In the following example, we create a variable x
and assign value to it. We deleted variable x, and print
it, we get the error ”variable x is not defined”. The variable
x will no longer use in future.

UNIT - I DATA SCIENCE USING PYTHON

19
Rahul Publications

Rahul Publications

Print Single and Multiple Variables in Python

We can print multiple variables within the single
print statement. Below are the example of single and
multiple printing values.

Example - 1 (Printing Single Variable)
printing single value
a = 5
print(a)
print((a))

Output
5
5

Example - 2 (Printing Multiple Variables)

a = 5
b = 6
printing multiple variables
print(a,b)
separate the variables by the comma
Print(1, 2, 3, 4, 5, 6, 7, 8)

Output
5 6
1 2 3 4 5 6 7 8

Q20. Write about various types of variables ?

Ans : (Imp.)

Python Variable Types

There are two types of variables in Python - Local
variable and Global variable. Let’s understand the
following variables.

1. Local Variable

Local variables are the variables that declared
inside the function and have scope within the function.
Let’s understand the following example.

Example

Declaring a function
def add():
Defining local variables. They has scope only

within a function
a = 20
b = 30
c = a + b
print(“The sum is:”, c)
Calling a function
add()

Output

The sum is: 50

In the above code, we declared a function named
add() and assigned a few variables within the function.
These variables will be referred to as the local
variables which have scope only inside the function. If
we try to use them outside the function, we get a following
error.

add()
Accessing local variable outside the function
print(a)

Output:

The sum is: 50
 print(a)
NameError: name ‘a’ is not defined

We tried to use local variable outside their scope;
it threw the NameError.

2. Global Variables

Global variables can be used throughout the
program, and its scope is in the entire program. We can
use global variables inside or outside the function.

A variable declared outside the function is the
global variable by default. Python provides the global
keyword to use global variable inside the function. If we
don’t use the global keyword, the function treats it as a
local variable. Let’s understand the following example.

Example

Declare a variable and initialize it

x = 101

Global variable in function

def mainFunction():

printing a global variable

 global x

print(x)

modifying a global variable

x = ’Welcome To Javatpoint’

print(x)

mainFunction()

print(x)

BCA II YEAR IV SEMESTER

20
Rahul Publications

Rahul Publications

Output

101

Welcome To Javatpoint

Welcome To Javatpoint

In the above code, we declare a global variable x and assign a value to it. Next, we defined a function and
accessed the declared variable using the global keyword inside the function. Now we can modify its value. Then,
we assigned a new string value to the variable x.

Now, we called the function and proceeded to print x. It printed the as newly assigned value of x.

1.7.6 Key Words

Q21. What are Python keywords? Explain.

Ans :
Python keywords are unique words reserved with defined meanings and functions that we can only apply for

those functions. You’ll never need to import any keyword into your program because they’re permanently present.

Python’s built-in methods and classes are not the same as the keywords. Built-in methods and classes are
constantly present; however, they are not as limited in their application as keywords.

Python contains thirty-five keywords in the most recent version, i.e., Python 3.8. Here we have shown a
complete list of Python keywords for the reader’s reference.

yieldorifelifasync

withnotglobaldelassert

whilenonlocalfromdefas

trylambdaforcontinueand

returnisfinallyclassTrue

raiseinexceptbreakNone

passimportelseawaitFalse

yieldorifelifasync

withnotglobaldelassert

whilenonlocalfromdefas

trylambdaforcontinueand

returnisfinallyclassTrue

raiseinexceptbreakNone

passimportelseawaitFalse

In distinct versions of Python, the preceding keywords might be changed. Some extras may be introduced,
while others may be deleted. By writing the following statement into the coding window, you can anytime retrieve
the collection of keywords in the version you are working on.

Python program to demonstrate the application of iskeyword()

importing keyword library which has lists

import keyword

displaying the complete list using ”kwlist().”

print(“The set of keywords in this version is: ”)

print(keyword.kwlist)

Output:

The set of keywords in this version is :

UNIT - I DATA SCIENCE USING PYTHON

21
Rahul Publications

Rahul Publications

[‘False’, ‘None’, ‘True’, ‘and’, ‘as’, ‘assert’,
‘async’, ‘await’, ‘break’, ‘class’, ‘continue’, ‘def’, ‘del’,
‘elif’, ‘else’, ‘except’, ‘finally’, ‘for’, ‘from’, ‘global’, ‘if’,
‘import’, ‘in’, ‘is’, ‘lambda’, ‘nonlocal’, ‘not’, ‘or’, ‘pass’,
‘raise’, ‘return’, ‘try’, ‘while’, ‘with’, ‘yield’]

By calling help(), you can retrieve a list of currently
offered keywords:

help(“keywords”)

1.7.7 Identifiers

Q22. What are identifiers in python?

Ans :
Python Identifiers

A Python identifier is a name used to identify a
variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters,
underscores and digits (0 to 9).

Python does not allow punctuation characters
such as @, $, and % within identifiers. Python is a case
sensitive programming language. Thus, Manpower and
manpower are two different identifiers in Python.

Here are naming conventions for Python
identifiers

 Class names start with an uppercase letter.
All other identifiers start with a lowercase
letter.

 Starting an identifier with a single leading
underscore indicates that the identifier is
private.

 Starting an identifier with two leading
underscores indicates a strongly private
identifier.

 If the identifier also ends with two trailing
underscores, the identifier is a language-
defined special name.

Q23. Write about python variables.

Ans :
A variable is a location in memory used to store

some data (value).

They are given unique names to differentiate
between different memory locations. The rules for writing
a variable name is same as the rules for writing identifiers
in Python.

We don’t need to declare a variable before using
it. In Python, we simply assign a value to a variable and
it will exist. We don’t even have to declare the type of
the variable. This is handled internally according to the
type of value we assign to the variable.

Variable Assignment

We use the assignment operator (=) to assign
values to a variable. Any type of value can be assigned
to any valid variable.

a = 5
b = 3.2
c = “Hello”

Here, we have three assignment statements. 5 is
an integer assigned to the variable a.

Similarly, 3.2 is a floating point number
and ”Hello” is a string (sequence of characters) assigned
to the variables b and c respectively.

Multiple Assignments
In Python, multiple assignments can be made in

a single statement as follows:
a, b, c =5,3.2,”Hello”

If we want to assign the same value to multiple
variables at once, we can do this as

x = y = z =”same”
This assigns the “same” string to all the three

variables.

1.7.8 Statements

Q24. Write about statements in python.

Ans :
Python Statement

Instructions that a Python interpreter can execute
are called statements. For example, a = 1 is an
assignment statement. if statement, for statement, while
statement etc. are other kinds of statements which will
be discussed later.

Multi-line Statement

In Python, end of a statement is marked by a
newline character. But we can make a statement extend
over multiple lines with the line continuation character
(\). For example:

a =1+2+3+ \

4+5+6+ \

7+8+9

BCA II YEAR IV SEMESTER

22
Rahul Publications

Rahul Publications

This is explicit line continuation. In Python, line continuation is implied inside parentheses (), brackets
[] and braces { }. For instance, we can implement the above multi-line statement as

a =(1+2+3+

4+5+6+

7+8+9)

Here, the surrounding parentheses () do the line continuation implicitly. Same is the case with [] and
{ }. For example:

colors =[‘red’,

‘blue’,

‘green’]

We could also put multiple statements in a single line using semicolons, as follows

a =1; b =2; c =3

UNIT - I DATA SCIENCE USING PYTHON

23
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is Data Science?

Ans :
Data Science involves obtaining meaningful

information or insights from structured or unstructured
data through a process of analyzing, programming and
business skills. It is a field containing many elements
like mathematics, statistics, computer science, etc.

2. What is data analysis?

Ans :
Meaning

Data analysis is defined as a process of cleaning,
transforming, and modeling data to discover useful
information for business decision-making. The purpose
of Data Analysis is to extract useful information from
data and taking the decision based upon the data analysis.

Example

A simple example of Data analysis is whenever
we take any decision in our day-to-day life is by thinking
about what happened last time or what will happen by
choosing that particular decision. This is nothing but
analyzing our past or future and making decisions based
on it.

3. What are the challenges of data science
technology?

Ans :
 A high variety of information & data is required

for accurate analysis

 Not adequate data science talent pool available

 Management does not provide financial support
for a data science team

 Unavailability of/difficult access to data

 Business decision-makers do not effectively use
data Science results

 Explaining data science to others is difficult

 Privacy issues

 Lack of significant domain expert

 If an organization is very small, it can’t have a
Data Science team

4. What is python?

Ans :
Python is a high-level object-oriented progra-

mming language that was created by Guido van Rossum.
It is also called general-purpose programming language
as it is used in almost every domain we can think of as
mentioned below:

 Web Development

 Software Development

 Game Development

 AI & ML

 Data Analytics

 Python works on different platforms
(Windows, Mac, Linux, Raspberry Pi, etc).

 Python has a simple syntax similar to the
English language.

5. Features of python

Ans :
 Easy-to-learn: Python has few keywords, simple

structure, and a clearly defined syntax. This allows
the student to pick up the language quickly.

 Easy-to-read: Python code is more clearly
defined and visible to the eyes.

 Easy-to-maintain: Python’s source code is fairly
easy-to-maintain.

 A broad standard library: Python’s bulk of the
library is very portable and cross-platform
compatible on UNIX, Windows, and Macintosh.

 Interactive Mode: Python has support for an
interactive mode which allows interactive testing
and debugging of snippets of code.

 Portable: Python can run on a wide variety of
hardware platforms and has the same interface
on all platforms.

 Extendable: You can add low-level modules to
the Python interpreter. These modules enable
programmers to add to or customize their tools
to be more efficient.

BCA II YEAR IV SEMESTER

24
Rahul Publications

Rahul Publications

 Databases: Python provides interfaces to all
major commercial databases.

6. Python variables

Ans :
 Variable is a name that is used to refer to memory

location. Python variable is also known as an
identifier and used to hold value.

 In Python, we don’t need to specify the type of
variable because Python is a infer language and
smart enough to get variable type.

 Variable names can be a group of both the letters
and digits, but they have to begin with a letter or
an underscore.

 It is recommended to use lowercase letters for
the variable name. Rahul and rahul both are two
different variables.

7. Python keywords

Ans :
Python keywords are unique words reserved with

defined meanings and functions that we can only apply
for those functions. You’ll never need to import any
keyword into your program because they’re permanently
present.

Python’s built-in methods and classes are not the
same as the keywords. Built-in methods and classes are
constantly present; however, they are not as limited in
their application as keywords.

8. Identifiers in python

Ans :
A Python identifier is a name used to identify a

variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters,
underscores and digits (0 to 9).

Python does not allow punctuation characters
such as @, $, and % within identifiers. Python is a case
sensitive programming language. Thus, Manpower and
manpower are two different identifiers in Python.

9. Python variables

Ans :
A variable is a location in memory used to store

some data (value).

They are given unique names to differentiate
between different memory locations. The rules for writing
a variable name is same as the rules for writing identifiers
in Python.

We don’t need to declare a variable before using
it. In Python, we simply assign a value to a variable and
it will exist. We don’t even have to declare the type of
the variable. This is handled internally according to the
type of value we assign to the variable.

10. Statements in python

Ans :
Python Statement

Instructions that a Python interpreter can execute
are called statements. For example, a = 1 is an
assignment statement. if statement, for statement, while
statement etc. are other kinds of statements which will
be discussed later.

Multi-line Statement

In Python, end of a statement is marked by a
newline character. But we can make a statement extend
over multiple lines with the line continuation character
(\). For example:

a =1+2+3+ \

4+5+6+ \

7+8+9

This is explicit line continuation. In Python, line
continuation is implied inside parentheses (), brackets
[] and braces { }. For instance, we can implement the
above multi-line statement as

a =(1+2+3+

4+5+6+

7+8+9)

Here, the surrounding parentheses () do the line
continuation implicitly. Same is the case with [] and
{ }. For example:

colors =[‘red’,

‘blue’,

‘green’]

We could also put multiple statements in a single
line using semicolons, as follows

a =1; b =2; c =3

UNIT - I DATA SCIENCE USING PYTHON

25
Rahul Publications

Rahul Publications

1. Among the following which is not the tool of data science [c]

(a) Excel (b) Tableau

(c) MS Word (d) Matlab

2. Among the following which is a Data Visualization software that is packed with powerful graphics to make
interactive visualizations [b]

(a) Excel (b) Tableau

(c) MS Word (d) Matlab

3. Among the following which step of data science process does investigate and pre -processing of data.
[b]

(a) Discovery (b) Information Preparation

(c) Model planning (d) Communication

4. Which of the following is the most important language for Data Science? [c]

(a) Java (b) Ruby

(c) R (d) None of the mentioned

5. Which of the following is not the type of data analysis [-]

(a) Diagnostic Analysis (b) Machine Analysis

(c) Predictive Analysis (d) Prescriptive Analysis

6. Among the following which Analysis combines the insight from all previous Analysis to determine which
action to take in a current problem or decision. [d]

(a) Diagnostic Analysis (b) Predictive Analysis

(c) Prescriptive Analysis (d) Prescriptive Anlysis

7. Which keyword is used for function in Python language? [b]

(a) Function (b) Def

(c) Fun (d) Define

8. Which of the following character is used to give single-line comments in Python? [b]

(a) // (b) #

(c) ! (d) /*

9. Which one of the following is the correct extension of the Python file? [a]

(a) .py (b) .python

(c) .p (d) None of these

10. What do we use to define a block of code in Python language? [c]

(a) Key (b) Brackets

(c) Indentation (d) None of these

Choose the Correct Answer

BCA II YEAR IV SEMESTER

26
Rahul Publications

Rahul Publications

Fill in the blanks

1. is all about the removal of missing, redundant, unnecessary and duplicate data from your
collection.

2. is a set of technologies, applications and processes that are used by the enterprises for business
data analysis.

3. In stage, you’ll create datasets for training and testing purposes.

4. Analysis makes predictions about future outcomes based on current or past data.

5. is often used to discover unknown facts and trends.

6. Python supports the creation of anonymous functions at runtime, using a construct called .

7. converts source code written by the developer into intermediate language which is again translated
into the native language / machine language that is executed.

8. Full form of PVM

9. in Python are identified as a contiguous set of characters represented in the quotation marks.

10. are the variables that declared inside the function and have scope within the function.

ANSWERS

1. Data cleaning

2. Business intelligence

3. Model Building

4. Predictive

5. Data visualization

6. lambda

7. Interpreter

8. Python virtual machine

9. Strings

10. Local variables

UNIT - II DATA SCIENCE USING PYTHON

27
Rahul Publications

Rahul Publications

UNIT
II

Expressions, Input & Output, Comments, Lines & Indentation, Quotations, Tuple
assignment, Operators, Precedence of operators.
Functions: Definition and use, Types of functions, Flow of execution, Parameters and
Arguments, Modules.
Conditionals: Conditional(if), Alternative(if-else), Chained Conditionals(if-elif-else), Nested
conditionals; Iteration/Control statements: while, for, break, continue, pass; fruitful
function vs void function, Parameters/Arguments, Return values, Variables scope(local,
global), Function composition.

2.1 EXPRESSIONS

Q1. Write about python expressions.

Ans :
An expression is a combination of values, variables, and operators. A value all by itself is considered an

expression, and so is a variable, so the following are all legal expressions (assuming that the variable x has been
assigned a value):

17

x

x + 17

If you type an expression in interactive mode, the interpreter evaluates it and displays the result:

>>> 1 + 1

2

But in a script, an expression all by itself doesn’t do anything! This is a common source of confusion for
beginners.

Exercise

Type the following statements in the Python interpreter to see what they do:
5
x = 5
x + 1

2.1.1 Input & Output

Q2. Explain formatted print function.

Ans :
Output formatting

The special operator % lets you create formatted output. It takes two operands: a formatted string and a
value. The value can be a single value, a tuple of values or a dictionary of values. For example:

print(“pi=%s”%”3.14159")

The formatted string has a conversion specifiers that also uses the special characters %s. This conversion
specifier tells Python how to convert the value. Here %s means convert the value to a string. In fact, you could even
type:

BCA II YEAR IV SEMESTER

28
Rahul Publications

Rahul Publications

print(“pi=%s”%3.14159)

because the right operand (given the conversion specifiers) should be converted with str().

To be more generic, you could include the value within a tuple:

print(“pi=%s”%(3.14159))

and print 2 values:
print(“%s=%s”%(“pi”,3.14159))

The conversion specifiers can also convert values into float, integers and so on.

Special Characters

To escape the sign %, just double it:

>>>print”This is a percent sign: %%”

This is a percent sign: %

Other special characters similar to some other languages are summarized in the following table:

Unicode character value\uxxxx

hexadecimal value (0..9, a..f; A..F)\xhh

octal value o in (0..7)\ooo

null value\0 \000

vertical tabulation11\v

Tabulation9\t

carriage return13\r

Newline10\n

Formfeed\f

Backspace8\b

Bell7\a

Double quote34\”

Single quote39\’

Backslash92\

statement continues on next line\

DescriptionDecimalCharacter

Unicode character value\uxxxx

hexadecimal value (0..9, a..f; A..F)\xhh

octal value o in (0..7)\ooo

null value\0 \000

vertical tabulation11\v

Tabulation9\t

carriage return13\r

Newline10\n

Formfeed\f

Backspace8\b

Bell7\a

Double quote34\”

Single quote39\’

Backslash92\

statement continues on next line\

DescriptionDecimalCharacter

More about conversion specifiers

The general syntax for a conversion specifier is:

%[(key)][flags][width][.prec]type

UNIT - II DATA SCIENCE USING PYTHON

29
Rahul Publications

Rahul Publications

Conversion Types

We have already seen one type: the string type %s. The following table summarizes all the available types:

Converts to an unsigned integer in hexadecimalx,X

Converts to a string using the str() functionS

string generated with repr()R

Converts to an unsigned integer in octalO

Converts to the value shorter of %f and %EG

Converts to the value shorter of %f and %eG

Converts to a floating point in fixed-decimal notationF

Converts to a floating point in exponential notatione,E

Converts to an unsigned decimal integerU

Converts to a signed decimal integer or long integerd,i

Converts to a single characterC

DescriptionCharacter

Converts to an unsigned integer in hexadecimalx,X

Converts to a string using the str() functionS

string generated with repr()R

Converts to an unsigned integer in octalO

Converts to the value shorter of %f and %EG

Converts to the value shorter of %f and %eG

Converts to a floating point in fixed-decimal notationF

Converts to a floating point in exponential notatione,E

Converts to an unsigned decimal integerU

Converts to a signed decimal integer or long integerd,i

Converts to a single characterC

DescriptionCharacter

Formatting String with a Dictionary

Let us now look at the key option. This key refer to the keys used in dictionaries. It works as follows:

>>>print(“%(key1)s and %(key2)%”%{‘key1’:1,’key2':2})

“1 and 2”

Flags

The second type of options are the flags:

display numbers in alternate form.#

Always begin a number with a sign (+or-)+

add a space before a positive number or stringSpace

left align the results (default is right)-

0002“(%04d)” % 2pad numbers with leading weros0

renderingexampleDescriptioncharacter

display numbers in alternate form.#

Always begin a number with a sign (+or-)+

add a space before a positive number or stringSpace

left align the results (default is right)-

0002“(%04d)” % 2pad numbers with leading weros0

renderingexampleDescriptioncharacter

The width option

The width option is a positive integer specifying the minimum field width. If the converted value is shorter
than width, spaces are added on left or right (depending on flags):

>>>print(“(%10s)”%”example”)
(example)

BCA II YEAR IV SEMESTER

30
Rahul Publications

Rahul Publications

>>>print(“(%-10s)”%”example”)
(example)

Specific number of digits with the prec option

prec is a dot (.) followed by a positive integer
specifying the precision. Note that use the %f conversion
specifier here:

>>>print(“%.2f”%2.012)
2.01

Dynamic Formatter

Sometimes, you want to format a string but you
do not know its size. In such case, you can use a dynamic
formatter using the * character as follows:

>>>print’%*s : %*s’%(20,”Python”,20,”Very Good”)

 Python : Very Good

2.1.2 Comments

Q3. Write a short note on usage of comments
in python.

Ans :
Python Comments

Comments are very important while writing a
program. It describes what’s going on inside a program
so that a person looking at the source code does not
have a hard time figuring it out. You might forget the
key details of the program you just wrote in a month’s
time. So taking time to explain these concepts in form
of comments is always fruitful.

In Python, we use the hash (#) symbol to start
writing a comment.

It extends up to the newline character. Comments
are for programmers for better understanding of a
program. Python Interpreter ignores comment.

#This is a comment

#print out Hello

print(‘Hello’)

Multi-line Comments

If we have comments that extend multiple lines,
one way of doing it is to use hash (#) in the beginning of
each line. For example:

#This is a long comment

#and it extends

#to multiple lines

Another way of doing this is to use triple quotes,
either ’’’ or ”””.

These triple quotes are generally used for multi-
line strings. But they can be used as multi-line comment
as well. Unless they are not docstrings, they do not
generate any extra code.

“””This is also a

perfect example of

multi-line comments”””

2.1.3 Lines & Indentation

Q4. What is indentation in python?

Ans :
Python Indentation

Most of the programming languages like C, C++,
Java use braces { } to define a block of code. Python
uses indentation.

A code block (body of a function, loop etc.)
starts with indentation and ends with the first unindented
line. The amount of indentation is up to you, but it
must be consistent throughout that block.

Generally four whitespaces are used for
indentation and is preferred over tabs. Here is an example.

For i in range(1,11):
 print(i)
 if i == 5:
 break

The enforcement of indentation in Python makes
the code look neat and clean. This results into Python
programs that look similar and consistent.

Indentation can be ignored in line continuation.
But it’s a good idea to always indent. It makes the code
more readable. For example:

ifTrue:
print(‘Hello’)
 a =5
and
ifTrue:print(‘Hello’); a =5

both are valid and do the same thing. But the
former style is clearer.

Incorrect indentation will result into
IndentationError.

UNIT - II DATA SCIENCE USING PYTHON

31
Rahul Publications

Rahul Publications

2.1.4 Quotations

Q5. What are the various types of quotations
used in python?

Ans :
Quotation in Python

Python accepts single (‘), double (“) and triple
(‘’’ or “””) quotes to denote string literals, as long as the
same type of quote starts and ends the string.

The triple quotes are used to span the string across
multiple lines. For example, all the following are legal -

word =’word’

sentence =”This is a sentence.”

paragraph =”””This is a paragraph. It is

made up of multiple lines and sentences.”””

Q6. What are identifiers in python?

Ans :
Python Identifiers

A Python identifier is a name used to identify a
variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters,
underscores and digits (0 to 9).

Python does not allow punctuation characters
such as @, $, and % within identifiers. Python is a case
sensitive programming language. Thus, Manpower and
manpower are two different identifiers in Python.

Here are naming conventions for Python
identifiers:

 Class names start with an uppercase letter.
All other identifiers start with a lowercase
letter.

 Starting an identifier with a single leading
underscore indicates that the identifier is
private.

 Starting an identifier with two leading
underscores indicates a strongly private
identifier.

 If the identifier also ends with two trailing
underscores, the identifier is a language-
defined special name.

2.1.5 Tuple Assignment

Q7. Write about Tuple assignment feature?

Ans : (Imp.)

 An assignment to all of the elements in a tuple
using a single assignment statement.

 Python has a very powerful tuple assignment
feature that allows a tuple of variables on the left
of an assignment to be assigned values from a
tuple on the right of the assignment.

 The left side is a tuple of variables; the right side
is a tuple of values.

 Each value is assigned to its respective variable.

 All the expressions on the right side are evaluated
before any of the assignments. This feature makes
tuple assignment quite versatile.

 Naturally, the number of variables on the left and
the number of values on the right have to be the
same.

>>> (a, b, c, d) = (1, 2, 3)

ValueError: need more than 3 values to unpack

Example

It is useful to swap the values of two variables.
With conventional assignment statements, we have to
use a temporary variable. For example, to swap a
and b:

Swap two numbers

a=2;b=3

print(a,b)

temp = a

a = b

b = temp

print(a,b)

Output

(2, 3)

(3, 2)

>>>

-Tuple assignment solves this problem neatly:

(a, b) = (b, a)

One way to think of tuple assignment is as tuple
packing/unpacking.

BCA II YEAR IV SEMESTER

32
Rahul Publications

Rahul Publications

In tuple packing, the values on the left are ‘packed’ together in a tuple:

>>> b = (“George”, 25, “20000”) # tuple packing
In tuple unpacking, the values in a tuple on the right are ‘unpacked’ into the variables/names on the right:

>>> b = (“George”, 25, “20000”) # tuple packing
>>> (name, age, salary) = b # tuple unpacking
>>> name
‘George’
>>> age
25
>>> salary
‘20000’

The right side can be any kind of sequence (string,list,tuple)

Example

To split an email address in to user name and a domain

>>> mailid=’god@abc.org’
>>> name,domain=mailid.split(‘@’)
>>> print name
god
print (domain)
abc.org

2.1.6 Operators

Q8. What are the various types of operators used in python.

Ans : (Imp.)

Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Types of Operator

Python language supports the following types of operators.

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction, multiplication
etc.

UNIT - II DATA SCIENCE USING PYTHON

33
Rahul Publications

Rahul Publicationsx**y (x to the power y)Exponent - left operand raised to the power of right**

x // y
Floor division - division that results into whole number
adjusted to the left in the number line

//

x % y (remainder of x/y)
Modulus - remainder of the division of left operand by the
right

%

x / y
Divide left operand by the right one (always results into
float)

/

x * yMultiply two operands*

x - y
-2

Subtract right operand from the left or unary minus-

x + y
+2

Add two operands or unary plus+

ExampleMeaningOperator

x**y (x to the power y)Exponent - left operand raised to the power of right**

x // y
Floor division - division that results into whole number
adjusted to the left in the number line

//

x % y (remainder of x/y)
Modulus - remainder of the division of left operand by the
right

%

x / y
Divide left operand by the right one (always results into
float)

/

x * yMultiply two operands*

x - y
-2

Subtract right operand from the left or unary minus-

x + y
+2

Add two operands or unary plus+

ExampleMeaningOperator

Example 1: Arithmetic Operators in Python

x = 15
y = 4

Output: x + y = 19
print(‘x + y =’,x+y)

Output: x - y = 11
print(‘x - y =’,x-y)

Output: x * y = 60
print(‘x * y =’,x*y)

Output: x / y = 3.75
print(‘x / y =’,x/y)

Output: x // y = 3
print(‘x // y =’,x//y)

Output: x ** y = 50625
print(‘x ** y =’,x**y)

When you run the program, the output will be:

x + y = 19

x - y = 11

BCA II YEAR IV SEMESTER

34
Rahul Publications

Rahul Publications

x * y = 60
x / y = 3.75
x // y = 3
x ** y = 50625

Comparison Operators

Comparison operators are used to compare values. It either returns True or Falseaccording to the condition.

x <= yLess than or equal to - True if left operand is less than or equal to the
right<=

x >= yGreater than or equal to - True if left operand is greater than or equal to
the right>=

x != yNot equal to - True if operands are not equal!=

x == yEqual to - True if both operands are equal==

x < yLess that - True if left operand is less than the right<

x > yGreater that - True if left operand is greater than the right>

ExampleMeaningOperator

x <= yLess than or equal to - True if left operand is less than or equal to the
right<=

x >= yGreater than or equal to - True if left operand is greater than or equal to
the right>=

x != yNot equal to - True if operands are not equal!=

x == yEqual to - True if both operands are equal==

x < yLess that - True if left operand is less than the right<

x > yGreater that - True if left operand is greater than the right>

ExampleMeaningOperator

Example 2: Comparison operators in Python

x = 10
y = 12

Output: x > y is False
print(‘x > y is’,x>y)

Output: x < y is True
print(‘x < y is’,x<y)

Output: x == y is False
print(‘x == y is’,x==y)

Output: x != y is True
print(‘x != y is’,x!=y)

Output: x >= y is False
print(‘x >= y is’,x>=y)

Output: x <= y is True
print(‘x <= y is’,x<=y)

Logical Operators

Logical operators are the and, or, not operators.

UNIT - II DATA SCIENCE USING PYTHON

35
Rahul Publications

Rahul Publications

not xTrue if operand is false (complements the operand)not

x or yTrue if either of the operands is trueOr

x and yTrue if both the operands are trueand

ExampleMeaningOperator

not xTrue if operand is false (complements the operand)not

x or yTrue if either of the operands is trueOr

x and yTrue if both the operands are trueand

ExampleMeaningOperator

Example 3: Logical Operators in Python
x = True
y = False

Output: x and y is False
print(‘x and y is’,x and y)

Output: x or y is True
print(‘x or y is’,x or y)

Output: not x is False
print(‘not x is’,not x)

Bitwise Operators

Bitwise operators act on operands as if they were string of binary digits. It operates bit by bit, hence the
name.

For example, 2 is 10 in binary and 7 is 111.

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

x<< 2 = 42 (0010 1000)Bitwise left shift<<

x>> 2 = 2 (0000 0010)Bitwise right shift>>

x ^ y = 14 (0000 1110)Bitwise XOR^

~x = -11 (1111 0101)Bitwise NOT~

x | y = 14 (0000 1110)Bitwise OR|

x& y = 0 (0000 0000)Bitwise AND&

ExampleMeaningOperator

x<< 2 = 42 (0010 1000)Bitwise left shift<<

x>> 2 = 2 (0000 0010)Bitwise right shift>>

x ^ y = 14 (0000 1110)Bitwise XOR^

~x = -11 (1111 0101)Bitwise NOT~

x | y = 14 (0000 1110)Bitwise OR|

x& y = 0 (0000 0000)Bitwise AND&

ExampleMeaningOperator

Assignment Operators

Assignment operators are used in Python to assign values to variables.

a = 5 is a simple assignment operator that assigns the value 5 on the right to the variable a on the left.

There are various compound operators in Python like a += 5 that adds to the variable and later assigns
the same. It is equivalent to a = a + 5.

BCA II YEAR IV SEMESTER

36
Rahul Publications

Rahul Publications
x = x << 5x <<= 5<<=

x = x >> 5x >>= 5>>=

x = x ^ 5x ^= 5^=

x = x | 5x |= 5|=

x = x & 5x &= 5&=

x = x ** 5x **= 5**=

x = x // 5x //= 5//=

x = x % 5x %= 5%=

x = x / 5x /= 5/=

x = x * 5x *= 5*=

x = x – 5x -= 5-=

x = x + 5x += 5+=

x = 5x = 5=

Equivalent toExampleOperator

x = x << 5x <<= 5<<=

x = x >> 5x >>= 5>>=

x = x ^ 5x ^= 5^=

x = x | 5x |= 5|=

x = x & 5x &= 5&=

x = x ** 5x **= 5**=

x = x // 5x //= 5//=

x = x % 5x %= 5%=

x = x / 5x /= 5/=

x = x * 5x *= 5*=

x = x – 5x -= 5-=

x = x + 5x += 5+=

x = 5x = 5=

Equivalent toExampleOperator

Special Operators

Python language offers some special type of operators like the identity operator or the membership operator.
They are described below with examples.

Identity Operators

is and is not are the identity operators in Python. They are used to check if two values (or variables) are
located on the same part of the memory. Two variables that are equal does not imply that they are identical.

x is not TrueTrue if the operands are not identical (do not refer to the same object)is not

x is TrueTrue if the operands are identical (refer to the same object)Is

ExampleMeaningOperator

x is not TrueTrue if the operands are not identical (do not refer to the same object)is not

x is TrueTrue if the operands are identical (refer to the same object)Is

ExampleMeaningOperator

Example 4: Identity operators in Python

x1 = 5

y1 = 5

x2 = ‘Hello’

y2 = ‘Hello’

x3 = [1,2,3]

y3 = [1,2,3]

UNIT - II DATA SCIENCE USING PYTHON

37
Rahul Publications

Rahul Publications

Output: False
print(x1 is not y1)

Output: True
print(x2 is y2)

Output: False
print(x3 is y3)

Here, we see that x1 and y1 are integers of same values, so they are equal as well as identical. Same is
the case with x2 and y2 (strings).

But x3 and y3 are list. They are equal but not identical. Since list are mutable (can be changed), interpreter
locates them separately in memory although they are equal.

Membership Operators

in and not in are the membership operators in Python. They are used to test whether a value or variable is
found in a sequence (string, list, tuple, set and dictionary).

In a dictionary we can only test for presence of key, not the value.

5 not in xTrue if value/variable is not found in the sequencenot in

5 in xTrue if value/variable is found in the sequenceIn

ExampleMeaningOperator

5 not in xTrue if value/variable is not found in the sequencenot in

5 in xTrue if value/variable is found in the sequenceIn

ExampleMeaningOperator

Example 5: Membership operators in Python

x = ‘Hello world’

y = {1:’a’,2:’b’}

Output: True

print(‘H’ in x)

Output: True

print(‘hello’ not in x)

Output: True

print(1 in y)

Output: False

print(‘a’ in y)

Here, H’ is in x but ’hello’ is not present in x (remember, Python is case sensitive). Similary, 1 is key and ’a’
is the value in dictionary y. Hence, ’a’ in y returns False.

BCA II YEAR IV SEMESTER

38
Rahul Publications

Rahul Publications

2.1.7 Precedence of Operators

Q9. What is operator precedency in python?

Ans :
The following table lists all operators from highest precedence to lowest.

Logical operatorsnot or and

Membership operatorsin not in

Identity operatorsis is not

Assignment operators= %= /= //= -= += *= **=

Equality operators<> == !=

Comparison operators<= <>>=

Bitwise exclusive `OR' and regular `OR'^ |

Bitwise 'AND'&

Right and left bitwise shift>><<

Addition and subtraction+ -

Multiply, divide, modulo and floor division* / % //

Complement, unary plus and minus (method
names for the last two are +@ and -@)

~ + -

Exponentiation (raise to the power)**

DescriptionOperator

Logical operatorsnot or and

Membership operatorsin not in

Identity operatorsis is not

Assignment operators= %= /= //= -= += *= **=

Equality operators<> == !=

Comparison operators<= <>>=

Bitwise exclusive `OR' and regular `OR'^ |

Bitwise 'AND'&

Right and left bitwise shift>><<

Addition and subtraction+ -

Multiply, divide, modulo and floor division* / % //

Complement, unary plus and minus (method
names for the last two are +@ and -@)

~ + -

Exponentiation (raise to the power)**

DescriptionOperator

Q10. Write a program to add two numbers

Ans :
This program adds two numbers

Store input numbers
num1 = input(‘Enter first number: ‘)
num2 = input(‘Enter second number: ‘)
Add two numbers
sum = float(num1) + float(num2)
Display the sum
print(‘The sum of {0} and {1} is {2}’.format(num1, num2, sum))

Output

Enter first number: 1.5
Enter second number: 6.3
The sum of 1.5 and 6.3 is 7.8

UNIT - II DATA SCIENCE USING PYTHON

39
Rahul Publications

Rahul Publications

2.2 FUNCTIONS

2.2.1 Definition and Use

Q11. What is function? How to define and call a
function?

Ans : (Imp.)

A function is a block of organized, reusable code
that is used to perform a single, related action. Functions
provide better modularity for your application and a high
degree of code reusing.

As you already know, Python gives you many
built-in functions like print(), etc. but you can also create
your own functions. These functions are called user-
defined functions.

Defining a Function

You can define functions to provide the required
functionality. Here are simple rules to define a function
in Python.

 Function blocks begin with the keyword def
followed by the function name and parentheses (
()).

 Any input parameters or arguments should be
placed within these parentheses. You can also
define parameters inside these parentheses.

 The first statement of a function can be an
optional statement - the documentation string of
the function or docstring.

 The code block within every function starts with
a colon (:) and is indented.

 The statement return [expression] exits a function,
optionally passing back an expression to the caller.
A return statement with no arguments is the same
as return None.

Syntax of Function

def function_name(parameters):
“””docstring”””
statement(s)

Above shown is a function definition which
consists of following components.

1. Keyword def marks the start of function header.

2. A function name to uniquely identify it. Function
naming follows the same rules of writing identifiers
in Python.

3. Parameters (arguments) through which we pass
values to a function. They are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to
describe what the function does.

6. One or more valid python statements that make
up the function body. Statements must have
same indentation level (usually 4 spaces).

7. An optional return statement to return a value
from the function.

Example of a Function

def printme(str):

“This prints a passed string into this function”

print str
return

Calling a Function

Defining a function only gives it a name, specifies
the parameters that are to be included in the function
and structures the blocks of code.

Once the basic structure of a function is finalized,
you can execute it by calling it from another function or
directly from the Python prompt. Following is the
example to call printme() function –

#!/usr/bin/python
Function definition is here
def printme(str):

“This prints a passed string into this function”

print str
return;
Now you can call printme function
printme(“I’m first call to user defined function!”)
printme(“Again second call to the same function”)
When the above code is executed, it produces

the following result –
I’m first call to user defined function!
Again second call to the same function

Define our 3 functions
def my_function():
 print(“Hello From My Function!”)

def my_function_with_args(username, greeting):
 print(“Hello, %s , From My Function!, I wish

you %s”%(username, greeting))

BCA II YEAR IV SEMESTER

40
Rahul Publications

Rahul Publications

def sum_two_numbers(a, b):
 return a + b

print(a simple greeting)
my_function()

#prints - “Hello, John Doe, From My Function!, I
wish you a great year!”

my_function_with_args(“John Doe”, “a great
year!”)

after this line x will hold the value 3!
x = sum_two_numbers(1,2)

2.2.2 Types of Functions

Q12. Explain about various types of functions in
Python.

Ans : (Imp.)

Basically, we can divide functions into the
following two types:

1. Built-in functions - Functions that are built into
Python.

2. User-defined functions - Functions defined by
the users themselves.

Python Built-in Functions

The Python built-in functions are defined as the
functions whose functionality is pre-defined in Python.
The python interpreter has several functions that are
always present for use. These functions are known as
Built-in Functions. There are several built-in functions in
Python which are listed below:

1. Python abs() Function

The python abs() function is used to return the
absolute value of a number. It takes only one argument,
a number whose absolute value is to be returned. The
argument can be an integer and floating-point number.
If the argument is a complex number, then, abs() returns
its magnitude.

Python abs() Function Example

integer number
integer = -20
print(‘Absolute value of -40 is:’, abs(integer))
 # floating number
floating = -20.83
print(‘Absolute value of -40.83 is:’, abs(floating))

Output:

2. Python all() Function

The python all() function accepts an iterable object
(such as list, dictionary, etc.). It returns true if all items
in passed iterable are true. Otherwise, it returns False. If
the iterable object is empty, the all() function returns
True.

Python all() Function Example

all values true
k = [1, 3, 4, 6]
print(all(k))
 # all values false
k = [0, False]
print(all(k))
one false value
k = [1, 3, 7, 0]
print(all(k))
 # one true value
k = [0, False, 5]
print(all(k))
 # empty iterable
k = []
print(all(k))

Output:

3. Python bin() Function

The python bin() function is used to return the
binary representation of a specified integer. A result
always starts with the prefix 0b.

Python bin() Function Example

x = 10
y = bin(x)
print (y)

Output:

UNIT - II DATA SCIENCE USING PYTHON

41
Rahul Publications

Rahul Publications

4. Python bool()

The python bool() converts a value to
boolean(True or False) using the standard truth testing
procedure.

Python bool() Example

test1 = []
print(test1,’is’,bool(test1))
test1 = [0]
print(test1,’is’,bool(test1))
test1 = 0.0
print(test1,’is’,bool(test1))
test1 = None
print(test1,’is’,bool(test1))
test1 = True
print(test1,’is’,bool(test1))
test1 = ’Easy string’
print(test1,’is’,bool(test1))

Output:

5. Python bytes()

The python bytes() in Python is used for returning
a bytes object. It is an immutable version of the
bytearray() function.

It can create empty bytes object of the specified
size.

Python bytes() Example

string = ”Hello World.”
array = bytes(string, ’utf-8')
print(array)

6. Python callable() Function

A python callable() function in Python is something
that can be called. This built-in function checks and
returns true if the object passed appears to be callable,
otherwise false.

Python callable() Function Example

x = 8

print(callable(x))

Output:

7. Python compile() Function

The python compile() function takes source code
as input and returns a code object which can later be
executed by exec() function.

Python compile() Function Example

compile string source to code
code_str = ’x=5\ny=10\nprint(“sum =”,x+y)’
code = compile(code_str, ’sum.py’, ’exec’)
print(type(code))
exec(code)
exec(x)

Output:

8. Python exec() Function

The python exec() function is used for the dynamic
execution of Python program which can either be a string
or object code and it accepts large blocks of code, unlike
the eval() function which only accepts a single expression.

Python exec() Function Example

x = 8
exec(‘print(x==8)’)
exec(‘print(x+4)’)

Output:

9. Python sum() Function

As the name says, python sum() function is used
to get the sum of numbers of an iterable, i.e., list.

Python sum() Function Example

s = sum([1, 2,4])
print(s)
 s = sum([1, 2, 4], 10)
print(s)

Output:

BCA II YEAR IV SEMESTER

42
Rahul Publications

Rahul Publications

10. Python any() Function

The python any() function returns true if any item
in an iterable is true. Otherwise, it returns False.

Python any() Function Example

l = [4, 3, 2, 0]
print(any(l))
 l = [0, False]
print(any(l))
 l = [0, False, 5]
print(any(l))
 l = []
print(any(l))

Output:

11. Python ascii() Function

The python ascii() function returns a string
containing a printable representation of an object and
escapes the non-ASCII characters in the string using \x,
\u or \U escapes.

Python ascii() Function Example

normalText = ’Python is interesting’
print(ascii(normalText))
 otherText = ’Pythön is interesting’
print(ascii(otherText))
 print(‘Pyth\xf6n is interesting’)

Output:

12. Python bytearray()

The python bytearray() returns a bytearray object
and can convert objects into bytearray objects, or create
an empty bytearray object of the specified size.

Python bytearray() Example

string = ”Python is a programming language.”
 # string with encoding ’utf-8'
arr = bytearray(string, ’utf-8')
print(arr)

Output:

13. Python eval() Function

The python eval() function parses the expression
passed to it and runs python expression(code) within
the program.

Python eval() Function Example

x = 8
print(eval(‘x + 1’))

Output:

14. Python float()

The python float() function returns a floating-point
number from a number or string.

Python float() Example

for integers
print(float(9))
 # for floats
print(float(8.19))
for string floats
print(float(“-24.27”))
 # for string floats with whitespaces
print(float(“ -17.19\n”))
 # string float error
print(float(“xyz”))

Output:

15. Python format() Function

The python format() function returns a formatted
representation of the given value.

Python format() Function Example

d, f and b are a type
 # integer
print(format(123, ”d”))
 # float arguments
print(format(123.4567898, ”f”))
 # binary format
print(format(12, ”b”))

UNIT - II DATA SCIENCE USING PYTHON

43
Rahul Publications

Rahul Publications

Output:

16. Python frozenset()

The python frozenset() function returns an
immutable frozenset object initialized with elements from
the given iterable.

Python frozenset() Example

tuple of letters

letters = (‘m’, ’r’, ’o’, ’t’, ’s’)

 fSet = frozenset(letters)

print(‘Frozen set is:’, fSet)

print(‘Empty frozen set is:’, frozenset())

Output:

17. Python getattr() Function

The python getattr() function returns the value of
a named attribute of an object. If it is not found, it
returns the default value.

Python getattr() Function Example

class Details:

 age = 22

 name = ”Phill”

 details = Details()

print(‘The age is:’, getattr(details, ”age”))

print(‘The age is:’, details.age)

Output:

18. Python globals() Function

The python globals() function returns the
dictionary of the current global symbol table.

A Symbol table is defined as a data structure
which contains all the necessary information about the
program. It includes variable names, methods, classes,
etc.

Python globals() Function Example

age = 22
 globals()[‘age’] = 22
print(‘The age is:’, age)

Output:

19. Python len() Function

The python len() function is used to return the
length (the number of items) of an object.

Python len() Function Example

strA = ’Python’
print(len(strA))

Output:

20. Python list()

The python list() creates a list in python.

Python list() Example

empty list
print(list())
 # string
String = ’abcde’
print(list(String))
 # tuple
Tuple = (1,2,3,4,5)
print(list(Tuple))
list
List = [1,2,3,4,5]
print(list(List))

Output:

21. Python locals() Function

The python locals() method updates and returns
the dictionary of the current local symbol table.

A Symbol table is defined as a data structure
which contains all the necessary information about the
program. It includes variable names, methods, classes,
etc.

BCA II YEAR IV SEMESTER

44
Rahul Publications

Rahul Publications

Python locals() Function Example

def localsAbsent():
 return locals()
def localsPresent():
 present = True
 return locals()
 print(‘localsNotPresent:’, localsAbsent())
print(‘localsPresent:’, localsPresent())

Output:

22. Python map() Function

The python map() function is used to return a list of results after applying a given function to each item of
an iterable(list, tuple etc.).

Python map() Function Example

def calculateAddition(n):
 return n+n
 numbers = (1, 2, 3, 4)
result = map(calculateAddition, numbers)
print(result)
 # converting map object to set
numbersAddition = set(result)
print(numbersAddition)

Output:

23. Python object()

The python object() returns an empty object. It is a base for all the classes and holds the built-in properties
and methods which are default for all the classes.

Python object() Example

1. python = object()

2. print(type(python))

3. print(dir(python))

Output:

UNIT - II DATA SCIENCE USING PYTHON

45
Rahul Publications

Rahul Publications

24. Python open() Function

The python open() function opens the file and returns a corresponding file object.

Python open() Function Example

opens python.text file of the current directory
f = open(“python.txt”)
specifying full path
f = open(“C:/Python33/README.txt”)

Output:

25. Python complex()

Python complex() function is used to convert numbers or string into a complex number. This method takes
two optional parameters and returns a complex number. The first parameter is called a real and second as imaginary
parts.

Python complex() Example

Python complex() function example
Calling function
a = complex(1) # Passing single parameter
b = complex(1,2) # Passing both parameters
Displaying result
print(a)
print(b)

Output:

26. Python dict()

Python dict() function is a constructor which creates a dictionary. Python dictionary provides three different
constructors to create a dictionary:

 If no argument is passed, it creates an empty dictionary.

 If a positional argument is given, a dictionary is created with the same key-value pairs. Otherwise, pass
an iterable object.

 If keyword arguments are given, the keyword arguments and their values are added to the dictionary
created from the positional argument.

Python dict() Example

Calling function

result = dict() # returns an empty dictionary

result2 = dict(a=1,b=2)

Displaying result

print(result)

print(result2)

BCA II YEAR IV SEMESTER

46
Rahul Publications

Rahul Publications

Output:

27. Python min() Function

Python min() function is used to get the smallest element from the collection. This function takes two
arguments, first is a collection of elements and second is key, and returns the smallest element from the collection.

Python min() Function Example

Calling function
small = min(2225,325,2025) # returns smallest element
small2 = min(1000.25,2025.35,5625.36,10052.50)
Displaying result
print(small)
print(small2)

Output:

28. Python set() Function

In python, a set is a built-in class, and this function is a constructor of this class. It is used to create a new
set using elements passed during the call. It takes an iterable object as an argument and returns a new set object.

Python set() Function Example

Calling function
result = set() # empty set
result2 = set(‘12’)
result3 = set(‘javatpoint’)
Displaying result
print(result)
print(result2)
print(result3)

Output:

29. Python hex() Function

Python hex() function is used to generate hex value of an integer argument. It takes an integer argument and
returns an integer converted into a hexadecimal string. In case, we want to get a hexadecimal value of a float, then
use float.hex() function.

Python hex() Function Example

Calling function
result = hex(1)
integer value

UNIT - II DATA SCIENCE USING PYTHON

47
Rahul Publications

Rahul Publications

result2 = hex(342)
Displaying result
print(result)
print(result2)

Output:

30. Python slice() Function

Python slice() function is used to get a slice of elements from the collection of elements. Python provides two
overloaded slice functions. The first function takes a single argument while the second function takes three arguments
and returns a slice object. This slice object can be used to get a subsection of the collection.

Python slice() Function Example

Calling function
result = slice(5) # returns slice object
result2 = slice(0,5,3) # returns slice object
Displaying result
print(result)
print(result2)

Output:

31. Python sorted() Function

Python sorted() function is used to sort elements. By default, it sorts elements in an ascending order but can
be sorted in descending also. It takes four arguments and returns a collection in sorted order. In the case of a
dictionary, it sorts only keys, not values.

Python sorted() Function Example

str = ”javatpoint” # declaring string
Calling function
sorted1 = sorted(str) # sorting string
Displaying result
print(sorted1)

Output:

32. Python input() Function

Python input() function is used to get an input from the user. It prompts for the user input and reads a line.
After reading data, it converts it into a string and returns it. It throws an error EOFError if EOF is read.

Python input() Function Example

Calling function
val = input(“Enter a value: ”)
Displaying result
print(“You entered:”,val)

BCA II YEAR IV SEMESTER

48
Rahul Publications

Rahul Publications

Output:

33. Python int() Function

Python int() function is used to get an integer value. It returns an expression converted into an integer
number. If the argument is a floating-point, the conversion truncates the number. If the argument is outside the
integer range, then it converts the number into a long type.

If the number is not a number or if a base is given, the number must be a string.

Python int() Function Example

Calling function
val = int(10) # integer value
val2 = int(10.52) # float value
val3 = int(‘10’) # string value
Displaying result

print(“integer values :”,val, val2, val3)

Output:

34. Python pow() Function

The python pow() function is used to compute the power of a number. It returns x to the power of y. If the
third argument(z) is given, it returns x to the power of y modulus z, i.e. (x, y) % z.

Python pow() function Example

positive x, positive y (x**y)
print(pow(4, 2))
 # negative x, positive y
print(pow(-4, 2))
 # positive x, negative y (x**-y)
print(pow(4, -2))
 # negative x, negative y
print(pow(-4, -2))

Output:

35. Python print() Function

The python print() function prints the given object to the screen or other standard output devices.

Python print() function Example

print(“Python is programming language.”)
 x = 7

UNIT - II DATA SCIENCE USING PYTHON

49
Rahul Publications

Rahul Publications

Two objects passed
print(“x =”, x)
y = x
Three objects passed
print(‘x =’, x, ’= y’)

Output:

36. Python range() Function

The python range() function returns an immutable sequence of numbers starting from 0 by default, increments
by 1 (by default) and ends at a specified number.

Python range() function Example

empty range
print(list(range(0)))
 # using the range(stop)
print(list(range(4)))
 # using the range(start, stop)
print(list(range(1,7)))

Output:

37. Python tuple() Function

The python tuple() function is used to create a tuple object.

Python tuple() Function Example

1 = tuple()
print(‘t1=’, t1)
 # creating a tuple from a list
t2 = tuple([1, 6, 9])
print(‘t2=’, t2)
 # creating a tuple from a string
t1 = tuple(‘Java’)
print(‘t1=’,t1)
 # creating a tuple from a dictionary
t1 = tuple({4: ’four’, 5: ’five’})
print(‘t1=’,t1)

Output:

BCA II YEAR IV SEMESTER

50
Rahul Publications

Rahul Publications

Q13. What are User-Defined Functions in Python?
Write about them?

Ans : (Imp.)

Functions that we define ourselves to do the
certain specific task are referred to as user-defined
functions. The way in which we define and call functions
in Python are already discussed.

Functions that readily come with Python are
called built-in functions. If we use functions written by
others in the form of the library, it can be termed as
library functions.

All the other functions that we write on our own
fall under user-defined functions. So, our user-defined
function could be a library function to someone else.

Advantages of user-defined functions

1. User-defined functions help to decompose a large
program into small segments which makes the
program easy to understand, maintain and
debug.

2. If repeated code occurs in a program. The function
can be used to include those codes and execute
when needed by calling that function.

3. Programmers working on a large project can divide
the workload by making different functions.

Syntax

 def function_name(argument1, argument2, ...) :
 statement_1
 statement_2

Example

Program to illustrate

the use of user-defined functions

defadd_numbers(x,y):

 sum=x +y

 returnsum

num1 =5

num2 =6

print(“The sum is”, add_numbers(num1, num2))

Output

Enter a number: 2.4

Enter another number: 6.5

The sum is 8.9

Next up on this Python Functions blog, let us
check out how we can create a simple application using
Python.

Python Program To Create A Simple Calculator
Application

In this example, you will learn to create a simple
calculator that can add, subtract, multiply or divide
depending upon the input from the user.

Program make a simple calculator that can
add, subtract, multiply and divide using functions

 # This function adds two numbers
defadd(x, y):
 returnx +y
 # This function subtracts two numbers
defsubtract(x, y):
 returnx -y
 # This function multiplies two numbers
defmultiply(x, y):
 returnx *y
 # This function divides two numbers
defdivide(x, y):
 returnx /y
 print(“Select operation.”)
print(“1.Add”)
print(“2.Subtract”)
print(“3.Multiply”)
print(“4.Divide”)
 # Take input from the user
choice =input(“Enter choice(1/2/3/4):”)

num1 =int(input(“Enter first number: “))
num2 =int(input(“Enter second number: “))
 ifchoice ==’1':
 p r i n t (n u m 1 , ” + ” , n u m 2 , ” = ” ,

add(num1,num2))

elifchoice ==’2':
 p r i n t (n u m 1 , ” - ” , n u m 2 , ” = ” ,

subtract(num1,num2))

UNIT - II DATA SCIENCE USING PYTHON

51
Rahul Publications

Rahul Publications

elifchoice ==’3':
 print(num1,”*”,num2,”=”, multiply(num1,num2))
 elifchoice ==’4':
 print(num1,”/”,num2,”=”, divide(num1,num2))
else:
 print(“Invalid input”)

Output

Select operation.
1.Add
2.Subtract
3.Multiply
4.Divide
Enter choice(1/2/3/4): 3
Enter first number: 15
Enter second number: 14
15 * 14 = 210

2.2.3 Flow of Execution

Q14. Explain the Flow of Execution in Python.

Ans : (Imp.)

 The order in which statements are executed is called the flow of execution

 Execution always begins at the first statement of the program.

 Statements are executed one at a time, in order, from top to bottom.

 Function definitions do not alter the flow of execution of the program, but remember that statements inside
the function are not executed until the function is called.

 Function calls are like a bypass in the flow of execution. Instead of going to thenext statement, the flow
jumps to the first line of the called function, executes all the statements there, and then comes back to pick
up where it left off.

Consider the code of python

x=int(input(“Enter any no=”)) # Line 1
sqr=x * x # Line 2
print(sqr) # Line 3

In above code execution of the code is Line 1 2 3. If order is not same the code will produce error.

In above code if we include any branching (if-else or if-elif) or looping (for or while)used in prorgam , then
flow of execution may depend on the conditions.

see the code given below
x=int(input(“Enter any no=”)) # Line 1
sqr=0 # Line 2
if x>0: # Line 3
sqr=x * x # Line 4
print(sqr) # Line 5

BCA II YEAR IV SEMESTER

52
Rahul Publications

Rahul Publications

Now if x is positive number then square of number is calculated otherwise not.

Now execution is Line 1 2 3 (Now if x is above 0) 3 4

Eexecution is Line 1 2 3 (Now if x is 0 or below) 5 . Line 4 is not executed .

Now we discuss the function execution.

2.2.4 Parameters and Arguments

Q15. Write about how to define a parameters in python.

Ans : (Imp.)

Parameters:

A parameter is the variable defined within the parentheses during function definition. Simply they are written
when we declare a function.

Example:

Here a,b are the parameters
defsum(a,b):
 print(a+b)
 sum(1,2)

Output:

3

Arguments:

An argument is a value that is passed to a function when it is called. It might be a variable, value or object
passed to a function or method as input. They are written when we are calling the function.

Example:

defsum(a,b):
 print(a+b)
 # Here the values 1,2 are arguments
sum(1,2)

Output:

3

Types of Arguments in Python

Python functions can contain two types of arguments:

 Positional Arguments

 Keyword Arguments

Positional Arguments

Positional Arguments are needed to be included in proper order i.e the first argument is always listed first
when the function is called, second argument needs to be called second and so on.

Example:

defperson_name(first_name,second_name):

 print(first_name+second_name)

UNIT - II DATA SCIENCE USING PYTHON

53
Rahul Publications

Rahul Publications

First name is Ram placed first
Second name is Babu place second
person_name(“Ram”,”Babu”)

Output:

RamBabu

Keyword Arguments:

Keyword Arguments is an argument passed to a function or method which is preceded by a keyword and an
equal to sign. The order of keyword argument with respect to another keyword argument does not matter because
the values are being explicitly assigned.

defperson_name(first_name,second_name):
 print(first_name+second_name)
 # Here we are explicitly assigning the values
person_name(second_name=”Babu”,first_name=”Ram”)

Output:

RamBabu

2.2.5 Modules

Q16. What are Modules in Python? Explain.

Ans : (Imp.)

A document with definitions of functions and various statements written in Python is called a Python
module.

In Python, we can define a module in one of 3 ways:

 Python itself allows for the creation of modules.

 Similar to the re (regular expression) module, a module can be primarily written in C programming
language and then dynamically inserted at run-time.

 A built-in module, such as the itertools module, is inherently included in the interpreter.

A module is a file containing Python code, definitions of functions, statements, or classes. An
example_module.py file is a module we will create and whose name is example_module.

We employ modules to divide complicated programs into smaller, more understandable pieces. Modules
also allow for the reuse of code.

Rather than duplicating their definitions into several applications, we may define our most frequently used
functions in a separate module and then import the complete module.

Python program to show how to create a module.

defining a function in the module to reuse it

def square(number):

 ”””This function will square the number passed to it”””

 result = number ** 2

 return result

Here, a module called example_module contains the definition of the function square(). The function
returns the square of a given number.

BCA II YEAR IV SEMESTER

54
Rahul Publications

Rahul Publications

Import Modules

In Python, we may import functions from one module into our program, or as we say into, another module.

For this, we make use of the import Python keyword. In the Python window, we add the next to import
keyword, the name of the module we need to import. We will import the module we defined earlier example_module.

import example_module

The functions that we defined in the example_module are not immediately imported into the present program.
Only the name of the module, i.e., example_ module, is imported here.

We may use the dot operator to use the functions using the module name. For instance:

Code
result = example_module.square(4)
print(”By using the module square of number is: ”, result)

Output:

2.2.6 Conditionals

2.2.6.1 Conditional (IF)

Q17. Explain if statement with syntax and example.

Ans :
Decision making is required when we want to execute a code only if a certain condition is satisfied.

The if…elif…else statement is used in Python for decision making.

Python if Statement Syntax

if test expression:
 statement(s)

Here, the program evaluates the test expression and will execute statement(s) only if the text expression
is True.

If the text expression is False, the statement(s) is not executed.

In Python, the body of the if statement is indicated by the indentation. Body starts with an indentation and
the first unindented line marks the end.

Python interprets non-zero values as True. None and 0 are interpreted as False.

Python if Statement Flowchart

UNIT - II DATA SCIENCE USING PYTHON

55
Rahul Publications

Rahul Publications

Example: Python if Statement

If the number is positive, we print an appropriate
message

num = 3
if num > 0:
 print(num, “is a positive number.”)
print(“This is always printed.”)

num = -1
if num > 0:
 print(num, “is a positive number.”)
print(“This is also always printed.”)

When you run the program, the output will be:

3 is a positive number

This is always printed

This is also always printed.

In the above example, num > 0 is the test
expression.

The body of if is executed only if this evaluates
to True.

When variable num is equal to 3, test expression
is true and body inside body of if is executed.

If variable num is equal to -1, test expression is
false and body inside body of if is skipped.

The print() statement falls outside of the if block
(unindented). Hence, it is executed regardless of the test
expression.

2.2.6.2 Alternative (If-else)

Q18. Explain Python if…else Statement

Ans :
Syntax of if…else

if test expression:

 Body of if
else:
 Body of else

The if..else statement evaluates test
expression and will execute body of if only when test
condition is True.

If the condition is False, body of else is
executed. Indentation is used to separate the blocks.

Python if..else Flowchart

FIg. : Operation of if...else statement

Example of if…else

Program checks if the number is positive
or negative

And displays an appropriate message

num = 3

Try these two variations as well.
num = -5
num = 0

if num >= 0:
 print(“Positive or Zero”)
else:
 print(“Negative number”)

In the above example, when num is equal to 3,
the test expression is true and body of ifis executed
and body of else is skipped.

If num is equal to -5, the test expression is false
and body of else is executed and body of if is skipped.

If num is equal to 0, the test expression is true
and body of if is executed and body of else is skipped.

2.2.6.3 Chained Conditionals (If-elif-else)

Q19. Explain if-elif –else statement with syntax
and example.

Ans : (Imp.)

Syntax of if...elif...else
if test expression:
 Body of if
elif test expression:
 Body of elif
else:
 Body of else

BCA II YEAR IV SEMESTER

56
Rahul Publications

Rahul Publications

The elif is short for else if. It allows us to check
for multiple expressions.

If the condition for if is False, it checks the
condition of the next elif block and so on.

If all the conditions are False, body of else is
executed.

Only one block among the several if...elif...else
blocks is executed according to the condition.

The if block can have only one else block. But
it can have multiple elif blocks.

Flowchart of if...elif...else

Fig. : Operation of if...elif...else statement

Example of if...elif...else

In this program,
we check if the number is positive or
negative or zero and
display an appropriate message

num = 3.4

Try these two variations as well:
num = 0
num = -4.5

if num > 0:
 print(“Positive number”)
elif num == 0:
 print(“Zero”)
else:
 print(“Negative number”)
When variable num is positive, Positive
number is printed.

If num is equal to 0, Zero is printed.
If num is negative, Negative number is printed

2.2.6.4 Nested Conditionals

Q20. Explain nested if statements with syntax and
example.

Ans :
Python Nested if statements

We can have a if...elif...else statement inside
another if...elif...else statement. This is called nesting
in computer programming.

Any number of these statements can be nested
inside one another. Indentation is the only way to figure
out the level of nesting. This can get confusing, so must
be avoided if we can.

Python Nested if Example

In this program, we input a number

check if the number is positive or

negative or zero and display

an appropriate message

This time we use nested if

num =float(input(“Enter a number: “))

if num >=0:

if num ==0:

print(“Zero”)

else:

print(“Positive number”)

else:

print(“Negative number”)

Output 1

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

Zero

UNIT - II DATA SCIENCE USING PYTHON

57
Rahul Publications

Rahul Publications

Q21. Write a program to check whether the given
number is prime or not.

Ans :
Python program to check if the input number is prime
or not
num = 407
take input from the user
num = int(input(“Enter a number: “))

prime numbers are greater than 1
if num > 1:
 # check for factors
 for i in range(2,num):
 if (num % i) == 0:
 print(num,”is not a prime number”)
 print(i,”times”,num//i,”is”,num)
 break
 else:
 print(num,”is a prime number”)
 # if input number is less than
or equal to 1, it is not prime
else:
 print(num,”is not a prime number”)

2.3 ITERATION/CONTROL STATEMENTS

2.3.1 While

Q22. Explain while loop with syntax and example.

Ans : (Imp.)

The while loop in Python is used to iterate over a
block of code as long as the test expression (condition)
is true.

We generally use this loop when we don’t know
beforehand, the number of times to iterate.

Syntax of while Loop in Python

while test_expression:

 Body of while

In while loop, test expression is checked first. The
body of the loop is entered only if the test_expression
evaluates to True. After one iteration, the test expression
is checked again. This process continues until
the test_expression evaluates to False.

In Python, the body of the while loop is
determined through indentation.

Body starts with indentation and the first
unindented line marks the end.

Python interprets any non-zero value as True.
None and 0 are interpreted as False.

Flowchart of while Loop

Fig. : Operation of while loop

Example: Python while Loop

Program to add natural
numbers upto
sum = 1+2+3+...+n

To take input from the user,
n = int(input(“Enter n: “))
n = 10
initialize sum and counter
sum = 0
i = 1

while i <= n:
 sum = sum + i
 i = i+1 # update counter

print the sum
print(“The sum is”, sum)
When you run the program, the output will be:
Enter n: 10
The sum is 55

In the above program, the test expression will
be True as long as our counter variable iis less than or
equal to n (10 in our program).

BCA II YEAR IV SEMESTER

58
Rahul Publications

Rahul Publications

We need to increase the value of counter variable
in the body of the loop. This is very important (and
mostly forgotten). Failing to do so will result in an infinite
loop (never ending loop).

Finally the result is displayed.

Q23. Explain while loop with else statement

Ans :
while loop with else

Same as that of for loop, we can have an
optional else block with while loop as well.

The else part is executed if the condition in the
while loop evaluates to False. The while loop can be
terminated with a break statement.

In such case, the else part is ignored. Hence, a
while loop’s else part runs if no break occurs and the
condition is false.

Here is an example to illustrate this.

Example to illustrate
the use of else statement
with the while loop

counter = 0

while counter < 3:
 print(“Inside loop”)
 counter = counter + 1
else:
 print(“Inside else”)

Output
Inside loop
Inside loop
Inside loop
Inside else

Here, we use a counter variable to print the
string Inside loop three times.

On the forth iteration, the condition in while
becomes False. Hence, the else part is executed.

2.3.2 FOR

Q24. Explain For loop with example.

Ans :
The for statement is in opposition to the “while”

loop, which is employed whenever a condition requires
to be verified each repetition or when a piece of code is
to be repeated indefinitely.

Syntax of for Loop

for value in sequence:

 {loop body}

On each iteration, the value is the parameter that gets
the element’s value within the iterable sequence. If an
expression statement is present in a sequence, it is
processed first. The iterating variable iterating_variable
is then allocated to the first element in the sequence.
After that, the intended block is run. The statement block
is performed until the whole sequence is completed, and
each element in the sequence is allocated to
iterating_variable. The for loop’s material is distinguished
from the rest of the program using indentation.

Example of Python for Loop

Code to find the sum of squares of each element of
the list using for loop

creating the list of numbers
numbers = [3, 5, 23, 6, 5, 1, 2, 9, 8]

 # initializing a variable that will store the sum
sum_ = 0

 # using for loop to iterate over the list
for num in numbers:
 sum_ = sum_ + num ** 2
 print(“The sum of squares is: ”, sum_)

Output:

The sum of squares is: 774

Q25. Write a Python Program to Print the
Fibonacci sequence.

Ans :
Program to display the Fibonacci sequence up

to n-th term where n is provided by the user

change this value for a different result
nterms = 10
uncomment to take input from the user
#nterms = int(input(“How many terms? “))
first two terms
n1 = 0
n2 = 1
count = 2
check if the number of terms is valid
if nterms <= 0:
 print(“Please enter a positive integer”)
elif nterms == 1:

UNIT - II DATA SCIENCE USING PYTHON

59
Rahul Publications

Rahul Publications

 print(“Fibonacci sequence upto”,nterms,”:”)
 print(n1)
else:
 print(“Fibonacci sequence upto”,nterms,”:”)
 print(n1,”,”,n2,end=’, ‘)
 while count < nterms:
 nth = n1 + n2
 print(nth,end=’ , ‘)
 # update values
 n1 = n2
 n2 = nth
 count += 1

Output

Fibonacci sequence upto 10 :

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Q26. Write a program to calculate a running total in python.

Ans :
Calculating a Running Total

balance = float(raw_input(“Outstanding Balance: “))
interestRate = float(raw_input(“Interest Rate: “))
minPayRate = float(raw_input(“Minimum Monthly Payment Rate: “))
paid = 0

for month in xrange(1, 12+1):
 interestPaid = round(interestRate / 12.0 * balance, 2)
 minPayment = round(minPayRate * balance, 2)
 principalPaid = round(minPayment - interestPaid, 2)
 remainingBalance = round(balance - principalPaid, 2)
 paid += minPayment

 print # Make the output easier to read.
 print ‘Month: %d’ % (month,)
 print ‘Minimum monthly payment: %.2f’ % (minPayment,)
 print ‘Principle paid: %.2f’ % (principalPaid,)
 print ‘Remaining balance: %.2f’ % (remainingBalance,)

 balance = remainingBalance

print
print ‘RESULTS’
print ‘Total amount paid:’, paid
print ‘Remaining balance: %.2f’ % (remainingBalance,)

BCA II YEAR IV SEMESTER

60
Rahul Publications

Rahul Publications

2.3.3 BREAK

Q27. Write about break and continue statements.

Ans :
In Python, break and continue statements can alter the flow of a normal loop.

Loops iterate over a block of code until test expression is false, but sometimes we wish to terminate the
current iteration or even the whole loop without cheking test expression.

The break and continue statements are used in these cases.

Python Break Statement

The break statement terminates the loop containing it. Control of the program flows to the statement
immediately after the body of the loop.

If break statement is inside a nested loop (loop inside another loop), break will terminate the innermost loop.

Syntax of break

break

Flowchart of break

The working of break statement in for loop and while loop is shown below.

Example: Python break

Use of break statement inside loop

for val in “string”:

 if val == “i”:

 break

 print(val)

print(“The end”)

Output
s
t
r
The end

UNIT - II DATA SCIENCE USING PYTHON

61
Rahul Publications

Rahul Publications

In this program, we iterate through the ”string” sequence. We check if the letter is ”i”, upon which we
break from the loop. Hence, we see in our output that all the letters up till ”i” gets printed. After that, the loop
terminates.

2.3.4 Continue

Q28. Explain Python continue statement with example.

Ans : (Imp.)

The continue statement is used to skip the rest of the code inside a loop for the current iteration only. Loop
does not terminate but continues on with the next iteration.

Syntax of Continue

continue

Flowchart of continue

The working of continue statement in for and while loop is shown below.

Example: Python continue

Program to show the use of continue statement inside loops

for val in “string”:

 if val == “i”:

 continue

 print(val)

print(“The end”)

Output
s
t
r
n
g

The end

This program is same as the above example except the break statement has been replaced with continue.

BCA II YEAR IV SEMESTER

62
Rahul Publications

Rahul Publications

We continue with the loop, if the string is “i”, not executing the rest of the block. Hence, we see in our output
that all the letters except “i” gets printed.

2.3.5 Pass

Q29. What is Pass Statement in Python?

Ans :
The null statement is another name for the pass statement. A Comment is not ignored by the Python

interpreter, whereas a pass statement is not. Hence, they two are different Python keywords.

We can use the pass statement as a placeholder when unsure what code to provide. So, we only have to
place the pass on that line. Pass may be used when we don’t wish any code to be executed. We can simply insert
a pass in places where empty code is prohibited, such as loops, functions, class definitions, or if-else statements.

Syntax of the Pass Keyword

Keyword:

 pass

Typically, we utilise it as a reference for the future.

Let’s say we have a loop or an if-else statement that isn’t to be filled now but that we wish to in the future.
The pass keyword cannot have an empty body as it will be syntactically wrong. An error would be displayed by the
Python interpreter suggesting to fill the space. Therefore, we create a code block that performs nothing using the
pass statement.

Example of the Pass Statement

Python program to show how to use a pass statement in a for loop
‘’’’’pass acts as a placeholder. We can fill this place later on’’’
sequence = {“Python”, ”Pass”, ”Statement”, ”Placeholder”}
for value in sequence:
 if value == ”Pass”:
 pass # leaving an empty if block using the pass keyword
 else:
 print(“Not reached pass keyword: ”, value)

Output:

2.3.6 Fruitful Function Vs Void Function

Q30. Differentiate between fruitful functions and void functions.

Ans : (Imp.)

Python provides various functions which may or may not return value.

The function which return any value are called as fruitful function.

The function which does not return any value are called as void function.

Fruitful functions means the function that gives result or return values after execution.

UNIT - II DATA SCIENCE USING PYTHON

63
Rahul Publications

Rahul Publications

Some functions gets executed but doesn’t return any value.

While writing fruitful functions we except a return value and so we must assign it to a variable to hold return
value.

In void function you can display a value on screen but cannot return a value.

A void function may or may not have return statement, if void function has return statement then it is
written without any expression

Void function without return statement

def fun1():
 print(“Python”)

Void function with return statement

def fun2():
 print(“ITVoyagers”)
 return

Void function with parameter without return statement

def fun1(a,b):
 print(“sum of a and b”, a+b)
fun1(5,2)

In above example main function have passed values to given function and as print statement is used
function will not return anything it will just print value.

Fruitful function with parameter and return statement

def fun2(a,b):
 return a+b
print(fun2(5,8))

In above example we have passed two values to the given function which then returns sum of that values to
main function using return keyword.

2.3.7 Parameters/Arguments

Q31. Write about, passing parameters and arguments in python.

Ans : (Imp.)

Meaning

Parameters are the variables that we specify inside parentheses at the time of defining a function. In the
example, num1 and num2 are function parameters.

BCA II YEAR IV SEMESTER

64
Rahul Publications

Rahul Publications

Arguments, on the other hand, are the values
that are passed for these parameters when calling the
function. Arguments allow us to pass information to the
function. In the example above, we provided 5 and 6 as
the function arguments for parameters num1 and num2,
respectively.

Types of Function Arguments in Python

1. Python Default Arguments

Python allows function parameters to
have default values. This is useful in case a matching
argument is not passed in the function call statement.

defsayhello(name = “World”):
print(“Hello,”, name)
sayhello()
sayhello(“Techvidvan”)

Here, the ”sayhello” function’s header contains
a parameter “name” which has its default value set
to the string “World”.

As you can see in the function call, the function
prints ”Hello, World” when no argument is passed.
Whereas, if we do pass a value for the argument, the
function will print ”Hello” followed by the argument
value.

The output looks like this:

Hello, World
Hello, Techvidvan
>>>

One very important thing to remember while
dealing with default arguments is :

In a function’s definition, a parameter cannot
have a default value unless all the parameters to its
right have their default values.

2. Python Keyword Arguments

Python offers a way to write any argument in
any order if you name the arguments when calling the
function. This allows us to have complete control and
flexibility over the values sent as arguments for the
corresponding parameters.

defmultiply(a, b):
return a*b
print(multiply(a = 10, b = 5))
print(multiply(b = 20, a = 9))

In the first function call, a gets value 10 and b
gets value 5. In the second function call, a gets value 9
and b gets value 20.

The output is:

50
180
>>>

3. Python Arbitrary Arguments

Arbitrary arguments come in handy when we don’t
know how many arguments the function will take.

Often at the time of defining the function, we
cannot determine the number of arguments our function
is going to accept. We place an asterisk (*) before the
parameter to denote that the function can take
an arbitrary number of arguments.

Example:

defsummation(*numbers):
sum1 = 0
for number in numbers:
sum1 += number
return sum1
print(summation(10,20,30))

The function summation takes multiple
arguments.

This outputs to the following:

60

>>>

You can now give any number of arguments while
calling the function summation.

2.3.8 Return Values

Q32. Write about the return values in Python

Ans : (Imp.)

Meaning

A return statement is used to end the execution
of the function call and “returns” the result (value of the
expression following the return keyword) to the caller.
The statements after the return statements are not
executed. If the return statement is without any
expression, then the special value None is returned. A
return statement is overall used to invoke a function so
that the passed statements can be executed.

Syntax:

def fun():
 statements
 . .
 return [expression]

UNIT - II DATA SCIENCE USING PYTHON

65
Rahul Publications

Rahul Publications

Example:
def cube(x):
 r=x**3
 return r

Example:
Python program to demonstrate return

statement
defadd(a, b):
 # returning sum of a and b
 returna +b
 defis_true(a):
 # returning boolean of a
 returnbool(a)
calling function
res =add(2, 3)
print(“Result of add function is {}”.format(res))
 res =is_true(2<5)
print(“\nResult of is_true function is

{}”.format(res))

Output:

Result of add function is 5
Result of is_true function is True

Returning Multiple Values

In Python, we can return multiple values from a
function. Following are different ways.

 Using Object: This is similar to C/C++ and
Java, we can create a class (in C, struct) to hold
multiple values and return an object of the class.

Example

A Python program to return multiple values
from a method using class

classTest:
 def__init__(self):
 self.str=”geeksforgeeks”
 self.x =20
 # This function returns an object of Test
deffun():
 returnTest()
Driver code to test above method
t =fun()
print(t.str)
print(t.x)

Output
geeksforgeeks
20

 Using Tuple: A Tuple is a comma separated
sequence of items. It is created with or without
(). Tuples are immutable. See this for details
of tuple.

A Python program to return multiple
values from a method using tuple
This function returns a tuple
deffun():
 str=”geeksforgeeks”
 x =20
 returnstr, x; # Return tuple, we could also

 # write (str, x)
Driver code to test above method
str, x =fun() # Assign returned tuple
print(str)
print(x)

Output:

geeksforgeeks

20

 Using a list: A list is like an array of items created
using square brackets. They are different from
arrays as they can contain items of different types.
Lists are different from tuples as they are mutable.
See this for details of list.

A Python program to return multiple values
from a method using list

This function returns a list

deffun():

 str=”geeksforgeeks”

 x =20

 return[str, x];

Driver code to test above method

list=fun()

print(list)

Output:

[‘geeksforgeeks’, 20]

 Using a Dictionary: A Dictionary is similar to
hash or map in other languages. See this for
details of dictionary.

BCA II YEAR IV SEMESTER

66
Rahul Publications

Rahul Publications

A Python program to return multiple values
from a method using dictionary

 # This function returns a dictionary

deffun():

 d =dict();

 d[‘str’] =”GeeksforGeeks”

 d[‘x’] =20

 returnd

 # Driver code to test above method

d =fun()

print(d)

Output:

{‘x’: 20, ‘str’: ‘GeeksforGeeks’}

Function Returning Another Function

In Python, functions are objects so, we can return
a function from another function. This is possible because
functions are treated as first class objects in Python. To
know more about first class objects click here.

In the below example, the create_adder function
returns the adder function.

Python program to illustrate functions can
return another function

 defcreate_adder(x):
 defadder(y):
 returnx +y
 returnadder
 add_15 =create_adder(15)
 print(“The result is”, add_15(10))
 # Returning different function
defouter(x):
 returnx *10
 defmy_func():
 # returning different function
 returnouter
 # storing the function in res
res =my_func()

print(“\nThe result is:”, res(10))

Output:
The result is 25
The result is: 100

2.3.9 Variables Scope (Local Global)

Q33. What is the scope of the variable in python?

Ans :
Scope and Lifetime of Variables

Scope of a variable is the portion of a program
where the variable is recognized. Parameters and variables
defined inside a function is not visible from outside.
Hence, they have a local scope.

Lifetime of a variable is the period throughout
which the variable exits in the memory. The lifetime of
variables inside a function is as long as the function
executes.

They are destroyed once we return from the
function. Hence, a function does not remember the value
of a variable from its previous calls.

Here is an example to illustrate the scope of a
variable inside a function.

def my_func():

x = 10

print(“Value inside function:”,x)

x = 20

my_func()

print(“Value outside function:”,x)

Output

Value inside function: 10

Value outside function: 20

Here, we can see that the value of x is 20 initially.
Even though the function my_func()changed the value
of x to 10, it did not effect the value outside the
function.

This is because the variable x inside the function
is different (local to the function) from the one outside.
Although they have same names, they are two different
variables with different scope.

On the other hand, variables outside of the
function are visible from inside. They have a global scope.

We can read these values from inside the function
but cannot change (write) them. In order to modify the
value of variables outside the function, they must be
declared as global variables using the keyword global.

UNIT - II DATA SCIENCE USING PYTHON

67
Rahul Publications

Rahul Publications

2.3.10 Function Composition

Q34. What is function composition? Explain.

Ans :
Function composition is the way of combining two or more functions in such a way that the output of one

function becomes the input of the second function and so on. For example, let there be two functions “F” and “G”
and their composition can be represented as F(G(x)) where “x” is the argument and output of G(x) function will
become the input of F() function.

Example:

Function to add 2
to a number
def add(x):
 return x + 2
 # Function to multiply
2 to a number
def multiply(x):
 return x * 2

Printing the result of composition of add and multiply to add 2 to a number
and then multiply by 2
print(“Adding 2 to 5 and multiplying the result with 2: “,
 multiply(add(5)))

Output:

Adding 2 to 5 and multiplying the result with 2: 14

Explanation

First the add() function is called on input 5. The add() adds 2 to the input and the output which is 7, is given
as the input to multiply() which multiplies it by 2 and the output is 14.

BCA II YEAR IV SEMESTER

68
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is function?

Ans :
A function is a block of organized, reusable code

that is used to perform a single, related action. Functions
provide better modularity for your application and a high
degree of code reusing.

As you already know, Python gives you many
built-in functions like print(), etc. but you can also create
your own functions. These functions are called user-
defined functions.

2. Defining a Function

Ans :
You can define functions to provide the required

functionality. Here are simple rules to define a function
in Python.

 Function blocks begin with the keyword def
followed by the function name and parentheses (
()).

 Any input parameters or arguments should be
placed within these parentheses. You can also
define parameters inside these parentheses.

 The first statement of a function can be an
optional statement - the documentation string of
the function or docstring.

 The code block within every function starts with
a colon (:) and is indented.

 The statement return [expression] exits a function,
optionally passing back an expression to the caller.
A return statement with no arguments is the same
as return None.

3. Types of Functions

Ans :
Basically, we can divide functions into the

following two types:

(i) Built-in functions: Functions that are built into
Python.

(ii) User-defined functions: Functions defined by
the users themselves.

4. User-Defined Functions

Ans :
Functions that we define ourselves to do the

certain specific task are referred to as user-defined
functions. The way in which we define and call functions
in Python are already discussed.

Functions that readily come with Python are
called built-in functions. If we use functions written by
others in the form of the library, it can be termed as
library functions.

All the other functions that we write on our own
fall under user-defined functions. So, our user-defined
function could be a library function to someone else.

5. Advantages of user-defined functions

Ans :
(i) User-defined functions help to decompose a large

program into small segments which makes the
program easy to understand, maintain and
debug.

(ii) If repeated code occurs in a program. The function
can be used to include those codes and execute
when needed by calling that function.

(iii) Programmers working on a large project can divide
the workload by making different functions.

6. Flow of Execution in Python.

Ans :
 The order in which statements are executed is

called the flow of execution

 Execution always begins at the first statement of
the program.

 Statements are executed one at a time, in order,
from top to bottom.

 Function definitions do not alter the flow of
execution of the program, but remember that
statements inside the function are not executed
until the function is called.

 Function calls are like a bypass in the flow of
execution. Instead of going to thenext statement,
the flow jumps to the first line of the called
function, executes all the statements there, and
then comes back to pick up where it left off.

UNIT - II DATA SCIENCE USING PYTHON

69
Rahul Publications

Rahul Publications

7. What are Modules in Python?

Ans :
A document with definitions of functions and various statements written in Python is called a Python

module.

In Python, we can define a module in one of 3 ways:

 Python itself allows for the creation of modules.

 Similar to the re (regular expression) module, a module can be primarily written in C programming language
and then dynamically inserted at run-time.

 A built-in module, such as the itertools module, is inherently included in the interpreter.

8. Quotations used in python

Ans :
Python accepts single (‘), double (“) and triple (‘’’ or “””) quotes to denote string literals, as long as the same

type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the following are legal -

word =’word’

sentence =”This is a sentence.”

paragraph =”””This is a paragraph. It is

made up of multiple lines and sentences.”””

9. Explain nested if statements with syntax and example.

Ans :
Python Nested if statements

We can have a if...elif...else statement inside another if...elif...else statement. This is called nesting in
computer programming.

Any number of these statements can be nested inside one another. Indentation is the only way to figure out
the level of nesting. This can get confusing, so must be avoided if we can.

Python Nested if Example

In this program, we input a number

check if the number is positive or

negative or zero and display

an appropriate message

This time we use nested if

num =float(input(“Enter a number: “))

if num >=0:

if num ==0:

BCA II YEAR IV SEMESTER

70
Rahul Publications

Rahul Publications

print(“Zero”)

else:

print(“Positive number”)

else:

print(“Negative number”)

Output 1

Enter a number: 5

Positive number

Output 2

Enter a number: -1

Negative number

Output 3

Enter a number: 0

Zero

10. What is Pass Statement in Python?

Ans :
The null statement is another name for the pass statement. A Comment is not ignored by the Python

interpreter, whereas a pass statement is not. Hence, they two are different Python keywords.

We can use the pass statement as a placeholder when unsure what code to provide. So, we only have to
place the pass on that line. Pass may be used when we don’t wish any code to be executed. We can simply insert
a pass in places where empty code is prohibited, such as loops, functions, class definitions, or if-else statements.

UNIT - II DATA SCIENCE USING PYTHON

71
Rahul Publications

Rahul Publications

Choose the Correct Answer
1. Which function removes a set’s first and the last element from a list? [a]

(a) pop (b) remove

(c) dispose (d) discard

2. The output of this Python code would be: [c]

sum(1,2,3)

sum([2,4,6])

(a) 6, 12 (b) Error, Error

(c) Error, 12 (d) 6, Error

3. Which function doesn’t accept any argument? [d]

(a) re.compile (b) re.findall

(c) re.match (d) re.purge

4. Which of the following functions is a built-in function in python language? [b]

(a) val() (b) print()

(c) print () (d) None of these

5. Which one of the following is a valid Python if statement. [a]

(a) if a>=2 : (b) if (a >= 2)

(c) if (a => 22) (d) if a >= 22

6. Which of the following is not used as loop in Python? [c]

(a) for loop (b) while loop

(c) do-while loop (d) None of the above

7. Which one of the following is a valid Python if statement : [a]

(a) if a>=2 : (b) if (a >= 2)

(c) if (a => 22) (d) if a >= 22

8. What keyword would you use to add an alternative condition to an if statement? [c]

(a) else if (b) elseif

(c) elif (d) None of the above

9. Which statement will check if a is equal to b? [b]

(a) if a = b: (b) if a == b:

(c) if a === c: (d) if a == b

10. Which of the following is a valid for loop in Python? [b]

(a) for(i=0; i < n; i++) (b) for i in range(0,5):

(c) for i in range(0,5) (d) for i in range(5)

BCA II YEAR IV SEMESTER

72
Rahul Publications

Rahul Publications

Fill in the blanks
1. are used to indicate variables that must not be accessed from outside the class.

2. keyword would you use to add an alternative condition to an if statement?

3. loop is used when multiple statements are to executed repeatedly until the given condition
becomes False.

4. determine which statements in the program will be executed and in what order, allowing for
statements to be skipped over or executed repeatedly.

5. In Python,. When a statement occurs on a line which is indented less than the previous one, it indicates
.

6. Keyword can be used to bring control out of the current loop statement is True regarding loops
in Python.

7. Else statement after loop will be executed only when the loop condition becomes .

8. A loop becomes loop if a condition never becomes FALSE.

9. If the else statement is used with a while loop, the else statement is executed when the condition becomes
.

10. Python programming language allows to use one loop inside another loop known as .

ANSWERS

1. Leading underscores

2. Elif

3. While

4. Control structures

5. The end of a block.

6. Break

7. False

8. Infinite

9. False

10. Nested

73
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

UNIT
III

Strings: Strings, String slices, Immutability, String functions & Methods, String mod-
ule; List as array: Array, Methods of array.

Lists: List operations, List slices, List methods, List loops, Mutability, aliasing, Cloning
list, List parameters; Tuple: Benefit of Tuple, Operations on Tuple, Tuple methods,
Tuple assignment, Tuple as return value, Tuple as argument; Dictionaries: Operations
on Dictionary, methods in Dictionary, Difference between List, Tuple and Dictionary;
Advanced List processing: List comprehension, Nested List.

3.1 STRINGS

3.1.1 Strings

Q1. What is string? and how do you create
string?

Ans : (Imp.)

Meaning

In Python, string is a sequence of Unicode char-
acter. Unicode was introduced to include every charac-
ter in all languages and bring uniformity in encoding.

Creating a string

Strings can be created by enclosing characters
inside a single quote or double quotes. Even triple quotes
can be used in Python but generally used to represent
multiline strings and doc strings.

all of the following are equivalent

my_string = ‘Hello’

print(my_string)

my_string = “Hello”

print(my_string)

my_string = ‘’’Hello’’’

print(my_string)

triple quotes string can extend multiple lines

my_string = “””Hello, welcome to the world of
Python”””

print(my_string)

When you run the program, the output will be:

Hello

Hello

Hello

Hello, welcome to

 the world of Python

Access characters in a string

We can access individual characters using index-
ing and a range of characters using slicing.

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the
second last item and so on. We can access a range of
items in a string by using the slicing operator (colon).

str = ‘programiz’

print(‘str = ‘, str)

#first character

print(‘str[0] = ‘, str[0])

#last character

print(‘str[-1] = ‘, str[-1])

#slicing 2nd to 5th character

print(‘str[1:5] = ‘, str[1:5])

#slicing 6th to 2nd last character

print(‘str[5:-2] = ‘, str[5:-2])

If we try to access index out of the range or use
decimal number, we will get errors.

index must be in range

>>> my_string[15]

...

IndexError:string index out of range

index must be an integer

>>> my_string[1.5]

...

Type Error:string indices must be integers

Slicing can be best visualized by considering the
index to be between the elements as shown below.

74
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

If we want to access a range, we need the index
that will slice the portion from the string.

P R O G R A M I G
0 1 2 3 4 5 6 7 8 9

–9 –8 –7 –6 –5 –4 –3 –2 –1

Q2. How to change (or) delete a string in python?

Ans :
Strings are immutable. This means that elements

of a string cannot be changed once it has been assigned.
We can simply reassign different strings to the same
name.

>>> my_string =’programiz’

>>> my_string[5]=’a’

...

TypeError:’str’object does not support item assignment

>>> my_string =’Python’

>>> my_string

‘Python’

We cannot delete or remove characters from a
string. But deleting the string entirely is possible using
the keyword del.

>>>del my_string[1]

...

TypeError:’str’object doesn’t support item deletion

>>> del my_string

>>> my_string

...

NameError: name ‘my_string’ is not defined

3.1.2 String Slices

Q3. Explain how to do Slicing in Python.

Ans :
You can take subset of string from original string

by using [] operator also known as slicing operator.

Syntax: s [start:end]

this will return part of the string starting from index start
to index end - 1.

Let’s take some examples.

>>> s = “Welcome”

>>> s[1:3]

El

Some more examples

>>> s = “Welcome”

>>> s[: 6]

‘Welcom’

 >>> s[4 :]

‘s’

 >>> s[1 : -1]

‘elcom’

Note: start index and end index are optional. If omit-
ted then the default value of start index is 0 and that
of end is the last index of the string.

Q4. Write a program to demonstrate slicing in
strings

Ans :
s = “abcdefghijklmnopqrs”

Loop over some indexes.

for n in range(2, 4):

 # Print slices.

 print(n, s[n])

 print(n, s[n:n + 2])

 print(n, s[n:n + 3])

 print(n, s[n:n + 4:2])

 print(n, s[n:n + 6:2])

Output

2 c

2 cd

2 cde

2 ce

2 ceg

3 d

3 de

3 def

3 df

3 dfh

75
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

3.1.3 Immutability

Q5. What are called immutable data types in
python? Explain.

Ans : (Imp.)

In python, the string data types are immutable.
Which means a string value cannot be updated. We can
verify this by trying to update a part of the string which
will led us to an error.

Can not reassign

t= “Tutorialspoint”

print type(t)

t[0] = “M”

When we run the above program, we get the fol-
lowing output -

t[0] = “M”

TypeError: ‘str’ object does not support item as-
signment

We can further verify this by checking the memory
location address of the position of the letters of the string.

x = ‘banana’

for idx in range (0,5):

print x[idx], “=”, id(x[idx])

When we run the above program we get the fol-
lowing output. As you can see above a and a point to
same location. Also N and N also point to the same
location.

b = 91909376

a = 91836864

n = 91259888

a = 91836864

n = 91259888

3.1.4 String Functions & Methods

Q6. Explain various String Manipulation Func-
tions.

Ans : (Imp.)

1. capitalize()

This function returns the copy of the string passed
changing the first character of the string to up-
percase.

Syntax:

str.capitalize()

Example:

str = “lets test the function”;

print “str.capitalize() : “, str.capitalize() // change
the first character to uppercase

Output:

str.capitalize() : Lets test the function

2. is lower()

This method checks if the string is in lowercase
and returns true if all the characters are in lower-
case.

Syntax:

 str.islower()

 Example:

str = “lets test the function”;

print str.islower();// Returns true since all charac-
ters are in lower case.

str = “lets Test the function”;

print str.islower();

Out put:

True

False

3. isupper()

This method checks if all the characters in the
string are in uppercase. If any character is in lower
case, it would return false otherwise true.

Syntax:

str.isupper()

Example:

str = “LETS TEST THE FUNCTION”;

print str.isupper();//returns true since all charac-
ters are capital

str = “LETS TEST THE FUNCTIOn”;

print str.isupper(); // Returns false as ‘n’ is small.

Output

True

False

76
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

4. lower()

This method returns a string after converting ev-
ery character of the string into lower case.

Syntax :

str.lower()

Example:

str = “LETS TEST THE FUNCTION”;

print str.lower();//converts the string to lowercase

Output

lets test the function

5. upper()

This method returns string after converting every
character of string into lowercase

Syntax:

str.upper()

Example:

str = “lets test the function”;

print str.upper(); //Converts the string to upper-
case

Output:

LETS TEST THE FUNCTION

6. swapcase()

This method swaps the case of every character
i.e. every uppercase is converted to lowercase and
vice versa.

Syntax:

 str.swapcase()

Example:

str = “LETS test THE function”;

print str.swapcase(); //swaps the cases

Output

lets TEST the FUNCTION

7. len()

This methods returns the count of the total num-
ber of characters present in the string. It takes a
string as argument. This string is the string length
you want to calculate.

Syntax:

len(str)

Example:

str2=”Hello”

print “The length of string is “len(str2);//Returns
length of the string

Output:

The length of string is 5

8. split()

This function splits the string given as argument
on the basis of the separator provided. If nothing
is provided as argument, then it splits based on
whitespaces.

Syntax:

str.split()

Example:

str = “Lets test the function”;

print str.split() //splits by every space it encounters

print str.split(‘the’)// splits by ever “the” it encoun-
ters

Output:

 [‘Lets’, ‘test’, ‘the’, ‘function’]

[‘Lets test ‘, ‘ function’]

9. replace()

This method returns the copy of the string in which
a certain word is replaced by the given word.

Syntax:

str.replace(old,new,max)

 old: The substring to replace

 new: This is the substring which is to be replaced
in place of the old substring.

 max: This arguments defines how many substrings
would be replaced.

 Example:

str = “Lets test the function and the test should
be good”;

print str.replace(‘test’,’changed’)//Changes the
value of ‘test’ to ‘changed’

Output

Lets change the function and the changed one
should be good

10. count()

The count method returns the count of occur-
rence of the substring in the string.

Syntax:

str.count(sub,start,end)

 sub: This is the string to search.

 start. Starting index of the search.

 end: End index of the search

77
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Example:

str = “Lets test the function and the test should be good”;

sub=”t”

print “Number of t are”,str.count(sub, 1, 20) //Counts total number of ‘t’ present

Output

Number of t are 5

11. lstrip()

This method returns the string after removing all the characters from the beginning of the string.

Syntax:

str.lstrip([chars])

Example:

str = “ Lets test the function and the test should be good”;

str1 = “000000000Lets test the function and the test should be good000000”;

print str.lstrip(‘ ‘); // Removes all the beginning spaces.

print str1.lstrip(‘0’);// Removes all the zeros from starting

Output

Lets test the function and the test should be good

Lets test the function and the test should be good000000

12. rstrip()

This method returns the string after removing all the characters from the end of the string.

 Syntax:

str.rstrip([chars])

 Example:

str = “Lets test the function and the test should be good “;

str1 = “000000000Lets test the function and the test should be good000000”;

print str.rstrip(‘ ‘); // Removes all the end spaces.

print str1.rstrip(‘0’);// Removes all the zeros from the end

Output

Lets test the function and the test should be good

000000000Lets test the function and the test should be good

13. rfind()

This method returns the last index of the substring found or otherwise -1 if the substring is not present.

Syntax: str.rfind(str, beg,end)

 sub: This is the string to search.

 start. Starting index of the search.

 end: End index of the search

78
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

Example:

str = “ Lets test the function and the test should be good”;

print str.rfind(str);//String matches with itself

print str.rfind(str, 0, 10); //First 10 character matches only hence -1

print str.rfind(‘test’, 0, 20);// Found at index 7

print str.rfind(‘and’, 0, 30); // Found at index 25

Out put :

0

-1

7

25

14. is digit()

The method checks whether the strings consist only of digits and returns true or false accordingly.

Syntax:

str.isdigit()

 Example:

str = “ 1231231Lets test the function”;

print str.isdigit(); //Returns false since string contains alphanumeric characters

str=”12390877"

print str.isdigit();// Returns true since all characters are digits

Output

False

True

15. join()

This method is used to join the string based on the separator given.

Syntax:

str.join(seq)

Example:

str= “-”

seq=(“This”, “string”, “will”, “be”, “joined”)

print str.join(seq) // The string is joined by the dash.

3.1.5 String Module

Q7. Explain briefly about Python String Module.

Ans : (Imp.)

It’s a built-in module and we have to import it before using any of its constants and classes.

79
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

String Module Constants

Let’s look at the constants defined in the string module.

import string

string module constants

print(string.ascii_letters)

print(string.ascii_lowercase)

print(string.ascii_uppercase)

print(string.digits)

print(string.hexdigits)

print(string.whitespace) # ‘ \t\n\r\x0b\x0c’

print(string.punctuation)

Output:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

0123456789abcdefABCDEF

!”#$%&’()*+,-./:;?@[\]^_‘{|}~

string capwords() function

Python string module contains a single utility function - capwords(s, sep=None). This function split the
specified string into words using str.split(). Then it capitalizes each word using str.capitalize() function. Finally, it
joins the capitalized words using str.join(). If the optional argument sep is not provided or None, then leading and
trailing whitespaces are removed and words are separated with single whitespace. If it’s provided then the separator
is used to split and join the words.

s = ‘ Welcome TO \n\n JournalDev ‘

print(string.capwords(s))

Output : Welcome To Journaldev

Python String Module Classes

Python string module contains two classes - Formatter and Template.

Formatter

It behaves exactly same as str.format() function. This class become useful if you want to subclass it and
define your own format string syntax. Let’s look at a simple example of using Formatter class.

from string import Formatter

formatter = Formatter()

print(formatter.format(‘{website}’, website=’JournalDev’))

print(formatter.format(‘{} {website}’, ‘Welcome to’, website=’JournalDev’))

format() behaves in similar manner

print(‘{} {website}’.format(‘Welcome to’, website=’JournalDev’))

Out put:

Welcome to Journal Dev

Welcome to Journal Dev

80
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

3.1.6 List As Array

3.1.6.1 Array

Q8. Define array? Explain about array opera-
tions

Ans : (Imp.)

Array is an idea of storing multiple items of the
same type together and it makes easier to calculate the
position of each element by simply adding an offset to
the base value. A combination of the arrays could save
a lot of time by reducing the overall size of the code. It
is used to store multiple values in single variable. If you
have a list of items that are stored in their corresponding
variables like this:

car1 = “Lamborghini”

car2 = “Bugatti”

car3 = “Koenigsegg”

If you want to loop through cars and find a spe-
cific one, you can use the array.

The array can be handled in Python by a module
named array. It is useful when we have to manipulate
only specific data values. Following are the terms to un-
derstand the concept of an array:

Element - Each item stored in an array is called
an element.

Index - The location of an element in an array
has a numerical index, which is used to identify the po-
sition of the element.

Array Representation

An array can be declared in various ways and
different languages. The important points that should
be considered are as follows:

 Index starts with 0.

 We can access each element via its index.

 The length of the array defines the capacity to
store the elements.

Array operations

Some of the basic operations supported by an
array are as follows:

 Traverse - It prints all the elements one by one.

 Insertion - It adds an element at the given in-
dex.

 Deletion - It deletes an element at the given
index.

 Search - It searches an element using the given
index or by the value.

 Update - It updates an element at the given in-
dex.

The Array can be created in Python by importing
the array module to the python program.

from array import *
arrayName = array(typecode, [initializers])

Accessing array elements

We can access the array elements using the re-
spective indices of those elements.

import array as arr

a = arr.array(‘i’, [2, 4, 6, 8])

print(“First element:”, a[0])

print(“Second element:”, a[1])

print(“Second last element:”, a[-1])

Output :

First element: 2

Second element: 4

Second last element: 8

deleting elements from an array

The elements can be deleted from an array using
Python’s del statement. If we want to delete any value
from the array, we can do that by using the indices of a
particular element.

import array as arr

number = arr.array(‘i’, [1, 2, 3, 3, 4])

del number[2]

removing third element

print(number)

Output: array(‘i’, [1, 2, 3, 4])

Output :

array(‘i’, [10, 20, 40, 60])

Finding the length of an array

The length of an array is defined as the number
of elements present in an array. It returns an integer
value that is equal to the total number of the elements
present in that array.

81
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Syntax

len(array_name)

Array Concatenation

We can easily concatenate any two arrays using
the + symbol.

Example

a=arr.array(‘d’,[1.1, 2.1, 3.1, 2.6, 7.8])

b=arr.array(‘d’,[3.7,8.6])

c=arr.array(‘d’)

c=a+b

print(“Array c = ”,c)

Out put :

Array c= array(‘d’, [1.1, 2.1, 3.1, 2.6, 7.8, 3.7, 8.6])

3.1.7 Methods of Array

Q9. Explain various array methods in Python.

Ans : (Imp.)

Python has a set of built-in methods that you
can use on lists/arrays.

1. append()- Adds an element at the end of the list

Syntax : list.append(elmnt)

Example

Add a list to a list:

a = [“apple”, ”banana”, ”cherry”]

b = [“Ford”, ”BMW”, ”Volvo”]

a.append(b)

2. clear() - Removes all the elements from the list

Syntax : list.clear()

Example

Remove all elements from the fruits list:

fruits = [‘apple’, ’banana’, ’cherry’, ’orange’]

fruits.clear()

3. copy() - Returns a copy of the list

Syntax : list.copy()

Example

Copy the fruits list:

fruits = [‘apple’, ‘banana’, ‘cherry’, ‘orange’]

x = fruits.copy()

4. count() - Returns the number of elements with
the specified value

Syntax : list.count(value)

Return the number of times the value “cherry”
appears in the fruits list:

fruits = [‘apple’, ’banana’, ’cherry’]

x = fruits.count(“cherry”)

5. extend() - Add the elements of a list (or any
iterable), to the end of the current list

Syntax :list.extend(iterable)

Example

Add a tuple to the fruits list:

fruits = [‘apple’, ’banana’, ’cherry’]

points = (1, 4, 5, 9)

fruits.extend(points)

6. index() - Returns the index of the first element
with the specified value

Syntax : list.index (elmnt)

Example

What is the position of the value 32:

fruits = [4, 55, 64, 32, 16, 32]

x = fruits.index (32)

7. insert() - Adds an element at the specified posi-
tion

Syntax : list.insert(pos, elmnt)

Insert the value “orange” as the second element
of the fruit list:

fruits = [‘apple’, ’banana’, ’cherry’]

fruits.insert(1, ”orange”)

8. pop() - Removes the element at the specified
position

Syntax : list.pop(pos)

eturn the removed element:

fruits = [‘apple’, ’banana’, ’cherry’]

x = fruits.pop(1)

9. remove() -Removes the first item with the speci-
fied value

Syntax : list.remove(elmnt)

Remove the “banana” element of the fruit list:

82
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

fruits = [‘apple’, ’banana’, ’cherry’]

fruits.remove(“banana”)

10. reverse() - Reverses the order of the list

Syntax :list.reverse()

Reverse the order of the fruit list:

fruits = [‘apple’, ’banana’, ’cherry’]

fruits.reverse()

11. sort() - Sorts the list

Syntax : list.sort(reverse=True|False, key = my
Func)

Example

Sort the list alphabetically:

cars = [‘Ford’, ’BMW’, ’Volvo’]

cars. sort ()

3.2 LISTS

3.2.1 List Operations

Q10. What are lists ? How to create a list ?

Ans :
Python offers a range of compound data types

often referred to as sequences. List is one of the most
frequently used and very versatile data type used in Py-
thon.

Creating a list

In Python programming, a list is created by plac-
ing all the items (elements) inside a square bracket [],
separated by commas.

It can have any number of items and they may
be of different types (integer, float, string etc.).

empty list

my_list =[]

list of integers

my_list =[1,2,3]

list with mixed datatypes

my_list =[1,”Hello”,3.4]

Also, a list can even have another list as an item.
This is called nested list.

nested list

my_list = [“mouse”, [8, 4, 6], [‘a’]]

Q11. Write about indexing in lists.

Or

How to access elements from a list?

Ans : (Imp.)

There are various ways in which we can access
the elements of a list. Indexing is one way to access the
list.

List Index

We can use the index operator [] to access an
item in a list. Index starts from 0. So, a list having 5
elements will have index from 0 to 4.

Trying to access an element other that this will
raise an IndexError. The index must be an integer. We
can’t use f loat or other types, this will result
into TypeError.

Nested list are accessed using nested indexing.

my_list = [‘p’,’r’,’o’,’b’,’e’]

Output: p

print(my_list[0])

Output: o

print(my_list[2])

Output: e

print(my_list[4])

Error! Only integer can be used for indexing

my_list[4.0]

Nested List

n_list = [“Happy”, [2,0,1,5]]

Nested indexing
Output: a

print(n_list[0][1])

Output: 5

print(n_list[1][3])

Negative indexing

Python allows negative indexing for its sequences.
The index of -1 refers to the last item, -2 to the second
last item and so on.

my_list = [‘p’,’r’,’o’,’b’,’e’]

Output: e

print(my_list[-1])

83
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Output: p

print(my_list[-5])

Updating Lists

You can update single or multiple elements of
lists by giving the slice on the left-hand side of the as-
signment operator, and you can add to elements in a
list with the append() method. For example “

#!/usr/bin/python

list =[‘physics’,’chemistry’,1997,2000];

print”Value available at index 2 : “

print list[2]

list[2]=2001;

print”New value available at index 2 : “

print list[2]

Note: append() method is discussed in subse-
quent section.

When the above code is executed, it produces
the following result -

Value available at index 2 :

1997

New value available at index 2 :

2001

The concatenation (+) and repetition (*) opera-
tors work in the same way as they were working with the
strings.

Iterating a List

A list can be iterated by using a for - in loop. A
simple list containing four strings, which can be iterated
as follows.

list = [“John”, ”David”, ”James”, ”Jonathan”]

for i in list:

The i variable will iterate over the elements of the
List and contains each element in each iteration.

print(i)

Output:

John

David

James

Jonathan

Adding elements to the list

Python provides append() function which is used
to add an element to the list. However, the append()
function can only add value to the end of the list.

Consider the following example in which, we are
taking the elements of the list from the user and printing
the list on the console.

#Declaring the empty list

l =[]

Number of elements will be entered by the
user

n = int (input (“Enter the number of elements in
the list:”))

for loop to take the input

for i in range(0,n):

The input is taken from the user and added to
the list as the item

l.append(input(“Enter the item:”))

print(“printing the list items..”)

traversal loop to print the list items

for i in l:

print(i, end = ” ”)

Output:

Enter the number of elements in the list:5

Enter the item:25

Enter the item:46

Enter the item:12

Enter the item:75

Enter the item:42

printing the list items

25 46 12 75 42

Removing elements from the list

Python provides the remove() function which is
used to remove the element from the list. Consider the
following example to understand this concept.

Example -

list = [0,1,2,3,4]

print(“printing original list: ”);

for i in list:

84
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

 print(i,end=” ”)

list.remove(2)

print(“\nprinting the list after the removal of first element...”)

for i in list:

 print(i,end=” ”)

Out put:

printing original list:

0 1 2 3 4

printing the list after the removal of first element...

0 1 3 4

Let’s see how the list responds to various operators.

Consider a Lists l1 = [1, 2, 3, 4], and l2 = [5, 6, 7, 8] to perform operation.

Operator Description Example

Repetition The repetition operator enables the list elements L1*2 = [1, 2, 3, 4, 1, 2, 3, 4]

to be repeated multiple times.

Concatenation It concatenates the list mentioned on either side of 11 + 12 = [1, 2, 3, 4, 5, 6, 7, 8]

the operator.

Membership It returns true if a particular item exists in a particular print(2 in l1) prints True.

list otherwise false.

Iteration The for loop is used to iterate over the list elements. for i in l1: print (i)

Output

1

2

3

4

Length It is used to get the length of the list len(l1) = 4

3.2.2 LIST SLICES

Q12. How to slice lists in Python?
(OR)

What is list slicing?

Ans :
List Slicing

Python has an amazing feature just for that called slicing. Slicing can not only be used for lists, tuples or
arrays, but custom data structures as well, with the slice object, which will be used later on in this article.

We can access a range of items in a list by using the slicing operator (colon).

85
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Like the list data type that has items that correspond to an index number, each of a string’s characters also
correspond to an index number, starting with the index number 0.

For the string Sammy Shark! the index breakdown looks like this:

As you can see, the first S starts at index 0, and the string ends at index 11 with the ! symbol.

We also notice that the whitespace character between Sammy and Shark also corresponds with its own index
number. In this case, the index number associated with the whitespace is 5.

The exclamation point (!) also has an index number associated with it. Any other symbol or punctuation
mark, such as *#$&.;?, is also a character and would be associated with its own index number.

The fact that each character in a Python string has a corresponding index number allows us to access and
manipulate strings in the same ways we can with other sequential data types.

Accessing Characters by Positive Index Number

By referencing index numbers, we can isolate one of the characters in a string. We do this by putting the
index numbers in square brackets. Let’s declare a string, print it, and call the index number in square brackets:

ss = “Sammy Shark!”

print(ss[4])

Output

y

When we refer to a particular index number of a string, Python returns the character that is in that position.
Since the letter y is at index number 4 of the string ss = “Sammy Shark!”, when we print ss[4] we receive y as
the output.

Index numbers allow us to access specific characters within a string.

Accessing Characters by Negative Index Number

If we have a long string and we want to pinpoint an item towards the end, we can also count backwards
from the end of the string, starting at the index number -1.

For the same string Sammy Shark! the negative index breakdown looks like this:

86
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

By using negative index numbers, we can print
out the character r, by referring to its position at the -3
index, like so:

print(ss[-3])

Output

r

Using negative index numbers can be advanta-
geous for isolating a single character towards the end of
a long string.

Syntax:

a[start:end] # items start through end-1

a[start:] # items start through the rest of the array

a[:end] # items from the beginning through end-1

a[:] # a copy of the whole array

There is also the step value, which can be used
with any of the above:

a[-1] # last item in the array

a[-2:] # last two items in the array

a[:-2] # everything except the last two items

Python is kind to the programmer if there are
fewer items than you ask for. For example, if you ask
for a[:-2] and a only contains one element, you get
an empty list instead of an error. Sometimes you would
prefer the error, so you have to be aware that this may
happen.

For Example consider the list

>>> a = [1, 2, 3, 4, 5, 6, 7, 8]

Advanced Python Slicing (Increments)

There is also an optional second clause that we
can add that allows us to set how the list’s index will
increment between the indexes that we’ve set.

Syntax :

a[start:end:step] # start through not past end,
by step

The key point to remember is that the :end value
represents the first value that is not in the selected slice.
So, the difference between end and start is the num-
ber of elements selected (if step is 1, the default).

The other feature is that start or end may be
a negative number, which means it counts from the
end of the array instead of the beginning. So:

In the example above, say that we did not want
that 3 returned and we only want nice, even numbers
in our list.

>>>a[1:4:2]

[2,4]

Python Slicing in Reverse

Alright, how about if we wanted our list to be
backwards use negative index.

>>>a[::-1]

[8,7,6,5,4,3,2,1]

Example program for list slicing

my_list = [‘p’,’r’,’o’,’g’,’r’,’a’,’m’,’i’,’z’]

elements 3rd to 5th

print(my_list[2:5])

elements beginning to 4th

print(my_list[:-5])

elements 6th to end

print(my_list[5:])

elements beginning to end

print(my_list[:])

3.2.3 List Methods

Q13. Write about various methods used in lists.

Ans : (Imp.)

Python List Methods

Methods that are available with list object in Py-
thon programming are tabulated below.

They are accessed as list.method(). Some of the
methods have already been used above.

1. Append() method

The append() method adds an item to the end of
the list.

The append() method adds a single item to the
existing list. It doesn’t return a new list; rather it
modifies the original list.

The syntax of append() method is:

list.append(item)

append() Parameters

87
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

The append() method takes a single item & and
adds it to the end of the list.

The item can be numbers, strings, another list,
dictionary etc.

Return Value from append()

As mentioned, the append() method only modi-
fies the original list. It doesn’t return any value.

Example 1: Adding Element to a List

animal list

animal = [‘cat’, ‘dog’, ‘rabbit’]

an element is added

animal.append(‘guinea pig’)

#Updated Animal List

print(‘Updated animal list: ‘, animal)

2. Extend() method

The extend() extends the list by adding all items
of a list (passed as an argument) to the end.

The syntax of extend() method is:

list1.extend(list2)

Here, the elements of list2 are added to the end
of list1.

extend() Parameters

As mentioned, the extend() method takes a single
argument (a list) and adds it to the end.

If you need to add elements of other native
datatypes (like tuple and set) to the list, you can
simply use:

add elements of a tuple to list

list.extend(list(tuple_type))

or even easier

list.extend(tuple_type)

Return Value from extend()

The extend() method only modifies the original
list. It doesn’t return any value.

Example 1: Using extend() Method

language list

language = [‘French’, ‘English’, ‘German’]

another list of language

language1 = [‘Spanish’, ‘Portuguese’]

language.extend(language1)

Extended List

print(‘Language List: ‘, language)

3. Insert() method

The insert() method inserts the element to the list
at the given index.

The syntax of insert() method is

list.insert(index, element)

insert() Parameters

The insert() function takes two parameters:

 index - position where element needs to be in-
serted

 element - this is the element to be inserted in the
list

Return Value from insert()

The insert() method only inserts the element to
the list. It doesn’t return any value.

Example 1: Inserting Element to List

vowel list

vowel = [‘a’, ‘e’, ‘i’, ‘u’]

inserting element to list at 4th position

vowel.insert(3, ‘o’)

print(‘Updated List: ‘, vowel)

4. Remove() method

The remove() method searches for the given ele-
ment in the list and removes the first matching
element.

The syntax of remove() method is:

list.remove(element)

remove() Parameters

The remove() method takes a single element as
an argument and removes it from the list.

If the element(argument) passed to the remove()
method doesn’t exist, valueError exception is
thrown.

Return Value from remove()

The remove() method only removes the given el-
ement from the list. It doesn’t return any value.

Example 1: Remove Element From The List

88
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

animal list

animal = [‘cat’, ‘dog’, ‘rabbit’, ‘guinea pig’]

‘rabbit’ element is removed

animal.remove(‘rabbit’)

#Updated Animal List

print(‘Updated animal list: ‘, animal)

5. pop() method

The pop() method removes and returns the ele-
ment at the given index (passed as an argument)
from the list.

The syntax of pop() method is:list.pop(index)

 pop() parameter

The pop() method takes a single argument (in-
dex) and removes the element present at that index from
the list.

If the index passed to the pop() method is not in
the range, it throws IndexError: pop index out of
range exception.

The parameter passed to the pop() method is
optional. If no parameter is passed, the default index -
1 is passed as an argument which returns the last ele-
ment.

 Return Value from pop()

The pop() method returns the element present at
the given index.

Also, the pop() method removes the element at
the given index and updates the list.

Example 1:

 Print Element Present at the Given Index from
the List

programming language list

language = [‘Python’, ‘Java’, ‘C++’, ‘French’, ‘C’]

Return value from pop()

When 3 is passed

return_value = language.pop(3)

print(‘Return Value: ‘, return_value)

Updated List

print(‘Updated List: ‘, language)

Python List clear()

6. Index() method

The index() method searches an element in the
list and returns its index.

In simple terms, index() method finds the given
element in a list and returns its position.

However, if the same element is present more
than once, index() method returns its smallest/
first position.

Note: Index in Python starts from 0 not 1.

The syntax of index() method for list is:

list.index(element)

index() Parametersx

The index method takes a single argument:

 element - element that is to be searched.

Return value from index()

The index() method returns the index of the ele-
ment in the list.

If not found, it raises a ValueError exception in-
dicating the element is not in the list

Example 1: Find position of element in the list

vowels list

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘i’, ‘u’]

element ‘e’ is searched

index = vowels.index(‘e’)

index is printed

print(‘The index of e:’, index)

element ‘i’ is searched

index = vowels.index(‘i’)

only the first index of the element is printed

print(‘The index of i:’, index)

7. Count() method

The count() method returns the number of oc-
currences of an element in a list.

In simple terms, count() method counts how
many times an element has occurred in a list and
returns it.

The syntax of count() method is:

list.count(element)

count() Parameters

89
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

The count() method takes a single argument

 element - element whose count is to be found.

Return value from count()

The count() method returns the number of oc-
currences of an element in a list.

Example 1:

Count the occurrence of an element in the list

vowels list

vowels = [‘a’, ‘e’, ‘i’, ‘o’, ‘i’, ‘u’]

count element ‘i’

count = vowels.count(‘i’)

print count

print(‘The count of i is:’, count)

count element ‘p’

count = vowels.count(‘p’)

print count

print(‘The count of p is:’, count)

8. Sort() method

The sort() method sorts the elements of a given
list.

The sort() method sorts the elements of a
given list in a specific order - Ascending or De-
scending.

The syntax of sort() method is:list.sort(key=...,
reverse=...)

Alternatively, you can also use Python’s in-built
function sorted() for the same purpose.

sorted(list, key=..., reverse=...)

Note: Simplest difference between sort() and
sorted() is: sort() doesn’t return any value while,
sorted() returns an iterable list.

sort() Parameters

By default, sort() doesn’t require any extra pa-
rameters. However, it has two optional parameters:

 reverse - If true, the sorted list is reversed (or sorted
in Descending order)

 key - function that serves as a key for the sort
comparison

Return value from sort()

sort() method doesn’t return any value. Rather, it
changes the original list.

If you want the original list, use sorted().

Example 1: Sort a given list

vowels list

vowels = [‘e’, ‘a’, ‘u’, ‘o’, ‘i’]

sort the vowels

vowels.sort()

print vowels

print(‘Sorted list:’, vowels)

9. reverse() method

The reverse() method reverses the elements of a
given list.

The syntax of reverse() method is:

list.reverse()

reverse() parameter

The reverse() function doesn’t take any argument.

Return Value from reverse()

The reverse() function doesn’t return any value.
It only reverses the elements and updates the list.

Example 1: Reverse a List

Operating System List

os = [‘Windows’, ‘macOS’, ‘Linux’]

print(‘Original List:’, os)

List Reverse

os.reverse()

updated list

print(‘Updated List:’, os)

9. Copy() method

The copy() method returns a shallow copy of the
list.

A list can be copied with = operator. For ex-
ample:

old_list = [1, 2, 3]

 new_list = old_list

The problem with copying the list in this way is
that if you modify the new_list, the old_list is

90
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

also modified.

old_list = [1, 2, 3]

new_list = old_list

add element to list

new_list.append(‘a’)

print(‘New List:’, new_list)

print(‘Old List:’, old_list)

3.2.4 List Loops

Q14. Explain how do you perform iterations in
loops.

Ans : (Imp.)

Iterating Through a List

However, programs also need to do repetitive
things very quickly. We are going to use a for-loop in
this exercise to build and print various lists.

Before you can use a for-loop, you need a way
to store the results of loops somewhere. The best way
to do this is with lists. Lists are exactly what their name
says: a container of things that are organized in order
from first to last

Syntax:

hairs = [‘brown’, ‘blond’, ‘red’]

eyes = [‘brown’, ‘blue’, ‘green’]

weights = [1, 2, 3, 4]

You start the list with the [(left bracket) which
“opens” the list. Then you put each item you want in
the list separated by commas, similar to function argu-
ments. Lastly, end the list with a] (right bracket) to
indicate that it’s over. Python then takes this list and all
its contents and assigns them to the variable.

We now will build some lists using some for-
loops and print them out:

the_count=[1,2,3,4,5]

fruits=[‘apples’,’oranges’,’pears’,’apricots’]

change=[1,’pennies’,2,’dimes’,3,’quarters’]

this first kind of for-loop goes through a list

fornumberinthe_count:

print”This is count %d”%number

same as above

forfruitinfruits:

print”A fruit of type: %s”%fruit

also we can go through mixed lists too

notice we have to use %r since we don’t know what’s
in it

foriinchange:

print”I got %r”%i

we can also build lists, first start with an empty one

elements=[]

then use the range function to do 0 to 5 counts

foriinrange(0,6):

print”Adding %d to the list.”%i

append is a function that lists understand

elements.append(i)

now we can print them out too

foriinelements:

print”Element was: %d”%i

$ python ex32.py

Output:

This is count 1

This is count 2

This is count 3

This is count 4

This is count 5

A fruit of type: apples

A fruit of type: oranges

A fruit of type: pears

A fruit of type: apricots

I got 1

I got ‘pennies’

I got 2

I got ‘dimes’

I got 3

I got ‘quarters’

Adding 0 to the list.

Adding 1 to the list.

Adding 2 to the list.

91
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Adding 3 to the list.

Adding 4 to the list.

Adding 5 to the list.

Element was: 0

Element was: 1

Element was: 2

Element was: 3

Element was: 4

Element was: 5

3.2.5 Mutability

Q15. Explain about Python List Mutability.

Ans :
A single list in Python may involve various data

types like strings, integers, and objects. Furthermore, its
alteration is possible even after its creation due to
its mutable nature.

Mutable lists in Python have a definite count and
they are also ordered. Furthermore, the indexing of a list
of elements takes place in accordance with a definite
sequence. Moreover, the indexing of a list takes place
with 0 being the first index.

Each list’s element has its definite place in the
list. Furthermore, this allows duplicating of elements that
are present in the list. As such, each element in the list
has its own distinct credibility and place.

#Creating a list which contains name of Indian cities

cities = [‘Delhi’, ‘Mumbai’, ‘Kolkata’]

Printing the elements from the list cities, separated by
a comma & space

for city in cities:

print(city, end=’, ’)

Output [1]: Delhi, Mumbai, Kolkata

#Printing the location of the object created in the
memory address in hexadecimal format

print(hex(id(cities)))

Output [2]: 0x1691d7de8c8

#Adding a new city to the list cities

cities.append(‘Chennai’)

#Printing the elements from the list cities, separated by
a comma & space

for city in cities:

print(city, end=’, ’)

Output [3]: Delhi, Mumbai, Kolkata, Chennai

#Printing the location of the object created in the
memory address in hexadecimal format

print(hex(id(cities)))

Output [4]: 0x1691d7de8c8

The above example shows us that we were able
to change the internal state of the object ‘cities’ by add-
ing one more city ‘Chennai’ to it, yet, the memory ad-
dress of the object did not change. This confirms that
we did not create a new object, rather, the same object
was changed or mutated. Hence, we can say that the
object which is a type of list with reference variable name
‘cities’ is a MUTABLE OBJECT.

3.2.6 Aliasing

Q16. Explain Aliasing in lists.

Ans :
In python programming, the second name given

to a piece of data is known as an alias. Aliasing hap-
pens when the value of one variable is assigned to an-
other variable because variables are just names that store
references to actual value.

Consider a following example:

first_variable = “PYTHON”

print(“Value of first:”, first_variable)

print(“Reference of first:”, id(first_variable))

print(“..................”)

second_variable = first_variable # making an alias

print(“Value of second:”, second_variable)

print(“Reference of second:”, id(second_variable))

In the example above, first_variable is created
first and then string ‘PYTHON’ is assigned to it.
Statement first_variable = second_variable creates an
alias of first_variable because first_variable =
second_variable copies reference of first_variable to
second_variable.

To verify, let’s have look at the output of the above
program:

Value of first_variable: PYTHON

Reference of first_variable: 2904215383152

..............

92
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

Value of second_variable: PYTHON

Reference of second_variable: 2904215383152

From the output of the above program, it is clear
that first_variable and second_variable have the
same reference id in memory.

So, both variables point to the same string object
‘PYTHON’.

And in Python programming, when the value of
one variable is assigned to another variable,
aliasing occurs in which reference is copied rather
than copying the actual value.

3.2.7 Cloning List

Q17. What is list Cloning? Explain list cloning
techniques.

Ans :
Cloning or copying a list is simply creating an-

other list that has the same elements as the original list.
Elements in a list can be copied into another list by
various methods, we will be discussing most of them in
this tutorial. For example,

Input: Original list- [3, 6, 12, 14, 78, 24, 56]

Output: After cloning- [3, 6, 12, 14, 78, 24, 56]

Input: Original list- [14, 7, 9, 13, 46, 12]

Output: After cloning- [14, 7, 9, 13, 46, 12]

For cloning a list in Python we can follow these
approaches-

1. By following the Slicing technique

2. By using extend() method

3. By using list() method

4. By using list comprehension

5. By using append() method

6. By using copy() method

1. Slicing Technique

We will use list slicing technique to access and
copy the list elements in another list. This is the
easiest method to modify any list and make a
copy of the list along with the reference. This
method takes about 0.039 seconds and is the
fastest in cloning a list.

Algorithm

Follow the algorithm to understand the approach
better.

Step 1- Take input of list from user

Step 2- Declare a new list which will be the copy

Step 3- Copy the elements using slicing operator
(:) in the new list

Step 4- Print the new list which will be the copy
of the original list

Example 1

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have taken an input of elements of the list
and copied the list to a new list by slicing.

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

e=int(input(“Enter element of list “))

 li.append(e)

print(“Original list: “,li)

#cloning

list_copy = li[:]

print(“After cloning: “,list_copy)

Enter size of list 5

Enter element of list 3

Enter element of list 6

Enter element of list 1

Enter element of list 2

Enter element of list 3

Original list: [3, 6, 1, 2, 3]

After cloning: [3, 6, 1, 2, 3]

2. extend()

A list can be copied into a new list by using the
in-built extend() function. This will add each ele-
ment of the original list to the end of the new list.
This method takes around 0.053 seconds to com-
plete.

Algorithm

Follow the algorithm to understand the approach
better.

Step 1- Take input of list from user

Step 2- Declare a new list which will be the copy

93
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Step 3 -Copy the elements using extend() in the
new list

Step 4- Print the new list which will be the copy
of the original list

Example 2

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have input elements of the list from the
user and copied it into a new list using the extend() func-
tion.

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

e=int(input(“Enter element of list “))

li.append(e)

print(“Original list: “,li)

#cloning

list_copy =[]

list_copy.extend(li)

print(“After cloning: “,list_copy)

Output

Enter size of list 6

Enter element of list 3

Enter element of list 5

Enter element of list 12

Enter element of list 78

Enter element of list 16

Enter element of list 35

Original list: [3, 5, 12, 78, 16, 35]

After cloning: [3, 5, 12, 78, 16, 35]

3. list()

We will simply use the list() function to copy the
existing list into another list in this approach. This method
takes about 0.075 seconds to complete.

Algorithm

Follow the algorithm to understand the approach
better.

Step 1- Take input of list from user

Step 2- Declare a new list which will be the copy
of the original list

Step 3- Initialise the new list and pass the origi-
nal list in the list() function

Step 4- Print the new list which will be the copy
of the original list

Example 3

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have to input the list from the user and
copy it into a new list by using the list() function.

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

e=int(input(“Enter element of list “))

li.append(e)

print(“Original list: “,li)

#cloning

list_copy =list(li)

print(“After cloning: “,list_copy)

Output

Enter size of list 4

Enter element of list 2

Enter element of list 7

Enter element of list 9

Enter element of list 10

Original list: [2, 7, 9, 10]

After cloning: [2, 7, 9, 10]

94
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

4. list comprehension

In this approach, we will use the list comprehen-
sion method. List comprehension is a shorter syntax for
creating a new list based on the values of an existing
list. We can create a copy of the list using list compre-
hension. The method takes about 0.217 seconds to com-
plete.

Algorithm

Follow the algorithm to understand the approach
better.

Step 1- Take input of list from user

Step 2-Declare a new list which will be the copy of the
original list

Step 3- Use list comprehension to copy the elements in
the list

Step 4- All the values in the original list will be stored in
the new list

Step 5- Print the new list which will be the copy of the
original list

Ex: 4

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have to take input the list from the user
and copied it into a new list by using the list comprehen-
sion syntax.

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

e=int(input(“Enter element of list “))

li.append(e)

print(“Original list: “,li)

#cloning

list_copy =[num for num in li]

print(“After cloning: “,list_copy)

Output:

Enter size of list 7

Enter element of list 12

Enter element of list 13

Enter element of list 2

Enter element of list 24

Enter element of list 6

Enter element of list 35

Enter element of list 8

Original list: [12, 13, 2, 24, 6, 35, 8]

After cloning: [12, 13, 2, 24, 6, 35, 8]

5. append()

append() function simply adds the element to the
last position of a list. This can be used for copy-
ing elements to a new list. This method takes
around 0.325 seconds to complete and is the
slowest method for cloning a list.

Algorithm

Follow the algorithm to understand the approach
better.

Step 1- Take input of list from user

Step 2-Declare a new list which will be the copy of the
original list

Step 3- Run a loop to access each element in the list

Step 4- Use append() to add each element in the new
list one by one

Step 5- Print the new list which will be the copy of the
original list

Ex: 5

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have taken an input of elements of the list
from the user and added each element of the list one by
one to a new list using append().

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

 e=int(input(“Enter element of list “))

 li.append(e)

print(“Original list: “,li)

#cloning

list_copy =[]

for num in li:

 list_copy.append(num)

print(“After cloning: “,list_copy)

95
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Output

Enter size of list 8

Enter element of list 2

Enter element of list 3

Enter element of list 4

Enter element of list 5

Enter element of list 6

Enter element of list 8

Enter element of list 9

Enter element of list 10

Original list: [2, 3, 4, 5, 6, 8, 9, 10]

After cloning: [2, 3, 4, 5, 6, 8, 9, 10]

6. copy()

copy() is an in-built method to copy all the ele-
ments from one list to another. This method takes
around 1.488 seconds to complete and takes the
most time out of all the approaches.

Algorithm

Follow the algorithm to understand the approach better.

Step 1- Take input of list from user

Step 2- Declare a new list

Step 3- copy the original list to the new list using the
copy() function

Step 4- Print the new list

Ex: 6

Look at the program to understand the imple-
mentation of the above-mentioned approach. In this
program, we have taken an input of elements of the list
from the user and added each element of the list one by
one to a new list using append().

li=[]

n=int(input(“Enter size of list “))

for i inrange(0,n):

 e=int(input(“Enter element of list “))

 li.append(e)

print(“Original list: “,li)

#cloning

list_copy = li.copy()

print(“After cloning: “,list_copy)

Output:

Enter size of list 5

Enter element of list 12

Enter element of list 13

Enter element of list 14

Enter element of list 25

Enter element of list 26

Original list: [12, 13, 14, 25, 26]

After cloning: [12, 13, 14, 25, 26]

3.2.8 List Parameters

Q18. Explain list parameters

Ans :
List () Parameters

The syntax followed to apply the function of the
list () Python is as provided below.

list (iterable)

Here, iterable refers to the sequence of collection
of data. It can also be an iterator object. Note that it is
an optional parameter. Thus, if no parameter is passed
in the list () function, then the compiler will not show an
error in the code.

The object that is passed as the iterable can be in
the form of a sequence such as string or tuple or a col-
lection such as a set or a dictionary.

Return Value from the list ()

If there are no parameters in the list ()
Python function, then it will return an empty list. How-
ever, if any specific and acceptable parameter is passed,
then the function will create a list that consists of the
items present in the iterable.

Example 1: Create lists from string, tuple, and
lists

The program given below will create an empty
list, a list through the string, one that has a tuple in its
parameter, and the last one that includes a list.

print(list())

even = “246810”

print(list(even))

even1 =(“2”, “4”, “6”, “8”, “10”)

96
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

print(list(even1))

even2 =[“2”, “4”, “6”, “8”, “10”]

print(list(even2))

The output for all the lists that have parameters
will be the same. Thus, using the list () function, one
can create a list using any type of sequence.

3.3 TUPLE

3.3.1 Benefit Of Tuple

Q19. What is tuple in python? What are its ad-
vantages

Ans : (Imp.)

In Python programming, a tuple is similar to
a list. The difference between the two is that we cannot
change the elements of a tuple once it is assigned whereas
in a list, elements can be changed.

Advantages of Tuple over List

Since, tuples are quite similar to lists, both of
them are used in similar situations as well.

However, there are certain advantages of imple-
menting a tuple over a list. Below listed are some of the
main advantages:

 We generally use tuple for heterogeneous (differ-
ent) datatypes and list for homogeneous (simi-
lar) datatypes.

 Since tuple are immutable, iterating through tuple
is faster than with list. So there is a slight perfor-
mance boost.

 Tuples that contain immutable elements can be
used as key for a dictionary. With list, this is not
possible.

 If you have data that doesn’t change, implement-
ing it as tuple will guarantee that it remains write-
protected.

3.3.2 Operations On Tuple

Q20. Explain the number of operations that can
be performed upon tuples

Ans : (Imp.)

1. Define Tuples in Two ways

To create a tuple, assign a single variable with
multiple values separated by commas in paren-
theses.

Code:

type1 =(1,3,4,5,’test’)

print(type1)

Output:

To create a tuple, assign a single variable with
multiple values separated by commas without pa-
rentheses. Please refer introduction for minor dif-
ference.

Code:

type2=1,4,6,’exam’,’rate’

print(type2)

Output:

We can define an empty tuple:

Code:

a =()

print(a)

Output:

2. Accessing Items in a Tuple

One can access the elements of a tuple in mul-
tiple ways, such as indexing, negative indexing,
range, etc.

Code:

access_tuple =(‘a’,’b’,1,3,[5,’x’,’y’,’z’])

print(access_tuple[0])

print(access_tuple[4][1])

Output:

97
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

In case the index value is out of the scope of tuple, it will through the following error.

Code:

print(access_tuple[5])

Output:

We can find the use of negative indexing on tuples.

Code:

access_tuple =(‘a’,’b’,1,3)

print(access_tuple[-1])

Output:

We can find a range of tuples.

Code:

access_tuple =(‘a’,’b’,1,3,5,’x’,’y’, ‘z’)

print(access_tuple[2:5])

Output:

3. Concatenation Operation on Tuples

Concatenation simply means linking things together. We can concatenate tuples together. Code:

Tuple1 =(1,3,4)

Tuple2 =(‘red’,’green’,’blue’)

print(Tuple1 + Tuple2)

Output:

4. Nesting Operation on Tuples

Nesting simply means the place or store one or more inside the other.

98
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

Code:

Tuple1 =(1,3,4)

Tuple2 =(‘red’,’green’,’blue’)

Tuple3 =(Tuple1, Tuple2)

print(Tuple3)

Output:

5. Slicing Operation on Tuples

As tuples are immutable, we can take slices of one tuple and place them in another tuple.

Code:

Tuple1 =(1,3,4,’test’,’red’)

Sliced=(Tuple1[2:])

print(Sliced)

Output:

6. Finding length of Tuples

We can find the length of the tuple to see how many values are in there a tuple.

Code:

Tuple1 =(1,3,4,’test’,’red’)

print(len(Tuple1))

Output:

7. Changing a Tuple

As we know that the tuples are immutable. This means that items defined in a tuple cannot be changed
once the tuple has been created.

Code:

Tuple1 =(1,3,4,’test’,’red’)

Tuple1[1]=4

Output:

99
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Here we have one case, if the item in tuple itself is a mutable data type like a list, its nested items can be
changed.

Code:

tuple1 =(1,2,3,[4,5])

tuple1[3][0]=7

print(tuple1)

Output:

8. Deleting a Tuple

As we have discussed earlier, we cannot change the items in a tuple. which also suggests that we cannot
remove items from the tuple.

Code:

Tuple1 =(1,3,4,’test’,’red’)

del(Tuple1[1])

Output:

But one can delete a tuple by using the keyword del() with a tuple.

Code:

Tuple1 =(1,3,4,’test’,’red’)

del(Tuple1)

print(Tuple1)

Output:

9. Membership Test on Tuples

This can be tested whether an item exists in a tuple or not; the keyword for this is in.

Code:

Tuple1 =(1,3,4,’test’,’red’)

print(1in Tuple1)

print(5in Tuple1)

Output:

100
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

3.3.3 Tuple Methods

Q20. Explain about various Tuple methods.

Ans :
Python Tuples is an immutable collection of that

are more like lists. Python Provides a couple of methods
to work with tuples. In this article, we will discuss these
two methods in detail with the help of some examples.

1. Count() Method

The count() method of Tuple returns the number
of times the given element appears in the tuple.

Syntax:

tuple.count(element)

Where the element is the element that is to be
counted.

Example 1: Using the Tuple count() method

Creating tuples

Tuple1 =(0, 1, 2, 3, 2, 3, 1, 3, 2)

Tuple2 =(‘python’, ‘geek’, ‘python’,’for’, ‘java’,
‘python’)

 # count the appearance of 3

res =Tuple1.count(3)

print(‘Count of 3 in Tuple1 is:’, res)

count the appearance of python

res =Tuple2.count(‘python’)

print(‘Count of Python in Tuple2 is:’, res)

Output:

Count of 3 in Tuple1 is: 3

Count of Python in Tuple2 is: 3

2. Index() Method

The Index() method returns the first occurrence
of the given element from the tuple.

Syntax:

tuple.index(element, start, end)

Parameters:

 element : The element to be searched.

 start (Optional) : The starting index from where
the searching is started

 end (Optional): The ending index till where the
searching is done

Note: This method raises a ValueError if the el-
ement is not found in the tuple.

Example 1: Using Tuple Index() Method

Creating tuples

Tuple=(0, 1, 2, 3, 2, 3, 1, 3, 2)

getting the index of 3

res =Tuple.index(3)

print(‘First occurrence of 3 is’, res)

 # getting the index of 3 after 4th

index

res =Tuple.index(3, 4)

print(‘First occurrence of 3 after 4th index is:’, res)

Output:

First occurrence of 3 is 3

3.3.4 Tuple Assignment

Q21. Explain about Tuple assignment.

Ans : (Imp.)

An assignment to all of the elements in a tuple
using a single assignment statement.

 Python has a very powerful tuple assignment fea-
ture that allows a tuple of variables on the left of
an assignment to be assigned values from a tuple
on the right of the assignment.

 The left side is a tuple of variables; the right side
is a tuple of values.

 Each value is assigned to its respective variable.

 All the expressions on the right side are evaluated
before any of the assignments. This feature makes
tuple assignment quite versatile.

 Naturally, the number of variables on the left and
the number of values on the right have to be the
same.

>>> (a, b, c, d) = (1, 2, 3)

ValueError: need more than 3 values to unpack

Example:

- It is useful to swap the values of two variables.
With conventional assignment statements, we

101
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

have to use a temporary variable. For example,
to swap a and b:

Swap two numbers
a=2;b=3
print(a,b)
temp = a
a = b
b = temp
print(a,b)
Output:
(2, 3)
(3, 2)
>>>
- Tuple assignment solves this problem neatly:

(a, b) = (b, a)
- One way to think of tuple assignment is as tuple

packing/unpacking.
In tuple packing, the values on the left are ‘packed’
together in a tuple:
>>> b = (“George”, 25, “20000”)
tuple packing

- In tuple unpacking, the values in a tuple on the
right are ‘unpacked’ into the variables/names on
the right:
>>> b = (“George”, 25, “20000”)
tuple packing
>>> (name, age, salary) = b
tuple unpacking
>>> name
‘George’
>>> age
25
>>> salary
‘20000’

- The right side can be any kind of sequence
(string,list,tuple)

Example:
- To split an email address in to user name and a

domain
>>> mailid=’god@abc.org’
>>> name,domain=mailid.split(‘@’)
>>> print name
god
print (domain)
abc.org

3.3.5 Tuple As Return Value

Q22. Write about Tuple as a return value for the
function.

Ans : (Imp.)

Functions can return tuples as return values. This
is very useful - we often want to know some batsman’s
highest and lowest score, or we want to find the mean
and the standard deviation, or we want to know the
year, the month, and the day, or if we’re doing some
ecological modeling we may want to know the number
of rabbits and the number of wolves on an island at a
given time. In each case, a function (which can only
return a single value), can create a single tuple holding
multiple elements.

For example, we could write a function that re-
turns both the area and the circumference of a circle of
radius r.

def circleInfo(r):

“”” Return (circumference, area) of a circle of
radius r “””

 c = 2 * 3.14159 * r

 a = 3.14159 * r * r

 return (c, a)

print(circleInfo(10))

Example:

The built-in function divmod takes two argu-
ments and returns a tuple of two values, the quotient
and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> quot

2

>>> rem

1

Here is an example of a function that returns a tuple:

def min_max(t):

 return min(t), max(t)

102
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

max and min are built-in functions that find the larg-
est and smallest elements of a sequence. min_max
computes both and returns a tuple of two values.

3.3.6 Tuple As Argument

Q23. Explain about how tuples are used as func-
tion arguments.

Ans : (Imp.)

Tuples have many applications in all the domains
of Python programming. They are immutable and hence
are important containers to ensure read-only access, or
keeping elements persistent for more time. Usually, they
can be used to pass to functions and can have different
kinds of behavior. Different cases can arise.

Case 1: fnc(a, b) – Sends a and b as separate ele-
ments to fnc.

Case 2: fnc((a, b)) – Sends (a, b), whole tuple as 1
single entity, one element.

Case 3: fnc(*(a, b)) – Sends both, a and b as in Case
1, as separate integers.

The code below demonstrates the working of all cases :

Python3 code to demonstrate working of

Tuple as function arguments

 # function with default arguments

def fnc(a=None, b=None):

 print(“Value of a : “ + str(a))

 print(“Value of b : “ + str(b))

Driver code

if __name__ == “__main__” :

 # initializing a And b

 a = 4

 b = 7

 # Tuple as function arguments

 # Case 1 - passing as integers

 print(“The result of Case 1 : “)

 fnc(a, b)

 # Tuple as function arguments

 # Case 2 - Passing as tuple

 print(“The result of Case 2 : “)
 fnc((a, b))

 # Tuple as function arguments

 # Case 3 - passing as pack/unpack

 # operator, as integer

 print(“The result of Case 3 : “)

 fnc(*(a, b))

Output :

The result of Case 1 :

Value of a : 4

Value of b : 7

The result of Case 2 :

Value of a : (4, 7)

Value of b : None

The result of Case 3 :

Value of a : 4

Value of b : 7

3.4 DICTIONARIES

3.4.1 Operations On Dictionary

Q24. What are dictionaries in python? Explain
the operations that can be peformed on dic-
tionaries.

Ans :
Dictionaries are know as hash tables in other pro-

gramming languages, these provide us a mutable asso-
ciative array type, through two elements, a key and a
value, these are totally related. This type of structure is
very efficient for data searches.

It is important to know, that Python dictionaries
have a restriction where the keys must be an immutable
data type, the goal is keeping the dictionary consistent.
On the other hand, the values associated to the keys
can be any Python data type, giving the possibility to
change them after created or defined.

Dictionaries Examples:

x = {1: “one”, 2: “two”, 3: “three”}y = {‘first’:
1, (“Python”, “Year”): (“Love”, 1991)}

Dictionary operations

1. Definition operations

These operations allow us to define or create a
dictionary.

103
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

i) { }

Creates an empty dictionary or a dictionary with
some initial values.

y = {}x = {1: “one”, 2: “two”, 3: “three”}

2. Mutable operations

These operations allow us to work with dictionar-
ies, but altering or modifying their previous definition.

i) []

Adds a new pair of key and value to the dictio-
nary, but in case that the key already exists in the dictio-
nary, we can update the value.

y = {}y[‘one’] = 1y[‘two’] = 2print (y) Output:
{‘one’: 1, ‘two’: 2}y[‘two’] = ‘dos’ print (y)
Output:{‘one’: 1, ‘two’: ‘dos’}

ii) del

Del statement can be used to remove an entry
(key-value pair) from a dictionary.

y = {‘one’: 1, ‘two’: 2}print(y)Output:{‘one’: 1,
‘two’: 2}del y[‘two’]print(y)Output:{‘one’: 1}

iii) update

This method updates a first dictionary with all
the key-value pairs of a second dictionary. Keys that are
common to both dictionaries, the values from the sec-
ond dictionary override those of the first.

x = {‘one’: 0, ‘two’: 2}y = {‘one’: 1, ‘three’:
3}x.update(y)print(x)Output:{‘one’: 1, ‘two’: 2,
‘three’: 3}

3. Immutable operations

These operations allow us to work with dictionar-
ies without altering or modifying their previous
definition.

i) len

Returns the number of entries (key-value pairs) in
a dictionary.

x = {‘one’: 0, ‘two’: 2}print(len(x))Output:2

ii) keys

This method allows you to get all the keys in the
dictionary. It is often used in a “for loop” to iterate over
the content of a dictionary.

x = {‘one’: 1, ‘two’: 2}print (x.keys()) Output:
dict_keys ([‘one’, ‘two’])

iii) values

This method allows you to obtain all the values
stored in a dictionary.

x = {‘one’: 1, ‘two’: 2}print (x.values()) Output:
dict_values ([1, 2])

iv) items

Returns all the keys and their associated values
as a sequence of tuples.

x = {‘one’: 1, ‘two’: 2}print (x.items()) Output:
dict_items ([(‘one’, 1), (‘two’, 2)])

v) in

Attempting to access a key that is not in a dictio-
nary will raise an exception. To handle this exception,
you can use the in method that test whether a key exists
in a dictionary, returns True if a dictionary has a value
stored under the given key and False otherwise.

y = {‘one’: 1, ‘two’: 2}del y[‘three’] Output: Key
Error: ‘three’y = {‘one’: 1, ‘two’: 2}if ‘three’ in y:

dely[‘three’]

print(y)Output:{‘one’: 1, ‘two’: 2}

vi) get

Returns the value associated with a key if the
dictionary contains that key, in case that the dictionary
does not contain the key, you can specified a second
optional argument to return a default value, if the argu-
ment is not included get method will return None.

y = {‘one’: 1, ‘two’: 2}print (y.get (‘one’)) print
(y.get(‘three’))print(y.get(‘three’, ‘The key does not
exist.’))Output:1NoneThe key does not exist.

vii) setdefault

This method is similar to get method, it returns
the value associated with a key if the dictionary con-
tains that key, but in case that the dictionary does not
contain the key, this method will create a new element
in the dictionary (key-value pair), where the first argu-
ment in this method is the key, and the second argu-
ment is the value. The second argument is optional, but
if this is not included, the value will be None.

y = {‘one’: 1, ‘two’: 2}print(y.setdefault(‘three’,
‘3’))print(y.setdefault(‘two’, ‘dos’)) print(y) Output: 32
{‘one’: 1, ‘two’: 2, ‘three’: ‘3’}

104
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

3.4.2 Methods In Dictionary

Q25. Explain about the methods in dictionary.

Ans :
1. Copying dictionary

You can also copy the entire dictionary to a new
dictionary. For example, here we have copied our
original dictionary to the new dictionary name
“Boys” and “Girls”.

Python 2 Example

Dict = {‘Tim’: 18,’ Charlie’:12,’ Tiffany’: 22,’
Robert’:25}

Boys = {‘Tim’: 18,’Charlie’:12,’Robert’:25}

Girls = {‘Tiffany’:22}

student X=Boys.copy()

student Y=Girls.copy()

print student X

print student Y

Python 3 Example

Dict = {‘Tim’: 18,’Charlie’: 12,’ Tiffany’: 22,’
Robert’: 25}

Boys = {‘Tim’: 18,’Charlie’:12,’Robert’:25}

Girls = {‘Tiffany’:22}

studentX=Boys.copy()

studentY=Girls.copy()

print(studentX)

print(studentY)

 We have the original dictionary (Dict) with the
name and age of the boys and girls together

 But we want boys list separate from girls list, so
we defined the element of boys and girls in a
separate dictionary name “Boys” and “Girls.”

 Now again we have created new dictionary name
“student X” and “student Y,” where all the keys
and values of boy dictionary are copied into stu-
dent X, and the girls will be copied in studentY

 So now you don’t have to look into the whole list
in the main dictionary(Dict) to check who is a
boy and who is girl, you just have to print stu-
dent X if you want boys list and StudentY if you
want girls list

 So, when you run the student X and studentY
dictionary, it will give all the elements present in
the dictionary of “boys” and “girls” separately

2. Updating Dictionary

You can also update a dictionary by adding a
new entry or a key-value pair to an existing entry
or by deleting an existing entry. Here in the ex-
ample, we will add another name, “Sarah” to
our existing dictionary.

Python 2 Example

Dict = {‘Tim’: 18,’ Charlie’:12,’ Tiffany’: 22,’
Robert’:25}

Dict.update({“Sarah”:9})

print Dict

Python 3 Example

Dict = {‘Tim’: 18,’Charlie’:12,’ Tiffany’: 22,’
Robert’: 25}

Dict.update({“Sarah”:9})

print(Dict)

 Our existing dictionary “Dict” does not have the
name “Sarah.”

 We use the method Dict.update to add Sarah to
our existing dictionary

 Now run the code, it adds Sarah to our existing
dictionary

Delete Keys from the dictionary

Python dictionary gives you the liberty to delete
any element from the dictionary list. Suppose you don’t
want the name Charlie in the list, so you can remove
the key element by the following code.

Python 2 Example

Dict = {‘Tim’: 18,’Charlie’: 12,’ Tiffany’: 22,’
Robert’: 25}

del Dict [‘Charlie’]

print Dict

Python 3 Example

Dict = {‘Tim’: 18,’Charlie’:12,’ Tiffany’:22,’
Robert’:25}

del Dict [‘Charlie’]

print(Dict)

105
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

When you run this code, it should print the dictionary list without Charlie.

 We used the code del Dict

 When code executed, it has deleted the Charlie from the main dictionary

3. Dictionary items() Method

The items() method returns a list of tuple pairs (Keys, Value) in the dictionary.

Python 2 Example

Dict = {‘Tim’: 18,’Charlie’:12,’ Tiffany’:22,’ Robert’ :25}

print “Students Name: %s” % Dict.items()

Python 3 Example

Dict = {‘Tim’: 18,’Charlie’:12,’ Tiffany’:22,’ Robert’:25}

print(“Students Name: %s” % list(Dict.items()))

 We use the code items() method for our Dict.

 When code was executed, it returns a list of items (keys and values) from the dictionary

Check if a given key already exists in a dictionary

For a given list, you can also check whether our child dictionary exists in the main dictionary or not. Here we
have two sub-dictionaries “Boys” and “Girls”, now we want to check whether our dictionary Boys exist in our main
“Dict” or not. For that, we use the for loop method with else if method.

Python 2 Example

Dict = {‘Tim’: 18,’Charlie’:12,’Tiffany’:22,’Robert’:25}

Boys = {‘Tim’: 18,’Charlie’:12,’Robert’:25}

Girls = {‘Tiffany’:22}

for key in Boys.keys():

 if key in Dict.keys():

 print True

 else:

 print False

3.4.3 Difference Between List Tuple And Dictionary

Q26. Differentiate between list, tuple and dictionary.

Ans : (Imp.)

Here are the differences between List, Tuple, and Dictionary in Python:

Parameters List Tuple Dictionary

Basics A list is basically like a dynamically The tuples refer to the collections of In Python, the dictionary refers
sized array that gets declared in other various objects of Python separated to a collection (unordered) of
languages (Array list in the case of Java, by commas between them. various data types. We use
vector in the case of C++). these for storing data values

such as maps, and unlike other
data types capable of holding only
one value in the form of an ele
ment, a dictionary can hold the key:
value pair.

106
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

Homogeneity A list refers to a data structure of non A tuple also refers to a data structure A dictionary also refers to a data
homogenous type that functions to of the non-homogenous type that structure of the non-homogenous
store various elements in columns, functions to store various elements type that functions to store key
multiple rows, and single rows. in columns, multiple rows, and single -value pairs.

rows.

Representation We can represent a List by [] We can represent a Tuple by () We can represent a Dictionary
by { }

Duplicate It allows various duplicate elements. It allows various duplicate elements. The keys are not at all duplicated.
elements

Nested Among All It can be utilized in a List. It can be utilized in a Tuple. It can be utilized in a Dictionary.

Example [6, 7, 8, 9, 10] (6, 7, 8, 9, 10) {6, 7, 8, 9, 10}

Function for We can create a list using the list() We can create a tuple using the tuple() We can create a dictionary using
Creation function. function. the dict() function.

Mutation It is mutable. It means that a user can It is immutable. It means that a user It is mutable, but the keys are not
make any changes to a list. can’t make any changes to a tuple. at all duplicated.

Order It is ordered in nature. It is ordered in nature. It is ordered in nature.

Empty Elements If we want to create an empty list, If we want to create an empty tuple, If we want to create an empty
we use:l=[] we use:t=() dictionary, we use:d={ }

3.5 ADVANCED LIST PROCESSING

3.5.1 List Comprehension

Q27. Explain about list comprehension technique.

Ans : (Imp.)

A Python list comprehension consists of brackets containing the expression, which is executed for each
element along with the for loop to iterate over each element in the Python list.

Advantages of List Comprehension

 More time-efficient and space-efficient than loops.

 Require fewer lines of code.

 Transforms iterative statement into a formula.

Syntax of List Comprehension

new List = [expression(element) for element in oldList if condition]

Example 1: Iteration with List comprehension

Using list comprehension to iterate through loop

List=[character forcharacter in[1, 2, 3]]

Displaying list

print (List) Output :

[1, 2, 3]

Example 2: Even list using list comprehension

list=[i fori inrange(11) ifi %2==0]

print(list)

107
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Output :

[0, 2, 4, 6, 8, 10]

Example 3: Matrix using List comprehension

matrix =[[j forj inrange(3)] fori inrange(3)]

 print(matrix)

Output :

[[0, 1, 2], [0, 1, 2], [0, 1, 2]]

List Comprehensions vs For Loop

There are various ways to iterate through a list.
However, the most common approach is to use
the for loop. Let us look at the below example:

Empty list

List=[]

 # Traditional approach of iterating

forcharacter in’Geeks 4 Geeks!’:

 List.append(character)

 # Display list

print(List)

Output:

[‘G’, ‘e’, ‘e’, ‘k’, ‘s’, ‘ ‘, ‘4’, ‘ ‘, ‘G’, ‘e’, ‘e’, ‘k’, ‘s’, ‘!’]

List Comprehensions translate the traditional it-
eration approach using for loop into a simple formula
hence making them easy to use. Below is the approach
to iterate through a list, string, tuple, etc. using list com-
prehension.

Using list comprehension to iterate through loop

List=[character forcharacter in’Geeks 4 Geeks!’]

Displaying list

print(List)

Output:

[‘G’, ‘e’, ‘e’, ‘k’, ‘s’, ‘ ‘, ‘4’, ‘ ‘, ‘G’, ‘e’, ‘e’, ‘k’, ‘s’, ‘!’]

Time Analysis in List Comprehensions and Loop

The list comprehensions are more efficient both
computationally and in terms of coding space and time
than a for a loop. Typically, they are written in a single
line of code. The below program depicts the difference
between for loops and list comprehension based on per-
formance.

Import required module

importtime

 # define function to implement for loop

deffor_loop(n):

 result =[]

 fori inrange(n):

 result.append(i**2)

 returnresult

 # define function to implement list comprehension

deflist_comprehension(n):

 return[i**2fori inrange(n)]

 # Driver Code

 # Calculate time takens by for_loop()

begin =time.time()

for_loop(10**6)

end =time.time()

 # Display time taken by for_loop()

print(‘Time taken for_loop:’, round(end-begin, 2))

 # Calculate time takens by list_comprehension()

begin =time.time()

list_comprehension(10**6)

end =time.time()

Display time taken by for_loop()

print(‘Time taken for list_comprehension:’, round(end-
begin, 2))

Output:

Time taken for_loop: 0.56

Time taken for list_comprehension: 0.47

From the above program, we can see list com-
prehensions are quite faster than for loop.

Nested List Comprehensions

Nested List Comprehensions are nothing but a
list comprehension within another list comprehension
which is quite similar to nested for loops. Below is the
program which implements nested loop:
matrix =[]

 fori inrange(3):

108
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

 # Append an empty sublist inside the list

 matrix.append([])

 forj inrange(5):

 matrix[i].append(j)

 print(matrix)

Output

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

Now by using nested list comprehensions same output can be generated in fewer lines of code.

Nested list comprehension

matrix =[[j forj inrange(5)] fori inrange(3)]

 print(matrix)

Output

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

3.5.2 Nested List

Q28. Explain about nested lists

Ans : (Imp.)

Meaning

A nested list is a list of lists, or any list that has another list as an element (a sublist). They can be helpful
if you want to create a matrix or need to store a sublist along with other data types.

An example of a nested list

creating list

nestedList = [1, 2, [‘a’, 1], 3]

indexing list: the sublist has now been accessed

subList = nestedList[2]

access the first element inside the inner list:

element = nestedList[2][0]

print(“List inside the nested list: ”, subList)

print(“First element of the sublist: ”, element)

Creating a matrix

Creating a matrix is one of the most useful applications of nested lists. This is done by creating a nested list
that only has other lists of equal length as elements.

 The number of elements in the nested lists is equal to the number of rows of the matrix.

 The length of the lists inside the nested list is equal to the number of columns.

Thus, each element of the nested list (matrix) will have two indices: the row and the column.

A matrix of size 3x3

create matrix of size 4 x 3

109
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

matrix = [[0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [9, 10, 11]]

rows = len(matrix) # no of rows is no of sublists i.e. len of list

cols = len(matrix[0]) # no of cols is len of sublist

printing matrix

print(“matrix:”)

for i in range(0, rows):

 print(matrix[i])

accessing the element on row 2 and column 1 i.e., 3

print(“element on row 2 and column 1:”, matrix[1][0])

accessing the element on row 3 and column 2 i.e., 7

print(“element on row 3 and column 2:”, matrix[2][1])

110
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

Short Question and Answers

1. What is string

Ans :
In Python, string is a sequence of Unicode char-

acter. Unicode was introduced to include every charac-
ter in all languages and bring uniformity in encoding.

2. Explain how to do Slicing in Python.

Ans :
You can take subset of string from original string

by using [] operator also known as slicing operator.

Syntax: s [start:end]

this will return part of the string starting from index start
to index end-1.

Let’s take some examples.

>>> s = “Welcome”

>>> s[1:3]

El

Some more examples

>>> s = “Welcome”

>>> s[: 6]

‘Welcom’

>>> s[4 :]

‘ome’

>>> s[1 : -1]

‘elcom’

Note: start index and end index are optional. If omit-
ted then the default value of start index is 0 and that
of end is the last index of the string.

4. Explain various String Manipulation Func-
tions.

Ans :
1. capitalize()

This function returns the copy of the string passed
changing the first character of the string to up-
percase.

Syntax:

str.capitalize()

Example:

str = “lets test the function”;

print “str.capitalize() : “, str.capitalize() // change
the first character to uppercase

Output:

str.capitalize() : Lets test the function

2. is lower()

This method checks if the string is in lowercase
and returns true if all the characters are in lower-
case.

Syntax:

 str.islower()

 Example:

str = “lets test the function”;

print str.islower();// Returns true since all charac-
ters are in lower case.

str = “lets Test the function”;

print str.islower();

Out put:

True

False

3. isupper()

This method checks if all the characters in the
string are in uppercase. If any character is in lower
case, it would return false otherwise true.

Syntax:

str.isupper()

Example:

str = “LETS TEST THE FUNCTION”;

print str.isupper();//returns true since all charac-
ters are capital

str = “LETS TEST THE FUNCTIOn”;

print str.isupper(); // Returns false as ‘n’ is small.

Output

True

False

111
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

5. Define array.

Ans : (Imp.)

Array is an idea of storing multiple items of the same type together and it makes easier to calculate the
position of each element by simply adding an offset to the base value. A combination of the arrays could save a lot
of time by reducing the overall size of the code. It is used to store multiple values in single variable. If you have a
list of items that are stored in their corresponding variables like this:

car1 = “Lamborghini”

car2 = “Bugatti”

car3 = “Koenigsegg”

If you want to loop through cars and find a specific one, you can use the array.

The array can be handled in Python by a module named array. It is useful when we have to manipulate
only specific data values. Following are the terms to understand the concept of an array:

Element - Each item stored in an array is called an element.

Index - The location of an element in an array has a numerical index, which is used to identify the position
of the element.

6. How to create a list ?

Ans :
In Python programming, a list is created by placing all the items (elements) inside a square bracket [],

separated by commas.

It can have any number of items and they may be of different types (integer, float, string etc.).

empty list

my_list =[]

list of integers

my_list =[1,2,3]

list with mixed datatypes

my_list =[1,”Hello”,3.4]

Also, a list can even have another list as an item. This is called nested list.

nested list

my_list = [“mouse”, [8, 4, 6], [‘a’]]

7. What is list slicing?

Ans :
List Slicing

Python has an amazing feature just for that called slicing. Slicing can not only be used for lists, tuples or
arrays, but custom data structures as well, with the slice object, which will be used later on in this article.

We can access a range of items in a list by using the slicing operator (colon).

112
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

8. Aliasing in lists.

Ans :
In python programming, the second name given to a piece of data is known as an alias. Aliasing happens

when the value of one variable is assigned to another variable because variables are just names that store references
to actual value.

9. What is list Cloning

Ans :
Cloning or copying a list is simply creating another list that has the same elements as the original list.

Elements in a list can be copied into another list by various methods, we will be discussing most of them in this
tutorial. For example,

Input: Original list- [3, 6, 12, 14, 78, 24, 56]

Output: After cloning- [3, 6, 12, 14, 78, 24, 56]

Input: Original list- [14, 7, 9, 13, 46, 12]

Output: After cloning- [14, 7, 9, 13, 46, 12]

10. Advantages of Tuple over List

Ans :
Since, tuples are quite similar to lists, both of them are used in similar situations as well.

However, there are certain advantages of implementing a tuple over a list. Below listed are some of the main
advantages:

 We generally use tuple for heterogeneous (different) datatypes and list for homogeneous (similar) datatypes.

 Since tuple are immutable, iterating through tuple is faster than with list. So there is a slight performance
boost.

 Tuples that contain immutable elements can be used as key for a dictionary. With list, this is not possible.

 If you have data that doesn’t change, implementing it as tuple will guarantee that it remains write-protected.

11. What are dictionaries in python? Explain the operations that can be peformed on dictionaries.

Ans :
Dictionaries are know as hash tables in other programming languages, these provide us a mutable associa-

tive array type, through two elements, a key and a value, these are totally related. This type of structure is very
efficient for data searches.

It is important to know, that Python dictionaries have a restriction where the keys must be an immutable
data type, the goal is keeping the dictionary consistent. On the other hand, the values associated to the keys can be
any Python data type, giving the possibility to change them after created or defined.

113
Rahul Publications

UNIT - III DATA SCIENCE USING PYTHON

Rahul Publications

Choose the Correct Answers
1. What will be the output of below Python code? [d]

str1=”poWer”

str1.upper()

print(str1)

(a) POWER (b) Power

(c) power (d) poWer

2. Which of the following will give “Simon” as output? [c]

If str1=”John,Simon,Aryan”

(a) print(str1[-7:-12]) (b) print(str1[-11:-7])

(c) print(str1[-11:-6]) (d) print(str1[-7:-11])

3. What will be the output of above Python code? [d]

str1=”6/4"

print(“str1”)

(a) 1 (b) 6/4

(c) 1.5 (d) str1

4. What will be the output of below Python code? [a]

list1=[8,0,9,5]

print(list1[::-1])

(a) [5,9,0,8] (b) [8,0,9]

(c) [8,0,9,5] (d) [0,9,5]

5. Which of the following commands will create a list? [d]

(a) list1 = list() (b) list1 = []

(c) list1 = list([1, 2, 3]) (d) all of the mentioned

6. To add a new element to a list we use which command? [b]

(a) list1.add(5) (b) list1.append(5)

(c) list1.addLast(5) (d) list1.add End(5)

8. del statement can delete the following from the List? [d]

(a) Single Element (b) Multiple Elements

(c) All elements along with List object (d) All of the above

9. Which of the following is a Python tuple? [d]

(a) [1, 2, 3] (b) (1, 2, 3)

(c) {1, 2, 3} (d) { }

10. Which of the following is not a function of the tuple? [d]

(a) max() (b) min()

(c) count() (d) update()

114
Rahul Publications

BCA II YEAR IV SEMESTER

Rahul Publications

1. function in string gives the output by converting only the first character of the string into uppercase
and rest characters into lowercase.

2. function is used to return the whole string into uppercase.

3. Elements of lists are stored in memory location is True regarding lists in Python.

4. To shuffle the list(say list1) function do we use?

5. Suppose list1 is [3, 5, 25, 1, 3], what is min(list1) ?

6. Index value in list and string start from

7. a tuple can contain both and as its elements

8. Tuples are

9. In tuples values are enclosed in

10. mathematical operator is used to replicate a tuple?

ANSWERS

1. Capitalize()

2. upper()

3. contagious

4. random.shuffle(list1)

5. 1

6. 0

7. integers and strings

8. Immutable

9. Paranthesis

10. Multiplication

Fill in the Blanks

UNIT - IV DATA SCIENCE USING PYTHON

115
Rahul Publications

Rahul Publications

UNIT
IV

Introduction to Numpy: The basics of numpy array, computation on numpy

arrays, aggregations, computations on arrays, comparisons, masks and Boolean

logic, fancy indexing, sorting arrays, structured data.

4.1 INTRODUCTION TO NUMPY

4.1.1 The Basics of Numpy Array

Q1. What is NumPy? Explain how to create
arrays in python using Numpy.

Ans : (Imp.)

 NumPy is a general-purpose array-processing
package. It provides a high-performance multidimensio-
nal array object, and tools for working with these arrays.
It is the fundamental package for scientific computing
with Python. It is open-source software. It contains
various features including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and
random number capabilities

Besides its obvious scientific uses, NumPy can
also be used as an efficient multi-dimensional container
of generic data. Arbitrary data-types can be defined using
Numpy which allows NumPy to seamlessly and speedily
integrate with a wide variety of databases.

Installation

 Mac and Linux users can install NumPy via pip
command:

pip install numpy

 Windows does not have any package manager
analogous to that in linux or mac. Please
download the pre-built windows installer for
NumPy from here (according to your system
configuration and Python version). And then
install the packages manually.

Note: All the examples discussed below will not
run on an online IDE. 1. Arrays in

NumPy:NumPy’s main object is the homogen-
eous multidimensional array.

 It is a table of elements (usually numbers), all of
the same type, indexed by a tuple of positive
integers.

 In NumPy dimensions are called axes. The
number of axes is rank.

 NumPy’s array class is called ndarray. It is also
known by the alias array.

Example :

[[1, 2, 3],

[4, 2, 5]]

Here,

rank = 2 (as it is 2-dimensional or it has 2 axes)

first dimension(axis) length = 2, second dimension
has length = 3

overall shape can be expressed as: (2, 3)

Python program to demonstratebasic array
characteristics

importnumpy as np
Creating array object

arr =np.array([[1, 2, 3],
 [4, 2, 5]])

 # Printing type of arr object

print(“Array is of type: “, type(arr))

Printing array dimensions (axes)

print(“No. of dimensions: “, arr.ndim)

Printing shape of array

BCA II YEAR IV SEMESTER

116
Rahul Publications

Rahul Publications

print(“Shape of array: “, arr.shape)

Printing size (total number of elements) of array

print(“Size of array: “, arr.size)

Printing type of elements in array

print(“Array stores elements of type: “, arr.dtype)

Output :

Array is of type:

No. of dimensions: 2

Shape of array: (2, 3)

Size of array: 6

Array stores elements of type: int64

Q2. Explain array creation techniques in Numpy with an example program.

Ans : (Imp.)

Array creation: There are various ways to create arrays in NumPy

 For example, you can create an array from a regular Python list or tuple using the array function. The
type of the resulting array is deduced from the type of the elements in the sequences.

 Often, the elements of an array are originally unknown, but its size is known. Hence, NumPy offers several
functions to create arrays with initial placeholder content. These minimize the necessity of growing arrays,
an expensive operation. For example: np.zeros, np.ones, np.full, np.empty, etc.

 To create sequences of numbers, NumPy provides a function analogous to range that returns arrays instead
of lists.

 arange: returns evenly spaced values within a given interval. step size is specified.

 linspace: returns evenly spaced values within a given interval. num no. of elements are returned.

 Reshaping array: We can use reshape method to reshape an array. Consider an array with shape (a1,
a2, a3, …, aN). We can reshape and convert it into another array with shape (b1, b2, b3, …, bM). The only
required condition is: a1 x a2 x a3 … x aN = b1 x b2 x b3 … x bM . (i.e original size of array remains
unchanged.)

 Flatten array: We can use flatten method to get a copy of array collapsed into one dimension. It
accepts order argument. Default value is ‘C’ (for row-major order). Use ‘F’ for column major order.

Note: Type of array can be explicitly defined while creating array.

Python program to demonstratearray creation techniques

importnumpy as np

Creating array from list with type float

a =np.array([[1, 2, 4], [5, 8, 7]], dtype =’float’)

print(“Array created using passed list:\n”, a)

Creating array from tuple

b =np.array((1, 3, 2))

print(“\nArray created using passed tuple:\n”, b)

UNIT - IV DATA SCIENCE USING PYTHON

117
Rahul Publications

Rahul Publications

Creating a 3X4 array with all zeros

c =np.zeros((3, 4))

print(“\nAn array initialized with all zeros:\n”, c)

Create a constant value array of complex type

d =np.full((3, 3), 6, dtype =’complex’)

print(“\nAn array initialized with all 6s.”

”Array type is complex:\n”, d)

Create an array with random values

e =np.random.random((2, 2))

print(“\nA random array:\n”, e)

Create a sequence of integers

from 0 to 30 with steps of 5

f =np.arange(0, 30, 5)

print(“\nA sequential array with steps of 5:\n”, f)

Create a sequence of 10 values in range 0 to 5

g =np.linspace(0, 5, 10)

print(“\nA sequential array with 10 values between”

”0 and 5:\n”, g)

Reshaping 3X4 array to 2X2X3 array

arr =np.array([[1, 2, 3, 4],

 [5, 2, 4, 2],

 [1, 2, 0, 1]])

newarr =arr.reshape(2, 2, 3)

print(“\nOriginal array:\n”, arr)

print(“Reshaped array:\n”, newarr)

Flatten array

arr =np.array([[1, 2, 3], [4, 5, 6]])

flarr =arr.flatten()

print(“\nOriginal array:\n”, arr)

print(“Fattened array:\n”, flarr)

Output :

Array created using passed list:

[[1. 2. 4.]

[5. 8. 7.]]

Array created using passed tuple:

[1 3 2]

An array initialized with all zeros:

[[0. 0. 0. 0.]

BCA II YEAR IV SEMESTER

118
Rahul Publications

Rahul Publications

[0. 0. 0. 0.]

[0. 0. 0. 0.]]

An array initialized with all 6s. Array type is complex:

[[6.+0.j 6.+0.j 6.+0.j]

[6.+0.j 6.+0.j 6.+0.j]

[6.+0.j 6.+0.j 6.+0.j]]

A random array:

[[0.46829566 0.67079389]

[0.09079849 0.95410464]]

A sequential array with steps of 5:

[0 5 10 15 20 25]

A sequential array with 10 values between 0 and 5:

[0. 0.55555556 1.11111111 1.66666667 2.22222222 2.77777778

3.33333333 3.88888889 4.44444444 5.]

Original array:

[[1 2 3 4]

[5 2 4 2]

[1 2 0 1]]

Reshaped array:

[[[1 2 3]

[4 5 2]]

[[4 2 1]

[2 0 1]]]

Original array:

[[1 2 3]

[4 5 6]]

Fattened array:

[1 2 3 4 5 6]

Q3. Expalin Array Indexing with an example program.

Ans :
Array Indexing: Knowing the basics of array indexing is important for analysing and manipulating the

array object. NumPy offers many ways to do array indexing.

 Slicing: Just like lists in python, NumPy arrays can be sliced. As arrays can be multidimensional, you need
to specify a slice for each dimension of the array.

 Integer array indexing: In this method, lists are passed for indexing for each dimension. One to one
mapping of corresponding elements is done to construct a new arbitrary array.

 Boolean array indexing: This method is used when we want to pick elements from array which satisfy
some condition.

UNIT - IV DATA SCIENCE USING PYTHON

119
Rahul Publications

Rahul Publications

Python program to demonstrate

indexing in numpy

importnumpy as np

An exemplar array

arr =np.array([[-1, 2, 0, 4],

 [4, -0.5, 6, 0],

 [2.6, 0, 7, 8],

 [3, -7, 4, 2.0]])

Slicing array

temp =arr[:2, ::2]

print(“Array with first 2 rows and alternate”

 ”columns(0 and 2):\n”, temp)

Integer array indexing example

temp =arr[[0, 1, 2, 3], [3, 2, 1, 0]]

print(“\nElements at indices (0, 3), (1, 2), (2, 1),”

”(3, 0):\n”, temp)

boolean array indexing example

cond =arr > 0# cond is a boolean array

temp =arr[cond]

print(“\nElements greater than 0:\n”, temp)

Output :

Array with first 2 rows and alternatecolumns(0 and 2):

[[-1. 0.]

[4. 6.]]

Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):

[4. 6. 0. 3.]

Elements greater than 0:

[2. 4. 4. 6. 2.6 7. 8. 3. 4. 2.]

4.1.2 Computation on Numpy Arrays

Q4. Explain various operations that can be performed on Numpy Arrays.

Ans : (Imp.)

Numpy array is a powerful N-dimensional array object which is in the form of rows and columns. We can
initialize NumPy arrays from nested Python lists and access it elements. A Numpy array on a structural level is
made up of a combination of:

 The Data pointer indicates the memory address of the first byte in the array.

 The Data type or dtype pointer describes the kind of elements that are contained within the array.

 The shape indicates the shape of the array.

 The strides are the number of bytes that should be skipped in memory to go to the next element.

BCA II YEAR IV SEMESTER

120
Rahul Publications

Rahul Publications

1. Arithmetic Operations

Python code to perform arithmeticoperations on NumPy array

 importnumpy as np

 # Initializing the array

arr1 =np.arange(4, dtype =np.float_).reshape(2, 2)

 print(‘First array:’)

print(arr1)

 print(‘\nSecond array:’)

arr2 =np.array([12, 12])

print(arr2)

 print(‘\nAdding the two arrays:’)

print(np.add(arr1, arr2))

 print(‘\nSubtracting the two arrays:’)

print(np.subtract(arr1, arr2))

 print(‘\nMultiplying the two arrays:’)

print(np.multiply(arr1, arr2))

 print(‘\nDividing the two arrays:’)

print(np.divide(arr1, arr2))

Output:

First array:

[[0. 1.]

[2. 3.]]

Second array:

[12 12]

Adding the two arrays:

[[12. 13.]

[14. 15.]]

Subtracting the two arrays:

[[-12. -11.]

[-10. -9.]]

Multiplying the two arrays:

[[0. 12.]

[24. 36.]]

Dividing the two arrays:

[[0. 0.08333333]

[0.16666667 0.25]]

UNIT - IV DATA SCIENCE USING PYTHON

121
Rahul Publications

Rahul Publications

2. numpy.reciprocal() This function returns the reciprocal of argument, element-wise. For elements with
absolute values larger than 1, the result is always 0 and for integer 0, overflow warning is issued.

Example:

Python code to perform reciprocal operation on NumPy array

importnumpy as np

arr =np.array([25, 1.33, 1, 1, 100])

 print(‘Our array is:’)

print(arr)

print(‘\nAfter applying reciprocal function:’)

print(np.reciprocal(arr))

 arr2 =np.array([25], dtype =int)

print(‘\nThe second array is:’)

print(arr2)

 print(‘\nAfter applying reciprocal function:’)

print(np.reciprocal(arr2))

Output

Our array is:

[25. 1.33 1. 1. 100.]

After applying reciprocal function:

[0.04 0.7518797 1. 1. 0.01]

The second array is:

[25]

After applying reciprocal function:

[0]

3. numpy.power() This function treats elements in the first input array as the base and returns it raised to the
power of the corresponding element in the second input array.

Python code to perform power operation# on NumPy array

 importnumpy as np

 arr =np.array([5, 10, 15])

 print(‘First array is:’)

print(arr)

print(‘\nApplying power function:’)

print(np.power(arr, 2))

print(‘\nSecond array is:’)

arr1 =np.array([1, 2, 3])

print(arr1)

 print(‘\nApplying power function again:’)

print(np.power(arr, arr1))

BCA II YEAR IV SEMESTER

122
Rahul Publications

Rahul Publications

Output:

First array is:

[5 10 15]

Applying power function:

[25 100 225]

Second array is:

[1 2 3]

Applying power function again:

[5 100 3375]

4. numpy.mod() This function returns the remainder of division of the corresponding elements in the input
array. The function numpy.remainder() also produces the same result.

Python code to perform mod function# on NumPy array

 importnumpy as np

 arr =np.array([5, 15, 20])

arr1 =np.array([2, 5, 9])

 print(‘First array:’)

print(arr)

 print(‘\nSecond array:’)

print(arr1)

print(‘\nApplying mod() function:’)

print(np.mod(arr, arr1))

print(‘\nApplying remainder() function:’)

print(np.remainder(arr, arr1))

Output:

First array:

[5 15 20]

Second array:

[2 5 9]

Applying mod() function:

[1 0 2]

Applying remainder() function:

[1 0 2]

UNIT - IV DATA SCIENCE USING PYTHON

123
Rahul Publications

Rahul Publications

4.2 Aggregations in Numpy

Q5. Explain the concept of aggregations in Numpy.

Ans : (Imp.)

Aggregation is a concept in which an object of one class can own or access another independent object of
another class.

 It represents Has-A’s relationship.

 It is a unidirectional association i.e. a one-way relationship. For example, a department can have students
but vice versa is not possible and thus unidirectional in nature.

 In Aggregation, both the entries can survive individually which means ending one entity will not affect the
other entity.

Code to demonstrate Aggregation

Salary class with the public method

annual_salary()

classSalary:

 def__init__(self, pay, bonus):

self.pay =pay

 self.bonus =bonus

 defannual_salary(self):

 return(self.pay*12)+self.bonus

 # EmployeeOne class with public method

total_sal()

classEmployeeOne:

Here the salary parameter reflects

 # upon the object of Salary class we

 # will pass as parameter later

 def_init_(self, name, age, sal):

 self.name =name

 self.age =age

 # initializing the sal parameter

 self.agg_salary =sal # Aggregation

 deftotal_sal(self):

 returnself.agg_salary.annual_salary()

 # Here we are creating an object

of the Salary class

in which we are passing the

required parameters

BCA II YEAR IV SEMESTER

124
Rahul Publications

Rahul Publications

salary =Salary(10000, 1500)

Now we are passing the same

salary object we created

earlier as a parameter to

EmployeeOne class

emp =EmployeeOne(‘Geek’, 25, salary)

print(emp.total_sal())

Output:

121500

From the above code, we will get the same output as we got before using the Composition concept. But the
difference is that here we are not creating an object of the Salary class inside the EmployeeOne class, rather
than that we are creating an object of the Salary class outside and passing it as a parameter of EmployeeOne
class which yields the same result.

4.3 COMPUTATIONS ON ARRAYS

Q6. Expalin various arithmetic operation that can be performed on Numpy.

Ans :
The following are the arithmetic opertion tht canbe p

1. Addition

The add() function sums the content of two arrays, and return the results in a new array.

Example

Add the values in arr1 to the values in arr2:

import numpy as np

arr1 = np.array([10, 11, 12, 13, 14, 15])

arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.add(arr1, arr2)

print(newarr)

The example above will return [30 32 34 36 38 40] which is the sums of 10+20, 11+21, 12+22 etc.

2. Subtraction

The subtract() function subtracts the values from one array with the values from another array, and return
the results in a new array.

Example

Subtract the values in arr2 from the values in arr1:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])

arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.subtract(arr1, arr2)

print(newarr)

The example above will return [-10 -1 8 17 26 35] which is the result of 10-20, 20-21, 30-22 etc.

UNIT - IV DATA SCIENCE USING PYTHON

125
Rahul Publications

Rahul Publications

3. Multiplication

The multiply() function multiplies the values from one array with the values from another array, and return
the results in a new array.

Example

Multiply the values in arr1 with the values in arr2:

import numpy as np

 arr1 = np.array([10, 20, 30, 40, 50, 60])

 arr2 = np.array([20, 21, 22, 23, 24, 25])

 newarr = np.multiply(arr1, arr2)

print(newarr)

4. Division

The divide() function divides the values from one array with the values from another array, and return the
results in a new array.

Example

Divide the values in arr1 with the values in arr2:

import numpy as np

 arr1 = np.array([10, 20, 30, 40, 50, 60])

 arr2 = np.array([3, 5, 10, 8, 2, 33])

 newarr = np.divide(arr1, arr2)

print (newarr)

The example above will return [3.33333333 4. 3. 5. 25. 1.81818182] which is the result of 10/3, 20/5, 30/
10 etc.

4.4 COMPARISONS

Q7. Explain the comparisons operations in Numy with examples.

Ans : (Imp.)

The Python numpy comparison operators and functions used to compare the array items and returns
Boolean True or false. The Python Numpy comparison functions are greater, greater_equal, less, less_equal, equal,
and not_equal. Like any other, Python Numpy comparison operators are <, <=, >, >=, == and !=

To demonstrate these Python numpy comparison operators and functions, we used the numpy random
randint function to generate random two dimensional and three-dimensional integer arrays.

The first array generates a two-dimensional array of size 5 rows and 8 columns, and the values are between
10 and 50.

arr1 = np.random.randint(10, 50, size = (5, 8))

This second array generates a random three-dimensional array of size 2 * 3 * 6. The generated random
values are between 1 and 20.

arr2 = np.random.randint(1, 20, size = (2, 3, 6))

1. greater function

It is a simple Python Numpy Comparison Operators example to demonstrate the Python Numpy greater
function. First, we declared an array of random elements. Next, we are checking whether the elements in an
array are greater than 0, greater than 1 and 2. If True, True returned otherwise, False returned.

BCA II YEAR IV SEMESTER

126
Rahul Publications

Rahul Publications

Python array greater

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, x)

print(‘\nGreater Than 0 = ‘, np.greater(x, 0))

print()

print(‘Greater Than 1 = ‘, np.greater(x, 1))

print()

print(‘Greater Than 2 = ‘, np.greater(x, 2))

2. greater_equalfunction

The Python Numpy greater_equal function checks whether the elements in a given array (first argument) is
greater than or equal to a specified number(second argument). If True, True returned otherwise, False.

The first Numpy statement checks whether items in the area is greater than or equal to 2. The second
statement checks the items in a random 2D array is greater than or equal to 25. The third statement
checks randomly generated three-dimensional array items that are greater than or equal to 7.

import numpy as np

arr = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, arr)

print(‘Greater Than or Equal to 2 = ‘, np.greater_equal(arr, 2))

arr1 = np.random.randint(10, 50, size = (5, 8))

print(‘\n–Two Dimensional Random Array——’)

print(arr1)

print()

print(np.greater_equal(arr1, 25))

arr2 = np.random.randint(1, 15, size = (2, 3, 6))

print(‘\n——Three Dimensional Random Array——’)

print(arr2)

print()

print(np.greater_equal(arr2, 7))

3. less function

The Python Numpy less function checks whether the elements in a given array is less than a specified
number or not. If True, boolean True returned otherwise, False. The syntax of this Python Numpy less
function is

numpy.less(array_name, integer_value).

Within this example,

 np.less(arr, 4) – check whether items in arr array is less than 4.

 np.less(arr1, 32) – check the items in 2D array arr1 is less than 32.

 np.less(arr2, 15) – check items in randomly generated 3D array are less than 15.

UNIT - IV DATA SCIENCE USING PYTHON

127
Rahul Publications

Rahul Publications

import numpy as np

arr = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, arr)

print(‘Less Than 4 = ‘, np.less(arr, 4))

arr1 = np.random.randint(10, 50, size = (5, 8))

print(‘\n——Two Dimensional Random Array——’)

print(arr1)

print()

print(np.less(arr1, 32))

arr2 = np.random.randint(1, 25, size = (2, 3, 6))

print(‘\n——Three Dimensional Random Array——’)

print(arr2)

print()

print(np.less(arr2, 15))

4. less_equalfunction

The Python Numpy less_equal function checks whether each element in a given array is less than or equal
to a specified number or not. If True, boolean True returned otherwise, False. The syntax of this Python
Numpy less_equal function is.

numpy.less_equal(array_name, integer_value).

Within this example,

 np.less_equal(arr, 3) – check whether items in arr array is less than or equal to 3.

 np.less_equal(arr1, 30) – check the items in 2D array arr1 is less than or equal to 30.

 np.less_equal(arr2, 9) – check whether items in the randomly generated three-dimensional array are
less than or equal to 9.

import numpy as np

arr = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, arr)

print(‘Less Than or Equal to 3 = ‘, np.less_equal(arr, 3))

arr1 = np.random.randint(10, 50, size = (5, 8))

print(‘\n——Two Dimensional Random Array——’)

print(arr1)

print()

print(np.less_equal(arr1, 30))

arr2 = np.random.randint(1, 15, size = (2, 3, 6))

print(‘\n——Three Dimensional Random Array——’)

print(arr2)

print()

print(np.less_equal(arr2, 9))

BCA II YEAR IV SEMESTER

128
Rahul Publications

Rahul Publications

5. equalfunction

The Python Numpy equal function checks whether each item in an array is equal to a given number or not.
If True, boolean True returned otherwise, False. The syntax of this Python Numpy equal function is

numpy.equal(array_name, integer_value).

Within this example,

 np.equal(arr, 0) – check whether items in arr array is equal to 0.

 np.equal(arr1, 28) – check items in two dimensional array arr1 is equal to 28.

 np.equal(arr2, 8) – check 3D array items are equal to 8.

import numpy as np

arr = np.array([0, 2, 3, 0, 1, 6, 0, 2])

print(‘Original Array = ‘, arr)

print(‘Equal to 0 = ‘, np.equal(arr, 0))

arr1 = np.random.randint(20, 30, size = (5, 8))

print(‘\n——Two Dimensional Random Array——’)

print(arr1)

print()

print(np.equal(arr1, 28))

arr2 = np.random.randint(1, 10, size = (2, 3, 6))

print(‘\n——Three Dimensional Random Array——’)

print(arr2)

print()

print(np.equal(arr2, 8))

6. not_equalfunction

The Python Numpy not_equal function checks whether each item in an array is not equals to a given
number or not. If True, boolean True returned otherwise, False. The syntax of this Python Numpy not_equal
function is

numpy.equal(array_name, integer_value).

Within this example,

 np.not_equal(arr, 0) – check whether items in arr array is not equal to 0.

 np.not_equal(arr1, 25) – check items in two dimensional array arr1 is not equal to 25.

 np.not_equal(arr2, 6) – check 3D array items are not equal to 6.

import numpy as np

arr = np.array([0, 2, 3, 0, 1, 6, 0, 2])

print(‘Original Array = ‘, arr)

print(‘Equal to 0 = ‘, np.not_equal(arr, 0))

arr1 = np.random.randint(20, 30, size = (5, 8))

UNIT - IV DATA SCIENCE USING PYTHON

129
Rahul Publications

Rahul Publications

print(‘\n——Two Dimensional Random Array——’)

print(arr1)

print()

print(np.not_equal(arr1, 25))

arr2 = np.random.randint(1, 10, size = (2, 3, 6))

print(‘\n——Three Dimensional Random Array——’)

print(arr2)

print()

print(np.not_equal(arr2, 6))

7. > Operator

The Python Numpy > Operator is the same as a greater function. Either you can use this to compare each
element in an array with a static value, or use this to compare two arrays or matrixes.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, x)

print(‘x Greater Than 2 = ‘, x > 2)

This time, we are using both the > operator and greater function to compare two one dimensional arrays
and check whether items in one array is greater than the other.

import numpy as np

a = np.array([2, 4])

b = np.array([2, 3])

print(‘a Greater Than b = ‘, a > b)

print(‘a Greater Than b = ‘, np.greater(a, b))

arr1 = np.random.randint(1, 8, size = (7))

arr2 = np.random.randint(1, 9, size = (7))

print(‘\n——Random Array——’)

print(‘Values in arr1 = ‘, arr1)

print(‘Values in arr2 = ‘, arr2)

print()

print(‘Result of arr1 > arr2 = ‘, arr1 > arr2)

print(‘greater(arr1, arr2) = ‘, np.greater(arr1, arr2))

8. >= Operator

The Python Numpy >= Operator is the same as the greater_equal function. You can use >= operator to
compare array elements with a static value or find greater than equal values in two arrays or matrixes.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, x)

print(‘x Greater Than or Equal to 3 = \n’, x >= 3)

BCA II YEAR IV SEMESTER

130
Rahul Publications

Rahul Publications

9. < Operator

The Python Numpy < Operator is the same as less function. Either you can use this to check whether each
element in an array is less than a static value or another array or matrix.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, x)

print(‘x Less Than 2 = ‘, x < 2)

10. <= Operator

The Python Numpy <= Operator is the same as the less_equal function. Use Numpy <= operator to check
array items are less than or equal to a number or another array.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 5, 2])

print(‘Original Array = ‘, x)

print(‘x Less Than or Equal to 3 = \n’, x <= 3)

11. == Operator

The Python Numpy == Operator is the same as equal function. Use == operator to check whether array
items are equal to a number or another array.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 0, 2])

print(‘Original Array = ‘, x)

print(‘x Equal to 0 = ‘, x == 0)

Python Numpy != Operator

The Python Numpy != Operator is the same as the not_equal function. Use != operator to check whether
items in one array are not equal to a number or another array.

import numpy as np

x = np.array([0, 2, 3, 0, 1, 6, 0, 2])

print(‘Original Array = ‘, x)

print(‘x Not Equal to 0 = \n’, x != 0)

The Python Numpy != Operator is the same as the not_equal function. Use != operator to check whether
items in one array are not equal to a number or

4.5 MASKS AND BOOLEAN LOGIC

Q8. Explain briefly about masks array module in Numpy.

Ans : (Imp.)

Numpy’s

Using Masking of arrays we can easily handle the missing, invalid, or unwanted entries in our array or
dataset/dataframe. Masking is essential works with the list of Boolean values i.e, True or False which when applied
to an original array to return the element of interest, here True refers to the value that satisfies the given condition
whereas False refers to values that fail to satisfy the condition.

UNIT - IV DATA SCIENCE USING PYTHON

131
Rahul Publications

Rahul Publications

We can mask the array using another by using the following functions :

numpy.ma.masked_where(condition, arr)

numpy.ma.getmask(arr)

numpy.ma.masked_array(arr, mask=)

where,

condition: condition for masking

arr: arr to be masked

mask: result of masked array

Steps

 Import the library.

 Create a function for masking.

 Masking can be done by following two approaches:-

 Using masked_where() function: Pass the two array in the function as a parameter then use
numpy.ma.masked_ where() function in which pass the condition for masking and array to be masked.
In this we are giving the condition for masking by using one array and masking the another array for
that condition.

 Using masked_where(), getmask() and masked_array() function: Pass the two array in the
function as a parameter then use numpy.ma.masked _where() function in which pass the condition
for masking and array to be masked in this we are using the same array for which we are giving
condition for making and the array to be masked and store the result in the variable, then use numpy.ma.
getmask() function in which pass the result of marked_where function and store it in the variable
named as ‘res_mask’. Now mask another array using the created mask, for this, we are using numpy.ma.
masked_array() function in which pass the array to be made and the parameter mask=’res_mask’ for
making the array using another array and store it in a variable let be named as ‘masked’.

 Then return the masked from the function.

 Now create the main function

 Create two arrays one for masking another.

 Then call the function as we have created above and pass both the arrays in the function as a parameter
and store the result in a variable let named ‘masked’.

 Now for getting the array as a 1-d array we are using numpy.ma.compressed() which passes the masked as
a parameter.

 Then print the Masked array.

Example 1: Masking the first array using the second array

In the above example, we are masking the first array using the second array on the basis of the condition
that each element of the first array mod 7 is true, those elements which satisfy the condition at that index
elements are masked in the first array.

Since we have the array1 = [1,2,4,5,7,8,9] and array2 = [10,12,14,5,7,0,13], we have given the condition
array2%7 so in array2 element 14, 7 and 0 satisfies the condition, and they are present at index 2,4 and 5
so at the same index in array1 elements are masked so the resultant array we have [4 7 8].

importing the library

import numpy as np

BCA II YEAR IV SEMESTER

132
Rahul Publications

Rahul Publications

function to create masked array

def masking(ar1, ar2):

 # masking the array1 by using array2

 # where array2 mod 7 is true

 mask = np.ma.masked_where(ar2%7,ar1)

 return mask

main function

if __name__ == ‘__main__’:

 # creating two arrays

 x = np.array([1,2,4,5,7,8,9])

 y = np.array([10,12,14,5,7,0,13])

 # calling masking function to get

 # masked array

 masked = masking(x,y)

 # getting the values as 1-d array which

 # are non masked

 masked_array = np.ma.compressed(mask)

 # printing the resultant array after masking

 print(f’Masked Array is:{masked_array}’)

Q9. Explain Boolean Arrays in Numpy.

Ans :
Boolean arrays

A boolean array is a numpy array with boolean
(True/False) values. Such array can be obtained by
applying a logical operator to another numpy array:

importnumpyasnp

a=np.reshape(np.arange(16),(4,4))# create a 4x4
array of integers

print(a)

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

large_values=(a>10)# test which elements of a
are greated than 10

print(large_values)

[[False False False False]

[False False False False]

[False False False True]

[True True True True]]

even_values=(a%2==0)# test which elements
of a are even

print(even_values)

[[True False True False]

[True False True False]

[True False True False]

[True False True False]]

Logical operations on boolean arrays

Boolean arrays can be combined using logical
operators:

operator meaning

~ negation (logical “not”)

& logical “and”

| logical “or”

b=~(a%3==0)# test which elements of a are
not divisible by 3

print(‘array a:\n{}\n’.format(a))

print(‘array b:\n{}’.format(b))

array a:

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

array b:

[[False True True False]

[True True False True]

[True False True True]

[False True True False]]

c=(a%2==0)|(a%3==0)# test which elements
of a are divisible by either 2 or 3

print(‘array a:\n{}\n’.format(a))

print(‘array c:\n{}’.format(c))

array a:

UNIT - IV DATA SCIENCE USING PYTHON

133
Rahul Publications

Rahul Publications

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

array c:

[[True False True True]

[True False True False]

[True True True False]

[True False True True]]

d=(a%2==0)&(a%3==0)# test which elements
of a are divisible by both 2 and 3

print(‘array a:\n{}\n’.format(a))

print(‘array d:\n{}’.format(d))

array a:

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

array d:

[[True False False False]

[False False True False]

[False False False False]

[True False False False]]

Indexing with boolean arrays

Boolean arrays can be used to select elements of
other numpy arrays. If a is any numpy array and b is
a boolean array of the same dimensions
then a[b] selects all elements of a for which the
corresponding value of b is True.

a=np.reshape(np.arange(16),(4,4))# create a 4x4
array of integers

print(a)

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

b=(a%2==0)# test which elements of a are even

print(b)

[[True False True False]

[True False True False]

[True False True False]

[True False True False]]

print(a[b])# select all even elements of the array
a

[0 2 4 6 8 10 12 14]

We can use this to modify elements of an array
that satisfy a logical condition:

a[a%2==0]=100# set values of all even
elements of the array a to 100

print(a)

[[100 1 100 3]

[100 5 100 7]

[100 9 100 11]

[100 13 100 15]]

In the next example we create two numpy
arrays, x and y, and set all values of x that are
smaller that the corresponding values of y to -
1:

x=np.random.random((3,3))# create a 3x3 array
of random numbers

y=np.random.random((3,3))

print(‘array x:\n{}\n’.format(x))

print(‘array y:\n{}’.format(y))

array x:

[[0.76755354 0.39784664 0.60511187]

[0.9584705 0.42498244 0.71316056]

[0.30123811 0.2202371 0.64291291]]

array y:

[[0.58221015 0.09077814 0.26814573]

[0.91636671 0.41542893 0.07005894]

[0.83128003 0.81483812 0.56582282]]

x[x<y]=-1

print(x)

[[0.76755354 0.39784664 0.60511187]

BCA II YEAR IV SEMESTER

134
Rahul Publications

Rahul Publications

[0.9584705 0.42498244 0.71316056]

[-1. -1. 0.64291291]]

4. 6 FANCY INDEXING

Q10. What is fancy indexing in Numpy? Explain.

Ans : (Imp.)

Besides using indexing & slicing, NumPy provides
you with a convenient way to index an array called fancy
indexing.

Fancy indexing allows you to index a numpy array
using the following:

 Another numpy array

 A Python list

 A sequence of integers

Let’s see the following example:

import numpy as np

a = np.arange(1, 10)

print(a)

indices = np.array([2, 3, 4])

print(a[indices])

Output:

[123456789]

[345]

First, use the arange() function to create a
numpy array that includes numbers from 1 to 9:

[123456789]

Second, create a second numpy array for
indexing:

indices = np.array([2, 3, 4])

Third, use the indices array for indexing
the a array:

print(a[indices])

4.7 SORTING ARRAYS

Q11. Explain about Sorting Arrays in Numpy.

Ans :
Sorting means putting elements in an ordered

sequence.

Ordered sequence is any sequence that has an
order corresponding to elements, like numeric or
alphabetical, ascending or descending.

The NumPy ndarray object has a function
called sort(), that will sort a specified array.

Example : Sort the array:

import numpy as np

arr = np.array([3, 2, 0, 1])

print(np.sort(arr))

You can also sort arrays of strings, or any other
data type:

Example : Sort the array alphabetically:

import numpy as np

arr = np.array([‘banana’, ’cherry’, ’apple’])

print(np.sort(arr))

Example : Sort a boolean array:

import numpy as np

arr = np.array([True, False, True])

print(np.sort(arr))

Sorting a 2-D Array

If you use the sort() method on a 2-D array, both
arrays will be sorted:

Example: Sort a 2-D array:

import numpy as np

arr = np.array([[3, 2, 4], [5, 0, 1]])

print(np.sort(arr))

4.8 STRUCTURED DATA

Q12. How to handle structured data in Numpy?
Explain.

Ans : (Imp.)

Numpy’s Structured Array is similar to Struct in
C. It is used for grouping data of different types and
sizes. Structure array uses data containers called fields.
Each data field can contain data of any type and size.
Array elements can be accessed with the help of dot
notation.

Note

Arrays with named fields that can contain data
of various types and sizes.

UNIT - IV DATA SCIENCE USING PYTHON

135
Rahul Publications

Rahul Publications

Properties of Structured array

 All structs in array have same number of fields.

 All structs have same fields names.

For example, consider a structured array of student
which has different fields like name, year, marks.

Each record in array student has a structure of
class Struct. The array of a structure is referred to as
struct as adding any new fields for a new struct in the

array, contains the empty array.

Example 1

Python program to demonstrate # Structured
array

 import numpy as np

 a = np.array([(‘Sana’, 2, 21.0), (‘Mansi’, 7,
29.0)],

dtype=[(‘name’, (np.str_, 10)), (‘age’, np.int32),
(‘weight’, np.float64)])

 print(a)

Output

[(‘Sana’, 2, 21.0) (‘Mansi’, 7, 29.0)]

Example 2

The structure array can be sorted by using
numpy.sort() method and passing the order as
parameter. This parameter takes the value of the
field according to which it is needed to be sorted.

Python program to demonstrate# Structured
array

 import numpy as np
a = np.array([(‘Sana’, 2, 21.0), (‘Mansi’, 7,
29.0)],
dtype=[(‘name’, (np.str_, 10)), (‘age’, np.int32),
(‘weight’, np.float64)])
Sorting according to the name
b = np.sort(a, order=’name’)
print(‘Sorting according to the name’, b)

Sorting according to the age

b = np.sort(a, order=’age’)

print(‘\nSorting according to the age’, b)

Output

Sorting according to the name [(‘Mansi’, 7, 29.0)
(‘Sana’, 2, 21.0)].

Sorting according to the age [(‘Sana’, 2, 21.0)
(‘Mansi’, 7, 29.0)].

BCA II YEAR IV SEMESTER

136
Rahul Publications

Rahul Publications

Short Question and Answers

1. What is NumPy?

Ans :
 NumPy is a general-purpose array-processing
package. It provides a high-performance multidimensio-
nal array object, and tools for working with these arrays.
It is the fundamental package for scientific computing
with Python. It is open-source software. It contains
various features including these important ones:

 A powerful N-dimensional array object

 Sophisticated (broadcasting) functions

 Tools for integrating C/C++ and Fortran code

 Useful linear algebra, Fourier transform, and
random number capabilities

2. Array Indexing

Ans :
Array Indexing

Knowing the basics of array indexing is important
for analysing and manipulating the array object. NumPy
offers many ways to do array indexing.

 Slicing: Just like lists in python, NumPy arrays
can be sliced. As arrays can be multidimensional,
you need to specify a slice for each dimension of
the array.

 Integer array indexing: In this method, lists
are passed for indexing for each dimension. One
to one mapping of corresponding elements is done
to construct a new arbitrary array.

 Boolean array indexing: This method is used
when we want to pick elements from array which
satisfy some condition.

3. Aggregations in Numpy

Ans :
Aggregation is a concept in which an object of one

class can own or access another independent object of
another class.

 It represents Has-A’s relationship.

 It is a unidirectional association i.e. a one-way
relationship. For example, a department can have
students but vice versa is not possible and thus

unidirectional in nature.

 In Aggregation, both the entries can survive
individually which means ending one entity will
not affect the other entity.

4. MaskedArray Module

Ans : (Imp.)

Using Masking of arrays we can easily handle the
missing, invalid, or unwanted entries in our array or
dataset/dataframe. Masking is essential works with the
list of Boolean values i.e, True or False which when
applied to an original array to return the element of
interest, here True refers to the value that satisfies the
given condition whereas False refers to values that fail
to satisfy the condition.

5. Boolean Arrays

Ans : (Imp.)

A boolean array is a numpy array with boolean
(True/False) values. Such array can be obtained by
applying a logical operator to another numpy array:

importnumpyasnp

a=np.reshape(np.arange(16),(4,4))# create a 4x4
array of integers

print(a)

[[0 1 2 3]

[4 5 6 7]

[8 9 10 11]

[12 13 14 15]]

large_values=(a>10)# test which elements of a
are greated than 10

print(large_values)

[[False False False False]

[False False False False]

[False False False True]

[True True True True]]

even_values=(a%2==0)# test which elements
of a are even

print(even_values)

UNIT - IV DATA SCIENCE USING PYTHON

137
Rahul Publications

Rahul Publications

[[True False True False]

[True False True False]

[True False True False]

[True False True False]]

6. What is fancy indexing in Numpy? Explain.

Ans : (Imp.)

Besides using indexing & slicing, NumPy provides you with a convenient way to index an array called fancy
indexing.

Fancy indexing allows you to index a numpy array using the following:

 Another numpy array

 A Python list

 A sequence of integers

Let’s see the following example:

import numpy as np

a = np.arange(1, 10)

print(a)

indices = np.array([2, 3, 4])

print(a[indices])

Output:

[123456789]

[345]

First, use the arange() function to create a numpy array that includes numbers from 1 to 9:

[123456789]

Second, create a second numpy array for indexing:

indices = np.array([2, 3, 4])

Third, use the indices array for indexing the a array:

print(a[indices])

7. Sorting Arrays

Ans :
Sorting means putting elements in an ordered sequence.

Ordered sequence is any sequence that has an order corresponding to elements, like numeric or alphabetical,
ascending or descending.

The NumPy ndarray object has a function called sort(), that will sort a specified array.

Example : Sort the array:

import numpy as np

arr = np.array([3, 2, 0, 1])

print(np.sort(arr))

BCA II YEAR IV SEMESTER

138
Rahul Publications

Rahul Publications

You can also sort arrays of strings, or any other data type:

Example : Sort the array alphabetically:

import numpy as np

arr = np.array([‘banana’, ’cherry’, ’apple’])

print(np.sort(arr))

Example : Sort a boolean array:

import numpy as np

arr = np.array([True, False, True])

print(np.sort(arr))

Sorting a 2-D Array

If you use the sort() method on a 2-D array, both arrays will be sorted:

Example: Sort a 2-D array:

import numpy as np

arr = np.array([[3, 2, 4], [5, 0, 1]])

print(np.sort(arr))

8. Structured Data

Ans :
Numpy’s Structured Array is similar to Struct in C. It is used for grouping data of different types and sizes.

Structure array uses data containers called fields. Each data field can contain data of any type and size. Array
elements can be accessed with the help of dot notation.

Note

Arrays with named fields that can contain data of various types and sizes.

Properties of Structured array

 All structs in array have same number of fields.

 All structs have same fields names.

For example, consider a structured array of student which has different fields like name, year, marks.

Each record in array student has a structure of class Struct. The array of a structure is referred to as struct
as adding any new fields for a new struct in the array, contains the empty array.

UNIT - IV DATA SCIENCE USING PYTHON

139
Rahul Publications

Rahul Publications

Choose the Correct Answers

1. Amongst which Python library is similar to Pandas? [c]

(a) NPy (b) RPy

(c) NumPy (d) None of the mentioned above

2. NumPy arrays can be . [d]

(a) Indexed (b) Sliced

(c) Iterated (d) All of the mentioned above

3. Which of the following Numpy operation are correct? [d]

(a) Mathematical and logical operations on arrays.

(b) Fourier transforms and routines for shape manipulation.

(c) Operations related to linear algebr(a)

(d) All of the above

4. The basic ndarray is created using? [b]

(a) Numpy.array(object, dtype = None, copy = True, subok = False, ndmin = 0)

(b) Numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

(c) Numpy_array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

(d) Numpy.array(object, dtype = None, copy = True, order = None, ndmin = 0)

5. What will be output for the following code? [c]

import numpy as np

a = np.array([1,2,3])

print a

(a) [[1, 2, 3]] (b) [1]

(c) [1, 2, 3] (d) Error

6. Which of the following function stacks 1D arrays as columns into a 2D array? [b]

(a) row_stack (b) column_stack

(c) com_stack (d) All of the above

7. Which of the following sets the size of the buffer used in ufuncs? [c]

(a) bufsize(size) (b) setsize(size)

(c) setbufsize(size) (d) size(size)

8. Which of the following function stacks 1D arrays as columns into a 2D array? [b]

(a) row_stack (b) column_stack

(c) com_stack (d) all of the mentioned

9. Which of the following returns an array of ones with the same shape and type as a given array? [b]

(a) all_like (b) ones_like

(c) one_alike (d) all of the mentioned

10. Which of the following function take only single value as input? [a]

(a) iscomplex (b) minimum

(c) fmin (d) all of the mentioned

BCA II YEAR IV SEMESTER

140
Rahul Publications

Rahul Publications

Fill in the Blanks
1. is used when we need to extract a portion of an array from another..

2. We can find the dimension of the array by using

3. NumPY stands for

4. The most important object defined in NumPy is an N-dimensional array type called

5. ndarray is also known as the _______

6. If a dimension is given as vin a reshaping operation, the other dimensions are automatically
calculated.

7. The function returns its argument with a modified shape, whereas the method modifies
the array itself.

8. To create sequences of numbers, NumPy provides a function analogous to range that returns
arrays instead of lists.

9. The method makes a complete copy of the array and its data.

10. The function return the element-wise remainder of division.

ANSWERS

1. Slicing

2. Ndim

3. Numerical Python

4. Ndarray

5. Alias array

6. Negetive one

7. Reshape, resize

8. Arrange

9. Copy

10. fmod

UNIT - V DATA SCIENCE USING PYTHON

141
Rahul Publications

Rahul Publications

UNIT
V

Data Manipulation with Pandas: Introducing pandas objects, data indexing

and selection, operating on data in pandas, handling missing data, hierarchical

indexing, combining datasets, aggregation and grouping

5.1 DATA MANIPULATION WITH PANDAS

5.1.1 Introducing Pandas Objects

Q1. What are panda objects?

Ans :
Meaning

Pandas is an open-source library that is made
mainly for working with relational or labeled data both
easily and intuitively. It provides various data structures
and operations for manipulating numerical data and
time series. This library is built on top of the NumPy
library. Pandas is fast and it has high performance &
productivity for users.

Pandas generally provide two data structures for
manipulating data, They are:

 Series

 DataFrame

Q2. Explain, how to create and use series in Pan-
das.

Ans : (Imp.)

Series

The Pandas Series can be defined as a one-di-
mensional array that is capable of storing various data
types. We can easily convert the list, tuple, and dictio-
nary into series using “series’ method. The row labels of
series are called the index. A Series cannot contain
multiple columns. It has the following parameter:

 data: It can be any list, dictionary, or scalar
value.

 index: The value of the index should be unique
and hashable. It must be of the same length as
data. If we do not pass any index, default
np.arrange(n) will be used.

 dtype: It refers to the data type of series.

 copy: It is used for copying the data.

Creating a Series

We can create a Series in two ways:

1. Create an empty Series

2. Create a Series using inputs.

Create an Empty Series

We can easily create an empty series in Pandas
which means it will not have any value.

The syntax that is used for creating an Empty
Series:

<series object> = pandas.Series()

The below example creates an Empty Series type
object that has no values and having default datatype,
i.e., float64.

Example

import pandas as pd

x = pd.Series()

print (x)

Output :

Series([], dtype: float64)

Creating a Series using inputs

We can create Series by using various inputs:

 Array

 Dict

 Scalar value

BCA II YEAR IV SEMESTER

142
Rahul Publications

Rahul Publications

Creating Series from Array

Before creating a Series, firstly, we have to im-
port the numpy module and then use array() function
in the program. If the data is ndarray, then the passed
index must be of the same length.

If we do not pass an index, then by default index
of range(n) is being passed where n defines the length
of an array, i.e., [0,1,2,....range (len(array))-1].

Example

import pandas as pd

import numpy as np

info = np.array([‘P’,’a’,’n’,’d’,’a’,’s’])

a = pd.Series(info)

print(a)

Output :

0 P

1 a

2 n

3 d

4 a

5 s

dtype: object

Create a Series from dict

We can also create a Series from dict. If the dic-
tionary object is being passed as an input and the index
is not specified, then the dictionary keys are taken in a
sorted order to construct the index.

If index is passed, then values correspond to a
particular label in the index will be extracted from
the dictionary.

#import the pandas library

import pandas as pd

import numpy as np

info = {‘x’ : 0., ’y’ : 1., ’z’ : 2.}

a = pd.Series(info)

print (a)

Output :

x 0.0

y 1.0

z 2.0

dtype: float64

Create a Series using Scalar

If we take the scalar values, then the index must
be provided. The scalar value will be repeated for match-
ing the length of the index.

#import pandas library

import pandas as pd

import numpy as np

x = pd.Series(4, index=[0, 1, 2, 3])

print (x)

Output :

0 4

1 4

2 4

3 4

dtype: int64

Accessing data from series with Position:

Once you create the Series type object, you can
access its indexes, data, and even individual elements.

The data in the Series can be accessed similar to
that in the ndarray.

import pandas as pd

x = pd.Series([1,2,3],index = [‘a’,’b’,’c’])

#retrieve the first element

print (x[0])

Output :

1

Series object attributes

The Series attribute is defined as any informa-
tion related to the Series object such as size, datatype.
etc. Below are some of the attributes that you can use
to get the information about the Series object:

UNIT - V DATA SCIENCE USING PYTHON

143
Rahul Publications

Rahul Publications

Attributes Description

Series.index Defines the index of the Series.

Series.shape It returns a tuple of shape of the data.

Series.dtype It returns the data type of the data.

Series.size It returns the size of the data.

Series.empty It returns True if Series object is empty, otherwise returns false.

Series.hasnans It returns True if there are any NaN values, otherwise returns false.

Series.nbytes It returns the number of bytes in the data.

Series.ndim It returns the number of dimensions in the data.

Series.itemsize It returns the size of the datatype of item.

Retrieving Index array and data array of a series object

We can retrieve the index array and data array of an existing Series object by using the attributes index and
values.

import numpy as np

import pandas as pd

x=pd.Series(data=[2,4,6,8])

y=pd.Series(data=[11.2,18.6,22.5], index=[‘a’,’b’,’c’])

print(x.index)

print(x.values)

print(y.index)

print(y.values)

Output :

RangeIndex(start=0, stop=4, step=1)

[2 4 6 8]

Index([‘a’, ‘b’, ‘c’], dtype=’object’)

[11.2 18.6 22.5]

Retrieving Types (dtype) and Size of Type (itemsize)

You can use attribute dtype with Series object as <objectname> dtype for retrieving the data type of an
individual element of a series object, you can use the itemsize attribute to show the number of bytes allocated to
each data item.

import numpy as np

import pandas as pd

a=pd.Series(data=[1,2,3,4])

b=pd.Series(data=[4.9,8.2,5.6],

index=[‘x’,’y’,’z’])

print(a.dtype)

BCA II YEAR IV SEMESTER

144
Rahul Publications

Rahul Publications

print(a.itemsize)

print(b.dtype)

print(b.itemsize)

Output :

int64

8

float64

8

Retrieving Shape

The shape of the Series object defines total number of elements including missing or empty values(NaN).

import numpy as np

import pandas as pd

a=pd.Series(data=[1,2,3,4])

b=pd.Series(data=[4.9,8.2,5.6],index=[‘x’,’y’,’z’])

print(a.shape)

print(b.shape)

Output :

(4,)

(3,)

Retrieving Dimension, Size and Number of bytes:

import numpy as np

import pandas as pd

a=pd.Series(data=[1,2,3,4])

b=pd.Series(data=[4.9,8.2,5.6],

index=[‘x’,’y’,’z’])

print(a.ndim, b.ndim)

print(a.size, b.size)

print(a.nbytes, b.nbytes)

Output :

1 1

4 3

32 24

UNIT - V DATA SCIENCE USING PYTHON

145
Rahul Publications

Rahul Publications

Q3. Write various functions used for series attribute in Pandas.

Ans :
Series Functions

There are some functions used in Series which are as follows:

Functions Description

Pandas Series.mapQ Map the values from two series that have a common column.

Pandas Series.stdQ Calculate the standard deviation of the given set of numbers.

DataFrame. column, and rows.

Pandas Series.to_frame() Convert the series object to the dataframe.

PandasSeries.value_countsO Returns a Series that contain counts of unique values.

Q4. Expalin , how to use frames in Pandas.

Ans : (Imp.)

Frames

Pandas DataFrame is a widely used data structure which works with a two-dimensional array with labeled
axes (rows and columns). DataFrame is defined as a standard way to store data that has two different indexes,
i.e., row index and column index. It consists of the following properties:

 The columns can be heterogeneous types like int, bool, and so on.

 It can be seen as a dictionary of Series structure where both the rows and columns are indexed. It is denoted
as “columns” in case of columns and “index” in case of rows.

Parameter & Description

 data: It consists of different forms like ndarray, series, map, constants, lists, array.

 index: The Default np.arrange(n) index is used for the row labels if no index is passed.

 columns: The default syntax is np.arrange(n) for the column labels. It shows only true if no index is
passed.

 dtype: It refers to the data type of each column.

 copy(): It is used for copying the data.

BCA II YEAR IV SEMESTER

146
Rahul Publications

Rahul Publications

Create a DataFrame

We can create a DataFrame using following ways:

 dict

 Lists

 Numpy ndarrrays

 Series

Create an empty DataFrame

The below code shows how to create an empty DataFrame in Pandas:

importing the pandas library

import pandas as pd

df = pd.DataFrame()

print (df)

Output :

Empty DataFrame

Columns: []

Index: []

Create a DataFrame using List

We can easily create a DataFrame in Pandas using list.

importing the pandas library

import pandas as pd

a list of strings

x = [‘Python’, ’Pandas’]

 # Calling DataFrame constructor on list

df = pd.DataFrame(x)

print(df)

Output :

0

0 Python

1 Pandas

In the above code, we have defined a variable named “x” that consist of string values. The DataFrame
constructor is being called for a list to print the values.

Create a DataFrame from Dict of ndarrays/ Lists

importing the pandas library

import pandas as pd

info = {‘ID’ :[101, 102, 103],’Department’ :[‘B.Sc’,’B.Tech’,’M.Tech’,]}

UNIT - V DATA SCIENCE USING PYTHON

147
Rahul Publications

Rahul Publications

df = pd.DataFrame(info)

print (df)

Output :

ID Department

0 101 B.Sc

1 102 B.Tech

2 103 M.Tech

In the above code, we have defined a dictionary named “info” that consist list of ID and Department. For
printing the values, we have to call the info dictionary through a variable called df and pass it as an argument
in print().

Create a DataFrame from Dict of Series

importing the pandas library

import pandas as pd

info = {‘one’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’])}

 d1 = pd.DataFrame(info)

print (d1)

Output :

one two

a 1.0 1

b 2.0 2

c 3.0 3

d 4.0 4

e 5.0 5

f 6.0 6

g NaN 7

h NaN 8

In the above code, a dictionary named “info” consists of two Series with its respective index. For printing
the values, we have to call the info dictionary through a variable called d1 and pass it as an argument in print().

Column Selection

We can select any column from the DataFrame. Here is the code that demonstrates how to select a column
from the DataFrame.

importing the pandas library

import pandas as pd

 info = {‘one’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’]),

BCA II YEAR IV SEMESTER

148
Rahul Publications

Rahul Publications

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’])}

d1 = pd.DataFrame(info)

print (d1 [‘one’])

Output :

a 1.0

b 2.0

c 3.0

d 4.0

e 5.0

f 6.0

g NaN

h NaN

Name: one, dtype: float64

In the above code, a dictionary named “info” consists of two Series with its respective index. Later, we
have called the info dictionary through a variable d1 and selected the “one” Series from the DataFrame by
passing it into the print().

Column Addition

We can also add any new column to an existing DataFrame. The below code demonstrates how to add any
new column to an existing DataFrame:

importing the pandas library

import pandas as pd

 info = {‘one’ : pd.Series([1, 2, 3, 4, 5], index=[‘a’, ’b’, ’c’, ’d’, ’e’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’])}

 df = pd.DataFrame(info)

 # Add a new column to an existing DataFrame object

 print (“Add new column by passing series”)

df[‘three’]=pd.Series([20,40,60],index=[‘a’,’b’,’c’])

print (df)

 print (“Add new column using existing DataFrame columns”)

df[‘four’]=df[‘one’]+df[‘three’]

 print (df)

UNIT - V DATA SCIENCE USING PYTHON

149
Rahul Publications

Rahul Publications

Output :

Add new column by passing series

one two three

a 1.0 1 20.0

b 2.0 2 40.0

c 3.0 3 60.0

d 4.0 4 NaN

e 5.0 5 NaN

f NaN 6 NaN

Add new column using existing DataFrame columns

one two three four

a 1.0 1 20.0 21.0

b 2.0 2 40.0 42.0

c 3.0 3 60.0 63.0

d 4.0 4 NaN NaN

e 5.0 5 NaN NaN

f NaN 6 NaN NaN

In the above code, a dictionary named as f consists two Series with its respective index. Later, we have
called the info dictionary through a variable df.

To add a new column to an existing DataFrame object, we have passed a new series that contain some values
concerning its index and printed its result using print().

We can add the new columns using the existing DataFrame. The “four” column has been added that stores the
result of the addition of the two columns, i.e., one and three.

Column Deletion

We can also delete any column from the existing DataFrame. This code helps to demonstrate how the
column can be deleted from an existing DataFrame:

importing the pandas library

import pandas as pd

 info = {‘one’ : pd.Series([1, 2], index= [‘a’, ’b’]),

 ’two’ : pd.Series([1, 2, 3], index=[‘a’, ’b’, ’c’])}

 df = pd.DataFrame(info)

print (“The DataFrame:”)

print (df)

 # using del function

print (“Delete the first column:”)

del df[‘one’]

BCA II YEAR IV SEMESTER

150
Rahul Publications

Rahul Publications

print (df)

using pop function

print (“Delete the another column:”)

df.pop(‘two’)

print (df)

Output :

The DataFrame:

one two

a 1.0 1

b 2.0 2

c NaN 3

Delete the first column:

two

a 1

b 2

c 3

Delete the another column:

Empty DataFrame

Columns: []

Index: [a, b, c]

In the above code, the df variable is responsible for calling the info dictionary and print the entire values
of the dictionary. We can use the delete or pop function to delete the columns from the DataFrame.

In the first case, we have used the delete function to delete the “one” column from the DataFrame whereas
in the second case, we have used the pop function to remove the “two” column from the DataFrame.

Row Selection, Addition, and Deletion

Row Selection:

We can easily select, add, or delete any row at anytime. First of all, we will understand the row selection.
Let’s see how we can select a row using different ways that are as follows:

Selection by Label:

We can select any row by passing the row label to a loc function.

importing the pandas library

import pandas as pd

info = {‘one’ : pd.Series([1, 2, 3, 4, 5], index=[‘a’, ’b’, ’c’, ’d’, ’e’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’])}

 df = pd.DataFrame(info)

print (df.loc[‘b’])

UNIT - V DATA SCIENCE USING PYTHON

151
Rahul Publications

Rahul Publications

Output :

one 2.0

two 2.0

Name: b, dtype: float64

In the above code, a dictionary named as info that consists two Series with its respective index.

For selecting a row, we have passed the row label to a loc function.

Selection by integer location:

The rows can also be selected by passing the integer location to an iloc function.

importing the pandas library

import pandas as pd

info = {‘one’ : pd.Series([1, 2, 3, 4, 5], index=[‘a’, ’b’, ’c’, ’d’, ’e’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’])}

df = pd.DataFrame(info)

print (df.iloc[3])

Output :

one 4.0

two 4.0

Name: d, dtype: float64

In the above code, we have defined a dictionary named as info that consists two Series with its
respective index.

For selecting a row, we have passed the integer location to an iloc function.

Slice Rows

It is another method to select multiple rows using ’:’ operator.

importing the pandas library

import pandas as pd

info = {‘one’ : pd.Series([1, 2, 3, 4, 5], index=[‘a’, ’b’, ’c’, ’d’, ’e’]),

 ’two’ : pd.Series([1, 2, 3, 4, 5, 6], index=[‘a’, ’b’, ’c’, ’d’, ’e’, ’f’])}

df = pd.DataFrame(info)

print (df[2:5])

Output :

one two

c 3.0 3

d 4.0 4

e 5.0 5

BCA II YEAR IV SEMESTER

152
Rahul Publications

Rahul Publications

In the above code, we have defined a range from 2:5 for the selection of row and then printed its values on
the console.

Addition of rows:

We can easily add new rows to the DataFrame using append function. It adds the new rows at the end.

importing the pandas library

import pandas as pd

d = pd.DataFrame([[7, 8], [9, 10]], columns = [‘x’,’y’])

d2 = pd.DataFrame([[11, 12], [13, 14]], columns = [‘x’,’y’])

d = d.append(d2)

print (d)

Output :

x y

0 7 8

1 9 10

0 11 12

1 13 14

In the above code, we have defined two separate lists that contains some rows and columns. These columns
have been added using the append function and then result is displayed on the console.

Deletion of rows

We can delete or drop any rows from a DataFrame using the index label. If in case, the label is duplicate
then multiple rows will be deleted.

importing the pandas library

import pandas as pd

 a_info = pd.DataFrame([[4, 5], [6, 7]], columns = [‘x’,’y’])

b_info = pd.DataFrame([[8, 9], [10, 11]], columns = [‘x’,’y’])

a_info = a_info.append(b_info)

 # Drop rows with label 0

a_info = a_info.drop(0)

Output :

x y

1 6 7

1 10 11

UNIT - V DATA SCIENCE USING PYTHON

153
Rahul Publications

Rahul Publications

Explanation:

In the above code, we have defined two separate lists that contains some rows and columns.

Here, we have defined the index label of a row that needs to be deleted from the list.

5. Write various functions used in Panda data frames

DataFrame Functions

There are lots of functions used in DataFrame which are as follows:

S.No. Functions Description

1. Pandas DataFrame.append O Add the rows of other dataframe to the end of the given
data frame.

2. Pandas DataFrame.applyO Allows the user to pass a function and apply it toevery
single value of the Pandas series.

3. Pandas DataFrame.assignQ Add new column into a dataframe.

4. Pandas DataFrame.astype() Cast the Pandas object to a specified
dtype.astype()function.

5. Pandas DataFrame.concat() Perform concatenation operation along an axis in the
DataFrame.

6. Pandas DataFrame.countO Count the number of non-NA cells for each columnor
row.

7. Pandas DataFrame.describe() Calculate some statistical data like percentile, meanand
std of the numerical values of the Series orDataFrame.

8. PandasDataFrame.drop_duplicates() Remove duplicate values from the DataFrame.

9. Pandas DataFrame.groupbyO Split the data into various groups.

10. Pandas DataFrame.headQ Returns the first n rows for the object based onposition.

11. Pandas DataFrame.hist() Divide the values within a numerical variable into”bins”.

12. Pandas DataFrame.iterrows() Iterate over the rows as (index, series) pairs.

13. Pandas DataFrame.meanO Return the mean of the values for the requested axis.

14. Pandas DataFrame.meltO Unpivots the DataFrame from a wide format to along
format.

15. Pandas DataFrame.merge() Merge the two datasets together into one.

16. Pandas DataFrame.pivot_table() Aggregate data with calculations such as Sum,

Count, Average, Max, and Min.

17. Pandas DataFrame.queryO Filter the dataframe.

18. Pandas DataFrame.sample() Select the rows and columns from the dataframer and
omly.

19. Pandas DataFrame.shift() Shift column or subtract the column value with the
previous row value from the dataframe.

20. Pandas DataFrame.sort() Sort the dataframe.

21. Pandas DataFrame.sum() Return the sum of the values for the requested axisby
the user.

22. Pandas DataFrame.to_excel() Export the dataframe to the excel file.

23. Pandas DataFrame.transpose() Transpose the index and columns of the dataframe.

24. Pandas DataFrame.where() Check the dataframe for one or more conditions.

BCA II YEAR IV SEMESTER

154
Rahul Publications

Rahul Publications

5.2 DATA INDEXING AND SELECTION

Q5. Explain about indexing in Pandas.

Ans : (Imp.)

Indexing in Pandas

Indexing in pandas means simply selecting particular rows and columns of data from a DataFrame. Indexing

could mean selecting all the rows and some of the columns, some of the rows and all of the columns, or some of

each of the rows and columns. Indexing can also be known as Subset Selection.

Pandas Indexing using [], .loc[], .iloc[], .ix[]

There are a lot of ways to pull the elements, rows, and columns from a DataFrame. There are some indexing

method in Pandas which help in getting an element from a DataFrame. These indexing methods appear very similar

but behave very differently. Pandas support four types of Multi-axes indexing they are:

 Dataframe.[] ; This function also known as indexing operator

 Dataframe.loc[] : This function is used for labels.

 Dataframe.iloc[] : This function is used for positions or integer based

 Dataframe.ix[] : This function is used for both label and integer based

Collectively, they are called the indexers. These are by far the most common ways to index data. These are

four function which help in getting the elements, rows, and columns from a DataFrame.

Indexing a Dataframe using indexing operator [] :

Indexing operator is used to refer to the square brackets following an object. The .loc and .iloc indexers

also use the indexing operator to make selections. In this indexing operator to refer to df[].

Selecting a single columns

In order to select a single column, we simply put the name of the column in-between the brackets

importing pandas package

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving columns by indexing operator

first =data[“Age”]

 print(first)

UNIT - V DATA SCIENCE USING PYTHON

155
Rahul Publications

Rahul Publications

Output :

Name

Avery Bradley 25.0

Dae Crowder 25.0

Dohn Holland 27.0

R.D. Hunter 22.0

Donas Derebko 29.0

Amir Dohnson 29.0

Dordan Mickey 21.0

Kelly Olynyk 25.0

Terry Rozier 22.0

Marcus Smart 22.0

Dared Sullinger 24.0

Isaiah Thomas 27.0

Doe Ingles 28.0

Chris Dohnson 26.0

Trey Lyles 20.0

Shelvin Mack 26.0

Raul Neto 24.0

Tibor Pleiss 26.0

Deff Withey 26.0

NaN NaN

Name: Age, Length: 458, dtype: float64

Selecting multiple columns

In order to select multiple columns, we have to pass a list of columns in an indexing operator.

importing pandas package

importpandas as pd

 # making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving multiple columns by indexing operator

first =data[[“Age”, “College”, “Salary”]]

first

BCA II YEAR IV SEMESTER

156
Rahul Publications

Rahul Publications

Output :

Age College Salary

Name

Avery Bradley 25.0 Taxes 7730337.0

Jee Crowder 25.0 Marquette 6796117.0

John Holland 27.0 Boston University NaN

R.J. Hunter 22.0 Georgia State 1148640.0

Jonas Jerebko 29.0 NaN 5000000.0

Amir Johnson 29.0 NaN 12000000.0

Jordan Mickey 21.0 LSU 1170960.0

Kelly Olynyk 25.0 Gonzaga 2165160.0

Terry Rozier 22.0 Louisville 1824360.0

   
   
   
   


Joe ingles 28.0 NaN 2050000.0

Chris Johnson 26.0 Dayton 981348.0

Trey Lyles 20.0 Kentucky 2239800.0

Shelvin Mack 26.0 Butler 2433333.0

Raul Neto 24.0 Nan 900000.0

Tibor Pleiss 26.0 NaN 2900000.0

Jett Withey 26.0 Kansas 947276.0

NaN NaN NaN NaN

458 rows × 3 columns

Indexing a DataFrame using .loc[] :

This function selects data by the label of the rows and columns. The df.loc indexer selects data in a
different way than just the indexing operator. It can select subsets of rows or columns. It can also simultaneously
select subsets of rows and columns.

Selecting a single row

In order to select a single row using .loc[], we put a single row label in a .loc function.

importing pandas package

importpandas as pd

 # making data frame from csv file

UNIT - V DATA SCIENCE USING PYTHON

157
Rahul Publications

Rahul Publications

data =pd.read_csv(“nba.csv”, index_col =”Name”)

 # retrieving row by loc method

first =data.loc[“Avery Bradley”]

second =data.loc[“R.J. Hunter”]

print(first, “\n\n\n”, second)

Output :

As shown in the output image, two series were returned since there was only one parameter both of the
times.

Team Boston Celtics

Number 0

Position PG

Age 25

Height 6 - 2

Weight 180

College Taxes

Salary 7.73 34e+06

Name : Avery Bradley, dtype : object

Team Boston Celtics

Number 28

Position 5G

Age 22

Height 6 - 5

Weight 185

College Georgia State

Salary 1.14864e+06

Name : R.J. Hunter, dtype: object

Selecting multiple rows

In order to select multiple rows, we put all the row labels in a list and pass that to .loc function.

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

 # retrieving multiple rows by loc method

first =data.loc[[“Avery Bradley”, “R.J. Hunter”]]

 print(first)

BCA II YEAR IV SEMESTER

158
Rahul Publications

Rahul Publications

Output :

Team Number Position Age Height Weight College Salary

Name

Avery Bradley Boston Celtics 0.0 PG 25.0 6-2 180.0 Texas 7730337.0

R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0

Selecting two rows and three columns

In order to select two rows and three columns, we select a two rows which we want to select and three
columns and put it in a separate list like this:

Dataframe.loc[[“row1”, “row2”], [“column1”, “column2”, “column3”]]

importpandas as pd

 # making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

 # retrieving two rows and three columns by loc method

first =data.loc[[“Avery Bradley”, “R.J. Hunter”],

[“Team”, “Number”, “Position”]]

print(first)

Output:

Team Number Position

Name

Avery Bradley Boston Celtics 0.0 PG

R.J. Hunter Boston Celtics 28.0 SG

Selecting all of the rows and some columns

In order to select all of the rows and some columns, we use single colon [:] to select all of rows and list of

some columns which we want to select like this:

Dataframe.loc[:, [“column1”, “column2”, “column3”]]

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving all rows and some columns by loc method

first =data.loc[:, [“Team”, “Number”, “Position”]]

print(first)

UNIT - V DATA SCIENCE USING PYTHON

159
Rahul Publications

Rahul Publications

Output :

Team Number Position

Name

Avery Bradley Boston Celtics 0.0 PG

Jae Crowder Boston Celtics 99.0 SF

John Holland Boston Celtics 30.0 SG

R.J. Hunter Boston Celtics 28.0 SG

Jonas Jerebko Boston Celtics 8.0 PF

Amir Johnson Boston Celtics 90.0 PF

Jordan Mickey Boston Celtics 55.0 PF

Kelly Olynyk Boston Celtics 41.0 C

Terry Rozier Boston Celtics 12.0 PG

Marcus Smart Boston Celtics 36.0 PG

Jared Sullinger Boston Celtics 7.0 C

   
   
   
   
   
Rudy Gobert Utah Jazz 27.0 C

Gordon Utah Jazz 20.0 SF

Rodney Utah Jazz 5.0 SG

Joe Ingles Utah Jazz 2.0 SF

Chris Johnson Utah Jazz 23.0 SF

Trey Lyles Utah Jazz 41.0 PF

Shelvin Mack Utah Jazz 8.0 PG

Raul Neto Utah Jazz 25.0 PG

Tibor pleiss Utah Jazz 21.0 C

Jeff withey Utah Jazz 24.0 C

NaN NaN NaN NaN

[458 rows × 3 columns]

Indexing a DataFrame using.iloc[] :

This function allows us to retrieve rows and columns by position. In order to do that, we’ll need to specify the
positions of the rows that we want, and the positions of the columns that we want as well. The df.iloc indexer is
very similar to df.loc but only uses integer locations to make its selections.

Selecting a single row

In order to select a single row using .iloc[], we can pass a single integer to .iloc[] function.

importpandas as pd

BCA II YEAR IV SEMESTER

160
Rahul Publications

Rahul Publications

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving rows by iloc method

row2 =data.iloc[3]

print(row2)

Output :

Team Boston Celtics

Number 28

Position 5G

Age 22

Height 6-5

Weight 185

College Georgia State

Salary 1.14864e+06

Name : R.3. Hunter, dtype: object

Selecting multiple rows

In order to select multiple rows, we can pass a list of integer to .iloc[] function.

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving multiple rows by iloc method

row2 =data.iloc [[3, 5, 7]]

row2

Output:

Team Number Position Age Height Weight College Salary

Name

R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0

Amir Johnson Boston Celtics 90.0 PF 29.0 6-9 240.0 NaN 12000000.0

Kelly Olynyk Boston Celtics 41.0 C 25.0 7-0 238.0 Gonzaga 2165160.0

Selecting two rows and two columns

In order to select two rows and two columns, we create a list of 2 integer for rows and list of 2 integer for
columns then pass to a .iloc[] function.

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

UNIT - V DATA SCIENCE USING PYTHON

161
Rahul Publications

Rahul Publications

retrieving two rows and two columns by iloc method

row2 =data.iloc [[3, 4], [1, 2]]

 print(row2)

Output:

Number Position

Name

R.D. Hunter 28.0 SG

Donas Derebko 8.0 PF

Selecting all the rows and a some columns

In order to select all rows and some columns, we use single colon [:] to select all of rows and for columns
we make a list of integer then pass to a .iloc[] function.

importpandas as pd

 # making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving all rows and some columns by iloc method

row2 =data.iloc [:, [1, 2]]

print(row2)

Output:

Team Number Position

Name

Avery Bradley Boston Celtics 0.0 PG

Jae Crowder Boston Celtics 99.0 SF

John Holland Boston Celtics 30.0 SG

R.J. Hunter Boston Celtics 28.0 SG

Jonas Jerebko Boston Celtics 8.0 PF

Amir Johnson Boston Celtics 90.0 PF

Jordan Mickey Boston Celtics 55.0 PF

Kelly Olynyk Boston Celtics 41.0 C

Terry Rozier Boston Celtics 12.0 PG

Marcus Smart Boston Celtics 36.0 PG

Jared Sullinger Boston Celtics 7.0 C

   
   
   
   
   
Rudy Gobert Utah Jazz 27.0 C

BCA II YEAR IV SEMESTER

162
Rahul Publications

Rahul Publications

Gordon Hayward Utah Jazz 20.0 SF

Rodney Hood Utah Jazz 5.0 SG

Joe Ingles Utah Jazz 2.0 SF

Chris Johnson Utah Jazz 23.0 SF

Trey Lyles Utah Jazz 41.0 PF

Shelvin Mack Utah Jazz 8.0 PG

Raul Neto Utah Jazz 25.0 PG

Tibor pleiss Utah Jazz 21.0 C

Jeff withey Utah Jazz 24.0 C

NaN NaN NaN NaN

[458 rows × 3 columns]

Indexing a DataFrame using .iloc[] :

This function allows us to retrieve rows and columns by position. In order to do that, we’ll need to specify the
positions of the rows that we want, and the positions of the columns that we want as well. The df.iloc indexer is
very similar to df.loc but only uses integer locations to make its selections.

Selecting a single row

In order to select a single row using .iloc[], we can pass a single integer to .iloc[] function.

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving rows by iloc method

row2 =data.iloc[3]

print(row2)

Output:

Team Boston Celtics

Number 28

Position SG

Age 22

Height 6-5

Weight 185

College Georgia State

Salary 1.14864e+06

Selecting multiple rows

In order to select multiple rows, we can pass a list of integer to .iloc[] function.

importpandas as pd

UNIT - V DATA SCIENCE USING PYTHON

163
Rahul Publications

Rahul Publications

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving multiple rows by iloc method

row2 =data.iloc [[3, 5, 7]]

row2

Output:

Team Number Position Age Height Weight College Salary

Name

R.J. Hunter Boston Celtics 28.0 SG 22.0 6-5 185.0 Georgia State 1148640.0

Amir Johnson Boston Celtics 90.0 PF 29.0 6-9 240.0 NaN 12000000.0

Kelly Olynyk Boston Celtics 41.0 C 25.0 7-0 238.0 Gonzaga 2165160.0

Selecting two rows and two columns

In order to select two rows and two columns, we create a list of 2 integer for rows and list of 2 integer for
columns then pass to a .iloc[] function.

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving two rows and two columns by iloc method

row2 =data.iloc [[3, 4], [1, 2]]

 print(row2)

Output:

Number Position

Name

R.D. Hunter 28.0 SG

Donas Derebko 8.0 PF

Selecting all the rows and a some columns

In order to select all rows and some columns, we use single colon [:] to select all of rows and for columns
we make a list of integer then pass to a .iloc[] function.

importpandas as pd

 # making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving all rows and some columns by iloc method

row2 =data.iloc [:, [1, 2]]

print(row2)

BCA II YEAR IV SEMESTER

164
Rahul Publications

Rahul Publications

Output:

Number Position

Name

Avery Bradley 0.0 PG

Jae Crowder 99.0 SF

John Holland 30.0 SG

R.J. Hunter 28.0 SG

Jonas Jerebko 8.0 PF

Amir Johnson 90.0 PF

Jordan Mickey 55.0 PF

Kelly Olynyk 41.0 C

Terry Rozier 12.0 PG

Marcus Smart 36.0 PG

Jared Sullinger 7.0 C

Isaiah Thomas 4.0 PG

Evan Turner 11.0 SG

James Young 13.0 SG

  
  
  
  
  
Rodney Hood 5.0 SG

Joe Ingles 2.0 SF

Chris Johnson 23.0 SF

Trey Lyles 41.0 PF

Shelvin Mack 8.0 PG

Raul Neto 25.0 PG

Tibor pleiss 21.0 C

Jeff withey 24.0 C

NaN NaN NaN

[458 rows × 2 columns]

Indexing a using Dataframe.ix[] :

Early in the development of pandas, there existed another indexer, ix. This indexer was capable of selecting
both by label and by integer location. While it was versatile, it caused lots of confusion because it’s not explicit.
Sometimes integers can also be labels for rows or columns. Thus there were instances where it was ambiguous.
Generally, ix is label based and acts just as the .loc indexer. However, .ix also supports integer type selections
(as in .iloc) where passed an integer. This only works where the index of the DataFrame is not integer based .ix will
accept any of the inputs of .loc and .iloc.

UNIT - V DATA SCIENCE USING PYTHON

165
Rahul Publications

Rahul Publications

Note: The .ix indexer has been deprecated in recent versions of Pandas.

Selecting a single row using .ix[] as .loc[]

In order to select a single row, we put a single row label in a .ix function. This function act similar as .loc[]
if we pass a row label as a argument of a function.

importing pandas package

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving row by ix method

first =data.ix[“Avery Bradley”]

print(first)

Output:

Team Boston Celtics

Number 0

Position PG

Age 25

Height 6-2

Weight 180

College Taxes

Salary 7.73034e+06

Name : Avery Bradley, dtype: object

Selecting a single row using .ix[] as .iloc[]

In order to select a single row, we can pass a single integer to .ix[] function. This function similar as a iloc[]
function if we pass an integer in a .ix[] function.

importing pandas package

importpandas as pd

making data frame from csv file

data =pd.read_csv(“nba.csv”, index_col =”Name”)

retrieving row by ix method

first =data.ix[1]

print(first)

Output:

Team Boston Celtics

Number 99

Position SF

Age 25

Height 6-6

Weight 235

College Marquette

Salary 6.79612e +06

Name : Jae Crowder, dtype: object

BCA II YEAR IV SEMESTER

166
Rahul Publications

Rahul Publications

Q6. Write about the methods in indexing in Data frame.

Ans : (Imp.)

Methods for indexing in DataFrame

S.No. Function Description

1. Datafiame.headQ Return top n tows of a data fiama.

2. Datafiame.tailO Return bottom n tows of a data fiama.

3. Datafiame.at[] Access a single value for a row column label pair.

4. Datafiame.iat[] Access a single value for a row column pair by integer position.

5. Datafiama.tailO Purely integer-location based indexing for selection by position.

6. DataF ramelookupO Label-based “fancy indexing” function for D3taFrame.

7. DataF rame.popO Return item and drop from fiama.

8. DataF rame.xiO Returns a cross-section (row(s) or columns)) fiom theDataF rame.

9. DataFrame.getO C-et item fiom object for given key {DataFrame column, Panelslice,
etc.).

10. DataFrame.isin{) Return boolean DataF rame showing whether each element in
theDataF rame is con tained in values.

11. DataF rame.whereQ Return an object of same shape as self and whose
correspondingentries are fiom self where cond is True and other
wise are fiomother.

12. DataFrame.ma*kO Return an objea of same shape aa self and whose
correspondingentries are fiom self where cond is False and other
wise are non other.

13. DataF rame.queryQ Query the columns of a name with a boolean expression.

14. DataFrame.insertO Insert column into D3taFrame at specified location.

5.3 OPERATING ON DATA IN PANDAS

Q7. Explain various operations that can perform on Pandas Data Frames.

Ans : (Imp.)

DataFrame is an essential data structure in Pandas and there are many way to operate on it. Arithmetic,
logical and bit-wise operations can be done across one or more frames.

Operations specific to data analysis include:

 Subsetting: Access a specific row/column, range of rows/columns, or a specific item.

 Slicing: A form of subsetting in which Python slicing syntax [:] is used. Rows/columns are numbered from
zero. Negative integers imply traversal from the last row/column.

 Filtering: Obtain rows that fulfil one or more conditions.

 Reshaping: Reorganize data such that the number of rows and columns change.

 Merging: A DataFrame is merged with another. This can be a simple concatenation of frames or database-
style joins.

UNIT - V DATA SCIENCE USING PYTHON

167
Rahul Publications

Rahul Publications

 Indexing is a general term for subsetting, slicing and filtering.

Consider a simple DataFrame with index values 10-12 and columns A-C. A row or column can be accessed
by its index value or column label respectively. Column label is used directly in []: df[‘A’]. Index values are
used via .loc[]: df.loc[10]. We can also access a row by its position using .iloc[]: df.iloc[0].

In our example, there are many ways to get the last item, a scalar value:

 Row first: df.iloc[2][‘C’], df.loc[12][‘C’], df.loc[12, ‘C’]

 Column first: df[‘C’][12], df[‘C’].loc[12], df[‘C’].iloc[2]

To access multiple rows use df.loc[[10,11]] or df.iloc[0:2]. For multiple columns, use df[[‘A’,’B’]]. To get
last two columns of last two rows, we can write df.loc[[11,12], [‘B’,’C’]], df.iloc[1:][[‘B’,’C’]],
df[[‘B’,’C’]].iloc[1:] or df[[‘B’,’C’]].loc[[11,12]]. Integer lists df.iloc[[1,2],[1,2]] or slicing
df.iloc[1:,1:] or df.iloc[-2:, -2:] can be used.

Positional and label-based indexing can be combined: df.loc[df.index[[0, 2]], ‘A’].

Callable can be used for indexing. Function takes a Series or DataFrame and must return a valid index. For
example, df.loc[:, lambda df: [‘A’,’B’]] or df[lambda df: df.columns[0]].

5.4 HANDLING MISSING DATA

Q8. Explain, how to handle the missing data.

Ans : (Imp.)

Missing data is always a problem in real life scenarios. Areas like machine learning and data mining face
severe issues in the accuracy of their model predictions because of poor quality of data caused by missing values.
In these areas, missing value treatment is a major point of focus to make their models more accurate and valid.

When and Why Is Data Missed?

Let us consider an online survey for a product. Many a times, people do not share all the information related
to them. Few people share their experience, but not how long they are using the product; few people share how long
they are using the product, their experience but not their contact information. Thus, in some or the other way a part
of data is always missing, and this is very common in real time.

Let us now see how we can handle missing values (say NA or NaN) using Pandas.

import the pandas library

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df

Its output is as follows:

BCA II YEAR IV SEMESTER

168
Rahul Publications

Rahul Publications

one two three

a 0.077988 0.476149 0.965836

b NaN NaN NaN

c -0.390208 -0.551605 -2.301950

d NaN NaN NaN

e -2.000303 -0.788201 1.510072

f -0.930230 -0.670473 1.146615

g NaN NaN NaN

h 0.085100 0.532791 0.887415

Using reindexing, we have created a DataFrame with missing values. In the output, NaN means Not a
Number.

Check for Missing Values

To make detecting missing values easier (and across different array dtypes), Pandas provides
the isnull() and notnull() functions, which are also methods on Series and DataFrame objects “

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df[‘one’].isnull()

Its output is as follows

a False

b True

c False

d True

e False

f False

g True

h False

Name: one, dtype: bool

Calculations with Missing Data

 When summing data, NA will be treated as Zero

 If the data are all NA, then the result will be NA

Example 1

import pandas as pd

import numpy as np

UNIT - V DATA SCIENCE USING PYTHON

169
Rahul Publications

Rahul Publications

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df[‘one’].sum()

Its output is as follows

2.02357685917

Cleaning / Filling Missing Data

Pandas provides various methods for cleaning the missing values. The fillna function can “fill in” NA values
with non-null data in a couple of ways, which we have illustrated in the following sections.

Replace NaN with a Scalar Value

The following program shows how you can replace “NaN” with “0”.

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(3,3), index=[‘a’,’c’,’e’],columns=[‘one’, ‘two’,’three’])

df = df.reindex([‘a’,’b’,’c’])

print df

print(“NaN replaced with ‘0’:”)

print df.fillna(0)

Its output is as follows

one two three

a -0.576991 -0.741695 0.553172

b NaN NaN NaN

c 0.744328 -1.735166 1.749580

 NaN replaced with ‘0’:

one two three

a -0.576991 -0.741695 0.553172

b 0.000000 0.000000 0.000000

c 0.744328 -1.735166 1.749580

Here, we are filling with value zero; instead we can also fill with any other value.

Fill NA Forward and Backward

Using the concepts of filling discussed in the ReIndexing Chapter we will fill the missing values.

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

BCA II YEAR IV SEMESTER

170
Rahul Publications

Rahul Publications

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df.fillna(method=’pad’)

Its output is as follows

one two three

a 0.077988 0.476149 0.965836

b 0.077988 0.476149 0.965836

c -0.390208 -0.551605 -2.301950

d -0.390208 -0.551605 -2.301950

e -2.000303 -0.788201 1.510072

f -0.930230 -0.670473 1.146615

g -0.930230 -0.670473 1.146615

h 0.085100 0.532791 0.887415

Drop Missing Values

If you want to simply exclude the missing values, then use the dropna function along with the axis argument.
By default, axis=0, i.e., along row, which means that if any value within a row is NA then the whole row is
excluded.

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5,3), index=[‘a’,’c’,’e’,’f’,

‘h’],columns=[‘one’,’two’,’three’])

df = df.reindex([‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’])

print df.dropna()

Its output is as follows

one two three

a 0.077988 0.476149 0.965836

c -0.390208 -0.551605 -2.301950

e -2.000303 -0.788201 1.510072

f -0.930230 -0.670473 1.146615

h 0.085100 0.532791 0.887415

Replace Missing (or) Generic Values

Many times, we have to replace a generic value with some specific value. We can achieve this by applying
the replace method.

Replacing NA with a scalar value is equivalent behavior of the fillna() function.

UNIT - V DATA SCIENCE USING PYTHON

171
Rahul Publications

Rahul Publications

Example 1

import pandas as pd

import numpy as np

df = pd.DataFrame({‘one’:[10,20,30,40,50,2000],’two’:[1000,0,30,40,50,60]})

print df.replace({1000:10,2000:60})

Its output is as follows

one two

0 10 10

1 20 0

2 30 30

3 40 40

4 50 50

5 60 60

5.5 HIERARCHICAL INDEXING

Q9. Explain about the concept of hierarchical indexing in Pandas.

Ans :
The index is like an address, that’s how any data point across the data frame or series can be accessed.

Rows and columns both have indexes, rows indices are called index and for columns, it’s general column names.

Hierarchical Indexes

Hierarchical Indexes are also known as multi-indexing is setting more than one column name as the index.
In this article, we are going to use homelessness.csv file.

importing pandas library as alias pd

importpandas as pd

 # calling the pandas read_csv() function.

and storing the result in DataFrame df

df =pd.read_csv(‘homelessness.csv’)

 print(df.head())

Output:

region state individuals family_members state_ pop

0 East South Central Alabama 2570.0 864.0 4887681

1 Pacific Alaska 1434.0 582.0 735139

2 Mountain Arizona 7259.0 2606.0 7158024

3 West South Central Arkanasa 2280.0 432.0 3009733

4 Pacific California 109008.0 20964.0 39461588

In the following data frame, there is no indexing.

Columns in the Dataframe:

BCA II YEAR IV SEMESTER

172
Rahul Publications

Rahul Publications

using the pandas columns attribute.

col =df.columns

print(col)

Output:

Index([‘Unnamed: 0’, ‘region’, ‘state’, ‘individuals’, ‘family_members’,

‘state_pop’],

dtype=’object’)

To make the column an index, we use the Set_index() function of pandas. If we want to make one column
an index, we can simply pass the name of the column as a string in set_index(). If we want to do multi-indexing or
Hierarchical Indexing, we pass the list of column names in the set_index().

Below Code demonstrates Hierarchical Indexing in pandas:

using the pandas set_index() function.

df_ind3 =df.set_index([‘region’, ‘state’, ‘individuals’])

 # we can sort the data by using sort_index()

df_ind3.sort_index()

 print(df_ind3.head(10))

Output:

family_members state_pop

region state individuals

East South Central Alabama 2570.0 864.0 4887681

Pacific Alaska 1434.0 582 735139

Mountain Arizona 7259.0 2606.0 7158024

West South Central Arkansas 2280.0 432.0 3009733

Pacific California 109008.0 20964.0 39461588

Mountain Colorado 7607.0 3250.0 5691287

New England Connecticut 2280.0 1696.0 3571520

South Atlantic Delaware 708.0 374.0 965479

District of Columbia 3770.0 3134.0 701547

Florida 21443.0 9587.0 21244317

Now the dataframe is using Hierarchical Indexing or multi-indexing.

Note that here we have made 3 columns as an index (‘region’, ‘state’, ‘individuals’). The first index ‘region’
is called level(0) index, which is on top of the Hierarchy of indexes, next index ‘state’ is level(1) index which is below
the main or level(0) index, and so on. So, the Hierarchy of indexes is formed that’s why this is called Hierarchical
indexing.

Selecting Data in a Hierarchical Index or using the Hierarchical Indexing:

UNIT - V DATA SCIENCE USING PYTHON

173
Rahul Publications

Rahul Publications

For selecting the data from the dataframe using the .loc() method we have to pass the name of the indexes
in a list.

selecting the ‘Pacific’ and ‘Mountain’

region from the dataframe.

 # selecting data using level(0) index or main index.

df_ind3_region =df_ind3.loc[[‘Pacific’, ‘Mountain’]]

 print(df_ind3_region.head(10))

Output:

family_members state_pop

region state individuals

Pacific Alaska 1434.0 582.0 735139

California 169008.0 20964.0 39461588

Hawaii 4131.0 2399.0 1420593

Oregon 11139.0 3337.0 4181886

Washington 16424.0 5880.0 7523869

Mountain Arizona 7259.0 2606.0 7158024

Colorado 7607.0 3250.0 5691287

Idaho 1297.0 715.0 1750536

Montana 983.0 422.0 1060665

Nevada 7058.0 486.0 3027341

We cannot use only level(1) index for getting data from the dataframe, if we do so it will give an error. We
can only use level (1) index or the inner indexes with the level(0) or main index with the help list of tuples.

using the inner index ‘state’ for getting data.

df_ind3_state =df_ind3.loc[[‘Alaska’, ‘California’, ‘Idaho’]]

 print(df_ind3_state.head(10))

Output:

~/ anaconda3/lib/python3.8/site-packages/pandas/core/indexing. py in getting axis (self, key, axis)

1097 raise ValueError(*Cannot index with multidimensional key *)

1098

 1099 return self, _ getitem_iterable (key, axis=axis)

1100

1101 # nested tuple slicing

~ / anaconda3/lib/python 3.8/site-packages/pandas/core/indexing.py in _ getiten_iterable(self, key, axis)

1035

BCA II YEAR IV SEMESTER

174
Rahul Publications

Rahul Publications

1036 # A collection of keys

 1037 keyarr, indexer = self, _get _ listlike_indexer (key, axis, raise_missing=False)

1038 return self.obj._reindex_with_indexers (

1039 {axis : [keyarr, indexer]}, copy = True, allow_dups=True

Using inner levels indexes with the help of a list of tuples :

Using inner levels indexes with the help of a list of tuples:

Syntax:

df.loc[[(level(0) , level(1) , level(2))]]

selecting data by passing all levels index.

df_ind3_region_state =df_ind3.loc[[(“Pacific”, “Alaska”, 1434),

(“Pacific”, “Hawaii”, 4131),

(“Mountain”, “Arizona”, 7259),

(“Mountain”, “Idaho”, 1297)]]

df_ind3_region_state

Output :

family_members state_pop

region state individuals

Pacific Alaska 1434.0 582.0 735139

Hawaii 4131.0 2399.0 1420593

Mountain Arizona 7259.0 2606.0 7158024

Idaho 1297.0 715.0 1750536

5.6 COMBINING DATASETS

Q10. Explain, how to Combine the data frames in Panda Using Merge() Function.

Ans : (Imp.)

Once your data is in a series or frames, you may need to combine the data to prepare for further processing,
as some data may be in one frame and some in another. pandas provides functions for merging and concatenating
frames as long as you know whether you want to merge or to concatenate.

Merging

Pandas merge() is defined as the process of bringing the two datasets together into one and aligning the
rows based on the common attributes or columns. It is an entry point for all standard database join operations
between DataFrame objects:

Syntax:

pd.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None,

left_index=False, right_index=False, sort=True)

Parameters:

UNIT - V DATA SCIENCE USING PYTHON

175
Rahul Publications

Rahul Publications

 right: DataFrame or named Series

It is an object which merges with the DataFrame.

 how: {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

Type of merge to be performed.

 left: It use only keys from the left frame, similar to a SQL left outer join; preserve key order.

 right: It use only keys from the right frame, similar to a SQL right outer join; preserve key order.

 outer: It used the union of keys from both frames, similar to a SQL full outer join; sort keys lexicographi-
cally.

 inner: It use the intersection of keys from both frames, similar to a SQL inner join; preserve the order of the
left keys.

 on: label or list

It is a column or index level names to join on. It must be found in both the left and right DataFrames. If on
is None and not merging on indexes, then this defaults to the intersection of the columns in both DataFrames.

 left_on: label or list, or array-like

It is a column or index level names from the left DataFrame to use as a key. It can be an array with length
equal to the length of the DataFrame.

 right_on: label or list, or array-like

It is a column or index level names from the right DataFrame to use as keys. It can be an array with length
equal to the length of the DataFrame.

 left_index : bool, default False

It uses the index from the left DataFrame as the join key(s), If true. In the case of MultiIndex (hierarchical),
many keys in the other DataFrame (either the index or some columns) should match the number of levels.

 right_index : bool, default False

It uses the index from the right DataFrame as the join key. It has the same usage as the left_index.

 sort: bool, default False

If True, it sorts the join keys in lexicographical order in the result DataFrame. Otherwise, the order of the join
keys depends on the join type (how keyword).

 suffixes: tuple of the (str, str), default (‘_x’, ‘_y’)

It suffixes to apply to overlap the column names in the left and right DataFrame, respectively. The columns
use (False, False) values to raise an exception on overlapping.

 copy: bool, default True

If True, it returns a copy of the DataFrame.

Otherwise, It can avoid the copy.

 indicator: bool or str, default False

If True, It adds a column to output DataFrame “_merge” with information on the source of each row. If it is
a string, a column with information on the source of each row will be added to output DataFrame, and the
column will be named value of a string. The information column is defined as a categorical-type and it takes
value of:

BCA II YEAR IV SEMESTER

176
Rahul Publications

Rahul Publications

 “left_only” for the observations whose merge key appears only in ‘left’ of the DataFrame, whereas,

 “right_only” is defined for observations in which merge key appears only in ‘right’ of the DataFrame,

 “both” if the observation’s merge key is found in both of them.

 validate: str, optional

If it is specified, it checks the merge type that is given below:

 “one_to_one” or “1:1”: It checks if merge keys are unique in both the left and right datasets.

 “one_to_many” or “1:m”: It checks if merge keys are unique in only the left dataset.

 “many_to_one” or “m:1”: It checks if merge keys are unique in only the right dataset.

 “many_to_many” or “m:m”: It is allowed, but does not result in checks.

Example1:

Merge two DataFrames on a key

import the pandas library

import pandas as pd

left = pd.DataFrame({

 ’id’:[1,2,3,4],

 ’Name’: [‘John’, ’Parker’, ’Smith’, ’Parker’],

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6']})

right = pd.DataFrame({

 ’id’:[1,2,3,4],

 ’Name’: [‘William’, ’Albert’, ’Tony’, ’Allen’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6']})

print (left)

print (right)

Output

id Name subject_id

0 1 John sub1

1 2 Parker sub2

2 3 Smith sub4

3 4 Parker sub6

id Name subject_id

0 1 William sub2

1 2 Albert sub4

2 3 Tony sub3

3 4 Allen sub6

UNIT - V DATA SCIENCE USING PYTHON

177
Rahul Publications

Rahul Publications

Example 2:

Merge two DataFrames on multiple keys:

import pandas as pd

left = pd.DataFrame({

 ’id’:[1,2,3,4,5],

 ’Name’: [‘Alex’, ’Amy’, ’Allen’, ’Alice’, ’Ayoung’],

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5']})

right = pd.DataFrame({

 ’id’:[1,2,3,4,5],

 ’Name’: [‘Billy’, ’Brian’, ’Bran’, ’Bryce’, ’Betty’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5']})

print pd.merge(left,right,on=’id’)

Output

id Name_x subject_id_x Name_y subject_id_y

0 1 John sub1 William sub2

1 2 Parker sub2 Albert sub4

2 3 Smith sub4 Tony sub3

3 4 Parker sub6 Allen sub6

Q11. Explain, How to Combine the data frames in Panda Using Concat() Function

Ans : (Imp.)

Concatenating

Pandas is capable of combining Series, DataFrame, and Panel objects through different kinds of set logic for
the indexes and the relational algebra functionality.

The concat() function is responsible for performing concatenation operation along an axis in the DataFrame.

Syntax:

pd.concat(objs,axis=0,join=’outer’,join_axes=None,

ignore_index=False)

Parameters:

 objs: It is a sequence or mapping of series or DataFrame objects.

If we pass a dict in the DataFrame, then the sorted keys will be used as the keys<.strong> argument, and
the values will be selected in that case. If any non-objects are present, then it will be dropped unless they are
all none, and in this case, a ValueError will be raised.

 axis: It is an axis to concatenate along.

 join: Responsible for handling indexes on another axis.

 join_axes: A list of index objects. Instead of performing the inner or outer set logic, specific indexes use for
the other (n-1) axis.

BCA II YEAR IV SEMESTER

178
Rahul Publications

Rahul Publications

 ignore_index: bool, default value False

It does not use the index values on the concatenation axis, if true. The resulting axis will be labeled as 0, ...,
n - 1.

Returns

A series is returned when we concatenate all the Series along the axis (axis=0). In case if objs contains at
least one DataFrame, it returns a DataFrame.

Example1:

import pandas as pd

a_data = pd.Series([‘p’, ’q’])

b_data = pd.Series([‘r’, ’s’])

pd.concat([a_data, b_data])

Output :

0 p

1 q

0 r

1 s

dtype: object

Example2:

In the above example, we can reset the existing index by using the ignore_index parameter. The below code
demonstrates the working of ignore_index.

import pandas as pd

a_data = pd.Series([‘p’, ’q’])

b_data = pd.Series([‘r’, ’s’])

pd.concat([a_data, b_data], ignore_index=True)

Output

0 p

1 q

2 r

3 s

dtype: object

Concatenation using append

The append method is defined as a useful shortcut to concatenate the Series and DataFrame.

Example:

import pandas as pd

one = pd.DataFrame({

 ’Name’: [‘Parker’, ’Smith’, ’Allen’, ’John’, ’Parker’],

UNIT - V DATA SCIENCE USING PYTHON

179
Rahul Publications

Rahul Publications

 ’subject_id’:[‘sub1’,’sub2',’sub4',’sub6',’sub5'],

 ’Marks_scored’:[98,90,87,69,78]},

 index=[1,2,3,4,5])

two = pd.DataFrame({

 ’Name’: [‘Billy’, ’Brian’, ’Bran’, ’Bryce’, ’Betty’],

 ’subject_id’:[‘sub2’,’sub4',’sub3',’sub6',’sub5'],

 ’Marks_scored’:[89,80,79,97,88]},

 index=[1,2,3,4,5])

print (one.append(two))

5.6.1 Aggregation and Grouping

Q12. Explain data aggregation functions in Pandas.

(OR)

Explain groupby() function in Pandas

Ans : (Imp.)

Data Aggregation

Data aggregation is a three-step procedure during which data is split, aggregated, and combined:

1. At the split step, the data is split by key or keys into chunks.

2. At the apply step, an aggregation function (such as sum() or count()) is applied to each chunk.

3. At the combine step, the calculated results are combined into a new series or frame.

groupby()

In Pandas, groupby() function allows us to rearrange the data by utilizing them on real-world data sets. Its
primary task is to split the data into various groups. These groups are categorized based on some criteria. The
objects can be divided from any of their axes.

Syntax:
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys = True,

squeeze= False, **kwargs)

This operation consists of the following steps for aggregating/grouping the data:

 Splitting datasets

 Analyzing data

 Aggregating or combining data

Split data into groups

There are multiple ways to split any object into the group which are as follows:

 obj.groupby(‘key’)

 obj.groupby([‘key1’,’key2'])

 obj.groupby(key,axis=1)

BCA II YEAR IV SEMESTER

180
Rahul Publications

Rahul Publications

We can also add some functionality to each subset. The following operations can be performed on the
applied functionality:

 Aggregation: Computes summary statistic.

 Transformation: It performs some group-specific operation.

 Filtration: It filters the data by discarding it with some condition.

Aggregations

It is defined as a function that returns a single aggregated value for each of the groups. We can perform
several aggregation operations on the grouped data when the groupby object is created.

Example

import the pandas library

import pandas as pd

import numpy as np

data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

’Percentage’: [82, 98, 91, 87],

’Course’: [‘B.Sc’,’B.Ed’,’M.Phill’,’BA’]}

df = pd.DataFrame(data)

 grouped = df.groupby(‘Course’)

print(grouped[‘Percentage’].agg(np.mean))

Output

Course

B.Ed 98

B.Sc 82

BA 87

M.Phill 91

Name: Percentage, dtype: int64

Transformations

It is an operation on a group or column that performs some group-specific computation and returns an
object that is indexed with the same size as of the group size.

Example

import the pandas library

import pandas as pd

import numpy as np

 data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

 ’Percentage’: [82, 98, 91, 87],

 ’Course’: [‘B.Sc’,’B.Ed’,’M.Phill’,’BA’]}

df = pd.DataFrame(data)

UNIT - V DATA SCIENCE USING PYTHON

181
Rahul Publications

Rahul Publications

Output

Percentage

0 NaN

1 NaN

2 NaN

3 NaN

BA

Parameters of Groupby:

 by: mapping, function, str, or iterable

Its main task is to determine the groups in the
groupby. If we use by as a function, it is called
on each value of the object’s index. If in case a
dict or Series is passed, then the Series or dict
VALUES will be used to determine the groups.

If a ndarray is passed, then the values are used
as-is determine the groups.

We can also pass the label or list of labels to
group by the columns in the self.

 axis: {0 or ‘index’, 1 or ‘columns’}, default value
0

 level: int, level name, or sequence of such, de-
fault value None.

It is used when the axis is a MultiIndex (hierarchi-
cal), so, it will group by a particular level or lev-
els.

 as_index: bool, default True

It returns the object with group labels as the in-
dex for the aggregated output.

 sort: bool, default True

It is used to sort the group keys. Get better per-
formance by turning this off.

 group_keys: bool, default value True

When we call it, it adds the group keys to the
index for identifying the pieces.

 observed: bool, default value False

It will be used only if any of the groupers are the
Categoricals. If the value is True, then it will show

only the observed values for categorical groupers.
Otherwise, it will show all of its values.

 **kwargs

It is an optional parameter that only accepts the
keyword argument ‘mutated’ that is passed to
groupby.

Returns

It returns
the DataFrameGroupBy or SeriesGroupBy. The
return value depends on the calling object that
consists of information about the groups.

Example

import pandas as pd

info = pd.DataFrame({‘Name’: [‘Parker’, ’Smith’,

’John’ ,’Wil l iam’] ,’Percentage’ :

[92. ,98. , 89. , 86.]})

info

Output

Name Percentage

0 Parker 92.0

1 Smith 98.0

2 John 89.0

3 William 86.0

Example

import the pandas library

import pandas as pd

data = {‘Name’: [‘Parker’, ’Smith’, ’John’, ’William’],

 ’Percentage’: [82, 98, 91, 87],}

info = pd.DataFrame(data)

 print (info)

Output

Name Percentage

0 Parker 82

1 Smith 98

2 John 91

3 William 87

BCA II YEAR IV SEMESTER

182
Rahul Publications

Rahul Publications

Short Question and Answers
1. What are panda objects?

Ans :
Meaning

Pandas is an open-source library that is made mainly for working with relational or labeled data both easily
and intuitively. It provides various data structures and operations for manipulating numerical data and time series.
This library is built on top of the NumPy library. Pandas is fast and it has high performance & productivity for users.

Pandas generally provide two data structures for manipulating data, They are:

 Series

 DataFrame

2. Series

Ans :
The Pandas Series can be defined as a one-dimensional array that is capable of storing various data types.

We can easily convert the list, tuple, and dictionary into series using “series’ method. The row labels of series are
called the index. A Series cannot contain multiple columns. It has the following parameter:

 data: It can be any list, dictionary, or scalar value.

 index: The value of the index should be unique and hashable. It must be of the same length as data. If we
do not pass any index, default np.arrange(n) will be used.

 dtype: It refers to the data type of series.

 copy: It is used for copying the data.

3. Frames in Pandas.

Ans :
Pandas DataFrame is a widely used data structure which works with a two-dimensional array with labeled

axes (rows and columns). DataFrame is defined as a standard way to store data that has two different indexes,
i.e., row index and column index. It consists of the following properties:

 The columns can be heterogeneous types like int, bool, and so on.

 It can be seen as a dictionary of Series structure where both the rows and columns are indexed. It is denoted
as “columns” in case of columns and “index” in case of rows.

4. Write various functions used for series attribute in Pandas.

Ans :
Series Functions

There are some functions used in Series which are as follows:

Functions Description

Pandas Series.mapQ Map the values from two series that have a common column.

Pandas Series.stdQ Calculate the standard deviation of the given set of numbers.

DataFrame. column, and rows.

Pandas Series.to_frame() Convert the series object to the dataframe.

PandasSeries.value_countsO Returns a Series that contain counts of unique values.

UNIT - V DATA SCIENCE USING PYTHON

183
Rahul Publications

Rahul Publications

5. indexing in Pandas.

Ans :
Indexing in Pandas

Indexing in pandas means simply selecting particular rows and columns of data from a DataFrame. Indexing

could mean selecting all the rows and some of the columns, some of the rows and all of the columns, or some of

each of the rows and columns. Indexing can also be known as Subset Selection.

Pandas Indexing using [], .loc[], .iloc[], .ix[]

There are a lot of ways to pull the elements, rows, and columns from a DataFrame. There are some indexing

method in Pandas which help in getting an element from a DataFrame. These indexing methods appear very similar

but behave very differently. Pandas support four types of Multi-axes indexing they are:

 Dataframe.[] ; This function also known as indexing operator

 Dataframe.loc[] : This function is used for labels.

 Dataframe.iloc[] : This function is used for positions or integer based

 Dataframe.ix[] : This function is used for both label and integer based

6. Methods in indexing in Data frame.

Ans :
Methods for indexing in DataFrame

S.No. Function Description

1. Datafiame.headQ Return top n tows of a data fiama.

2. Datafiame.tailO Return bottom n tows of a data fiama.

3. Datafiame.at[] Access a single value for a row column label pair.

4. Datafiame.iat[] Access a single value for a row column pair by integer position.

5. Datafiama.tailO Purely integer-location based indexing for selection by position.

6. DataF ramelookupO Label-based “fancy indexing” function for D3taFrame.

7. DataF rame.popO Return item and drop from fiama.

7. Hierarchical indexing in Pandas.

Ans :
The index is like an address, that’s how any data point across the data frame or series can be accessed.

Rows and columns both have indexes, rows indices are called index and for columns, it’s general column names.

8. Data Aggregation

Ans :
Data aggregation is a three-step procedure during which data is split, aggregated, and combined:

1. At the split step, the data is split by key or keys into chunks.

2. At the apply step, an aggregation function (such as sum() or count()) is applied to each chunk.

3. At the combine step, the calculated results are combined into a new series or frame.

BCA II YEAR IV SEMESTER

184
Rahul Publications

Rahul Publications

9. Groupby() function in Pandas

Ans :
In Pandas, groupby() function allows us to rearrange the data by utilizing them on real-world data sets. Its

primary task is to split the data into various groups. These groups are categorized based on some criteria. The
objects can be divided from any of their axes.
Syntax:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys = True,
squeeze= False, **kwargs)

This operation consists of the following steps for aggregating/grouping the data:
 Splitting datasets
 Analyzing data
 Aggregating or combining data
Split data into groups

There are multiple ways to split any object into the group which are as follows:
 obj.groupby(‘key’)
 obj.groupby([‘key1’,’key2'])
 obj.groupby(key,axis=1)

We can also add some functionality to each subset. The following operations can be performed on the
applied functionality:
 Aggregation: Computes summary statistic.
 Transformation: It performs some group-specific operation.
 Filtration: It filters the data by discarding it with some condition.
10. Parameters of Groupby.

Ans :
 by: mapping, function, str, or iterable

Its main task is to determine the groups in the groupby. If we use by as a function, it is called on each value
of the object’s index. If in case a dict or Series is passed, then the Series or dict VALUES will be used to
determine the groups.

If a ndarray is passed, then the values are used as-is determine the groups.

We can also pass the label or list of labels to group by the columns in the self.

 axis: {0 or ‘index’, 1 or ‘columns’}, default value 0

 level: int, level name, or sequence of such, default value None.

It is used when the axis is a MultiIndex (hierarchical), so, it will group by a particular level or levels.

 as_index: bool, default True

It returns the object with group labels as the index for the aggregated output.

 sort: bool, default True

It is used to sort the group keys. Get better performance by turning this off.

 group_keys: bool, default value True

When we call it, it adds the group keys to the index for identifying the pieces.

 observed: bool, default value False

It will be used only if any of the groupers are the Categoricals. If the value is True, then it will show only the
observed values for categorical groupers. Otherwise, it will show all of its values.

UNIT - V DATA SCIENCE USING PYTHON

185
Rahul Publications

Rahul Publications

Choose the Correct Answer
1. Amongst which of the following is / are used to analyze the data in pandas. [c]

(a) Dataframe (c) Series
(c) Both A and B (d) None of the mentioned above

2. Amongst which of the following is a correct syntax for panda’s dataframe? [a]
(a) Pandas.DataFrame(data, index, dtype, copy)
(b) pandas.DataFrame(data, index, columns, dtype, copy)
(c) pandas.DataFrame(data, index, dtype, copy)
(d) pandas.DataFrame(data, index, rows, dtype, copy)

3. Amongst which of the following can be used to create various inputs using pandas DataFrame. [d]
(a) Lists, dict (b) Series
(c) Numpy ndarrays and Another DataFrame (d) All of the above mentioned

4. Which of the following thing can be data in Pandas? [d]
(a) a python dict (b) an ndarray
(c) a scalar value (d) all of the mentioned

5. Which of the following input can be accepted by DataFrame? [d]
(a) Structured ndarray (b) Series
(c) DataFrame (d) All of the mentioned

6. Which of the following takes a dict of dicts or a dict of array-like sequences and returns a DataFrame?
[a]

(a) DataFrame.from_items (b) DataFrame.from_records
(c) DataFrame.from_dict (d) All of the mentioned

7. What will be correct syntax for pandas series? [c]
(a) pandas_Series(data, index, dtype, copy)
(b) pandas.Series(data, index, dtype)
(c) pandas.Series(data, index, dtype, copy)
(d) pandas_Series(data, index, dtype)

8. To count total number of rows in data frame we use . [b]
(a) Count() (b) Len()
(c) Values() (d) All the above

9. Which of the following indexing capabilities is used as a concise means of selecting data from a pandas
object? [b]
(a) In (b) ix
(c) ipy (d) iy

10. What will be output for the following code? [c]
import pandas as pd
import numpy as np
s = pd.Series(np.random.randn(2))
print s.size
(a) 0 (b) 1
(c) 2 (d) 3

BCA II YEAR IV SEMESTER

186
Rahul Publications

Rahul Publications

Fill in the blanks

1. PANDAS stands for .

2. objects are variable in terms of their values, but they are immutable in terms of their sizes.

3. Objects are mutable in terms of their values, but they are not mutable in terms of their sizes.

4. are the minimum number of arguments require to pass in pandas series?

5. is one one-dimensional labeled array that can store any data type like integers, strings, floating-
point numbers, Python objects, etc.

6. A is a 2-dimensional labeled data structure with columns that can be of a variety of different
kinds.

7. A pandas can be created using various inputs like Lists, dict, Series, Numpy ndarrays, Another
DataFrame.

8. is similar to NumPy arrays and is used to retrieve entries inside a series of elements.

9. is used when data is in tabular format.

10. In Panda the format keeps an arrays of all of the locations where the data are not equal to the fill
value.

ANSWERS

1. Panel Data Analysis

2. Series Objects

3. Sequence

4. 1

5. Series

6. DataFrame

7. DataFrame

 8. Indexing.

9. Panda

10. integer

LAB PROGRAMMING DATA SCIENCE USING PYTHON

187
Rahul Publications

Rahul Publications

Lab Programming

1. Write a program to demonstrate different
numbers data types in python.

Ans :
‘’’Aim:Write a program to demonstrate different

number data types in Python.’’’

a=10;#Integer Datatype

b=11.5;#Float Datatype

c=2.05j;#Complex Number

print(“a is Type of”,type(a));#prints type of vari-
able a

print(“b is Type of”,type(b));#prints type of vari-
able b

print(“c is Type of”,type(c));#prints type of vari-
able c

Output:

2. Write a python program to design simple
calculator using functions.

Ans :
Python Program to Make a Simple Calculator

def multiplication(num1, num2):

return num1 * num2

def addition(num1, num2):

return num1 + num2

def subtraction(num1, num2):

return num1 - num2

def divide(num1, num2):

return num1 / num2

value1 = int(input(“Enter 1st number: “))

value2 = int(input(“Enter 2nd number: “))

print(“Select operation 1-Division, 2-Multiplica-
tion, 3-Addition, 4-Subtraction”)

operation = int(input(“Choose operation 1/2/3/4: “))

if operation == 1:

print(value1, “/”, value2, “=”, divide(value1, value2))

elif operation == 2:

print(value1, “*”, value2, “=”, multiplication

(value1, value2))

elif operation == 3:

print(value1, “+”, value2, “=”, addition(value1, value2))

elif operation == 4:

print(value1, “-”, value2, “=”, subtraction

(value1, value2))

else:

print(“Enter correct operation”)

Output:

Enter 1st Number: 2

Enter 2nd Number: 2

Select operation 1-Division, 2-Multiplication,
3-Addition, 4-Subtraction

Choose operation 1/2/3/4: 1

2 / 2 = 1.0

3. Write a python program to check whether
a given number is Armstrong number or
not.

Ans :
Python program to check if the number is an
Armstrong number or not

take input from the user

num = int(input(“Enter a number: “))

initialize sum

sum = 0

find the sum of the cube of each digit

temp = num

while temp >0:

digit = temp % 10

BCA II YEAR IV SEMESTER

188
Rahul Publications

Rahul Publications

sum += digit ** 3

temp //= 10

display the result

if num == sum:

print(num,”is an Armstrong number”)

else:

print(num,”is not an Armstrong number”)

Output 1

Enter a number: 663

663 is not an Armstrong number

4. Write a python program to generate prime
numbers between different intervals.

Ans :
Python program to display all the prime num-
bers within an interval

lower = 900

upper = 1000

print(“Prime numbers between”, lower, “and”,
upper, “are:”)

for num in range(lower, upper + 1):

all prime numbers are greater than 1

if num >1:

for i in range(2, num):

if (num % i) == 0:

break

else:

print(num)

Output

Prime numbers between 900 and 1000 are:

907

911

919

929

937

941

947

953

967

971

977

983

991

997

5. Write a python program to find factorial of
a number using recursion.

Ans :
Factorial of a number using recursion

defrecur_factorial(n):

if n == 1:

return n

else:

return n*recur_factorial(n-1)

num = 7

check if the number is negative

if num <0:

print(“Sorry, factorial does not exist for negative
numbers”)

elif num == 0:

print(“The factorial of 0 is 1”)

else:

print(“The factorial of”, num, “is”, recur _
factorial(num))

Output

The factorial of 7 is 5040

6. Write a python program to check whether
a string is palindrome or not.

Ans :
Program to check if a string is palindrome or
not

my_str = ‘aIbohPhoBiA’

make it suitable for caseless comparison

my_str = my_str.casefold()

reverse the string

LAB PROGRAMMING DATA SCIENCE USING PYTHON

189
Rahul Publications

Rahul Publications

rev_str = reversed(my_str)

check if the string is equal to its reverse

if list(my_str) == list(rev_str):

print(“The string is a palindrome.”)

else:

print(“The string is not a palindrome.”)

Output

The string is a palindrome.

7. Write a python program to count the num-
ber of characters present in a word.

Ans :
Python Program to Count Total Characters in
a String

str1 = input(“Please Enter your Own String : “)

total = 0

for i in range(len(str1)):

total = total + 1

print(“Total Number of Characters in this String
= “, total)

Please Enter your Own String : Tutorial Gateway

Total Number of Characters in this String = 16

>>>

Please Enter your Own String : Python

Total Number of Characters in this String = 6

8. Write a python program to create, append
and remove lists.

Ans :
‘’’Aim: Write a program to create, append, and
remove lists in python. ‘’’

pets =[‘cat’,’dog’,’rat’,’pig’,’tiger’]

snakes=[‘python’,’anaconda’,’fish’,’cobra’,’

mamba’]

print(“Pets are :”,pets)

print(“Snakes are :”,snakes)

animals=pets+snakes

print(“Animals are :”,animals)

snakes.remove(“fish”)

print(“updated Snakes are :”,snakes)

Output:

9. Write a program to demonstrate working
with tuples in python.

Ans :
‘’’Write a program to demonstrate working with

tuples in python’’’

T=(“apple”,”banana”,”cherry”,” mango”,”
grape”,”orange”)

print(“\n Created tuple is :”,T)

print(“\n Second fruit is :”,T[1])

print(“\n From 3-6 fruits are :”,T[3:6])

print(“\n List of all items in Tuple :”)

for x in T:

print(x)

if”apple”in T:

print(“\n Yes, ‘apple’ is in the fruits tuple”)

print(“\n Length of Tuple is :”,len(T))

Output:

10. Write a program to demonstrate dictionar-
ies in python.

‘’’Write a program to demonstrate working
with dictionaries in python.’’’

Ans :
dict1 ={‘StdNo’:’532',’StuName’:’Naveen’,

’StuAge’: 21,’StuCity’:’Hyderabad’}

print(“\n Dictionary is :”,dict1)

#Accessing specific values

print(“\n Student Name is :”,dict1[‘StuName’])

print(“\n Student City is :”,dict1[‘StuCity’])

#Display all Keys

print(“\n All Keys in Dictionary “)

BCA II YEAR IV SEMESTER

190
Rahul Publications

Rahul Publications

for x in dict1:

print(x)

#Display all values

print(“\n All Values in Dictionary “)

for x in dict1:

print(dict1[x])

#Adding items

dict1[“Phno”]=85457854

#Updated dictoinary

print(“\n Uadated Dictionary is :”,dict1)

#Change values

dict1[“StuName”]=”Madhu”

#Updated dictoinary

print(“\n Uadated Dictionary is :”,dict1)

#Removing Items

dict1.pop(“StuAge”);

#Updated dictoinary

print(“\n Uadated Dictionary is :”,dict1)

#Length of Dictionary

print(“Length of Dictionary is :”,len(dict1))

#Copy a Dictionary

dict2=dict1.copy()

#New dictoinary

print(“\n New Dictionary is :”,dict2)

#empties the dictionary

dict1.clear()

print(“\n Uadated Dictionary is :”,dict1)

Output:

Numpy

11. Python program to demonstrate basic ar-
ray characteristics.

Ans :
Python program to demonstrate

basic array characteristics

import numpy as np

Creating array object

arr = np.array([[1, 2, 3],

 [4, 2, 5]])

Printing type of arr object

print(“Array is of type: “, type(arr))

Printing array dimensions (axes)

print(“No. of dimensions: “, arr.ndim)

Printing shape of array

print(“Shape of array: “, arr.shape)

Printing size (total number of elements) of array

print(“Size of array: “, arr.size)

Printing type of elements in array

print(“Array stores elements of type: “, arr.dtype)

Output :

Array is of type:

No. of dimensions: 2

Shape of array: (2, 3)

Size of array: 6

Array stores elements of type: int64

12. Python program to demonstrate array cre-
ation techniques.

Ans :
Python program to demonstrate

array creation techniques

import numpy as np

Creating array from list with type float

a = np.array([[1, 2, 4], [5, 8, 7]], dtype = ‘float’)

print (“Array created using passed list:\n”, a)

Creating array from tuple

b = np.array((1 , 3, 2))

LAB PROGRAMMING DATA SCIENCE USING PYTHON

191
Rahul Publications

Rahul Publications

print (“\nArray created using passed tuple:\n”, b)

Creating a 3X4 array with all zeros

c = np.zeros((3, 4))

print (“\nAn array initialized with all zeros:\n”, c)

Create a constant value array of complex type

d = np.full((3, 3), 6, dtype = ‘complex’)

print (“\nAn array initialized with all 6s.”

 ”Array type is complex:\n”, d)

Create an array with random values

e = np.random.random((2, 2))

print (“\nA random array:\n”, e)

Create a sequence of integers

from 0 to 30 with steps of 5

f = np.arange(0, 30, 5)

print (“\nA sequential array with steps of 5:\n”, f)

Create a sequence of 10 values in range 0 to 5

g = np.linspace(0, 5, 10)

print (“\nA sequential array with 10 values between”

 ”0 and 5:\n”, g)

Reshaping 3X4 array to 2X2X3 array

arr = np.array([[1, 2, 3, 4],

 [5, 2, 4, 2],

 [1, 2, 0, 1]])

newarr = arr.reshape(2, 2, 3)

print (“\nOriginal array:\n”, arr)

print (“Reshaped array:\n”, newarr)

Flatten array

arr = np.array([[1, 2, 3], [4, 5, 6]])

flarr = arr.flatten()

print (“\nOriginal array:\n”, arr)

print (“Fattened array:\n”, flarr)

Output :

Array created using passed list:

 [[1. 2. 4.]

 [5. 8. 7.]]

Array created using passed tuple:

 [1 3 2]

An array initialized with all zeros:

 [[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

An array initialized with all 6s. Array type is complex:

 [[6.+0.j 6.+0.j 6.+0.j]

 [6.+0.j 6.+0.j 6.+0.j]

 [6.+0.j 6.+0.j 6.+0.j]]

A random array:

 [[0.46829566 0.67079389]

 [0.09079849 0.95410464]]

A sequential array with steps of 5:

 [0 5 10 15 20 25]

A sequential array with 10 values between 0 and 5:

[0.0.55555556 1.11111111 1.66666667
2.22222222 2.77777778 3.33333333 3.88888889
4.44444444 5.]

Original array:

 [[1 2 3 4]

 [5 2 4 2]

 [1 2 0 1]]

Reshaped array:

 [[[1 2 3]

 [4 5 2]]

 [[4 2 1]

 [2 0 1]]]

Original array:

 [[1 2 3]

 [4 5 6]]

Fattened array:

 [1 2 3 4 5 6]

13. Python program to demonstrate indexing
in numpy

Ans :
Python program to demonstrate

indexing in numpy

import numpy as np

An exemplar array

BCA II YEAR IV SEMESTER

192
Rahul Publications

Rahul Publications

arr = np.array([[-1, 2, 0, 4],

 [4, -0.5, 6, 0],

 [2.6, 0, 7, 8],

 [3, -7, 4, 2.0]])

Slicing array

temp = arr[:2, ::2]

print (“Array with first 2 rows and alternate”

 ”columns(0 and 2):\n”, temp)

Integer array indexing example

temp = arr[[0, 1, 2, 3], [3, 2, 1, 0]]

print (“\nElements at indices (0, 3), (1, 2), (2, 1),”

 ”(3, 0):\n”,
temp)

boolean array indexing example

cond = arr > 0 # cond is a boolean array

temp = arr[cond]

print (“\nElements greater than 0:\n”, temp)

Output :

Array with first 2 rows and alternatecolumns(0 and 2):

 [[-1. 0.]

 [4. 6.]]

Elements at indices (0, 3), (1, 2), (2, 1),(3, 0):

 [4. 6. 0. 3.]

Elements greater than 0:

 [2. 4. 4. 6. 2.6 7. 8. 3. 4. 2.]

14. Python program to demonstrate basic op-
erations on single array.

Ans :
Python program to demonstrate basic opera-
tions on single array

import numpy as np

a = np.array([1, 2, 5, 3])

add 1 to every element

print (“Adding 1 to every element:”, a+1)

subtract 3 from each element

print (“Subtracting 3 from each element:”, a-3)

 # multiply each element by 10

print (“Multiplying each element by 10:”, a*10)

square each element

print (“Squaring each element:”, a**2)

modify existing array

a *= 2

print (“Doubled each element of original array:”, a)

transpose of array

a = np.array([[1, 2, 3], [3, 4, 5], [9, 6, 0]])

print (“\nOriginal array:\n”, a)

print (“Transpose of array:\n”, a.T)

Output :

Adding 1 to every element: [2 3 6 4]

Subtracting 3 from each element: [-2 -1 2 0]

Multiplying each element by 10: [10 20 50 30]

Squaring each element: [1 4 25 9]

Doubled each element of original array: [2 4 10 6]

Original array:

 [[1 2 3]

 [3 4 5]

 [9 6 0]]

Transpose of array:

 [[1 3 9]

 [2 4 6]

 [3 5 0]]

15. Python program to demonstrate unary op-
erators in numpy

Ans :
Python program to demonstrate unary opera-
tors in numpy

import numpy as np

arr = np.array([[1, 5, 6],

 [4, 7, 2],

 [3, 1, 9]])

maximum element of array

print (“Largest element is:”, arr.max())

print (“Row-wise maximum elements:”,

 arr.max(axis = 1))

LAB PROGRAMMING DATA SCIENCE USING PYTHON

193
Rahul Publications

Rahul Publications

minimum element of array

print (“Column-wise minimum elements:”,

 arr.min(axis = 0))

sum of array elements

print (“Sum of all array elements:”,

 arr.sum())

cumulative sum along each row

print (“Cumulative sum along each row:\n”,

 arr.cumsum(axis = 1))

Output :

Largest element is: 9

Row-wise maximum elements: [6 7 9]

Column-wise minimum elements: [1 1 2]

Sum of all array elements: 38

Cumulative sum along each row:

[[1 6 12]

 [4 11 13]

 [3 4 13]]

Pandas

16. Python code demonstrate to make a Pan-
das DataFrame with two-dimensional list

Ans :
import pandas as pd

List1

lst = [[‘tom’, ‘reacher’, 25], [‘krish’, ‘pete’, 30],

 [‘nick’, ‘wilson’, 26], [‘juli’, ‘williams’, 22]]

df = pd.DataFrame(lst, columns =[‘FName’, ‘LName’,
‘Age’],

 dtype = float)

print(df)

Output:

 FName LName Age

0 tom reacher 25

1 krish pete 30

2 nick wilson 26

3 juli williams 22

17. Python code demonstrate creating
DataFrame from dictionary of narray and
lists

Ans :
Python code demonstrate creatingDataFrame from

dict narray / lists

By default addresses.

import pandas as pd

initialise data of lists.

data = {‘Category’:[‘Array’, ‘Stack’, ‘Queue’],

 ’Marks’:[20, 21, 19]}

Create DataFrame

df = pd.DataFrame(data)

Print the output.

print(df)

Output:

Category Marks

0 Array 20

1 Stack 21

2 Queue 19

18. Python code demonstrate creating a Pan-
das dataframe using list of tuples

Ans :
importing the pandas package

import pandas as pd

creating a list of tuples

list_of_tuples = [(‘A’,65),(‘B’,66),(‘C’,67)]

creating DataFrame

df=pd.DataFrame(list_of_tuples, columns
=[‘Char’, ‘Ord’])

displaying resultant DataFrame

print(df)

Output

 Char Ord

0 A 65

1 B 66

2 C 67

BCA II YEAR IV SEMESTER

194
Rahul Publications

Rahul Publications

19. Python code demonstrate how to iterate
over rows in Pandas Dataframe.

Ans :
importing pandas

import pandas as pd

list of dicts

input_df = [{‘name’:’Sujeet’, ‘age’:10},

 {‘name’:’Sameer’, ‘age’:11},

 {‘name’:’Sumit’, ‘age’:12}]

df = pd.DataFrame(input_df)

print(‘Original DataFrame: \n’, df)

print(‘\nRows iterated using iterrows() : ‘)

for index, row in df.iterrows():

 print(row[‘name’], row[‘age’])

Output:

Original DataFrame:

 age name

0 10 Sujeet

1 11 Sameer

2 12 Sumit

Rows iterated using iterrows() :

Sujeet 10

Sameer 11

Sumit 12

20. Python code demonstrate how to get col-
umn names in Pandas dataframe

Ans :
Import pandas package

import pandas as pd

making data frame

data = pd.read_csv(“nba.csv”)

iterating the columns

for col in data.columns:

 print(col)

Output:

Name

Team

Number

Position

Age

Height

Weight

College

Salary

SOLVED MODEL PAPERS DATA SCIENCE USING PYTHON

195
Rahul Publications

FACULTY OF INFORMATICS
BCA II-Year IV-Semester (CBCS) Examination

Model Paper - I
DATA SCIENCE USING PYTHON

Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) Python keywords (Unit-I, SQA-7)

(b) What is Data Science? (Unit-I, SQA-1)

(c) What is Pass Statement in Python? (Unit-II, SQA-10)

(d) User-Defined Functions (Unit-II, SQA-4)

(e) What is string (Unit-III, SQA-1)

(f) How to create a list ? (Unit-III, SQA-6)

(g) What is fancy indexing in Numpy? Explain. (Unit-IV, SQA-6)

(h) Structured Data (Unit-IV, SQA-8)

(i) Methods in indexing in Data frame. (Unit-V, SQA-6)

(j) What are panda objects? (Unit-V, SQA-1)

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) What are the main components of Data science? (Unit-I, Q.No. 2)

(b) What are the features of python? (Unit-I, Q.No. 14)

OR

3. (a) What are Python keywords? Explain. (Unit-I, Q.No. 21)

(b) What are the application sof data science? Explain. (Unit-I, Q.No. 7)

UNIT - II

4. (a) Explain formatted print function. (Unit-II, Q.No. 2)

(b) What is function? How to define and call a function? (Unit-II, Q.No. 11)

OR

BCA II YEAR IV SEMESTER

196
Rahul Publications

5. (a) What are the various types of quotations used in python? (Unit-II, Q.No. 5)

(b) Explain the Flow of Execution in Python. (Unit-II, Q.No. 14)

UNIT - III

6. (a) Explain various String Manipulation Functions. (Unit-III, Q.No. 6)

(b) Explain various array methods in Python. (Unit-III, Q.No. 9)

OR

7. (a) Write about various methods used in lists. (Unit-III, Q.No. 13)

(b) What is list Cloning? Explain list cloning techniques. (Unit-III, Q.No. 17)

UNIT - IV

8. What is NumPy? Explain how to create arrays in python using Numpy. (Unit-IV, Q.No. 1)

OR

9. Explain the comparisons operations in Numy with examples. (Unit-IV, Q.No. 7)

UNIT - V

10. Explain, how to create and use series in Pandas. (Unit-V, Q.No. 2)

OR

11. Explain data aggregation functions in Pandas. (Unit-V, Q.No. 12)

SOLVED MODEL PAPERS DATA SCIENCE USING PYTHON

197
Rahul Publications

FACULTY OF INFORMATICS
BCA II-Year IV-Semester (CBCS) Examination

Model Paper - II
DATA SCIENCE USING PYTHON

Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) What is Data Science? (Unit-I, SQA-6)

(b) Python variables (Unit-I, SQA-9)

(c) Advantages of user-defined functions (Unit-II, SQA-5)

(d) Explain nested if statements with syntax and example. (Unit-II, SQA-9)

(e) Explain various String Manipulation Functions. (Unit-III, SQA-4)

(f) Define array. (Unit-III, SQA-5)

(g) What is NumPy? (Unit-IV, SQA-1)

(h) Sorting Arrays (Unit-IV, SQA-7)

(i) Frames in Pandas. (Unit-V, SQA-3)

(j) Hierarchical indexing in Pandas. (Unit-V, SQA-7)

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Explain various processes of data science, what are used to extract (Unit-I, Q.No. 3)
information.

(b) Explain about various tools used for data analysis. (Unit-I, Q.No. 10)

OR

3. (a) Write about statements in python. (Unit-I, Q.No. 23)

(b) What is data analysis? (Unit-I, Q.No. 9)

UNIT - II

4. (a) Write about Tuple assignment feature? (Unit-II, Q.No. 7)

(b) Write a program to check whether the given number is prime or not. (Unit-II, Q.No. 21)

BCA II YEAR IV SEMESTER

198
Rahul Publications

OR

5. (a) What is indentation in python? (Unit-II, Q.No. 4)

(b) Write a program to add two numbers. (Unit-II, Q.No. 10)

UNIT - III

6. (a) Explain briefly about Python String Module. (Unit-III, Q.No. 7)

(b) What are lists ? How to create a list ? (Unit-III, Q.No. 10)

OR

7. (a) Explain about Tuple assignment. (Unit-III, Q.No. 21)

(b) How to slice lists in Python? (Unit-III, Q.No. 12)

UNIT - IV

8. Explain array creation techniques in Numpy with an example program (Unit-IV, Q.No. 2)

OR

9. Explain Boolean Arrays in Numpy. (Unit-IV, Q.No. 9)

UNIT - V

10. Explain, how to handle the missing data. (Unit-V, Q.No. 8)

OR

11. Expalin , how to use frames in Pandas. (Unit-V, Q.No. 4)

SOLVED MODEL PAPERS DATA SCIENCE USING PYTHON

199
Rahul Publications

FACULTY OF INFORMATICS
BCA II-Year IV-Semester (CBCS) Examination

Model Paper - III
DATA SCIENCE USING PYTHON

Time : 3 Hours] [Max. Marks : 70

Note : Answer all questions from Part - A, & any five questions from Part - B
Choosing one questions from each unit.

PART - A (10 × 2 = 20 Marks)

ANSWERS

1. (a) Python variables (Unit-I, SQA-3)

(b) Identifiers in python (Unit-I, SQA-8)

(c) Types of Functions (Unit-II, SQA-3)

(d) Flow of Execution in Python. (Unit-II, SQA-6)

(e) What is list slicing? (Unit-III, SQA-7)

(f) Advantages of Tuple over List. (Unit-III, SQA-10)

(g) Aggregations in Numpy (Unit-IV, SQA-3)

(h) Boolean Arrays (Unit-IV, SQA-5)

(i) Write various functions used for series attribute in Pandas. (Unit-V, SQA-4)

(j) Parameters of Groupby. (Unit-V, SQA-10)

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Write the differences between data science with business intelligence. (Unit-I, Q.No. 6)

(b) What are the features of python? (Unit-I, Q.No. 14)

OR

3. (a) Explain various modes of Python Interpreter. (Unit-I, Q.No. 16)

(b) What is Data Science? Explain the steps involved in data science processing. (Unit-I, Q.No. 1)

UNIT - II

4. (a) What are identifiers in python? (Unit-II, Q.No. 6)

(b) Write a program to calculate a running total in python. (Unit-II, Q.No. 26)

OR

BCA II YEAR IV SEMESTER

200
Rahul Publications

5. (a) Write about python expressions. (Unit-II, Q.No. 1)

(b) What are the various types of operators used in python. (Unit-II, Q.No. 8)

UNIT - III

6. (a) Define array? Explain about array operations. (Unit-III, Q.No. 8)

(b) How to access elements from a list? (Unit-III, Q.No. 11)

OR

7. (a) Explain Aliasing in lists. (Unit-III, Q.No. 16)

(b) What are dictionaries in python? Explain the operations that can be (Unit-III, Q.No. 24)
peformed on dictionaries.

UNIT - IV

8. Expalin Array Indexing with an example program. (Unit-IV, Q.No. 3)

OR

9. Explain about Sorting Arrays in Numpy. (Unit-IV, Q.No. 11)

UNIT - V

10. Explain, how to Combine the data frames in Panda Using Merge() Function. (Unit-V, Q.No. 10)

OR

11. Explain various operations that can perform on Pandas Data Frames. (Unit-V, Q.No. 7)

SOLVED PREVIOUS QUESTION PAPER DATA SCIENCE USING PYTHON

201
Rahul Publications

FACULTY OF INFORMATICS
BCA IV-Semester (CBCS) Examination

February-2023
DATA SCIENCE USING PYTHON

Time : 3 Hours] [Max. Marks : 70

Note : I. Answer all questions from Part - A, & answer any five questions from Part - B
Choosing one questions from each unit.

II. Missing data, if any, may be suitably assumed.

PART - A (10 × 2 = 20 Marks)

1. (a) Write about challenges of Data science technology.

(b) What are variables, keywords and Identifiers in python?

(c) Explain about Types of Functions.

(d) Write about Return values and variable Scope.

(e) Explain about Methods of an Array.

(f) Difference between tuple and Dictionary.

(g) Briefly write about computation on Numpy Array.

(h) Write about Fancy indexing sorting array.

(i) Explain about combining dataset and Grouping.

(j) Write about Selection operations on Data in Panda.

PART - B (5 × 10 = 50 Marks)

UNIT - I

2. (a) Write about DataScience Job Roles and Tools for Data Science.

(b) What are the Difference between Data science and Bl?

OR

3. (a) What is Data Analysis ? Explain about Data Analysis Tools.

(b) What is Python? Write about the Features of Python.

UNIT - II

4. (a) Explain the uses and types of Python functions.

(b) Write about Expressions, I/O, and Tuple Assignment.

OR

5. (a) Write about Flow of Execution, Parameters and Arguments.

(b) Explain about Return Values, Variable Scope (Local, Global).

BCA II YEAR IV SEMESTER

202
Rahul Publications

UNIT - III

6. (a) Write about Advanced List Processing-List Comprehension and Nested List

(b) Write about Mutability, aliasing, Cloning List, List Parameters.

OR

7. (a) What is String ? Explain about String Functions and Methods.

(b) Write about List of an Array and Methods of an Array.

UNIT - IV

8. (a) Write about Computation on numpy arrays, Aggregations and computations on arrays.

(b) Explain about Sorting and Structured Data.

OR

9. (a) What is Numpy? Explain about basic Numpy array and Boolean logic indexing.

(b) Write about Comparisons, Fancy Indexing.

UNIT - V

10. (a) Write about pandas object.

(b) Explain about Data Indexing and Selection.

OR

11. (a) Write about Aggrigation and Grouping of Pandas.

(b) Explain about Handling Missing data and Combining’ data set.

